

 Table of
Contents

Network Troubleshooting Tools

By Joseph D. Sloan

Publisher : O'Reilly

Pub Date : August 2001

ISBN : 0-596-00186-X

Pages : 364

Network Troubleshooting Tools helps you sort through the thousands of tools that
have been developed for debugging TCP/IP networks and choose the ones that are
best for your needs. It also shows you how to approach network troubleshooting using
these tools, how to document your network so you know how it behaves under normal
conditions, and how to think about problems when they arise so you can solve them
more effectively.

TE
AM
FL
Y

Team-Fly®

http://www.oreillynet.com/cs/catalog/view/au/694?x-t=book.view

 ii

Table of Content
Table of Content ... ii
Preface... v

Audience ... vi
Organization ... vi
Conventions ... ix
Acknowledgments ... ix

Chapter 1. Network Management and Troubleshooting .. 1
1.1 General Approaches to Troubleshooting ... 1
1.2 Need for Troubleshooting Tools.. 3
1.3 Troubleshooting and Management ... 5

Chapter 2. Host Configurations.. 14
2.1 Utilities ... 15
2.2 System Configuration Files .. 27
2.3 Microsoft Windows .. 32

Chapter 3. Connectivity Testing... 35
3.1 Cabling .. 35
3.2 Testing Adapters.. 40
3.3 Software Testing with ping ... 41
3.4 Microsoft Windows .. 54

Chapter 4. Path Characteristics ... 56
4.1 Path Discovery with traceroute.. 56
4.2 Path Performance.. 62
4.3 Microsoft Windows .. 77

Chapter 5. Packet Capture ... 79
5.1 Traffic Capture Tools .. 79
5.2 Access to Traffic .. 80
5.3 Capturing Data ... 81
5.4 tcpdump... 82
5.5 Analysis Tools .. 93
5.6 Packet Analyzers ... 99
5.7 Dark Side of Packet Capture ... 103
5.8 Microsoft Windows .. 105

Chapter 6. Device Discovery and Mapping.. 107
6.1 Troubleshooting Versus Management ... 107
6.2 Device Discovery ... 109
6.3 Device Identification .. 115
6.4 Scripts.. 119
6.5 Mapping or Diagramming ... 121
6.6 Politics and Security .. 125
6.7 Microsoft Windows .. 126

Chapter 7. Device Monitoring with SNMP .. 128
7.1 Overview of SNMP .. 128
7.2 SNMP-Based Management Tools .. 132

 iii

7.3 Non-SNMP Approaches ... 154
7.4 Microsoft Windows .. 154

Chapter 8. Performance Measurement Tools ... 158
8.1 What, When, and Where .. 158
8.2 Host-Monitoring Tools... 159
8.3 Point-Monitoring Tools.. 160
8.4 Network-Monitoring Tools .. 167
8.5 RMON.. 176
8.6 Microsoft Windows .. 179

Chapter 9. Testing Connectivity Protocols ... 184
9.1 Packet Injection Tools... 184
9.2 Network Emulators and Simulators .. 193
9.3 Microsoft Windows .. 195

Chapter 10. Application-Level Tools ... 197
10.1 Application-Protocols Tools ... 197
10.2 Microsoft Windows .. 208

Chapter 11. Miscellaneous Tools .. 209
11.1 Communications Tools ... 209
11.2 Log Files and Auditing .. 213
11.3 NTP.. 218
11.4 Security Tools .. 220
11.5 Microsoft Windows .. 221

Chapter 12. Troubleshooting Strategies... 223
12.1 Generic Troubleshooting .. 223
12.2 Task-Specific Troubleshooting.. 226

Appendix A. Software Sources .. 234
A.1 Installing Software... 234
A.2 Generic Sources.. 236
A.3 Licenses.. 237
A.4 Sources for Tools .. 237

Appendix B. Resources and References ... 250
B.1 Sources of Information ... 250
B.2 References by Topic... 253
B.3 References ... 256

Colophon ... 259

 iv

Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of a basilisk and network troubleshooting is a
trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

 v

Preface
This book is not a general introduction to network troubleshooting. Rather, it is about one aspect of
troubleshooting—information collection. This book is a tutorial introduction to tools and techniques
for collecting information about computer networks. It should be particularly useful when dealing
with network problems, but the tools and techniques it describes are not limited to troubleshooting.
Many can and should be used on a regular basis regardless of whether you are having problems.

Some of the tools I have selected may be a bit surprising to many. I strongly believe that the best
approach to troubleshooting is to be proactive, and the tools I discuss reflect this belief. Basically, if
you don't understand how your network works before you have problems, you will find it very
difficult to diagnose problems when they occur. Many of the tools described here should be used
before you have problems. As such, these tools could just as easily be classified as network
management or network performance analysis tools.

This book does not attempt to catalog every possible tool. There are simply too many tools already
available, and the number is growing too rapidly. Rather, this book focuses on the tools that I believe
are the most useful, a collection that should help in dealing with almost any problem you see. I have
tried to include pointers to other relevant tools when there wasn't space to discuss them. In many cases,
I have described more than one tool for a particular job. It is extremely rare for two tools to have
exactly the same features. One tool may be more useful than another, depending on circumstances.
And, because of the differences in operating systems, a specific tool may not be available on every
system. It is worth knowing the alternatives.

The book is about freely available Unix tools. Many are open source tools covered by GNU- or BSD-
style licenses. In selecting tools, my first concern has been availability. I have given the highest
priority to the standard Unix utilities. Next in priority are tools available as packages or ports for
FreeBSD or Linux. Tools requiring separate compilation or available only as binaries were given a
lower priority since these may be available on fewer systems. In some cases, PC-only tools and
commercial tools are noted but are not discussed in detail. The bulk of the book is specific to Ethernet
and TCP/IP, but the general approach and many of the tools can be used with other technologies.

While this is a book about Unix tools, at the end of most of the chapters I have included a brief section
for Microsoft Windows users. These sections are included since even small networks usually include a
few computers running Windows. These sections are not, even in the wildest of fantasies, meant to be
definitive. They are provided simply as starting points—a quick overview of what is available.

Finally, this book describes a wide range of tools. Many of these tools are designed to do one thing
and are often overlooked because of their simplicity. Others are extremely complex tools or sets of
tools. I have not attempted to provide a comprehensive treatment for each tool discussed. Some of
these tools can be extremely complex when used to their fullest. Some have manuals and other
documentation that easily exceed the size of this book. Most have additional documentation that you
will want to retrieve once you begin using them.

My goal is to make you aware of the tools and to provide you with enough information that you can
decide which ones may be the most useful to you and in what context so that you can get started using
the tools. Each chapter centers on a collection of related tasks or problems and tools useful for dealing
with these tasks. The discussion is limited to features that are relevant to the problem being discussed.
Consequently, the same tool may be discussed in several places throughout the book.

 vi

Please be warned: the suitability or behavior of these tools on your system cannot be guaranteed.
While the material in this book is presented in good faith, neither the author nor O'Reilly & Associates
makes any explicit or implied warranty as to the behavior or suitability of these tools. We strongly
urge you to assess and evaluate these tool as appropriate for your circumstances.

Audience

This book is written primarily for individuals new to network administration. It should also be useful
to those of you who have inherited responsibility for existing systems and networks set up by others.
This book is designed to help you acquire the additional information you need to do your job.

Unfortunately, the book may also appeal to crackers. I truly regret this and wish there were a way to
present this material to limit its worth to crackers. I never met a system manager or network
administrator who wasn't overworked. Time devoted to security is time stolen from providing new
services to users or improving existing services. There simply is no valid justification for cracking. I
can only hope that the positive uses for the information I provide will outweigh the inevitable
malicious uses to which it may be put. I would feel much better if crackers would forego buying this
book.

In writing this book, I attempted to write the sort of book I often wished I had when I was learning.
Certainly, there are others who are more knowledgeable and better prepared to write this book. But
they never seemed to get around to it. They have written pieces of this book, a chapter here or a
tutorial there, for which I am both immensely thankful and greatly indebted.

I see this book as a work in progress. I hope that the response to it will make future expanded editions
possible. You can help by sending me your comments and corrections. I would particularly like to
hear about new tools and about how you have used the tools described here to solve your problems.
Perhaps some of the experts who should have written this book will share their wisdom! While I can't
promise to respond to your email, I will read it. You can contact me through O'Reilly Book Support at
booktech@oreilly.com.

Organization

There are 12 chapters and 2 appendixes in this book. The book begins with individual network hosts,
discusses network connections next, and then considers networks as a whole.

It is unlikely that every chapter in the book will be of equal interest to you. The following outline will
give you an overview of the book so you can select the chapters of greatest interest and either skim or
skip over the rest.

Chapter 1

This chapter attempts to describe network management and troubleshooting in an
administrative context. It discusses the need for network analysis and probing tools, their
appropriate and inappropriate uses, professionalism in general, documentation practices, and

mailto:booktech@oreilly.com

 vii

the economic ramifications of troubleshooting. If you are familiar with the general aspects of
network administration, you may want to skip this chapter.

Chapter 2

Chapter 2 is a review of tools and techniques used to configure or determine the configuration
of a networked host. The primary focus is on built-in utilities. If you are well versed in Unix
system administration, you can safely skip this chapter.

Chapter 3

Chapter 3 describes tools and techniques to test basic point-to-point and end-to-end network
connectivity. It begins with a brief discussion of cabling. A discussion of ping, ping variants,
and problems with ping follows. Even if you are very familiar with ping, you may want to
skim over the discussion of the ping variants.

Chapter 4

This chapter focuses on assessing the nature and quality of end-to-end connections. After a
discussion of traceroute, a tool for decomposing a path into individual links, the primary
focus is on tools that measure link performance. This chapter covers some lesser known tools,
so even a seasoned network administrator may find a few useful tools and tricks.

Chapter 5

This chapter describes tools and techniques for capturing traffic on a network, primarily
tcpdump and ethereal, although a number of other utilities are briefly mentioned. Using this
chapter requires the greatest understanding of Internet protocols. But, in my opinion, this is
the most important chapter in the book. Skip it at your own risk.

Chapter 6

This chapter begins with a general discussion of management tools. It then focuses on a few
tools, such as nmap and arpwatch, that are useful in piecing together information about a
network. After a brief discussion of network management extensions provided for Perl and
Tcl/Tk, it concludes with a discussion of route and network discovery using tkined.

Chapter 7

Chapter 7 focuses on device monitoring. It begins with a brief review of SNMP. Next, a
discussion of NET SNMP (formerly UCD SNMP) demonstrates the basics of SNMP. The
chapter continues with a brief description of using scotty to collect SNMP information.
Finally, it describes additional features of tkined, including network monitoring. In one sense,
this chapter is a hands-on tutorial for using SNMP. If you are not familiar with SNMP, you
will definitely want to read this chapter.

Chapter 8

This chapter is concerned with monitoring and measuring network behavior over time. The
stars of this chapter are ntop and mrtg. I also briefly describe using SNMP tools to retrieve

 viii

RMON data. This chapter assumes that you have a thorough knowledge of SNMP. If you
don't, go back and read Chapter 7.

Chapter 9

This chapter describes several types of tools for examining the behavior of low-level
connectivity protocols, protocols at the data link and network levels, including tools for
custom packet generation and load testing. The chapter concludes with a brief discussion of
emulation and simulation tools. You probably will not use these tools frequently and can
safely skim this chapter the first time through.

Chapter 10

Chapter 10 looks at several of the more common application-level protocols and describes
tools that may be useful when you are faced with a problem with one of these protocols.
Unless you currently face an application-level problem, you can skim this chapter for now.

Chapter 11

This chapter describes a number of different tools that are not really network troubleshooting
or management tools but rather are tools that can ease your life as a network administrator.
You'll want to read the sections in this chapter that discuss tools you aren't already familiar
with.

Chapter 12

When dealing with a complex problem, no single tool is likely to meet all your needs. This
last chapter attempts to show how the different tools can be used together to troubleshoot and
analyze performance. No new tools are introduced in this chapter.

Arguably, this chapter should have come at the beginning of the book. I included it at the end
so that I could name specific tools without too many forward references. If you are familiar
with general troubleshooting techniques, you can safely skip this chapter. Alternately, if you
need a quick review of troubleshooting techniques and don't mind references to tools you
aren't familiar with, you might jump ahead to this chapter.

Appendix A

This appendix begins with a brief discussion of installing software and general software
sources. This discussion is followed by an alphabetical listing of those tools mentioned in this
book, with Internet addresses when feasible. Beware, many of the URLs in this section will
be out of date by the time you read this. Nonetheless, these URLs will at least give you a
starting point on where to begin looking.

Appendix B

This appendix begins with a discussion of different sources of information. Next, it discusses
books by topic, followed by an alphabetical listing of those books mentioned in this book.

 ix

Conventions

This book uses the following typographical conventions:

Italics

For program names, filenames, system names, email addresses, and URLs and for
emphasizing new terms when first defined

Constant width

In examples showing the output from programs, the contents of files, or literal information

Constant-width italics

General syntax and items that should be replaced in expressions

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Acknowledgments

This book would not have been possible without the help of many people. First on the list are the
toolsmiths who created the tools described here. The number and quality of the tools that are available
is truly remarkable. We all owe a considerable debt to the people who selflessly develop these tools.

I have been very fortunate that many of my normal duties have overlapped significantly with tasks
related to writing this book. These duties have included setting up and operating Lander University's
networking laboratory and evaluating tools for use in teaching. For their help with the laboratory, I
gratefully acknowledge Lander's Department of Computing Services, particularly Anthony Aven,
Mike Henderson, and Bill Screws. This laboratory was funded in part by a National Science
Foundation grant, DUE-9980366. I gratefully acknowledge the support the National Science
Foundation has given to Lander. I have also benefited from conversations with the students and
faculty at Lander, particularly Jim Crabtree. I would never have gotten started on this project without
the help and encouragement of Jerry Wilson. Jerry, I owe you lunch (and a lot more).

This book has benefited from the help of numerous people within the O'Reilly organization. In
particular, the support given by Robert Denn, Mike Loukides, and Rob Romano, to name only a few,
has been exceptional. After talking with authors working with other publishers, I consider myself very
fortunate in working with technically astute people from the start. If you are thinking about writing a
technical book, O'Reilly is a publisher to consider.

 x

The reviewers for this book have done an outstanding job. Thanks go to John Archie, Anthony Aven,
Jon Forrest, and Kevin and Diana Mullet. They cannot be faulted for not turning a sow's ear into a silk
purse.

It seems every author always acknowledges his or her family. It has almost become a cliché, but that
doesn't make it any less true. This book would not have been possible without the support and
patience of my family, who have endured more that I should have ever asked them to endure. Thank
you.

 1

Chapter 1. Network Management and Troubleshooting
The first step in diagnosing a network problem is to collect information. This includes collecting
information from your users as to the nature of the problems they are having, and it includes collecting
data from your network. Your success will depend, in large part, on your efficiency in collecting this
information and on the quality of the information you collect. This book is about tools you can use and
techniques and strategies to optimize their use. Rather than trying to cover all aspects of
troubleshooting, this book focuses on this first crucial step, data collection.

There is an extraordinary variety of tools available for this purpose, and more become available daily.
Very capable people are selflessly devoting enormous amounts of time and effort to developing these
tools. We all owe a tremendous debt to these individuals. But with the variety of tools available, it is
easy to be overwhelmed. Fortunately, while the number of tools is large, data collection need not be
overwhelming. A small number of tools can be used to solve most problems. This book centers on a
core set of freely available tools, with pointers to additional tools that might be needed in some
circumstances.

This first chapter has two goals. Although general troubleshooting is not the focus of the book, it
seems worthwhile to quickly review troubleshooting techniques. This review is followed by an
examination of troubleshooting from a broader administrative context—using troubleshooting tools in
an effective, productive, and responsible manner. This part of the chapter includes a discussion of
documentation practices, personnel management and professionalism, legal and ethical concerns, and
economic considerations. General troubleshooting is revisited in Chapter 12, once we have discussed
available tools. If you are already familiar with these topics, you may want to skim or even skip this
chapter.

1.1 General Approaches to Troubleshooting

Troubleshooting is a complex process that is best learned through experience. This section looks
briefly at how troubleshooting is done in order to see how these tools fit into the process. But while
every problem is different, a key step is collecting information.

Clearly, the best way to approach troubleshooting is to avoid it. If you never have problems, you will
have nothing to correct. Sound engineering practices, redundancy, documentation, and training can
help. But regardless of how well engineered your system is, things break. You can avoid
troubleshooting, but you can't escape it.

It may seem unnecessary to say, but go for the quick fixes first. As long as you don't fixate on them,
they won't take long. Often the first thing to try is resetting the system. Many problems can be
resolved in this way. Bit rot, cosmic rays, or the alignment of the planets may result in the system
entering some strange state from which it can't exit. If the problem really is a fluke, resetting the
system may resolve the problem, and you may never see it again. This may not seem very satisfying,
but you can take your satisfaction in going home on time instead.

Keep in mind that there are several different levels in resetting a system. For software, you can simply
restart the program, or you may be able to send a signal to the program so that it reloads its
initialization file. From your users' perspective, this is the least disruptive approach. Alternately, you

TE
AM
FL
Y

Team-Fly®

 2

might restart the operating system but without cycling the power, i.e., do a warm reboot. Finally, you
might try a cold reboot by cycling the power.

You should be aware, however, that there can be some dangers in resetting a system. For example, it
is possible to inadvertently make changes to a system so that it can't reboot. If you realize you have
done this in time, you can correct the problem. Once you have shut down the system, it may be too
late. If you don't have a backup boot disk, you will have to rebuild the system. These are, fortunately,
rare circumstances and usually happen only when you have been making major changes to a system.

When making changes to a system, remember that scheduled maintenance may involve restarting a
system. You may want to test changes you have made, including their impact on a system reset, prior
to such maintenance to ensure that there are no problems. Otherwise, the system may fail when
restarted during the scheduled maintenance. If this happens, you will be faced with the difficult task of
deciding which of several different changes are causing problems.

Resetting the system is certainly worth trying once. Doing it more than once is a different matter. With
some systems, this becomes a way of life. An operating system that doesn't provide adequate memory
protection will frequently become wedged so that rebooting is the only option.[1] Sometimes you may
want to limp along resetting the system occasionally rather than dealing with the problem. In a
university setting, this might get you through exam week to a time when you can be more relaxed in
your efforts to correct the underlying problem. Or, if the system is to be replaced in the near future,
the effort may not be justified. Usually, however, when rebooting becomes a way of life, it is time for
more decisive action.

[1] Do you know what operating system I'm tactfully not naming?

Swapping components and reinstalling software is often the next thing to try. If you have the spare
components, this can often resolve problems immediately. Even if you don't have spares, switching
components to see if the problem follows the equipment can be a simple first test. Reinstalling
software can be much more problematic. This can often result in configuration errors that will worsen
problems. The old, installed version of the software can make getting a new, clean installation
impossible. But if the install is simple or you have a clear understanding of exactly how to configure
the software, this can be a relatively quick fix.

While these approaches often work, they aren't what we usually think of as troubleshooting. You
certainly don't need the tools described in this book to do them. Once you have exhausted the quick
solutions, it is time to get serious. First, you must understand the problem, if possible. Problems that
are not understood are usually not fixed, just postponed.

One standard admonition is to ask the question "has anything changed recently?" Overwhelmingly,
most problems relate to changes to a working system. If you can temporarily change things back and
the problem goes away, you have confirmed your diagnosis.

Admittedly, this may not help with an installation where everything is new. But even a new
installation can and should be grown. Pieces can be installed and tested. New pieces of equipment can
then be added incrementally. When this approach is taken, the question of what has changed once
again makes sense.

Another admonition is to change only one thing at a time and then to test thoroughly after each change.
This is certainly good advice when dealing with routine failures. But this approach will not apply if
you are dealing with a system failure. (See the upcoming sidebar on system failures.) Also, if you do
find something that you know is wrong but fixing it doesn't fix your problem, do you really want to

 3

change it back? In this case, it is often better to make a note of the additional changes you have made
and then proceed with your troubleshooting.

A key element to successful debugging is to control the focus of your investigation so that you are
really dealing with the problem. You can usually focus better if you can break the problem into pieces.
Swapping components, as mentioned previously, is an example of this approach. This technique is
known by several names—problem decomposition, divide and conquer, binary search, and so on. This
approach is applicable to all kinds of troubleshooting. For example, when your car won't start, first
decide whether you have an electrical or fuel supply problem. Then proceed accordingly. Chapter 12
outlines a series of specific steps you might want to consider.

System Failures

The troubleshooting I have described so far can be seen roughly as dealing with normal
failures (although there may be nothing terribly normal about them). A second general class
of problems is known as system failures. System failures are problems that stem from the
interaction of the parts of a complex system in unexpected ways. They are most often seen
when two or more subsystems fail at about the same time and in ways that interact.
However, system failures can result through interaction of subsystems without any
ostensible failure in any of the subsystems.

A classic example of a system failure can be seen in the movie China Syndrome. In one
scene the reactor scrams, the pumps shut down, and the water-level indicator on a strip-
chart recorder sticks. The water level in the reactor becomes dangerously low due to the
pump shutdown, but the problem is not recognized because the indicator gives misleading
information. These two near-simultaneous failures conceal the true state of the reactor.

System failures are most pernicious in systems with tight coupling between subsystems and
subsystems that are linked in nonlinear or nonobvious ways. Debugging a system failure
can be extremely difficult. Many of the more standard approaches simply don't work. The
strategy of decomposing the system into subsystems becomes difficult, because the
symptoms misdirect your efforts. Moreover, in extreme cases, each subsystem may be
operating correctly—the problem stems entirely from the unexpected interactions.

If you suspect you have a system failure, the best approach, when feasible, is to substitute
entire subsystems. Your goal should not be to look for a restored functioning system, but to
look for changes in the symptoms. Such changes indicate that you may have found one of
the subsystems involved. (Conversely, if you are working with a problem and the symptoms
change when a subsystem is replaced, this is strong indication of a system failure.)

Unfortunately, if the problem stems from unexpected interaction of nonfailing systems,
even this approach will not work. These are extremely difficult problems to diagnose. Each
problem must be treated as a unique, special problem. But again, an important first step is
collecting information.

1.2 Need for Troubleshooting Tools

 4

The best time to prepare for problems is before you have them. It may sound trite, but if you don't
understand the normal behavior of your network, you will not be able to identify anomalous behavior.
For the proper management of your system, you must have a clear understanding of the current
behavior and performance of your system. If you don't know the kinds of traffic, the bottlenecks, or
the growth patterns for your network, then you will not be able to develop sensible plans. If you don't
know the normal behavior, you will not be able to recognize a problem's symptoms when you see
them. Unless you have made a conscious, aggressive effort to understand your system, you probably
don't understand it. All networks contain surprises, even for the experienced administrator. You only
have to look a little harder.

It might seem strange to some that a network administrator would need some of the tools described in
this book, and that he wouldn't already know the details that some of these tools provide. But there are
a number of reasons why an administrator may be quite ignorant of his network.

With the rapid growth of the Internet, turnkey systems seem to have grown in popularity. A
fundamental assumption of these systems is that they are managed by an inexperienced administrator
or an administrator who doesn't want to be bothered by the details of the system. Documentation is
almost always minimal. For example, early versions of Sun Microsystems' Netra Internet servers, by
default, did not install the Unix manpages and came with only a few small manuals. Print services
were disabled by default.

This is not a condemnation of turnkey systems. They can be a real blessing to someone who needs to
go online quickly, someone who never wants to be bothered by such details, or someone who can
outsource the management of her system. But if at some later time she wants to know what her
turnkey system is doing, it may be up to her to discover that for herself. This is particularly likely if
she ever wants to go beyond the basic services provided by the system or if she starts having problems.

Other nonturnkey systems may be customized, often heavily. Of course, all these changes should be
carefully documented. However, an administrator may inherit a poorly documented system. (And, of
course, sometimes we do this to ourselves.) If you find yourself in this situation, you will need to
discover (or rediscover) your system for yourself.

In many organizations, responsibilities may be highly partitioned. One group may be responsible for
infrastructure such as wiring, another for network hardware, and yet another for software. In some
environments, particularly universities, networks may be a distributed responsibility. You may have
very little control, if any, over what is connected to the network. This isn't necessarily bad—it's the
way universities work. But rogue systems on your network can have annoying consequences. In this
situation, probably the best approach is to talk to the system administrator or user responsible for the
system. Often he will be only too happy to discuss his configuration. The implications of what he is
doing may have completely escaped him. Developing a good relationship with power users may give
you an extra set of eyes on your network. And, it is easier to rely on the system administrator to tell
you what he is doing than to repeatedly probe the network to discover changes. But if this fails, as it
sometimes does, you may have to resort to collecting the data yourself.

Sometimes there may be some unexpected, unauthorized, or even covert changes to your network.
Well-meaning individuals can create problems when they try to help you out by installing equipment
themselves. For example, someone might try installing a new computer on the network by copying the
network configuration from another machine, including its IP address. At other times, some "volunteer
administrator" simply has her own plans for your network.

Finally, almost to a person, network administrators must teach themselves as they go. Consequently,
for most administrators, these tools have an educational value as well as an administrative value. They

 5

provide a way for administrators to learn more about their networks. For example, protocol analyzers
like ethereal provide an excellent way to learn the inner workings of a protocol like TCP/IP. Often,
more than one of these reasons may apply. Whatever the reason, it is not unusual to find yourself
reading your configuration files and probing your systems.

1.3 Troubleshooting and Management

Troubleshooting does not exist in isolation from network management. How you manage your
network will determine in large part how you deal with problems. A proactive approach to
management can greatly simplify problem resolution. The remainder of this chapter describes several
important management issues. Coming to terms with these issues should, in the long run, make your
life easier.

1.3.1 Documentation

As a new administrator, your first step is to assess your existing resources and begin creating new
resources. Software sources, including the tools discussed in this book, are described and listed in
Appendix A. Other sources of information are described in Appendix B.

The most important source of information is the local documentation created by you or your
predecessor. In a properly maintained network, there should be some kind of log about the network,
preferably with sections for each device. In many networks, this will be in an abysmal state. Almost
no one likes documenting or thinks he has the time required to do it. It will be full of errors, out of
date, and incomplete. Local documentation should always be read with a healthy degree of skepticism.
But even incomplete, erroneous documentation, if treated as such, may be of value. There are
probably no intentional errors, just careless mistakes and errors of omission. Even flawed
documentation can give you some sense of the history of the system. Problems frequently occur due to
multiple conflicting changes to a system. Software that may have been only partially removed can
have lingering effects. Homegrown documentation may be the quickest way to discover what may
have been on the system.

While the creation and maintenance of documentation may once have been someone else's
responsibility, it is now your responsibility. If you are not happy with the current state of your
documentation, it is up to you to update it and adopt policies so the next administrator will not be
muttering about you the way you are muttering about your predecessors.

There are a couple of sets of standard documentation that, at a minimum, you will always want to
keep. One is purchase information, the other a change log. Purchase information includes sales
information, licenses, warranties, service contracts, and related information such as serial numbers. An
inventory of equipment, software, and documentation can be very helpful. When you unpack a system,
you might keep a list of everything you receive and date all documentation and software. (A
changeable rubber date stamp and ink pad can help with this last task.) Manufacturers can do a poor
job of distinguishing one version of software and its documentation from the next. Dates can be
helpful in deciding which version of the documentation applies when you have multiple systems or
upgrades. Documentation has a way of ending up in someone's personal library, never to be seen again,
so a list of what you should have can be very helpful at times.

Keep in mind, there are a number of ways software can enter your system other than through purchase
orders. Some software comes through CD-ROM subscription services, some comes in over the

 6

Internet, some is bundled with the operating system, some comes in on a CD-ROM in the back of a
book, some is brought from home, and so forth. Ideally, you should have some mechanism to track
software. For example, for downloads from the Internet, be sure to keep a log including a list
identifying filenames, dates, and sources.

You should also keep a change log for each major system. Record every significant change or problem
you have with the system. Each entry should be dated. Even if some entries no longer seem relevant,
you should keep them in your log. For instance, if you have installed and later removed a piece of
software on a server, there may be lingering configuration changes that you are not aware of that may
come to haunt you years later. This is particularly true if you try to reinstall the program but could
even be true for a new program as well.

Beyond these two basic sets of documentation, you can divide the documentation you need to keep
into two general categories—configuration documentation and process documentation. Configuration
documentation statically describes a system. It assumes that the steps involved in setting up the system
are well understood and need no further comments, i.e., that configuration information is sufficient to
reconfigure or reconstruct the system. This kind of information can usually be collected at any time.
Ironically, for that reason, it can become so easy to put off that it is never done.

Process documentation describes the steps involved in setting up a device, installing software, or
resolving a problem. As such, it is best written while you are doing the task. This creates a different
set of collection problems. Here the stress from the task at hand often prevents you from documenting
the process.

The first question you must ask is what you want to keep. This may depend on the circumstances and
which tools you are using. Static configuration information might include lists of IP addresses and
Ethernet addresses, network maps, copies of server configuration files, switch configuration settings
such as VLAN partitioning by ports, and so on.

When dealing with a single device, the best approach is probably just a simple copy of the
configuration. This can be either printed or saved as a disk file. This will be a personal choice based
on which you think is easiest to manage. You don't need to waste time prettying this up, but be sure
you label and date it.

When the information spans multiple systems, such as a list of IP addresses, management of the data
becomes more difficult. Fortunately, much of this information can be collected automatically. Several
tools that ease the process are described in subsequent chapters, particularly in Chapter 6.

For process documentation, the best approach is to log and annotate the changes as you make them
and then reconstruct the process at a later time. Chapter 11 describes some of the common Unix
utilities you can use to automate documentation. You might refer to this chapter if you aren't familiar
with utilities like tee, script, and xwd.[2]

[2] Admittedly these guidelines are ideals. Does anyone actually do all of this documenting? Yes, while
most administrators probably don't, some do. But just because many administrators don't succeed in
meeting the ideal doesn't diminish the importance of trying.

1.3.2 Management Practices

A fundamental assumption of this book is that troubleshooting should be proactive. It is preferable to
avoid a problem than have to correct it. Proper management practices can help. While some of this
section may, at first glance, seem unrelated to troubleshooting, there are fundamental connections.

 7

Management practices will determine what you can do and how you do it. This is true both for
avoiding problems and for dealing with problems that can't be avoided. The remainder of this chapter
reviews some of the more important management issues.

1.3.2.1 Professionalism

To effectively administer a system requires a high degree of professionalism. This includes personal
honesty and ethical behavior. You should learn to evaluate yourself in an honest, objective manner.
(See The Peter Principle Revisited.) It also requires that you conform to the organization's mission and
culture. Your network serves some higher purpose within your organization. It does not exist strictly
for your benefit. You should manage the network with this in mind. This means that everything you
do should be done from the perspective of a cost-benefit trade-off. It is too easy to get caught in the
trap of doing something "the right way" at a higher cost than the benefits justify. Performance analysis
is the key element.

The organization's mind-set or culture will have a tremendous impact on how you approach problems
in general and the use of tools in particular. It will determine which tools you can use, how you can
use the tools, and, most important, what you can do with the information you obtain. Within
organizations, there is often a battle between openness and secrecy. The secrecy advocate believes that
details of the network should be available only on a need-to-know basis, if then. She believes, not
without justification, that this enhances security. The openness advocate believes that the details of a
system should be open and available. This allows users to adapt and make optimal use of the system
and provides a review process, giving users more input into the operation of the network.

Taken to an extreme, the secrecy advocate will suppress information that is needed by the user,
making a system or network virtually unusable. Openness, taken to an extreme, will leave a network
vulnerable to attack. Most people's views fall somewhere between these two extremes but often favor
one position over the other. I advocate prudent openness. In most situations, it makes no sense to shut
down a system because it might be attacked. And it is asinine not to provide users with the information
they need to protect themselves. Openness among those responsible for the different systems within an
organization is absolutely essential.

1.3.2.2 Ego management

We would all like to think that we are irreplaceable, and that no one else could do our jobs as well as
we do. This is human nature. Unfortunately, some people take steps to make sure this is true. The
most obvious way an administrator may do this is hide what he actually does and how his system
works.

This can be done many ways. Failing to document the system is one approach—leaving comments out
of code or configuration files is common. The goal of such an administrator is to make sure he is the
only one who truly understands the system. He may try to limit others access to a system by restricting
accounts or access to passwords. (This can be done to hide other types of unprofessional activities as
well. If an administrator occasionally reads other users' email, he may not want anyone else to have
standard accounts on the email server. If he is overspending on equipment to gain experience with
new technologies, he will not want any technically literate people knowing what equipment he is
buying.)

This behavior is usually well disguised, but it is extremely common. For example, a technician may
insist on doing tasks that users could or should be doing. The problem is that this keeps users
dependent on the technician when it isn't necessary. This can seem very helpful or friendly on the

 8

surface. But, if you repeatedly ask for details and don't get them, there may be more to it than meets
the eye.

Common justifications are security and privacy. Unless you are in a management position, there is
often little you can do other than accept the explanations given. But if you are in a management
position, are technically competent, and still hear these excuses from your employees, beware! You
have a serious problem.

No one knows everything. Whenever information is suppressed, you lose input from individuals who
don't have the information. If an employee can't control her ego, she should not be turned loose on
your network with the tools described in this book. She will not share what she learns. She will only
use it to further entrench herself.

The problem is basically a personnel problem and must be dealt with as such. Individuals in technical
areas seem particularly prone to these problems. It may stem from enlarged egos or from insecurity.
Many people are drawn to technical areas as a way to seem special. Alternately, an administrator may
see information as a source of power or even a weapon. He may feel that if he shares the information,
he will lose his leverage. Often individuals may not even recognize the behavior in themselves. It is
just the way they have always done things and it is the way that feels right.

If you are a manager, you should deal with this problem immediately. If you can't correct the problem
in short order, you should probably replace the employee. An irreplaceable employee today will be
even more irreplaceable tomorrow. Sooner or later, everyone leaves—finds a better job, retires, or
runs off to Poughkeepsie with an exotic dancer. In the meantime, such a person only becomes more
entrenched making the eventual departure more painful. It will be better to deal with the problem now
rather than later.

1.3.2.3 Legal and ethical considerations

From the perspective of tools, you must ensure that you use tools in a manner that conforms not just to
the policies of your organization, but to all applicable laws as well. The tools I describe in this book
can be abused, particularly in the realm of privacy. Before using them, you should make certain that
your use is consistent with the policies of your organization and all applicable laws. Do you have the
appropriate permission to use the tools? This will depend greatly on your role within the organization.
Do not assume that just because you have access to tools that you are authorized to use them. Nor
should you assume that any authorization you have is unlimited.

Packet capture software is a prime example. It allows you to examine every packet that travels across
a link, including applications data and each and every header. Unless data is encrypted, it can be
decoded. This means that passwords can be captured and email can be read. For this reason alone, you
should be very circumspect in how you use such tools.

A key consideration is the legality of collecting such information. Unfortunately, there is a constantly
changing legal morass with respect to privacy in particular and technology in general. Collecting some
data may be legitimate in some circumstances but illegal in others.[3] This depends on factors such as
the nature of your operations, what published policies you have, what assurances you have given your
users, new and existing laws, and what interpretations the courts give to these laws.

[3] As an example, see the CERT Advisory CA-92.19 Topic: Keystroke Logging Banner at
http://www.cert.org/advisories/CA-1992-19.html for a discussion on keystroke logging and its legal
implications.

http://www.cert.org/advisories/CA-1992-19.html

 9

It is impossible for a book like this to provide a definitive answer to the questions such considerations
raise. I can, however, offer four pieces of advice:

• First, if the information you are collecting can be tied to the activities of an individual, you
should consider the information highly confidential and should collect only the information
that you really need. Be aware that even seemingly innocent information may be sensitive in
some contexts. For example, source/destination address pairs may reveal communications
between individuals that they would prefer not be made public.

• Second, place your users on notice. Let them know that you collect such information, why it
is necessary, and how you use the information. Remember, however, if you give your users
assurances as to how the information is used, you are then constrained by those assurances. If
your management policies permit, make their prior acceptance of these policies a requirement
for using the system.

• Third, you must realize that with monitoring comes obligations. In many instances, your legal
culpability may be less if you don't monitor.

• Finally, don't rely on this book or what your colleagues say. Get legal advice from a lawyer
who specializes in this area. Beware: many lawyers will not like to admit that they don't know
everything about the law, but many aren't current with the new laws relating to technology.
Also, keep in mind that even if what you are doing is strictly legal and you have appropriate
authority, your actions may still not be ethical.

The Peter Principle Revisited

In 1969, Laurence Peter and Raymond Hull published the satirical book, The Peter
Principle. The premise of the book was that people rise to their level of incompetence. For
example, a talented high school teacher might be promoted to principal, a job requiring a
quite different set of skills. Even if ill suited for the job, once she has this job, she will
probably remain with it. She just won't earn any new promotions. However, if she is adept
at the job, she may be promoted to district superintendent, a job requiring yet another set of
skills. The process of promotions will continue until she reaches her level of incompetence.
At that point, she will spend the remainder of her career at that level.

While hardly a rigorous sociological principle, the book was well received because it
contained a strong element of truth. In my humble opinion, the Peter Principle usually fails
miserably when applied to technical areas such as networking and telecommunications. The
problem is the difficulty in recognizing incompetence. If incompetence is not recognized,
then an individual may rise well beyond his level of incompetence. This often happens in
technical areas because there is no one in management who can judge an individual's
technical competence.

Arguably, unrecognized incompetence is usually overengineering. Networking, a field of
engineering, is always concerned with trade-offs between costs and benefits. An
underengineered network that fails will not go unnoticed. But an overengineered network
will rarely be recognizable as such. Such networks may cost many times what they should,
drawing resources from other needs. But to the uninitiated, it appears as a normal,
functioning network.

If a network engineer really wants the latest in new equipment when it isn't needed, who,
outside of the technical personnel, will know? If this is a one-person department, or if all the
members of the department can agree on what they want, no one else may ever know. It is

 10

too easy to come up with some technical mumbo jumbo if they are ever questioned.

If this seems far-fetched, I once attended a meeting where a young engineer was arguing
that a particular router needed to be replaced before it became a bottleneck. He had picked
out the ideal replacement, a hot new box that had just hit the market. The problem with all
this was that I had recently taken measurements on the router and knew the average
utilization of that "bottleneck" was less than 5% with peaks that rarely hit 40%.

This is an extreme example of why collecting information is the essential first step in
network management and troubleshooting. Without accurate measurements, you can easily
spend money fixing imaginary problems.

1.3.2.4 Economic considerations

Solutions to problems have economic consequences, so you must understand the economic
implications of what you do. Knowing how to balance the cost of the time used to repair a system
against the cost of replacing a system is an obvious example. Cost management is a more general
issue that has important implications when dealing with failures.

One particularly difficult task for many system administrators is to come to terms with the economics
of networking. As long as everything is running smoothly, the next biggest issue to upper management
will be how cost effectively you are doing your job. Unless you have unlimited resources, when you
overspend in one area, you take resources from another area. One definition of an engineer that I
particularly like is that "an engineer is someone who can do for a dime what a fool can do for a
dollar." My best guess is that overspending and buying needlessly complex systems is the single most
common engineering mistake made when novice network administrators purchase network equipment.

One problem is that some traditional economic models do not apply in networking. In most
engineering projects, incremental costs are less than the initial per-unit cost. For example, if a 10,000-
square-foot building costs $1 million, a 15,000-square-foot building will cost somewhat less than $1.5
million. It may make sense to buy additional footage even if you don't need it right away. This is
justified as "buying for the future."

This kind of reasoning, when applied to computers and networking, leads to waste. Almost no one
would go ahead and buy a computer now if they won't need it until next year. You'll be able to buy a
better computer for less if you wait until you need it. Unfortunately, this same reasoning isn't applied
when buying network equipment. People will often buy higher-bandwidth equipment than they need,
arguing that they are preparing for the future, when it would be much more economical to buy only
what is needed now and buy again in the future as needed.

Moore's Law lies at the heart of the matter. Around 1965, Gordon Moore, one of the founders of Intel,
made the empirical observation that the density of integrated circuits was doubling about every 12
months, which he later revised to 24 months. Since the cost of manufacturing integrated circuits is
relatively flat, this implies that, in two years, a circuit can be built with twice the functionality with no
increase in cost. And, because distances are halved, the circuit runs at twice the speed—a fourfold
improvement. Since the doubling applies to previous doublings, we have exponential growth.

It is generally estimated that this exponential growth with chips will go on for another 15 to 20 years.
In fact, this growth is nothing new. Raymond Kurzweil, in The Age of Spiritual Machines: When
Computers Exceed Human Intelligence, collected information on computing speeds and functionality
from the beginning of the twentieth century to the present. This covers mechanical, electromechanical

 11

(relay), vacuum tube, discrete transistor, and integrated circuit technologies. Kurzweil found that
exponential growth has been the norm for the last hundred years. He believes that new technologies
will be developed that will extend this rate of growth well beyond the next 20 years. It is certainly true
that we have seen even faster growth in disk densities and fiber-optic capacity in recent years, neither
of which can be attributed to semiconductor technology.

What does this mean economically? Clearly, if you wait, you can buy more for less. But usually,
waiting isn't an option. The real question is how far into the future should you invest? If the price is
coming down, should you repeatedly buy for the short term or should you "invest" in the long term?

The general answer is easy to see if we look at a few numbers. Suppose that $100,000 will provide
you with network equipment that will meet your anticipated bandwidth needs for the next four years.
A simpleminded application of Moore's Law would say that you could wait and buy similar
equipment for $25,000 in two years. Of course, such a system would have a useful life of only two
additional years, not the original four. So, how much would it cost to buy just enough equipment to
make it through the next two years? Following the same reasoning, about $25,000. If your growth is
tracking the growth of technology,[4] then two years ago it would have cost $100,000 to buy four years'
worth of technology. That will have fallen to about $25,000 today. Your choice: $100,000 now or
$25,000 now and $25,000 in two years. This is something of a no-brainer. It is summarized in the first
two lines of Table 1-1.

[4] This is a pretty big if, but it's reasonable for most users and organizations. Most users and organizations
have selected a point in the scheme of things that seems right for them—usually the latest technology they
can reasonably afford. This is why that new computer you buy always seems to cost $2500. You are buying
the latest in technology, and you are trying to reach about the same distance into the future.

Table 1-1. Cost estimates
 Year 1 Year 2 Year 3 Year 4 Total

Four-year plan $100,000 $0 $0 $0 $100,000
Two-year plan $25,000 $0 $25,000 $0 $50,000
Four-year plan with maintenance $112,000 $12,000 $12,000 $12,000 $148,000
Two-year plan with maintenance $28,000 $3,000 $28,000 $3,000 $62,000
Four-year plan with maintenance and 20% MARR $112,000 $10,000 $8,300 $6,900 $137, 200
Two-year plan with maintenance and 20% MARR $28,000 $2,500 $19,500 $1,700 $51,700

If this argument isn't compelling enough, there is the issue of maintenance. As a general rule of thumb,
service contracts on equipment cost about 1% of the purchase price per month. For $100,000, that is
$12,000 a year. For $25,000, this is $3,000 per year. Moore's Law doesn't apply to maintenance for
several reasons:

• A major part of maintenance is labor costs and these, if anything, will go up.
• The replacement parts will be based on older technology and older (and higher) prices.
• The mechanical parts of older systems, e.g., fans, connectors, and so on, are all more likely to

fail.
• There is more money to be made selling new equipment so there is no incentive to lower

maintenance prices.

Thus, the $12,000 a year for maintenance on a $100,000 system will cost $12,000 a year for all four
years. The third and fourth lines of Table 1-1 summarize these numbers.

TE
AM
FL
Y

Team-Fly®

 12

Yet another consideration is the time value of money. If you don't need the $25,000 until two years
from now, you can invest a smaller amount now and expect to have enough to cover the costs later. So
the $25,000 needed in two years is really somewhat less in terms of today's dollars. How much less
depends on the rate of return you can expect on investments. For most organizations, this number is
called the minimal acceptable rate of return (MARR). The last two lines of Table 1-1 use a MARR of
20%. This may seem high, but it is not an unusual number. As you can see, buying for the future is
more than two and a half times as expensive as going for the quick fix.

Of course, all this is a gross simplification. There are a number of other important considerations even
if you believe these numbers. First and foremost, Moore's Law doesn't always apply. The most
important exception is infrastructure. It is not going to get any cheaper to pull cable. You should take
the time to do infrastructure well; that's where you really should invest in the future.

Most of the other considerations seem to favor short-term investing. First, with short-term purchasing,
you are less likely to invest in dead-end technology since you are buying later in the life cycle and will
have a clearer picture of where the industry is going. For example, think about the difference two
years might have made in choosing between Fast Ethernet and ATM for some organizations. For the
same reason, the cost of training should be lower. You will be dealing with more familiar technology,
and there will be more resources available. You will have to purchase and install equipment more
often, but the equipment you replace can be reused in your network's periphery, providing additional
savings.

On the downside, the equipment you buy won't have a lot of excess capacity or a very long, useful
lifetime. It can be very disconcerting to nontechnical management when you keep replacing
equipment. And, if you experience sudden unexpected growth, this is exactly what you will need to do.
Take the time to educate upper management. If frequent changes to your equipment are particularly
disruptive or if you have funding now, you may need to consider long-term purchases even if they are
more expensive. Finally, don't take the two-year time frame presented here too literally. You'll
discover the appropriate time frame for your network only with experience.

Other problems come when comparing plans. You must consider the total economic picture. Don't
look just at the initial costs, but consider ongoing costs such as maintenance and the cost of periodic
replacement. As an example, consider the following plans. Plan A has an estimated initial cost of
$400,000, all for equipment. Plan B requires $150,000 for equipment and $450,000 for infrastructure
upgrades. If you consider only initial costs, Plan A seems to be $200,000 cheaper. But equipment
needs to be maintained and, periodically, replaced. At 1% per month, the equipment for Plan A would
cost $48,000 a year to maintain, compared to $18,000 per year with Plan B. If you replace equipment
a couple of times in the next decade, that will be an additional $800,000 for Plan A but only $300,000
for Plan B. As this quick, back-of-the-envelope calculation shows, the 10-year cost for Plan A was
$1.68 million, while only $1.08 million for Plan B. What appeared to be $200,000 cheaper was really
$600,000 more expensive. Of course, this was a very crude example, but it should convey the idea.

You shouldn't take this example too literally either. Every situation is different. In particular, you may
not be comfortable deciding what is adequate surplus capacity in your network. In general, however,
you are probably much better off thinking in terms of scalability than raw capacity. If you want to
hedge your bets, you can make sure that high-speed interfaces are available for the router you are
considering without actually buying those high-speed interfaces until needed.

How does this relate to troubleshooting? First, don't buy overly complex systems you don't really need.
They will be much harder to maintain, as you can expect the complexity of troubleshooting to grow
with the complexity of the systems you buy. Second, don't spend all your money on the system and

 13

forget ongoing maintenance costs. If you don't anticipate operational costs, you may not have the
funds you need.

 14

Chapter 2. Host Configurations
The goal of this chapter is to review system administration from the perspective of the individual hosts
on a network. This chapter presumes that you have a basic understanding of system administration.
Consequently, many of the more basic issues are presented in a very cursory manner. The intent is
more to jog your memory, or to fill an occasional gap, than to teach the fundamentals of system
administration. If you are new to system administration, a number of the books listed in Appendix B
provide excellent introductions. If, on the other hand, you are a knowledgeable system administrator,
you will probably want to skim or even skip this chapter.

Chapter 1 lists several reasons why you might not know the details of your network and the computers
on it. This chapter assumes that you are faced with a networked computer and need to determine or
reconstruct its configuration. It should be obvious that if you don't understand how a system is
configured, you will not be able to change its configuration or correct misconfigurations. The tools
described in this chapter can be used to discover or change a host's configuration.

As discussed in Chapter 1, if you have documentation for the system, begin with it. The assumption
here is that such documentation does not exist or that it is incomplete. The primary focus is network
configuration, but many of the techniques can easily be generalized.

If you have inherited a multiuser system that has been in service for several years with many
undocumented customizations, reconstructing its configuration can be an extremely involved and
extended process. If your system has been compromised, the intruder has taken steps to hide her
activity, and you aren't running an integrity checker like tripwire, it may be virtually impossible to
discover all her customizations. (tripwire is discussed briefly in Chapter 11.) While it may not be
feasible, you should at least consider reinstalling the system from scratch. While this may seem
draconian, it may ultimately be much less work than fighting the same battles over and over, as often
happens with compromised systems. The best way to do this is to set up a replacement system in
parallel and then move everyone over. This, of course, requires a second system.

If rebuilding the system is not feasible, or if your situation isn't as extreme as that just described, then
you can use the techniques described in this chapter to reconstruct the system's configuration.

Whatever your original motivation, you should examine your system's configuration on a regular basis.
If for no other reason, this will help you remember how your system is configured. But there are other
reasons as well. As you learn more, you will undoubtedly want to revisit your configuration to correct
problems, improve security, and optimize performance. Reviewing configurations is a necessary step
to ensure that your system hasn't been compromised. And, if you share management of a system, you
may be forced to examine the configuration whenever communications falter.

Keep a set of notes for each system, giving both the configuration and directions for changing the
configuration. Usually the best place to start is by constructing a list of what can be found where in the
vendor documentation you have. This may seem pointless since this information is in the
documentation. But the information you need will be spread throughout this documentation. You
won't want to plow through everything every time you need to check or change something. You must
create your own list. I frequently write key page numbers inside the front covers of manuals and
specifics in the margins throughout the manual. For example, I'll add device names to the manpages
for the mount command, something I always seem to need but often can't remember. (Be warned that
this has the disadvantage of tying manuals to specific hardware, which could create other problems.)

 15

When reconstructing a host's configuration, there are two basic approaches. One is to examine the
system's configuration files. This can be a very protracted approach. It works well when you know
what you are looking for and when you are looking for a specific detail. But it can be difficult to
impossible to find all the details of the system, particularly if someone has taken steps to hide them.
And some parameters are set dynamically and simply can't be discovered just from configuration files.

The alternative is to use utilities designed to give snapshots of the current state of the system.
Typically, these focus on one aspect of the system, for example, listing all open files. Collectively,
these utilities can give you a fairly complete picture. They tend to be easy to use and give answers
quickly. But, because they may focus on only one aspect of the system, they may not provide all the
information you need if used in isolation.

Clearly, by itself, neither approach is totally adequate. Where you start will depend in part on how
quickly you must be up to speed and what specific problems you are facing. Each approach will be
described in turn.

2.1 Utilities

Reviewing system configuration files is a necessary step that you will have to address before you can
claim mastery of a system. But this can be a very time-consuming step. It is very easy to overlook one
or more key files. If you are under time pressure to resolve a problem, configuration files are not the
best place to start.

Even if you plan to jump into the configuration files, you will probably want a quick overview of the
current state of the system before you begin. For this reason, we will examine status and configuration
utilities first. This approach has the advantage of being pretty much the same from one version of
Unix to the next. With configuration files, the differences among the various flavors of Unix can be
staggering. Even when the files have the same functionality and syntax, they can go by different
names or be in different directories. Certainly, using these utilities is much simpler than looking at
kernel configuration files.

The output provided by these utilities may vary considerably from system to
system and will depend heavily on which options are used. In practice, this
should present no real problem. Don't be alarmed if the output on your system
is formatted differently.

2.1.1 ps

The first thing any system administrator should do on a new system is run the ps command. You are
probably already familiar with ps so I won't spend much time on it. The ps command lists which
processes are running on the system. Here is an example:

bsd4# ps -aux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 6590 22.0 2.1 924 616 ?? R 11:14AM 0:09.80 inetd: chargen [2
root 1 0.0 0.6 496 168 ?? Ss Fri09AM 0:00.03 /sbin/init --
root 2 0.0 0.0 0 0 ?? DL Fri09AM 0:00.52 (pagedaemon)
root 3 0.0 0.0 0 0 ?? DL Fri09AM 0:00.00 (vmdaemon)
root 4 0.0 0.0 0 0 ?? DL Fri09AM 0:44.05 (syncer)

 16

root 100 0.0 1.7 820 484 ?? Ss Fri09AM 0:02.14 syslogd
daemon 109 0.0 1.5 828 436 ?? Is Fri09AM 0:00.02 /usr/sbin/portmap
root 141 0.0 2.1 924 616 ?? Ss Fri09AM 0:00.51 inetd
root 144 0.0 1.7 980 500 ?? Is Fri09AM 0:03.14 cron
root 150 0.0 2.8 1304 804 ?? Is Fri09AM 0:02.59 sendmail: accepti
root 173 0.0 1.3 788 368 ?? Is Fri09AM 0:01.84 moused -p /dev/ps
root 213 0.0 1.8 824 508 v1 Is+ Fri09AM 0:00.02 /usr/libexec/gett
root 214 0.0 1.8 824 508 v2 Is+ Fri09AM 0:00.02 /usr/libexec/gett
root 457 0.0 1.8 824 516 v0 Is+ Fri10AM 0:00.02 /usr/libexec/gett
root 6167 0.0 2.4 1108 712 ?? Ss 4:10AM 0:00.48 telnetd
jsloan 6168 0.0 0.9 504 252 p0 Is 4:10AM 0:00.09 -sh (sh)
root 6171 0.0 1.1 464 320 p0 S 4:10AM 0:00.14 -su (csh)
root 0 0.0 0.0 0 0 ?? DLs Fri09AM 0:00.17 (swapper)
root 6597 0.0 0.8 388 232 p0 R+ 11:15AM 0:00.00 ps -aux

In this example, the first and last columns are the most interesting since they give the owners and the
processes, along with their arguments. In this example, the lines, and consequently the arguments,
have been truncated, but this is easily avoided. Running processes of interest include portmap, inetd,
sendmail, telnetd, and chargen.

There are a number of options available to ps, although they vary from implementation to
implementation. In this example, run under FreeBSD, the parameters used were -aux. This
combination shows all users' processes (-a), including those without controlling terminals (-x), in
considerable detail (-u). The options -ax will provide fewer details but show more of the command-
line arguments. Alternately, you can use the -w option to extend the displayed information to 132
columns. With AT&T-derived systems, the options -ef do pretty much the same thing. Interestingly,
Linux supports both sets of options. You will need to precede AT&T-style options with a hyphen.
This isn't required for BSD options. You can do it either way with Solaris. /usr/bin/ps follows the
AT&T conventions, while /usr/ucb/ps supports the BSD options.

While ps quickly reveals individual processes, it gives a somewhat incomplete picture if interpreted
naively. For example, the inetd daemon is one source of confusion. inetd is used to automatically start
services on a system as they are needed. Rather than start a separate process for each service that
might eventually be run, the inetd daemon runs on their behalf. When a connection request arrives,
inetd will start the requested service. Since some network services like ftp, telnet, and finger are
usually started this way, ps will show processes for them only when they are currently running. If ps
doesn't list them, it doesn't mean they aren't available; they just aren't currently running.

For example, in the previous listing, chargen was started by inetd. We can see chargen in this instance
because it was a running process when ps was run. But, this particular test system was configured to
run a number of additional services via inetd (as determined by the /etc/inetd.conf configuration file).
None of these other services show up under ps because, technically, they aren't currently running. Yet,
these other services will be started automatically by inetd, so they are available services.

In addition to showing what is running, ps is a useful diagnostic tool. It quickly reveals defunct
processes or multiple instances of the same process, thereby pointing out configuration problems and
similar issues. %MEM and %CPU can tell you a lot about resource usage and can provide crucial
information if you have resource starvation. Or you can use ps to identify rogue processes that are
spawning other processes by looking at processes that share a common PPID. Once you are
comfortable with the usual uses, it is certainly worth revisiting ps periodically to learn more about its
other capabilities, as this brief discussion just scratches the surface of ps.

2.1.2 top

 17

Although less ubiquitous, the top command, a useful alternative to ps, is available on many systems. It
was written by William LeFebvre. When running, top gives a periodically updated listing of processes
ranked in order of CPU usage. Typically, only the top 10 processes are given, but this is
implementation dependent, and your implementation may let you select other values. Here is a single
instance from our test system:

15 processes: 2 running, 13 sleeping
CPU states: 0.8% user, 0.0% nice, 7.4% system, 7.8% interrupt, 84.0% idle
Mem: 6676K Active, 12M Inact, 7120K Wired, 2568K Cache, 3395K Buf, 1228K Free
Swap: 100M Total, 100M Free

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
 6590 root 35 0 924K 616K RUN 0:15 21.20% 20.75% inetd
 144 root 10 0 980K 500K nanslp 0:03 0.00% 0.00% cron
 150 root 2 0 1304K 804K select 0:03 0.00% 0.00% sendmail
 100 root 2 0 820K 484K select 0:02 0.00% 0.00% syslogd
 173 root 2 0 788K 368K select 0:02 0.00% 0.00% moused
 141 root 2 0 924K 616K select 0:01 0.00% 0.00% inetd
 6167 root 2 0 1108K 712K select 0:00 0.00% 0.00% telnetd
 6171 root 18 0 464K 320K pause 0:00 0.00% 0.00% csh
 6168 jsloan 10 0 504K 252K wait 0:00 0.00% 0.00% sh
 6598 root 28 0 1556K 844K RUN 0:00 0.00% 0.00% top
 1 root 10 0 496K 168K wait 0:00 0.00% 0.00% init
 457 root 3 0 824K 516K ttyin 0:00 0.00% 0.00% getty
 214 root 3 0 824K 508K ttyin 0:00 0.00% 0.00% getty
 213 root 3 0 824K 508K ttyin 0:00 0.00% 0.00% getty
 109 daemon 2 0 828K 436K select 0:00 0.00% 0.00% portmap

Output is interrupted with a q or a Ctrl-C. Sometimes system administrators will leave top running on
the console when the console is not otherwise in use. Of course, this should be done only in a
physically secure setting.

In a sense, ps is a more general top since it gives you all running processes. The advantage to top is
that it focuses your attention on resource hogs, and it provides a repetitive update. top has a large
number of options and can provide a wide range of information. For more information, consult its
Unix manpage.[1]

[1] Solaris users may want to look at process management utilities included in /usr/proc/bin.

2.1.3 netstat

One of the most useful and diverse utilities is netstat. This program reports the contents of kernel data
structures related to networking. Because of the diversity in networking data structures, many of
netstat 's uses may seem somewhat unrelated, so we will be revisiting netstat at several points in this
book.

One use of netstat is to display the connections and services available on a host. For example, this is
the output for the system we just looked at:

bsd4# netstat -a
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 bsd4.telnet 205.153.60.247.3473 TIME_WAIT
tcp 0 17458 bsd4.chargen sloan.1244 ESTABLISHED
tcp 0 0 *.chargen *.* LISTEN
tcp 0 0 *.discard *.* LISTEN

 18

tcp 0 0 *.echo *.* LISTEN
tcp 0 0 *.time *.* LISTEN
tcp 0 0 *.daytime *.* LISTEN
tcp 0 0 *.finger *.* LISTEN
tcp 0 2 bsd4.telnet sloan.1082 ESTABLISHED
tcp 0 0 *.smtp *.* LISTEN
tcp 0 0 *.login *.* LISTEN
tcp 0 0 *.shell *.* LISTEN
tcp 0 0 *.telnet *.* LISTEN
tcp 0 0 *.ftp *.* LISTEN
tcp 0 0 *.sunrpc *.* LISTEN
udp 0 0 *.1075 *.*
udp 0 0 *.1074 *.*
udp 0 0 *.1073 *.*
udp 0 0 *.1072 *.*
udp 0 0 *.1071 *.*
udp 0 0 *.1070 *.*
udp 0 0 *.chargen *.*
udp 0 0 *.discard *.*
udp 0 0 *.echo *.*
udp 0 0 *.time *.*
udp 0 0 *.daytime *.*
udp 0 0 *.sunrpc *.*
udp 0 0 *.syslog *.*
Active UNIX domain sockets
Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
c3378e80 dgram 0 0 0 c336efc0 0 c3378f80
c3378f80 dgram 0 0 0 c336efc0 0 c3378fc0
c3378fc0 dgram 0 0 0 c336efc0 0 0
c336efc0 dgram 0 0 c336db00 0 c3378e80 0 /var/run/log

The first column gives the protocol. The next two columns give the sizes of the send and receive
queues. These should be 0 or near 0. Otherwise, you may have a problem with that particular service.
The next two columns give the socket or IP address and port number for each end of a connection.
This socket pair uniquely identifies one connection. The socket is presented in the form
hostname.service. Finally, the state of the connection is given in the last column for TCP services.
This is blank for UDP since it is connectionless. The most common states are ESTABLISHED for
current connections, LISTEN for services awaiting a connection, and TIME_WAIT for recently
terminated connections. Any of the TCP states could show up, but you should rarely see the others.
An excessive number of SYN_RECEIVED, for example, is an indication of a problem (possibly a
denial-of-service attack). You can safely ignore the last few lines of this listing.

A couple of examples should clarify this output. The following line shows a Telnet connection
between bsd4 and sloan using port 1082 on sloan:

tcp 0 2 bsd4.telnet sloan.1082 ESTABLISHED

The next line shows that there was a second connection to sloan that was recently terminated:

tcp 0 0 bsd4.telnet 205.153.60.247.3473 TIME_WAIT

Terminated connections remain in this state for a couple of minutes, during which time the socket pair
cannot be reused.

Name resolution can be suppressed with the -n option if you would rather see numeric entries. There
are a couple of reasons you might want to do this. Typically, netstat will run much faster without
name resolution. This is particularly true if you are having name resolution problems and have to wait

 19

for requests to time out. This option can help you avoid confusion if your /etc/services or /etc/hosts
files are inaccurate.

The remaining TCP entries in the LISTEN state are services waiting for a connection request. Since a
request could come over any available interface, its IP address is not known in advance. The * in the
entry *.echo acts as a placeholder for the unknown IP address. (Since multiple addresses may be
associated with a host, the local address is unknown until a connection is actually made.) The *.*
entries indicate that both the remote address and port are unknown. As you can see, this shows a
number of additional services that ps was not designed to display. In particular, all the services that are
under the control of inetd are shown.

Another use of netstat is to list the routing table. This may be essential information in resolving
routing problems, e.g., when you discover that a host or a network is unreachable. Although it may be
too long or volatile on many systems to be very helpful, the routing table is sometimes useful in
getting a quick idea of what networks are communicating with yours. Displaying the routing table
requires the -r option.

There are four main ways entries can be added to the routing table—by the ifconfig command when an
interface is configured, by the route command, by an ICMP redirect, or through an update from a
dynamic protocol like RIP or OSPF. If dynamic protocols are used, the routing table is an example of
a dynamic structure that can't be discovered by looking at configuration files.

Here is an example of a routing table from a FreeBSD system:

bsd1# netstat -rn
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 205.153.60.2 UGSc 0 0 xl0
127.0.0.1 127.0.0.1 UH 0 0 lo0
172.16.1/24 172.16.2.1 UGSc 0 7 xl1
172.16.2/24 link#2 UC 0 0 xl1
172.16.2.1 0:10:7b:66:f7:62 UHLW 2 0 xl1 913
172.16.2.255 ff:ff:ff:ff:ff:ff UHLWb 0 18 xl1
172.16.3/24 172.16.2.1 UGSc 0 2 xl1
205.153.60 link#1 UC 0 0 xl0
205.153.60.1 0:0:a2:c6:e:42 UHLW 4 0 xl0 906
205.153.60.2 link#1 UHLW 1 0 xl0
205.153.60.5 0:90:27:9c:2d:c6 UHLW 0 34 xl0 987
205.153.60.255 ff:ff:ff:ff:ff:ff UHLWb 1 18 xl0
205.153.61 205.153.60.1 UGSc 0 0 xl0
205.153.62 205.153.60.1 UGSc 0 0 xl0
205.153.63 205.153.60.1 UGSc 2 0 xl0

At first glance, output from other systems may be organized differently, but usually the same basic
information is present. In this example, the -n option was used to suppress name resolution.

The first column gives the destination, while the second gives the interface or next hop to that
destination. The third column gives the flags. These are often helpful in interpreting the first two
columns. A U indicates the path is up or available, an H indicates the destination is a host rather than a
network, and a G indicates a gateway or router. These are the most useful. Others shown in this table
include b, indicating a broadcast address; S, indicating a static or manual addition; and W and c,
indicating a route that was generated as a result of cloning. (These and other possibilities are described
in detail in the Unix manpage for some versions of netstat.) The fourth column gives a reference count,

 20

i.e., the number of active uses for each of the routes. This is incremented each time a connection is
built over the route (e.g., a Telnet connection is made using the route) and decremented when the
connection is torn down. The fifth column gives the number of packets sent using this entry. The last
entry is the interface that will be used.

If you are familiar with the basics of routing, you have seen these tables before. If not, an explanation
of the first few lines of the table should help. The first entry indicates the default route. This was
added statically at startup. The second entry is the loopback address for the machine. The third entry is
for a remotely attached network. The destination network is a subnet from a Class B address space.
The /24 is the subnet mask. Traffic to this network must go through 172.16.2.1, a gateway that is
defined with the next two entries. The fourth entry indicates that the network gateway, 172.16.2.1, is
on a network that has a direct attachment through the second interface xl1. The entry that follows
gives the specifics, including the Ethernet address of the gateway's interface.

In general, it helps to have an idea of the interfaces and how they are configured before you get too
deeply involved in routing tables. There are two quick ways to get this information—use the -i option
with netstat or use the ifconfig command. Here is the output for the interfaces that netstat generates.
This corresponds to the routing table just examined.

bsd1# netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
xl0 1500 <Link> 00.10.5a.e3.37.0c 2123 0 612 0 0
xl0 1500 205.153.60 205.153.60.247 2123 0 612 0 0
xl1 1500 <Link> 00.60.97.92.4a.7b 478 0 36 0 0
xl1 1500 172.16.2/24 172.16.2.13 478 0 36 0 0
lp0* 1500 <Link> 0 0 0 0 0
tun0* 1500 <Link> 0 0 0 0 0
sl0* 552 <Link> 0 0 0 0 0
ppp0* 1500 <Link> 0 0 0 0 0
lo0 16384 <Link> 6 0 6 0 0
lo0 16384 127 localhost 6 0 6 0 0

For our purposes, we are interested in only the first four entries. (The other interfaces include the loop-
back, lo0, and unused interfaces like ppp0*, the PPP interface.) The first two entries give the Ethernet
address and IP address for the xl0 interface. The next two are for xl1. Notice that this also gives the
number of input and output packets and errors as well. You can expect to see very large numbers for
these. The very low numbers indicate that the system was recently restarted.

The format of the output may vary from system to system, but all will provide the same basic
information. There is a lot more to netstat than this introduction shows. For example, netstat can be
run periodically like top. We will return to netstat in future chapters.

2.1.4 lsof

lsof is a remarkable tool that is often overlooked. Written by Victor Abel, lsof lists open files on a
Unix system. This might not seem a particularly remarkable service until you start thinking about the
implications. An application that uses the filesystem, networked or otherwise, will have open files at
some point. lsof offers a way to track that activity.

The program is available for a staggering variety of Unix systems, often in both source and binary
formats. Although I will limit this discussion to networking related tasks, lsof is more properly an
operating system tool than a networking tool. You may want to learn more about lsof than described
here.

 21

In its simplest form, lsof produces a list of all open files. You'll probably be quite surprised at the
number of files that are open on a quiescent system. For example, on a FreeBSD system with no one
else logged on, lsof listed 564 open files.

Here is an example of the first few lines of output from lsof:

bsd2# lsof
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
swapper 0 root cwd VDIR 116,131072 512 2 /
swapper 0 root rtd VDIR 116,131072 512 2 /
init 1 root cwd VDIR 116,131072 512 2 /
init 1 root rtd VDIR 116,131072 512 2 /
init 1 root txt VREG 116,131072 255940 157 /sbin/init
...

The most useful fields are the obvious ones, including the first three—the name of the command, the
process ID, and its owner. The other fields and codes used in the fields are explained in the manpage
for lsof, which runs about 30 pages.

It might seem that lsof returns too much information to be useful. Fortunately, it provides a number of
options that will allow you to tailor the output to your needs. You can use lsof with the -p option to
specify a specific process number or with the -c option to specify the name of a process. For example,
the command lsof -csendmail will list all the files opened by sendmail. You only need to give enough
of the name to uniquely identify the process. The -N option can be used to list files opened for the
local computer on an NFS server. That is, when run on an NFS client, lsof shows files opened by the
client. When run on a server, lsof will not show the files the server is providing to clients.

The -i option limits output to Internet and X.25 network files. If no address is given, all such files will
be listed, effectively showing all open socket files on your network:

bsd2# lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
syslogd 105 root 4u IPv4 0xc3dd8f00 0t0 UDP *:syslog
portmap 108 daemon 3u IPv4 0xc3dd8e40 0t0 UDP *:sunrpc
portmap 108 daemon 4u IPv4 0xc3e09d80 0t0 TCP *:sunrpc (LISTEN)
inetd 126 root 4u IPv4 0xc3e0ad80 0t0 TCP *:ftp (LISTEN)
inetd 126 root 5u IPv4 0xc3e0ab60 0t0 TCP *:telnet (LISTEN)
inetd 126 root 6u IPv4 0xc3e0a940 0t0 TCP *:shell (LISTEN)
inetd 126 root 7u IPv4 0xc3e0a720 0t0 TCP *:login (LISTEN)
inetd 126 root 8u IPv4 0xc3e0a500 0t0 TCP *:finger (LISTEN)
inetd 126 root 9u IPv4 0xc3dd8d80 0t0 UDP *:biff
inetd 126 root 10u IPv4 0xc3dd8cc0 0t0 UDP *:ntalk
inetd 126 root 11u IPv6 0xc3e0a2e0 0t0 TCP *:ftp
inetd 126 root 12u IPv6 0xc3e0bd80 0t0 TCP *:telnet
inetd 126 root 13u IPv6 0xc3e0bb60 0t0 TCP *:shell
inetd 126 root 14u IPv6 0xc3e0b940 0t0 TCP *:login
inetd 126 root 15u IPv6 0xc3e0b720 0t0 TCP *:finger
lpd 131 root 6u IPv4 0xc3e0b500 0t0 TCP *:printer (LISTEN)
sendmail 137 root 4u IPv4 0xc3e0b2e0 0t0 TCP *:smtp (LISTEN)
httpd 185 root 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 198 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 199 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 200 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 201 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 202 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 10408 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 10409 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 10410 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)

TE
AM
FL
Y

Team-Fly®

 22

httpd 25233 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
httpd 25236 nobody 16u IPv4 0xc3e0b0c0 0t0 TCP *:http (LISTEN)
telnetd 58326 root 0u IPv4 0xc3e0eb60 0t0 TCP
bsd2.lander.edu:telnet->sloan.lander.edu:1184 (ESTABLISHED)
telnetd 58326 root 1u IPv4 0xc3e0eb60 0t0 TCP
bsd2.lander.edu:telnet->sloan.lander.edu:1184 (ESTABLISHED)
telnetd 58326 root 2u IPv4 0xc3e0eb60 0t0 TCP
bsd2.lander.edu:telnet->sloan.lander.edu:1184 (ESTABLISHED)
perl 68936 root 4u IPv4 0xc3dd8c00 0t0 UDP *:eicon-x25
ping 81206 nobody 3u IPv4 0xc3e98f00 0t0 ICMP *:*

As you can see, this is not unlike the -a option with netstat. Apart from the obvious differences in the
details reported, the big difference is that lsof will not report connections that do not have files open.
For example, if a connection is being torn down, all files may already be closed. netstat will still
report this connection while lsof won't. The preferred behavior will depend on what information you
need.

If you specify an address, then only those files related to the address will be listed:

bsd2# lsof -i@sloan.lander.edu
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
telnetd 73825 root 0u IPv4 0xc3e0eb60 0t0 TCP bsd2.lander.edu:telnet-
>
sloan.lander.edu:1177 (ESTABLISHED)
telnetd 73825 root 1u IPv4 0xc3e0eb60 0t0 TCP bsd2.lander.edu:telnet-
>
sloan.lander.edu:1177 (ESTABLISHED)
telnetd 73825 root 2u IPv4 0xc3e0eb60 0t0 TCP bsd2.lander.edu:telnet-
>
sloan.lander.edu:1177 (ESTABLISHED)

One minor problem with this output is the identification of the telnet user as root—a consequence of
root owning telnetd, the server's daemon. On some systems, you can use the PID with the -p option to
track down the device entry and then use lsof on the device to discover the owner. Unfortunately, this
won't work on many systems.

You can also use lsof to track an FTP transfer. You might want to do this to see if a transfer is making
progress. You would use the -p option to see which files are open to the process. You can then use -ad
to specify the device file descriptor along with -r to specify repeat mode. lsof will be run repeatedly,
and you can see if the size of the file is changing.

Other uses of lsof are described in the manpage, the FAQ, and a quick-start guide supplied with the
distribution. The latter is probably the best place to begin.

2.1.5 ifconfig

ifconfig is usually thought of as the command used to alter the configuration of the network interfaces.
But, since you may need to know the current configuration of the interfaces before you make changes,
ifconfig provides a mechanism to retrieve interface configurations. It will report the configuration of
all the interfaces when called with the -a option or of a single interface when used with the interface's
name.

Here are the results for the system we just looked at:

bsd1# ifconfig -a

 23

xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 inet 205.153.60.247 netmask 0xffffff00 broadcast 205.153.60.255
 ether 00:10:5a:e3:37:0c
 media: 10baseT/UTP <half-duplex>
 supported media: autoselect 100baseTX <full-duplex> 100baseTX <half-
duplex> 100baseTX 10baseT/UTP <full-duplex> 10baseT/UTP <half-duplex>
10baseT/UTP
xl1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 inet 172.16.2.13 netmask 0xffffff00 broadcast 172.16.2.255
 ether 00:60:97:92:4a:7b
 media: 10baseT/UTP <half-duplex>
 supported media: autoselect 100baseTX <full-duplex> 100baseTX <half-
duplex> 100baseTX 10baseT/UTP <full-duplex> 10baseT/UTP 10baseT/UTP <half-
duplex>
lp0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500
tun0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
sl0: flags=c010<POINTOPOINT,LINK2,MULTICAST> mtu 552
ppp0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
 inet 127.0.0.1 netmask 0xff000000

You can see that for the interfaces xl0 and xl1, we are given a general status report. UP indicates that
the interface is operational. If UP is missing, the interface is down and will not process packets. For
Ethernet, the combination of BROADCAST, SIMPLEX, and MULTICAST is not surprising. The mtu is
the largest frame size the interface will handle. Next, we have the IP number, address mask, and
broadcast address. The Ethernet address comes next, although some systems (Solaris, for example)
will suppress this if you aren't running the program as root. Finally, we see information about the
physical interface connections.

You can ignore the entries for lp0, tun0, sl0, and ppp0. In fact, if you don't want to see these, you can
use the combination -au to list just the interfaces that are up. Similarly, -d is used to list just the
interfaces that are down.

While netstat allows you to get basic information on the interfaces, if your goal is configuration
information, ifconfig is a better choice. First, as you can see, ifconfig supplies more of that sort of
information. Second, on some systems, netstat may skip interfaces that haven't been configured.
Finally, ifconfig also allows you to change parameters such as the IP addresses and masks. In
particular, ifconfig is frequently used to shut down an interface. This is roughly equivalent to
disconnecting the interface from the network. To shut down an interface, you use the down option. For
example, ifconfig xl1 down will shut down the interface xl1, and ifconfig xl1 up will bring it back up.
Of course, you must have root privileges to use ifconfig to change configurations.

Since ifconfig is used to configure interfaces, it is typically run automatically by one of the startup
scripts when the system is booted. This is something to look for when you examine startup scripts.
The use of ifconfig is discussed in detail in Craig Hunt's TCP/IP Network Administration.

2.1.6 arp

The ARP table on a system maps network addresses into MAC addresses. Of course, the ARP table
applies only to directly connected devices, i.e., devices on the local network. Remote devices, i.e.,
devices that can be reached only by sending traffic through one or more routers, will not be added to
the ARP table since you can't communicate with them directly. (However, the appropriate router
interface will be added.)

 24

Typically, addresses are added or removed automatically. If your system needs to communicate with
another system on the local network whose MAC address is unknown, your system sends an ARP
request, a broadcast packet with the destination's IP address. If the system is accessible, it will respond
with an ARP reply that includes its MAC address. Your system adds this to its ARP table and then
uses this information to send packets directly to the destination. (A simple way to add an entry for a
directly connected device to the ARP table is to ping the device you want added. ping is discussed in
detail in Chapter 3.) Most systems are configured to drop entries from the ARP table if they aren't
being used, although the length of the timeout varies from system to system.

At times, you may want to examine or even change entries in the ARP table. The arp command allows
you to do this. When arp is invoked with the -a option, it reports the current contents of the ARP table.
Here is an example from a Solaris system:

sol1# arp -a
Net to Media Table
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
elxl0 205.153.60.1 255.255.255.255 00:00:a2:c6:0e:42
elxl0 205.153.60.53 255.255.255.255 00:e0:29:21:3c:0b
elxl0 205.153.60.55 255.255.255.255 00:90:27:43:72:70
elxl0 mail.lander.edu 255.255.255.255 00:90:27:9c:2d:c6
elxl0 sol1 255.255.255.255 SP 00:60:97:58:71:b7
elxl0 pm3.lander.edu 255.255.255.255 00:c0:05:04:2d:78
elxl0 BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:00:5e:00:00:00

The format or details may vary from system to system, but the same basic information should be
provided.

For Solaris, the first column gives the interface for the connection. The next two are the IP address
and its mask. (You can get just IP numbers by using the -n option.) There are four possible flags that
may appear in the flags column. An S indicates a static entry, one that has been manually set rather
than discovered. A P indicates an address that will be published. That is, this machine will provide this
address should it receive an ARP request. In this case, the P flag is for the local machine, so it is
natural that the machine would respond with this information. The flags U and M are used for
unresolved and multicast addresses, respectively. The final column is the actual Ethernet address.

This information can be useful in several ways. It can be used to determine the Ethernet hardware in
this computer, as well as the hardware in directly connected devices. The IEEE assigns to the
manufacturers of Ethernet adapters unique identifiers to be used as the first three bytes of their
Ethernet addresses. These addresses, known as Organizationally Unique Identifiers (OUI), can be
found at the IEEE web page at http://standards.ieee.org/regauth/oui/index.html. In other words, the
first three bytes of an Ethernet address identify the manufacturer. In this case, by entering on this web
page 00 60 97, i.e., the first three bytes of the address 00 60 97 58 71 b7, we find that the host
sol1 has a 3COM Ethernet adapter. In the same manner we can discover that the host 205.153.60.1 is
Bay Networks equipment.

OUI designations are not foolproof. The MAC address of a device may have
been changed and may not have the manufacturer's OUI. And even if you can
identify the manufacturer, in today's world of merger mania and takeovers,
you may see an OUI of an acquired company that you don't recognize.

http://standards.ieee.org/regauth/oui/index.html

 25

If some machines on your network are reachable but others aren't, or connectivity comes and goes,
ARP problems may be the cause. (For an example of an ARP problem, see Chapter 12.) If you think
you might have a problem with IP-to-Ethernet address resolution on your local network, arp is the
logical tool to use to diagnose the problem. First, look to see if there is an entry for the destination and
if it is correct. If it is missing, you can attempt to add it using the -s option. (You must be root.) If the
entry is incorrect, you must first delete it with the -d option. Entries added with the -s option will not
time out but will be lost on reboot. If you want to permanently add an entry, you can create a startup
script to do this. In particular, in a script, arp can use the -f option to read entries from a file.

The usual reason for an incorrect entry in an arp table is a duplicated IP address somewhere on your
network. Sometimes this is a typing mistake. Sometimes when setting up their computers, people will
copy the configuration from other computers, including the supposedly unique IP number. A rogue
DHCP server is another possibility. If you suspect one of your hosts is experiencing problems caused
by a duplicate IP number on the network, you can shut down the interface on that computer or unplug
it from the network. (This is less drastic than shutting down the computer, but that will also work.)
Then you can ping the IP address in question from a second computer. If you get an answer, some
other computer is using your IP address. Your arp table should give you the Ethernet address of the
offending machine. Using its OUI will tell you the type of hardware. This usually won't completely
locate the problem machine, but it is a start, particularly for unusual hardware.[2]

[2] You can also use arp to deliberately publish a bad address. This will shut up a connection request
that won't otherwise stop.

2.1.7 Scanning Tools

We've already discussed one reason why ps may not give a complete picture of your system. There is
another much worse possibility. If you are having security problems, your copy of ps may be
compromised. Crackers sometimes will replace ps with their own version that has been patched to
hide their activities. In this event, you may have an additional process running on your system that
provides a backdoor that won't show up under ps.

One way of detecting this is to use a port scanner to see which ports are active on your system. You
could choose to do this from the compromised system, but you are probably better off doing this from
a remote system known to be secure. This assumes, however, that the attacker hasn't installed a
trapdoor on the compromised host that is masquerading as a legitimate service on a legitimate port.

There are a large number of freely available port scanners. These include programs like gtkportscan,
nessus, portscan, and strobe, to name just a few. They generally work by generating a connection
request for each port number in the range being tested. If they receive a reply from the port, they add it
to their list of open ports. Here is an example using portscan:

bsd1# portscan 205.153.63.239 1 10000 -vv
This is a portscanner - Rafael Barrero, Jr.
Email me at rbarrero@polymail.calpoly.edu
For further information. Enjoy!

Port: 7 --> echo
Port: 9 --> discard
Port: 13 --> daytime
Port: 19 --> chargen
Port: 21 --> ftp
Port: 23 --> telnet
Port: 25 --> smtp
Port: 37 --> time

 26

Port: 79 --> finger
Port: 111 --> sunrpc
Port: 513 --> login
Port: 514 --> shell

The arguments are the destination address and beginning and ending port numbers. The result is a list
of port numbers and service names for ports that answered.

Figure 2-1 shows another example of a port scanner running under Windows NT. This particular
scanner is from Mentor Technologies, Inc., and can be freely downloaded from
http://www.mentortech.com/learn/tools/tools.shtml. It is written in Java, so it can be run on both
Windows and Unix machines but will require a Java runtime environment. It can also be run in
command-line mode. Beware, this scanner is very slow when used with Windows.

Figure 2-1. Chesapeake Port Scanner

Most administrators look on such utilities as tools for crackers, but they can have legitimate uses as
shown here. Keep in mind that the use of these tools has political implications. You should be safe
scanning your own system, but you are on very shaky ground if you scan other systems. These two
tools make no real effort to hide what they are doing, so they are not difficult to detect. Stealth port
scanners, however, send the packets out of order over extended periods of time and are, consequently,
more difficult to detect. Some administrators consider port scans adequate justification for cutting
connections or blocking all traffic from a site. Do not use these tools on a system without
authorization. Depending on the circumstances, you may want to notify certain colleagues before you
do a port scan even if you are authorized. In Chapter 12, we will return to port scanners and examine
other uses, such as testing firewalls.

One last word about these tools. Don't get caught up in using tools and overlook simpler tests. For
example, you can check to see if sendmail is running by trying to connect to the SMTP port using

http://www.mentortech.com/learn/tools/tools.shtml

 27

telnet. In this example, the test not only tells me that sendmail is running, but it also tells me what
version of sendmail is running:

lnx1# telnet 205.153.63.239 25
Trying 205.153.63.239...
Connected to 205.153.63.239.
Escape character is '^]'.
220 bsd4.lander.edu ESMTP Sendmail 8.9.3/8.9.3; Wed, 8 Mar 2000 09:38:02 -0500
(EST)
quit
221 bsd4.lander.edu closing connection
Connection closed by foreign host.

In the same spirit:

bsd1# ipfw list
ipfw: getsockopt(IP_FW_GET): Protocol not available

clearly shows ipfw is not running on this system. All I did was try to use it. This type of application-
specific testing is discussed in greater detail in Chapter 10.

2.2 System Configuration Files

A major problem with configuration files under Unix is that there are so many of them in so many
places. On a multiuser system that provides a variety of services, there may be scores of configuration
files scattered among dozens of directories. Even worse, it seems that every implementation of Unix is
different. Even different releases of the same flavor of Unix may vary. Add to this the complications
that multiple applications contribute and you have a major undertaking. If you are running a number
of different platforms, you have your work cut out for you.

For these reasons, it is unrealistic to attempt to give an exhaustive list of configuration files. It is
possible, however, to discuss configuration files by categories. The categories can then serve as a
guide or reminder when you construct your own lists so that you don't overlook an important group of
files. Just keep in mind that what follows is only a starting point. You will have to discover your
particular implementations of Unix one file at a time.

2.2.1 Basic Configuration Files

There are a number of fairly standard configuration files that seem to show up on most systems. These
are usually, but not always, located in the /etc directory. (For customization, you may see a number of
files in the /usr/local or /usr/opt directories or their subdirectories.) When looking at files, this is
clearly the first place to start. Your system will probably include many of the following:
defaultdomain, defaultroute, ethers, gateways, host.conf, hostname, hosts, hosts.allow, hosts.equiv,
inetd.conf, localhosts, localnetworks, named.boot, netmasks, networks, nodename, nsswitch.conf,
protocols, rc, rc.conf, rc.local, resolv.conf, and services. You won't find all of these on a single system.
Each version and release will have its own conventions. For example, Solaris puts the host's name in
nodename.[3] With BSD, it is set in rc.conf. Customizations may change these as well. Thus, the
locations and names of files will vary from system to system.

[3] The hostname may be used in other files as well so don't try to change the hostname by editing these
files. Use the hostname command instead.

 28

One starting point might be to scan all the files in /etc and its subdirectories, trying to identify which
ones are relevant. In the long run, you may want to know the role of all the files in /etc, but you don't
need to do this all at once.

There are a few files or groups of files that will be of particular interest. One of the most important is
inetd.conf. While we can piece together what is probably being handled by inetd by using ps in
combination with netstat, an examination of inetd.conf is usually much quicker and safer. On an
unfamiliar system, this is one of the first places you will want to look. Be sure to compare this to the
output provided by netstat. Services that you can't match to running processes or inetd are a cause for
concern.

You will also want to examine files like host.conf, resolv.conf, and nsswitch.conf to discover how
name resolution is done. Be sure to examine files that establish trust relationships like hosts.allow.
This is absolutely essential if you are having, or want to avoid, security problems. (There is more on
some of these files in the discussion of tcpwrappers in Chapter 11.)

Finally, there is one group of these files, the rc files, that deserve particular attention. These are
discussed separately in the later section on startup files and scripts.

2.2.2 Configuration Programs

Over the years, Unix has been heavily criticized because of its terse command-line interface. As a
result, many GUI applications have been developed. System administration has not escaped this trend.
These utilities can be used to display as well as change system configurations.

Once again, every flavor of Unix will be different. With Solaris, admintool was the torchbearer for
years. In recent years, this has been superseded with Solstice AdminSuite. With FreeBSD, select the
configure item from the menu presented when you run /stand/sysinstall. With Linux you can use
linuxconf. Both the menu and GUI versions of this program are common. The list goes on.

2.2.3 Kernel

It's natural to assume that examining the kernel's configuration might be an important first step. But
while it may, in fact, be essential in resolving some key issues, in general, it is usually not the most
productive place to look. You may want to postpone this until it seems absolutely necessary or you
have lots of free time.

As you know, the first step in starting a system is loading and initializing the kernel. Network services
rely on the kernel being configured correctly. Some services will be available only if first enabled in
the kernel. While examining the kernel's configuration won't tell you which services are actually being
used, it can give some insight into what is not available. For example, if the kernel is not configured to
forward IP packets, then clearly the system is not being used as a router, even if it has multiple
interfaces. On the other hand, it doesn't immediately follow that a system is configured as a firewall
just because the kernel has been compiled to support filtering.

Changes to the kernel will usually be required only when building a new system, installing a new
service or new hardware, or tuning system performance. Changing the kernel will not normally be
needed to simply discover how a system is configured. However, changes may be required to use
some of the tools described later in this book. For example, some versions of FreeBSD have not, by
default, enabled the Berkeley packet filter pseudodriver. Thus, it is necessary to recompile the kernel
to enable this before some packet capture software, such as tcpdump, can be run on these systems.

 29

To recompile a kernel, you'll need to consult the documentation for your operating system for the
specifics. Usually, recompiling a kernel first requires editing configuration files. This may be done
manually or with the aid of a utility created for this task. For example, with Linux, the command make
config runs an interactive program that sets appropriate parameters.[4] BSD uses a program called
config. If you can locate the configuration files used, you can see how the kernel was configured. But,
if the kernel has been rebuilt a number of times without following a consistent naming scheme, this
can be surprisingly difficult.

[4] You can also use make xconfig or make menuconfig. These are more interactive, allowing you to go
back and change parameters once you have moved on. make config is unforgiving in this respect.

As an example, on BSD-derived systems, the kernel configuration files are usually found in the
directory /sys/arch/conf/kernelwhere arch corresponds to the architecture of the system and
kernel is the name of the kernel. With FreeBSD, the file might be /sys/i386/conf/GENERIC if the
kernel has not been recompiled. In Linux, the configuration file is .config in whatever directory the
kernel was unpacked in, usually /usr/src/linux/.

As you might expect, lines beginning with a # are comments. What you'll probably want to look for
are lines specifying unusual options. For example, it is not difficult to guess that the following lines
from a FreeBSD system indicate that the machine may be used as a firewall:

...
Firewall options
options IPFIREWALL
options IPFIREWALL_VERBOSE_LIMIT=25
...

Some entries can be pretty cryptic, but hopefully there are some comments. The Unix manpages for a
system may describe some options.

Unfortunately, there is very little consistency from one version of Unix to the next on how such files
are named, where they are located, what information they may contain, or how they are used. For
example, Solaris uses the file /etc/system to hold some directives, although there is little of interest in
this file for our purposes. IRIX keeps its files in the /var/sysgen/system directory. For Linux, take a
look at /etc/conf.modules. The list goes on.[5]

[5] While general configuration parameters should be in a single file, a huge number of files are actually
involved. If you have access to FreeBSD, you might look at /sys/conf/files to get some idea of this. This
is a list of the files FreeBSD uses.

It is usually possible to examine or change selected system parameters for an existing kernel. For
example, Solaris has the utilities sysdef, prtconf, and ndd. For our purposes, ndd is the most interesting
and should provide the flavor of how such utilities work.

Specifically, ndd allows you to get or set driver configuration parameters. You will probably want to
begin by listing configurable options. Specifying the driver (i.e., /dev/arp, /dev/icmp, /dev/ip, /dev/tcp,
and /dev/udp) with the ? option will return the parameters available for that driver. Here is an example:

sol1# ndd /dev/arp ?
? (read only)
arp_cache_report (read only)
arp_debug (read and write)
arp_cleanup_interval (read and write)

 30

This shows three parameters that can be examined, although only two can be changed. We can
examine an individual parameter by using its name as an argument. For example, we can retrieve the
ARP table as shown here:

sol1# ndd /dev/arp arp_cache_report
ifname proto addr proto mask hardware addr flags
elxl0 205.153.060.053 255.255.255.255 00:e0:29:21:3c:0b
elxl0 205.153.060.055 255.255.255.255 00:90:27:43:72:70
elxl0 205.153.060.001 255.255.255.255 00:00:a2:c6:0e:42
elxl0 205.153.060.005 255.255.255.255 00:90:27:9c:2d:c6
elxl0 205.153.060.248 255.255.255.255 00:60:97:58:71:b7 PERM PUBLISH MYADDR
elxl0 205.153.060.150 255.255.255.255 00:c0:05:04:2d:78
elxl0 224.000.000.000 240.000.000.000 01:00:5e:00:00:00 PERM MAPPING

In this instance, it is fairly easy to guess the meaning of what's returned. (This output is for the same
ARP table that we looked at with the arp command.) Sometimes, what's returned can be quite cryptic.
This example returns the value of the IP forwarding parameter:

ndd /dev/ip ip_forwarding
0

It is far from obvious how to interpret this result. In fact, 0 means never forward, 1 means always
forward, and 2 means forward only when two or more interfaces are up. I've never been able to locate
a definitive source for this sort of information, although a number of the options are described in an
appendix to W. Richard Stevens' TCP/IP Illustrated, vol. 1. If you want to change parameters, you can
invoke the program interactively.

Other versions of Unix will have their own files and utilities. For example, BSD has the sysctl
command. This example shows that IP forwarding is disabled:

bsd1# sysctl net.inet.ip.forwarding
net.inet.ip.forwarding: 0

The manpages provide additional guidance, but to know what to change, you may have to delve into
the source code. With AIX, there is the no utility. As I have said before, the list goes on.

This brief description should give you a general idea of what's involved in gleaning information about
the kernel, but you will want to go to the appropriate documentation for your system. It should be
clear that it takes a fair degree of experience to extract this kind of information. Occasionally, there is
a bit of information that can be obtained only this way, but, in general, this is not the most profitable
place to start.

One last comment—if you are intent on examining the behavior of the kernel, you will almost
certainly want to look at the messages it produces when booting. On most systems, these can be
retrieved with the dmesg command. These can be helpful in determining what network hardware your
system has and what drivers it uses. For hardware, however, I generally prefer opening the case and
looking inside. Accessing the CMOS is another approach for discovering the hardware that doesn't
require opening the box.

2.2.4 Startup Files and Scripts

 31

Once the kernel is loaded, the swapper or scheduler is started and then the init process runs. This
process will, in turn, run a number of startup scripts that will start the various services and do
additional configuration chores.

After the standard configuration files, these are the next group of files you might want to examine.
These will primarily be scripts, but may include configuration files read by the scripts. In general, it is
a bad idea to bury configuration parameters within these scripts, but this is still done at times. You
should also be prepared to read fairly cryptic shell code. It is hoped that most of these will be either in
their pristine state, heavily commented, or both.

Look for three things when examining these files. First, some networking parameters may be buried in
these files. You will not want to miss these. Next, there may be calls to network configuration utilities
such as route or ifconfig. These are frequently customizations, so read these with a critical eye. Finally,
networking applications such as sendmail may be started from these files. I strongly urge that you
create a list of all applications that are run automatically at startup.

For systems derived from BSD, you should look for files in /etc beginning with rc. Be sure to look at
rc.conf and any rc files with extensions indicating a networking function of interest, e.g., rc.firewall.
Realize that many of these will be templates for services that you may not be using. For example, if
you see the file rc.atm, don't be too disappointed when you can't find your ATM connection.

Unix systems can typically be booted in one of several different states or run levels that determine
which services are started. For example, run level 1 is single-user mode and is used for system
maintenance. The services started by the different run levels vary somewhat among the different
flavors of Unix. If your system is derived from System V, then the files will be in a half dozen or so
directories in /etc. These are named rc1.d, rc2.d, and so forth. The digit indicates the run level of the
system when booted. Networking scripts are usually in rc2.d. In each directory, there will be scripts
starting with an S or a K and a two-digit number. The rest of the name should give some indication of
the function of the file. Files with names beginning with an S are started in numerical order when the
system is rebooted. When the system shuts down, the files with K are run. (Some versions of Linux,
such as Red Hat, follow this basic approach but group these directories together in the /etc/rc.d
directory. Others, such as Debian, follow the System V approach.)

There is one serious catch with all this. When versions of operating systems
change, sometimes the locations of files change. For backward compatibility,
links may be created to old locations. For example, on recent versions of
Solaris, the network configuration file /etc/hosts is actually a link to
/etc/inet/hosts. There are other important network configuration files that are
really in /etc/inet, not /etc. Similarly, some of the startup scripts are really
links to files in /etc/init.d. If the link is somehow broken, you may find
yourself editing the wrong version of a file and wondering why the system is
ignoring your changes.

2.2.5 Other Files

There are several other categories of files that are worth mentioning briefly. If you have been
following the steps just described, you will already have found most of these, but it may be worth
mentioning them separately just in case you have overlooked something.

2.2.5.1 Application files

TE
AM
FL
Y

Team-Fly®

 32

Once you have your list of applications that are started automatically, investigate how each application
is configured. When it comes to configuration files, each application will follow its own conventions.
The files may be grouped together, reside in a couple of directories, or have some distributed structure
that spans a number of directories. For example, sendmail usually keeps configuration files together,
usually in /etc or in /etc/mail. DNS may have a couple of files in /etc to get things started, with the
database files grouped together somewhere else. A web server like apache may have an extensive set
of files distributed across a number of directories, particularly if you consider content. But beware,
your particular implementation may vary from the norm—in that case, all bets are off. You will need
to look for these on an application-by-application and a system-by-system basis.

2.2.5.2 Security files

It is likely you will have already discovered relevant security files at this point, but if you are having
problems, this is something worth revisiting. There are several different categories to consider:

Trust relationships

Some files such as /etc/hosts.equiv set up trust relationships with other computers. You will
definitely want to review these. Keep in mind that users can establish their own trust
relationships, so don't forget the .rhost file in home directories if you are having problems tied
to specific users.

Traffic control

A number of files may be tied to general access or the control of traffic. These include
configuration files for applications like tcpwrappers or firewall configuration files.

Application specific

Don't forget that individual applications may have security files as well. For example, the file
/etc/ftpusers may be used by ftp to restrict access. These are very easy to overlook.

2.2.5.3 Log files

One last category of files you might want to consider is log files. Strictly speaking, these are not
configuration files. Apart from an occasional startup message, these may not tell you very much about
your system's configuration. But occasionally, these will provide the missing puzzle piece for
resolving a problem. Log files are described in much greater detail in Chapter 11.

2.3 Microsoft Windows

Networking with Windows can be quite complicated, since it may involve Microsoft's proprietary
enhancements. Fortunately, Microsoft's approach to TCP/IP is pretty standard. As with Unix, you can
approach the various versions of Windows by looking at configuration parameters or by using utilities
to examine the current configuration. For the most part, you won't be examining files directly under
Windows, at least for versions later than Windows for Workgroups. Rather, you'll use the utilities that
Windows provides. (There are exceptions. For example, like Unix, Windows has hosts, protocol, and
services files.)

 33

If you are looking for basic information quickly, Microsoft provides one of two programs for this
purpose, depending on which version of Windows you use. The utility winipcfg is included with
Windows 95/98. A command-line program, ipconfig, is included with Windows NT and Windows
2000 and in Microsoft's TCP/IP stack for Windows for Workgroups. Both programs provide the same
information. winipcfg produces a pop-up window giving the basic parameters such as the Ethernet
address, the IP address, the default route, the name server's address, and so on (see Figure 2-2). You
can invoke the program by entering the program name from Run on the start menu or in a DOS
window. The most basic parameters will be displayed. Additional information can be obtained by
using the /all option or by clicking on the More Info >> button.

Figure 2-2. winipcfg

For ipconfig, start a DOS window. You can use the command switch /all to get the additional details.

As in Unix, the utilities arp, hostname, and netstat are available. All require a DOS window to run.
There are a few differences in syntax, but they work basically the same way and provide the same
sorts of information. For example, arp -a will list all the entries in the ARP table:

C:\>arp -a

Interface: 205.153.63.30 on Interface 2
 Internet Address Physical Address Type
 205.153.63.1 00-00-a2-c6-28-44 dynamic
 205.153.63.239 00-60-97-06-22-22 dynamic

The command netstat -r gives the computer's routing table:

C:\>netstat -r

Route Table

 34

===
Interface List
0x1 MS TCP Loopback interface
0x2 ...00 10 5a a1 e9 08 3Com 3C90x Ethernet Adapter
0x3 ...00 00 00 00 00 00 NdisWan Adapter
===
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 205.153.63.1 205.153.63.30 1
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 205.153.63.0 255.255.255.0 205.153.63.30 205.153.63.30 1
 205.153.63.30 255.255.255.255 127.0.0.1 127.0.0.1 1
 205.153.63.255 255.255.255.255 205.153.63.30 205.153.63.30 1
 224.0.0.0 224.0.0.0 205.153.63.30 205.153.63.30 1
 255.255.255.255 255.255.255.255 205.153.63.30 205.153.63.30 1
===

Active Connections

 Proto Local Address Foreign Address State
 TCP jsloan:1025 localhost:1028 ESTABLISHED
 TCP jsloan:1028 localhost:1025 ESTABLISHED
 TCP jsloan:1184 205.153.60.247:telnet ESTABLISHED
 TCP jsloan:1264 mail.lander.edu:pop3 TIME_WAIT

As you can see, the format is a little different, but it supplies the same basic information. (You can
also use the command route print to list the routing table.) You can use netstat -a to get the active
connections and services. There really isn't an option that is analogous to -i in Unix's netstat (the
option to display attached interfaces). For a listing of the basic syntax and available commands, try
netstat /?.

While Windows does not provide ps, both Windows NT and Windows 2000 provide the Task
Manager (taskmgr.exe), a utility that can be used to see or control what is running. If you have the
Windows Resource Kit, three additional utilities, process viewer (pviewer.exe), process explode
(pview.exe), and process monitor (pmon.exe), are worth looking at. All four can be started by entering
their names at Start Run. The Task Manager can also be started by pressing Ctrl-Alt-Delete and
selecting Task Manager from the menu or by right-clicking on a vacant area on the task bar at the
bottom of the screen and selecting Task Manger from the menu.

You won't need NT's administrator privileges to use the DOS-based commands just described. If you
want to reconfigure the system or if you need additional details, you will need to turn to the utilities
provided by Windows. For NT, this will require administrator privileges. (You'll also need
administrative privileges to make changes with arp or route.) This is available from Start Settings

Control Panel Network or by following a similar path from My Computer. Select the
appropriate tab and fields as needed.

If you are interested in port scanners, a number are available. I have already mentioned that the
Chesapeake Port Scanner will run under Windows. Scan the Internet for others.

Finally, for the really brave of heart, you can go into the registry. But that's a subject for another book.
(See Paul Robichaux's Managing the Windows 2000 Registry or Steven Thomas's Windows NT 4.0
Registry.)

 35

Chapter 3. Connectivity Testing
This chapter describes simple tests for individual network links and for end-to-end connectivity
between networked devices. The tools described in this chapter are used to show that there is a
functioning connection between two devices. These tools can also be used for more sophisticated
testing, including the discovery of path characteristics and the general performance measurements.
These additional uses are described in Chapter 4. Tools used for testing protocol issues related to
connectivity are described in Chapter 9. You may want to turn next to these chapters if you need
additional information in either of these areas.

This chapter begins with a quick review of cabling practices. If your cabling isn't adequate, that's the
first thing you need to address. Next, there is a lengthy discussion of using ping to test connectivity
along with issues that might arise when using ping, such as security problems. Next, I describe
alternatives to ping. Finally, I discuss alternatives that run on Microsoft Windows platforms.

3.1 Cabling

For most managers, cabling is the most boring part of a network. Even administrators who are
normally control freaks will often jump at the opportunity to delegate or cede responsibility for
cabling to somebody else. It has none of the excitement of new equipment or new software. It is often
hidden away in wiring closets, walls, and ceilings. When it is visible, it is usually in the way or an
eyesore. The only time most managers think about cabling is when it is causing problems. Yet, unless
you are one of a very small minority running a wireless network, it is the core of your network.
Without adequate cabling, you don't have a network.

Although this is a book about software tools, not cabling, the topics are not unrelated. If you have a
cabling problem, you may need to turn to the tools described later in this chapter to pinpoint the
problem. Conversely, to properly use these tools, you can't ignore cabling, as it may be the real source
of your problems.

If a cable is damaged, it won't be difficult to recognize the problem. But intermittent cabling problems
can be a nightmare to solve. The problem may be difficult to recognize as a cabling problem. It may
come and go, working correctly most of the time. The problem may arise in cables that have been in
use for years. For example, I once watched a technician try to deal with a small classroom LAN that
had been in use for more than five years and would fail only when the network was heavily loaded,
i.e., if and only if there was a scheduled class in the room. The problem took weeks before what
proved to be a cabling problem was resolved. In the meantime, several classes were canceled.

A full discussion of cabling practices, standards, and troubleshooting has been the topic of several
books, so this coverage will be very selective. I am assuming that you are familiar with the basics. If
not, several references in Appendix B provide a general but thorough introduction to cabling.

With cabling, as with most things, it is usually preferable to prevent problems than to have to
subsequently deal with them. The best way to avoid cabling problems is to take a proactive approach.
While some of the following suggestions may seem excessive, the costs are minimal when compared
to what can be involved in solving a problem.

 36

3.1.1 Installing New Cabling

If you are faced with a new installation, take the time to be sure it is done correctly from the start.
While it is fairly straightforward to wire a few machines together in a home office, cabling should not
generally be viewed as a do-it-yourself job. Large cabling projects should be left to trained
professionals whenever possible.

Cabling is usually a large investment. Correcting cabling problems can be very costly in lost time both
for diagnosing the problem and for correcting the problem. Also, cabling must conform to all
applicable building and fire codes. For example, using nonplenum cabling in plenum spaces can, in
the event of a fire, greatly endanger the safety of you and your fellow workers. (Plenum cabling is
cabling designed to be used in plenum spaces, spaces used to recirculate air in a building. It uses
materials that have low flame-spread and low smoke-producing properties.)

Cabling can also be very sensitive to its physical environment. Cable that runs too near fluorescent
lights or large motors, e.g., elevator motors, can be problematic. Proximity to power lines can also
cause problems. The network cable acts like an antenna, picking up other nearby electrical activity and
introducing unwanted signals or noise onto the network. This can be highly intermittent and very
difficult to identify. Concerns such as these should be enough to discourage you from doing the job
yourself unless you are very familiar with the task.

Unfortunately, sometimes budget or organizational policies are such that you will have no choice but
to do the job yourself or use internal personnel. If you must do the job yourself, take the time to learn
the necessary skills before you begin. Get formal training if at all possible. Invest in the appropriate
tools and test equipment to do the job correctly. And make sure you aren't violating any building or
fire codes.

If the wiring is handled by others, you will need to evaluate whether those charged with the task really
have the skill to complete the job. Most electricians and telephone technicians are not familiar with
data cabling practices. Worse still, many don't realize this. So, if asked, they will reassure you they
can do the job. If possible, use an installer who has been certified in data cabling. Once you have
identified a likely candidate, follow up on her references. Ask for the names of some past customers
and call those customers. If possible, ask to see some of her work.

When planning a project, you should install extra cable whenever feasible. It is much cheaper to pull
extra cable as you go than to go back and install new cable or replace a faulty cable. You should also
consider technologies that will support higher speeds than you are currently using. For example, if you
are using 10-Mbps Ethernet to the desktop, you should install cable that will support 100 Mbps. In the
past it has been a common recommendation to install fiber-optic cables to the desk as well, even if you
aren't using fiber technologies at the desk at this time. Recent developments with copper cables have
made this more of a judgment call. Certainly, you will want to pull spare fiber to any point your
backbone may eventually include.

If at all feasible, cabling should be certified. This means that each cable is tested to ensure that it
meets appropriate performance standards for the intended application. This can be particularly
important for spare cabling. When it is time to use that cable, you don't want any nasty surprises.

Adequate documentation is essential. Maintenance will be much simpler if you follow cabling
standards and use one of the more common structured cable schemes. More information can be found
in the sources given in Appendix B.

 37

3.1.2 Maintaining Existing Cabling

For existing cabling, you won't have as much latitude as with a new installation. You certainly won't
want to go back and replace working cable just because it does not follow some set of standards. But
there are several things you can do to make your life simpler when you eventually encounter problems.

The first step in cable management is knowing which cable is which and where each cable goes.
Perhaps the most important tool for the management and troubleshooting of cabling is a good label
maker. Even if you weren't around when the cable was originally installed, you should be able, over
time, to piece together this information. You will also want to collect basic information about each
cable such as cable types and lengths.

You will want to know which of your cables don't meet standards. If you have one of the more
sophisticated cable testers, you can self-certify your cabling plant. You probably won't want to do
either of these tasks all at once, but you may be able to do a little at a time. And you will definitely
want to do it for any changes or additions you make.

Labeling Cables

This should be a self-explanatory topic. Unfortunately for some, this is not the case. I have
very vivid memories of working with a wiring technician with years of experience. The
individual had worked for major organizations and should have been quite familiar with
labeling practices.

We were installing a student laboratory. The laboratory has a switch mounted in a box on
the wall. Cabling went from the box into the wall and then through cable raceways down
the length of the room. Along the raceway, it branched into raceways built into computer
tables going to the individual computers. The problem should be clear. Once the cable
disappears into the wall and raceways, it is impossible to match the end at the switch with
the corresponding end that emerges at the computer.

While going over what needed to be done, I mentioned, needlessly I thought, that the cable
should be clearly labeled. This was just one part of my usual lengthy litany. He thought for
a moment and then said, "I guess I can do that." Then a puzzled expression came over his
face and he added in dead earnest, "Which end do you want labeled?" I'd like to think he
was just putting me on, but I don't think so.

You should use some method of attaching labels that is reasonably permanent. It can be
very discouraging to find several labels lying on the floor beneath your equipment rack.
Also, you should use a meaningful scheme for identifying your cables. TIA/EIA-606
Administration Standard for Telecommunications Infrastructure of Commercial Buildings
provides one possibility. (See Appendix B for more information of TIA/EIA standards.)
And, at the risk of stating the obvious, unless you can see the entire cable at the same time,
it should be labeled at both ends.

3.1.3 Testing Cabling

Cable testing can be a simple, quick check for continuity or a complex set of measurements that
carefully characterizes a cable's electrical properties. If you are in a hurry to get up and running, you
may be limited to simple connectivity tests, but the more information you collect, the better prepared

 38

you will be to deal with future problems. If you must be up quickly, make definite plans to return and
finish the job, and stick to those plans.

3.1.3.1 Link lights

Perhaps the simplest test is to rely on the network interface's link lights. Almost all networking
equipment now has status lights that show, when lit, that you have functioning connections. If these do
not light when you make a connection, you definitely have a problem somewhere. Keep in mind,
however, a lit link light does not necessarily indicate the absence of a problem.

Many devices have additional indicators that give you more information. It is not uncommon to have a
transmit light that blinks each time a packet is sent, a receive light that blinks each time a packet is
received, and a collision light that blinks each time the device detects a collision. To get an idea of
what is normal, look at the lights on other computers on the same network.

Typically, you would expect to see the receive light blinking intermittently as soon as you connect the
device to an active network. Generally, anomalous behavior with the receive light indicates a problem
somewhere else on your network. If it doesn't ever light, you may have a problem with your
connection to the network. For example, you could be plugged into a hub that is not connected to the
network. If the light is on all or most of the time, you probably have an overloaded network.

The transmit light should come on whenever you access the network but should remain off otherwise.
You may be surprised, however, how often a computer will access the network. It will almost
certainly blink several times when your computer is booted. If in doubt, try some basic networking
tasks while watching for activity. If it does not light when you try to access the network, you have
problems on that computer. If it stays lit, you not only have a problem but also are probably flooding
the network with packets, thereby causing problems for others on the network as well. You may want
to isolate this machine until the problem is resolved.

In the ideal network, from the user's perspective at least, the collision light should remain relatively
inactive. However, excessive collision light flashing or even one that remains on most of the time may
not indicate a problem. A collision is a very brief event. If the light only remained on for the length of
the event, the flash would be too brief to be seen. Consequently, these lights are designed to remain on
much longer than the actual event. A collision light that remains on doesn't necessarily mean that your
network is saturated with collisions. On the other hand, this is something you'll want to investigate
further.

For any of the cases in which you have an indication of a network overload, unless your network is
completely saturated, you should be able to get some packets through. And you should see similar
problems on every computer on that network segment. If your network is completely saturated, then
you may have a malfunctioning device that is continuously transmitting. Usually, this can be easily
located by turning devices off one at a time until the problem suddenly disappears.

If you have an indication of a network overload, you should look at the overall behavior and structure
of your network. A good place to start is with netstat as discussed in Chapter 4. For a more thorough
discussion of network performance monitoring, turn to Chapter 8.

One last word of warning—you may see anomalous behavior with any of
these lights if your interface is misconfigured or has the wrong driver
installed.

 39

3.1.3.2 Cable testers

A wide variety of cable testers are available. Typically, you get what you pay for. Some check little
more than continuity and the cable's pin-out (that the individual wires are connected to the appropriate
pins). Others are extremely sophisticated and fully characterize the electrical properties of your
cabling. These can easily cost thousands of dollars. Better testers typically consist of a pair of units—
the actual tester and a termination device that creates a signal loop. These devices commonly check
the following:

Wire-map (or pin-outs)

This checks to see if the corresponding pins on each end of a cable are correctly paired.
Failure indicates an improperly terminated cable, such as crossed wires or faulty connections.

Near End Cross-Talk (NEXT)

This is a measure of how much a signal on one wire interferes with other signals on adjacent
wires. High values can indicate improper termination or the wrong type of cable or
connectors.

Attenuation

This measures how much of the original signal is lost over the length of the cable. As this is
frequency dependent, this should be done at a number of different frequencies over the range
used. It will determine the maximum data rates the cable can support. Problem causes include
the wrong cable type, faulty connectors, and excessive lengths.

Impedance

This is the opposition to changes in current and arises from the resistance and the inductance
of the cable. Impedance measurements may be useful for finding an impedance mismatch that
may cause reflected signals at the point where cables are joined. It can also be useful in
ascertaining whether or not you are using the right type of cable.

Attenuation to Cross-talk Ratio (ARC)

This is a comparison of signal strength to noise. Values that are too low indicate excessive
cable length or poor connections.

Capacitance

This is the electrical field energy that can be stored in the cable. Anomalous values can
indicate problems with the cable such as shorts or broken wires.

Length

By timing the return of a signal injected onto the cable, the length of a cable can be
discovered. This can reveal how much cable is hidden in the walls, allowing you to verify that
cable lengths are not exceeding the maximum allowed by the applicable standards.

 40

The documentation with your cable tester will provide more details in understanding and using these
tests.

The better cable testers may be preprogrammed with appropriate values for different types of cable,
allowing you to quickly identify parameters that are out of specification. A good tester should also
allow you to print or upload measurements into a database. This allows you to easily compare results
over time to identify changes.

3.1.3.3 Other cable tests

In general, moving cables around is a poor way to test them. You may jiggle a nearby poor connection,
changing the state of the problem. But if you can't afford a cable tester, you may have little choice.

If the cable in question is not installed in the wall, you can try to test it by swapping it with a cable
known to be good. However, it is usually better to replace a working cable with a questionable cable
and see if things continue to work rather than the other way around. This method is more robust to
multiple failures. You will immediately know the status of the questionable cable. If you replace a
questionable cable with a good cable and you still have problems, you clearly have a problem other
than the cable. But you don't know if it is just a different problem or an additional problem. Of course,
this approach ties up more systems.

Remember, electrical connectivity does not equate to network connectivity. I've seen technicians plug
different subnets into the same hub and then wonder why the computers can't communicate.[1]

[1] There are also circumstances in which this will work, but mixing subnets this way is an extremely bad
idea.

3.2 Testing Adapters

While most problems with adapters, such as Ethernet cards, are configuration errors, sometimes
adapters do fail. Without getting into the actual electronics, there are generally three simple tests you
can make with adapters. However, each has its drawbacks:

• If you have some doubts about whether the problem is in the adapter or network, you might
try eliminating the bulk of the network from your tests. The easiest approach is to create a
two-computer network using another working computer. If you use coaxial cable, simply run
a cable known to be good between the computers and terminate each end appropriately. For
twisted pair, use a crossover cable, i.e., a patch cable with send and receive crossed. If all is
well, the computers should be able to communicate. If they don't, you should have a pretty
clear idea of where to look next.

The crossover cable approach is analogous to setting up a serial connection using a null
modem. You may want to first try this method with two working computers just to verify you
are using the right kind of cable. You should also be sure IP numbers and masks are set
appropriately on each computer. Clearly, the drawbacks with this approach are shuffling
computers around and finding the right cable. But if you have a portable computer available,
the shuffling isn't too difficult.

 41

• A second alternative is to use the configuration and test software provided by the adapter's
manufacturer. If you bought the adapter as a separate purchase, you probably already have
this software. If your adapter came with your computer, you may have to go to the
manufacturer's web page and download the software. This approach can be helpful,
particularly with configuration errors. For example, a combination adapter might be
configured for coaxial cable while you are trying to use it with twisted pair. You may be able
to change interrupts, DMA channels, memory locations, bus mastering configuration, and
framing types with this software.

Using diagnostic software has a couple of limitations. First, the software may not check for
some problems and may seemingly absolve a faulty card. Second, the software may not be
compatible with the operating system you are using. This is particularly likely if you are using
something like Linux or FreeBSD on an Intel platform.

• The third alternative is to swap the card for one that is known to work. This presumes that
you have a spare card or are willing to remove one from another machine. It also presumes
that you aren't having problems that may damage some other component in the computer or
the new card. Even though I generally keep spare cards on hand, I usually leave this test until
last whenever possible.

3.3 Software Testing with ping

Thus far, I have described ways to examine electrical and mechanical problems. The tools described in
this section, ping and its variants, focus primarily on the software problems and the interaction of
software with hardware. When these tools successfully communicate with remote systems, you have
established basic connectivity. Your problem is almost certainly at a higher level in your system.

With these tools, you begin with the presumption that your hardware is working correctly. If the link
light is out on the local host, these tools will tell you nothing you don't already know. But if you
simply suspect a hardware problem somewhere on your network, these tools may help you locate the
problem. Once you know the location of the problem, you will use the techniques previously
described to resolve it. These tools can also provide insight when your hardware is marginal or when
you have intermittent failures.

3.3.1 ping

While there are several useful programs for analyzing connectivity, unquestionably ping is the most
commonly used program. As it is required by the IP RFC, it is almost always available as part of the
networking software supplied with any system. In addition, numerous enhanced versions of ping are
available at little or no cost. There are even web sites that will allow you to run ping from their sites.

Moreover, the basic idea has been adapted from IP networks to other protocols. For example, Cisco's
implementation of ping has an optional keyword to check connectivity among routers using
AppleTalk, DECnet, or IPX. ping is nearly universal.

ping was written by Mike Muuss.[2] Inspired by echo location, the name comes from sounds sonar
makes. The name ping is frequently described as an acronym for Packet InterNet Groper. But,
according to Muuss's web page, the acronym was applied to the program after the fact by someone
else.

TE
AM
FL
Y

Team-Fly®

 42

[2] For more on the background of ping as well as a review of the book The Story About Ping, an alleged
allegory of the ping program, visit Muuss's web page at http://ftp.arl.mil/~mike/ping.html.

3.3.2 How ping Works

It is, in essence, a simple program based on a simple idea. (Muuss describes it as a 1000-line hack that
was completed in about one evening.) One network device sends a request for a reply to another
device and records the time the request was sent. The device receiving the request sends a packet back.
When the reply is received, the round-trip time for packet propagation can be calculated. The receipt
of a reply indicates a working connection. This elapsed time provides an indication of the length of the
path. Consistency among repeated queries gives an indication of the quality of the connection. Thus,
ping answers two basic questions. Do I have a connection? How good is that connection? In this
chapter, we will focus on the first question, returning to the second question in the next chapter.

Clearly, for the program to work, the networking protocol must support this query/response
mechanism. The ping program is based on Internet Control Message Protocol (ICMP), part of the
TCP/IP protocol. ICMP was designed to pass information about network performance between
network devices and exchange error messages. It supports a wide variety of message types, including
this query/response mechanism.

The normal operation of ping relies on two specific ICMP messages, ECHO_REQUEST and
ECHO_REPLY, but it may respond to ICMP messages other than ECHO_REPLY when appropriate.
In theory, all TCP/IP-based network equipment should respond to an ECHO_REQUEST by returning
the packet to the source, but this is not always the case.

3.3.2.1 Simple examples

The default behavior of ping will vary among implementations. Typically, implementations have a
wide range of command-line options so that the behavior discussed here is generally available. For
example, implementations may default to sending a single packet, a small number of packets, or a
continuous stream of packets. They may respond with a set of round-trip transmission times or with a
simple message. The version of ping that comes with the Solaris operating system sends, by default, a
single ICMP packet. It responds that the destination is alive or that no answer was received. In this
example, an ECHO_REPLY was received:

sol1# ping 205.153.63.30
205.153.63.30 is alive
sol1#

In this example, no response was received before the program timed out:

sol1# ping www.microsoft.com
no answer from microsoft.com
sol1#

Note that ping can be used with an IP number or with a hostname, as shown by these examples.

Other implementations will, by default, repeatedly send ECHO_REQUESTs until interrupted.
FreeBSD is an example:

bsd1# ping www.bay.com
PING www.bay.com (204.80.244.66): 56 data bytes
64 bytes from 204.80.244.66: icmp_seq=0 ttl=112 time=180.974 ms

http://ftp.arl.mil/%7Emike/ping.html

 43

64 bytes from 204.80.244.66: icmp_seq=1 ttl=112 time=189.810 ms
64 bytes from 204.80.244.66: icmp_seq=2 ttl=112 time=167.653 ms
^C
--- www.bay.com ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 167.653/179.479/189.810/9.107 ms
bsd1#

The execution of the program was interrupted with a Ctrl-C, at which point the summary statistics
were printed. Without an interrupt, the program will continue indefinitely. With the appropriate
command-line option, -s, similar output can be obtained with Solaris.

3.3.2.2 Interpreting results

Before I go into the syntax of ping and the ways it might be used, it is worth getting a clear
understanding of what results might be returned by ping. The simplest results are seen with Solaris, a
message simply stating, in effect, that the reply packet was received or was not received. With
FreeBSD, we receive a great deal more information. It repeatedly sends packets and reports results for
each packet, as well as providing a summary of results. In particular, for each packet we are given the
size and source of each packet, an ICMP sequence number, a Time-To-Live (TTL) count, and the
round-trip times. (The TTL field is explained later.) Of these, the sequence number and round-trip
times are the most revealing when evaluating basic connectivity.

When each ECHO_REQUEST packet is sent, the time the packet is sent is recorded in the packet.
This is copied into the corresponding ECHO_REPLY packet by the remote host. When an
ECHO_REPLY packet is received, the elapsed time is calculated by comparing the current time to the
time recorded in the packet, i.e., the time the packet was sent. This difference, the elapsed time, is
reported, along with the sequence number and the TTL, which comes from the packet's header. If no
ECHO_REPLY packet is received that matches a particular sequence number, that packet is presumed
lost. The size and the variability of elapsed times will depend on the number and speed of intermediate
links as well as the congestion on those links.

An obvious question is "What values are reasonable?" Typically, this is highly dependent on the
networks you cross and the amount of activity on those networks. For example, these times are taken
from a PPP link with a 28.8-Kbps modem:

64 bytes from 205.153.60.42: icmp_seq=0 ttl=30 time=225.620 ms
64 bytes from 205.153.60.42: icmp_seq=1 ttl=30 time=213.652 ms
64 bytes from 205.153.60.42: icmp_seq=2 ttl=30 time=215.306 ms
64 bytes from 205.153.60.42: icmp_seq=3 ttl=30 time=194.782 ms
64 bytes from 205.153.60.42: icmp_seq=4 ttl=30 time=199.562 ms
...

The following times were for the same link only moments later:

64 bytes from 205.153.60.42: icmp_seq=0 ttl=30 time=1037.367 ms
64 bytes from 205.153.60.42: icmp_seq=1 ttl=30 time=2119.615 ms
64 bytes from 205.153.60.42: icmp_seq=2 ttl=30 time=2269.448 ms
64 bytes from 205.153.60.42: icmp_seq=3 ttl=30 time=2209.715 ms
64 bytes from 205.153.60.42: icmp_seq=4 ttl=30 time=2493.881 ms
...

There is nothing wrong here. The difference is that a file download was in progress on the link during
the second set of measurements.

 44

In general, you can expect very good times if you are staying on a LAN. Typically, values should be
well under 100 ms and may be less than 10 ms. Once you move onto the Internet, values may increase
dramatically. A coast-to-coast, round-trip time will take at least 60 ms when following a mythical
straight-line path with no congestion. For remote sites, times of 200 ms may be quite good, and times
up to 500 ms may be acceptable. Much larger times may be a cause for concern. Keep in mind these
are very rough numbers.

You can also use ping to calculate a rough estimate of the throughput of a connection. (Throughput
and related concepts are discussed in greater detail in Chapter 4.) Send two packets with different
sizes across the path of interest. This is done with the -s option, which is described later in this chapter.
The difference in times will give an idea of how much longer it takes to send the additional data in the
larger packet. For example, say it takes 30 ms to ping with 100 bytes and 60 ms with 1100 bytes. Thus,
it takes an additional 30 ms round trip or 15 ms in one direction to send the additional 1000 bytes or
8000 bits. The throughput is roughly 8000 bits per 15 ms or 540,000 bps. The difference between two
measurements is used to eliminate overhead. This is extremely crude. It makes no adjustment for other
traffic and gives a composite picture for all the links on a path. Don't try to make too much out of
these numbers.

It may seem that the TTL field could be used to estimate the number of hops on a path. Unfortunately,
this is problematic. When a packet is sent, the TTL field is initialized and is subsequently decremented
by each router along the path. If it reaches zero, the packet is discarded. This imposes a finite lifetime
on all packets, ensuring that, in the event of a routing loop, the packet won't remain on the network
indefinitely. Unfortunately, the TTL field may or may not be reset at the remote machine and, if reset,
there is little consistency in what it is set to. Thus, you need to know very system-specific information
to use the TTL field to estimate the number of hops on a path.

A steady stream of replies with reasonably consistent times is generally an indication of a healthy
connection. If packets are being lost or discarded, you will see jumps in the sequence numbers, the
missing numbers corresponding to the lost packets. Occasional packet loss probably isn't an indication
of any real problem. This is particularly true if you are crossing a large number of routers or any
congested networks. It is particularly common for the first packet in a sequence to be lost or have a
much higher elapsed time. This behavior is a consequence of the need to do ARP resolution at each
link along the path for the first packet. Since the ARP data is cached, subsequent packets do not have
this overhead. If, however, you see a large portion of the packets being lost, you may have a problem
somewhere along the path.

The program will also report duplicate and damaged packets. Damaged packets are a cause for real
concern. You will need to shift into troubleshooting mode to locate the source of the problem. Unless
you are trying to ping a broadcast address, you should not see duplicate packets. If your computers are
configured to respond to ECHO_REQUESTs sent to broadcast addresses, you will see lots of
duplicate packets. With normal use, however, duplicate responses could indicate a routing loop.
Unfortunately, ping will only alert you to the problem; its underlying mechanism cannot explain the
cause of such problems.

In some cases you may receive other ICMP error messages. Typically from routers, these can be very
informative and helpful. For example, in the following, an attempt is made to reach a device on a
nonexistent network:

bsd1# ping 172.16.4.1
PING 172.16.4.1 (172.16.4.1): 56 data bytes
36 bytes from 172.16.2.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 5031 0 0000 fe 01 0e49 172.16.2.13 172.16.4.1

 45

36 bytes from 172.16.2.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 5034 0 0000 fe 01 0e46 172.16.2.13 172.16.4.1

^C
--- 172.16.4.1 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

Since the router has no path to the network, it returns the ICMP
DESTINATION_HOST_UNREACHABLE message. In general, you will receive a Destination
Host Unreachable warning or a Destination Network Unreachable warning if the
problem is detected on the machine where ping is being run. If the problem is detected on a device
trying to forward a packet, you will receive only a Destination Host Unreachable warning.

In the next example, an attempt is being made to cross a router that has been configured to deny traffic
from the source:

bsd1# ping 172.16.3.10
PING 172.16.3.10 (172.16.3.10): 56 data bytes
36 bytes from 172.16.2.1: Communication prohibited by filter
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 5618 0 0000 ff 01 0859 172.16.2.13 172.16.3.10

36 bytes from 172.16.2.1: Communication prohibited by filter
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 5400 561b 0 0000 ff 01 0856 172.16.2.13 172.16.3.10

^C
--- 172.16.3.10 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

The warning Communication prohibited by filter indicates the packets are being
discarded. Be aware that you may be blocked by filters without seeing this message. Consider the
following example:

bsd1# ping 172.16.3.10
PING 172.16.3.10 (172.16.3.10): 56 data bytes
^C
--- 172.16.3.10 ping statistics ---
6 packets transmitted, 0 packets received, 100% packet loss

The same filter was used on the router, but it was applied to traffic leaving the network rather than
inbound traffic. Hence, no messages were sent. Unfortunately, ping will often be unable to tell you
why a packet is unanswered.

While these are the most common ICMP messages you will see, ping may display a wide variety of
messages. A listing of ICMP messages can be found in RFC 792. A good discussion of the more
common messages can be found in Eric A. Hall's Internet Core Protocols: The Definitive Guide. Most
ICMP messages are fairly self-explanatory if you are familiar with TCP/IP.

3.3.2.3 Options

A number of options are generally available with ping. These vary considerably from implementation
to implementation. Some of the more germane options are described here.

 46

Several options control the number of or the rate at which packets are sent. The -c option will allow
you to specify the number of packets you want to send. For example, ping -c10 would send 10 packets
and stop. This can be very useful if you are running ping from a script.

The commands -f and -l are used to flood packets onto a network. The -f option says that packets
should be sent as fast as the receiving host can handle them. This can be used to stress-test a link or to
get some indication of the comparative performance of interfaces. In this example, the program is run
for about 10 seconds on each of two different destinations:

bsd1# ping -f 172.16.2.12
PING 172.16.2.12 (172.16.2.12): 56 data bytes
..^C
--- 172.16.2.12 ping statistics ---
27585 packets transmitted, 27583 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.303/0.310/0.835/0.027 ms
bsd1# ping -f 172.16.2.20
PING 172.16.2.20 (172.16.2.20): 56 data bytes
.^C
--- 172.16.2.20 ping statistics ---
5228 packets transmitted, 5227 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.535/1.736/6.463/0.363 ms

In the first case, the destination was a 200-MHz Pentium with a PCI adapter. In the second, the
destination was a 50-MHz 486 with an ISA adapter. It is not surprising that the first computer was
more than five times faster. But remember, it may not be clear whether the limiting factor is the source
or the receiver unless you do multiple tests. Clearly, use of this option could cripple a host.
Consequently, the option requires root privileges to run and may not be included in some
implementations.

The -l option takes a count and sends out that many packets as fast as possible. It then falls back to
normal mode. This could be used to see how the router handles a flood of packets. Use of this
command is also restricted to root.

The -i option allows the user to specify the amount of time in seconds to wait between sending
consecutive packets. This could be a useful way to space out packets for extended runs or for use with
scripts. In general, the effect of an occasional ping packet is negligible when compared to the traffic
already on all but the slowest of links. Repeated packets or packet flooding can, however, add
considerably to traffic and congestion. For that reason, you should be very circumspect in using any of
these options (and perhaps ping in general).

The amount and form of the data can be controlled to a limited extent. The -n option restricts output to
numeric form. This is useful if you are having DNS problems. Implementations also typically include
options for more detailed output, typically -v for verbose output, and for fewer details, typically -q and
-Q for quiet output.

The amount and nature of the data in the frame can be controlled using the -s and -p options. The
packet size option, -s, allows you to specify how much data to send. If set too small, less than 8, there
won't be space in the packet for a timestamp. Setting the packet size can help in diagnosing a problem
caused by path Maximum Transmission Unit (MTU) settings (the largest frame size that can be sent on
the path) or fragmentation problems. (Fragmentation is dividing data among multiple frames when a
single packet is too large to cross a link. It is handled by the IP portion of the protocol stack.) The
general approach is to increase packet sizes up to the maximum allowed to see if at some point you
have problems. When this option isn't used, ping defaults to 64 bytes, which may be too small a

 47

packet to reveal some problems. Also remember that ping does not count the IP or ICMP header in the
specified length so your packets will be 28 bytes larger than you specify.

You could conceivably see MTU problems with protocols, such as PPP, that use escaped characters as
well.[3] With escaped characters, a single character may be replaced by two characters. The expansion
of escaped characters increases the size of the data frame and can cause problems with MTU
restrictions or fragmentation.

[3] Generally there are better ways to deal with problems with PPP. For more information, see Chapter
15 in Using and Managing PPP, by Andrew Sun.

The -p option allows you to specify a pattern for the data included within the packet after the
timestamp. You might use this if you think you have data-dependent problems. The FreeBSD
manpage for ping notes that this sort of problem might show up if you lack sufficient "transitions" in
your data, i.e., your data is all or almost all ones or all or almost all zeros. Some serial links are
particularly vulnerable to this sort of problem.

There are a number of other options not discussed here. These provide control over what interfaces are
used, the use of multicast packets, and so forth. The flags presented here are from FreeBSD and are
fairly standard. Be aware, however, that different implementations may use different flags for these
options. Be sure to consult your documentation if things don't work as expected.

3.3.2.4 Using ping

To isolate problems using ping, you will want to run it repeatedly, changing your destination address
so that you work your way through each intermediate device to your destination. You should begin
with your loopback interface. Use either localhost or 127.0.0.1. Next, ping your interface by IP
number. (Run ifconfig -a if in doubt.) If either of these fails, you know that you have a problem with
the host.

Next, try a host on a local network that you know is operational. Use its IP address rather than its
hostname. If this fails, there are several possibilities. If other hosts are able to communicate on the
local network, then you likely have problems with your connection to the network. This could be your
interface, the cable to your machine, or your connection to a hub or switch. Of course, you can't rule
out configuration errors such as media type on the adapter or a bad IP address or mask.

Next, try to reach the same host by name rather than number. If this fails, you almost certainly have
problems with name resolution. Even if you have this problem, you can continue using ping to check
your network, but you will need to use IP addresses.

Try reaching the near and far interfaces of your router. This will turn up any basic routing problems
you may have on your host or connectivity problems getting to your router.

If all goes well here, you are ready to ping remote computers. (You will need to know the IP address
of the intermediate devices to do this test. If in doubt, read the section on traceroute in the next
chapter.) Realize, of course, that if you start having failures at this point, the problem will likely lie
beyond your router. For example, your ICMP ECHO_REQUEST packets may reach the remote
machine, but it may not have a route to your machine to use for the ICMP ECHO_REPLY packets.

When faced with failure at this point, your response will depend on who is responsible for the
machines beyond your router. If this is still part of your network, you will want to shift your tests to
machines on the other side of the router and try to work in both directions.

 48

If these machines are outside your responsibility or control, you will need to enlist the help of the
appropriate person. Before you contact this person, however, you should collect as much information
as you can. There are three things you may want to do. First, go back to using IP numbers if you have
been using names. As said before, if things start working, you have a name resolution problem.

Second, if you were trying to ping a device several hops beyond your router, go back to closer
machines and try to zero in on exactly where you first encountered the problem.

Finally, be sure to probe from more than one machine. While you may have a great deal of confidence
in your local machine at this point, your discussion with the remote administrator may go much more
smoothly if you can definitely say that you are seeing this problem from multiple machines instead of
just one. In general, this stepwise approach is the usual approach for this type of problem.

Sometimes, you may be more interested in investigating connectivity over time. For example, you
might have a connection that seems to come and go. By running ping in the background or from a
script, you may be able to collect useful information. For example, with some routing protocols,
updates have a way of becoming synchronized, resulting in periodic loading on the network. If you
see increased delays, for example every 30 seconds, you might be having that sort of problem. Or, if
you lose packets every time someone uses the elevator, you might look at the path your cable takes.

If you are looking at performance over a long period of time, you will almost certainly want to use the
-i option to space out your packets in a more network- friendly manner. This is a reasonable approach
to take if you are experiencing occasional outages and need to document the time and duration of the
outages. You should also be aware that over extended periods of time, you may see changes in the
paths the packets follow.

3.3.3 Problems with ping

Up to this point, I have been describing how ping is normally used. I now describe some of the
complications faced when using ping.

First, the program does not exist in isolation, but depends on the proper functioning of other elements
of the network. In particular, ping usually depends upon ARP and DNS. As previously noted, if you
are using a hostname rather than an IP address as your destination, the name of the host will have to be
resolved before ping can send any packets. You can bypass DNS by using IP addresses.

It is also necessary to discover the host's link-level address for each host along the path to the
destination. Although this is rarely a problem, should ARP resolution fail, then ping will fail. You
could avoid this problem, in part, by using static ARP entries to ensure that the ARP table is correct. A
more common problem is that the time reported by ping for the first packet sent will often be distorted
since it reflects both transit times and ARP resolution times. On some networks, the first packet will
often be lost. You can avoid this problem by sending more than one packet and ignoring the results for
the first packet.

The correct operation of your network will depend on considerations that do not affect ping. In such
situations, ping will work correctly, but you will still have link problems. For example, if there are
problems with the configuration of the path MTU, smaller ping packets may zip through the network
while larger application packets may be blocked. S. Lee Henry described a problem in which she
could ping remote systems but could not download web pages.[4] While her particular problem was
highly unusual, it does point out that a connection can appear to be working, but still have problems.

 49

[4] "Systems Administration: You Can't Get There from Here," Server/Workstation Expert, May 1999.
This article can be found in PDF format at http://sw.expert.com/C4/SE.C4.MAY.99.pdf.

The opposite can be true as well. Often ping will fail when the connection works for other uses. For
various reasons, usually related to security, some system administrators may block ICMP packets in
general or ECHO_REQUEST packets in particular. Moreover, this practice seems to be increasing.
I've even seen a site block ping traffic at its DNS server.

3.3.3.1 Security and ICMP

Unfortunately, ping in particular, and ICMP packets in general, have been implicated in several recent
denial-of-service attacks. But while these attacks have used ping, they are not inherently problems
with ping. Nonetheless, network administrators have responded as though ping was the problem (or at
least the easiest way to deal with the problem), and this will continue to affect how and even if ping
can be used in some contexts.

3.3.3.2 Smurf Attacks

In a Smurf Attack, ICMP ECHO_REQUEST packets are sent to the broadcast address of a network.
Depending on how hosts are configured on the network, some may attempt to reply to the
ECHO_REQUEST. The resulting flood of responses may degrade the performance of the network,
particularly at the destination host.

With this attack, there are usually three parties involved—the attacker who generates the original
request; an intermediary, sometimes called a reflector or multiplier, that delivers the packet onto the
network; and the victim. The attacker uses a forged source address so that the ECHO_REPLY packets
are returned, not to the attacker, but to a "spoofed" address, i.e., the victim. The intermediary may be
either a router or a compromised host on the destination network.

Because there are many machines responding to a single request, little of the attacker's bandwidth is
used, while much of the victim's bandwidth may be used. Attackers have developed tools that allow
them to send ECHO_REQUESTs to multiple intermediaries at about the same time. Thus, the victim
will be overwhelmed by ECHO_REPLY packets from multiple sources. Notice also that congestion is
not limited to just the victim but may extend through its ISP all the way back to the intermediaries'
networks.

The result of these attacks is that many sites are now blocking ICMP ECHO_REQUEST traffic into
their network. Some have gone as far as to block all ICMP traffic. While understandable, this is not an
appropriate response. First, it blocks legitimate uses of these packets, such as checking basic
connectivity. Second, it may not be effective. In the event of a compromised host, the
ECHO_REQUEST may originate within the network. At best, blocking pings is only a temporary
solution.

A more appropriate response requires taking several steps. First, you should configure your routers so
they will not forward broadcast traffic onto your network from other networks. How you do this will
depend on the type of router you have, but solutions are available from most vendors.

Second, you may want to configure your hosts so they do not respond to ECHO_REQUESTs sent to
broadcast addresses. It is easy to get an idea of which hosts on your network respond to these
broadcasts. First, examine your ARP table, then ping your broadcast address, and then look at your
ARP table again for new entries.[5]

http://sw.expert.com/C4/SE.C4.MAY.99.pdf

 50

[5] At one time, you could test your site by going to http://www.netscan.org, but this site seems to have
disappeared.

Finally, as a good network citizen, you should install filters on your access router to prevent packets
that have a source address not on your network from leaving your network. This limits not only Smurf
Attacks but also other attacks based on spoofed addresses from originating on your network. These
filters should also be applied to internal routers as well as access routers. (This assumes you are
providing forwarding for other networks!)

If you follow these steps, you should not have to disable ICMP traffic. For more information on Smurf
Attacks, including information on making these changes, visit http://www.cert.org/advisories/CA-
1998-01.html. You might also look at RFC 2827.

3.3.3.3 Ping of Death

The specifications for TCP/IP have a maximum packet size of 65536 octets or bytes. Unfortunately,
some operating systems behave in unpredictable ways if they receive a larger packet. Systems may
hang, crash, or reboot. With a Ping of Death (or Ping o' Death) Attack, the packet size option for ping
is used to send a slightly oversized packet to the victim's computer. For example, on some older
machines, the command ping -s 65510 172.16.2.1 (use -l rather than -s on old Windows systems) will
send a packet, once headers are added, that causes this problem to the host 172.16.2.1. (Admittedly, I
have some misgivings about giving an explicit command, but this has been widely published and
some of you may want to test your systems.)

This is basically an operating system problem. Large packets must be fragmented when sent. The
destination will put the pieces in a buffer until all the pieces have arrived and the packet can be
reassembled. Some systems simply don't do adequate bounds checking, allowing memory to be
trashed.

Again, this is not really a problem with ping. Any oversized packet, whether it is an ICMP packet,
TCP packet, or UDP packet, will cause the same problem in susceptible operating systems. (Even IPX
has been mentioned.) All ping does is supply a trivial way to exploit the problem. The correct way to
deal with this problem is to apply the appropriate patch to your operating system. Blocking ICMP
packets at your router will not protect you from other oversized packets. Fortunately, most systems
have corrected this problem, so you are likely to see it only if you are running older systems.[6]

[6] For more information on this attack, see http://www.cert.org/advisories/CA-1996-26.html.

3.3.3.4 Other problems

Of course, there may be other perceived problems with ping. Since it can be used to garner
information about a network, it can be seen as a threat to networks that rely on security through
obscurity. It may also be seen as generating unwanted or unneeded traffic. For these and previously
cited reasons, ICMP traffic is frequently blocked at routers.

Blocking is not the only difficulty that routers may create. Routers may assign extremely low
priorities to ICMP traffic rather than simply block such traffic. This is particularly true for routers
implementing quality of service protocols. The result can be much higher variability in traffic patterns.
Network Address Translation (NAT) can present other difficulties. Cisco's implementation has the
router responding to ICMP packets for the first address in the translation pool regardless of whether it
is being used. This might not be what you would have expected.

http://www.netscan.org/
http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.cert.org/advisories/CA-1996-26.html

 51

In general, blocking ICMP packets, even just ECHO_REQUEST packets, is not desirable. You lose a
valuable source of information about your network and inconvenience users who may have a
legitimate need for these messages. This is often done as a stopgap measure in the absence of a more
comprehensive approach to security.

Interestingly, even if ICMP packets are being blocked, you can still use ping to see if a host on the
local subnet is up. Simply clear the ARP table (typically arp -ad), ping the device, and then examine
the ARP table. If the device has been added to the ARP table, it is up and responding.

One final note about ping. It should be obvious, but ping checks only connectivity, not the
functionality of the end device. During some network changes, I once used ping to check to see if a
networked printer had been reconnected yet. When I was finally able to ping the device, I sent a job to
the printer. However, my system kept reporting that the job hadn't printed. I eventually got up and
walked down the hall to the printer to see what was wrong. It had been reconnected to the network,
but someone had left it offline. Be warned, it is very easy to read too much into a successful ping.

3.3.4 Alternatives to ping

Variants to ping fall into two general categories, those that add to ping's functionality and those that
are alternatives to ping. An example of the first is fping, and an example of the second is echoping.

3.3.4.1 fping

Written by Roland Schemers of Stanford University, fping extends ping to support multiple hosts in
parallel. Typical output is shown in this example:

bsd1# fping 172.16.2.10 172.16.2.11 172.16.2.12 172.16.2.13 172.16.2.14
172.16.2.13 is alive
172.16.2.10 is alive
172.16.2.12 is alive
172.16.2.14 is unreachable
172.16.2.11 is unreachable

Notice that five hosts are being probed at the same time and that the results are reported in the order
replies are received.

This works the same way ping works, through sending and receiving ICMP messages. It is primarily
designed to be used with files. Several command-line options are available, including the -f option for
reading a list of devices to probe from a file and the -u option used to print only those systems that are
unreachable. For example:

bsd1# fping -u 172.16.2.10 172.16.2.11 172.16.2.12 172.16.2.13 172.16.2.14
172.16.2.14
172.16.2.11

The utility of this form in a script should be self-evident.

3.3.4.2 echoping

Several tools similar to ping don't use ICMP ECHO_REQUEST and ECHO_REPLY packets. These
may provide an alternative to ping in some contexts.

TE
AM
FL
Y

Team-Fly®

 52

One such program is echoping. It is very similar to ping. It works by sending packets to one of several
services that may be offered over TCP and UDP—ECHO, DISCARD, CHARGEN, and HTTP.
Particularly useful when ICMP messages are being blocked, echoping may work where ping fails.

If none of these services is available, echoping cannot be used. Unfortunately, ECHO and CHARGEN
have been used in the Fraggle denial of service attacks. By sending the output from CHARGEN (a
character-generation protocol) to ECHO, the network can be flooded. Consequently, many operating
systems are now shipped with these services disabled. Thus, the program may not be as useful as ping.
With Unix, these services are controlled by inetd and could be enabled if desired and if you have
access to the destination machine. But these services have limited value, and you are probably better
off disabling them.

In this example, I have previously enabled ECHO on lnx1:

bsd1# echoping -v lnx1

This is echoping, version 2.2.0.

Trying to connect to internet address 205.153.61.177 to transmit 256 bytes...
Connected...
Sent (256 bytes)...
256 bytes read from server.
Checked
Elapsed time: 0.004488 seconds

This provides basically the same information as ping. The -v option simply provides a few more
details. The program defaults to TCP and ECHO. Command-line options allow UDP packet or the
other services to be selected.

When ping was first introduced in this chapter, we saw that www.microsoft.com could not be reached
by ping. Nor can it be reached using echoping in its default mode. But, as a web server, port 80 should
be available. This is in fact the case:

bsd1# echoping -v -h /ms.htm www.microsoft.com:80

This is echoping, version 2.2.0.

Trying to connect to internet address 207.46.130.14 (port 80) to transmit 100
bytes...
Connected...
Sent (100 bytes)...
2830 bytes read from server.
Elapsed time: 0.269319 seconds

Clearly, Microsoft is blocking ICMP packets. In this example, we could just as easily have turned to
our web browser. Sometimes, however, this is not the case.

An obvious question is "Why would you need such a tool?" If you have been denied access to a
network, should you be using such probes? On the other hand, if you are responsible for the security
of a network, you may want to test your configuration. What can users outside your network discover
about your network? If this is the case, you'll need these tools to test your network.

3.3.4.3 arping

 53

Another interesting and useful variant of ping is arping. arping uses ARP requests and replies instead
of ICMP packets. Here is an example:

bsd2# arping -v -c3 00:10:7b:66:f7:62
This box: Interface: ep0 IP: 172.16.2.236 MAC address: 00:60:97:06:22:22
ARPING 00:10:7b:66:f7:62
60 bytes from 172.16.2.1 (00:10:7b:66:f7:62): icmp_seq=0
60 bytes from 172.16.2.1 (00:10:7b:66:f7:62): icmp_seq=1
60 bytes from 172.16.2.1 (00:10:7b:66:f7:62): icmp_seq=2

--- 00:10:7b:66:f7:62 statistics ---
3 packets transmitted, 3 packets received, 0% unanswered
2 packets transmitted, 2 packets received, 0% unanswered

In this case, I've used the MAC address, but the IP address could also be used. The -v option is for
verbose, while -c3 limits the run to three probes. Verbose doesn't really add a lot to the default output,
just the first line identifying the source. If you just want the packets sent, you can use the -q, or quiet,
option.

This tool has several uses. First, it is a way to find which IP addresses are being used. It can also be
used to work backward, i.e., to discover IP addresses given MAC addresses. For example, if you have
captured non-IP traffic (e.g., IPX, etc.) and you want to know the IP address for the traffic's source,
you can use arping with the MAC address. If you just want to check connectivity, arping is also a
useful tool. Since ARP packets won't be blocked, this should work even when ICMP packets are
blocked. You could also use this tool to probe for ARP entries in a router. Of course, due to the nature
of ARP, there is not a lot that this tool can tell you about devices not on the local network.

3.3.4.4 Other programs

There are other programs that can be used to check connectivity. Two are described later in this book.
nmap is described in Chapter 6, and hping is described in Chapter 9. Both are versatile tools that can
be used for many purposes.

A number of ping variants and extended versions of ping are also available, both freely and
commercially. Some extend ping's functionality to the point that the original functionality seems little
more than an afterthought. Although only a few examples are described here, don't be fooled into
believing that these are all there are. A casual web search should turn up many, many more.

Finally, don't forget the obvious. If you are interested in checking only basic connectivity, you can
always try programs like telnet or your web browser. While this is generally not a recommended
approach, each problem is different, and you should use whatever works. (For a discussion of the
problems with this approach, see Using Applications to Test Connectivity.)

Using Applications to Test Connectivity

One all-too-common way of testing a new installation is to see if networking applications
are working. The cable is installed and connected, the TCP/IP stack is configured, and then
a web browser is started to see if the connection is working. If you can hit a couple of web
sites, then everything is alright and no further testing is needed.

This is understandably an extremely common way to test a connection. It can be particularly
gratifying to see a web page loading on a computer you have just connected to your

 54

network. But it is also an extremely poor way to test a connection.

One problem is that the software stack you use to test the connection is designed to hide
problems from users. If a packet is lost, the stack will transparently have the lost packet
resent without any indication to the user. You could have a connection that is losing 90% of
its packets. The problem would be immediately obvious when using ping. But with most
applications, this would show up only as a slow response. Other problems include locally
cached information or the presence of proxy servers on the network.

Unfortunately, web browsers seem to be the program of choice for testing a connection.
This, of course, is the worst possible choice. The web's slow response is an accepted fact of
life. What technician is going to blame a slow connection on his shoddy wiring when the
alternative is to blame the slow connection on the Web? What technician would even
consider the possibility that a slow web response is caused by a cable being too close to a
fluorescent light?

The only thing testing with an application will really tell you is whether a connection is
totally down. If you want to know more than that, you will have to do real testing.

3.4 Microsoft Windows

The various versions of Windows include implementations of ping. With the Microsoft
implementation, there are a number of superficial differences in syntax and somewhat less
functionality. Basically, however, it works pretty much as you might expect. The default is to send
four packets, as shown in the two following examples. In the first, we successfully ping the host
www.cabletron.com:

C:\>ping www.cabletron.com

Pinging www.cabletron.com [204.164.189.90] with 32 bytes of data:

Reply from 204.164.189.90: bytes=32 time=100ms TTL=239
Reply from 204.164.189.90: bytes=32 time=100ms TTL=239
Reply from 204.164.189.90: bytes=32 time=110ms TTL=239
Reply from 204.164.189.90: bytes=32 time=90ms TTL=239

C:\>

In the next example, we are unable to reach www.microsoft.com for reasons previously explained:

C:\>ping www.microsoft.com

Pinging microsoft.com [207.46.130.149] with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

Note that this is run in a DOS window. If you use ping without an argument, you will get a description
of the basic syntax and a listing of the various options:

 55

C:\>ping

Usage: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS]
 [-r count] [-s count] [[-j host-list] | [-k host-list]]
 [-w timeout] destination-list

Options:
 -t Ping the specifed host until interrupted.
 -a Resolve addresses to hostnames.
 -n count Number of echo requests to send.
 -l size Send buffer size.
 -f Set Don't Fragment flag in packet.
 -i TTL Time To Live.
 -v TOS Type Of Service.
 -r count Record route for count hops.
 -s count Timestamp for count hops.
 -j host-list Loose source route along host-list.
 -k host-list Strict source route along host-list.
 -w timeout Timeout in milliseconds to wait for each reply.

Notice that the flooding options, fortunately, are absent and that the -t option is used to get an output
similar to that used in most of our examples. The implementation does not provide a summary at the
end, however.

In addition to Microsoft's implementation of ping, numerous other versions—as well as more generic
tools or toolkits that include a ping-like utility—are available. Most are free or modestly priced.
Examples include tjping, trayping, and winping, but many more are available, including some
interesting variations. For example, trayping monitors a connection in the background. It displays a
small heart in the system tray as long as the connection is up. As availability changes frequently, if
you need another version of ping, search the Web.

 56

Chapter 4. Path Characteristics
In the last chapter, we attempted to answer a fundamental question, "Do we have a working network
connection?" We used tools such as ping to verify basic connectivity. But simple connectivity is not
enough for many purposes. For example, an ISP can provide connectivity but not meet your needs or
expectations. If your ISP is not providing the level of service you think it should, you will need
something to base your complaints on. Or, if the performance of your local network isn't adequate,
you will want to determine where the bottlenecks are located before you start implementing expensive
upgrades. In this chapter, we will try to answer the question, "Is our connection performing
reasonably?"

We will begin by looking at ways to determine which links or individual connections compose a path.
This discussion focuses on the tool traceroute. Next, we will turn to several tools that allow us to
identify those links along a path that might cause problems. Once we have identified individual links
of interest, we will examine some simple ways to further characterize the performance of those links,
including estimating the bandwidth of a connection and measuring the available throughput.

4.1 Path Discovery with traceroute

This section describes traceroute, a tool used to discover the links along a path. While this is the first
step in investigating a path's behavior and performance, it is useful for other tasks as well. In the
previous discussion of ping, it was suggested that you work your way, hop by hop, toward a device
you can't reach to discover the point of failure. This assumes that you know the path.

Path discovery is also an essential step in diagnosing routing problems. While you may fully
understand the structure of your network and know what path you want your packets to take through
your network, knowing the path your packets actually take is essential information and may come as a
surprise.

Once packets leave your network, you have almost no control over the path they actually take to their
destination. You may know very little about the structure of adjacent networks. Path discovery can
provide a way to discover who their ISP is, how your ISP is connected to the world, and other
information such as peering arrangements. traceroute is the tool of choice for collecting this kind of
information.

The traceroute program was written by Van Jacobson and others. It is based on a clever use of the
Time-To-Live (TTL) field in the IP packet's header. The TTL field, described briefly in the last chapter,
is used to limit the life of a packet. When a router fails or is misconfigured, a routing loop or circular
path may result. The TTL field prevents packets from remaining on a network indefinitely should such
a routing loop occur. A packet's TTL field is decremented each time the packet crosses a router on its
way through a network. When its value reaches 0, the packet is discarded rather than forwarded. When
discarded, an ICMP TIME_EXCEEDED message is sent back to the packet's source to inform the
source that the packet was discarded. By manipulating the TTL field of the original packet, the
program traceroute uses information from these ICMP messages to discover paths through a network.

traceroute sends a series of UDP packets with the destination address of the device you want a path
to.[1] By default, traceroute sends sets of three packets to discover each hop. traceroute sets the TTL

 57

field in the first three packets to a value of 1 so that they are discarded by the first router on the path.
When the ICMP TIME_EXCEEDED messages are returned by that router, traceroute records the
source IP address of these ICMP messages. This is the IP address of the first hop on the route to the
destination.

[1] tracert, a Windows variant of traceroute, uses ICMP rather than UDP. tracert is discussed later in this
chapter.

Next, three packets are sent with their TTL field set to 2. These will be discarded by the second router
on the path. The ICMP messages returned by this router reveal the IP address of the second router on
the path. The program proceeds in this manner until a set of packets finally has a TTL value large
enough so that the packets reach their destination.

Typically, when the probe packets finally have an adequate TTL and reach their destination, they will
be discarded and an ICMP PORT_UNREACHABLE message will be returned. This happens because
traceroute sends all its probe packets with what should be invalid port numbers, i.e., port numbers that
aren't usually used. To do this, traceroute starts with a very large port number, typically 33434, and
increments this value with each subsequent packet. Thus, each of the three packets in a set will have
three different unlikely port numbers. The receipt of ICMP PORT_UNREACHABLE messages is the
signal that the end of the path has been reached. Here is a simple example of using traceroute:

bsd1# traceroute 205.160.97.122
traceroute to 205.160.97.122 (205.160.97.122), 30 hops max, 40 byte packets
 1 205.153.61.1 (205.153.61.1) 1.162 ms 1.068 ms 1.025 ms
 2 cisco (205.153.60.2) 4.249 ms 4.275 ms 4.256 ms
 3 165.166.36.17 (165.166.36.17) 4.433 ms 4.521 ms 4.450 ms
 4 e0.r01.ia-gnwd.Infoave.Net (165.166.36.33) 5.178 ms 5.173 ms 5.140 ms
 5 165.166.125.165 (165.166.125.165) 13.171 ms 13.277 ms 13.352 ms
 6 165.166.125.106 (165.166.125.106) 18.395 ms 18.238 ms 18.210 ms
 7 atm12-0-10-mp.r01.ia-clma.infoave.net (165.166.126.3) 18.816 ms 18.934 ms
 18.893 ms
 8 Serial5-1-1.GW1.RDU1.ALTER.NET (157.130.35.69) 26.658 ms 26.484 ms
26.855 ms
 9 Fddi12-0-0.GW2.RDU1.ALTER.NET (137.39.40.231) 26.692 ms 26.697 ms 26.490
ms
10 smatnet-gw2.customer.ALTER.NET (157.130.36.94) 27.736 ms 28.101 ms
27.738 ms
11 rcmt1-S10-1-1.sprintsvc.net (205.244.203.50) 33.539 ms 33.219 ms 32.446
ms
12 rcmt3-FE0-0.sprintsvc.net (205.244.112.22) 32.641 ms 32.724 ms 32.898 ms
13 gwd1-S3-7.sprintsvc.net (205.244.203.13) 46.026 ms 50.724 ms 45.960 ms
14 gateway.ais-gwd.com (205.160.96.102) 47.828 ms 50.912 ms 47.823 ms
15 pm3-02.ais-gwd.com (205.160.97.41) 63.786 ms 48.432 ms 48.113 ms
16 user58.ais-gwd.com (205.160.97.122) 200.910 ms 184.587 ms 202.771 ms

The results should be fairly self-explanatory. This particular path was 16 hops long. Reverse name
lookup is attempted for the IP address of each device, and, if successful, these names are reported in
addition to IP addresses. Times are reported for each of the three probes sent. They are interpreted in
the same way as times with ping. (However, if you just want times for one hop, ping is generally a
better choice.)

Although no packets were lost in this example, should a packet be lost, an asterisk is printed in the
place of the missing time. In some cases, all three times may be replaced with asterisks. This can
happen for several reasons. First, the router at this hop may not return ICMP TIME_EXCEEDED
messages. Second, some older routers may incorrectly forward packets even though the TTL is 0. A

 58

third possibility is that ICMP messages may be given low priority and may not be returned in a timely
manner. Finally, beyond some point of the path, ICMP packets may be blocked.

Other routing problems may exist as well. In some instances traceroute will append additional
messages to the end of lines in the form of an exclamation point and a letter. !H, !N, and !P indicate,
respectively, that the host, network, or protocol is unreachable. !F indicates that fragmentation is
needed. !S indicates a source route failure.

4.1.1 Options

Two options control how much information is printed. Name resolution can be disabled with the -n
option. This can be useful if name resolution fails for some reason or if you just don't want to wait on
it. The -v option is the verbose flag. With this flag set, the source and packet sizes of the probes will
be reported for each packet. If other ICMP messages are received, they will also be reported, so this
can be an important option when troubleshooting.

Several options may be used to alter the behavior of traceroute, but most are rarely needed. An
example is the -m option. The TTL field is an 8-bit number allowing a maximum of 255 hops. Most
implementations of traceroute default to trying only 30 hops before halting. The -m option can be
used to change the maximum number of hops tested to any value up to 255.

As noted earlier, traceroute usually receives a PORT_UNREACHABLE message when it reaches its
final destination because it uses a series of unusually large port numbers as the destination ports.
Should the number actually match a port that has a running service, the PORT_UNREACHABLE
message will not be returned. This is rarely a problem since three packets are sent with different port
numbers, but, if it is, the -p option lets you specify a different starting port so these ports can be
avoided.

Normally, traceroute sends three probe packets for each TTL value with a timeout of three seconds
for replies. The default number of packets per set can be changed with the -q option. The default
timeout can be changed with the -w option.

Additional options support how packets are routed. See the manpage for details on these if needed.

4.1.2 Complications with traceroute

The information traceroute supplies has its limitations. In some situations, the results returned by
traceroute have a very short shelf life. This is particularly true for long paths crossing several
networks and ISPs.

You should also recall that a router, by definition, is a computer with multiple network interfaces,
each with a different IP address. This raises an obvious question: which IP address should be returned
for a router? For traceroute, the answer is dictated by the mechanism it uses to discover the route. It
can report only the address of the interface receiving the packet. This means a quite different path will
be reported if traceroute is run in the reverse direction.

Here is the output when the previous example is run again from what was originally the destination to
what was originally the source, i.e., with the source and destination exchanged:

C:\>tracert 205.153.61.178

 59

Tracing route to 205.153.61.178 over a maximum of 30 hops

 1 132 ms 129 ms 129 ms pm3-02.ais-gwd.com [205.160.97.41]
 2 137 ms 130 ms 129 ms sprint-cisco-01.ais-gwd.com [205.160.97.1]
 3 136 ms 129 ms 139 ms 205.160.96.101
 4 145 ms 150 ms 140 ms rcmt3-S4-5.sprintsvc.net [205.244.203.53]
 5 155 ms 149 ms 149 ms sl-gw2-rly-5-0-0.sprintlink.net [144.232.184.85]
 6 165 ms 149 ms 149 ms sl-bb11-rly-2-1.sprintlink.net [144.232.0.77]
 7 465 ms 449 ms 399 ms sl-gw11-dc-8-0-0.sprintlink.net [144.232.7.198]
 8 155 ms 159 ms 159 ms sl-infonet-2-0-0-T3.sprintlink.net
[144.228.220.6]
 9 164 ms 159 ms 159 ms atm4-0-10-mp.r01.ia-gnvl.infoave.net
[165.166.126.4]
 10 164 ms 169 ms 169 ms atm4-0-30.r1.scgnvl.infoave.net
[165.166.125.105]
 11 175 ms 179 ms 179 ms 165.166.125.166
 12 184 ms 189 ms 195 ms e0.r02.ia-gnwd.Infoave.Net [165.166.36.34]
 13 190 ms 179 ms 180 ms 165.166.36.18
 14 185 ms 179 ms 179 ms 205.153.60.1
 15 174 ms 179 ms 179 ms 205.153.61.178

Trace complete.

There are several obvious differences. First, the format is slightly different because this example was
run using Microsoft's implementation of traceroute, tracert. This, however, should present no
difficulty.

A closer examination shows that there are more fundamental differences. The second trace is not
simply the first trace in reverse order. The IP addresses are not the same, and the number of hops is
different.

There are two things going on here. First, as previously mentioned, traceroute reports the IP number
of the interface where the packet arrives. The reverse path will use different interfaces on each router,
so different IP addresses will be reported. While this can be a bit confusing at first glance, it can be
useful. By running traceroute at each end of a connection, a much more complete picture of the
connection can be created.

Figure 4-1 shows the first six hops on the path starting from the source for the first trace as
reconstructed from the pair of traces. We know the packet originates at 205.153.61.178. The first trace
shows us the first hop is 205.153.61.1. It leaves this router on interface 205.153.60.1 for 205.153.60.2.
The second of these addresses is just the next hop in the first trace. The first address comes from the
second trace. It is the last hop before the destination. It is also reasonable in that we have two
addresses that are part of the same class C network. With IP networks, the ends of a link are part of the
link and must have IP numbers consistent with a single network.

Figure 4-1. First six hops on path

 60

From the first trace, we know packets go from the 205.153.60.2 to 165.166.36.17. From the reverse
trace, we are able to deduce that the other end of the 165.166.36.17 link is 165.166.36.18. Or,
equivalently, the outbound interface for the 205.153.60.2 router has the address 165.166.36.18.

In the same manner, the next router's inbound interface is 165.166.36.17, and its outbound interface is
165.166.36.34. This can be a little confusing since it appears that these last three addresses should be
on the same network. On closer examination of this link and adjacent links, it appears that this class B
address is using a subnet mask of /20. With this assumption, the addresses are consistent.

We can proceed in much the same manner to discover the next few links. However, when we get to
the seventh entry in the first trace (or to the eighth entry working backward in the second trace), the
process breaks down. The reason is simple—we have asymmetric paths across the Internet. This also
accounts for the difference in the number of hops between the two traces.

In much the same way we mapped the near end of the path, the remote end can be reconstructed as
well. The paths become asymmetric at the seventh router when working in this direction. Figure 4-2
shows the first four hops. We could probably fill in the remaining addresses for each direction by
running traceroute to the specific machine where the route breaks down, but this probably isn't worth
the effort.

Figure 4-2. First four hops on reverse path

 61

One possible surprise in Figure 4-2 is that we have the same IP number, 205.160.97.41, on each
interface at the first hop. The explanation is that dial-in access is being used. The IP number
205.166.97.122 is assigned to the host when the connection is made. 205.160.97.41 must be the access
router. This numbering scheme is normal for an access router.

Although we haven't constructed a complete picture of the path(s) between these two computers, we
have laid out the basic connection to our network through our ISP. This is worth working out well in
advance of any problems. When you suspect problems, you can easily ping these intermediate routers
to pinpoint the exact location of a problem. This will tell you whether it is your problem or your ISP's
problem. This can also be nice information to have when you call your ISP.

To construct the bidirectional path using the technique just described, you need access to a second,
remote computer on the Internet from which you can run traceroute. Fortunately, this is not a problem.
There are a number of sites on the Internet, which, as a service to the network community, will run
traceroute for you. Often called looking glasses, such sites can provide a number of other services as
well. For example, you may be able to test how accessible your local DNS setup is by observing how
well traceroute works. A list of such sites can be found at http://www.traceroute.org. Alternately, the
search string "web traceroute" or "traceroute looking glass" will usually turn up a number of such sites
with most search engines.

In theory, there is an alternative way to find this type of information with some implementations of
traceroute. Some versions of traceroute support loose source routing, the ability to specify one or
more intermediate hops that the packets must go through. This allows a packet to be diverted through
a specific router on its way to its destination. (Strict source routing may also be available. This allows
the user to specify an exact path through a network. While loose source routing can take any path that
includes the specified hops, strict source routing must exactly follow the given path.)

To construct a detailed list of all devices on a path, the approach is to use traceroute to find a path
from the source host to itself, specifying a route through a remote device. Packets leave the host with
the remote device as their initial destination. When the packets arrive at the remote device, that device
replaces the destination address with the source's address, and the packets are redirected back to the

TE
AM
FL
Y

Team-Fly®

http://www.traceroute.org/

 62

source. Thus, you get a picture of the path both coming and going. (Of course, source routing is not
limited to just this combination of addresses.)

At least, that is how it should work in theory. In practice, many devices no longer support source
routing. Unfortunately, source routing has been used in IP spoofing attacks. Packets sent with a
spoofed source address can be diverted so they pass through the spoofed device's network. This
approach will sometimes slip packets past firewalls since the packet seems to be coming from the
right place.

This is shown in Figure 4-3. Without source routing, the packet would come into the firewall on the
wrong interface and be discarded. With source routing, the packet arrives on the correct interface and
passes through the firewall. Because of problems like this, source routing is frequently disabled.

Figure 4-3. IP source spoofing

One final word of warning regarding traceroute—buggy or nonstandard implementations exist.
Nonstandard isn't necessarily bad; it just means you need to watch for differences. For example, see
the discussion of tracert later in this chapter. Buggy implementations, however, can really mislead
you.

4.2 Path Performance

Once you have a picture of the path your traffic is taking, the next step in testing is to get some basic
performance numbers. Evaluating path performance will mean doing three types of measurements.
Bandwidth measurements will give you an idea of the hardware capabilities of your network, such as
the maximum capacity of your network. Throughput measurements will help you discover what

 63

capacity your network provides in practice, i.e., how much of the maximum is actually available.
Traffic measurements will give you an idea of how the capacity is being used.

My goal in this section is not a definitive analysis of performance. Rather, I describe ways to collect
some general numbers that can be used to see if you have a reasonable level of performance or if you
need to delve deeper. If you want to go beyond the quick-and-dirty approaches described here, you
might consider some of the more advanced tools described in Chapter 9. The tools mentioned here
should help you focus your efforts.

4.2.1 Performance Measurements

Several terms are used, sometimes inconsistently, to describe the capacity or performance of a link.
Without getting too formal, let's review some of these terms to avoid potential confusion.

Two factors determine how long it takes to send a packet or frame across a single link. The amount of
time it takes to put the signal onto the cable is known as the transmission time or transmission delay.
This will depend on the transmission rate (or interface speed) and the size of the frame. The amount
of time it takes for the signal to travel across the cable is known as the propagation time or
propagation delay. Propagation time is determined by the type of media used and the distance
involved. It often comes as a surprise that a signal transmitted at 100 Mbps will have the same
propagation delay as a signal transmitted at 10 Mbps. The first signal is being transmitted 10 times as
fast, but, once it is on a cable, it doesn't propagate any faster. That is, the difference between 10 Mbps
and 100 Mbps is not the speed the bits travel, but the length of the bits.

Once we move to multihop paths, a third consideration enters the picture—the delay introduced from
processing packets at intermediate devices such as routers and switches. This is usually called the
queuing delay since, for the most part, it arises from the time packets spend in queues within the
device. The total delay in delivering a packet is the sum of these three delays. Transmission and
propagation delays are usually quite predictable and stable. Queuing delays, however, can introduce
considerable variability.

The term bandwidth is typically used to describe the capacity of a link. For our purposes, this is the
transmission rate for the link.[2] If we can transmit onto a link at 10 Mbps, then we say we have a
bandwidth of 10 Mbps.

[2] My apologies to any purist offended by my somewhat relaxed, pragmatic definition of bandwidth.

Throughput is a measure of the amount of data that can be sent over a link in a given amount of time.
Throughput estimates, typically obtained through measurements based on the bulk transfer of data, are
usually expressed in bits per second or packets per second. Throughput is frequently used as an
estimate of the bandwidth of a network, but bandwidth and throughput are really two different things.
Throughput measurement may be affected by considerable overhead that is not included in bandwidth
measurements. Consequently, throughput is a more realistic estimator of the actual performance you
will see.

Throughput is generally an end-to-end measurement. When dealing with multihop paths, however, the
bandwidths may vary from link to link. The bottleneck bandwidth is the bandwidth of the slowest link
on a path, i.e., the link with the lowest bandwidth. (While introduced here, bottleneck analysis is
discussed in greater detail in Chapter 12.)

 64

Additional metrics will sometimes be needed. The best choice is usually task dependent. If you are
sending real-time audio packets over a long link, you may want to minimize both delay and variability
in the delay. If you are using FTP to do bulk transfers, you may be more concerned with the
throughput. If you are evaluating the quality of your link to the Internet, you may want to look at
bottleneck bandwidth for the path. The development of reliable metrics is an active area of research.

4.2.2 Bandwidth Measurements

We will begin by looking at ways to estimate bandwidth. Bandwidth really measures the capabilities
of our hardware. If bandwidth is not adequate, you will need to reexamine your equipment.

4.2.2.1 ping revisited

The preceding discussion should make clear that the times returned by ping, although frequently
described as propagation delays, really are the sum of the transmission, propagation, and queuing
delays. In the last chapter, we used ping to calculate a rough estimate of the bandwidth of a connection
and noted that this treatment is limited since it gives a composite number.

We can refine this process and use it to estimate the bandwidth for a link along a path. The basic idea
is to first calculate the path behavior up to the device on the closest end of the link and then calculate
the path behavior to the device at the far end of the link. The difference is then used to estimate the
bandwidth for the link in question. Figure 4-4 shows the basic arrangement.

Figure 4-4. Link traffic measurements

This process requires using ping four times. First, ping the near end of a link with two different packet
sizes. The difference in the times will eliminate the propagation and queuing delays along the path
(assuming they haven't changed too much) leaving the time required to transmit the additional data in
the larger packet. Next, use the same two packet sizes to ping the far end of the link. The difference in
the times will again eliminate the overhead. Finally, the difference in these two differences will be the
amount of time to send the additional data over the last link in the path. This is the round-trip time.
Divide this number by two and you have the time required to send the additional data in one direction
over the link. The bandwidth is simply the amount of additional data sent divided by this last
calculated time. [3]

[3] The formula for bandwidth is BW = 16 x (Pl-Ps)/(t2l-t2s-t1l+t1s). The larger and smaller packet sizes are
Pl and Ps bytes, t1l and t1s are the ping times for the larger and smaller packets to the nearer interface in
seconds, and t2l and t2s are the ping times for the larger and smaller packets to the distant interface in
seconds. The result is in bits per second.

Table 4-1 shows the raw data for the second and third hops along the path shown in Figure 4-1.
Packets sizes are 100 and 1100 bytes.

 65

Table 4-1. Raw data
IP address Time for 100 bytes Time for 1100 bytes

205.153.61.1 1.380 ms 5.805 ms
205.153.60.2 4.985 ms 12.823 ms
165.166.36.17 8.621 ms 26.713 ms

Table 4-2 shows the calculated results. The time difference was divided by two (RRT correction), then
divided into 8000 bits (the size of the data in bits), and then multiplied by 1000 (milliseconds-to-
seconds correction.). The results, in bps, were then converted to Mbps. If several sets of packets are
sent, the minimums of the times can be used to improve the estimate.

Table 4-2. Calculated bandwidth
Near link Far link Time difference Estimated bandwidth

205.153.61.1 205.153.60.2 3.413 ms 4.69 Mbps
205.153.60.2 165.166.36.17 10.254 ms 1.56 Mbps

Clearly, doing this manually is confusing, tedious, and prone to errors. Fortunately, several tools based
on this approach greatly simplify the process. These tools also improve accuracy by using multiple
packets.

4.2.2.2 pathchar

One tool that automates this process is pathchar. This tool, written by Van Jacobson several years ago,
seems to be in a state of limbo. It has, for several years, been available as an alpha release, but nothing
seems to have been released since. Several sets of notes or draft notes are available on the Web, but
there appears to be no manpage for the program. Nonetheless, the program remains available and has
been ported to several platforms. Fortunately, a couple of alternative implementations of the program
have recently become available. These include bing, pchar, clink, and tmetric.

One strength of pathchar and its variants is that they can discover the bandwidth of each link along a
path using software at only one end of the path. The method used is basically that described earlier for
ping, but pathchar uses a large number of packets of various sizes. Here is an example of running
pathchar :

bsd1# pathchar 165.166.0.2
pathchar to 165.166.0.2 (165.166.0.2)
 mtu limited to 1500 bytes at local host
 doing 32 probes at each of 45 sizes (64 to 1500 by 32)
 0 205.153.60.247 (205.153.60.247)
 | 4.3 Mb/s, 1.55 ms (5.88 ms)
 1 cisco (205.153.60.2)
 | 1.5 Mb/s, -144 us (13.5 ms)
 2 165.166.36.17 (165.166.36.17)
 | 10 Mb/s, 242 us (15.2 ms)
 3 e0.r01.ia-gnwd.Infoave.Net (165.166.36.33)
 | 1.2 Mb/s, 3.86 ms (32.7 ms)
 4 165.166.125.165 (165.166.125.165)
 | ?? b/s, 2.56 ms (37.7 ms)
 5 165.166.125.106 (165.166.125.106)
 | 45 Mb/s, 1.85 ms (41.6 ms), +q 3.20 ms (18.1 KB) *4
 6 atm1-0-5.r01.ncchrl.infoave.net (165.166.126.1)
 | 17 Mb/s, 0.94 ms (44.3 ms), +q 5.83 ms (12.1 KB) *2
 7 h10-1-0.r01.ia-chrl.infoave.net (165.166.125.33)

 66

 | ?? b/s, 89 us (44.3 ms), 1% dropped
 8 dns1.InfoAve.Net (165.166.0.2)
8 hops, rtt 21.9 ms (44.3 ms), bottleneck 1.2 Mb/s, pipe 10372 bytes

As pathchar runs, it first displays a message describing how the probing will be done. From the third
line of output, we see that pathchar is using 45 different packet sizes ranging from 64 to 1500 bytes.
(1500 is the local host's MTU.) It uses 32 different sets of these packets for each hop. Thus, this eight-
hop run generated 11,520 test packets plus an equal number of replies.

The bandwidth and delay for each link is given. pathchar may also include information on the queuing
delay (links 5 and 6 in this example). As you can see, pathchar is not always successful in estimating
the bandwidth (see the links numbered 4 and 7) or the delay (see link numbered 1). With this
information, we could go back to Figure 4-1 and fill in link speeds for most links.

As pathchar runs, it shows a countdown as it sends out each packet. It will display a line that looks
something like this:

1: 31 288 0 3

The 1: refers to the hop count and will be incremented for each successive hop on the path. The next
number counts down, giving the number of sets of probes remaining to be run for this link. The third
number is the size of the current packet being sent. Both the second and third numbers should be
changing rapidly. The last two numbers give the number of packets that have been dropped so far on
this link and the average round-trip time for this link.

When the probes for a hop are complete, this line is replaced with a line giving the bandwidth,
incremental propagation delay, and round-trip time. pathchar uses the minimum of the observed
delays to improve its estimate of bandwidth.

Several options are available with pathchar. Of greatest interest are those that control the number and
size of the probe packet used. The option -q allows the user to specify the number of sets of packets to
send. The options -m and -M control the minimum and maximum packet sizes, respectively. The
option -Q controls the step size from the smallest to largest packet sizes. As a general rule of thumb,
more packets are required for greater accuracy, particularly on busy links. The option -n turns off
DNS resolution, and the option -v provides for more output.

pathchar is not without problems. One problem for pathchar is hidden or unknown transmission
points. The first link reports a bandwidth of 4.3 Mbps. From traceroute, we only know of the host and
the router at the end of the link. This is actually a path across a switched LAN with three segments and
two additional transmission points at the switches. The packet is transmitted onto a 10-Mbps network,
then onto a 100-Mbps backbone, and then back onto a 10 Mbps network before reaching the first
router. Consequently, there are three sets of transmission delays rather than just one, and a smaller
than expected bandwidth is reported.

You will see this problem with store-and-forward switches, but it is not appreciable with cut-through
switches. (Types of Switches if you are unfamiliar with the difference between cut-through and store-
and-forward switches.) In a test in which another switch, configured for cut-through, was added to this
network, almost no change was seen in the estimated bandwidth with pathchar. When the switch was
reconfigured as a store-and-forward switch, the reported bandwidth on the first link dropped to 3.0
Mbps.

 67

Types of Switches

Devices may minimize queuing delays by forwarding frames as soon as possible. In some
cases, a device may begin retransmitting a frame before it has finished receiving that frame.
With Ethernet frames, for example, the destination address is the first field in the header.
Once this has been read, the out interface is known and transmission can begin even though
much of the original frame is still being received. Devices that use this scheme are called
cut-through devices.

The alternative is to wait until the entire frame has arrived before retransmitting it. Switches
that use this approach are known as store-and-forward devices.

Cut-through devices have faster throughput than store-and-forward switches because they
begin retransmitting sooner. Unfortunately, cut-through devices may forward damaged
frames, frames that a store-and-forward switch would have discarded. The problem is that
the damage may not be discovered by the cut-through device until after retransmission has
already begun. Store-and-forward devices introduce longer delays but are less likely to
transmit damaged frames since they can examine the entire frame before retransmitting it.
Store-and-forward technology is also required if interfaces operate at different speeds. Often
devices can be configured to operate in either mode.

This creates a problem if you are evaluating an ISP. For example, it might appear that the fourth link
is too slow if the contract specifies T1 service. This might be the case, but it could just be a case of a
hidden transmission point. Without more information, this isn't clear.

Finally, you should be extremely circumspect about running pathchar. It can generate a huge amount
of traffic. The preceding run took about 40 minutes to complete. It was run from a host on a university
campus while the campus was closed for Christmas break and largely deserted. If you are crossing a
slow link and have a high path MTU, the amount of traffic can effectively swamp the link.
Asymmetric routes, routes in which the path to a device is different from the path back, changing
routes, links using tunneling, or links with additional padding added can all cause problems.

4.2.2.3 bing

One alternative to pathchar is bing, a program written by Pierre Beyssac. Where pathchar gives the
bandwidth for every link along a path, bing is designed to measure point-to-point bandwidth.
Typically, you would run traceroute first if you don't already know the links along a path. Then you
would run bing specifying the near and far ends of the link of interest on the command line. This
example measures the bandwidth of the third hop in Figure 4-1:

bsd1# bing -e10 -c1 205.153.60.2 165.166.36.17
BING 205.153.60.2 (205.153.60.2) and 165.166.36.17 (165.166.36.17)
 44 and 108 data bytes
1024 bits in 0.835ms: 1226347bps, 0.000815ms per bit
1024 bits in 0.671ms: 1526080bps, 0.000655ms per bit
1024 bits in 0.664ms: 1542169bps, 0.000648ms per bit
1024 bits in 0.658ms: 1556231bps, 0.000643ms per bit
1024 bits in 0.627ms: 1633174bps, 0.000612ms per bit
1024 bits in 0.682ms: 1501466bps, 0.000666ms per bit
1024 bits in 0.685ms: 1494891bps, 0.000669ms per bit
1024 bits in 0.605ms: 1692562bps, 0.000591ms per bit
1024 bits in 0.618ms: 1656958bps, 0.000604ms per bit

 68

--- 205.153.60.2 statistics ---
bytes out in dup loss rtt (ms): min avg max
 44 10 10 0% 3.385 3.421 3.551
 108 10 10 0% 3.638 3.684 3.762

--- 165.166.36.17 statistics ---
bytes out in dup loss rtt (ms): min avg max
 44 10 10 0% 3.926 3.986 4.050
 108 10 10 0% 4.797 4.918 4.986

--- estimated link characteristics ---
estimated throughput 1656958bps
minimum delay per packet 0.116ms (192 bits)

average statistics (experimental) :
packet loss: small 0%, big 0%, total 0%
average throughput 1528358bps
average delay per packet 0.140ms (232 bits)
weighted average throughput 1528358bps

resetting after 10 samples.

The output begins with the addresses and packet sizes followed by lines for each pair of probes. Next,
bing returns round-trip times and packet loss data. Finally, it returns several estimates of throughput.[4]

[4] The observant reader will notice that bing reported throughput, not bandwidth. Unfortunately, there is
a lot of ambiguity and inconsistency surrounding these terms.

In this particular example, we have specified the options -e10 and -c1, which limit the probe to one
cycle using 10 pairs of packets. Alternatively, you can omit these options and watch the output. When
the process seems to have stabilized, enter a Ctrl-C to terminate the program. The summary results
will then be printed. Interpretation of these results should be self-explanatory.

bing allows for a number of fairly standard options. These options allow controlling the number of
packet sizes, suppressing name resolution, controlling routing, and obtaining verbose output. See the
manpage if you have need of these options.

Because bing uses the same mechanism as pathchar, it will suffer the same problems with hidden
transmission points. Thus, you should be circumspect when using it if you don't fully understand the
topology of the network. While bing does not generate nearly as much traffic as pathchar, it can still
place strains on a network.

4.2.2.4 Packet pair software

One alternative approach that is useful for measuring bottleneck bandwidth is the packet pair or
packet stretch approach. With this approach, two packets that are the same size are transmitted back-
to-back. As they cross the network, whenever they come to a slower link, the second packet will have
to wait while the first is being transmitted. This increases the time between the transmission of the
packets at this point on the network. If the packets go onto another faster link, the separation is
preserved. If the packets subsequently go onto a slower link, then the separation will increase. When
the packets arrive at their destination, the bandwidth of the slowest link can be calculated from the
amount of separation and the size of the packets.

It would appear that getting this method to work requires software at both ends of the link. In fact,
some implementations of packet pair software work this way. However, using software at both ends is

 69

not absolutely necessary since the acknowledgment packets provided with some protocols should
preserve the separation.

One assumption of this algorithm is that packets will stay together as they move through the network.
If other packets are queued between the two packets, the separation will increase. To avoid this
problem, a number of packet pairs are sent through the network with the assumption that at least one
pair will stay together. This will be the pair with the minimum separation.

Several implementations of this algorithm exist. bprobe and cprobe are two examples. At the time this
was written, these were available only for the IRIX operating system on SGI computers. Since the
source code is available, this may have changed by the time you read this.

Compared to the pathchar approach, the packet pair approach will find only the bottleneck bandwidth
rather than the bandwidth of an arbitrary link. However, it does not suffer from the hidden hop
problem. Nor does it create the levels of traffic characteristic of pathchar. This is a technology to
watch.

4.2.3 Throughput Measurements

Estimating bandwidth can provide a quick overview of hardware performance. But if your bandwidth
is not adequate, you are limited in what you can actually do—install faster hardware or contract for
faster service. In practice, it is often not the raw bandwidth of the network but the bandwidth that is
actually available that is of interest. That is, you may be more interested in the throughput that you can
actually achieve.

Poor throughput can result not only from inadequate hardware but also from architectural issues such
as network design. For example, a broadcast domain that is too large will create problems despite
otherwise adequate hardware. The solution is to redesign your network, breaking apart or segmenting
such domains once you have a clear understanding of traffic patterns.

Equipment configuration errors may also cause poor performance. For example, some Ethernet
devices may support full duplex communication if correctly configured but will fall back to half
duplex otherwise. The first step toward a solution is recognizing the misconfiguration. Throughput
tests are the next logical step in examining your network.

Throughput is typically measured by timing the transfer of a large block of data. This may be called
the bulk transfer capacity of the link. There are a number of programs in this class besides those
described here. The approach typically requires software at each end of the link. Because the software
usually works at the application level, it tests not only the network but also your hardware and
software at the endpoints.

Since performance depends on several parts, when you identify that a problem exists, you won't
immediately know where the problem is. Initially, you might try switching to a different set of
machines with different implementations to localize the problem. Before you get too caught up in your
testing, you'll want to look at the makeup of the actual traffic as described later in this chapter. In
extreme cases, you may need some of the more advanced tools described later in this book.

One simple quick-and-dirty test is to use an application like FTP. Transfer a file with FTP and see
what numbers it reports. You'll need to convert these to a bit rate, but that is straightforward. For
example, here is the final line for a file transfer:

 70

1294522 bytes received in 1.44 secs (8.8e+02 Kbytes/sec)

Convert 1,294,522 bytes to bits by multiplying by 8 and then dividing by the time, 1.44 seconds. This
gives about 7,191,789 bps.

One problem with this approach is that the disk accesses required may skew your results. There are a
few tricks you can use to reduce this, but if you need the added accuracy, you are better off using a
tool that is designed to deal with such a problem. ttcp, for example, overcomes the disk access
problem by repeatedly sending the same data from memory so that there is no disk overhead.

4.2.3.1 ttcp

One of the oldest bulk capacity measurement tools is ttcp. This was written by Mike Muuss and Terry
Slattery. To run the program, you first need to start the server on the remote machine using, typically,
the -r and -s options. Then the client is started with the options -t and -s and the hostname or address
of the server. Data is sent from the client to the server, performance is measured, the results are
reported at each end, and then both client and server terminate. For example, the server might look
something like this:

bsd2# ttcp -r -s
ttcp-r: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp
ttcp-r: socket
ttcp-r: accept from 205.153.60.247
ttcp-r: 16777216 bytes in 18.35 real seconds = 892.71 KB/sec +++
ttcp-r: 11483 I/O calls, msec/call = 1.64, calls/sec = 625.67
ttcp-r: 0.0user 0.9sys 0:18real 5% 15i+291d 176maxrss 0+2pf 11478+28csw

The client side would look like this:

bsd1# ttcp -t -s 205.153.63.239
ttcp-t: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp ->
205.153.63.239
ttcp-t: socket
ttcp-t: connect
ttcp-t: 16777216 bytes in 18.34 real seconds = 893.26 KB/sec +++
ttcp-t: 2048 I/O calls, msec/call = 9.17, calls/sec = 111.66
ttcp-t: 0.0user 0.5sys 0:18real 2% 16i+305d 176maxrss 0+2pf 3397+7csw

The program reports the amount of information transferred, indicates that the connection is being
made, and then gives the results, including raw data, throughput, I/O call information, and execution
times. The number of greatest interest is the transfer rate, 892.71 KB/sec (or 893.26 KB/sec). This is
about 7.3 Mbps, which is reasonable for a 10-Mbps Ethernet connection. (But it is not very different
from our quick-and-dirty estimate with FTP.)

These numbers reflect the rate at which data is transferred, not the raw capacity of the line. Relating
these numbers to bandwidth is problematic since more bits are actually being transferred than these
numbers would indicate. The program reports sending 16,777,216 bytes in 18.35 seconds, but this is
just the data. On Ethernet with an MTU of 1500, each buffer will be broken into 6 frames. The first
will carry an IP and TCP header for 40 more bytes. Each of the other 5 will have an IP header for 20
more bytes each. And each will be packaged as an Ethernet frame costing an additional 18 bytes each.
And don't forget the Ethernet preamble. All this additional overhead should be included in a
calculation of raw capacity.

 71

Poor throughput numbers typically indicate congestion but that may not always be the case.
Throughput will also depend on configuration issues such as the TCP window size for your
connection. If your window size is not adequate, it will drastically affect performance. Unfortunately,
this problem is not uncommon for older systems on today's high-speed links.

The -u option allows you to check UDP throughput. A number of options give you some control over
the amount and the makeup of the information transferred. If you omit the -s option, the program uses
standard input and output. This option allows you to control the data being sent.[5]

[5] In fact, ttcp can be used to transfer files or directories between machines. At the destination, use
ttcp -r | tar xvpf - and, at the source, use tar cf - directory| ttcp -t
dest_machine.

The nice thing about ttcp is that a number of implementations are readily available. For example, it is
included as an undocumented command in the Enterprise version of Cisco IOS 11.2 and later. At one
time, a Java version of ttcp was freely available from Chesapeake Computer Consultants, Inc., (now
part of Mentor Technologies, Inc.). This program would run on anything with a Java interpreter
including Windows machines. The Java version supported both a Windows and a command-line
interface. Unfortunately, this version does not seem to be available anymore, but you might want to
try tracking down a copy.

4.2.3.2 netperf

Another program to consider is netperf, which had its origin in the Information Networks Division of
Hewlett-Packard. While not formally supported, the program does appear to have informal support. It
is freely available, runs on a number of Unix platforms, and has reasonable documentation. It has also
been ported to Windows. While not as ubiquitous as ttcp, it supports a much wider range of tests.

Unlike with ttcp, the client and server are two separate programs. The server is netserver and can be
started independently or via inetd. The client is known as netperf. In the following example, the server
and client are started on the same machine:

bsd1# netserver
Starting netserver at port 12865
bsd1# netperf
TCP STREAM TEST to localhost : histogram
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 16384 16384 16384 10.00 326.10

This tests the loop-back interface, which reports a throughput of 326 Mbps.

In the next example, netserver is started on one host:

bsd1# netserver
Starting netserver at port 12865

Then netperf is run with the -H option to specify the address of the server:

bsd2# netperf -H 205.153.60.247
TCP STREAM TEST to 205.153.60.247 : histogram

TE
AM
FL
Y

Team-Fly®

 72

Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 16384 16384 16384 10.01 6.86

This is roughly the same throughput we saw with ttcp. netperf performs a number of additional tests.
In the next test, the transaction rate of a connection is measured:

bsd2# netperf -H 205.153.60.247 -tTCP_RR
TCP REQUEST/RESPONSE TEST to 205.153.60.247 : histogram
Local /Remote
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

16384 16384 1 1 10.00 655.84
16384 16384

The program contains several scripts for testing. It is also possible to do various stream tests with
netperf. See the document that accompanies the program if you have these needs.

4.2.3.3 iperf

If ttcp and netperf don't meet your needs, you might consider iperf. iperf comes from the National
Laboratory for Applied Network Research (NLANR) and is a very versatile tool. While beyond the
scope of this chapter, iperf can also be used to test UDP bandwidth, loss, and jitter. A Java frontend is
included to make iperf easier to use. This utility has also been ported to Windows.

Here is an example of running the server side of iperf on a FreeBSD system:

bsd2# iperf -s -p3000
--
Server listening on TCP port 3000
TCP window size: 16.0 KByte (default)
--
[4] local 172.16.2.236 port 3000 connected with 205.153.63.30 port 1133
[ID] Interval Transfer Bandwidth
[4] 0.0-10.0 sec 5.6 MBytes 4.5 Mbits/sec
^C

Here is the client side under Windows:

C:\>iperf -c205.153.60.236
 -p3000
--
Client connecting to 205.153.60.236, TCP port 3000
TCP window size: 8.0 KByte (default)
--
[28] local 205.153.63.30 port 1133 connected with 205.153.60.236 port 3000
[ID] Interval Transfer Bandwidth
[28] 0.0-10.0 sec 5.6 MBytes 4.5 Mbits/sec

Notice the use of Ctrl-C to terminate the server side. In TCP mode, iperf is compatible with ttcp so it
can be used as the client or server.

 73

iperf is a particularly convenient tool for investigating whether your TCP window is adequate. The -w
option sets the socket buffer size. For TCP, this is the window size. Using the -w option, you can step
through various window sizes and see how they impact throughput. iperf has a number of other
strengths that make it worth considering.

4.2.3.4 Other related tools

You may also want to consider several similar or related tools. treno uses a traceroute-like approach
to calculate bulk capacity, path MTU, and minimum RTP. Here is an example:

bsd2# treno 205.153.63.30
 MTU=8166 MTU=4352 MTU=2002 MTU=1492
Replies were from sloan.lander.edu [205.153.63.30]
 Average rate: 3868.14 kbp/s (3380 pkts in + 42 lost = 1.2%) in 10.07 s
Equilibrium rate: 0 kbp/s (0 pkts in + 0 lost = 0%) in 0 s
Path properties: min RTT was 13.58 ms, path MTU was 1440 bytes
XXX Calibration checks are still under construction, use -v

treno is part of a larger Internet traffic measurement project at NLANR. treno servers are scattered
across the Internet.

In general, netperf, iperf, and treno offer a wider range of features, but ttcp is generally easier to find.

Evaluating Internet Service Providers

When you sign a contract with an ISP to provide a level of service, say T1 access, what
does this mean? The answer is not obvious.

ISPs sell services based, in some sense, on the total combined expected usage of all users.
That is, they sell more capacity than they actually have, expecting levels of usage by
different customers to balance out. If everyone tries to use their connection at once, there
won't be enough capacity. But the idea is that this will rarely happen. To put it bluntly, ISPs
oversell their capacity.

This isn't necessarily bad. Telephone companies have always done this. And, apart from
Mother's Day and brief periods following disasters, you can almost always count on the
phone system working. When you buy T1 Internet access, the assumption is that you will
not be using that line to its full capacity all the time. If everyone used their connection to
full capacity all the time, the price of those connections would be greatly increased. If you
really need some guaranteed level of service, talk to your ISP. They may be able to provide
guarantees if you are willing to pay for them.

But for the rest of us, the question is "What can we reasonably expect?" At a minimum, a
couple of things seem reasonable. First, the ISP should have a connection to the Internet
that well exceeds the largest connections that they are selling. For example, if they are
selling multiple T1 lines, they should have a connection that is larger than a T1 line, e.g., a
T3 line. Otherwise, if more that one customer is using the link, then no one can operate at
full capacity. Since two customers using the link at the same time is very likely, having only
a T1 line would violate the basic assumption that the contracted capacity is available.

Second, the ISP should be able to provide a path through their network to their ISP that
operates in excess of the contracted speed. If you buy T1 access that must cross a 56-Kbps

 74

line to reach the rest of the Internet, you don't really have T1 access.

Finally, ISPs should have multiple peering arrangements (connections to the global Internet)
so that if one connection goes down, there is an alternative path available.

Of course, your ISP may feel differently. And, if the price is really good, your arrangement
may make sense. Clearly, not all service arrangements are the same. You'll want to come to
a clear understanding with your ISP if you can. Unfortunately, with many ISPs, the
information you will need is a closely guarded secret. As always, caveat emptor.

4.2.4 Traffic Measurements with netstat

In the ideal network, throughput numbers, once you account for overhead, will be fairly close to your
bandwidth numbers. But few of us have our networks all to ourselves. When throughput numbers are
lower than expected, which is usually the case, you'll want to account for the difference. As mentioned
before, this could be hardware or software related. But usually it is just the result of the other traffic on
your network. If you are uncertain of the cause, the next step is to look at the traffic on your network.

There are three basic approaches you can take. First, the quickest way to get a summary of the activity
on a link is to use a tool such as netstat. This approach is described here. Or you can use packet
capture to look at traffic. This approach is described in Chapter 5. Finally, you could use SNMP-based
tools like ntop. SNMP tools are described in Chapter 7. Performance analysis tools using SNMP are
described in Chapter 8.

The program netstat was introduced in Chapter 2. Given that netstat's role is to report network data
structures, it should come as no surprise that it might be useful in this context. To get a quick picture
of the traffic on a network, use the -i option. For example:

bsd2# netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lp0* 1500 <Link> 0 0 0 0 0
ep0 1500 <Link> 00.60.97.06.22.22 13971293 0 1223799 1 0
ep0 1500 205.153.63 bsd2 13971293 0 1223799 1 0
tun0* 1500 <Link> 0 0 0 0 0
sl0* 552 <Link> 0 0 0 0 0
ppp0* 1500 <Link> 0 0 0 0 0
lo0 16384 <Link> 234 0 234 0 0
lo0 16384 127 localhost 234 0 234 0 0

The output shows the number of packets processed for each interface since the last reboot. In this
example, interface ep0 has received 13,971,293 packets (Ipkts) with no errors (Ierrs), has sent
1,223,799 packets (Opkts) with 1 error (Oerrs), and has experienced no collisions (Coll). A few
errors are generally not a cause for alarm, but the percentage of either error should be quite low,
certainly much lower than 0.1% of the total packets. Collisions can be higher but should be less than
10% of the traffic. The collision count includes only those involving the interface. A high number of
collisions is an indication that your network is too heavily loaded, and you should consider
segmentation. This particular computer is on a switch, which explains the absence of collision.
Collisions are seen only on shared media.

If you want output for a single interface, you can specify this with the -I option. For example:

bsd2# netstat -Iep0
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll

 75

ep0 1500 <Link> 00.60.97.06.22.22 13971838 0 1223818 1 0
ep0 1500 205.153.63 bsd2 13971838 0 1223818 1 0

(This was run a couple of minutes later so the numbers are slightly larger.)

Implementations vary, so your output may look different but should contain the same basic
information. For example, here is output under Linux:

lnx1# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 7366003 0 0 0 93092 0 0 0
BMRU
eth1 1500 0 289211 0 0 0 18581 0 0 0 BRU
lo 3924 0 123 0 0 0 123 0 0 0 LRU

As you can see, Linux breaks down lost packets into three categories—errors, drops, and overruns.

Unfortunately, the numbers netstat returns are cumulative from the last reboot of the system. What is
really of interest is how these numbers have changed recently, since a problem could develop and it
would take a considerable amount of time before the actual numbers would grow enough to reveal the
problem.[6]

[6] System Performance Tuning by Mike Loukides contains a script that can be run at regular intervals so
that differences are more apparent.

One thing you may want to try is stressing the system in question to see if this increases the number of
errors you see. You can use either ping with the -l option or the spray command. (spray is discussed in
greater detail in Chapter 9.)

First, run netstat to get a current set of values:

bsd2# netstat -Iep0
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ep0 1500 <Link> 00.60.97.06.22.22 13978296 0 1228137 1 0
ep0 1500 205.153.63 bsd2 13978296 0 1228137 1 0

Next, send a large number of packets to the destination. In this example, 1000 UDP packets were sent:

bsd1# spray -c1000 205.153.63.239
sending 1000 packets of lnth 86 to 205.153.63.239 ...
 in 0.09 seconds elapsed time
 464 packets (46.40%) dropped
Sent: 11267 packets/sec, 946.3K bytes/sec
Rcvd: 6039 packets/sec, 507.2K bytes/sec

Notice that this exceeded the capacity of the network as 464 packets were dropped. This may indicate
a congested network. More likely, the host is trying to communicate with a slower machine. When
spray is run in the reverse direction, no packets are dropped. This indicates the latter explanation.
Remember, spray is sending packets as fast as it can, so don't make too much out of dropped packets.

Finally, rerun nestat to see if any problems exist:

bsd2# netstat -Iep0

 76

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ep0 1500 <Link> 00.60.97.06.22.22 13978964 0 1228156 1 0
ep0 1500 205.153.63 bsd2 13978964 0 1228156 1 0

No problems are apparent in this example.

If problems are indicated, you can get a much more detailed report with the -s option. You'll probably
want to pipe the output to more so it doesn't disappear off the top of the screen. The amount of output
data can be intimidating but can give a wealth of information. The information is broken down by
protocol and by error types such as bad checksums or incomplete headers.

On some systems, such as FreeBSD, a summary of the nonzero values can be obtained by using the -s
option twice, as shown in this example:

bsd2# netstat -s -s
ip:
 255 total packets received
 255 packets for this host
 114 packets sent from this host
icmp:
 ICMP address mask responses are disabled
igmp:
tcp:
 107 packets sent
 81 data packets (8272 bytes)
 26 ack-only packets (25 delayed)
 140 packets received
 77 acks (for 8271 bytes)
 86 packets (153 bytes) received in-sequence
 1 connection accept
 1 connection established (including accepts)
 77 segments updated rtt (of 78 attempts)
 2 correct ACK header predictions
 62 correct data packet header predictions
udp:
 115 datagrams received
 108 broadcast/multicast datagrams dropped due to no socket
 7 delivered
 7 datagrams output

A summary for a single protocol can be obtained with the -p option to specify the protocol. The next
example shows the nonzero statistics for TCP:

bsd2# netstat -p tcp -s -s
tcp:
 147 packets sent
 121 data packets (10513 bytes)
 26 ack-only packets (25 delayed)
 205 packets received
 116 acks (for 10512 bytes)
 122 packets (191 bytes) received in-sequence
 1 connection accept
 1 connection established (including accepts)
 116 segments updated rtt (of 117 attempts)
 2 correct ACK header predictions
 88 correct data packet header predictions

 77

This can take a bit of experience to interpret. Begin by looking for statistics showing a large number
of errors. Next, identify the type of errors. Typically, input errors are caused by faulty hardware.
Output errors are a problem on or at the local host. Data corruption, such as faulty checksums,
frequently occurs at routers. And, as noted before, congestion is indicated by collisions. Of course,
these are generalizations, so don't read too much into them.

4.3 Microsoft Windows

Most of the tools we have been discussing are available in one form or another for Windows platforms.
Microsoft's implementation of traceroute, known as tracert, has both superficial and fundamental
differences from the original implementation. Like ping, tracert requires a DOS window to run. We
have already seen an example of its output. tracert has fewer options, and there are some superficial
differences in their flags. But most of traceroute's options are rarely used anyway, so this isn't much
of a problem.

A more fundamental difference between Microsoft's tracert and its Unix relative is that tracert uses
ICMP packets rather than UDP packets. This isn't necessarily bad, just different. In fact, if you have
access to both traceroute and tracert, you may be able to use this to your advantage in some unusual
circumstances. Its behavior may be surprising in some cases. One obvious implication is that routers
that block ICMP messages will block tracert, while traceroute's UDP packets will be passed.

As noted earlier in this chapter, Mentor's Java implementation of ttcp runs under Windows if you can
find it. Both netperf and iperf have also been ported to Windows. Another freely available program
worth considering is Qcheck from Ganymede Software, Inc. This program requires that Ganymede's
Performance Endpoints software be installed on systems at each end of the link. This software is also
provided at no cost and is available for a wide variety of systems ranging from Windows to MVS. In
addition to supporting IP, the software supports SPX and IPX protocols. The software provides ping-
like connectivity checks, as well as response time and throughput measurements.

As noted in Chapter 2, Microsoft also provides its own version of netstat. The options of interest here
are -e and -s. The -e option gives a brief summary of activity on any Ethernet interface:

C:\>netstat -e
Interface Statistics

 Received Sent

Bytes 9840233 2475741
Unicast packets 15327 16414
Non-unicast packets 9268 174
Discards 0 0
Errors 0 0
Unknown protocols 969

The -s option gives the per-protocol statistics:

C:\>netstat -s

IP Statistics

 Packets Received = 22070
 Received Header Errors = 0

 78

 Received Address Errors = 6
 Datagrams Forwarded = 0
 Unknown Protocols Received = 0
 Received Packets Discarded = 0
 Received Packets Delivered = 22064
 Output Requests = 16473
 Routing Discards = 0
 Discarded Output Packets = 0
 Output Packet No Route = 0
 Reassembly Required = 0
 Reassembly Successful = 0
 Reassembly Failures = 0
 Datagrams Successfully Fragmented = 0
 Datagrams Failing Fragmentation = 0
 Fragments Created = 0

ICMP Statistics

 Received Sent
 Messages 20 8
 Errors 0 0
 Destination Unreachable 18 8
 Time Exceeded 0 0
 Parameter Problems 0 0
 Source Quenchs 0 0
 Redirects 0 0
 Echos 0 0
 Echo Replies 0 0
 Timestamps 0 0
 Timestamp Replies 0 0
 Address Masks 0 0
 Address Mask Replies 0 0

TCP Statistics

 Active Opens = 489
 Passive Opens = 2
 Failed Connection Attempts = 69
 Reset Connections = 66
 Current Connections = 4
 Segments Received = 12548
 Segments Sent = 13614
 Segments Retransmitted = 134

UDP Statistics

 Datagrams Received = 8654
 No Ports = 860
 Receive Errors = 0
 Datagrams Sent = 2717

Interpretation is basically the same as with the Unix version.

 79

Chapter 5. Packet Capture
Packet capture and analysis is the most powerful technique that will be discussed in this book—it is
the ultimate troubleshooting tool. If you really want to know what is happening on your network, you
will need to capture traffic. No other tool provides more information.

On the other hand, no other tool requires the same degree of sophistication to use. If misused, it can
compromise your system's security and invade the privacy of your users. Of the software described in
this book, packet capture software is the most difficult to use to its full potential and requires a
thorough understanding of the underlying protocols to be used effectively. As noted in Chapter 1, you
must ensure that what you do conforms to your organization's policies and any applicable laws. You
should also be aware of the ethical implications of your actions.

This chapter begins with a discussion of the type of tools available and various issues involved in
traffic capture. Next I describe tcpdump, a ubiquitous and powerful packet capture tool. This is
followed by a brief description of other closely related tools. Next is a discussion of ethereal, a
powerful protocol analyzer that is rapidly gaining popularity. Next I describe some of the problems
created by traffic capture. The chapter concludes with a discussion of packet capture tools available
for use with Microsoft Windows platforms.

5.1 Traffic Capture Tools

Packet capture is the real-time collection of data as it travels over networks. Tools for the capture and
analysis of traffic go by a number of names including packet sniffers, packet analyzers, protocol
analyzers, and even traffic monitors. Although there is some inconsistency in how these terms are
used, the primary difference is in how much analysis or interpretation is provided after a packet is
captured. Packet sniffers generally do the least amount of analysis, while protocol analyzers provide
the greatest level of interpretation. Packet analyzers typically lie somewhere in between. All have the
capture of raw data as a core function. Traffic monitors typically are more concerned with collecting
statistical information, but many support the capture of raw data. Any of these may be augmented with
additional functions such as graphing utilities and traffic generators. This chapter describes tcpdump, a
packet sniffer, several analysis tools, and ethereal, a protocol analyzer.

While packet capture might seem like a low-level tool, it can also be used to examine what is
happening at higher levels, including the application level, because of the way data is encapsulated.
Since application data is encapsulated in a generally transparent way by the lower levels of the
protocol stack, the data is basically intact when examined at a lower level.[1] By examining network
traffic, we can examine the data generated at the higher levels. (In general, however, it is usually much
easier to debug an application using a tool designed for that application. Tools specific to several
application-level protocols are described in Chapter 10.)

[1] There are two obvious exceptions. The data may be encrypted, or the data may be fragmented
among multiple packets.

Packet capture programs also require the most technical expertise of any program we will examine. A
thorough understanding of the underlying protocol is often required to interpret the results. For this
reason alone, packet capture is a tool that you want to become familiar with well before you need it.

 80

When you are having problems, it will also be helpful to have comparison systems so you can observe
normal behavior. The time to learn how your system works is before you have problems. This
technique cannot be stressed enough—do a baseline run for your network periodically and analyze it
closely so you know what traffic you expect to see on your network before you have problems.

5.2 Access to Traffic

You can capture traffic only on a link that you have access to. If you can't get traffic to an interface,
you can't capture it with that interface. While this might seem obvious, it may be surprisingly difficult
to get access to some links on your network. On some networks, this won't be a problem. For example,
10Base2 and 10Base5 networks have shared media, at least between bridges and switches. Computers
connected to a hub are effectively on a shared medium, and the traffic is exposed. But on other
systems, watch out!

Clearly, if you are trying to capture traffic from a host on one network, it will never see the local
traffic on a different network. But the problem doesn't stop there. Some networking devices, such as
bridges and switches, are designed to contain traffic so that it is seen only by parts of the local
network. On a switched network, only a limited amount of traffic will normally be seen at any
interface.[2] Traffic will be limited to traffic to or from the host or to multicast and broadcast traffic. If
this includes the traffic you are interested in, so much the better. But if you are looking at general
network traffic, you will use other approaches.

[2] This assumes the switches have been running long enough to have a reasonably complete address
table. Most switches forward traffic onto all ports if the destination address is unknown. So when they
are first turned on, switches look remarkably like hubs.

Not being able to capture data on an interface has both positive and negative ramifications. The
primary benefit is that it is possible to control access to traffic with an appropriate network design. By
segmenting your network, you can limit access to data, improving security and enhancing privacy.

Lack of access to data can become a serious problem, however, when you must capture that traffic.
There are several basic approaches to overcome this problem. First, you can try to physically go to the
traffic by using a portable computer to collect the data. This has the obvious disadvantage of requiring
that you travel to the site. This may not be desirable or possible. For example, if you are addressing a
security problem, it may not be feasible to monitor at the source of the suspected attack without
revealing what you are doing. If you need to collect data at multiple points simultaneously, being at
different places at the same time is clearly not possible by yourself.

Another approach is to have multiple probe computers located throughout your network. For example,
if you have computers on your network that you can reach using telnet, ssh, X Window software, or
vnc, you can install the appropriate software on each. Some software has been designed with remote
probing in mind. For example, Microsoft's netmon supports the use of a Windows platform as a probe
for collecting traffic. Data from the agents on these machines can be collected by a central
management station. Some RMON probes will also do this. (vnc and ssh are described in Chapter 11.
netmon is briefly described later in this chapter, and RMON is described in Chapter 8.)

When dealing with switches, there are two common approaches you can take. (Several other
techniques that I can't recommend are described later in this chapter.) One approach is to augment the
switch with a spare hub. Attach the hub to the switch and move from the switch to the hub only the
connections that need to be examined. You could try replacing the switch with a hub, but this can be

 81

disruptive and, since a hub inherently has a lower capacity, you may have more traffic than the hub
can handle. Augmenting the switch with a hub is a better solution.

Buying a small portable hub to use in establishing a probe point into your network is certainly worth
the expense. Because you will be connecting a hub to a switch, you will be using both crossover and
patch cables. Be sure you work out the details of the cabling well before you have to try this approach
on a problematic network. Alternately, there are several commercially available devices designed
specifically for patching into networks. These devices include monitoring switches, fiber splitters, and
devices designed to patch into 100-Mbps links or links with special protocols. If your hardware
dictates such a need, these devices are worth looking into.

Here is a riddle for you—when is a hub not a hub? In recent years, the
distinction between hubs and switches has become blurred. For example, a
10/100 autoswitching hub may be implemented, internally, as a 10-Mbps hub
and a 100-Mbps hub connected by a dual-port switch. With such a device,
you may not be able to see all the traffic. In the next few years, true hubs may
disappear from the market. You may want to keep this in mind when looking
for a hub for traffic monitoring.

A second possibility with some switches is to duplicate the traffic from one port onto another port. If
your switch supports this, it can be reconfigured dynamically to copy traffic to a monitoring port.
Other ports continue functioning normally so the monitoring appears transparent to the rest of the
switch's operation. This technique is known by a variety of names. With Bay Network products, this is
known as conversation steering. Cisco refers to this as monitoring or using a spanning port. Other
names include port aliasing and port mirroring.

Unfortunately, many switches either don't support this behavior or place limitations on what can be
done. For instance, some switches will allow traffic to be redirected only to a high-speed port.
Implementation details determining exactly what can be examined vary greatly. Another problem is
that some types of errors will be filtered by the switch, concealing possible problems. For example, if
there are any framing errors, these will typically be discarded rather than forwarded. Normally,
discarding these packets is exactly what you want the switch to do, just not in this context. You'll have
to consult the documentation with your switch to see what is possible.

5.3 Capturing Data

Packet capture may be done by software running on a networked host or by hardware/software
combinations designed specifically for that purpose. Devices designed specifically for capturing
traffic often have high-performance interfaces that can capture large amounts of data without loss.
These devices will also capture frames with framing errors—frames that are often silently discarded
with more conventional interfaces. More conventional interfaces may not be able to keep up with high
traffic levels so packets will be lost. Programs like tcpdump give summary statistics, reporting the
number of packets lost. On moderately loaded networks, however, losing packets should not be a
problem. If dropping packets becomes a problem, you will need to consider faster hardware or, better
yet, segmenting your network.

Packet capture software works by placing the network interface in promiscuous mode.[3] In normal
operations, the network interface captures and passes on to the protocol stack only those packets with

TE
AM
FL
Y

Team-Fly®

 82

the interface's unicast address, packets sent to a multicast address that matches a configured address
for the interface, or broadcast packets. In promiscuous mode, all packets are captured regardless of
their destination address.

[3] On a few systems you may need to manually place the interface in promiscuous mode with the
ifconfig command before running the packet capture software.

While the vast majority of interfaces can be placed in promiscuous mode, a few are manufactured not
to allow this. If in doubt, consult the documentation for your interface. Additionally, on Unix systems,
the operating system software must be configured to allow promiscuous mode. Typically, placing an
interface in promiscuous mode requires root privileges.

5.4 tcpdump

The tcpdump program was developed at the Lawrence Berkeley Laboratory at the University of
California, Berkeley, by Van Jacobson, Craig Leres, and Steven McCanne. It was originally
developed to analyze TCP/IP performance problems. A number of features have been added over time
although some options may not be available with every implementation. The program has been ported
to a wide variety of systems and comes preinstalled on many systems.

For a variety of reasons, tcpdump is an ideal tool to begin with. It is freely available, runs on many
Unix platforms, and has even been ported to Microsoft Windows. Features of its syntax and its file
format have been used or supported by a large number of subsequent programs. In particular, its
capture software, libpcap, is frequently used by other capture programs. Even when proprietary
programs with additional features exist, the universality of tcpdump makes it a compelling choice. If
you work with a wide variety of platforms, being able to use the same program on all or most of the
platforms can easily outweigh small advantages proprietary programs might have. This is particularly
true if you use the programs on an irregular basis or don't otherwise have time to fully master them. It
is better to know a single program well than several programs superficially. In such situations, special
features of other programs will likely go unused.

Since tcpdump is text based, it is easy to run remotely using a Telnet connection. Its biggest
disadvantage is a lack of analysis, but you can easily capture traffic, move it to your local machine,
and analyze it with a tool like ethereal. Typically, I use tcpdump in text-only environments or on
remote computers. I use ethereal in a Microsoft Windows or X Window environment and to analyze
tcpdump files.

5.4.1 Using tcpdump

The simplest way to run tcpdump is interactively by simply typing the program's name. The output
will appear on your screen. You can terminate the program by typing Ctrl-C. But unless you have an
idle network, you are likely to be overwhelmed by the amount of traffic you capture. What you are
interested in will likely scroll off your screen before you have a chance to read it.

Fortunately, there are better ways to run tcpdump. The first question is how you plan to use tcpdump.
Issues include whether you also plan to use the host on which tcpdump is running to generate traffic in
addition to capturing traffic, how much traffic you expect to capture, and how you will determine that
the traffic you need has been captured.

 83

There are several very simple, standard ways around the problem of being overwhelmed by data. The
Unix commands tee and script are commonly used to allow a user to both view and record output
from a Unix session. (Both tee and script are described in Chapter 11.) For example, script could be
started, tcpdump run, and script stopped to leave a file that could be examined later.

The tee command is slightly more complicated since tcpdump must be placed in line mode to display
output with tee. This is done with the -l option. The syntax for capturing a file with tee is:

bsd1# tcpdump -l | tee outfile

Of course, additional arguments would probably be used.

Using multiple Telnet connections to a host or multiple windows in an X Window session allows you
to record in one window while taking actions to generate traffic in another window. This approach can
be very helpful in some circumstances.

An alternative is to use telnet to connect to the probe computer. The session could be logged with
many of the versions of telnet that are available. Be aware, however, that the Telnet connection will
generate considerable traffic that may become part of your log file unless you are using filtering.
(Filtering, which is discussed later in this chapter, allows you to specify the type of traffic you want to
examine.) The additional traffic may also overload the connection, resulting in lost packets.

Another alternative is to run tcpdump as a detached process by including an & at the end of the
command line. Here is an example:

bsd1# tcpdump -w outfile &
[1] 70260
bsd1# tcpdump: listening on xl0

The command starts tcpdump, prints a process number, and returns the user prompt along with a
message that tcpdump has started. You can now enter commands to generate the traffic you are
interested in. (You really have a prompt at this point; the message from tcpdump just obscures it.)
Once you have generated the traffic of interest, you can terminate tcpdump by issuing a kill command
using the process number reported when tcpdump was started. (You can use the ps command if you
have forgotten the process number.)

bsd1# kill 70260
153 packets received by filter
0 packets dropped by kernel
[1] Done tcpdump -w outfile

You can now analyze the capture file. (Running tcpdump as a detached process can also be useful
when you are trying to capture traffic that might not show up for a while, e.g., RADIUS or DNS
exchanges. You might want to use the nohup command to run it in the background.)

Yet another approach is to use the -w option to write the captured data directly to a file. This option
has the advantage of collecting raw data in binary format. The data can then be replayed with tcpdump
using the -r option. The binary format decreases the amount of storage needed, and different filters
can be applied to the file without having to recapture the traffic. Using previously captured traffic is
an excellent way of fine-tuning filters to be sure they work as you expect. Of course, you can
selectively analyze data captured as text files in Unix by using the many tools Unix provides, but you
can't use tcpdump filtering on text files. And you can always generate a text file from a tcpdump file

 84

for subsequent analysis with Unix tools by simply redirecting the output. To capture data you might
type:

bsd1# tcpdump -w rawfile

The data could be converted to a text file with:

bsd1# tcpdump -r rawfile > textfile

This approach has several limitations. Because the data is being written directly to a file, you must
know when to terminate recording without actually seeing the traffic. Also, if you limit what is
captured with the original run, the data you exclude is lost. For these reasons, you will probably want
to be very liberal in what you capture, offsetting some of the storage gains of the binary format.
Clearly, each approach has its combination of advantages and disadvantages. If you use tcpdump very
much, you will probably need each from time to time.

5.4.2 tcpdump Options

A number of command-line options are available with tcpdump. Roughly speaking, options can be
separated into four broad categories—commands that control the program operations (excluding
filtering), commands that control how data is displayed, commands that control what data is displayed,
and filtering commands. We will consider each category in turn.

5.4.2.1 Controlling program behavior

This class of command-line options affects program behavior, including the way data is collected. We
have already seen two examples of control commands, -r and -w. The -w option allows us to redirect
output to a file for later analysis, which can be extremely helpful if you are not sure exactly how you
want to analyze your data. You can subsequently play back capture data using the -r option. You can
repeatedly apply different display options or filters to the data until you have found exactly the
information you want. These options are extremely helpful in learning to use tcpdump and are
essential for documentation and sharing.

If you know how many packets you want to capture or if you just have an upper limit on the number
of packets, the -c option allows you to specify that number. The program will terminate automatically
when that number is reached, eliminating the need to use a kill command or Ctrl-C. In the next
example, tcpdump will terminate after 100 packets are collected:

bsd1# tcpdump -c100

While limiting packet capture can be useful in some circumstances, it is generally difficult to predict
accurately how many packets need to be collected.

If you are running tcpdump on a host with more than one network interface, you can specify which
interface you want to use with the -i option. Use the command ifconfig -a to discover what interfaces
are available and what networks they correspond to if you aren't sure. For example, suppose you are
using a computer with two class C interfaces, xl0 with an IP address of 205.153.63.238 and xl1 with
an IP address of 205.153.61.178. Then, to capture traffic on the 205.153.61.0 network, you would use
the command:

bsd1# tcpdump -i xl1

 85

Without an explicitly identified interface, tcpdump defaults to the lowest numbered interface.

The -p option says that the interface should not be put into promiscuous mode. This option would, in
theory, limit capture to the normal traffic on the interface—traffic to or from the host, multicast traffic,
and broadcast traffic. In practice, the interface might be in promiscuous mode for some other reason.
In this event, -p will not turn promiscuous mode off.

Finally, -s controls the amount of data captured. Normally, tcpdump defaults to some maximum byte
count and will only capture up to that number of bytes from individual packets. The actual number of
bytes depends on the pseudodevice driver used by the operating system. The default is selected to
capture appropriate headers, but not to collect packet data unnecessarily. By limiting the number of
bytes collected, privacy can be improved. Limiting the number of bytes collected also decreases
processing and buffering requirements.

If you need to collect more data, the -s option can be used to specify the number of bytes to collect. If
you are dropping packets and can get by with fewer bytes, -s can be used to decrease the number of
bytes collected. The following command will collect the entire packet if its length is less than or equal
to 200 bytes:

bsd1# tcpdump -s200

Longer packets will be truncated to 200 bytes.

If you are capturing files using the -w option, you should be aware that the number of bytes collected
will be what is specified by the -s option at the time of capture. The -s option does not apply to files
read back with the -r option. Whatever you captured is what you have. If it was too few bytes, then
you will have to recapture the data.

5.4.2.2 Controlling how information is displayed

The -a, -n, -N, and -f options determine how address information is displayed. The -a option attempts
to force network addresses into names, the -n option prevents the conversion of addresses into names,
the -N option prevents domain name qualification, and the -f option prevents remote name resolution.
In the following, the remote site www.cisco.com (192.31.7.130) is pinged from sloan.lander.edu
(205.153.63.30) without an option, with -a, with -n, with -N, and with -f, respectively. (The options -
c1 host 192.31.7.130 restricts capture to one packet to or from the host 192.31.7.130.)

bsd1# tcpdump -c1 host 192.31.7.130
tcpdump: listening on xl0
14:16:35.897342 sloan.lander.edu > cio-sys.cisco.com: icmp: echo request
bsd1# tcpdump -c1 -a host 192.31.7.130
tcpdump: listening on xl0
14:16:14.567917 sloan.lander.edu > cio-sys.cisco.com: icmp: echo request
bsd1# tcpdump -c1 -n host 192.31.7.130
tcpdump: listening on xl0
14:17:09.737597 205.153.63.30 > 192.31.7.130: icmp: echo request
bsd1# tcpdump -c1 -N host 192.31.7.130
tcpdump: listening on xl0
14:17:28.891045 sloan > cio-sys: icmp: echo request
bsd1# tcpdump -c1 -f host 192.31.7.130
tcpdump: listening on xl0
14:17:49.274907 sloan.lander.edu > 192.31.7.130: icmp: echo request

Clearly, the -a option is the default.

 86

Not using name resolution can eliminate the overhead and produce terser output. If the network is
broken, you may not be able to reach your name server and will find yourself with long delays, while
name resolution times out. Finally, if you are running tcpdump interactively, name resolution will
create more traffic that will have to be filtered out.

The -t and -tt options control the printing of timestamps. The -t option suppresses the display of the
timestamp while -tt produces unformatted timestamps. The following shows the output for the same
packet using tcpdump without an option, with the -t option, and with the -tt option, respectively:

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF)

sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394 win 8647 (DF)

934303014.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack
3259091394
win 8647 (DF)

The -t option produces a more terse output while the -tt output can simplify subsequent processing,
particularly if you are writing scripts to process the data.

5.4.2.3 Controlling what's displayed

The verbose modes provided by -v and -vv options can be used to print some additional information.
For example, the -v option will print TTL fields. For less information, use the -q, or quiet, option.
Here is the output for the same packet presented with the -q option, without options, with the -v option,
and with the -vv option, respectively:

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: tcp 0 (DF)

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF)

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF) (ttl 128, id 45836)

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394
win 8647 (DF) (ttl 128, id 45836)

This additional information might be useful in a few limited contexts, while the quiet mode provides
shorter output lines. In this instance, there was no difference between the results with -v and -vv, but
this isn't always the case.

The -e option is used to display link-level header information. For the packet from the previous
example, with the -e option, the output is:

12:36:54.772066 0:10:5a:a1:e9:8 0:10:5a:e3:37:c ip 60:
sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack 3259091394 win 8647 (DF)

0:10:5a:a1:e9:8 is the Ethernet address of the 3Com card in sloan.lander.edu, while 0:10:5a:e3:37:c
is the Ethernet address of the 3Com card in 205.153.63.238. (We can discover the types of adapters
used by looking up the OUI portion of these addresses, as described in Chapter 2.)

For the masochist who wants to decode packets manually, the -x option provides a hexadecimal dump
of packets, excluding link-level headers. A packet displayed with the -x and -vv options looks like this:

 87

13:57:12.719718 bsd1.lander.edu.1657 > 205.153.60.5.domain: 11587+ A? www.
microsoft.com. (35) (ttl 64, id 41353)
 4500 003f a189 0000 4011 c43a cd99 3db2
 cd99 3c05 0679 0035 002b 06d9 2d43 0100
 0001 0000 0000 0000 0377 7777 096d 6963
 726f 736f 6674 0363 6f6d 0000 0100 01

Please note that the amount of information displayed will depend on how many bytes are collected, as
determined by the -s option. Such hex listings are typical of what might be seen with many capture
programs.

Describing how to do such an analysis in detail is beyond the scope of this book, as it requires a
detailed understanding of the structure of packets for a variety of protocols. Interpreting this data is a
matter of taking packets apart byte by byte or even bit by bit, realizing that the interpretation of the
results at one step may determine how the next steps will be done. For header formats, you can look to
the appropriate RFC or in any number of books. Table 5-1 summarizes the analysis for this particular
packet, but every packet is different. This particular packet was a DNS lookup for www.microsoft.com.
(For more information on decoding packets, see Eric A. Hall's Internet Core Protocols: The Definitive
Guide.)

Table 5-1. Packet analysis summary
Raw data in hex Interpretation

IP header
First 4 bits of 45 IP version—4
Last 4 bits of 45 Length of header multiplier—5 (times 4 or 20 bytes)
00 Type of service
00 3f Packet length in hex—63 bytes
a1 89 ID
First 3 bits of 00 000—flags, none set
Last 13 bits of 00 00 Fragmentation offset
40 TTL—64 hops
11 Protocol number in hex—UDP
c4 3a Header checksum
cd 99 3d b2 Source IP—205.153.61.178
cd 99 3c 05 Destination IP—205.153.60.5
UDP header
06 79 Source port
00 35 Destination port—DNS
00 2b UDP packet length—43 bytes
06 d9 Header checksum
DNS message
2d 43 ID
01 00 Flags—query with recursion desired
00 01 Number of queries
00 00 Number of answers
00 00 Number of authority RRs
00 00 Number of additional RRs

 88

Query
03 Length—3
77 77 77 String—"www"
09 Length—9
6d 69 63 72 6f 73 6f 66 74 String—"microsoft"
03 Length—3
63 6f 6d String—"com"
00 Length—0
00 01 Query type—IP address
00 01 Query class—Internet

This analysis was included here primarily to give a better idea of how packet analysis works. Several
programs that analyze packet data from a tcpdump trace file are described later in this chapter. Unix
utilities like strings, od, and hexdump can also make the process easier. For example, in the following
example, this makes it easier to pick out www.microsoft.com in the data:

bsd1# hexdump -C tracefile
00000000 d4 c3 b2 a1 02 00 04 00 00 00 00 00 00 00 00 00 |................|
00000010 c8 00 00 00 01 00 00 00 78 19 06 38 66 fb 0a 00 |........x..8f...|
00000020 4d 00 00 00 4d 00 00 00 00 00 a2 c6 0e 43 00 60 |M...M........C.`|
00000030 97 92 4a 7b 08 00 45 00 00 3f a1 89 00 00 40 11 |..J{..E..?....@.|
00000040 c4 3a cd 99 3d b2 cd 99 3c 05 06 79 00 35 00 2b |.:..=...<..y.5.+|
00000050 06 d9 2d 43 01 00 00 01 00 00 00 00 00 00 03 77 |..-C...........w|
00000060 77 77 09 6d 69 63 72 6f 73 6f 66 74 03 63 6f 6d |ww.microsoft.com|
00000070 00 00 01 00 01 |.....|
00000075

The -vv option could also be used to get as much information as possible.

Hopefully, you will have little need for the -x option. But occasionally you may encounter a packet
that is unknown to tcpdump, and you have no choice. For example, some of the switches on my local
network use a proprietary implementation of a spanning tree protocol to implement virtual local area
networks (VLANs). Most packet analyzers, including tcpdump, won't recognize these. Fortunately,
once you have decoded one unusual packet, you can usually easily identify similar packets.

5.4.2.4 Filtering

To effectively use tcpdump, it is necessary to master the use of filters. Filters permit you to specify
what traffic you want to capture, allowing you to focus on just what is of interest. This can be
absolutely essential if you need to extract a small amount of traffic from a massive trace file.
Moreover, tools like ethereal use the tcpdump filter syntax for capturing traffic, so you'll want to learn
the syntax if you plan to use these tools.

If you are absolutely certain that you are not interested in some kinds of traffic, you can exclude traffic
as you capture. If you are unclear of what traffic you want, you can collect the raw data to a file and
apply the filters as you read back the file. In practice, you will often alternate between these two
approaches.

Filters at their simplest are keywords added to the end of the command line. However, extremely
complex commands can be constructed using logical and relational operators. In the latter case, it is
usually better to save the filter to a file and use the -F option. For example, if testfilter is a text file

 89

containing the filter host 205.153.63.30, then typing tcpdump -Ftestfilter is equivalent
to typing the command tcpdump host 205.153.63.30. Generally, you will want to use this feature with
complex filters only. However, you can't combine filters on the command line with a filters file in the
same command.

5.4.2.4.1 Address filtering.

It should come as no surprise that filters can select traffic based on addresses. For example, consider
the command:

bsd1# tcpdump host 205.153.63.30

This command captures all traffic to and from the host with the IP address 205.153.63.30. The host
may be specified by IP number or name. Since an IP address has been specified, you might incorrectly
guess that the captured traffic will be limited to IP traffic. In fact, other traffic, such as ARP traffic,
will also be collected by this filter. Restricting capture to a particular protocol requires a more
complex filter. Nonintuitive behavior like this necessitates a thorough testing of all filters.

Addresses can be specified and restricted in several ways. Here is an example that uses the Ethernet
address of a computer to select traffic:

bsd1# tcpdump ether host 0:10:5a:e3:37:c

Capture can be further restricted to traffic flows for a single direction, either to a host or from a host,
using src to specify the source of the traffic or dst to specify the destination. The next example shows
a filter that collects traffic sent to the host at 205.153.63.30 but not from it:

bsd1# tcpdump dst 205.153.63.30

Note that the keyword host was omitted in this example. Such omissions are OK in several instances,
but it is always safer to include these keywords.

Multicast or broadcast traffic can be selected by using the keyword multicast or broadcast,
respectively. Since multicast and broadcast traffic are specified differently at the link level and the
network level, there are two forms for each of these filters. The filter ether multicast captures traffic
with an Ethernet multicast address, while ip multicast captures traffic with an IP multicast address.
Similar qualifiers are used with broadcast traffic. Be aware that multicast filters may capture broadcast
traffic. As always, test your filters.

Traffic capture can be restricted to networks as well as hosts. For example, the following command
restricts capture to packets coming from or going to the 205.153.60.0 network:

bsd1# tcpdump net 205.153.60

The following command does the same thing:

bsd1# tcpdump net 205.153.60.0 mask 255.255.255.0

Although you might guess otherwise, the following command does not work properly due to the
final .0:

 90

bsd1# tcpdump net 205.153.60.0

Be sure to test your filters!

5.4.2.4.2 Protocol and port filtering.

It is possible to restrict capture to specific protocols such as IP, Appletalk, or TCP. You can also
restrict capture to services built on top of these protocols, such as DNS or RIP. This type of capture
can be done in three ways—by using a few specific keywords known by tcpdump, by protocol using
the proto keyword, or by service using the port keyword.

Several of these protocol names are recognized by tcpdump and can be identified by keyword. The
following command restricts the traffic captured to IP traffic:

bsd1# tcpdump ip

Of course, IP traffic will include TCP traffic, UDP traffic, and so on.

To capture just TCP traffic, you would use:

bsd1# tcpdump tcp

Recognized keywords include ip, igmp, tcp, udp, and icmp.

There are many transport-level services that do not have recognized keywords. In this case, you can
use the keywords proto or ip proto followed by either the name of the protocol found in the
/etc/protocols file or the corresponding protocol number. For example, either of the following will
look for OSPF packets:

bsd1# tcpdump ip proto ospf
bsd1# tcpdump ip proto 89

Of course, the first works only if there is an entry in /etc/protocols for OSPF.

Built-in keywords may cause problems. In these examples, the keyword tcp must either be escaped or
the number must be used. For example, the following is fine:

bsd#1 tcpdump ip proto 6

On the other hand, you can't use tcp with proto.

bsd#1 tcpdump ip proto tcp

will generate an error.

For higher-level services, services built on top of the underlying protocols, you must use the keyword
port. Either of the following will collect DNS traffic:

bsd#1 tcpdump port domain
bds#1 tcpdump port 53

 91

In the former case, the keyword domain is resolved by looking in /etc/services. When there may be
ambiguity between transport-layer protocols, you may further restrict ports to a particular protocol.
Consider the command:

bsd#1 tcpdump udp port domain

This will capture DNS name lookups using UDP but not DNS zone transfers using TCP. The two
previous commands would capture both.

5.4.2.4.3 Packet characteristics.

Filters can also be designed based on packet characteristics such as packet length or the contents of a
particular field. These filters must include a relational operator. To use length, the keyword less or
greater is used. Here is an example:

bsd1# tcpdump greater 200

This command collects packets longer than 200 bytes.

Looking inside packets is a little more complicated in that you must understand the structure of the
packet's header. But despite the complexity, or perhaps because of it, this technique gives you the
greatest control over what is captured. (If you are charged with creating a firewall using a product that
requires specifying offsets into headers, practicing with tcpdump could prove invaluable.)

The general syntax is proto[expr:size]. The field proto indicates which header to look into—ip
for the IP header, tcp for the TCP header, and so forth. The expr field gives an offset into the header
indexed from 0. That is, the first byte in a header is number 0, the second byte is number 1, and so
forth. Alternately, you can think of expr as the number of bytes in the header to skip over. The size
field is optional. It specifies the number of bytes to use and can be 1, 2, or 4.

bsd1# tcpdump "ip[9] = 6"

looks into the IP header at the tenth byte, the protocol field, for a value of 6. Notice that this must be
quoted. Either an apostrophe or double quotes should work, but a backquote will not work.

bsd1# tcpdump tcp

is an equivalent command since 6 is the protocol number for TCP.

This technique is frequently used with a mask to select specific bits. Values should be in hex.
Comparisons are specified using the syntax & followed by a bit mask. The next example extracts the
first byte from the Ethernet header (i.e., the first byte of the destination address), extracts the low-
order bit, and makes sure the bit is not 0:[4]

[4] The astute reader will notice that this test could be more concisely written as =1 rather than !=0.
While it doesn't matter for this example, using the second form simplifies testing in some cases and is a
common idiom. In the next command, the syntax is simpler since you are testing to see if multiple bits
are set.

bsd1# tcpdump 'ether[0] & 1 != 0'

This will match multicast and broadcast packets.

TE
AM
FL
Y

Team-Fly®

 92

With both of these examples, there are better ways of matching the packets. For a more realistic
example, consider the command:

bsd1# tcpdump "tcp[13] & 0x03 != 0"

This filter skips the first 13 bytes in the TCP header, extracting the flag byte. The mask 0x03 selects
the first and second bits, which are the FIN and SYN bits. A packet is captured if either bit is set. This
will capture setup or teardown packets for a TCP connection.

It is tempting to try to mix in relational operators with these logical operators. Unfortunately,
expressions like tcp src port > 23 don't work. The best way of thinking about it is that the expression
tcp src port returns a value of true or false, not a numerical value, so it can't be compared to a number.
If you want to look for all TCP traffic with a source port with a value greater than 23, you must extract
the port field from the header using syntax such as "tcp[0:2] & 0xffff > 0x0017".

5.4.2.4.4 Compound filters.

All the examples thus far have consisted of simple commands with a single test. Compound filters can
be constructed in tcpdump using logical operator and, or, and not. These are often abbreviated &&,
||, and ! respectively. Negation has the highest precedence. Precedence is left to right in the absence
of parentheses. While parentheses can be used to change precedence, remember that they must be
escaped or quoted.

Earlier it was noted that the following will not limit capture to just IP traffic:

bsd1# tcpdump host 205.153.63.30

If you really only want IP traffic in this case, use the command:

bsd1# tcpdump host 205.153.63.30 and ip

On the other hand, if you want all traffic to the host except IP traffic, you could use:

bsd1# tcpdump host 205.153.63.30 and not ip

If you need to capture all traffic to and from the host and all non-IP traffic, replace the and with an or.

With complex expressions, you have to be careful of the precedence. Consider the two commands:

bsd1# tcpdump host lnx1 and udp or arp
bsd1# tcpdump "host lnx1 and (udp or arp)"

The first will capture all UDP traffic to or from lnx1 and all ARP traffic. What you probably want is
the second, which captures all UDP or ARP traffic to or from lxn1. But beware, this will also capture
ARP broadcast traffic. To beat a dead horse, be sure to test your filters.

I mentioned earlier that running tcpdump on a remote station using telnet was one way to collect data
across your network, except that the Telnet traffic itself would be captured. It should be clear now that
the appropriate filter can be used to avoid this problem. To eliminate a specific TCP connection, you
need four pieces of information—the source and destination IP addresses and the source and

 93

destination port numbers. In practice, the two IP addresses and the well-known port number is often
enough.

For example, suppose you are interested in capturing traffic on the host lnx1, you are logged onto the
host bsd1, and you are using telnet to connect from bsd1 to lnx1. To capture all the traffic at lnx1,
excluding the Telnet traffic between bsd1 and lnx1, the following command will probably work
adequately in most cases:

lnx1# tcpdump -n "not (tcp port telnet and host lnx1 and host bsd1)"

We can't just exclude Telnet traffic since that would exclude all Telnet traffic between lnx1 and any
host. We can't just exclude traffic to or from one of the hosts because that would exclude non-Telnet
traffic as well. What we want to exclude is just traffic that is Telnet traffic, has lnx1 as a host, and has
bsd1 as a host. So we take the negation of these three requirements to get everything else.

While this filter is usually adequate, this filter excludes all Telnet sessions between the two hosts, not
just yours. If you really want to capture other Telnet traffic between lnx1 and bsd1, you would need to
include a fourth term in the negation giving the ephemeral port assigned by telnet. You'll need to run
tcpdump twice, first to discover the ephemeral port number for your current session since it will be
different with every session, and then again with the full filter to capture the traffic you are interested
in.

One other observation—while we are not reporting the traffic, the traffic is still there. If you are
investigating a bandwidth problem, you have just added to the traffic. You can, however, minimize
this traffic during the capture if you write out your trace to a file on lnx1 using the -w option. This is
true, however, only if you are using a local filesystem. Finally, note the use of the -n option. This is
required to prevent name resolution. Otherwise, tcpdump would be creating additional network traffic
in trying to resolve IP numbers into names as noted earlier.

Once you have mastered the basic syntax of tcpdump, you should run tcpdump on your own system
without any filters. It is worthwhile to do this occasionally just to see what sorts of traffic you have on
your network. There are likely to be a number of surprises. In particular, there may be router protocols,
switch topology information exchange, or traffic from numerous PC-based protocols that you aren't
expecting. It is very helpful to know that this is normal traffic so when you have problems you won't
blame the problems on this strange traffic.

This has not been an exhaustive treatment of tcpdump, but I hope that it adequately covers the basics.
The manpage for tcpdump contains a wealth of additional information, including several detailed
examples with explanations. One issue I have avoided has been how to interpret tcpdump data.
Unfortunately, this depends upon the protocol and is really beyond the scope of a book such as this.
Ultimately, you must learn the details of the protocols. For TCP/IP, Richard W. Stevens' TCP/IP
Illustrated, vol. 1, The Protocols has extensive examples using tcpdump. But the best way to learn is
to use tcpdump to examine the behavior of working systems.

5.5 Analysis Tools

As previously noted, one reason for using tcpdump is the wide variety of support tools that are
available for use with tcpdump or files created with tcpdump. There are tools for sanitizing the data,
tools for reformatting the data, and tools for presenting and analyzing the data.

 94

5.5.1 sanitize

If you are particularly sensitive to privacy or security concerns, you may want to consider sanitize, a
collection of five Bourne shell scripts that reduce or condense tcpdump trace files and eliminate
confidential information. The scripts renumber host entries and select classes of packets, eliminating
all others. This has two primary uses. First, it reduces the size of the files you must deal with,
hopefully focusing your attention on a subset of the original traffic that still contains the traffic of
interest. Second, it gives you data that can be distributed or made public (for debugging or network
analysis) without compromising individual privacy or revealing too much specific information about
your network. Clearly, these scripts won't be useful for everyone. But if internal policies constrain
what you can reveal, these scripts are worth looking into.

The five scripts included in sanitize are sanitize-tcp, sanitize-syn-fin, sanitize-udp, sanitize-encap, and
sanitize-other. Each script filters out inappropriate traffic and reduces the remaining traffic. For
example, all non-TCP packets are removed by sanitize-tcp and the remaining TCP traffic is reduced to
six fields—an unformatted timestamp, a renumbered source address, a renumbered destination address,
the source port, a destination address, and the number of data bytes in the packet.

934303014.772066 205.153.63.30.1174 > 205.153.63.238.23: . ack 3259091394 win
8647 (DF)
 4500 0028 b30c 4000 8006 2d84 cd99 3f1e
 cd99 3fee 0496 0017 00ff f9b3 c241 c9c2
 5010 21c7 e869 0000 0000 0000 0000

would be reduced to 934303014.772066 1 2 1174 23 0. Notice that the IP numbers have
been replaced with 1 and 2, respectively. This will be done in a consistent manner with multiple
packets so you will still be able to compare addresses within a single trace. The actual data reported
varies from script to script. Here is an example of the syntax:

bsd1# sanitize-tcp tracefile

This runs sanitize-tcp over the tcpdump trace file tracefile. There are no arguments.

5.5.2 tcpdpriv

The program tcpdpriv is another program for removing sensitive information from tcpdump files.
There are several major differences between tcpdpriv and sanitize. First, as a shell script, sanitize
should run on almost any Unix system. As a compiled program, this is not true of tcpdpriv. On the
other hand, tcpdpriv supports the direct capture of data as well as the analysis of existing files. The
captured packets are written as a tcpdump file, which can be subsequently processed.

Also, tcpdpriv allows you some degree of control over how much of the original data is removed or
scrambled. For example, it is possible to have an IP address scrambled but retain its class designation.
If the -C4 option is chosen, an IP address such as 205.153.63.238 might be replaced with 193.0.0.2.
Notice that address classes are preserved—a class C address is replaced with a class C address.

There are a variety of command-line options that control how data is rewritten, several of which are
mandatory. Many of the command-line options will look familiar to tcpdump users. The program does
not allow output to be written to a terminal, so it must be written directly to a file or redirected. While
a useful program, the number of required command-line options can be annoying. There is some
concern that if the options are not selected properly, it may be possible to reconstruct the original data
from the scrambled data. In practice, this should be a minor concern.

 95

As an example of using tcpdpriv, the following command will scramble the file tracefile:

bsd1# tcpdpriv -P99 -C4 -M20 -r tracefile -w outfile

The -P99 option preserves (doesn't scramble) the port numbers, -C4 preserves the class identity of the
IP addresses, and -M20 preserves multicast addresses. If you want the data output to your terminal,
you can pipe the output to tcpdump:

bsd1# tcpdpriv -P99 -C4 -M20 -r tracefile -w- | tcpdump -r-

The last options look a little strange, but they will work.

5.5.3 tcpflow

Another useful tool is tcpflow, written by Jeremy Elson. This program allows you to capture
individual TCP flows or sessions. If the traffic you are looking at includes, say, three different Telnet
sessions, tcpflow will separate the traffic into three different files so you can examine each
individually. The program can reconstruct data streams regardless of out-of-order packets or
retransmissions but does not understand fragmentation.

tcpflow stores each flow in a separate file with names based on the source and destination addresses
and ports. For example, SSH traffic (port 22) between 172.16.2.210 and 205.153.63.30 might have the
filename 172.016.002.210.00022-205.153.063.030.01071, where 1071 is the ephemeral port created
for the session.

Since tcpflow uses libpcap, the same packet capture library tcpdump uses, capture filters are
constructed in exactly the same way and with the same syntax. It can be used in a number of ways.
For example, you could see what cookies are being sent during an HTTP session. Or you might use it
to see if SSH is really encrypting your data. Of course, you could also use it to capture passwords or
read email, so be sure to set permissions correctly.

5.5.4 tcp-reduce

The program tcp-reduce invokes a collection of shell scripts to reduce the packet capture information
in a tcpdump trace file to one-line summaries for each connection. That is, an entire Telnet session
would be summarized by a single line. This could be extremely useful in getting an overall picture of
how the traffic over a link breaks down or for looking quickly at very large files.

The syntax is quite simple.

bsd1# tcp-reduce tracefile > outfile

will reduce tracefile, putting the output in outfile. The program tcp-summary, which comes with tcp-
reduce, will further summarize the results. For example, on my system I traced a system briefly with
tcpdump. This process collected 741 packets. When processed with tcp-reduce, this revealed 58 TCP
connections. Here is an example when results were passed to tcp-summary :

bsd1# tcp-reduce out-file | tcp-summary

This example produced the following five-line summary:

 96

proto # conn KBytes % SF % loc % ngh
----- ------ ------ ---- ----- -----
www 56 35 25 0 0
telnet 1 1 100 0 0
pop-3 1 0 100 0 0

In this instance, this clearly shows that the HTTP traffic dominated the local network traffic.

5.5.5 tcpshow

The program tcpshow decodes a tcpdump trace file. It represents an alternative to using tcpdump to
decode data. The primary advantage of tcpshow is much nicer formatting for output. For example,
here is the tcpdump output for a packet:

12:36:54.772066 sloan.lander.edu.1174 > 205.153.63.238.telnet: . ack
3259091394 win 8647 (DF) b

Here is corresponding output from tcpshow for the same packet:

Packet 1
TIME: 12:36:54.772066
LINK: 00:10:5A:A1:E9:08 -> 00:10:5A:E3:37:0C type=IP
 IP: sloan -> 205.153.63.238 hlen=20 TOS=00 dgramlen=40 id=B30C
 MF/DF=0/1 frag=0 TTL=128 proto=TCP cksum=2D84
 TCP: port 1174 -> telnet seq=0016775603 ack=3259091394
 hlen=20 (data=0) UAPRSF=010000 wnd=8647 cksum=E869 urg=0
DATA: <No data>

The syntax is:

bsd1# tcpshow < trace-file

There are numerous options.

5.5.6 tcpslice

The program tcpslice is a simple but useful program for extracting pieces or merging tcpdump files.
This is a useful utility for managing larger tcpdump files. You specify a starting time and optionally an
ending time for a file, and it extracts the corresponding records from the source file. If multiple files
are specified, it extracts packets from the first file and then continues extracting only those packets
from the next file that have a later timestamp. This prevents duplicate packets if you have overlapping
trace files.

While there are a few options, the basic syntax is quite simple. For example, consider the command:

bsd1# tcpslice 934224220.0000 in-file > out-file

This will extract all packets with timestamps after 934224220.0000. Note the use of an unformatted
timestamp. This is the same format displayed with the -tt option with tcpdump. Note also the use of
redirection. Because it works with binary files, tcpslice will not allow you to send output to your
terminal. See the manpage for additional options.

 97

5.5.7 tcptrace

This program is an extremely powerful tcpdump file analysis tool. The program tcptrace is strictly an
analysis tool, not a capture program, but it works with a variety of capture file formats. The tool's
primary focus is the analysis of TCP connections. As such, it is more of a network management tool
than a packet analysis tool. The program provides several levels of output or analysis ranging from
very brief to very detailed.

While for most purposes tcptrace is used as a command-line tool, tcptrace is capable of producing
several types of output files for plotting with the X Window program xplot. These include time
sequence graphs, throughput graphs, and graphs of round-trip times. Time sequence graphs (-S option)
are plots of sequence numbers over time that give a picture of the activity on the network. Throughput
graphs (-T option), as the name implies, plot throughput in bytes per second against time. While
throughput gives a picture of the volume of traffic on the network, round-trip times give a better
picture of the delays seen by individual connections. Round-trip time plots (-R option) display
individual round-trip times over time. For other graphs and graphing options, consult the
documentation.

For normal text-based operations, there are an overwhelming number of options and possibilities. One
of the most useful is the -l option. This produces a long listing of summary statistics on a connection-
by-connection basis. What follows is an example of the information provided for a single brief Telnet
connection:

TCP connection 2:
 host c: sloan.lander.edu:1230
 host d: 205.153.63.238:23
 complete conn: yes
 first packet: Wed Aug 11 11:23:25.151274 1999
 last packet: Wed Aug 11 11:23:53.638124 1999
 elapsed time: 0:00:28.486850
 total packets: 160
 filename: telnet.trace
 c->d: d->c:
 total packets: 96 total packets: 64
 ack pkts sent: 95 ack pkts sent: 64
 pure acks sent: 39 pure acks sent: 10
 unique bytes sent: 119 unique bytes sent: 1197
 actual data pkts: 55 actual data pkts: 52
 actual data bytes: 119 actual data bytes: 1197
 rexmt data pkts: 0 rexmt data pkts: 0
 rexmt data bytes: 0 rexmt data bytes: 0
 outoforder pkts: 0 outoforder pkts: 0
 pushed data pkts: 55 pushed data pkts: 52
 SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1
 mss requested: 1460 bytes mss requested: 1460 bytes
 max segm size: 15 bytes max segm size: 959 bytes
 min segm size: 1 bytes min segm size: 1 bytes
 avg segm size: 2 bytes avg segm size: 23 bytes
 max win adv: 8760 bytes max win adv: 17520 bytes
 min win adv: 7563 bytes min win adv: 17505 bytes
 zero win adv: 0 times zero win adv: 0 times
 avg win adv: 7953 bytes avg win adv: 17519 bytes
 initial window: 15 bytes initial window: 3 bytes
 initial window: 1 pkts initial window: 1 pkts
 ttl stream length: 119 bytes ttl stream length: 1197 bytes
 missed data: 0 bytes missed data: 0 bytes
 truncated data: 1 bytes truncated data: 1013 bytes
 truncated packets: 1 pkts truncated packets: 7 pkts

 98

 data xmit time: 28.479 secs data xmit time: 27.446 secs
 idletime max: 6508.6 ms idletime max: 6709.0 ms
 throughput: 4 Bps throughput: 42 Bps

This was produced by using tcpdump to capture all traffic into the file telnet.trace and then executing
tcptrace to process the data. Here is the syntax required to produce this output:

bsd1# tcptrace -l telnet.trace

Similar output is produced for each TCP connection recorded in the trace file. Obviously, a protocol
(like HTTP) that uses many different sessions may overwhelm you with output.

There is a lot more to this program than covered in this brief discussion. If your primary goal is
analysis of network performance and related problems rather than individual packet analysis, this is a
very useful tool.

5.5.8 trafshow

The program trafshow is a packet capture program of a different sort. It provides a continuous display
of traffic over the network, giving repeated snapshots of traffic. It displays the source address,
destination address, protocol, and number of bytes. This program would be most useful in looking for
suspicious traffic or just getting a general idea of network traffic.

While trafshow can be run on a text-based terminal, it effectively takes over the display. It is best used
in a separate window of a windowing system. There are a number of options, including support for
packet filtering using the same filter format as tcpdump.

5.5.9 xplot

The xplot program is an X Windows plotting program. While it is a general purpose plotting program,
it was written as part of a thesis project for TCP analysis by David Clark. As a result, some support for
plotting TCP data (oriented toward network analysis) is included with the package. It is also used by
tcptrace. While a powerful and useful program, it is not for the faint of heart. Due to the lack of
documentation, the program is easiest to use with tcptrace rather than as a standalone program.

5.5.10 Other Packet Capture Programs

We have discussed tcpdump in detail because it is the most widely available packet capture program
for Unix. Many implementations of Unix have proprietary packet capture programs that are
comparable to tcpdump. For example, Sun Microsystems' Solaris provides snoop. (This is a
replacement for etherfind, which was supplied with earlier versions of the Sun operating system.)

Here is an example of using snoop to capture five packets:

sol1> snoop -c5
Using device /dev/elxl (promiscuous mode)
172.16.2.210 -> sol1 TELNET C port=28863
 sol1 -> 172.16.2.210 TELNET R port=28863 /dev/elxl (promiscuo
172.16.2.210 -> sol1 TELNET C port=28863
172.16.2.210 -> sloan.lander.edu TCP D=1071 S=22 Ack=143990 Seq=3737542069
Len=60 Win=17520

 99

sloan.lander.edu -> 172.16.2.210 TCP D=22 S=1071 Ack=3737542129 Seq=143990
Len=0 Win=7908
snoop: 5 packets captured

As you can see, it is used pretty much the same way as tcpdump. (Actually, the output has a slightly
more readable format.) snoop, like tcpdump, supports a wide range of options and filters. You should
have no trouble learning snoop if you have ever used tcpdump.

Other systems will provide their own equivalents (for example, AIX provides iptrace). While the
syntax is different, these tools are used in much the same way.

5.6 Packet Analyzers

Even with the tools just described, the real limitation with tcpdump is interpreting the data. For many
uses, tcpdump may be all you need. But if you want to examine the data within packets, a packet
sniffer is not enough. You need a packet analyzer. A large number of packet analyzers are available at
tremendous prices. But before you start spending money, you should consider ethereal.

5.6.1 ethereal

ethereal is available both as an X Windows program for Unix systems and as a Microsoft Windows
program. It can be used as a capture tool and as an analysis tool. It uses the same capture engine and
file format as tcpdump, so you can use the same filter syntax when capturing traffic, and you can use
ethereal to analyze tcpdump files. Actually, ethereal supports two types of filters, capture filters based
on tcpdump and display filters used to control what you are looking at. Display filters use a different
syntax and are described later in this section.

5.6.1.1 Using ethereal

Usually ethereal will be managed entirely from a windowing environment. While it can be run with
command-line options, I've never encountered a use for these. (There is also a text-based version,
tethereal.) When you run ethereal, you are presented with a window with three initially empty panes.
The initial screen is similar to Figure 5-1 except the panes are empty. (These figures are for the
Windows implementation of ethereal, but these windows are almost identical to the Unix version.) If
you have a file you want to analyze, you can select File Open. You can either load a tcpdump file
created with the -w option or a file previously saved from ethereal.

Figure 5-1. ethereal

 100

To capture data, select Capture Start. You will be presented with a Capture Preferences screen like
the one shown in Figure 5-2. If you have multiple interfaces, you can select which one you want to use
with the first field. The Count: field is used to limit the number of packets you will collect. You can
enter a capture filter, using tcpdump syntax, in the Filter: field. If you want your data automatically
saved to a file, enter that in the File: field. The fifth field allows you to limit the number of bytes you
collect from the packet. This can be useful if you are interested only in header information and want to
keep your files small. The first of the four buttons allows you to switch between promiscuous and
nonpromiscuous mode. With the latter, you'll collect only traffic sent to or from your machine rather
than everything your machine sees. Select the second button if you want to see traffic as it is captured.
The third button selects automatic scrolling. Finally, the last button controls name resolution. Name
resolution really slows ethereal down. Don't enable name resolution if you are going to display
packets in real time! Once you have everything set, click on OK to begin capturing data.

Figure 5-2. ethereal Capture Preferences

 101

While you are capturing traffic, ethereal will display a Capture window that will give you counts for
the packets captured in real time. This window is shown in Figure 5-3. If you didn't say how many
frames you wanted to capture on the last screen, you can use the Stop button to end capture.

Figure 5-3. ethereal Capture

Once you have finished capturing data, you'll want to go back to the main screen shown in Figure 5-1.
The top pane displays a list of the captured packets. The lower panes display information for the
packet selected in the top pane. The packet to be dissected is selected in the top pane by clicking on it.
The second pane then displays a protocol tree for the packet, while the bottom pane displays the raw
data in hex and ASCII. The layout of ethereal is shown in Figure 5-1. You'll probably want to scroll
through the top pane until you find the traffic of interest. Once you have selected a packet, you can
resize the windows as needed. Alternately, you can select Display Show Packet in New Window to
open a separate window, allowing you to open several packets at once.

The protocol tree basically displays the structure of the packet by analyzing the data and determining
the header type and decoding accordingly. Fields can be expanded or collapsed by clicking on the plus
or minus next to the field, respectively. In the figure, the Internet Protocol header has been expanded

TE
AM
FL
Y

Team-Fly®

 102

and the Type-Of-Service (TOS) field in turn has been expanded to show the various values of the TOS
flags. Notice that the raw data for the field selected in the second pane is shown in bold in the bottom
pane. This works well for most protocols, but if you are using some unusual protocol, like other
programs, ethereal will not know what to do with it.

ethereal has several other useful features. For example, you can select a TCP packet from the main
pane and then select Tools Follow TCP Stream. This tool collects information from all the packets
in the TCP session and displays the information. Unfortunately, while convenient at times, this feature
makes it just a little too easy to capture passwords or otherwise invade users' privacy.

The Tools Summary gives you the details for data you are looking at. An example is shown in
Figure 5-4.

Figure 5-4. ethereal Summary

There are a number of additional features that I haven't gone into here. But what I described here is
more than enough for most simple tasks.

5.6.1.2 Display filters

Display filters allow you to selectively display data that has been captured. At the bottom of the
window shown in Figure 5-1, there is a box for creating display filters. As previously noted, display
filters have their own syntax. The ethereal documentation describes this syntax in great detail. In this
case, I have entered http to limit the displayed traffic to web traffic. I could just as easily enter any
number of other different protocols—ip, udp, icmp, arp, dns, etc.

 103

The real power of ethereal 's display filters comes when you realize that you don't really need to
understand the syntax of display filters to start using them. You can select a field from the center pane
and then select Display Match Selected, and ethereal will construct and apply the filter for you. Of
course, not every field is useful, but it doesn't take much practice to see what works and what doesn't
work.

The primary limitation of this approach comes in constructing compound filters. If you want to
capture all the traffic to or from a computer, you won't be able to match a single field. But you should
be able to discover the syntax for each of the pieces. Once you know that
ip.src==205.153.63.30 matches all IP traffic with 205.153.63.30 as its source and that
ip.dst==205.153.63.30 matches all IP traffic to 205.153.63.30, it isn't difficult to come up with
the filter you need, ip.src==205.153.63.30 or ip.dst==205.153.63.30. Display filters are
really very intuitive, so you should have little trouble learning how to use them.

Perhaps more than any other tool described in this book, ethereal is constantly being changed and
improved. While this book was being written, new versions were appearing at the rate of about once a
month. So you should not be surprised if ethereal looks a little different from what is described here.
Fortunately, ethereal is a well-developed program that is very intuitive to use. You should have little
trouble going on from here.

5.7 Dark Side of Packet Capture

What you can do, others can do. Pretty much anything you can discover through packet capture can be
discovered by anyone else using packet capture in a similar manner. Moreover, some technologies that
were once thought to be immune to packet capture, such as switches, are not as safe as once believed.

5.7.1 Switch Security

Switches are often cited as a way to protect traffic from sniffing. And they really do provide some
degree of protection from casual sniffing. Unfortunately, there are several ways to defeat the
protection that switches provide.

First, many switches will operate as hubs, forwarding traffic out on every port, whenever their address
tables are full. When first initialized, this is the default behavior until the address table is built.
Unfortunately, tools like macof, part of the dsniff suite of tools, will flood switches with MAC
addresses overflowing a switch's address table. If your switch is susceptible, all you need to do to
circumvent security is run the program.

Second, if two machines have the same MAC address, some switches will forward traffic to both
machines. So if you want copies of traffic sent to a particular machine on your switch, you can change
the MAC address on your interface to match the target devices' MAC address. This is easily done on
many Unix computers with the ifconfig command.

A third approach, sometimes called ARP poisoning, is to send a forged ARP packet to the source
device. This can be done with a tool like arpredirect, also part of dsniff. The idea is to substitute the
packet capture device's MAC address for the destination's MAC address. Traffic will be sent to a
packet capture device, which can then forward the traffic to its destination. Of course, the forged ARP
packets can be sent to any number of devices on the switch.

 104

The result, with any of these three techniques, is that traffic will be copied to a device that can capture
it. Not all switches are susceptible to all of these attacks. Some switches provide various types of port
security including static ARP assignments. You can also use tools like arpwatch to watch for
suspicious activities on your network. (arpwatch is described in Chapter 6.) If sniffing is a concern,
you may want to investigate what options you have with your switches.

While these techniques could be used to routinely capture traffic as part of normal management, the
techniques previously suggested are preferable. Flooding the address table can significantly degrade
network performance. Duplicating a MAC address will allow you to watch traffic only to a single host.
ARP poisoning is a lot of work when monitoring more than one host and can introduce traffic delays.
Consequently, these aren't really techniques that you'll want to use if you have a choice.

5.7.2 Protecting Yourself

Because of the potential for abuse, you should be very circumspect about who has access to packet
capture tools. If you are operating in a Unix-only environment, you may have some success in
restricting access to capture programs. packet capture programs should always be configured as
privileged commands. If you want to allow access to a group of users, the recommended approach is
to create an administrative group, restrict execution of packet capture programs to that group, and give
group membership only to a small number of trusted individuals. This amounts to setting the SUID bit
for the program, but limiting execution to the owner and any group members.

With some versions of Unix, you might even consider recompiling the kernel so the packet capture
software can't be run on machines where it isn't needed. For example, with FreeBSD, it is very
straightforward to disable the Berkeley packet filter in the kernel. (With older versions of FreeBSD,
you needed to explicitly enable it.) Another possibility is to use interfaces that don't support
promiscuous mode. Unfortunately, these can be hard to find.

There is also software that can be used to check to see if your interface is in promiscuous mode. You
can do this manually with the ifconfig command. Look for PROMISC in the flags for the interface. For
example, here is the output for one interface in promiscuous mode:

bsd2# ifconfig ep0
ep0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
 inet 172.16.2.236 netmask 0xffffff00 broadcast 172.16.2.255
 inet6 fe80::260:97ff:fe06:2222%ep0 prefixlen 64 scopeid 0x2
 ether 00:60:97:06:22:22
 media: 10baseT/UTP
 supported media: 10baseT/UTP

Of course, you'll want to check every interface.

Alternately, you could use a program like cpm, check promiscuous mode from CERT/CC. lsof,
described in Chapter 11, can be used to look for large open files that might be packet sniffer output.
But if you have Microsoft Windows computers on your network or allow user-controlled computers
on your network, this approach isn't enough.

While it may appear that packet capture is a purely passive activity that is undetectable, this is often
not the case. There are several techniques and tools that can be used to indicate packet capture or to
test remote interfaces to see if they are in promiscuous mode. One of the simplest techniques is to turn
your packet capture software on, ping an unused IP address, and watch for DNS queries trying to
resolve that IP address. An unused address should be ignored. If someone is trying to resolve the
address, it is likely they have captured a packet.

 105

Another possibility is the tool antisniff from L0pht Heavy Industries. This is a commercial tool, but a
version is available for noncommercial uses. There are subtle changes in the behavior of an interface
when placed in promiscuous mode. This tool is designed to look for those changes. It can probe the
systems on a network, examine their responses, and usually determine which devices have an interface
in promiscuous mode.

Another approach is to restructure your network for greater security. To the extent you can limit
access to traffic, you can reduce the packet capture. Use of virtual LANs can help, but no approach is
really foolproof. Ultimately, strong encryption is your best bet. This won't stop sniffing, but it will
protect your data. Finally, it is always helpful to have clearly defined policies. Make sure your users
know that unauthorized packet capture is not acceptable.

5.8 Microsoft Windows

In general, it is inadvisable to leave packet capture programs installed on Windows systems unless
you are quite comfortable with the physical security you provide for those machines. Certainly, packet
capture programs should never be installed on publicly accessible computers using consumer versions
of Windows.

The programs WinDump95 and WinDump are ports of tcpdump to Windows 95/98 and Windows NT,
respectively. Each requires the installation of the appropriate drivers. They are run in DOS windows
and have the same basic syntax as tcpdump. As tcpdump has already been described, there is little to
add here.

ethereal is also available for Windows and, on the whole, works quite well. The one area in which the
port doesn't seem to work is in sending output directly to a printer. However, printing to files works
nicely so you can save any output you want and then print it.

One of the more notable capture programs available for Windows platforms is netmon (Network
Monitor), a basic version of which is included with Windows NT Server. The netmon program was
originally included with Windows NT 3.5 as a means of collecting data to send to Microsoft's
technical support. As such, it was not widely advertised. Figure 5-5 shows the packet display window.

Figure 5-5. netmon for Windows

 106

The basic version supplied with Windows NT Server is quite limited in scope. It restricts capture to
traffic to or from the server and severely limits the services it provides. The full version is included as
part of the Systems Management Server (SMS), part of the BackOffice suite, and is an extremely
powerful program. Of concern with any capture and analysis program is what protocols can be
effectively decoded. As might be expected, netmon is extremely capable when dealing with Microsoft
protocols but offers only basic decoding of Novell protocols. (For Novell protocols, consider Novell's
LANalyzer.)

One particularly nice feature of netmon is the ability to set up collection agents on any Windows NT
workstation and have them collect data remotely. The collected data resides with the agent until
needed, thus minimizing traffic over the network.

The program is, by default, not installed. The program can be added as a service under network
configuration in the setup window. It is included under Administrative Tools (Common). The program,
once started, is very intuitive and has a strong help system.

 107

Chapter 6. Device Discovery and Mapping
The earlier chapters in this book focused on collecting information on the smaller parts of a network,
such as the configuration of an individual computer or the path between a pair of computers. Starting
with this chapter, we will broaden our approach and look at tools more suited to collecting information
on IP networks as a whole. The next three closely related chapters deal with managing and
troubleshooting devices distributed throughout a network. This chapter focuses on device discovery
and mapping. Additional techniques and tools for this purpose are presented in Chapter 7, once Simple
Network Management Protocol (SNMP) has been introduced. Chapter 8 focuses on the collection of
information on traffic patterns and device utilization throughout the network.

This chapter begins with a brief discussion of the relationship between network management and
troubleshooting. This is followed by a discussion of ways to map out the IP addresses that are being
used on your network and ways to find which IP addresses correspond to which hosts. This is
followed by a description of ways to discover more information on these hosts based on the network
services they support and other forensic information. The chapter briefly discusses scripting tools,
then describes the network mapping and monitoring tool, tkined. The chapter concludes with a brief
description of related tools for use with Microsoft Windows platforms.

6.1 Troubleshooting Versus Management

Some of the tools in the next few chapters may seem only marginally related to troubleshooting. This
is not a totally unfair judgment. Of course, troubleshooting is an unpredictable business, and any tools
that can provide information may be useful in some circumstances. Often you will want to use tools
that were designed with another purpose in mind.

But these tools were not included just on the off chance they might be useful. Many of the tools
described here, while typically used for management, are just as useful for troubleshooting. In a very
real sense, troubleshooting and management are just different sides of the same coin. Ideally,
management deals with problems before they happen, while troubleshooting deals with problems after
the fact. With this in mind, it is worth reviewing management software with an eye on how it can be
used as troubleshooting software.

6.1.1 Characteristics of Management Software

Everyone seems to have a different idea of exactly what management software should do. Ideally,
network management software will provide the following:

Discovery and mapping

Discovery includes both the automatic detection of all devices on a network and the collection
of basic information about each device, such as the type of each device, its MAC address and
IP address, the type of software being used, and, possibly, the services it provides. Mapping is
the creation of a graphical representation of the network showing individual interconnections
as well as overall topology.

Event monitoring

 108

Once a picture of the network has been created, each device may be monitored to ensure
continuous operation. This can be done passively, by waiting for the device to send an update
or alert, or by actively polling the device.

Remote configuration

You should be able to connect to each device and then examine and change its configuration.
It should also be possible to collectively track configuration information, such as which IP
addresses are in use.

Metering and performance management

Information on resource utilization should be collected. Ideally, this information should be
available in a usable form for purposes such as trend analysis and capacity planning.

Software management

Being able to install and configure software remotely is rapidly becoming a necessity in larger
organizations. Being able to track licensing can be essential to avoid legal problems. Version
management is also important.

Security and accounting

Depending on the sensitivity of data, the organization's business model, and access and billing
policies, it may be necessary to control or track who is using what on the network.

It doesn't take much imagination to see how most of these functions relate to troubleshooting. This
chapter focuses on discovery and mapping. Chapter 7 will discuss event monitoring and the remote
configuration of hardware and software. Metering and performance management are discussed in
Chapter 8. Security is discussed throughout the next three chapters as appropriate.

6.1.2 Discovery and Mapping Tools

A wide range of tools is available. At the low end are point tools -- tools designed to deal with specific
tasks or closely related tasks. Several of the tools we will examine, such as arpwatch and nmap, fall in
this category. Such tools tend to be well focused and do their job well. Typically, they are very easy to
learn to use and are usually free or quite inexpensive.

Also found at the low end are toolkits and scripting languages for creating your own applications.
Unlike most prebuilt tools, these can be extremely difficult to both learn and use, but they often give
you the greatest degree of control. The quality of the final tool will ultimately depend on how much
effort and skill you put into its creation. The initial outlay may be modest, but the development time
can be extremely costly. Nonetheless, some people swear by this approach. The idea is that time is
spent once to develop a tool that saves time each time it is used. We will look very briefly at the
scripting language Tcl and its extensions. The primary goal here will be to describe the issues and
provide information on how to get started.

At the middle of the range are integrated packages. This type of software addresses more than one
aspect of network management. They typically include network discovery, mapping, and monitoring
programs but may include other functionality as well. Typically they are straightforward to use but
don't perform well with very large, diverse networks.

 109

Finally, at the high end are frameworks. Roughly, these are packages that can be easily extended.
Since you can extend functionality by adding modules, frameworks are better suited for larger, diverse
networks. But be warned, dividing lines among these last categories are not finely drawn.

Unfortunately, at the time of this writing, there aren't many freely available packages at these higher
levels. The leading contenders are really works in progress. tkined is described in this chapter and the
next because it seemed, at the time this was written, to be further along and fairly stable. But there are
at least two other projects making rapid progress in this area that are worth considering. The work of
Open Network Management Systems (http://www.opennms.org) is truly outstanding and making
terrific progress. The other is the GxSNMP SNMP Manager (http://www.gxsnmp.org), a part of the
GNOME project. Both are open source (http://opensource.org) projects, and both appear to have a
committed base of supporters and are likely to be successful. At the time this was written, both had
begun to release viable tools, particularly the Open Network Management Systems folks. (Linux users
may want to also consider Cheops.)

6.1.3 Selecting a Product

It may seem strange that a book devoted to noncommercial software would recommend buying
software, but network management is one area in which you should at least consider the possibility.
Commercial products are not without problems, but noncommercial mapping and management tools
are relatively scarce. Depending on the size of the network you are dealing with, you may have little
choice but to consider commercial products at this time.

The key factors are the size of your network, the size of your budget, and the cost of a nonfunctioning
network. With point tools, you will be forced to put the pieces together. Certainly, this is something
you can do with a small network. If you are responsible for a single LAN or small number of LANs
and if you can tolerate being down for a few hours at a time, then you can probably survive with the
noncommercial tools described here. But if you are responsible for a larger network or one that is
rapidly changing, then you should consider commercial tools. While these may be quite expensive,
they may be essential for a large network. And if you are really dealing with a large number of
machines, the cost per machine may not be that high.

Even if you feel compelled to buy commercial management software, you should read the rest of this
chapter. Several of the point tools described here can be used in conjunction with commercial tools.
Some of these tools, because they are designed for a single function, will perform better than
commercial tools that attempt to do everything. In a few instances, noncommercial tools address
issues not addressed by commercial tools.

6.2 Device Discovery

The first step in managing a network is discovering which devices are on the network. There are some
fairly obvious reasons why this is important. You will need to track address usage to manage services
such as DNS. You may need this information to verify licensing information. From a security
perspective, you will want to know if there are any devices on your network that shouldn't be there.
And one particularly compelling reason for a complete picture of your network is IP address
management.

6.2.1 IP Address Management

http://www.opennms.org/
http://www.gxsnmp.org/
http://opensource.org/

 110

Management of IP addresses is often cited as the most common problem faced in the management of
an IP network. There are two goals in IP management—keeping track of the addresses in use so you
know what is available and keeping track of the devices associated with each assigned IP address.

Several developments over the last few years have helped to lessen the problems of IP management.
First, DHCP servers, systems that automatically allocate and track IP addresses, help when dynamic
allocation is appropriate. But there are a number of reasons why a system may require a static IP
address. Any resource or server—time server, name server, and so on—should be given a static
address. Network devices like switches and routers require static addresses. Some sites require reverse
DNS lookup before allowing access. The easiest way to provide this is with a static IP address and
with an appropriate DNS entry.[1] Even when such issues don't apply, the cost and complexity of
DHCP services may prevent their use. And even if you use DHCP, there is nothing to prevent a user
from incorrectly assigning a static IP address in the middle of the block of addresses you have
reserved for DNS assignment.

[1] Strictly speaking, static addresses are not mandatory in every case. Support for dynamic DNS, or
DDNS, has been available for several years. With DDNS, DNS entries can be mapped to dynamically
assigned IP addresses. Unfortunately, many sites still do not use it.

Another development that has helped is automatic testing of newly assigned addresses. While earlier
implementations of TCP/IP stacks sometimes neglected to test whether an IP address was being used,
most systems, when booted, now first check to see if an IP address is in use before using it. The test,
known as gratuitous ARP, sends out an ARP request for the IP address about to be used. If anyone
replies, the address must already be in use. Of course, this test works only when the other machine is
turned on. You may set up a machine with everything appearing to work correctly, only to get a call
later in the day. Once such a problem has been detected, you will need to track it down.

While these and similar developments have gone a long way toward lessening the problems of IP
management and duplicate IP addresses, IP management remains a headache on many networks.
Ideally, you will keep careful records as IP addresses are assigned, but mistakes are unavoidable. Thus,
an automated approach is often desirable.

The simplest way to collect MAC/IP address pairs is to ping the address and then examine your ARP
table. The ping is necessary since most ARP tables are flushed frequently. At one time, it was possible
to ping a broadcast address and get a number of replies at once. Most hosts are now configured to
ignore ICMP requests sent to broadcast addresses. (See the discussion of Smurf Attacks in Chapter 3.)

You will need to repeat ping scans very frequently if you want to get a picture over time. It is a simple
matter to create a script that automates the process of pinging a range of IP addresses, particularly if
you use a tool like fping. You'll need the output from the arp command if you want the MAC
addresses. And you certainly will want to do some cleanup with sort or sed.

Fortunately, there is a class of tools that simplifies this process—IP scanner or ping scanner. These are
usually very simple tools that send ICMP ECHO_REQUEST packets in a systematic manner to each
IP address in a range of IP addresses and then record any replies. (These tools are not limited to using
just ECHO_REQUEST packets.)

6.2.2 nmap

The program nmap is a multifunction tool that supports IP scanning. It also provides port scanning and
stack fingerprinting. (Stack fingerprinting is described later in this chapter.) nmap is an extremely

 111

feature-rich program with lots of versatility. For many of its uses, root privileges are required,
although some functions work without root privileges.

nmap certainly could have been described in Chapter 2, when port scanners were introduced. But if all
you want is a port scan for a single machine, using nmap is overkill.[2] Nonetheless, if you only want
as few programs as possible and you need some of the other functionality that nmap provides, then
you can probably get by with just nmap.

[2] There are also reasons, as will become evident, why you might not want nmap too freely available on
your network.

To use nmap as a port scanner, the only information you need is the IP address or hostname of the
target:

bsd1# nmap sol1

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Interesting ports on sol1.lander.edu (172.16.2.233):
Port State Protocol Service
21 open tcp ftp
23 open tcp telnet
25 open tcp smtp
37 open tcp time
111 open tcp sunrpc
515 open tcp printer
540 open tcp uucp
6000 open tcp X11

Nmap run completed—1 IP address (1 host up) scanned in 1 second

The results should be self-explanatory. You can specify several IP addresses or you can span a
segment by specifying an address with a mask if you want to scan multiple devices or addresses. The
next example will scan all the addresses on the same subnet as the lnx1 using a class C network mask:

bsd1# nmap lnx1/24

While nmap skips addresses that don't respond, this can still produce a lot of output.

Fortunately, nmap will recognize a variety of address range options. Consider:

bsd1# nmap 172.16.2.230-235,240

This will scan seven IP addresses—those from 172.16.2.230 through 172.16.2.235 inclusive and
172.16.2.240. You can use 172.16.2.* to scan everything on the subnet. Be warned, however, that the
shell you use may require you to use an escape sequence for the * to work correctly. For example,
with C-shell, you could use 172.16.2.*. You should also note that the network masks do not have to
align with a class boundary. For example, /29 would scan eight hosts by working through the
possibilities generated by changing the three low-order bits of the address.

If you want to just do an IP scan to discover which addresses are currently in use, you can use the -sP
option. This will do a ping-like probe for each address on the subnet:

bsd1# nmap -sP lnx1/24

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)

TE
AM
FL
Y

Team-Fly®

 112

Host (172.16.2.0) seems to be a subnet broadcast address (returned 3 extra
pings). Skipping host.
Host cisco.lander.edu (172.16.2.1) appears to be up.
Host (172.16.2.12) appears to be up.
Host (172.16.2.230) appears to be up.
Host bsd2.lander.edu. (172.16.2.232) appears to be up.
Host sol1.lander.edu (172.16.2.233) appears to be up.
Host lnx1.lander.edu (172.16.2.234) appears to be up.
Host (172.16.2.255) seems to be a subnet broadcast address (returned 3 extra
pings). Skipping host.
Nmap run completed—256 IP addresses (6 hosts up) scanned in 1 second

You should be warned that this particular scan uses both an ordinary ICMP packet and a TCP ACK
packet to port 80 (HTTP). This second packet will get past routers that block ICMP packets. If an RST
packet is received, the host is up and the address is in use. Unfortunately, some intrusion detection
software that will ignore the ICMP packet will flag the TCP ACK as an attack. If you want to use only
ICMP packets, use the -PI option. For example, the previous scan could have been done using only
ICMP packets with the command:

bsd1# nmap -sP -PI lnx1/24

In this case, since the devices are on the same subnet and there is no intervening firewall, the same
machines are found.

Unfortunately, nmap stretches the limits of what might be considered appropriate at times. In
particular, nmap provides a number of options for stealth scanning. There are two general reasons for
using stealth scanning. One is to probe a machine without being detected. This can be extremely
difficult if the machine is actively watching for such activity.

The other reason is to slip packets past firewalls. Because firewall configuration can be quite complex
and because it can be very difficult to predict traffic patterns, many firewalls are configured in ways
that allow or block broad, generic classes of traffic. This minimizes the number of rules that need to
be applied and improves the throughput of the firewall. But blocking broad classes of traffic also
means that it may be possible to sneak packets past such firewalls by having them look like legitimate
traffic. For example, external TCP connections may be blocked by discarding the external SYN
packets used to set up a connection. If a SYN/ACK packet is sent from the outside, most firewalls will
assume the packet is a response for a connection that was initiated by an internal machine.
Consequently, the firewall will pass the packet. With these firewalls, it is possible to construct such a
packet and slip it through the firewall to see how an internal host responds.

nmap has several types of scans that are designed to do stealth probes. These include -sF, -sX, and -sN.
(You can also use the -f option to break stealth probes into lots of tiny fragments.) But while these
stealth packets may slip past firewalls, they should all be detected by any good intrusion detection
software running on the target. You may want to try these on your network just to see how well your
intrusion detection system works or to investigate how your firewall responds. But if you are using
these to do clandestine scans, you should be prepared to be caught and to face the consequences.

Another questionable feature of nmap is the ability to do decoy scans. This option allows you to
specify additional forged IP source addresses. In addition to the probe packets that are sent with the
correct source address, other similar packets are sent with forged source addresses. The idea is to
make it more difficult to pinpoint the real source of the attack since only a few of the packets will
have the correct source address. Not only does this create unnecessary network traffic, but it can
create problems for hosts whose addresses are spoofed. If the probed site automatically blocks traffic
from probing sites, it will cut off the spoofed sites as well as the site where the probe originated.

 113

Clearly, this is not what you really want to do. This calls into question any policy that simply blocks
sites without further investigation. Such systems are also extremely vulnerable to denial-of-service
attacks. Personally, I can see no legitimate use for this feature and would be happy to see it dropped
from nmap.

But while there are some questionable options, they are easily outnumbered by useful options. If you
want your output in greater detail, you might try the -v or the -d option. If information is streaming
past you on the screen too fast for you to read, you can log the output to a file in human-readable or
machine-parseable form. Use, respectively, the -o or -m options along with a filename. The -h option
will give a brief summary of nmap's many options. You may want to print this to use while you learn
nmap.

If you are using nmap to do port scans, you can use the -p option to specify a range of ports.
Alternatively, the -F, or fast scan option, can be used to limit scans to ports in your services file.
You'll certainly want to consider using one or the other of these. Scanning every possible port on a
network can take a lot of time and generate a lot of traffic. A number of other options are described in
nmap's documentation.

Despite the few negative things I have mentioned, nmap really is an excellent tool. You will definitely
want to add it to your collection.

6.2.3 arpwatch

Active scans, such as those we have just seen with nmap, have both advantages and disadvantages.
They allow scans of remote networks and give a good snapshot of the current state of the network.
The major disadvantage is that these scans will identify only machines that are operational when you
do the scan. If a device is on for only short periods at unpredictable times, it can be virtually
impossible to catch by scanning. Tools that run constantly, like arpwatch, provide a better picture of
activity over time.

For recording IP addresses and their corresponding MAC addresses, arpwatch is my personal favorite.
It is a very simple tool that does this very well. Basically, arpwatch places an interface in promiscuous
mode and watches for ARP packets. It then records IP/MAC address pairs. The primary limitation to
arpwatch comes from being restricted to local traffic. It is not a tool that can be used across networks.
If you need to watch several networks, you will need to start arpwatch on each of those networks.

The information can be recorded in one of four ways. Data may be written directly to the system
console, to the system's syslog file, or to a user-specified text file, or it can be sent as an email to root.
(syslog is described in Chapter 11.) Output to the console or the syslog file is basically the same. An
entry will look something like:

Mar 30 15:16:29 bsd1 arpwatch: new station 172.16.2.234 0:60:97:92:4a:6

Of course, with the syslog file, these messages will be interspersed with many other messages, but you
can easily use grep to extract them. For example, to write all the messages from arpwatch that were
recorded in /var/log/messages into the file /temp/arp.data, you can use the command:

bsd1# grep arpwatch /var/log/messages > /tmp/arp.list

 114

If your syslog file goes by a different name or you want output in a different output file, you will need
to adjust names accordingly. This approach will include other messages from arpwatch as well, but
you can easily delete those that are not of interest.

Email looks like:

From: arpwatch (Arpwatch)
To: root
Subject: new station (lnx1.lander.edu)

 hostname: lnx1.lander.edu
 ip address: 172.16.2.234
 ethernet address: 0:60:97:92:4a:6
 ethernet vendor: 3Com
 timestamp: Thursday, March 30, 2000 15:16:29 -0500

Email output has the advantage of doing name resolution for the IP address, and it gives the vendor for
the MAC address. The vendor name is resolved using information in the file ethercodes.dat. This file,
as supplied with arpwatch, is not particularly complete or up-to-date, but you can always go to the
IEEE site as described in Chapter 2 if you need this data for a particular interface. If you do this, don't
forget to update the ethercodes.dat file on your system.

arpwatch can also record raw data to a file. This is typically the file arp.dat, but you can specify a
different file with the -f option. The default location for arp.dat seems to vary with systems. The
manpage for arpwatch specifies /usr/operator/arpwatch as the default home directory, but this may
not be true for some ports. If you use an alternative file, be sure to give its full pathname. Whether you
use arp.dat or another file, the file must exist before you start arpwatch. The format is pretty sparse:

0:60:97:92:4a:6 172.16.2.234 954447389 lnx1

Expect a lot of entries the first few days after you start arpwatch as it learns your network. This can be
a little annoying at first, but once most machines are recorded, you shouldn't see much traffic—only
new or changed addresses. These should be very predictable. Of particular concern are frequently
changing addresses. The most likely explanation for a single address change is that a computer has
been replaced by another. Although less likely, a new adapter would also explain the change.

Frequent or unexplained changes deserve greater scrutiny. It could simply mean someone is using two
computers. Perhaps a user is unplugging his desktop machine in order to plug in his portable. But it
can also mean that someone is trying to hide something they are doing. On many systems, both the
MAC and IP addresses can be easily changed. A cracker will often change these addresses to cover
her tracks. Or a cracker could be using ARP poisoning to redirect traffic.

Here is an example of an email report for an address change:

From: arpwatch (Arpwatch)
To: root
Subject: changed ethernet address

 hostname: <unknown>
 ip address: 205.153.63.55
 ethernet address: 0:e0:29:21:88:83
 ethernet vendor: <unknown>
old ethernet address: 0:e0:29:21:89:d9
 old ethernet vendor: <unknown>
 timestamp: Monday, April 3, 2000 4:57:16 -0400

 115

 previous timestamp: Monday, April 3, 2000 4:52:33 -0400
 delta: 4 minutes

Notice that the subject line will alert you to the nature of the change. This change was followed
shortly by another change as shown here:

From: arpwatch (Arpwatch)
To: root
Subject: flip flop

 hostname: <unknown>
 ip address: 205.153.63.55
 ethernet address: 0:e0:29:21:89:d9
 ethernet vendor: <unknown>
old ethernet address: 0:e0:29:21:88:83
 old ethernet vendor: <unknown>
 timestamp: Monday, April 3, 2000 9:40:47 -0400
 previous timestamp: Monday, April 3, 2000 9:24:07 -0400
 delta: 16 minutes

This is basically the same sort of information, but arpwatch labels the first as a changed address and
subsequent changes as flip-flops.

If you are running DHCP and find arpwatch's output particularly annoying, you may want to avoid
arpwatch. But if you are having problems with DHCP, arpwatch might, in limited circumstances, be
useful.

6.3 Device Identification

At times it can be helpful to identify the operating system used on a remote machine. For example,
you may need to identify systems vulnerable to some recently disclosed security hole. Or if you are
faced with a duplicate IP address, identifying the type of machine is usually the best first step in
locating it. Using arp to discover the type of hardware may be all that you will need to do. If you have
identified the interface as a Cisco interface and you have only a half dozen Cisco devices on your
network, you should be able to easily find the one with the duplicate address. If, on the other hand,
you can identify it only as one of several hundred PCs, you'll want more information. Knowing the
operating system on the computer may narrow your search.

The obvious, simple strategies are usually the best place to start, since these are less likely to offend
anyone. Ideally, you will have collected additional information as you set systems up, so all you'll
need to do is consult your database, DHCP records, or DNS files or, perhaps, give the user a call. But
if your records are incomplete, you'll need to probe the device.

Begin by using telnet to connect to the device to check for useful banners. Often login banners are
changed or suppressed, so don't restrict yourself to just the Telnet port. Here is an example of trying
the SMTP port (25):

bsd1# telnet 172.16.2.233 25
Trying 172.16.2.233...
Connected to 172.16.2.233.
Escape character is '^]'.
220 sol1. ESMTP Sendmail 8.9.1b+Sun/8.9.1; Fri, 2 Jun 2000 09:02:45 -0400 (EDT)

 116

quit
221 sol1. closing connection
Connection closed by foreign host.

This simple test tells us the host is sol1, and it is using a Sun port of sendmail. The most likely ports to
try are FTP (21), Telnet (23), SNMP (25), HTTP (80), POP2 (109), POP3 (110), and NTTP (119), but,
depending on the systems, others may be informative as well.

Often, you don't even have to get the syntax correct to get useful information. Here is an example of
an ill-formed GET request (the REQUEST_URI is omitted) sent using telnet:

bsd1# telnet 172.16.2.230 80
Trying 172.16.2.230...
Connected to 172.16.2.230.
Escape character is '^]'.
GET HTTP/1.0
HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/4.0
...

Additional output has been omitted, but the system has been identified in the last line shown. (See
Chapter 10 for other examples.)

Port scanning is one of the tools described in Chapter 2 that can also be used here. To do the tests
described in Chapter 2, you need change only the host address. The interpretation of the results is the
same. The only thing you need worry about is the possibility that some of the services you are testing
may be blocked by a firewall. Of course, the presence or absence of a service may provide insight into
the role of the device. An obvious example is an open HTTP port. If it is open, you are looking at a
web server (or, possibly, a machine misconfigured as a web server) and can probably get more
information by using your web browser on the site.

When these obvious tests fail, as they often will, you'll need a more sophisticated approach such as
stack fingerprinting.

6.3.1 Stack Fingerprinting

The standards that describe TCP/IP stack implementations are incomplete in the sense that they
sometimes do not address how the stack should respond in some degenerate or pathological situations.
For example, there may be no predefined way for dealing with a packet with contradictory flags or
with a meaningless sequence of inconsistent packets. Since these situations should not normally arise,
implementers are free to respond in whatever manner they see fit. Different implementations respond
in different ways.

There are also optional features that stack implementers may or may not choose to implement. The
presence or absence of such support is another useful clue to the identity of a system. Even when
behavior is well defined, some TCP/IP stacks do not fully conform to standards. Usually, the
differences are minor inconsistencies that have no real impact on performance or interoperability. For
example, if an isolated FIN packet is sent to an open port, the system should ignore the packet.
Microsoft Windows, among others, will send a RESET instead of ignoring the packet. This doesn't
create any problems for either of the devices involved, but it can be used to distinguish systems.

Collectively, these different behaviors can be exploited to identify which operating system (OS) is
being used on a remote system. A carefully chosen set of packets is sent and the responses are

 117

examined. It is necessary only to compare the responses seen against a set of known behaviors to
deduce the remote system. This technique is known as stack fingerprinting or OS fingerprinting.

A fingerprinting program will be successful only if it has a set of anomalies or, to mix metaphors, a
signature that distinguishes the device of interest from other devices. Since devices change and new
devices are introduced, it is not uncommon for a stack fingerprinting program not to know the
signature for some devices. Ideally, the program will have a separate signature file or database so that
it can be easily updated. From the user's perspective, it may also be helpful to have more than one
program since each may be able to identify devices unknown to the other. Consequently, both queso
and the stack fingerprinting option for nmap are described here.

It should also be noted that passive fingerprinting is possible. With passive fingerprinting, the idea is
to examine the initialization packets that come into your machine. Of course, this will only identify
systems that try to contact you, but this can be a help in some circumstances, particularly with respect
to security. In some ways, this approach is more reliable. When a remote machine sends the first
packet, it must fill in all the fields in the headers. When you probe a remote machine, many of the
fields in the headers in the reply packet will have been copied directly from your probe packets. If you
are interested in this approach, you might want to look at siphon or p0f.

When using stack fingerprinting, whether active or passive, you must realize
that you are fingerprinting the machine you are actually communicating with.
Normally, that is exactly what you want. But if there is a proxy server
between your machine and the target, you will fingerprint the proxy server,
not the intended target.

6.3.2 queso

A number of programs do stack fingerprinting. One simple program that works well is queso. Its sole
function is stack fingerprinting. The syntax is straightforward:

bsd1# queso 172.16.2.230
172.16.2.230:80 * Windoze 95/98/NT

By default, queso probes the HTTP port (80). If that port is not in use, queso will tell you to try
another port:

bsd1# queso 172.16.2.1
172.16.2.1:80 *- Not Listen, try another port

You can do this with the -p option. In this example, the Telnet port is being checked:

bsd1# queso -p23 172.16.2.1
172.16.2.1:23 * Cisco 11.2(10a), HP/3000 DTC, BayStack Switch

This is not a definitive answer, but it has certainly narrowed down the field.

You can call queso with multiple addresses by simply putting all the addresses on the command line.
You can also use subnet masks, as shown in the following:

bsd1# queso -p23 172.16.2.232/29
172.16.2.233:23 * Solaris 2.x

 118

172.16.2.234:23 * Linux 2.1.xx
172.16.2.235:23 *- Not Listen, try another port
172.16.2.236:23 * Dead Host, Firewalled Port or Unassigned IP
172.16.2.237:23 * Dead Host, Firewalled Port or Unassigned IP
172.16.2.238:23 * Dead Host, Firewalled Port or Unassigned IP

Notice from this example that mask selection doesn't have to fall on a class boundary.

queso maintains a separate configuration file. If it doesn't recognize a system, it will prompt you to
update this file:

bsd1# queso -p23 205.153.60.1
205.153.60.1:23 *- Unknown OS, pleez update /usr/local/etc/queso.conf

You can update this file with the -w option. queso can identify a hundred or so different systems. It is
not a particularly fast program but gives acceptable results. It can take several seconds to scan each
machine on the same subnet. If you invoke queso without any argument, it will provide a brief
summary of its options.

6.3.3 nmap Revisited

You can also do stack fingerprinting with nmap by using the -O option:

bsd1# nmap -O 172.16.2.230

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
WARNING: OS didn't match until the 2 try
Interesting ports on (172.16.2.230):
Port State Protocol Service
21 open tcp ftp
80 open tcp http
135 open tcp loc-srv
139 open tcp netbios-ssn
443 open tcp https
1032 open tcp iad3
6666 open tcp irc-serv
7007 open tcp afs3-bos

TCP Sequence Prediction: Class=trivial time dependency
 Difficulty=0 (Trivial joke)
Remote operating system guess: Windows NT4 / Win95 / Win98

Nmap run completed—1 IP address (1 host up) scanned in 5 seconds

You can suppress most of the port information by specifying a particular port. For example:

bsd1# nmap -p80 -O 172.16.2.230

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Interesting ports on (172.16.2.230):
Port State Protocol Service
80 open tcp http

TCP Sequence Prediction: Class=trivial time dependency
 Difficulty=0 (Trivial joke)
Remote operating system guess: Windows NT4 / Win95 / Win98

Nmap run completed—1 IP address (1 host up) scanned in 1 second

 119

You will probably want to do this if you are scanning a range of machines to save time. However, if
you don't restrict nmap to a single port, you are more likely to get a useful answer.

Results can be vague at times. This is what nmap returned on one device:

...
Remote OS guesses: Cisco Catalyst 1900 switch or Netopia 655-U/POTS ISDN Router,
 Datavoice TxPORT PRISM 3000 T1 CSU/DSU 6.22/2.06, MultiTech CommPlete
Controlle
r, IBM MVS TCP/IP stack V. 3.2, APC MasterSwitch Network Power Controller, AXIS
or Meridian Data Network CD-ROM server, Meridian Data Network CD-ROM Server (V4.
20 Nov 26 1997), WorldGroup BBS (MajorBBS) w/TCP/IP

The correct answer is none of the above. A system that may not be recognized by nmap may be
recognized by queso or vice versa.

6.4 Scripts

Since most networks have evolved over time, they are frequently odd collections of equipment for
which no single tool may be ideal. And even when the same tool can be used, differences in
equipment may necessitate minor differences in how the tool is used. Since many of the tasks may
need to be done on a regular basis, it should come as no surprise that scripting languages are a popular
way to automate these tasks. Getting started can be labor intensive, but if your current approach is
already labor intensive, it can be justified.

You will want to use a scripting language with extensions that support the collection of network data.
To give an idea of this approach, Tcl and its extensions are briefly described here. Even if you don't
really want to write your own tools, you may want to consider one of the tools based on Tcl that are
freely available, most notably tkined.

Tcl was selected because it is provides a natural introduction to tkined. Of course, there are other
scripting languages that you may want to consider. Perl is an obvious choice. Several packages and
extensions are available for system and network administration. For example, you may want to look at
spidermap. This is a set of Perl scripts that do network scans. For SNMP-based management, you'll
probably want to get Simon Leinen's SNMP extensions SNMP_Session.pm and BER.pm. (Other tools
you might also look at include mon and nocol.)

6.4.1 Tcl/Tk and scotty

Tool Command Language, or Tcl (pronounced "tickle"), is a scripting language that is well suited for
network administration. Tcl was developed in the late 1980s by John Ousterhout, then a faculty
member at UC Berkeley. Tcl was designed to be a generic, embeddable, and extensible interpreted
language. Users frequently cite studies showing Tcl requires one-tenth the development time required
by C/C++. Its major weakness is that it is not well suited for computationally intensive tasks, but that
shouldn't pose much of a problem for network management. You can also write applets or tclets
(pronounced "tik-lets") in Tcl.

Tcl can be invoked interactively using the shell tclsh (pronounced "ticklish") or with scripts. You may
need to include a version number as part of the name. Here is an example:

 120

bsd2# tclsh8.2
%

This really is a shell. You can change directories, print the working directory, copy files, remove files,
and so forth, using the usual Unix commands. You can use the exit command to leave the program.

One thing that makes Tcl interesting is the number and variety of extensions that are available. Tk is a
set of extensions that provides the ability to create GUIs in an X Window environment. These
extensions make it easy to develop graphical interfaces for tools. Tk can be invoked interactively using
the windowing shell wish. Both Tcl and Tk are implemented as C library packages that can be
included in programs if you prefer.

scotty, primarily the work of Jürgen Schönwälder, adds network management extensions to Tcl/Tk.
The tnm portion of scotty adds network administration support. The tkined portion of scotty, described
in the next section, is a graphical network administration program. What tnm adds is a number of
network management commands. These include support for a number of protocols including ICMP,
UDP, DNS, HTTP, Sun's RPC, NTP, and, most significantly, SNMP. In addition, there are several
sets of commands that simplify writing network applications. The netdb command gives access to
local network databases such as /etc/hosts, the syslog command supports sending messages to the
system logging facilities, and the job command simplifies scheduling tasks. A few examples should
give an idea of how these commands could be used.

You can invoke the scotty interpreter directly as shown here. In this example, the netdb command is
used to list the /etc/host table on a computer:

bsd4# scotty
% netdb hosts
{localhost.lander.edu 1.0.0.127} {bsd4.lander.edu 239.63.153.205}
{bsd4.lander.e
du. 239.63.153.205} {bsd1.lander.edu 231.60.153.205} {sol1.lander.edu
233.60.153
.205} {lnx1.lander.edu 234.60.153.205}
% exit

The results are returned with each entry reduced to the canonical name and IP address in brackets.
Here is the host table for the same system:

bsd4# cat /etc/hosts
127.0.0.1 localhost.lander.edu localhost
205.153.63.239 bsd4.lander.edu bsd4
205.153.63.239 bsd4.lander.edu.
205.153.60.231 bsd1.lander.edu bsd1
205.153.60.233 sol1.lander.edu sol1
205.153.60.234 lnx1.lander.edu lnx1

Note that there is not a separate entry for the alias bsd4.

Here are a few examples of other commands. In the first example, the name of the protocol with a
value of 1 is looked up in /etc/protocols using the netdb command:

% netdb protocols name 1
icmp

In the second example, a reverse DNS lookup is done for the host at 205.153.63.30:

 121

% dns name 205.153.63.30
sloan.lander.edu

Finally, an ICMP ECHO_REQUEST is sent to www.cisco.com:

% icmp echo www.cisco.com
{www.cisco.com 321}

The response took 321 ms. Other commands, such as snmp, require multiple steps to first establish a
session and then access information. (Examples are given in Chapter 7.) If you are interested in using
these tools in this manner, you will first want to learn Tcl. You can then consult the manpages for
these extensions. A number of books and articles describe Tcl, some of them listed in Appendix B.
The source is freely available for all these tools.

6.5 Mapping or Diagramming

At this point, you should have a good idea of how to find out what is on your network. The next step
is to put together a picture of how everything interconnects. This is usually referred to as mapping but
may go by other names such as network drawing or diagramming. This can be absolutely essential if
you are dealing with topology-related problems.

A wide spectrum of approaches may be taken. At one extreme, you could simply use the collected
data and some standard drawing utility to create your map. Clearly, some graphics software is better
suited than others for this purpose. For example, special icons for different types of equipment are
particularly nice. But almost any software should be usable to a degree. I have even put together
passable diagrams using the drawing features in Microsoft Excel.

Manual diagramming is usually practical only for a single segment or a very small network. But there
might be times when this will be desirable for larger networks—for example, you may be preparing
graphics for a formal presentation. This, however, should be an obvious exception, not a routine
activity.

In the middle of the spectrum are programs that will both discover and draw the network. When using
tools with automatic discovery, you will almost certainly want to clean up the graphics. It is extremely
hard to lay out a graph in an aesthetically pleasing manner when doing it manually. You can forget
about a computer doing a good job automatically.

Another closely related possibility is to use scripting tools to update the files used by a graphing utility.
The graphic utility can then display the new or updated map with little or no additional interaction.
While this is a wonderful learning opportunity, it really isn't a practical solution for most people with
real time constraints.

At the other extreme, mapping tools are usually part of more comprehensive management packages.
Automatic discovery is the norm for these. Once the map is created, additional management
functions—including basic monitoring to ensure that devices and connections still work and to collect
performance data—are performed.

TE
AM
FL
Y

Team-Fly®

 122

Ideally, these programs will provide a full graphic display that is automatically generated, includes
every device on the network, provides details of the nature and state of the devices, updates the map in
real time, and requires a minimum of user input. Some tools are well along the path to this goal.

There are problems with automatic discovery. First, you'll want to be careful when you specify the
networks to be analyzed and keep an eye on things whenever you change this. It is not that uncommon
to make an error and find that you are mapping devices well beyond your network. And, as explained
later in this chapter, not everyone will be happy about this.

Also, many mapping programs do a poor job of recognizing topology. For example, in a virtual LAN,
a single switch may be logically part of two different networks. Apart from proprietary tools, don't
expect many map programs to recognize and handle these devices correctly. Each logical device may
be drawn as a separate device. If you are relying solely on ICMP ECHO_REQUEST packets,
unmanaged hubs and switches will not be recognized at all, while managed hubs and switches will be
drawn as just another device on the network without any indication of the role they play in the
network topology.

Even with automatic discovery, network mapping and management tools may presuppose that you
know the basic structure of your network. At a minimum, you must know the address range for your
network. It seems very unlikely that a legitimate administrator would not have this information. If for
some bizarre reason you don't have this information, you might begin by looking at the routing tables
and NAT tables in your router, DNS files, DHCP configurations, or Internic registration information.
You might also use traceroute to identify intermediate segments and routers.

6.5.1 tkined

An excellent example of a noncommercial, open source mapping program is tkined. This is a network
editor that can be used as a standalone tool or as a framework for an extensible network management
system. At its simplest, it can be used to construct a network diagram. Figure 6-1 is an example of a
simple network map that has been constructed using tkined tools. (Actually, as will be explained, this
map was "discovered" rather than drawn, but don't worry about this distinction for now.)

Figure 6-1. A network map constructed with tkined

 123

6.5.1.1 Drawing maps with tkined

Manually drawing a map like this is fairly straightforward, although somewhat tedious for all but the
smallest networks. You begin by starting tkined under an X Window session. (This discussion
assumes you are familiar with using an X Window application.) You should see the menu bar across
the top window just under the titlebar, a toolbar to the left, and a large, initially blank work area called
the canvas.

To create a map, follow these steps:

1. Add the devices to the canvas. Begin by clicking[3] on the machine icon on the toolbar on the
left. This is the icon with the question mark in the middle. With this tool selected, each time
you click over the canvas, a copy of this icon will be inserted on the canvas at the cursor.

[3] Unless otherwise noted, clicking means clicking with the left mouse button.

You can change the appearance of each of these icons to reflect the type of device it
represents. First, click on Select on the toolbar (not Select on the menu). Next, select the icon
or icons you want to change. You select single icons by clicking on them. Multiple icons can
be selected by Shift-clicking on each in turn. As you select devices, small boxes are displayed
at the corners of the icon. Once you have selected the icons of interest, go to the icon pull-
down menu and select the icon you want from the appropriate submenu. Notice that the icon
on the toolbar changes. (You could make this change before inserting devices if you wish and
insert the selected icon that way.)

2. Label each device. Right-click on each device in turn. From the pop-up menu, select Edit All
Attributes..., enter the appropriate name and IP address for each device, and then select Set
Values. Once you have done this, right-click on the icon again and select Label with
Attribute..., select either name or address depending on your preference, and then click on
Accept.

3. Add the networks. This is done with the tool below the machine icon (the thick bar). Select
this tool by clicking on it. Click where you want the bar to begin on the canvas. Move the
mouse to where you want the network icon to end and click a second time. You can label
networks in the same way you label nodes.

4. Connect devices to the networks. You can join devices to a network using the next tool on the
toolbar, the thin line with little boxes at either end. Select this tool, click on the device you
want to join to the network, and then click on the appropriate network icon. As you move the
mouse, a line from the icon to the mouse pointer will be shown. When you click on the
network, the line should be attached to both the device and the network. If it disappears, your
aim was off. Try again.

At this point, you will probably want to rearrange your drawing to tidy things up. You can
move icons by dragging them with the middle mouse button. (If your mouse doesn't have
three buttons, try holding down both the left and right buttons simultaneously.)

5. Group devices and networks. This allows you to collapse a subnet into a single icon. You can
open whichever subnets you need to work with at the moment and leave the rest closed. For
large networks, this is essential. Otherwise, the map becomes too cluttered to use effectively.

To combine devices, use the Select tool to select the devices and the network. Then select
Structure Group. You can use this same menu to select Ungroup, Expand, and Collapse
for your groups. You can edit the group label as desired in the previously discussed manner.

 124

6.5.1.2 Autodiscovery with tkined

For a small network, manually drawing a diagram doesn't take very long. But for large networks, this
can be a very tedious process. Fortunately, tkined provides tools for the automatic discovery of nodes
and the automatic layout of maps.

You begin with Tools IP-Discover. What this does is add the IP Discover menu to the menu bar.
The first two items on this menu are Discover IP Network and Discover Route. These tools will
attempt to discover either the devices on a network or the routers along a path to a remote machine.
When one of these is selected, a pop-up box queries you for the network number or remote device of
interest. Unfortunately, tkined seems to support only class-based discovery, so you must specify a
class B or a class C address (although you can specify a portion of a class B network by giving a class
C style subnet address, e.g., 172.16.1.0). It also tends to be somewhat unpredictable or quirky when
trying to discover multiple networks. If you are using subnets on a class B address, what seems to
work best is to run separate discovery sessions and then cut and paste the results together. This is a
little bit of a nuisance, but it is not too bad. This was what was actually done to create Figure 6-1.

Figure 6-2 shows the output generated in discovering a route across the network and one of the
subnets for the network shown in Figure 6-1. This window is automatically created by tkined and
shows its progress during the discovery process. Note that it is sending out a flood of ICMP
ECHO_REQUEST packets in addition to the traceroute-style discovery packets, the ICMP network
mask queries, and the SNMP queries shown here.

Figure 6-2. Route and network discovery with tkined

If you do end up piecing together a network map, other previously discussed tools, such as traceroute,
can be very helpful. You might also want to look at your routing tables with netstat.

There are a couple of problems in using tkined. Foremost is the problem of getting everything installed
correctly. You will need to install Tcl, then Tk, and then scotty. scotty can be very particular about
which version of Tcl and Tk are installed. You will also need to make sure everything is in the default
location or that the environmental variables are correctly set. Fortunately, packages are available for

 125

some systems, such as Linux, that take care of most of these details automatically. Also, tkined will
not warn you if you exit without saving any changes you have made.

6.6 Politics and Security

You should have a legitimate reason and the authority to use the tools described here. Some of these
tools directly probe other computers on the network. Even legitimate uses of these tools can create
surprises for users and may, in some instances, result in considerable ill will and mistrust. For example,
doing security probes to discover weaknesses in your network may be a perfectly reasonable thing to
do, provided that is your responsibility. But you don't want these scans to come as a surprise to your
users. I, for one, strongly resent unexpected probing of my computer regardless of the reason. Often, a
well-meaning individual has scanned a network only to find himself with a lot of explaining to do.
The list of people who have made this mistake includes several big names in the security community.

With the rise of personal firewalls and monitoring tools, more and more users are monitoring what is
happening on their local networks and at their computers. Not all of these users really understand the
results returned by these tools, so you should be prepared to deal with misunderstandings. Reactions
can be extreme, even from people who should know enough to put things in context.

The first time I used CiscoWorks for Windows, the program scanned the network with, among others,
CMIP packets. This, of course, is a perfectly natural thing to do. Unfortunately, another machine on
the network had been configured in a manner that, when it saw the packet, it began blocking all
subsequent packets from the management station. It then began logging all subsequent traffic from the
management station as attacks. This included the System Messaged Blocks (SMB) that are a normal
part of the network background noise created by computers running Microsoft Windows. A couple of
days later I received a very concerned email regarding a 10-page log of attacks originating from the
management station. To make matters worse, the clock on the "attacked" computer was off a couple of
hours. The times recorded for the alleged attacks didn't fall in the block of time I had run CiscoWorks.
It did include, however, blocks of times I knew the management station was offline. Before it was all
sorted out, my overactive imagination had turned it into a malicious attack with a goal of casting
blame on the management station when it was nothing more than a misunderstanding.[4]

[4] This problem could have been lessened if both had been running NTP. NTP is discussed in Chapter
11.

It is best to deal with such potential problems in advance by clearly stating what you will be doing and
why. If you can't justify it, then perhaps you should reconsider exactly why you are doing it. A
number of sites automatically block networks or hosts they receive scans from. And within some
organizations, unauthorized scanning may be grounds for dismissal. You should consider developing a
formal policy clearly stating when and by whom scanning may and may not be done.

This leads to an important point: you really should have a thorough understanding of how scanning
tools work before you use them. For example, some SNMP tools have you enter a list of the various
SNMP passwords (community strings) you use on your network. In the automatic discovery mode, it
will probe for SNMP devices by trying each of these passwords in turn on each machine on the
network. This is intended to save the network manager from having to enter this information for each
individual device. However, it is a simple matter for scanned machines to capture these passwords.
Tools like dsniff are designed specifically for that purpose. I strongly recommend watching the
behavior of whatever scanning tools you use with a tool like tcpdump or ethereal to see what it is
actually doing.

 126

Unfortunately, some of the developers of these tools can't seem to decide whether they are writing for
responsible users or crackers. As previously noted, some tools include questionable features, such as
support stealth scans or forged IP addresses. In general, I have described only those features for which
I can see a legitimate use. However, sometimes there is no clear dividing line. For example, forged IP
addresses can be useful in testing firewalls. When I have described such features, I assume that you
will be able to distinguish between appropriate and inappropriate uses.

6.7 Microsoft Windows

Traditionally, commercial tools for network management have typically been developed for Unix
platforms rather than Windows. Those available under Windows tended not to scale well. In the last
few years this has been changing rapidly, and many of the standard commercial tools are now
available for Windows platforms.

A number of packages support IP scanning under Windows. These include freeware, shareware, and
commercial packages. Generally, these products are less sophisticated than similar Unix tools. For
example, stealth scanning is usually lacking under Windows. (Personally, I'm not sure this is
something to complain about.)

Nonetheless, there are a number of very impressive noncommercial tools for Windows. In fact,
considering the quality and functionality of some of these free packages, it is surprising that the
commercial packages are so successful. But free software, particularly in network management, seems
to have a way of becoming commercial software over time—once it has matured and developed a
following.

6.7.1 Cyberkit

One particularly impressive tool is Luc Neijens' cyberkit. The package works well, has a good help
system, and implements a wide range of functions in one package. In addition to IP scanning, the
program includes, among others, ping, traceroute, finger, whois, nslookup, and NTP synchronization.

With cyberkit, you can scan a range of addresses within an address space or you can read a set of
addresses from a file. Figure 6-3 shows an example of such a scan.

Figure 6-3. IP scan with cyberkit

 127

Here you can see how to specify a range of IP addresses. The button to the right of the Address Range
field will assist you in specifying an address range or entering a filename. If you want to use a file,
you need enter only the path and name of a text file containing a set of addresses, one address per line.
Notice that you can use the same tab to resolve addresses or do port scans of each address. There are a
number of other tools you might consider. getif, which makes heavy use of SNMP, is described in
Chapter 7. You might also want to look at Sam Spade. (Sam Spade is particularly helpful when
dealing with spamming and other email related problems.)

6.7.2 Other Tools for Windows

The good news is that Tcl, Tk, scotty, and tkined are all available for Windows platforms. Tcl and Tk
seem to be pretty stable ports. tkined is usually described as an early alpha port but seems to work
fairly well. You'll want a three-button mouse. The interface is almost identical to the Unix version,
and I have moved files between Windows and Unix platforms without problems. For example, you
could create maps on one and move them to another for monitoring. Moreover, the tnm extensions
have been used as the basis for additional tools available for Windows.

If you use Microsoft Exchange Server, a topology diagramming tool called emap can be downloaded
from Microsoft. It will read an Exchange directory and automatically generate a Visio diagram for
your site topology. Of course, you'll need Visio to view the results.

Finally, if you are using NetBIOS, you might want to look at the nbtstat utility. This command
displays protocol statistics and current TCP connections using NetBIOS over TCP/IP (NBT). You can
use this command to poll remote NetBIOS name tables among other things. The basic syntax is
returned if you call the program with no options.

 128

Chapter 7. Device Monitoring with SNMP
This chapter is about monitoring devices with Simple Network Management Protocol (SNMP). It
describes how SNMP can be used to retrieve information from remote systems, to monitor systems,
and to alert you to problems. While other network management protocols exist, SNMP is currently the
most commonly used. While SNMP has other uses, our primary focus will be on monitoring systems
to ensure that they are functioning properly and to collect information when they aren't. The material
in this chapter is expanded upon in Chapter 8.

This chapter begins with a brief review of SNMP. This description is somewhat informal but should
serve to convey enough of the basic ideas to get you started if you are unfamiliar with SNMP. If you
are already familiar with the basic concepts and vocabulary, you can safely skip over this section.
Next I describe NET SNMP—a wonderful tool for learning about SNMP that can be used for many
simple tasks. Network monitoring using tkined is next, followed by a few pointers to tools for
Microsoft Windows.

7.1 Overview of SNMP

SNMP is a management protocol allowing a management program to communicate, configure, or
control remote devices that have embedded SNMP agents. The basic idea behind SNMP is to have a
program or agent running on the remote system that you can communicate with over the network.
This agent then can monitor systems and collect information. Software on a management station sends
messages to the remote agent requesting information or directing it to perform some specific task.
While communication is usually initiated by the management station, under certain conditions the
agent may send an unsolicited message or trap back to the management station.

SNMP provides a framework for network management. While SNMP is not the only management
protocol or, arguably, even the best management protocol, SNMP is almost universal. It has a small
footprint, can be implemented fairly quickly, is extensible, is well documented, and is an open
standard. It resides at the application level of the TCP/IP protocol suite. On the other hand, SNMP,
particularly Version 1, is not a secure protocol; it is poorly suited for real-time applications, and it can
return an overwhelming amount of information.

SNMP is an evolving protocol with a confusing collection of abbreviations designating the various
versions. Only the major versions are mentioned here. Understanding the major distinctions among
versions can be important, because there are a few things you can't do with earlier versions and
because of differences in security provided by the different versions. However, the original version,
SNMPv1, is still widely used and will be the primary focus of this chapter. Generally, the later
versions are backward compatible, so differences in versions shouldn't cause too many operational
problems.

The second version has several competing variants. SNMPv2 Classic has been superseded by
community-based SNMPv2 or SNMPv2c. Two more secure super-sets of SNMPv2c are SNMPv2u
and SNMPv2*. SNMPv2c is the most common of the second versions and is what is usually meant
when you see a reference to SNMPv2. SNMPv2 has not been widely adopted, but its use is growing.
SNMP-NG or SNMPv3 attempts to resolve the differences between SNMPv2u and SNMPv2*. It is
too soon to predict how successful SNMPv3 will be, but it also appears to be growing in popularity.

 129

Although there are usually legitimate reasons for the choice of terms, the nomenclature used to
describe SNMP can be confusing. For example, parameters that are monitored are frequently referred
to as objects, although variables might have been a better choice and is sometimes used. Basically,
objects can be thought of as data structures.

Sometimes, the specialized nomenclature doesn't seem to be worth the effort. For example, SNMP
uses community strings to control access. In order to gain access to a device, you must give the
community string. If this sounds a lot like a password to you, you are not alone. The primary
difference is the way community strings are used. The same community strings are often shared by a
group or community of devices, something frowned upon with passwords. Their purpose is more to
logically group devices than to provide security.

An SNMP manager, software on a central management platform, communicates with an SNMP agent,
software located in the managed device, through SNMP messages. With SNMPv1 there are five types
of messages. GET_REQUEST, GET_NEXT_REQUEST, and SET_REQUEST are sent by the
manager to the agent to request an action. In the first two cases, the agent is asked to supply
information, such as the value of an object. The SET_REQUEST message asks the agent to change
the value of an object.

The remaining messages, GET_RESPONSE and TRAP, originate at the agent. The agent replies to the
first three messages with the GET_RESPONSE message. In each case, the exchange is initiated by the
manager. With the TRAP message, the action is initiated by the agent. Like a hardware interrupt on a
computer, the TRAP message is the agent's way of getting the attention of the manager. Traps play an
essential role in network management in that they alert you to problems needing attention. Knowing
that a device is down is, of course, the first step to correcting the problem. And it always helps to be
able to tell a disgruntled user that you are aware of the problem and are working on it. Traps are as
close as SNMP gets to real-time processing. Unfortunately, for many network problems (such as a
crashed system) traps may not be sent. Even when traps are sent, they could be discarded by a busy
router. UDP is the transport protocol, so there is no error detection for lost packets. Figure 7-1
summarizes the direction messages take when traveling between the manager and agent.

Figure 7-1. SNMP messages

For a management station to send a packet, it must know the IP address of the agent, the appropriate
community string or password used by the agent, and the name of the identifier for the variable or
object referenced. Unfortunately, SNMPv1 is very relaxed about community strings. These are sent in
clear text and can easily be captured by a packet sniffer. One of the motivating factors for SNMPv2
was to provide greater security. Be warned, however, SNMPv2c uses plain text community strings.

Most systems, by default, use public for the read-only community string
and private for the read/write community string. When you set up SNMP
access on a device, you will be given the opportunity to change these. If you
don't want your system to be reconfigurable by anyone on the Internet you

 130

don't want your system to be reconfigurable by anyone on the Internet, you
should change these. When communicating with devices, use read-only
community strings whenever possible and read/write community strings only
when necessary. Use filters to block all SNMP traffic into or out of your
network. Most agents will also allow you to restrict which devices you can
send and receive SNMP messages to and from. Do this! For simplicity and
clarity, the examples in this chapter have been edited to use public and
private. These are not the community strings I actually use.

Another advantage to SNMPv2 is that two additional messages have been added.
GET_BULK_REQUEST will request multiple pieces of data with a single query, whereas
GET_REQUEST generates a separate request for each piece of data. This can considerably improve
performance. The other new message, INFORM_REQUEST, allows one manager to send unsolicited
information to another.

Collectively, the objects are variables defined in the Management Information Base (MIB).
Unfortunately, MIB is an overused term that means slightly different things in different contexts.
There are some formal rules for dealing with MIBs—MIB formats are defined by Structure of
Management Information (SMI), the syntax rules for MIB entries are described in Abstract Syntax
Notation One (ASN.1), and how the syntax is encoded is given by Basic Encoding Rules (BER).
Unless you are planning to delve into the implementation of SNMP or decode hex dumps, you can
postpone learning SMI, ASN.1, and BER. And because of the complexity of these rules, I advise
against looking at hex dumps. Fortunately, programs like ethereal do a good job of decoding these
packets, so I won't discuss these rules in this book.

The actual objects that are manipulated are identified by a unique, authoritative object identifier (OID).
Each OID is actually a sequence of integers separated by decimal points, sometimes called dotted
notation. For example, the OID for a system's description is 1.3.6.1.2.1.1.1. This OID arises from the
standardized organization of all such objects, part of which is shown in Figure 7-2. The actual objects
are the leaves of the tree. To eliminate any possibility of ambiguity among objects, they are named by
giving their complete path from the root of the tree to the leaf.

Figure 7-2. Partial OID structure

 131

As you can see from the figure, nodes are given both names and numbers. Thus, the OID can also be
given by specifying the names of each node or object descriptor. For example,
iso.org.dod.internet.mgmt.mib-2.system.sysDescr is the object descriptor that corresponds to the object
identifier 1.3.6.1.2.1.1.1. The more concise numerical names are used within the agents and within
messages. The nonnumeric names are used at the management station for the convenience of users.
Objects are coded directly into the agents and manipulated by object descriptors. While management
stations can mechanically handle object descriptors, they must be explicitly given the mappings
between object descriptors and object identifiers if you want to call objects by name. This is one role
of the MIB files that ship with devices and load onto the management station. These files also tell the
management station which identifiers are valid.

As you might guess from Figure 7-2, this is not a randomly created tree. Through the standardization
process, a number of identifiers have been specified. In particular, the mib-2 subtree has a number of
subtrees or groups of interest. The system group, 1.3.6.1.2.1.1, has nodes used to describe the system
such as sysDescr(1), sysObjectID(2), sysUpTime(3), and so on. These should be pretty self-
explanatory. Although not shown in the figure, the ip(4) group has a number of objects such as
ipForwarding(1), which indicates whether IP packets will be forwarded, and ipDefaultTTL(2), which
gives the default TTL when it isn't specified by the transport layer. The ip group also has three tables
including the ipRouteTable(20). While this information can be gleaned from RFC 1213, which defines
the MIB, several books that present this material in a more accessible form are listed in Appendix B.
Fortunately, there are tools that can be used to investigate MIBs directly.

In addition to standard entries, companies may register private or enterprise MIBs. These have
extensions specific to their equipment. Typically, these MIBs must be added to those on the
management station if they are not already there. They are usually shipped with the device or can be
downloaded over the Internet. Each company registers for a node under the enterprises node
(1.3.6.1.4.1). These extensions are under their respective registered nodes.

If you are new to SNMP, this probably seems pretty abstract. Appendix B also lists and discusses a
number of sources that describe the theory and architecture of SNMP in greater detail. But you should
know enough at this point to get started. The best way to come to terms with SNMP and the structure

TE
AM
FL
Y

Team-Fly®

 132

of managed objects is by experimentation, and that requires tools. I will try to clarify some of these
concepts as we examine SNMP management tools.

7.2 SNMP-Based Management Tools

There are several extremely powerful and useful noncommercial SNMP tools. Tools from the NET
SNMP project, scotty, and tkined are described here.

7.2.1 NET SNMP (UCD SNMP)

The University of California at Davis implementation of SNMP (UCD SNMP) has its origin in a
similar project at Carnegie Mellon University under Steve Waldbusser (CMU SNMP). In the mid-
nineties, the CMU project languished. During this period, the UCD project was born. The UCD
project has greatly expanded the original CMU work and is flourishing, thanks to the work of Wes
Hardaker. The CMU project reemerged for a while with a somewhat different focus and has seen a lot
of support in the Linux community. Both are excellent. While only UCD SNMP will be described
here, the basics of each are so similar that you should have no problem using CMU SNMP once you
are familiar with UCD SNMP. Very recently, UCD SNMP has been renamed NET SNMP to reflect
some organizational changes.

NET SNMP is actually a set of tools, a SNMP library, and an extensible agent. The source code is
available and runs on a number of systems. Binaries are also available for some systems, including
Microsoft Windows. NET SNMP supports SNMPv1, SNMPv2c, and SNMPv3.

Admittedly, the NET SNMP toolset is not ideal for the routine management of a large network. But it
is ideal for learning about SNMP, is not an unreasonable toolset for occasional tasks on smaller
networks, and can be particularly useful in debugging SNMP problems, in part because it separates
SNMP functions into individual utilities. The agent software is a logical choice for systems using
Linux or FreeBSD and is extensible. Most, but not all, of the utilities will be described.

7.2.1.1 snmpget

In the last section, it was stated that there are three messages that can be sent by a management station:
GET_REQUEST, GET_NEXT_REQUEST, and SET_REQUEST. NET SNMP provides utilities to
send each of these messages—snmpget, snmpgetnext, and snmpset, respectively. In order to retrieve
the value of an object, it is necessary to specify the name or IP address of the remote host, a
community string for the host, and the OID of the object. For example:

bsd4# snmpget 172.16.1.5 public .1.3.6.1.2.1.1.1.0
system.sysDescr.0 = "APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod:
AP9
605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)"

There are a couple of points to make about the OID. First, notice the 0 at the end. This is an offset into
the data. It is a common error to omit this. If you are looking at a table, you would use the actual offset
into the table instead of a 0. For example, the description of the third interface in the interface table
would have the OID ifDescr.3.

 133

Second, the leading dot is important. NET SNMP will attempt to attach a prefix to any OIDs not
beginning with a dot. By default, the prefix is 1.3.6.1.2.1, but you can change this by setting the
environment variable PREFIX. In this example, we have specified the OID explicitly. Without the
leading dot, snmpget would have added the prefix to what we had, giving an OID that was too long.
On the other hand, you could just use 1.1.0 without the leading dot and you would get the same
results. Initially, using the prefix can be confusing, but it can save a lot of typing once you are used to
it.

Of course, you can also use names rather than numbers, provided the appropriate MIB is available.
This is shown in the next two examples:

bsd4# snmpget 172.16.1.5 public iso.org.dod.internet.mgmt.mib-
2.system.sysDescr.0
system.sysDescr.0 = "APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod:
AP9
605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)"
bsd4# snmpget 172.16.1.5 public system.sysDescr.0
system.sysDescr.0 = "APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod:
AP9
605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)"

In the first case, the full path was given, and in the second the prefix was used. (Don't forget the
trailing 0.) Numbers and names can be mixed:

bsd4# snmpget 172.16.1.5 public .1.3.6.internet.2.1.system.1.0
system.sysDescr.0 = "APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod:
AP9
605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)"

(Frankly, I can't see much reason for doing this.)

Also, if the MIB is known, you can do a random-access lookup for unique node names:

bsd4# snmpget 172.16.1.5 public upsBasicIdentModel.0
enterprises.apc.products.hardware.ups.upsIdent.upsBasicIdent.upsBasicIdentModel.
0 = "APC Smart-UPS 700 "

In this example, only the final identifier in the OID, upsBasicIdentMode.0, is given, and the MIB
is searched to construct the full OID. This can be particularly helpful if you want to query several
objects with a single snmpget. You can also use multiple OIDs in the same snmpget command to
retrieve the values of several objects.

7.2.1.2 Configuration and options

Before we look further at the NET SNMP commands, let's discuss configuration and options. For the
most part, these tools share the same configuration files and options. (A few exceptions will be noted
when appropriate.) The general configuration file is snmp.conf and is typically in the
/usr/local/share/snmp, /usr/local/lib/snmp, or $HOME/.snmp directory. This search path can be
overridden by setting the SNMPCONFPATH environment variable. Further documentation can be
found in the snmp.conf Unix manpage. This manpage also describes environment variables.

One particular concern in configuring the software is the proper installation of MIBs. As noted earlier,
use of the name form of OIDs works only if the appropriate MIB[1] is loaded. Devices may have more
than one MIB associated with them. In the examples just presented, we have been interacting with an

 134

SNMP-controlled uninterruptible power supply (UPS) manufactured by APC Corp. With this device,
we can use the standard default MIB-II defined in RFC 1213. This standard MIB defines objects used
by most devices. If you have correctly installed the software, this MIB should be readily available.
There are two additional MIBs that may be installed for this particular device. The first is the IETF
MIB, which defines a generic UPS. This is the UPS-MIB defined by RFC 1628. The third MIB,
PowerNet-MIB, contains APC Corp.'s custom extensions. These last two MIBs came on a diskette
with the SNMP adapter for this particular UPS.

[1] When a MIB is loaded, it becomes part of the MIB. Don't say I didn't warn you.

To install these MIBs, the files are first copied to the appropriate directory, /usr/local/share/snmp in
this case. (You may also want to rename them so that all your MIB files have consistent names.) Next,
the environment variable MIBS is set so the MIBs will be loaded. This can be a colon-delimited list of
individual MIB names, but setting MIBS to ALL is usually simpler. On a Windows computer, use the
command:

C:\usr\bin>set MIBS=ALL

On a Unix system using the Bash shell, you would use:

export MIBS=ALL

For the C-shell, use:

setenv MIBS ALL

Of course, this may vary depending on the shell you use.

Alternately, you can use the environment variable MIBFILES to specify filenames. There is also a
command-line option with most of these utilities, -m, to load specific MIBs. If the MIBs are not
installed correctly, you will not be able to use names from the MIB, but you can still access objects by
their numerical OIDs.

The NET SNMP commands use the same basic syntax and command-line options. For example, the
earlier discussion on OID usage applies to each command. This is described in the variables manpage.
The manpages for the individual commands are a little sparse. This is because the descriptions of the
options have been collected together on the snmpcmd manpage. Options applicable to a specific
command can be displayed by using the -h option.

Let's return to snmpget and look at some of the available options. The -O options control how output
is formatted. The default is to print the text form of the OID:

bsd4# snmpget 172.16.1.5 public .1.3.6.1.4.1.318.1.1.1.1.1.1.0
enterprises.apc.products.hardware.ups.upsIdent.upsBasicIdent.upsBasicIdentModel.
0 = "APC Smart-UPS 700 "

-On forces the OID to be printed numerically:

bsd4# snmpget -On 172.16.1.5 public .1.3.6.1.4.1.318.1.1.1.1.1.1.0
.1.3.6.1.4.1.318.1.1.1.1.1.1.0 = "APC Smart-UPS 700 "

 135

Sometimes the value of an object will be a cryptic numerical code. By default, a description will be
printed. For example:

bsd4# snmpget 172.16.1.5 public ip.ipForwarding.0
ip.ipForwarding.0 = not-forwarding(2)

Here, the actual value of the object is 2. This description can be suppressed with the -Oe option:

bsd4# snmpget -Oe 172.16.1.5 public ip.ipForwarding.0
ip.ipForwarding.0 = 2

This could be useful in eliminating any confusion about the actual stored value, particularly if you are
going to use the value subsequently with a SET command.

Use the -Os, -OS, and -Of commands to control the amount of information included in the OID. The -
Os option displays the final identifier only:

bsd4# snmpget -Os 172.16.1.5 public enterprises.318.1.1.1.1.1.1.0
upsBasicIdentModel.0 = "APC Smart-UPS 700 "

The -OS option is quite similar to -Os except that the name of the MIB is placed before the identifier:

sd4# snmpget -OS 172.16.1.5 public enterprises.318.1.1.1.1.1.1.0
PowerNet-MIB::upsBasicIdentModel.0 = "APC Smart-UPS 700 "

-Of forces the display of the full OID:

bsd4# snmpget -Of 172.16.1.5 public enterprises.318.1.1.1.1.1.1.0
.iso.org.dod.internet.private.enterprises.apc.products.hardware.ups.upsIdent.
upsBasicIdent.upsBasicIdentModel.0 = "APC Smart-UPS 700 "

This leaves no question about what you are looking at.

There are a number of additional options. The -V option will return the program's version. The version
of SNMP used can be set with the -v option, either 1, 2c, or 3. The -d option can be used to dump all
SNMP packets. You can set the number of retries and timeouts with the -r and -t options. These few
options just scratch the surface. The syntax for many of these options has changed recently, so be sure
to consult the snmpcmd manpage for more options and details for the version you use.

7.2.1.3 snmpgetnext, snmpwalk, and snmptable

Sometimes you will want to retrieve several related values that are stored together within the agent.
Several commands facilitate this sort of retrieval. The snmpgetnext command is very similar to the
snmpget command. But while snmpget returns the value of the specified OID, snmpgetnext returns the
value of the next object in the MIB tree:

bsd4# snmpget -Os 172.16.1.5 public sysDescr.0
sysDescr.0 = APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod: AP9605,
Mfg
 08/10/96, SN: WA9632270847, Agent Loader v1.0)
bsd4# snmpgetnext -Os 172.16.1.5 public sysDescr.0
sysObjectID.0 = OID: smartUPS700
bsd4# snmpgetnext -Os 172.16.1.5 public sysObjectID.0
sysUpTime.0 = Timeticks: (77951667) 9 days, 0:31:56.67

 136

bsd4# snmpgetnext -Os 172.16.1.5 public sysUpTime.0
sysContact.0 = Sloan

As you can see from this example, snmpgetnext can be used to walk through a sequence of values.
Incidentally, this is one of the few cases in which it is OK to omit the trailing 0. This command can be
particularly helpful if you don't know the next identifier.

If you want all or most of the values of adjacent objects, the snmpwalk command can be used to
retrieve a subtree. For example:

bsd4# snmpwalk 172.16.1.5 public system
system.sysDescr.0 = APC Embedded PowerNet SNMP Agent (SW v2.2, HW vB2, Mod:
AP9605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)
system.sysObjectID.0 = OID:
enterprises.apc.products.system.smartUPS.smartUPS700
system.sysUpTime.0 = Timeticks: (78093618) 9 days, 0:55:36.18
system.sysContact.0 = Sloan
system.sysName.0 = Equipment Rack APC
system.sysLocation.0 = Network Laboratory
system.sysServices.0 = 72

Be prepared to be overwhelmed if you don't select a small subtree. You probably wouldn't want to
walk the mib-2 or enterprises subtree:

bsd4# snmpwalk 172.16.2.1 public enterprises | wc
 3320 10962 121987

In this example, the enterprises subtree is 3320 lines long. Nonetheless, even with large subtrees this
can be helpful to get a quick idea of what is out there. For example, you might pipe output from a
subtree you aren't familiar with to head or more so you can skim it.

Some objects are stored as tables. It can be painful to work with these tables one item at a time, and
once you have them, they can be almost unreadable. snmptable is designed to address this need. Here
is an example of a small route table from a Cisco 3620 router:

bsd4# snmptable -Cb -Cw 80 172.16.2.1 public ipRouteTable
SNMP table: ip.ipRouteTable

 Dest IfIndex Metric1 Metric2 Metric3 Metric4 NextHop Type
 0.0.0.0 0 0 -1 -1 -1 205.153.60.2 indirect
 172.16.1.0 2 0 -1 -1 -1 172.16.1.1 direct
 172.16.2.0 3 0 -1 -1 -1 172.16.2.1 direct
 172.16.3.0 4 0 -1 -1 -1 172.16.3.1 direct
 205.153.60.0 1 0 -1 -1 -1 205.153.60.250 direct
 205.153.61.0 0 0 -1 -1 -1 205.153.60.1 indirect
 205.153.62.0 0 0 -1 -1 -1 205.153.60.1 indirect
 205.153.63.0 0 0 -1 -1 -1 205.153.60.1 indirect

SNMP table ip.ipRouteTable, part 2

 Proto Age Mask Metric5 Info
 local 33 0.0.0.0 -1 .ccitt.nullOID
 local 0 255.255.255.0 -1 .ccitt.nullOID
 local 0 255.255.255.0 -1 .ccitt.nullOID
 local 0 255.255.255.0 -1 .ccitt.nullOID
 local 0 255.255.255.0 -1 .ccitt.nullOID
 local 33 255.255.255.0 -1 .ccitt.nullOID
 local 33 255.255.255.0 -1 .ccitt.nullOID

 137

 local 33 255.255.255.0 -1 .ccitt.nullOID

Even with snmptable, it can be a little tricky to get readable output. In this case, I have used two
options to help. -Cb specifies a brief header. -Cw 80 defines a maximum column width of 80
characters, resulting in a multipart table. You can also specify the column delimiter with the -Cf
option, and you can suppress headers altogether with the -CH option. (There are also a snmpbulkget
and a snmpbulkwalk if you are using SNMPv2.)

7.2.1.4 snmpset

The snmpset command is used to change the value of objects by sending SET_REQUEST messages.
The syntax of this command is a little different from previous commands since you must also specify
a value and a type for the value. You will also need to use a community string that provides read/write
access:

bsd4# snmpset 172.16.1.5 private sysContact.0 s "el Zorro"
system.sysContact.0 = el Zorro

In this example, the system contact was set using a quote-delimited string. Legitimate types include
integers (i), strings (s), hex strings (x), decimal strings (d), null objects (n), object ID (o), time ticks (t),
and IP addresses (a), among others.

People often think of SNMP as being appropriate only for collecting information, not as a general
configuration tool, since SNMP only allows objects to be retrieved or set. However, many objects are
configuration parameters that control the operation of the system. Moreover, agents can react to
changes made to objects by running scripts, and so on. With the appropriate agent, virtually any action
can be taken.[2] For example, you could change entries in an IP routing table, enable or disable a
second interface on a device, or enable or disable IP forwarding. With an SNMP-controlled UPS, you
could shut off power to a device. What you can do, and will want to do, will depend on both the
device and the context. You will need to study the documentation for the device and the applicable
MIBs to know what is possible on a case-by-case basis.

[2] In an extremely interesting interview of John Romkey by Carl Malamud on this topic, Romkey
describes an SNMP-controlled toaster. The interview was originally on the Internet radio program Geek
of the Week (May 29, 1993). At one time, it was available on audio tape from O'Reilly & Associates
(ISBN 1-56592-997-7). Visit http://town.hall.org/radio/Geek and follow the link to Romkey.

7.2.1.5 snmptranslate

In all the preceding examples, I have specified an OID. An obvious question is how did I know the
OID? Available OIDs are determined by the design of the agent and are described by its MIB. There
are several different approaches you can take to discover the contents of a MIB. The most direct
approach is to read the MIB. This is not a difficult task if you don't insist on understanding every
detail. You'll be primarily interested in the object definitions.

Here is an example of the definition of the system contact (sysContact) taken from MIB-II (RFC
1213):

sysContact OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION

http://town.hall.org/radio/Geek

 138

 "The textual identification of the contact person
 for this managed node, together with information
 on how to contact this person."
 ::= { system 4 }

The object name is in the first line. The next line says the object's type is a string and specifies its
maximum size. The third line tells us that this can be read or written. In addition to read-write, an
object may be designated read-only or not-accessible. While some objects may not be implemented in
every agent, this object is required, as shown in the next line. Next comes the description. The last line
tells where the object fits into the MIB tree. This is the fourth node in the system group.

With an enterprise MIB, there is usually some additional documentation that explains what is
available. With standard MIBs like this one, numerous descriptions in books on SNMP describe each
value in detail. These can be very helpful since they are usually accompanied by tables or diagrams
that can be scanned quickly. See Appendix B for specific suggestions.

NET SNMP provides two tools that can be helpful. We have already discussed snmpwalk. Another
useful tool is snmptranslate. This command is designed to present a MIB in a human-readable form.
snmptranslate can be used in a number of different ways. First, it can be used to translate between the
text and numeric form of an object. For example:

bsd4# snmptranslate system.sysContact.0
.1.3.6.1.2.1.1.4.0

We can get the numeric form with the -On option as shown in the next two examples:

bsd4# snmptranslate -On .1.3.6.1.2.1.1.4.0
system.sysContact.0

bsd4# snmptranslate -Ofn system.sysContact.0
.iso.org.dod.internet.mgmt.mib-2.system.sysContact.0

snmptranslate can be a little particular about prefixes. In the previous example, sysContact.0 would
not have been sufficient. You can get around this with the -IR option. (This is usually the default for
most NET SNMP commands.)

bsd4# snmptranslate -IR sysContact.0
.1.3.6.1.2.1.1.4.0

You can also use regular expression matching. For example:

bsd4# snmptranslate -On -Ib 'sys.*ime'
system.sysUpTime

Notice the use of single quotes. (This option can return a few surprises at times as well.)

You get extended information by using the -Td option:

bsd4# snmptranslate -Td system.sysContact
.1.3.6.1.2.1.1.4
sysContact OBJECT-TYPE
 —FROM SNMPv2-MIB, RFC1213-MIB
 -- TEXTUAL CONVENTION DisplayString
 SYNTAX OCTET STRING (0..255)
 DISPLAY-HINT "255a"

 139

 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "The textual identification of the contact person for this
 managed node, together with information on how to contact
 this person. If no contact information is known, the value
 is the zero-length string."
::= { iso(1) org(3) dod(6) internet(1) mgmt(2) mib-2(1) system(1) 4 }

This is basically what we saw in the MIB but in a little more detail. (By the way, the lines starting
with — are just comments embedded in the MIB.)

We can use snmptranslate to generate a tree representation for subtrees by using the -Tp option. For
example:

bsd4# snmptranslate -Tp system
+--system(1)
 |
 +-- -R-- String sysDescr(1)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -R-- ObjID sysObjectID(2)
 +-- -R-- TimeTicks sysUpTime(3)
 +-- -RW- String sysContact(4)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -RW- String sysName(5)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -RW- String sysLocation(6)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -R-- Integer sysServices(7)
 +-- -R-- TimeTicks sysORLastChange(8)
 | Textual Convention: TimeStamp
 |
 +--sysORTable(9)
 |
 +--sysOREntry(1)
 |
 +-- ---- Integer sysORIndex(1)
 +-- -R-- ObjID sysORID(2)
 +-- -R-- String sysORDescr(3)
 | Textual Convention: DisplayString
 | Size: 0..255
 +-- -R-- TimeTicks sysORUpTime(4)
 Textual Convention: TimeStamp

Don't forget the final argument or you'll get the entire MIB. There are also options to print all objects
in labeled form (-Tl), numeric form (-To), or symbolic form (-Tt), but frankly, I've never found much
use for these. These options simply give too much data. One last word of warning: if you have trouble
using snmptranslate, the first thing to check is whether your MIBs are correctly loaded.

7.2.1.6 snmpnetstat

snmpnetstat is an SNMP analog to netstat. Using SNMP, it will provide netstat-like information from
remote systems. Many of the major options are the same as with netstat. A few examples will show
how this tool is used.

 140

The -an option will show the sockets in open mode:

bsd4# snmpnetstat 172.16.2.234 public -an
Active Internet (tcp) Connections (including servers)
Proto Local Address Foreign Address (state)
tcp *.ftp *.* LISTEN
tcp *.telnet *.* LISTEN
tcp *.smtp *.* LISTEN
tcp *.http *.* LISTEN
tcp *.sunrpc *.* LISTEN
tcp *.printer *.* LISTEN
tcp *.659 *.* LISTEN
tcp *.680 *.* LISTEN
tcp *.685 *.* LISTEN
tcp *.690 *.* LISTEN
tcp *.1024 *.* LISTEN
tcp 172.16.2.234.telnet sloan.1135 ESTABLISHED
Active Internet (udp) Connections
Proto Local Address
udp *.sunrpc
udp *.snmp
udp *.who
udp *.657
udp *.668
udp *.678
udp *.683
udp *.688
udp *.1024
udp *.nfsd

Notice that with snmpnetstat, the options are listed at the end of the command.

The -r option gives the route table. Here is a route table from a Cisco 3620 router:

bsd4# snmpnetstat 172.16.2.1 public -rn
Routing tables
Destination Gateway Flags Interface
default 205.153.60.2 UG if0
172.16.1/24 172.16.1.1 U Ethernet0/1
172.16.2/24 172.16.2.1 U Ethernet0/2
172.16.3/24 172.16.3.1 U Ethernet0/3
205.153.60 205.153.60.250 U Ethernet0/0
205.153.61 205.153.60.1 UG if0
205.153.62 205.153.60.1 UG if0
205.153.63 205.153.60.1 UG if0

In each of these examples, the -n option is used to suppress name resolution.

Here are the packet counts for the interfaces from the same router:

bsd4# snmpnetstat 172.16.2.1 public -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Queue
Ethernet0/1 1500 172.16.1/24 172.16.1.1 219805 0 103373 0 0
Ethernet0/0 1500 205.153.60 205.153.60.250 406485 0 194035 0 0
Ethernet0/2 1500 172.16.2/24 172.16.2.1 177489 1 231011 0 0
Ethernet0/3 1500 172.16.3/24 172.16.3.1 18175 0 97954 0 0
Null0 1500 0 0 0 0 0

As with netstat, the -i option is used.

 141

As a final example, the -s option is used with the -P option to get general statistics with output
restricted to a single protocol, in this case IP:

bsd4# snmpnetstat 172.16.2.1 public -s -P ip
ip:
 533220 total datagrams received
 0 datagrams with header errors
 0 datagrams with an invalid destination address
 231583 datagrams forwarded
 0 datagrams with unknown protocol
 0 datagrams discarded
 301288 datagrams delivered
 9924 output datagram requests
 67 output datagrams discarded
 4 datagrams with no route
 0 fragments received
 0 datagrams reassembled
 0 reassembly failures
 0 datagrams fragmented
 0 fragmentation failures
 0 fragments created

This should all seem very familiar to netstat users.

7.2.1.7 snmpstatus

The snmpstatus command is a quick way to get a few pieces of basic information from an agent:

bsd4# snmpstatus 172.16.2.1 public
[172.16.2.1]=>[Cisco Internetwork Operating System Software
IOS (tm) 3600 Software (C3620-IO3-M), Version 12.0(7)T, RELEASE SOFTWARE (fc2)
Copyright (c) 1986-1999 by Cisco Systems, Inc.
Compiled Wed 08-Dec-99 10:08 by phanguye] Up: 11 days, 1:31:43.66
Interfaces: 5, Recv/Trans packets: 1113346/629074 | IP: 533415/9933

It gets the IP address, text description, time since the system was booted, total received and
transmitted packets, and total received and transmitted IP packets.

7.2.1.8 Agents and traps

In addition to management software, NET SNMP also includes the agent snmpd. As with any agent,
snmpd responds to SNMP messages, providing basic management for the host on which it is run.
snmpd uses the snmpd.conf configuration file (not to be confused with snmp.conf, the configuration
file for the utilities). snmpd functionality will depend, in part, on what is enabled by its configuration
file. The distribution comes with the MIB UCD-SNMP-MIB.txt and the file EXAMPLE.conf, an
example configuration file that is fairly well documented. The manpage for snmpd.conf provides
additional information.

At a minimum, you'll want to edit the security entries. The com2sec entry is used to set the community
names for a host or network. The group entry defines an access class. For example, consider these
three lines from a configuration file:

com2sec local 172.16.2.236 private
...
group MyRWGroup v1 local
...

TE
AM
FL
Y

Team-Fly®

 142

access MyRWGroup "" any noauth prefix all all none

The first line sets the community string to private for the single host 172.16.2.236. The last two
establish that this host is using SNMPv1 and has both read and write privileges.

Even without further editing of the configuration file, the agent provides a number of useful pieces of
information. These include things like information on processes (prTable), memory usage (memory),
processor load (laTable), and disk usage (dskTable). For example, here is the disk information from a
Linux system:

bsd4# snmpwalk 172.16.2.234 public dskTable
enterprises.ucdavis.dskTable.dskEntry.dskIndex.1 = 1
enterprises.ucdavis.dskTable.dskEntry.dskPath.1 = /
enterprises.ucdavis.dskTable.dskEntry.dskDevice.1 = /dev/sda1
enterprises.ucdavis.dskTable.dskEntry.dskMinimum.1 = 10000
enterprises.ucdavis.dskTable.dskEntry.dskMinPercent.1 = -1
enterprises.ucdavis.dskTable.dskEntry.dskTotal.1 = 202182
enterprises.ucdavis.dskTable.dskEntry.dskAvail.1 = 133245
enterprises.ucdavis.dskTable.dskEntry.dskUsed.1 = 58497
enterprises.ucdavis.dskTable.dskEntry.dskPercent.1 = 31
enterprises.ucdavis.dskTable.dskEntry.dskErrorFlag.1 = 0
enterprises.ucdavis.dskTable.dskEntry.dskErrorMsg.1 =

Most of the entries are just what you would guess. The dskPath entry says we are looking at the root
partition. The dskDevice gives the path to the partition being examined, /dev/sda1. The next two items
are parameters for triggering error messages. The dskTotal entry is the size of the partition in kilobytes.
This partition is 202MB. The next two entries, dskAvail and dskUsed, give the amount of available
and used space; 31% of the disk is in use. Here is the output from df for the same system:

lnx1# df -k /
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 202182 58497 133245 31% /

The last two entries are objects used to signal errors. By editing the configuration file, you can get
information on other partitions. Brief descriptions for each object are included within the MIB, UCD-
SNMP-MIB.txt. Directions for changing the configuration file are given in the example file.

It is also possible to extend the agent. This will allow you to run external programs or scripts. The
output, in its simplest form, is limited to a single line and an exit code that can be retrieved as an MIB
object. For example, the following line could be added to the configuration file:

exec datetest /bin/date -j -u

Here, exec is a keyword, datetest is a label, /bin/date is the command, and the rest of the line is treated
as a set of arguments and parameters to the command. The -j option prevents a query to set the date,
and -u specifies Coordinated Universal time. The command is run by the agent each time you try to
access the object. For example, snmpwalk could be used to retrieve the following information:

bsd4# snmpwalk 172.16.2.236 private extTable
enterprises.ucdavis.extTable.extEntry.extIndex.1 = 1
enterprises.ucdavis.extTable.extEntry.extNames.1 = datetest
enterprises.ucdavis.extTable.extEntry.extCommand.1 = /bin/date -j -u
enterprises.ucdavis.extTable.extEntry.extResult.1 = 0
enterprises.ucdavis.extTable.extEntry.extOutput.1 = Mon Jun 26 14:10:50 GMT
2000

 143

enterprises.ucdavis.extTable.extEntry.extErrFix.1 = 0
enterprises.ucdavis.extTable.extEntry.extErrFixCmd.1 =

You should be able to recognize the label, command with options, exit code, and output in this table.
The command will be run each time you retrieve a value from this table.

Running snmpd on a system is straightforward. As root, type snmpd, and it will immediately fork and
return the prompt. There are several options you can use. If you don't want it to fork, you can use the -
f option. This is useful with options that return additional runtime information. I've found that it is also
useful when testing the configuration file. I'll start snmpd in one window and test the configuration in
another. When I'm ready to change configurations, I jump back to the original window and kill and
restart the process. Of course, you can always use ps to look up the process and then send the process
a -HUP signal. Or you could use snmpset to set the OID versionUpdateConfig to 1 to force a reload of
the configuration file:

bsd4# snmpset 172.16.2.236 private versionUpdateConfig.0 i 1
enterprises.ucdavis.version.versionUpdateConfig.0 = 1

Take your pick, but you must reload the file before changes will take effect.

It is possible to use snmpd options in a couple of ways to trace packet exchanges. You can use the
options -f, -L, and -d, respectively, to prevent forking, to redirect messages to standard output, and to
dump packets. Here is an example:

bsd4# snmpd -f -L -d
UCD-SNMP version 4.1.2

Received 49 bytes from 205.153.63.30:1055
0000: 30 82 00 2D 02 01 00 04 06 70 75 62 6C 69 63 A0 0..-.....public.
0016: 82 00 1E 02 02 0B 78 02 01 00 02 01 00 30 82 00 x......0..
0032: 10 30 82 00 0C 06 08 2B 06 01 02 01 01 06 00 05 .0.....+........
0048: 00 .

Received SNMP packet(s) from 205.153.63.30
 GET message
 -- system.sysLocation.0
 >> system.sysLocation.0 = 303 Laura Lander Hall

Sending 70 bytes to 205.153.63.30:1055
0000: 30 82 00 42 02 01 00 04 06 70 75 62 6C 69 63 A2 0..B.....public.
0016: 82 00 33 02 02 0B 78 02 01 00 02 01 00 30 82 00 ..3...x......0..
0032: 25 30 82 00 21 06 08 2B 06 01 02 01 01 06 00 04 %0..!..+........
0048: 15 33 30 33 20 4C 61 75 72 61 20 4C 61 6E 64 65 .303 Laura Lande
0064: 72 20 48 61 6C 6C r Hall

This is probably more information than you want. As previously noted, you probably don't want to
delve into the hex. You can replace the -d option with the -V option to get a verbose display but
without the dump:

bsd4# snmpd -f -L -V
UCD-SNMP version 4.1.2
Received SNMP packet(s) from 205.153.63.30
 GET message
 -- system.sysLocation.0
 >> system.sysLocation.0 = 303 Laura Lander Hall

 144

This should give you an adequate idea of what is going on for most troubleshooting needs. See the
manpage for other options.

NET SNMP also includes two applications for dealing with traps. snmptrapd starts a daemon to
receive and respond to traps. It uses the configuration file snmptrapd.conf. The snmptrap is an
application used to generate traps. While these can be useful in troubleshooting, their use is arcane to
say the least. You will need to edit the appropriate MIB files before using these. There are simpler
ways to test traps.

7.2.2 scotty

scotty was introduced in Chapter 6. Now that we've talked a little about SNMP, here are a few more
examples of using scotty. These are based on examples given in one of the README files that comes
with scotty. Since you will have to install scotty to get tkined, it is helpful to know a few scotty
commands to test your setup. These scotty commands also provide a quick-and-dirty way of getting a
few pieces of information.

To use SNMP with scotty, you must first establish an SNMP session:

lnx1# scotty
% set s [snmp session -address 172.16.1.5 -community private]
snmp0

Once you have a session, you can retrieve a single object, multiple objects, the successor of an object,
or subtrees. Here are some examples:

% $s get sysDescr.0
{1.3.6.1.2.1.1.1.0 {OCTET STRING} {APC Embedded PowerNet SNMP Agent (SW v2.2,
HW
 vB2, Mod: AP9605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)}}
% $s get "sysDescr.0 sysContact.0"
{1.3.6.1.2.1.1.1.0 {OCTET STRING} {APC Embedded PowerNet SNMP Agent (SW v2.2,
HW
 vB2, Mod: AP9605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)}}
{1.3.6.1
.2.1.1.4.0 {OCTET STRING} {Sloan <jsloan@lander.edu>}}
% $s getnext sysUpTime.0
{1.3.6.1.2.1.1.4.0 {OCTET STRING} {Sloan <jsloan@lander.edu>}}
% $s getnext [mib successor system]
{1.3.6.1.2.1.1.1.0 {OCTET STRING} {APC Embedded PowerNet SNMP Agent (SW v2.2,
HW
 vB2, Mod: AP9605, Mfg 08/10/96, SN: WA9632270847, Agent Loader v1.0)}}
{1.3.6.1
.2.1.1.2.0 {OBJECT IDENTIFIER} PowerNet-MIB!smartUPS700} {1.3.6.1.2.1.1.3.0
Time
Ticks {4d 22:27:07.42}} {1.3.6.1.2.1.1.4.0 {OCTET STRING} {Joe Sloan}} {1.3.6.1.
2.1.1.5.0 {OCTET STRING} {APC UPS}} {1.3.6.1.2.1.1.6.0 {OCTET STRING} {214
Laura
 Lander Hall, Equipment Rack}} {1.3.6.1.2.1.1.7.0 INTEGER 72}
{1.3.6.1.2.1.2.1.0
 INTEGER 1} {1.3.6.1.2.1.2.1.0 INTEGER 1}

Once you know the syntax, it is straightforward to change the value of objects as can be seen here:

% $s set [list [list sysContact.0 "OCTET STRING" "Joe Sloan"]]
{1.3.6.1.2.1.1.4.0 {OCTET STRING} {Joe Sloan}}

 145

% $s get sysContact.0
{1.3.6.1.2.1.1.4.0 {OCTET STRING} {Joe Sloan}}

Notice that after the object is set, I have retrieved it to verify the operation. I strongly recommend
doing this each time you change something.

If you aren't familiar with Tcl, then defining a trap handler will seem arcane. Here is an example:

% % proc traphandler {ip list} {
 set msg "SNMP trap from $ip:"
 foreach vb $list {
 append msg " [mib name [lindex $vb 0]]=\"[lindex $vb 2]\""
 }
 puts stderr $msg
 }
% set t [snmp session -port 162]
snmp1
% $t bind "" trap {traphandler %A "%V"}

Once the trap handler is defined, we can test it by interrupting the power to the UPS by unplugging the
UPS.[3] This test generated the following trap messages:

[3] This is OK with this particular UPS. In fact, it's suggested in the documentation. However, you don't
want to do this with just any UPS. While UPSs are designed to deal with power interruptions, some are
not necessarily designed to deal with the ground being removed, as happens when you unplug a UPS.

% SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:50.44"
snmpTrapOID.0="PowerNe
t-MIB!upsOnBattery"
smartUPS700="57:41:52:4E:49:4E:47:3A:20:54:68:65:20:55:50:53
:20:6F:6E:20:73:65:72:69:61:6C:20:70:6F:72:74:20:31:20:69:73:20:6F:6E:20:62:61:
7
4:74:65:72:79:20:62:61:63:6B:75:70:20:70:6F:77:65:72:2E"
snmpTrapEnterprise.0="a
pc"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:50.55"
snmpTrapOID.0="1.3.6.1.2
.1.33.2.0.1" upsEstimatedMinutesRemaining="31" upsSecondsOnBattery="0"
upsConfig
LowBattTime="2" snmpTrapEnterprise.0="upsTraps"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:50.66"
snmpTrapOID.0="1.3.6.1.2
.1.33.2.0.3" upsAlarmId="12" upsAlarmDescr="UPS-MIB!upsAlarmInputBad"
snmpTrapEn
terprise.0="upsTraps"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:55.27"
snmpTrapOID.0="1.3.6.1.2
.1.33.2.0.4" upsAlarmId="11" upsAlarmDescr="UPS-MIB!upsAlarmOnBattery"
snmpTrapE
nterprise.0="upsTraps"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:55.38"
snmpTrapOID.0="1.3.6.1.2
.1.33.2.0.4" upsAlarmId="12" upsAlarmDescr="UPS-MIB!upsAlarmInputBad"
snmpTrapEn
terprise.0="upsTraps"
SNMP trap from 172.16.1.5: sysUpTime.0="2d 21:15:55.50"
snmpTrapOID.0="PowerNet-
MIB!powerRestored" smartUPS700="49:4E:46:4F:52:4D:41:54:49:4F:4E:3A:20:4E:6F:72:
6D:61:6C:20:70:6F:77:65:72:20:68:61:73:20:62:65:65:6E:20:72:65:73:74:6F:72:65:6
4

 146

:20:74:6F:20:74:68:65:20:55:50:53:20:6F:6E:20:73:65:72:69:61:6C:20:70:6F:72:74:
2
0:31:2E" snmpTrapEnterprise.0="apc"

From this example, you can see a sequence of traps as the power is lost and restored. Most messages
should be self-explanatory, and all are explained in the UPS documentation.

Generating traps is much simpler. In this example, a session is started and a trap is sent to that session:

% set u [snmp session -port 162 -address 172.16.2.234]
snmp2
% $u trap coldStart ""

You can terminate a session without exiting scotty with the destroy command:

% $u destroy

If you are thinking about writing Tcl scripts, this should give you an idea of the power of the tnm
extensions supplied by scotty.

If you aren't familiar with the syntax of Tcl, these examples will seem fairly opaque but should give
you an idea of what is possible. You could try these on your system as presented here, but if you are
really interested is doing this sort of thing, you'll probably want to learn some Tcl first. Several
sources of information are given in Appendix B.

7.2.3 tkined

tkined was introduced in the last chapter. Here we will look at how it can be used to retrieve
information and do basic monitoring. tkined is a versatile tool, and only some of the more basic
features will be described here. This should be enough to get you started and help you decide if tkined
is the right tool for your needs. A small test network is shown in Figure 7-3. (We will be looking at
this network, along with minor variations, in the following examples.)

Figure 7-3. Demo network

 147

7.2.3.1 ICMP monitoring

ICMP monitoring periodically sends an ECHO_REQUEST packet to a remote device to see if the
connection is viable. (We've seen examples of this before.) SNMP monitoring is superior when
available since it can be used to retrieve additional information. But if the device doesn't support
SNMP, or if you don't have SNMP access, ICMP monitoring may be your only option. Your ISP, for
example, probably won't give you SNMP access to their routers even though you depend on them.

To use ICMP monitoring with tkined, use Tools IP-Monitor. This will add an IP-Monitor menu to
the menu bar. Next, select a device on your map by clicking on the Select tool and then the device's
icon. Now, use IP-Monitor Check Reachability. (See Figure 7-4.) Since the idea of monitoring is to
alert you to problems, if your device is reachable, you shouldn't see any changes. If the device is
nearby and it won't create any problems, you can test your setup by disconnecting the device from the
network. The device's icon should turn red and start flashing. A message will also be displayed on the
map under the icon.

Figure 7-4. IP-Monitor menu

If the device is in a collapsed group, the icon for the group will flash. Thus, you don't have to have an
icon displayed for every device you are monitoring. You could start a monitor on each device of
interest, put related devices into a group, and collapse the group. By creating a number of groups, all
collapsed, you can monitor a large number of machines from a small, uncluttered map and still be able
to drill down on a problem.

When you reconnect the device, the icon should turn black and then stop flashing. It may take a
minute to see these changes. By default, the system polls devices every 60 seconds. You can check
which devices are being monitored by selecting IP-Monitor Monitor Job Info. A pop-up box will
display a list of the monitors that are running.

 148

If you want to change parameters, select IP-Monitor Modify Monitor Job. This will bring up a box
displaying a list of running jobs. Select the job of interest by clicking on it, then click on the Modify
button. The box listing jobs will be replaced by a box giving job parameters, as shown in Figure 7-5.

Figure 7-5. Monitor job parameters

You can reset the polling rate by changing the Intervaltime field. The next two radio buttons allow
you to suspend or restart a suspended job. The two Threshold fields allow you to establish limits on
response times. If your system normally responds within, say, 100ms, you could set Rising Threshold
to 200ms. If the quality of the connection degrades so that response time rises above 200ms, the
system will alert you. The Threshold Action buttons allow you to say how you want to be notified
when thresholds are crossed. Finally, you can commit to the changes, terminate the job, or cancel any
changes.

If you are really interested in tracking how response time is changing, you can select IP-Monitor
Round Trip Time. A small box will appear on the map, partially obscuring the icon. (You can drag it
to a more convenient location.) This is called a stripchart and will plot round-trip times against time.
You can change parameters using IP-Monitor Modify Monitor Job. You can change labels and
scale by right-clicking on the chart.

Figure 7-6 shows two stripcharts. The chart in the upper right really isn't very revealing since the
device is on the local network and everything is working OK. The latest round-trip time is displayed
below the stripchart and is updated dynamically. A device does not have to be integrated into the map.
The site www.infoave.net, an ISP at the bottom of the figure, has been added to the site and is being
monitored. This icon is partially obscured by a slider used to adjust the scale. Other ICMP monitoring
options, shown in Figure 7-4, are available.

Figure 7-6. Map with stripcharts

http://www.infoave.net/

 149

7.2.3.2 SNMP traps

Before you begin using tkined for SNMP-based monitoring, you want to make sure the appropriate
MIBs are installed. These will usually be located in a common mibs directory under the tnm library
directory, e.g., /usr/lib/tnm2.1.10/mibs or /usr/local/lib/tnm2.1.10/mibs. You will want to copy any
enterprise MIB you plan to use to that directory. Next, you should verify that the files are compatible.
Try loading them into scotty with the mib load command, e.g., mib load toaster.mib. If the file loads
without comment, you are probably OK. Finally, you will want to edit the init.tcl file to automatically
load the MIBs. Ideally, you will have a site-specific version of the file for changes, but you can edit
the standard default file. You will want to add a line that looks something like lappend tnm(mibs)
toaster.mib. You are now ready to start tkined and do SNMP-based monitoring.

The first step is to go to Tools SNMP-Monitor. This will add the SNMP-Monitor menu to the
menu bar. This menu is shown in Figure 7-7. To receive traps, select SNMP-Monitor Trap Sink. A
pop-up box will give you the option of listening to or ignoring traps. Select the Listen button and click
on Accept to start receiving traps. At this point, the station is now configured to receive traps.

Figure 7-7. SNMP-Monitor menu

 150

To test that this is really working, we need to generate some traps for the system to receive. If you are
a scotty user, you might use the code presented in the last section. For this example, a UPS that was
being monitored was unplugged. Regardless of how the trap is generated, tkined responds in the same
way. The device icon blinks, a message is written on the map, and a new window, shown in Figure 7-8,
is displayed with the trap messages generated by the UPS. Note that the duration of this problem was
under 5 seconds. It is likely this event would have been missed with polling.

Figure 7-8. SNMP monitor report

7.2.3.3 Examining MIBs

Tools SNMP Tree provides one way of examining MIBs. Or, if you prefer, you can use Tools
SNMP-Browser. The SNMP Tree command displays a graphical representation of a subtree of the
MIB. This is shown in Figure 7-9.

Figure 7-9. SNMP tree

 151

Menu items allow you to focus in on a particular subtree. For example, the MIB-2 menu shows the
various subtrees under the MIB-2 node. The Enterprises menu shows various enterprise MIBs that
have been loaded. You simply select the MIB of interest from the menu, and it will be displayed in the
window. You can click on an item on the tree and a pop-up window will give you the option of
displaying a description of the item, retrieving its value, changing its value, or displaying just the
subtree of the node in question. Of course, you will need to select a system before you can retrieve
system-specific information.

The SNMP-Browser option provides much the same functionality but displays information in a
different format. If you select SNMP-Browser MIB Browser, you will be given a text box listing
the nodes below the internet node (.1.3.6.1) of the MIB tree. If you click on any of these nodes, the
text box will be replaced with one of the nodes under the selected node. In this manner, you can move
down the MIB tree. After the first box, you will also be given the option to move up the tree or, if
appropriate, to the previous or next node in the subtree. If you reach a leaf, you will be given a
description of the object, as shown in Figure 7-10. If the object can be changed, you will be given that
choice as well.

Figure 7-10. MIB Browser

TE
AM
FL
Y

Team-Fly®

 152

You are also given the option to walk a subtree. This option will attempt to retrieve all the object
values for leaves under the current node. This can be quite lengthy depending on where you are in the
tree. Figure 7-11 shows the last few entries under ip. Most of the values have scrolled off the window.

Figure 7-11. Walk for IP

SNMP Tree provides a nice visual display, but it can be a little easier to move around with the MIB
Browser. Take your choice.

7.2.3.4 Monitoring SNMP objects

In much the same way you monitor devices, you can monitor SNMP objects. First, you will need to
identify the object you want to monitor. This can be done using the techniques just described. With
MIB Browser you can select monitoring at a leaf. Alternately, you can select SNMP-Monitor
Monitor Variable. This is a little easier if you already know the name of the object you want to
monitor. A pop-up box will request the name of the object to monitor. Type in the name of the object
and click on Start. (Don't forget to select a system first.) A stripchart will be created on your map
displaying the values for the monitored object.

7.2.3.5 Other commands

Tools SNMP Trouble installs the SNMP-Trouble menu. The name is somewhat misleading.
Generally, the SNMP-Trouble menu provides quick ways to collect common, useful information. First,
it can be used to locate SNMP-aware devices on your network. By selecting multiple devices on the
map and then choosing SNMP-Trouble SNMP Devices, tkined will poll each of the devices. The
output for the test network is shown in Figure 7-12.

Figure 7-12. SNMP devices

 153

Please note that noResponse does not necessarily mean that the device is down or that it doesn't
support SNMP. For example, it may simply mean that you are not using the correct community string.

The SNMP-Trouble menu also provides menu options that will return some of the more commonly
needed pieces of information such as system information, ARP tables, IP routing tables, interface
information, or TCP connections. A few of these reports are shown in Figure 7-13.

Figure 7-13. SNMP-Trouble reports

7.2.3.6 Caveats

tkined is a fine program, but it does have a couple of problems. As noted in the last chapter, it will let
you exit without saving changes. Another problem is that it doesn't recover well from one particular
type of user error. When you are through with a window or display, you should shrink the window
rather than closing it. If you close the window, tkined will not automatically reopen it for you. When
you later use a command that needs the closed window, it will appear that tkined has simply ignored
your command. Usually, you can simply unload and then reload the menu that contains the selection
used to initially create the window. Typically, the last item on a menu (for example, see Figure 7-4
and Figure 7-7) will remove or delete the menu and unload the subsystem. Then go to the Tools menu
and reload the menu. The appropriate subsystem will be reloaded, correcting the problem. This can be
very frustrating when you first encounter it, but it is easy to work around or avoid once you know to
look for it.

 154

One other problem with tkined is that it uses a single community string when talking with devices.
This can be changed with Set SNMP Parameters, which is available on several menus. But if you are
using different community strings within your network or prefer using read-only strings most of the
time but occasionally need to change something, changing the community string can be a nuisance.
Overall, these few problems seem to be minor inconveniences for an otherwise remarkably useful
program. The program has a number of additional features—such as sending reports to the syslog
system—that were not discussed here. You should, however, have a pretty good idea of how to get
started using tkined from this discussion.

7.3 Non-SNMP Approaches

Of course, SNMP is not the only way to retrieve information or monitor systems. For example, a
number of devices now have small HTTP servers built in that allow remote configuration and
management. These can be particularly helpful in retrieving information. With Unix, it is possible to
remotely log on to a system using telnet or ssh over a network connection and reconfigure the host.
There is probably very little I can say about using these approaches that you don't already know or that
isn't obvious. There is one thing that you undoubtedly know, but that is all too easy to forget—don't
make any changes that will kill your connection.[4]

[4] One precaution that some administrators use is connecting the console port of crucial devices to
another device that should remain reachable—a port on a terminal server, a modem, or even a serial
port on a nearby server. If you take this "milking-machine" approach, be sure this portal is secure.

Some remote-access programs provide a greater degree of control than others. In a Microsoft
Windows environment, where traditionally there is only one user on a system, a remote control
program may take complete control of the remote system. On a multiuser system such as a Unix-based
system, the same software may simply create another session on the remote host. Although these
programs are not specifically designed with network management in mind, they work well as
management tools.

While these approaches will allow you to actively retrieve information or reconfigure devices, the
remote systems are basically passive entities. There are, however, other monitoring tools that you
could consider. Big Brother (bb) is one highly regarded package. It is a web-based, multiplatform
monitor. It is available commercially and, for some uses, noncommercially.

7.4 Microsoft Windows

SNMP is implemented as a Win32 service. It is available for the more recent versions of Windows but
must be installed from the distribution CD-ROM. Installation and setup is very straightforward but
varies from version to version.

7.4.1 Windows SNMP Setup

With NT, SNMP is installed from the Network applet under the Control Panel. Select Add under the
Services tab, then select SNMP Services from the Select Network Service pop-up box. You will then
be prompted for your distribution CD-ROM. Once it is installed, a pop-up box called Microsoft

 155

SNMP Properties will appear. You use the three tabs on this box to configure SNMP. The Agent tab is
used to set the contact and location. The Traps tab is used to set the Community name and address of
the management station that will receive the traps. Use the Add button in the appropriate part of the
box. The Security tab is used to set the community strings, privileges, and addresses for the
management stations. Be sure to select the radio button Accept SNMP Packets for These Hosts if you
want to limit access. If you experience problems running SNMP, try reinstalling the latest service pack
from Microsoft.

Installation with Windows 98 is similar, but at the Select Network Service prompt, you must click
Have Disk. The SNMP agent can be found in the \Tools\Reskit\Netadmin\SNMP\ directory on the
installation disk. SNMP is not included with the original distribution of Windows 95 but can be
installed from the Resource Kit or downloaded from Microsoft. On later releases, it can be found on
the distribution disk in \Admin\Ntools\SNMP.

With Windows 2000, instead of using the Network applet, you will use the Add/Remove Programs
applets. Select Add/Remove Windows Components. From the Windows Components Wizard, select
Management and Monitoring Tools. Click on Next to install SNMP. To configure SNMP, start the
Administrative Tools applet, and select Services and then SNMP Services. You'll be given more
choices, but you can limit yourself to the same three tabs as with Windows NT.

For further details on installation and configuration of SNMP on Windows platforms, look first to the
Windows help system. You might also look at James D. Murray's Windows NT SNMP.

7.4.2 SNMP Tools

NET SNMP is available both in source and binary form for Windows. With the binary version I
downloaded, it was necessary to move all the subdirectories up to C:\usr to get things to work.
Although the program still needs a little polish, it works well enough. As noted in Chapter 6, tkined is
also available under Windows.

One very nice freeware program for Windows, written by Philippe Simonet, is getif. This provides
both SNMP services as well as other basic network services. It is intuitively organized as a window
with a tab for each service.

To begin using getif, you must begin with the Parameters tab. You identify and set the community
strings for the remote host here. Having done this, clicking on Start will retrieve the basic information
contained in the system group. This is shown in Figure 7-14. Even if you know this information, it is a
good idea to get it again just to make sure everything is working correctly.

Figure 7-14. getif Parameters tab

 156

Once this has been done, many of the other services simply require selecting the appropriate tab and
clicking on Start. For example, you can retrieve the device's interface, address, routing, and ARP
tables this way.

The Reachability tab will allow you to send an ICMP ECHO_REQUEST and will also test if several
common TCP ports, such as HTTP, TELNET, SMTP, and so on, are open. The Traceroute tab does
both a standard ICMP traceroute and an SNMP traceroute. An SNMP traceroute constructs the route
from the route tables along the path. Of course, all the intervening routers must be SNMP accessible
using the community strings set under the Parameters tab. The NSLookup tab does a name service
lookup. The IP Discovery tab does simple IP scanning.

The MBrowsertab provides a graphical interface to NET SNMP. This is shown in Figure 7-15. In the
large pane in the upper left, the MIB tree is displayed. You can expand and collapse subtrees as
needed. You can select a subtree by clicking on its root node. If you click on Walk, all readable
objects in the subtree will be queried and displayed in the lower pane. You can also use this display to
set objects.

Figure 7-15. getif MBrowser tab

 157

The Graph tab will be discussed in Chapter 8.

7.4.3 Other Options

Apart from SNMP, there are a number of remote administration options including several third-party
commercial tools. If remote access is the only consideration, vnc is an excellent choice. In particular,
the viewer requires no installation. It is under 200KB so it can be run from a floppy disk. It provides a
very nice way to access an X Window session on a Unix system from a PC even if you don't want to
use it for management. Installation of the server binary is very straightforward. However, vnc will not
provide multiuser access to Windows and can be sluggish over low-bandwidth connections such as
dial-up lines. Under these circumstances, you might consider Microsoft Terminal Server, Microsoft
Corporation's thin client architecture, which supports remote access. (See Chapter 11 for more
information on vnc.)

For other administrative tasks, there are a number of utilities that are sold as part of Microsoft's
Resource Kits. While not free, these are generally modestly priced, and many of the tools can be
downloaded from the Web at no cost. Some tools, while not specifically designed for remote
troubleshooting, can be used for that purpose if you are willing to allow appropriate file sharing.
These include the System Policy Editor, Registry Editor, System Monitor, and Net Watcher, among
others. These are all briefly described by the Windows help system and more thoroughly in Microsoft
published documentation.

 158

Chapter 8. Performance Measurement Tools
Everything on your network may be working, but using it can still be a frustrating experience. Often, a
poorly performing system is worse than a broken system. As a user on a broken system, you know
when to give up and find something else to do. And as an administrator, it is usually much easier to
identify a component that isn't working at all than one that is still working but performing poorly. In
this chapter, we will look at tools and techniques used to evaluate network performance.

This chapter begins with a brief overview of the types of tools available. Then we look at ntop, an
excellent tool for watching traffic on your local network. Next, I describe mrtg, rrd, and cricket—tools
for collecting traffic data from remote devices over time. RMON, monitoring extensions to SNMP, is
next. We conclude with tools for use on Microsoft Windows systems.

Don't overlook the obvious! Although we will look at tools for measuring traffic, user dissatisfaction
is probably the best single indicator of the health of your network. If users are satisfied, you needn't
worry about theoretical problems. And if users are screaming at your door, then it doesn't matter what
the numbers prove.

8.1 What, When, and Where

Network performance will depend on many things—on the applications you are using and how they
are configured, on the hosts running these applications, on the networking devices, on the structure
and design of the network as a whole, and on how these pieces interact with one another. Even though
the focus of this chapter is restricted to network performance, you shouldn't ignore the other pieces of
the puzzle. Problems may arise from the interaction of these pieces, or a problem with one of the
pieces may look like a problem with another piece. A misconfigured or poorly designed application
can significantly increase the amount of traffic on a network. For example, Version 1.1 of the HTTP
protocol provides for persistent connections that can significantly reduce traffic. Not using this
particular feature is unlikely to be a make or break issue. My point is, if you look only at the traffic on
a network without considering software configurations, you may seem to have a hardware capacity
problem when a simple change in software might lessen the problem and, at a minimum, buy you a
little more time.

This chapter will focus on tools used to collect information on network performance. The first step in
analyzing performance is measuring traffic. In addition to problem identification and resolution, this
should be done as part of capacity planning and capacity management (tuning). Several books listed in
Appendix B provide general discussions of application and host performance analysis.

Of the issues related to measuring network traffic, the most important ones are what to measure, how
often, and where. Although there are no simple answers to any of these questions, what to measure is
probably the hardest of the three. It is extremely easy to end up with so much data that you don't have
time to analyze it. Or you may collect data that doesn't match your needs or that is in an unusable
format. If you keep at it, eventually you will learn from experience what is most useful. Take the time
to think about how you will use the data before you begin. Be as goal directed as possible. Just realize
that, even with the most careful planning, when faced with a new, unusual problem, you'll probably
think of something you wish you had been measuring.

 159

If you are looking at the performance of your system over time, then data at just one point in time will
be of little value. You will need to collect data periodically. How often you collect will depend on the
granularity or frequency of the events you want to watch. For many tasks, the ideal approach is one
that periodically condenses and eventually discards older data.

Unless your network is really unusual, the level of usage will vary with the time of day, the day of the
week, and the time of the year. Most performance related problems will be most severe at the busiest
times. In telephony, the hour when traffic is heaviest is known as the busy hour, and planning centers
around traffic at this time. In a data network, for example, the busy hour may be first thing in the
morning when everyone is logging on and checking their email, or it could be at noon when everyone
is web surfing over their lunch hour.

Knowing usage patterns can simplify data collection since you'll need to do little collecting when the
network is underutilized. Changes in usage patterns can indicate fundamental changes in your network
that you'll want to be able to identify and explain. Finally, knowing when your network is least busy
should give you an idea of the most convenient times to do maintenance.

I have divided traffic-measurement tools into three rough categories based on where they are used
within a network. Tools that allow you to capture traffic coming into or going out of a particular
machine are called host-monitoring tools. Tools that place an interface in promiscuous mode and
allow you to capture all the traffic at an interface are called point-monitoring tools. Finally, tools that
build a global picture of network traffic by querying other hosts (which are in turn running either host-
monitoring or point-monitoring tools) are called network-monitoring tools. Both host monitoring and
point monitoring should have a minimal impact on network traffic. With the exception of DNS traffic,
they shouldn't be generating additional traffic. This is not true for network-monitoring tools.

Because of their roles within a network, devices such as switches and routers don't easily fit into this
classification scheme. If a single switch interconnects all devices in a subnet, then it will see all the
local traffic. If, however, multiple switches are used and you aren't mirroring traffic, each switch will
see only part of the traffic. Routers will see only traffic moving between networks. While this is ideal
for measuring traffic between local and remote devices, it is not helpful in understanding strictly local
traffic. The problem should be obvious. If you monitor the wrong device, you may easily miss
bottlenecks or other problems. Before collecting data, you need to understand the structure of your
network so you can understand what traffic is actually being seen. This is one reason the information
in Chapter 6, is important.

Finally, you certainly won't want to deal with raw data on a routine basis. You will want tools that
present the data in a useful manner. For time-series data, graphs and summary statistics are usually the
best choice.

8.2 Host-Monitoring Tools

We have already discussed host-monitoring tools in several different parts of this book, particularly
Chapter 2 and Chapter 4. An obvious example of a host-monitoring tool is netstat. You will recall that
the -i option will give a cumulative picture of the traffic into and out of a computer.

Although easy to overlook, any tool that logs traffic is a host-monitoring tool of sorts. These are
generally not too useful after the fact, but you may be able to piece together some information from
them. A better approach is to configure the software to collect what you need. Don't forget

 160

applications, like web servers, that collect data. Accounting tools and security tools provide other
possibilities. Tools like ipfw, ipchains, and tcpwrappers all support logging. (Log files are discussed
in greater detail in Chapter 11.)

Host-monitoring tools can be essential in diagnosing problems related to host performance, but they
give very little information about the performance of the network as a whole. Of course, if you have
this information for every host, you'll have the data you need to construct a complete picture.
Constructing that picture is another story.

8.3 Point-Monitoring Tools

A point-monitoring tool puts your network interface in promiscuous mode and allows you to collect
information on all traffic seen at the computer's interface. The major limitation to point monitoring is
it gives you only a local view of your network. If your focus is on host performance, this is probably
all that you will need. Or, if you are on a shared media network such as a hub, you will see all of the
local traffic. But, if you are on a switched network, you will normally be able to see only traffic to or
from the host or broadcast traffic. And as more and more networks shift to switches for efficiency, this
problem will worsen.

The quintessential point-monitoring tools are network sniffers. In Chapter 5, we saw several utilities
that capture traffic and generate traffic summaries. These included tcp-reduce, tcptrace, and xplot. In
general, sniffers are not really designed for traffic measurement—they are too difficult to use for this
purpose, provide too much information, and provide information in a format ill-suited to this purpose.
But if you really want to understand a problem, packet capture gives you the most complete picture, if
you can wade through all the data.

8.3.1 ntop

ntop, the work of Luca Deri, is an excellent example of just how useful a point-monitoring tool can be.
ntop is usually described as the network equivalent of the Unix utility top. Actually, it is a lot more.

ntop is based on the libpcap library that originated at the Lawrence Berkeley National Laboratory and
on which tcpdump is based. It puts the network interface in promiscuous mode so that all traffic at the
interface is captured. It will then begin to collect data, periodically creating summary statistics. (It will
also use lsof and other plug-ins to collect data if available.)

ntop can be run in two modes: as a web-based utility using a built-in web server or in interactive mode,
i.e., as a text-based application on a host. It closely resembles top when run in interactive mode. This
was the default mode with earlier versions of ntop but is now provided by a separate command, intop.
Normally, you will want to use a separate window when using interactive mode.

8.3.1.1 Interactive mode

Here is an example of the output with intop :

$<50> intop 0.0.1 (Sep 19 2000) listening on [eth0]
379 Pkts/56.2 Kb [IP 50.5 Kb/Other 5.7 Kb] Thpt: 6.1 Kbps/24.9 Kbps
 Host Act -Rcv-Rcvd- Sent TC-TCP- UDP
IC$

 161

 sloan B 69.0% 16.7% 38.8 Kb 0 0
 lnx1a B 16.7% 69.4% 9.4 Kb 0 0
 rip2-routers.mcast.net R 3.7% 0.0% 0 2.1 Kb 0
 172.16.3.1 B 2.1% 6.5% 0 0 0
 Cisco CDPD/VTP [MAC] I 4.7% 0.0% 0 0 0
 172.16.3.3 B 2.2% 6.1% 0 0 0

Interpretation of the data is straightforward. The top two lines show the program name and version,
date, interface, number of packets, total traffic, and throughput. The first column lists hosts by name
or IP number. The second column reflects activity since the last update—Idle, Send, Receive, or Both.
The next two columns are the amount of traffic sent and received, while the last two columns break
traffic down as TCP, UPD, or ICMP traffic.

intop should be started with the -i option to specify which interface to use. For example:

lnx1# intop -i eth0

If your computer is multihomed, you can specify several interfaces on the command line, each with a
separate -i. Once started, it prints an annoying 20 lines or so of general information about the program
and then gives you a prompt. At this point, you can enter ? to find out what services are available:

intop@eth0> ?
Commands enclosed in '<>' are not yet implemented.
Commands may be abbreviated. Commands are:

 ? <warranty> filter swap nbt
 help <copying> sniff top <dump>
 exit history uptime lsdev <last>
 quit open <hash> hosts <nslookup>
 prompt <close> info arp
intop@eth0>

As you can see, a number of commands are planned but had not been implemented at the time this
was written. Most are exactly what you would expect. You use the top command to get a display like
the one just shown. The info command reports the interface and number of packets captured. With the
filter command, you can set packet-capture filters. You use the same syntax as explained in Chapter 5
with tcpdump. (Filters can also be specified on the command line when intop is started.) The lsdev
command lists interfaces. The swap command is used to jump between data collection on two
different interfaces.

You can change how the data is displayed on-the-fly using your keyboard. For example, the d key will
allow you to toggle between showing all hosts or only active hosts. The l key toggles between
showing or not showing only local hosts. The p key can be used to show or suppress showing data as
percentages. The y key is used to change the sorting order among the columns. The n key is used to
toggle between hostnames and IP addresses. The r key can be used to reset or zero statistics. The q
key is used to stop the program.

8.3.1.2 Web mode

Actually, you'll probably prefer web mode to interactive mode, as it provides considerably more
information and a simpler interface. Since ntop uses a built-in web server, you won't need to have a
separate web server running on your system. By default, ntop uses port 3000, so this shouldn't
interfere with any existing web servers. If it does, or if you are paranoid about using default ports, you
can use the -w option to select a different port. The only downside is that the built-in web server uses

TE
AM
FL
Y

Team-Fly®

 162

frames and displays data as tables, which still seems to confuse some browsers, particularly when
printing.

There are a number of options, some of which are discussed next, but the defaults work well enough
to get you started. Once you start ntop, point your browser to the machine and port it runs on. Figure
8-1 shows what the initial screen looks like.

Figure 8-1. ntop's home page

As you can see, on startup ntop provides you with a brief description of the program in the larger
frame to the right. The real area of interest is the menu on the left. By clicking on the triangles, each
menu expands to give you a number of choices. This is shown to the left in Figure 8-2.

Figure 8-2. ntop's All Protocols page

 163

Figure 8-2 shows the All Protocols page, which groups traffic by protocol and host. This is available
for both received and transmitted data. A number of statistics for other protocols—such as AppleTalk,
OSPF, NetBIOS, and IGMP—have scrolled off the right of this window. You can click on the column
header to sort the data based on that column. By default, this screen will be updated every two minutes,
but this can be changed.

The IP option displays received or transmitted data grouped by individual IP protocols such as FTP,
HTTP, DNS, and Telnet. The Throughput option gives a table organized by host and by throughput,
average throughput, and peak throughput for both bits and packets.

The Stats submenu offers a number of options. Multicast gives a table of multicast traffic. Traffic
provides you with a number of tables and graphs showing how traffic breaks down. Figure 8-3 shows
one of these graphs.

Figure 8-3. ntop's Traffic page under Stats

 164

Figures and tables break down traffic by broadcast versus unicast versus multicast packets, by packet
size categories, by IP versus non-IP traffic, by protocol category such as TCP versus UDP versus
AppleTalk versus Other, and by application protocols such as FTP versus Telnet. Either bar graphs or
pie charts are used to display the data. The tables give the data in both kilobytes and percentages.
These graphs can save you a lot of work in analyzing data and discovering how your network is being
used.

The Host option under Stats gives basic host information including hostnames, IP addresses, MAC
addresses for local hosts, transmit bandwidth, and vendors for MAC addresses when known. By
clicking on a hostname, additional data will be displayed as shown in Figure 8-4.

Figure 8-4. Host information

 165

The host shown here is on a different subnet from the host running ntop, so less information is
available. For example, there is no way for ntop to discover the remote host's MAC address or to track
traffic to or from the remote host that doesn't cross the local network. Since this displays connections
between hosts, its use has obvious privacy implications.

The Throughput option gives a graph of the average throughput over the last hour. Domain gives a
table of traffic grouped by domain. Plug-ins provide a way to extend the functionality of ntop by
adding other applications. Existing plug-ins provide support for such activities as tracking new ARP
entries, NFS traffic, and WAP traffic and tracking and classifying ICMP traffic.

An important issue in capacity planning is what percentage of traffic is purely local and what
percentage has a remote network for its source or destination (see Local Versus Remote Traffic). The
IP Traffic menu gives you options to collect this type of information. The Distribution option on the
IP Protocols menu gives you plots and tables for local and remote IP traffic. For example, Figure 8-5
shows a graph and tables for local and remote-to-local traffic. There is a local-to-remote table that is
not shown. The Usage option shows IP subnet usage by port. Sessions shows active TCP sessions, and
Routers identifies routers on the local subnet.

Figure 8-5. Measuring local and remote traffic

 166

Local Versus Remote Traffic

Before the Internet became popular, most network traffic stayed on the local network. This
was often summarized as the 90-10 Rule (or sometimes the 80-20 Rule), a heuristic that
says that roughly 90% of network traffic will stay on the local network. The Internet has
turned the old 90-10 Rule on its head by providing a world of reasons to leave the local
network; now most traffic does just that. Today the 90-10 Rule says that 90% of traffic on
the local network will have a remote site as its source or destination.

Clearly, the 90-10 Rule is nothing more than a very general rule of thumb. It may be an
entirely inappropriate generalization for your network. But knowing the percentage of local
and remote traffic can be useful in understanding your network in a couple of ways. First,
whatever the numbers, they really shouldn't be changing a lot over time unless something
fundamental is changing in the way your network is being used. This is something you'll
want to know about.

Second, local versus remote traffic provides a quick sanity check for network design. If
90% of your traffic is entering or leaving your network over a 1.544-Mbps T1 line, you
should probably think very carefully about why you need to upgrade your backbone to

 167

gigabit speeds.

The last menu, Admin, is used to control the operation of ntop. Switch NIC allows you to capture on a
different interface, and Reset Stats zeros all cumulative statistics. Shutdown shuts down ntop. Users
and URLs allow you to control access to ntop.

A number of command-line options allow you to control how ntop runs. These can be listed with the -
h option. As noted previously, -w is used to change the port it listens to, and -i allows you to specify
which interface to listen to. -r sets the delay between screen updates in seconds. The -n option is used
to specify numeric IP addresses rather than hostnames. Consult the documentation for other options.

ntop has other features not discussed here. It can be used as a lightweight intrusion detection system. It
provides basic access control and can be used with secure HTTP. It also provides facilities to log data,
including logging to a SQL database.

As previously noted, the real problem with point monitoring is that it doesn't really work well with
segmented or switched networks. Unless you are mirroring all traffic to your test host, many of these
numbers can be meaningless. If this is the case, you'll want to collect information from a number of
sources.

8.4 Network-Monitoring Tools

It should come as no surprise that SNMP can be used to collect performance information. We have
already seen simple examples in Chapter 7. Using the raw statistics gathered with a tool like NET
SNMP or even the stripcharts in tkined is alright if you need only a little data, but in practice you will
want tools designed to deal specifically with performance data. Which tool you use will depend on
what you want to do. One of your best choices from this family of tools is mrtg. (Although it is not
discussed here, you also may want to look at scion. This is from Merit Networks, Inc., and will run
under Windows as well as Unix.)

8.4.1 mrtg

mrtg (Multirouter Traffic Grapher) was originally developed by Tobias Oetiker with the support of
numerous people, most notably Dave Rand. This tool uses SNMP to collect statistics from network
equipment and creates web-accessible graphs of the statistics. It is designed to be run periodically to
provide a picture of traffic over time. mrtg is ideally suited for identifying busy-hour traffic. All you
need to do is scan the graph looking for the largest peaks.

mrtg is most commonly used to graph traffic through router interfaces but can be configured for other
uses. For example, since NET SNMP can be used to collect disk usage data, mrtg could be used to
retrieve and graph the amount of free space on the disk drive over time for a system running snmpd.
Because the graphs are web-accessible, mrtg is well suited for remote measurement. mrtg uses
SNMP's GET command to collect information. With the current implementation, collection is done by
a Perl module supplied as part of mrtg. No separate installation of SNMP is needed.

mrtg is designed to be run regularly by cron, typically every five minutes. However, mrtg can be run
as a standalone program, or the sampling interval can be changed. Configuration files, generally
created with the cfgmaker utility, determine the general appearance of the web pages and what data is

 168

collected. mrtg generates graphs of traffic in GIF format and HTML pages to display these graphs.
Typically, these will be made available by a web server running on the same computer as mrtg, but the
files can be viewed with a web browser running on the same computer or the files can be moved to
another computer for viewing. This could be helpful when debugging mrtg since the web server may
considerably complicate the installation, particularly if you are not currently running a web server or
are not comfortable with web server configuration.

Figure 8-6 shows a typical web page generated by mrtg. In this example, you can see some basic
information about the router at the top of the page and, below it, two graphs. One shows traffic for the
last 24 hours and the other shows traffic for the last two weeks, along with summary statistics for each.
The monthly and yearly graphs have scrolled off the page. This is the output for a single interface.
Input traffic is shown in green and output traffic is shown in blue, by default, on color displays.

Figure 8-6. mrtg interface report

It is possible to have mrtg generate a summary web page with a graph for each interface. Each graph
is linked to the more complete traffic report such as the one shown in Figure 8-6. The indexmaker
utility is used to generate this page once the configuration file has been created.

8.4.1.1 mrtg configuration file

 169

To use mrtg, you will need a separate configuration file for each device. Each configuration file will
describe all the interfaces within the device. Creating these files is the first step after installation.
While a sample configuration file is supplied as part of the documentation, it is much easier to use the
cfgmaker script. An SNMP community string and hostname or IP number must be supplied as parts to
a compound argument:

bsd2# cfgmaker public@172.16.2.1 > mrtg.cfg

Since the script writes the configuration to standard output, you'll need to redirect your output to a file.
If you want to measure traffic at multiple devices, then you simply need to create a different
configuration file for each. Just give each a different (but meaningful) name.

Once you have a basic configuration file, you can further edit it as you see fit. As described next, this
can be an involved process. Fortunately, cfgmaker does a reasonable job. In many cases, this will
provide all you need, so further editing won't be necessary.

Here is the first part of a fairly typical configuration file. (You may want to compare this to the sample
output shown in Figure 8-6.)

Add a WorkDir: /some/path line to this file
WorkDir: /usr/local/share/doc/apache/mrtg

Description: Cisco Internetwork Operating System Software IOS (tm) 3600
 Software (C3620-IO3-M), Version 12.0(7)T, RELEASE SOFTWARE (fc2) Copyright (c)
1986-1999 by cisco Systems, Inc. Compiled Wed 08-Dec-99 10:08 by phanguye
Contact: "Joe Sloan"
System Name: NLRouter
Location: "LL 214"
#...

Target[C3600]: 1:public@172.16.2.1
MaxBytes[C3600]: 1250000
Title[C3600]: NLRouter (C3600): Ethernet0/0
PageTop[C3600]: <H1>Traffic Analysis for Ethernet0/0
 </H1>
 <TABLE>
 <TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
 <TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
 <TR><TD>Interface:</TD><TD>Ethernet0/0 (1)</TD></TR>
 <TR><TD>IP:</TD><TD>C3600 (205.153.60.250)</TD></TR>
 <TR><TD>Max Speed:</TD>
 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
 </TABLE>

#---

Target[172.16.2.1.2]: 2:public@172.16.2.1
MaxBytes[172.16.2.1.2]: 1250000
Title[172.16.2.1.2]: NLRouter (No hostname defined for IP address): Ethernet0/1
PageTop[172.16.2.1.2]: <H1>Traffic Analysis for Ethernet0/1
 </H1>
 <TABLE>
 <TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
 <TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
 <TR><TD>Interface:</TD><TD>Ethernet0/1 (2)</TD></TR>
 <TR><TD>IP:</TD><TD>No hostname defined for IP address
(172.16.1.1)</TD></TR>
 <TR><TD>Max Speed:</TD>

 170

 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
 </TABLE>

#---

As you can see from the example, the general format of a directive is Keyword[Label]:
Arguments. Directives always start in the first column of the configuration file. Their arguments
may extend over multiple lines, provided the additional lines leave the first column blank. In the
example, the argument to the first PageTop directive extends for 10 lines.

In this example, I've added the second line—specifying a directory where the working files will be
stored. This is a mandatory change. It should be set to a directory that is accessible to the web server
on the computer. It will contain log files, home pages, and graphs for the most recent day, week,
month, and year for each interface. The interface label, explained shortly, is the first part of a filename.
Filename extensions identify the function of each file.

Everything else, including the files just described, is automatically generated. As you can see,
cfgmaker uses SNMP to collect some basic information from the device, e.g., sysName, sysLocation,
and sysContact, for inclusion in the configuration file. This information has been used both in the
initial comment (lines beginning with #) and in the HTML code under the PageTop directive. As you
might guess, PageTop determines what is displayed at the top of the page in Figure 8-6.

cfgmaker also determines the type of interface by retrieving ifType and its maximum operating speed
by retrieving ifSpeed, ethernetCsmacd and 125.0 kBytes/s in this example. The interface type
is used by the PageTop directive. The speed is used by both PageTop and the MaxBytes directive. The
MaxBytes directive determines the maximum value that a measured variable is allowed to reach. If a
larger number is retrieved, it is ignored. This is given in bytes per second, so if you think in bits per
second, don't be misled.

cfgmaker collects information on each interface and creates a section in the configuration file for each.
Only two interfaces are shown in this fragment, but the omitted sections are quite similar. Each
section will begin with the Target directive. In this example, the first interface is identified with the
directive Target[C3600]: 1:public@172.16.2.1. The interface was identified by the initial
scan by cfgmaker. The label was obtained by doing name resolution on the IP address. In this case, it
came from an entry in /etc/hosts.[1] If name resolution fails, the IP and port numbers will be used as a
label. The argument to Target is a combination of the port number, SNMP community string, and IP
address of the interface. You should be aware that adding or removing an interface in a monitored
device without updating the configuration file can lead to bogus results.

[1] In this example, a different system name and hostname are used to show where each is used. This is
not recommended.

The only other directive in this example is Title, which determines the title displayed for the HTML
page. These examples are quite adequate for a simple page, but mrtg provides both additional
directives and additional arguments that provide a great deal of flexibility.

By default, mrtg collects the SNMP objects ifInOctets and ifOutOctets for each interface. This can be
changed with the Target command. Here is an example of a small test file (the recommended way to
test mrtg) that is used to collect the number of unicast and nonunicast packets at an interface.

bsd2# cat test.cfg
WorkDir: /usr/local/share/doc/apache/mrtg

 171

Target[Testing]: ifInUcastPkts.1&ifInNUcastPkts.1:public@172.16.2.1
MaxBytes[Testing]: 1250000
Title[Testing]: NLRouter: Ethernet0/0
PageTop[Testing]: <H1>Traffic Analysis for Ethernet0/0
 </H1>
 <TABLE>
 <TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
 <TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
 <TR><TD>Interface:</TD><TD>Ethernet0/0 (1)</TD></TR>
 <TR><TD>IP:</TD><TD>C3600 (205.153.60.250)</TD></TR>
 <TR><TD>Max Speed:</TD>
 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
 </TABLE>

mrtg knows a limited number of OIDs. These are described in the mibhelp.txt file that comes with
mrtg. Fortunately, you can use dotted notation as well, so you aren't limited to objects with known
identifiers. Nor do you have to worry about MIBs. You can also use an expression in the place of an
identifier, e.g., the sum of two OIDs, or you can specify an external program if you wish to collect
data not available through SNMP. There are a number of additional formats and options available with
Target.

Other keywords are available that will allow you to customize mrtg's behavior. For example, you can
use the Interval directive to change the reported frequency of sampling. You'll also need to change
your crontab file to match. If you don't want to use cron, you can use the RunAsDaemon directive, in
conjunction with the Interval directive to set mrtg up to run as a standalone program. Interval takes an
argument in minutes; for example, Interval: 10 would sample every 10 minutes. To enable mrtg
to run as a stand-alone program, the syntax is RunAsDaemon: yes.

Several directives are useful for controlling the appearance of your graphs. If you don't want all four
graphs, you can suppress the display of selected graphs with the Suppress directive. For example,
Suppress[Testing]: my will suppress the monthly and yearly graphs. Use d and w for daily and
weekly graphs. You may use whatever combination you want.

One annoyance with mrtg is that it scales each graph to the largest value that has to be plotted. mrtg
shouldn't be faulted for this; it is simply using what information it has. But the result can be graphs
with some very unusual vertical scales and sets of graphs that you can't easily compare. This is
something you'll definitely want to adjust.

You can work around this problem with several of the directives mrtg provides, but the approach you
choose will depend, at least in part, on the behavior of the data you are collecting. The Unscaled
directive suppresses automatic scaling of data. It uses the value from MaxBytes as maximum on the
vertical scale. You can edit MaxBytes if you are willing to have data go off the top of the graph. If you
change this, you should use AbsMax to set the largest value that you expect to see.

Other commands allow you to change the color, size, shape, and background of your graphs. You can
also change the directions that graphs grow. Here is an example that changes the display of data to bits
per second, has the display grow from left to right, displays only the daily and weekly graphs, and sets
the vertical scale to 4000 bits per second:

Options[Testing]: growright,bits
Suppress[Testing]: my
MaxBytes[Testing]: 500
AbsMax[Testing]: 1250000
Unscaled[Testing]: dw

TE
AM
FL
Y

Team-Fly®

 172

Notice that you still need to give MaxBytes and AbsMax in bytes.

Many more keywords are available. Only the most common have been described here, but these
should be more than enough to meet your initial needs. See the mrtg sample configuration file and
documentation for others.

Once you have the configuration file, use indexmaker to create a main page for all the interfaces on a
device. In its simplest form, you merely give the configuration file and the destination file:

bsd2# indexmaker mrtg.cfg > /usr/local/www/data/mrtg/index.html

You may specify a router name and a regular expression that will match a subset of the interfaces if
you want to limit what you are looking at. For example, if you have a switch with a large number of
ports, you may want to monitor only the uplink ports.

You'll probably want to run mrtg manually a couple of times. Here is an example using the
configuration file test.cfg:

bsd2# mrtg test.cfg
Rateup WARNING: .//rateup could not read the primary log file for testing
Rateup WARNING: .//rateup The backup log file for testing was invalid as well
Rateup WARNING: .//rateup Can't remove testing.old updating log file
Rateup WARNING: .//rateup Can't rename testing.log to testing.old updating log
f
ile

The first couple of runs will generate warning messages about missing log files and the like. These
should go away after a couple of runs and can be safely ignored.

Finally, you'll want to make an appropriate entry in your contab file. For example, this entry will run
mrtg every five minutes on a FreeBSD system:

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /usr/ports/net/mrtg/work/mrtg-
2.8.12/r
un/mrtg /usr/ports/net/mrtg/work/mrtg-2.8.12/run/mrtg.cfg > /dev/null 2>&1

This should be all on a single line. The syntax is different on some systems, such as Linux, so be sure
to check your local manpages.

8.4.2 rrd and the Future of mrtg

The original version of mrtg had two deficiencies, a lack of both scalability and portability. Originally,
mrtg was able to support only about 20 routers or switches. It used external utilities to perform SNMP
queries and create GIF images—snmpget from CMU SNMP and pnmtogif from the PBM package,
respectively.

These issues were addressed by MRTG-2, the second and current version of mrtg. Performance was
improved when Dave Rand contributed rateup to the project. Written in C, rateup improved both
graph generation and handling of the log files.

The portability problem was addressed by two changes. First, Simon Leinen's Perl script for collecting
SNMP is now used, eliminating the need for CMU SNMP. Second, Thomas Boutell's GD library is

 173

now used to directly generate graphics. At this point, mrtg is said to reasonably support querying 500
ports on a regular basis.

As an ongoing project, the next goal is to further improve performance and flexibility. Toward this
goal, Tobias Oetiker has written rrd (Round Robin Database), a program to further optimize the
database and the graphing portion of mrtg. Although MRTG-3, the next version of mrtg, is not
complete, rrd has been completed and is available as a standalone program. MRTG-3 will be built on
top of rrd.

rrd is designed to store and display time-series data. It is written in C and is available under the GNU
General Public License. rrd stores data in a round-robin fashion so that older data is condensed and
eventually discarded. Consequently, the size of the database stabilizes and will not continue to grow
over time.

8.4.3 cricket

A number of frontends are available for rrd, including Jeff Allen's cricket. Allen, working at WebTV,
was using mrtg but found that it really wasn't adequate to support the 9000 targets he needed to
manage. Rather than wait for MRTG-3, he developed cricket. At least superficially, cricket has
basically the same uses as mrtg. But cricket has been designed to be much more scalable. cricket is
organized around the concept of a configuration tree. The configuration files for devices are organized
in a hierarchical manner so the general device properties can be defined once at a higher level and
inherited, while exceptions can be simply defined at a lower level of the hierarchy. This makes cricket
much more manageable for larger organizations with large numbers of devices. Since it is designed
around rrd, cricket is also much more efficient.

cricket does a very nice job of organizing the pages that it displays. To access the pages, you will
begin by executing the grapher.cgi script on the server. For example, if the server were at
172.16.2.236 and CGI scripts were in the cgi-bin directory, you would point your browser to the URL
http://172.16.2.236/cgi-bin/grapher.cgi. This will present you with a page organized around types of
devices, e.g., routers, router interfaces, switches, along with descriptions of each. From this you will
select the type of device you want to monitor. Depending on your choice, you may be presented with a
list of monitored devices items or with another subhierarchy such as that shown in Figure 8-7.

Figure 8-7. cricket router interfaces

 174

You can quickly drill down to the traffic graph for the device of interest. Figure 8-8 shows an example
of a traffic graph for a router interface on a router during a period of very low usage (but you get the
idea, I hope).

Figure 8-8. Traffic on a single interface

 175

As you can see, this looks an awful lot like the graphs from mrtg. Unlike with mrtg, you have some
control over which graphs are displayed from the web page. Short-Term displays both hourly and
daily graphs, Long-Term displays both weekly and monthly graphs, and Hourly, Daily, and All are
just what you would expect.[2]

[2] mrtg uses Daily to mean an hour-by-hour plot for 24 hours. cricket uses Hourly to mean the same
thing. This shouldn't cause any problems.

Of course, you will need to configure each option for mrtg to work correctly. You will need to go
through the hierarchy and identify the appropriate targets, set SNMP community strings, and add any
descriptions that you want. Here is the interfaces file in the router-interfaces subdirectory of the
cricket-config directory, the directory that contains the configuration tree. (This file corresponds to the
output shown in Figure 8-8.)

target --default--
 router = NLCisco
 snmp-community=public

target Ethernet0_0

 176

 interface-name = Ethernet0/0
 short-desc = "Gateway to Internet"

target Ethernet0_1
 interface-name = Ethernet0/1
 short-desc = "172.16.1.0/24 subnet"

target Ethernet0_2
 interface-name = Ethernet0/2
 short-desc = "172.16.2.0/24 subnet"

target Ethernet0_3
 interface-name = Ethernet0/3
 short-desc = "172.16.3.0/24 subnet"

target Null0
 interface-name = Null0
 short-desc = ""

While this may look simpler than an mrtg configuration file, you'll be dealing with a large number of
these files. If you make a change to the configuration tree, you will need to recompile the
configuration tree before you run cricket. As with mrtg, you will need to edit your crontab file to
execute the collector script on a regular basis.

On the whole, cricket is considerably more difficult to learn and to configure than mrtg. One way that
cricket gains efficiency is by using CGI scripts to generate web pages only when they are needed
rather than after each update. The result is that the pages are not available unless you have a web
server running on the same computer that cricket is running on. Probably the most difficult part of the
cricket installation is setting up your web server and the cricket directory structure so that the scripts
can be executed by the web server without introducing any security holes. Setting up a web server and
web security are beyond the scope of this book.

Unless you have such a large installation that mrtg doesn't meet your needs, my advice would be to
start with mrtg. It's nice to know that cricket is out there. And if you really need it, it is a solid package
worth learning. But mrtg is easier to get started with and will meet most people's needs.

8.5 RMON

As we saw in the last chapter, SNMP can be used to collect network traffic at an interface.
Unfortunately, SNMP is not a very efficient mechanism in some circumstances. Frequent collection of
data over an overused, low-bandwidth WAN link can create the very problems you are using SNMP to
avoid. Even after you have the data, a significant amount of processing may still be needed before the
data is in a useful form.

A better approach is to do some of the processing and data reduction remotely and retrieve data
selectively. This is one of the ideas behind the remote monitoring (RMON) extensions to SNMP.
RMON is basically a mechanism to collect and process data at the point of collection. RMON
provides both continuous and offline data collection. Some implementation can even provide remote
packet capture. The RMON mechanism may be implemented in software on an existing device, in
dedicated hardware such as an add-on card for a device, or even as a separate device. Hardware
implementations are usually called RMON probes.

 177

Data is organized and retrieved in the same manner as SNMP data. Data organization is described in
an RMON MIB, identified by OIDs, and retrieved with SNMP commands. To the users, RMON will
seem to be little more than an expanded or super MIB. To implementers, there are significant
differences between RMON and traditional SNMP objects, resulting from the need for continuous
monitoring and remote data processing.

Originally, RMON data was organized in nine groups (RFCs 1271 and 1757) and later expanded to
include a tenth group (RFC 1513) for token rings:

Statistics group

Offers low-level utilization and error statistics

History group

Provides trend analysis data based on the data from the statistics group

Alarm group

Provides for the user to configure alarms

Event group

Logs and generates traps for user-defined rising thresholds, falling thresholds, and matched
packets

Host group

Collects statistics based on MAC addresses

Top N Hosts group

Collects host statistics for the busiest hosts

Packet Capture group

Controls packet capture

Traffic Matrix group

Collects and returns errors and utilization data based on pairs of addresses

Filter group

Collects information based on definable filters

Token-ring group

Collects low-level token-ring statistics

 178

RMON implementations are often limited to a subset of these groups. This isn't unrealistic, but you
should be aware of what you are getting when paying the premium prices often required for RMON
support.

Provided you have the RMON MIB loaded, you can use snmptranslate to explore the structure of
these groups. For example, here is the structure of the statistics group:

bsd2# snmptranslate -Tp rmon.statistics
+--statistics(1)
 |
 +--etherStatsTable(1)
 |
 +--etherStatsEntry(1)
 |
 +-- -R-- Integer etherStatsIndex(1)
 | Range: 1..65535
 +-- -RW- ObjID etherStatsDataSource(2)
 +-- -R-- Counter etherStatsDropEvents(3)
 +-- -R-- Counter etherStatsOctets(4)
 +-- -R-- Counter etherStatsPkts(5)
 +-- -R-- Counter etherStatsBroadcastPkts(6)
 +-- -R-- Counter etherStatsMulticastPkts(7)
 +-- -R-- Counter etherStatsCRCAlignErrors(8)
 +-- -R-- Counter etherStatsUndersizePkts(9)
 +-- -R-- Counter etherStatsOversizePkts(10)
 +-- -R-- Counter etherStatsFragments(11)
 +-- -R-- Counter etherStatsJabbers(12)
 +-- -R-- Counter etherStatsCollisions(13)
 +-- -R-- Counter etherStatsPkts64Octets(14)
 +-- -R-- Counter etherStatsPkts65to127Octets(15)
 +-- -R-- Counter etherStatsPkts128to255Octets(16)
 +-- -R-- Counter etherStatsPkts256to511Octets(17)
 +-- -R-- Counter etherStatsPkts512to1023Octets(18)
 +-- -R-- Counter etherStatsPkts1024to1518Octets(19)
 +-- -RW- String etherStatsOwner(20)
 | Textual Convention: OwnerString
 +-- -RW- EnumVal etherStatsStatus(21)
 Textual Convention: EntryStatus
 Values: valid(1), createRequest(2), underCreation(3),
invalid(
4)

You retrieve the number of Ethernet packets on each interface exactly as you might guess:

bsd2# snmpwalk 172.16.1.9 public rmon.1.1.1.5
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.1 = 36214
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.2 = 0
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.3 = 3994
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.4 = 242
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.5 = 284
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.6 = 292
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.7 = 314548
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.8 = 48074
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.9 = 36861
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.10 = 631831
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.11 = 104
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.12 = 457157
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.25 = 0
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.26 = 0
rmon.statistics.etherStatsTable.etherStatsEntry.etherStatsPkts.27 = 0

 179

(This is data from a recently installed 12 port switch. The last three interfaces are currently unused
uplink ports.)

The primary problem with RMON, as described, is that it is limited to link-level traffic. This issue is
being addressed with RMON2 (RFC 2021), which adds another 10 groups. In order to collect
network-level information, however, it is necessary to delve into packets. This is processing intensive,
so it is unlikely that RMON2 will become common in the near future. For most purposes, the first few
RMON groups should be adequate.

One final word of warning. While RMON may lessen network traffic, RMON can be CPU intensive.
Make sure you aren't overloading your system when collecting RMON data. It is ironic that tools
designed to analyze traffic to avoid poor performance can actually cause that performance. To make
truly effective use of an RMON probe, you should consider using a commercial tool designed
specifically for your equipment and goals.

8.6 Microsoft Windows

Apart from the basic text-based tools such as netstat, Microsoft doesn't really include many useful
utilities with the consumer versions of Windows. But if you are using Windows NT or Windows 2000,
you have more options. The netmon tool is included with the server versions. A brief description of
how this tool can be used to capture traffic was included in Chapter 5. netmon can also be used to
capture basic traffic information.

Figure 8-9 shows netmon's basic capture screen. The upper-left pane shows five basic graphs for real-
time traffic—network utilization, frames per second, bytes per second, broadcasts per second, and
multicasts per second. The second pane on the left lists current connections between this and other
hosts. The details of these connections are provided in the bottom pane. The pane on the right gives
overall network statistics. To use netmon in this fashion, just start the program and select Capture
Start. In standalone mode, netmon functions as a point-monitoring tool, but as noted in Chapter 5, it
can be used with agents to collect traffic throughout the network.

Figure 8-9. netmon traffic monitoring

 180

For general systems monitoring, perfmon (Performance Monitor) is a better choice. It is also supplied
with both the workstation and server versions. perfmon is a general performance-monitoring tool, not
just a network-monitoring tool. You can use it to measure system performance (including CPU
utilization) and I/O performance, as well as basic network performance. If appropriately configured, it
will also monitor remote machines.

Data collected is organized by object type, e.g., groups of counters. For example, with the UDP object,
there are counters for the number of datagrams sent per second, datagrams received per second,
datagrams received errors, etc. For network monitoring, the most interesting objects include ICMP, IP,
Network Interface, RAS Ports, RAS Total, TCP, and UDP.

perfmon provides four views—alert, chart, log, and report. With alert view you can set a threshold and
be notified when a counter exceeds or drops below it. Chart view gives a real-time graph for selected
counters. You can customize the sampling rate and scale. Log view logs all the counters for an object
to a file periodically. Finally, report view displays numerical values in a window for selected counters.
Each view is independent of the others. Figure 8-10 shows the process of adding a monitored object to
the chart view for the Windows NT version.

Figure 8-10. Windows NT perfmon

 181

The Windows 2000 version has received a slight face-lift but seems to be the same basic program.
perfmon can be particularly useful if you aren't sure whether you have a host problem or a network
problem. Both netmon and perfmon are described in the Windows help files as well as several books
described in Appendix B.

8.6.1 ntop, mrtg, and cricket on Windows

All three major packages described in this chapter—ntop, mrtg, and cricket—are available for
Windows systems.

The developers of ntop have provided you with two choices. You can compile it yourself for free.
Both the Unix and Windows versions share the same source tree. Or, if you can't easily compile it, you
can buy a precompiled binary directly from them. Since ntop is basically a point-monitoring tool,
you'll likely want to run it on multiple machines if you have a switched network or multiple
subnetworks.

Since mrtg and cricket are primarily written in Perl, it is not surprising that they will run under
Windows. You'll find mrtg fairly straightforward to set up. While cricket is said to work, at the time
this was written there were no published directions on how to set it up, and the Unix directions don't
generalize well.

Setting up mrtg for Windows is not that different from setting it up under Unix. To get mrtg running,
you'll need to download a copy of mrtg with the binary for rateup. This was included with the copy of
mrtg I downloaded, but the mrtg web page for NT has a separate link should you need it. You will
need a copy of Perl along with anything else you may need to get Perl running. The mrtg site has links
to the Active Perl site. Installing Active Perl requires an updated version of the Windows Installer,
available at their site. You'll need to provide some mechanism for running mrtg on a regular basis. The
file fiveminute.zip provided a program to add mrtg to the Windows NT scheduler. Finally, you'll want
to provide some mechanism to view the output from mrtg. This could be a web server or, at a
minimum, a web browser.

TE
AM
FL
Y

Team-Fly®

 182

Once you have unpacked everything, you'll need to edit the mrtg script so that NT rather than Unix is
the operating system. This amounts to commenting out the fourth line of the script and uncommenting
the fifth:

#$main::OS = 'UNIX';
$main::OS = 'NT';

Also, make sure rateup is in the same directory as mrtg.

Creating the configuration file and running the script is basically the same as with the Unix version.
You'll want to run cfgmaker and indexmaker. And, as with the Unix version, you'll need to edit the
configuration file to set WorkDir :. You will need to invoke Perl explicitly and use explicit paths with
these scripts. For example, here are the commands to run indexmaker and mrtg on my system:

D:\mrtg\run>perl d:\mrtg\run\indexmaker d:\mrtg\run\mrtg.cfg >
d:\apache\htdocs\mrtg
D:\mrtg\run>perl d:\mrtg\run\mrtg d:\mrtg\run\mrtg.cfg

On my system, D:\mrtg\run is the directory where mrtg is installed and D:\apache\htdocs\mrtg is
where the output is put so it can be accessed by the web server.

Finally, you'll need to make some provision to run mrtg periodically. As noted, you can use supplied
code to add it to the scheduler. Alternately, you can edit the configuration file to have it run as a
daemon. For example, you could add the following to your configuration file:

RunAsDaemon: yes
Interval: 5

You'll want to add mrtg to the startup group so that it will be run automatically each time the system is
rebooted.

8.6.2 getif revisited

In Chapter 7, we introduced getif but did not discuss the graph tab. Basically, the graph tab provides
for two types of graphs—graphs of ping round-trip delays and graphs of SNMP objects. The latter
allows us to use getif as a traffic-monitoring tool.

Graphing SNMP objects is a three-step process. First, you'll need to go back to the Parameters tab and
identify the remote system and set its SNMP community strings. Next, you'll need to visit the
MBrowser tab and select the objects you want to graph. Locate the objects of interest by working your
way down the MIB tree in the large pane on the upper left of the window. Visit the object by clicking
the Walk button. The object and its value should be added to the large lower pane. Finally, select the
item from the large pane and click on the Add to Graph button. (Both of these tabs were described in
Chapter 7.)

You can now go to the Graph tab. Each of the selected variables should have been added to the legend
to the right of the chart. You can begin collecting data by clicking on the Start button. Figure 8-11
shows one such graph.

Figure 8-11. getif graph

 183

The controls along the bottom of the page provide some control over the appearance of the chart and
over the sampling rate.

 184

Chapter 9. Testing Connectivity Protocols
This chapter and the next describe tools used to investigate protocol-specific behavior. In this chapter,
I describe tools used to explore connectivity protocols, protocols that work at the network and
transport levels to provide connectivity. Chapter 10 focuses on tools used in testing protocols at the
application level.

I begin with a description of packet generation tools. Custom packet generators, like hping and
nemesis, will allow you to create custom packets to test protocols. Load generators, like MGEN, will
let you flood your network with packets to see how your network responds to the additional traffic.
We conclude with a brief discussion of network emulators and simulators.

Many of the tools described in this chapter and the next are not tools that you will need often, if ever.
But should the need arise, you will want to know about them. Some of these tools are described quite
briefly. My goal is to familiarize you with the tools rather than to provide a detailed introduction.
Unless you have a specific need for one of these tools, you'll probably want to just skim these chapters
initially. Should the need arise, you'll know the appropriate tool exists and can turn to the references
for more information.

9.1 Packet Injection Tools

This first group of tools generates and injects packets into your network. Basically, there are two
different purposes for generating packets, each with its own general approach and its own set of tools.

First, to test software configuration and protocols, it may be necessary to control the content of
individual fields within packets. For example, customized packets can be essential to test whether a
firewall is performing correctly. They can also be used to investigate problems with specific protocols
or to collect information such as path MTU. They are wonderful learning tools, but using them can be
a lot of work and will require a very detailed knowledge of the relevant protocols.

The second reason for generating packets is to test performance. For this purpose, you typically
generate a large number of packets to see how your network or devices on the network respond to the
increased load. We have already done some of this. In Chapter 4, we looked at tools that generated
streams of packets to analyze link and path performance. Basically, any network benchmark will have
a packet generator as a component. Typically, however, you won't have much control over this
component. The tools described here give you much greater control over the number, size, and
spacing of packets. Unlike custom packet generators, load generators typically won't provide much
control over the contents of the packets.

These two uses are best thought of as extremes on a continuum rather than mutually exclusive
categories. Some programs lie somewhere between these two extremes, providing a moderate degree
of control over packet contents and the functionality to generate multiple packets. There is no one
ideal tool, so you may want to become familiar with several, depending on your needs.

9.1.1 Custom Packets Generators

 185

A number of different programs will construct custom packets for you. The utilities vary considerably
in the amount of control you actually have. As all require a thorough understanding of the underlying
protocols, none of these tools are particularly easy to use. All of the ones I am familiar with are
command-line programs. This is really a plus since, if you find yourself using these programs heavily,
you will want to call them from scripts.

Two programs, hping and nemesis, are briefly described here. A number of additional tools are cited at
the end of this section in case these utilities don't provide the exact functionality you want or aren't
easily ported to your system. Of the two, hping is probably the better known, but nemesis has features
that recommend it. Neither is perfect.

Generally, once you have the idea of how to use one of these tools, learning another is simply a matter
of identifying the options of interest. Most custom packet generators have a reasonable set of defaults
that you can start with. Depending on what you want to do, you select the appropriate options to
change just what is necessary—ideally as little as possible.

Custom packet tools have a mixed reputation. They are extremely powerful tools and, as such, can be
abused. And some of their authors seem to take great pride in this potential. These are definitely tools
that you should use with care. For some purposes, such as testing firewalls, they can be indispensable.
Just make sure it is your firewall, and not someone else's, that you are testing.

9.1.1.1 hping

hping, or hping2 as it is sometimes called, was written by Salvatore Sanfilippo. The documentation is
a little rough at times and suggests uses that are inappropriate. Nonetheless, it is a powerful, versatile
program.

When run with the default parameters, it looks a lot like ping and is useful for checking connectivity:

lnx1# hping 205.153.63.30
eth0 default routing interface selected (according to /proc)
HPING 205.153.63.30 (eth0 205.153.63.30): NO FLAGS are set, 40 headers + 0 data
bytes
46 bytes from 205.153.63.30: flags=RA seq=0 ttl=126 id=786 win=0 rtt=4.4 ms
46 bytes from 205.153.63.30: flags=RA seq=1 ttl=126 id=1554 win=0 rtt=4.5 ms
46 bytes from 205.153.63.30: flags=RA seq=2 ttl=126 id=2066 win=0 rtt=4.6 ms
46 bytes from 205.153.63.30: flags=RA seq=3 ttl=126 id=2578 win=0 rtt=5.5 ms
46 bytes from 205.153.63.30: flags=RA seq=4 ttl=126 id=3090 win=0 rtt=4.5 ms

--- 205.153.63.30 hping statistic ---
5 packets tramitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 4.4/4.7/5.5 ms

At first glance, the output looks almost identical to ping's. Actually, by default, hping does not send
ICMP packets. It sends TCP packets to port 0. (You can change ports with the -p option.) Since this
port is almost never used, most systems will reply with a RESET message. Consequently, hping will
sometimes get responses from systems that block ping. On the other hand, it may trigger intrusion
detection systems as well. If you want to mimic ping, you can use the -1 argument, which specifies
ICMP. Or, if you prefer, you can use -2 to send UDP packets.

When using ICMP, this is what one of the replies from the output looks like:

46 bytes from 205.153.63.30: icmp_seq=0 ttl=126 id=53524 rtt=2.2 ms

 186

Otherwise, the output will be almost identical to the default behavior.

If you want more information, you can use -V for verbose mode. Here is what a reply looks like with
this option:

46 bytes from 172.16.2.236: flags=RA seq=0 ttl=63 id=12961 win=0 rtt=1.0 ms
 tos = 0 len = 40
 seq = 0 ack = 108515096
 sum = a5bc urp = 0

There is also a debug mode if you are having problems with hping.

Other options that control the general behavior of hping include -c to set the number of packets to
send, -i to set the time between packets, -n for numeric output (no name resolution), and -q for quiet
output (just summary lines when done).

Another group of options allows you to control the contents of the packet header. For example, the -a
option can be used to specify an arbitrary source address for a packet. Here is an example:

lnx1# hping2 -a 205.153.63.30 172.16.2.236
eth0 default routing interface selected (according to /proc)
HPING 172.16.2.236 (eth0 172.16.2.236): NO FLAGS are set, 40 headers + 0 data
bytes

--- 172.16.2.236 hping statistic ---
4 packets tramitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

In this case, the packet has been sent from a computer whose actual source address is 172.16.3.234.
The packet, however, will have 205.153.63.30 in its IP header as the source address. Of course, any
reply from the destination will go back to the spoofed source address, not the actual source address. If
this a valid address that belongs to someone else, they may not look kindly on your testing.

Spoofing source addresses can be useful when testing router and firewall setup, but you should do this
in a controlled environment. All routers should be configured to drop any packets with invalid source
addresses. That is, if a packet claims to have a source that is not on the local network or that is not
from a device for which the local network should be forwarding a packet, then the source address is
illegal and the packet should be dropped. By creating packets with illegal source addresses, you can
test your routers to be sure they are, in fact, dropping these packets. Of course, you need to use a tool
like ethereal or tcpdump to see what is getting through and what is blocked.[1]

[1] If this is all you are testing, you may prefer to use a specialized tool like egressor.

The source port can be changed with the -s option. The TTL field can be set with the -t option. There
are options to set the various TCP flags: -A for ACK, -F for FIN, -P for PUSH, -R for RST, -S for
SYN, and -U for URG. Oddly, although you can set the urgent flag, there doesn't seem to be a way to
set the urgent pointer. You can set the packet size with the -d option, set the TCP header length with
the -O option, and read the packet's data from a file with the -E option. Here is an example of sending
a DNS packet using data in the file data.dns:

bsd2# hping -2 -p 53 -E data.dns -d 31 205.153.63.30

hping generated an error on my system with this command, but the packet was sent correctly.

 187

Be warned, constructing a usable data file is nontrivial. Here is a crude C program that will construct
the data needed for this DNS example:

#include <stdio.h>
main()
{
FILE *fp;

fp=fopen("data.dns", "w");
fprintf(fp, "%c%c%c%c", 0x00, 0x01, 0x01, 0x00);
fprintf(fp, "%c%c%c%c", 0x00, 0x01, 0x00, 0x00);
fprintf(fp, "%c%c%c%c", 0x00, 0x00, 0x00, 0x00);
fprintf(fp, "%c%s", 0x03, "www");
fprintf(fp, "%c%s", 0x05, "cisco");
fprintf(fp, "%c%s%c", 0x03, "com", 0x00);
fprintf(fp, "%c%c%c%c", 0x00, 0x01, 0x00, 0x01);
fclose(fp);
}

Even if you don't use C, it should be fairly clear how this works. The fopen command creates the file,
and the fprintf commands write out the data. %c and %s are used to identify the datatype when
formatting the output. The remaining arguments are the actual values for the data. (I'm sure there are
cleaner ways to create this data, but this will work.)

Finally, hping can also be put in dump mode so that the contents of the reply packets are displayed in
hex:

bsd2# hping -c 1 -j 172.16.2.230
HPING 172.16.2.230 (ep0 172.16.2.230): NO FLAGS are set, 40 headers + 0 data
bytes
46 bytes from 172.16.2.230: flags=RA seq=0 ttl=128 id=60017 win=0 rtt=2.1 ms
 0060 9706 2222 0060 088f 5f0e 0800 4500
 0028 ea71 0000 8006 f26b ac10 02e6 ac10
 02ec 0000 0a88 0000 0000 1f41 a761 5014
 0000 80b3 0000 0000 0000 0000

--- 172.16.2.230 hping statistic ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 2.1/2.1/2.1 ms

Numerous other options are described in hping's documentation. You can get a very handy summary
of options if you run hping with the -h option. I strongly recommend you print this to use while you
are learning the program.

9.1.1.2 nemesis

nemesis, whose author is identified only as Obecian in the documentation, is actually a family of
closely related command-line tools designed to generate packets. They are nemesis-arp, nemesis-dns,
nemesis-icmp, nemesis-igmp, nemesis-ospf, nemesis-rip, nemesis-tcp, and nemesis-udp. Each, as you
might guess, is designed to construct and send a particular type of packet. The inclusion of support for
protocols like OSPF or IGMP really sets nemesis apart from similar tools.

Here is an example that sends a TCP packet:

bsd2# nemesis-tcp -v -D 205.153.63.30 -S 205.153.60.236

 188

TCP Packet Injection -=- The NEMESIS Project 1.1
(c) 1999, 2000 obecian <obecian@celerity.bartoli.org>

205.153.63.30
[IP] 205.153.60.236 > [Ports] 42069 > 23
[Flags]
[TCP Urgent Pointer] 2048
[Window Size] 512
[IP ID] 0
[IP TTL] 254
[IP TOS] 0x18
[IP Frag] 0x4000
[IP Options]
Wrote 40 bytes

TCP Packet Injected

The -v option is for verbose mode. Without this option, the program sends the packet but displays
nothing on the screen. Use this option to test your commands and then omit it when you embed the
commands in scripts. The -S and -D options give the source and destination addresses. You can use
the -x and -y to set source and destination ports. If you want to specify flags, you can use the -f option.
For example, if you add -fS -fA to the command line, the SYN and ACK flags will be set. (Many
firewalls will block packets with some combinations of SYN and ACK flags but will pass packets
with different combinations. Being able to set the SYN and ACK flags can be useful in testing these
firewalls.)

Here is an example setting the SYN and ACK flags and the destination port:

bsd2# nemesis-tcp -S 172.16.2.236 -D 205.153.63.30 -fS -fA -y 22

Notice the program performs silently without the -v option. A number of additional options are
described in the Unix manpages.

The other programs in the nemesis suite work pretty much the same way. Here is an example for
sending an ICMP ECHO REQUEST:

bsd2# nemesis-icmp -v -S 172.16.2.236 -D 205.153.63.30 -i 8

ICMP Packet Injection -=- The NEMESIS Project 1.1
(c) 1999, 2000 obecian <obecian@celerity.bartoli.org>

[IP] 172.16.2.236 > 205.153.63.30
[Type] ECHO REQUEST
[Sequence number] 0
[IP ID] 0
[IP TTL] 254
[IP TOS] 0x18
[IP Frag] 0x4000

Wrote 48 bytes

ICMP Packet Injected

The -i option specifies the type field in the ICMP header. In this case, the 8 is the code for an
ECHO_REQUEST message. The destination should respond with an ECHO_REPLY.

 189

The -P option can be used to read the data for the packet from a file. For example, here is the syntax to
send a DNS query.

bsd2# nemesis-dns -v -S 172.16.2.236 -D 205.153.63.30 -q 1 -P data.dns

DNS Packet Injection -=- The NEMESIS Project 1.1
(c) 1999, 2000 obecian <obecian@celerity.bartoli.org>

[IP] 172.16.2.236 > 205.153.63.30
[Ports] 42069 > 53

[# Questions] 1
[# Answer RRs] 0
[# Authority RRs] 0
[# Additional RRs] 0

[IP ID] 420
[IP TTL] 254
[IP TOS] 0x18
[IP Frag] 0x4000
[IP Options]

00 01 01 00 00 01 00 00 00 00 00 00 03 77 77ww
77 05 63 69 73 63 6F 03 63 6F 6D 00 00 01 00 w.cisco.com....
01 .

Wrote 40 bytes

DNS Packet Injected

Although it appears the data has been sent correctly, I have seen examples when the packets were not
correctly sent despite appearances. So, be warned! It is always a good idea to check the output of a
packet generator with a packet sniffer just to make sure you are getting what you expect.

9.1.1.3 Other tools

There are a number of other choices. ipfilter is a suite of programs for creating firewalls. Supplied
with some operating systems, including FreeBSD, ipfilter has been ported to a number of other
platforms. One of the tools ipfilter includes is ipsend. Designed for testing firewalls, ipsend is yet
another tool to construct packets. Here is an example:

bsd2# ipsend -v -i ep0 -g 172.16.2.1 -d 205.153.63.30
Device: ep0
Source: 172.16.2.236
Dest: 205.153.63.30
Gateway: 172.16.2.1
mtu: 1500

ipsend is not the most versatile of tools, but depending on what system you are using, you may already
have it installed.

Yet another program worth considering is sock. sock is described in the first volume of Richard W.
Stevens' TCP/Illustrated and is freely downloadable. While sock doesn't give the range of control
some of these other programs give, it is a nice pedagogical tool for learning about TCP/IP. Beware,
there are other totally unrelated programs called sock.

 190

Finally, some sniffers and analyzers support the capture and retransmission of packets. Look at the
documentation for the sniffer you are using, particularly if it is a commercial product. If you decide to
use this feature, proceed with care. Retransmission of traffic, if used indiscriminately, can create some
severe problems.

socket and netcat

While they don't fit cleanly into this or the next category, netcat (or nc) and Juergen
Nickelsen's socket are worth mentioning. (The netcat documentation identifies only the
author as Hobbit.) Both are programs that can be used to establish a connection between
two machines. They are useful for debugging, moving files, and exploring and learning
about TCP/IP. Both can be used from scripts.

You'll need to start one copy as a server (in listen mode) on one computer:

bsd1# nc -l -p 2000

Then start another as a client on a second computer:

bsd2# nc 172.16.2.231 2000

Here is the equivalent command for socket as a server:

bsd1# socket -s 2000

Here is the equivalent command for a client:

bsd2# socket 172.16.2.231 2000

In all examples 2000 is an arbitrarily selected port number.

Here is a simple example using nc to copy a file from one system to another. The server is
opened with output redirected to a file:

bsd1# nc -l -p 2000 > tmp

Then the file is piped to the client:

bsd2# cat README | nc 172.16.2.231 2000
^C punt!

Finally, nc is terminated with a Ctrl-C. The contents of README on bsd1 have been copied
to the file tmp on bsd2. These programs can be cleaner than telnet in some testing situations
since, unlike telnet, they don't attempt any session negotiations when started. Play with
them, and you are sure to find a number of other uses.

9.1.2 Load Generators

When compared to custom packet generators, load generators are at the opposite extreme of the
continuum for packet injectors. These are programs that generate traffic to stress-test a network or

 191

devices on a network. These tools can help you judge the performance of your network or diagnose
problems. They can also produce a considerable strain on your network. You should use these tools to
test systems offline, perhaps in a testing laboratory prior to deployment or during scheduled downtime.
Extreme care should be taken before using these tools on a production network. Unless you are
absolutely convinced that what you are doing is safe and reasonable, don't use these tools on
production networks.

Almost any application can be used to generate traffic. A few tools, such as ping and ttcp, are
particularly easy to use for this purpose. For example, by starting multiple ping sessions in the
background, by varying the period between packets with the -i option, and by varying the packet sizes
with the -s option, you can easily generate a wide range of traffic loads. Unfortunately, this won't
generate the type of traffic you may need for some types of tests. Two tools, spray and mgen, are
described here. The better known of these is probably spray. (It was introduced in Chapter 4.) It is also
frequently included with systems so you may already have a copy. mgen is one of the most versatile.

9.1.2.1 spray

spray is useful in getting a rough idea of a computer's network performance, particularly its interface.
spray, on the local computer, communicates with the rpc.sprayd daemon on the remote system being
tested. (You'll need to make sure this is running on the remote system.) It effectively floods the remote
system with a large number of fixed-length UDP packets. The remote daemon, generally started by
inetd, receives and counts these packets. The local copy of spray queries the remote daemon to
determine the number of packets that were successfully received. By comparing the number of packets
sent to the number received, spray can calculate the number of packets lost.

Here is an example of spray using default values:

bsd2# spray sol1
sending 1162 packets of lnth 86 to 172.16.2.233 ...
 in 0.12 seconds elapsed time
 191 packets (16.44%) dropped
Sent: 9581 packets/sec, 804.7K bytes/sec
Rcvd: 8006 packets/sec, 672.4K bytes/sec

Command-line options allow you to set the number of packets sent (-c), the length of the packets sent
(-l), and a delay between packets in microseconds (-d).

You should not be alarmed that packets are being dropped. The idea is to send packets as fast as
possible so that the interface will be stressed and packets will be lost. spray is most useful in
comparing the performance of two machines. For example, you might want to see if your server can
keep up with your clients. To test this, you'll want to use spray to send packets from the client to the
server. If the number of packets dropped is about the same, the machines are fairly evenly matched. If
a client is able to overwhelm a server, then you may have a potential problem.

In the previous example, spray was run on bsd2, flooding sol1. Here are the results of running spray
on sol1, flooding bsd2 :

sol1# spray bsd2
sending 1162 packets of length 86 to 172.16.2.236 ...
 610 packets (52.496%) dropped by 172.16.2.236
 36 packets/sec, 3144 bytes/sec

Clearly, sol1 is faster than bsd2 since bsd2 is dropping a much larger percentage of packets.

TE
AM
FL
Y

Team-Fly®

 192

Unfortunately, while spray can alert you to a problem, it is unable to differentiate among the various
reasons why a packet was lost—collision, slow interface, lack of buffer space, and so on. The obvious
things to look at are the speed of the computer and its interfaces.

9.1.2.2 MGEN

The Multi-Generator Toolset or MGEN is actually a collection of tools for generating traffic,
receiving traffic, and analyzing results. The work of Brian Adamson at the Naval Research Laboratory,
this sophisticated set of tools will give you a high degree of control over the shape of the traffic you
generate. However, you aren't given much control over the actual UDP packets the utility sends—
that's not the intent of the tool. For its intended uses, however, you have all the control you are likely
to need.

The traffic generation tool is mgen. It can be run in command-line mode or by using the -g option in
graphical mode. At its simplest, it can be used with command-line options to generate traffic. Here is a
simple example:

bsd2# mgen -i ep0 -b 205.153.63.30:2000 -r 10 -s 64 -d 5

MGEN: Version 3.1a3
MGEN: Loading event queue ...
MGEN: Seeding random number generator ...
MGEN: Beginning packet generation ...
 (Hit <CTRL-C> to stop)Trying to set IP_TOS = 0x0
MGEN: Packets Tx'd : 50
MGEN: Transmission period: 5.018 seconds.
MGEN: Ave Tx pkt rate : 9.964 pps.
MGEN: Interface Stats : ep0
 Frames Tx'd : 55
 Tx Errors : 0
 Collisions : 0
MGEN: Done.

In this case, 10 packets per second for 5 seconds yields 50 packets.

Other options for mgen include setting the interface (-i), the destination address and port (-b), the
packet rate (-r), the packet size (-s), and the duration of the flow in seconds (-d). There are a number
of other options described in the documentation, such as the type of service and TTL fields.

The real strength of mgen comes when you use it with a script. Here is a very simple example of a
script called demo :

START NOW
00001 1 ON 205.153.63.30:5000 PERIODIC 5 64
05000 1 MOD 205.153.63.30:5000 POISSON 20 64
15000 1 OFF

The first line tells mgen to start generating traffic as soon as the program is started. (An absolute start
time can also be specified.) The second line creates a flow with an ID of 1 that starts 1 millisecond
into a run that has port 5000 on 205.153.63.30 as its destination. The traffic is 5 packets per second,
and each packet is 64 bytes in length. The third line tells mgen to modify the flow with ID 1. 5000
milliseconds (or 5 seconds) into the flow, packet generation should switch to a Poission distribution
with a rate of 20 packets per second. The last line terminates the flow at 15,000 milliseconds. While
this script has only one flow, a script can contain many.

 193

Here is an example of the invocation of mgen with a script:

bsd2# mgen -i ep0 demo

MGEN: Version 3.1a3
MGEN: Loading event queue ...
MGEN: Seeding random number generator ...
MGEN: Beginning packet generation ...
MGEN: Packets Tx'd : 226
MGEN: Transmission period: 15.047 seconds.
MGEN: Ave Tx pkt rate : 15.019 pps.
MGEN: Interface Stats : ep0
 Frames Tx'd : 234
 Tx Errors : 0
 Collisions : 0
MGEN: Done.

Since a Poisson distribution was used for part of the flow, we can't expect to see exactly 225 packets
in exactly 15 seconds.

For many purposes, mgen is the only tool from the MGEN tool set that you will need. But for some
purposes, you will need more. drec is a receiver program that can log received data. mgen and drec
can be used with RSVP (with ISI's rsvpd). You will recall that with RSVP, the client must establish
the session. drec has this capability. Like mgen, drec has an optional graphical interface. In addition to
mgen and drec, the MGEN tool set includes a number of additional utilities that can be used to analyze
the data collected by drec.

One last note on load generators—software load generators assume that the systems they run on are
fast enough to generate enough traffic to adequately load the system being tested. In some
circumstances, this will not be true. For some applications, dedicated hardware load generators must
be used.

9.2 Network Emulators and Simulators

Basically, an emulator is a device that sits on a network and mimics the behavior of network devices
or the behavior of part of a system, e.g., subnets. Actual traffic measurements are made on a network
whose behavior is controlled, in part, by the emulator. Simulators are software systems that model
with software the behavior of the system or networks. A simulator is a totally artificial or synthetic
environment.

At best, network emulators and simulators are very unlikely troubleshooting tools. But for the
extremely ambitious (or desperate), it is possible to investigate the behavior of a network using these
tools. Neither of these approaches is for the fainthearted or novice. Generally an expensive and
complex proposition, there are two projects that are making these approaches more accessible. If you
are really interested in making the investment in time and effort needed to use emulators or simulators,
read on.

There is a continuum of approaches to investigating the behavior of a network, ranging from direct
measurement at one extreme through emulation to simulation at the opposite extreme. It's not unusual
for emulators to provide limited simulation features or for simulators to have emulation features. This
is certainly true for the two tools briefly described here.

 194

We have already discussed measurement techniques. But while real measurements have an
unquestionable authenticity, a number of problems are associated with real measurements. Lack of
reproducibility is one problem. Scale problems, such as the cost of increasing the size of the test
network, are another concern. If you are considering implementation issues, then direct measurement
can only be done late in the development cycle, compounding the cost of mistakes. Emulation and
simulation offer lower-cost alternatives.

Simulators have the advantages of being relatively cheap, providing highly reproducible results,
scaling very well and inexpensively, and giving results quickly. It is generally very straightforward to
customize the degree of detail in reports so you can focus on just what is of interest. Simulations vary
in degree of abstraction. The greater the degree of abstraction, the easier it is to focus on what is of
interest at the cost of lost realism. However, if a simulation is poorly designed, the results can have
little basis in reality. Also, some simulators may be implemented primarily for one type of use and
may not be appropriate for other uses. From a troubleshooting perspective, you might use a simulator
to further investigate a hypothesis. Simulators would provide a way to closely examine behavior to
confirm or refute the hypothesis without creating problems on a production network.

Emulators lie between simulators and live systems. They allow controlled experiments with a high
degree of reproducibility. They make it much easier to create the type of traffic or events of interest.
They also provide a mechanism to test real systems effectively. For example, an emulator might
duplicate or approximate the behavior of an attached device or network. A router emulator might drop
traffic or inject traffic into the actual test network. On the downside, some emulators tend to be very
specialized and are usually platform specific. For troubleshooting, an emulator could be used to stress
a network.

9.2.1 NISTNet

NIST Network Emulation Tool (NISTNet) is a general purpose tool that can be used to emulate the
dynamics in an IP network. It was developed by the National Institute of Standards and Technology
(NIST) and is implemented as an extension to the Linux operating system through a kernel module.
Unlike many emulators, NISTNet supports a fairly heterogeneous approach to emulation. And since it
will run on a fairly standard platform, it is remarkably inexpensive to set up and use.

NISTNet allows you to use a Linux system configured as a router, through an X Window interface, to
model or emulate a number of different scenarios. For example, you can program both fixed and
variable packet delays and random reordering of packets. Packets can be dropped either randomly
(uniform distribution) or based on congestion.[2] Random duplication of packets, bandwidth limitations,
or asymmetric bandwidth can all be programmed into NISTNet. You can also program in jitter and do
basic quality-of-service measurements. NISTNet can be driven by traces from measurements from
existing networks. User-defined packet handlers can be added to the system to add timestamps, do
data collection, generate responses for emulated clients, and so forth.

[2] Gateway emulators that support this kind of behavior are sometimes less charitably called flakeways.

9.2.2 ns and nam

If you want to consider simulations, you should first look into a pair of programs, ns and nam. ns is a
network simulator, while nam is a network visualization tool. Both are under development by the
Virtual InterNetwork Testbed (VINT) project, a DARPA-funded research project whose goal is to
produce a simulator for studying scale and protocol interactions. VINT is a collaborative project that
involves USC, Xerox PARC, LBNL, and UCB.

 195

ns is derived from earlier simulation projects such as REAL and has gone through a couple of
incarnations. The kernel is written in C++, while user scripts are written in MIT's Object Tool
Command Language (OTCL), an object-oriented version of Tcl. With any simulation software, you
should expect a steep learning curve, and ns is no exception. You'll need to learn how to use the
product, and you will also need a broad knowledge of simulations in general. To use ns, you'll need to
learn how to write scripts in OTCL.

Fortunately, the ns project provides a wealth of documentation. The Unix manpage is more than 30
pages and displays the typical unreadable terseness associated with Unix manual pages—great for
looking up something you already know (arguably the intended use) but abysmal for learning
something new. There is also a downloadable manual that runs more than 300 pages. However, the
best place to start is with Marc Greis's tutorial. It is a more manageable 50 pages and introduces the
scripting language in a series of readable examples.

One problem with simulations is that they can produce an overwhelming amount of information. Even
worse, simulation results describe dynamic events that are difficult to interpret when viewed statically.
nam is a visualization tool that animates network simulations. It is hard to convey the real flavor of
nam from a single black-and-white snapshot, but Figure 9-1 should give you some idea of its value.

Figure 9-1. nam example

This is output from one of the sample scripts that comes with the program. The basic topology of the
network should be obvious. Packets are drawn as colored rectangles. Different colors are used for
different sources. As the animation is played, you see the packets generated, queued at devices, move
across the network, and occasionally, dropped from the network. Node 6 in the figure shows a stack of
packets that have been queued and one packet below the node that has been dropped. (Dropped
packets fall to the bottom of the screen.) The control buttons at the top are used just as you would
expect—to play, stop, or rewind the animation.

NISTNet, ns, and nam are all described as ongoing projects. But all three are more polished than many
completed projects.

9.3 Microsoft Windows

 196

Few of the tools described in this chapter are available for Windows. Those that are available include
some of the more ambitious tools, however. In particular, ns and nam have downloadable binaries for
Windows. According to the mgen documentation, a Windows "version may appear shortly." (netcat
has also been ported to Windows.)

If you are interested in traffic generation for loading purposes, you might look to ipload. This is a very
simple program that will flood a remote device with UDP packets. You can specify the destination
address, destination port, packet rate, and packet payload. As the program runs, it will display a
window with the elapsed time, the number of packets sent, the packet rate, and the number of bytes
per second. ipload comes from BTT Software in the U.K. and requires no installation.

Several network-oriented benchmark programs available for Windows might also be of interest. In
particular, you may want to look at NetBench, which can be downloaded from Ziff Davis's web site,
http://etestinglabs.com/benchmarks/netbench/netbench.asp. It is designed to test client/server
performance. You'll need to download both client and server versions of the software.

http://etestinglabs.com/benchmarks/netbench/netbench.asp

 197

Chapter 10. Application-Level Tools
This chapter briefly surveys some additional tools that might be of interest. You will not need tools
that are useful when setting up and debugging programs using application-level protocols. The chapter
is organized around different application protocols. You will not need the tools described here often.
The goal of this chapter is to make you aware of what is available should the need arise, and the
approach described here may be more useful than the specific tools mentioned. Unless you have a
specific problem, you'll probably want to just skim this chapter the first time through.

10.1 Application-Protocols Tools

Many network applications are built upon application-level protocols rather than being built directly
upon network- or transport-level protocols. For example, email readers typically use SMTP to send
email and POP2, POP3, or IMAP to receive email. For some applications, it is difficult to distinguish
the application from the underlying protocol. NFS is a prime example. But when an implementation
separates the application from its underlying protocol, a number of advantages can be realized. First,
the separation helps to ensure interoperability. A client developed on one platform can communicate
effectively with server software running on a different system. For example, your web browser can
communicate with any web server because it uses a standardized protocol—HTTP. Tools based on the
underlying protocol can be used to obtain basic information regardless of the specific application
being used.

Most of the tools described in this chapter collect information at the protocol level. While it is unlikely
that any of these tools will provide the detailed information you would want for a problem with a
specific application, they should help you identify where the problem lies and will help if the problem
is with the protocol. Most applications will have their own approaches to solving problems, e.g.,
debug modes, and log files. But you'll want to be sure the problem is with the application before you
start with these. If the problem is with the application, you'll need to consult the specific
documentation for the application.

If you are having trouble setting up a network application for the first time, you are probably better off
rereading the documentation than investing time learning a new tool. But if you've read the directions
three or four times in several different books or if you have used an application many times and it has
suddenly stopped working, then it's probably time to look at tools. For many of the protocols, you'll
have a number of choices. You won't need every tool, so pick the most appropriate, convenient tool
and start there.

Providing a detailed description of all available tools is beyond the scope of any reasonable book. This
would require both a detailed review of the protocol as well as a description of the tool. For example,
Hal Stern's 400-page book, Managing NFS and NIS, has three chapters totaling about 125 pages on
tools, debugging, and tuning NIS and NFS. What I'm trying to do here is provide you with enough
information to get started and handle simple problems. If you need more information, you should
consider looking at one of the many books, like Stern's, devoted to the specific protocol in question. A
number of such books are described in Appendix B.

Generally, these applications are based on a client/server model. The approach you'll take in
debugging a client may be different from that used to debug a server. The first step, in general, is to
decide if the problem is with the client application, the server application, or the underlying protocols.

 198

If any client on any machine can connect to a server, the server and protocols are probably operating
correctly. So when communications fail, the first thing you may want to try is a different client
program or a similar client on a different computer. With many protocols, you don't even need a client
program. Many protocols are based on the exchange of commands in NVT ASCII[1] over a TCP
connection. You can interact with these servers using any program that can open a TCP connection
using NVT ASCII. Examples include telnet and netcat.

[1] Network Virtual Terminal (NVT) ASCII is a 7-bit U.S. variant of the common ASCII character code. It
is used throughout the TCP/IP protocol. It uses 7 bits to encode a character that is transmitted as an 8-
bit byte with the high-order bit set to 0.

10.1.1 Email

Email protocols such as SMTP, POP2, and POP3 are perfect examples of protocols where telnet is the
optimal tool to begin with. Here is an example using telnet to send a brief message via SMTP.
(Depending on your system, you may need to enable local echoing so that what you type will be
visible.)

bsd2# telnet mail.lander.edu 25
Trying 205.153.62.5...
Connected to mail.lander.edu.
Escape character is '^]'.
220 mail.lander.edu ESMTP Sendmail 8.9.3/8.9.3; Wed, 22 Nov 2000 13:22:15 -0500
helo 205.153.60.236
250 mail.lander.edu Hello [205.153.60.236], pleased to meet you
mail from:<jsloan@205.153.60.236>
250 <jsloan@205.153.60.236>... Sender ok
rcpt to:<jsloan@lander.edu>
250 jsloan@lander.edu... Recipient ok
data
354 Enter mail, end with "." on a line by itself
This is the body of a message.
.
250 NAA28089 Message accepted for delivery
quit
221 mail.lander.edu closing connection
Connection closed by foreign host.

The process is very simple. telnet is used to connect to port 25, the SMTP port, on the email server in
question. The next four lines were returned by the server. At this point, we can see that the server is up
and that we are able to communicate with it. To send email, use the commands helo to identify
yourself, mail from: to specify the email source, and rcpt to: to specify the destination. Use names, not
IP addresses, to specify the destination. Notice that no password is required to send email. (The server
is responding with the lines starting with numbers or codes.) The data command was used to signal
the start of the body of the message. The body is one line long here but can be as long as you like.
When you are done entering the body, it is terminated with a new line that has a single period on it.
The session was terminated with the quit command. Clearly the server is up and can be reached in this
example. Any problems you may be having must be with your email client.

As noted, you had a pretty good idea the server was working as soon as it replied and could have quit
at this point. There are a couple of reasons for going through the process of sending a message. First,
it gives a nice warm feeling seeing that everything is truly working. More important, it confirms that
the recipient is known to the server. For example, consider the following:

rcpt to:<jsloane@lander.edu>

 199

550 <jsloane@lander.edu>... User unknown

This reply lets us know that the user is unknown to the system. If you have doubts about a recipient,
you can use the vrfy and expand commands. The vrfy command will confirm the recipient address is
valid, as shown in the following example:

vrfy jsloan
250 Joseph Sloan <jsloan@mail.lander.edu>
vrfy freddy
550 freddy... User unknown

expn fully expands an alias, giving a list of all the recipients named in the alias. Be warned, expn and
vrfy are often seen as security holes and may be disabled. (Prudence would dictate using vrfy and expn
only on your own systems.) There are other commands, but these are enough to verify that the server
is available.

Another reason for sending the email is that it gives you something to retrieve, the next step in testing
your email connection. The process of retrieving email with telnet is similar, although the commands
will vary with the specific protocol being used. Here is an example using a POP3 server:

bsd2# telnet mail.lander.edu 110
Trying 205.153.62.5...
Connected to mail.lander.edu.
Escape character is '^]'.
+OK POP3 mail.lander.edu v7.59 server ready
user jsloan
+OK User name accepted, password please
pass xyzzy
+OK Mailbox open, 1 messages
retr 1
+OK 347 octets
Return-Path: <jsloan@205.153.60.236>
Received: from 205.153.60.236 ([205.153.60.236])
 by mail.lander.edu (8.9.3/8.9.3) with SMTP id NAA28089;
 Wed, 22 Nov 2000 13:23:14 -0500
Date: Wed, 22 Nov 2000 13:23:14 -0500
From: jsloan@205.153.60.236
Message-Id: <200011221823.NAA28089@mail.lander.edu>
Status:

This is the body of a message.
.
dele 1
+OK Message deleted
quit
+OK Sayonara
Connection closed by foreign host.

As you can see, telnet is used to connect to port 110, the POP3 port. As soon as the first message
comes back, you know the server is up and reachable. Next, you identify yourself using the user and
pass commands. This is a quick way to make sure that the account exists and you have the right
password. Often, email readers give cryptic error messages when you use a bad account or password.
The system has informed us that there is one message waiting for this user. Next, retrieve that message
with the retr command. The argument is the message number. This is the message we just sent. Delete
the message and log off with the dele and quit commands, respectively. (As an aside, sometimes mail
clients will hang with overlarge attachments. You can use the dele command to delete the offending
message.)

 200

Of course, this is how a system running POP3 or SMTP is supposed to work. If it works this way, any
subsequent problems are probably with the client, and you need to turn to the client documentation.
You can confirm this with packet capture software. If your system doesn't work properly, the problem
could be with the server software or with communications. You might try logging onto the server and
verifying that the appropriate software is listening, using ps, or, if it is started by inetd, using netstat.
Or you might try using telnet to connect to the server directly from the server, i.e., telnet
localhost 25. If this succeeds, you may have routing problems, name service problems, or
firewall problems. If it fails, then look to the documentation for the software you are using on the
server.

The commands used by most email protocols are described in the relevant RFCs. For SMTP, see RFC
821; for POP2, see RFC 937; for POP3, see REF 1939; and for IMAP, see RFC 1176.

10.1.2 HTTP

HTTP is another protocol that is based on commands in NVT ASCII sent over a TCP session. It can
be fairly complicated to figure out the correct syntax, but even an error message will tell you that the
server is running and the connection works. Try typing HEAD / HTTP / 1.0 followed by two
carriages returns. Here is an example:

bsd2# telnet localhost http
Trying 127.0.0.1...
Connected to localhost.lander.edu.
Escape character is '^]'.
HEAD / HTTP / 1.0

HTTP/1.1 200 OK
Date: Sun, 22 Apr 2001 13:27:32 GMT
Server: Apache/1.3.12 (Unix)
Content-Location: index.html.en
Vary: negotiate,accept-language,accept-charset
TCN: choice
Last-Modified: Tue, 29 Aug 2000 09:14:16 GMT
ETag: "a4cd3-55a-39ab7ee8;3a4a1b39"
Accept-Ranges: bytes
Content-Length: 1370
Connection: close
Content-Type: text/html
Content-Language: en
Expires: Sun, 22 Apr 2001 13:27:32 GMT

Connection closed by foreign host.

In this example, I've checked to see if the server is responding from the server itself. In general,
however, using telnet is probably not worth the effort since it is usually very easy to find a working
web browser that you can use somewhere on your network.

Most web problems, in my experience, stem from incorrectly configured security files or are
performance problems. For security configuration problems, you'll need to consult the appropriate
documentation for your software. For a quick performance profile of your server, you might visit
Patrick Killelea's web site, http://patrick.net. If you have problems, you probably want to look at his
book, Web Performance Tuning.

10.1.3 FTP and TFTP

http://patrick.net/

 201

FTP is another protocol that uses NVT ASCII and can be checked, to a very limited extent, with telnet.
Here is a quick check to see if the server is up and can be reached:

lnx1# telnet bsd2 ftp
Trying 172.16.2.236...
Connected to bsd2.lander.edu.
Escape character is '^]'.
220 bsd2.lander.edu FTP server (Version 6.00LS) ready.
user jsloan
331 Password required for jsloan.
pass xyzzy
230 User jsloan logged in.
stat
211- bsd2.lander.edu FTP server status:
 Version 6.00LS
 Connected to 172.16.3.234
 Logged in as jsloan
 TYPE: ASCII, FORM: Nonprint; STRUcture: File; transfer MODE: Stream
 No data connection
211 End of status
quit
221 Goodbye.
Connection closed by foreign host.

Once you know the server is up, you'll want to switch over to a real FTP client. Because FTP opens a
reverse connection when transferring information, you are limited with what you can do with telnet.
Fortunately, this is enough to verify that the server is up, communication works, and you can
successfully log on to the server.

Unlike FTP, TFTP is UDP based. Consequently, TCP-based tools like telnet are not appropriate.
You'll want to use a TFTP client to test for connectivity. Fortunately, TFTP is a simple protocol and
usually works well.

10.1.4 Name Services

Since name resolution is based primarily on UDP, you won't be able to debug it with telnet. Name
resolution can be a real pain since problems are most likely to show up when you are using other
programs or services. Name service applications are applications that you'll want to be sure are
working on your system. For clients, it is one of the easiest protocols to test. For servers, however,
ferreting out that last error can be a real chore. Fortunately, there are a number of readily available
tools, particularly for DNS.

If you suspect name resolution is not working on a client, try using ping, alternating between
hostnames and IP addresses. If you are consistently able to reach remote hosts with IP addresses but
not with names, then you are having a problem with name resolution. If you have a problem with
name resolution on the client side, start by reviewing the configuration files. It is probably easiest to
start with /etc/hosts and then look at DNS. Leave NIS until last.

10.1.4.1 nslookup and dig

There are several tools, such as nslookup, dig, dnsquery, and host, that are used to query DNS servers.
These are most commonly used to retrieve basic domain information such as what name goes with
what IP address, aliases, or how a domain is organized. With this information, you can map out a
network, for example, at least to the extent the DNS entries reflect the structure of the network. When
troubleshooting on the client side, it can be used to ensure the client can reach the appropriate DNS

TE
AM
FL
Y

Team-Fly®

 202

server. The real value for troubleshooting, however, is being able to examine the information returned
by servers. This allows you to check this information for consistency, correctness, and completeness.

For most purposes, there is not much difference among these programs. Your choice will largely be a
matter of personal preference. However, you should be aware that some other programs may be built
on top of dig, so be sure to keep it around even if you prefer one of the other tools.

Of these, nslookup, written by Andrew Cherenson, is the most ubiquitous and the most likely to be
installed by default. It is even available under Windows. It can be used either in command-line mode
or interactively. In command-line mode, you use the name or IP address of interest as an argument:

sol1# nslookup 205.153.60.20
Server: lab.lander.edu
Address: 205.153.60.5

Name: ntp.lander.edu
Address: 205.153.60.20

bsd2# nslookup www.lander.edu
Server: lab.lander.edu
Address: 205.153.60.5

Name: web.lander.edu
Address: 205.153.60.15
Aliases: www.lander.edu

As you can see, it returns both the name and IP address of the host in question, the identity of the
server supplying the information, and, in the second example, that the queried name is an alias. You
can specify the server you want to use as well as other options on the command line. You should be
aware, however, that it is not unusual for reverse lookups to fail, usually because the DNS database is
incomplete.

Earlier versions of nslookup required a special format for finding the names associated with IP
addresses. For example, to look up the name associated with 205.153.60.20, you would have used the
command nslookup 20.60.153.205.in-addr.arpa. Fortunately, unless you are using a very
old version of nslookup, you won't need to bother with this.

While command-line mode is adequate for an occasional quick query, if you want more information,
you'll probably want to use nslookup in interactive mode. If you know the right combination of
options, you could use command-line options. But if you are not sure, it is easier to experiment step-
by-step in interactive mode.

Interactive mode is started by typing nslookup without any arguments:

sol1# nslookup
Default Server: lab.lander.edu
Address: 205.153.60.5

>

As you can see, nslookup responds with the name of the default server and a prompt. A ? will return a
list of available options. You can change the server you want to query with the server command. You
can get a listing of all machines in a domain with the ls command. For example, ls netlab.lander.edu
would list all the machines in the netlab.lander.edu domain. Use the ls command with caution—it can
return a lot of information. You can use the -t option to specify a query type, i.e., a particular type of

 203

record. For example, ls -t mx lander.edu will return the mail entries from lander.edu. Query types can
include cname to list canonical names for aliases, hinfo for host information, ns for name servers for
named zones, soa for zone authority record, and so on. For more information, start with the manpage
for nslookup.

One useful trick is to retrieve the soa record for local and authoritative servers. Here is part of one
such record retrieved in interactive mode:

> ls -t soa lander.edu
[lab.lander.edu]
$ORIGIN lander.edu.
@ 1D IN SOA lab root (
 960000090 ; serial

The entry labeled serial is a counter that should be incremented each time the DNS records are
updated. If the serial number on your local server, when compared to the authoritative server, is off by
more than 1 or 2, the local server is not updating its records in a timely manner. One possible cause is
an old version of bind.

Many administrators prefer dig to nslookup. While not quite as ubiquitous as nslookup, it is included
as a tool with bind and is also available as a separate tool. dig is a command-line tool that is quite easy
to use. It seems to have a few more options and, since it is command line oriented, it is more suited for
shell scripts. On the other hand, using nslookup interactively may be better if you are groping around
and not really sure what you are looking for.

dig, short for Domain Internet Groper, was written by Steve Hotz. Here is an example of using dig to
do a simple query:

bsd2# dig @lander.edu www.lander.edu

; <<>> DiG 8.3 <<>> @lander.edu www.lander.edu
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 1, ADDITIONAL: 1
;; QUERY SECTION:
;; www.lander.edu, type = A, class = IN

;; ANSWER SECTION:
www.lander.edu. 1D IN CNAME web.lander.edu.
web.lander.edu. 1D IN A 205.153.60.15

;; AUTHORITY SECTION:
lander.edu. 1D IN NS lander.edu.

;; ADDITIONAL SECTION:
lander.edu. 1D IN A 205.153.60.5

;; Total query time: 9 msec
;; FROM: bsd2.lander.edu to SERVER: lander.edu 205.153.60.5
;; WHEN: Tue Nov 7 10:26:42 2000
;; MSG SIZE sent: 32 rcvd: 106

The first argument, in this case @lander.edu, is optional. It gives the name of the name server to be
queried. The second argument is the name of the host you are looking up.

 204

As you can see, a simple dig provides a lot more information, by default at least, than does nslookup.
It begins with information about the name server and resolver flags used. (The flags are documented
in the manpage for bind 's resolver.) Next come the header fields and flags followed by the query
being answered. These are followed by the answer, authority records, and additional records. The
format is the domain name, TTL field, type code for the record, and the data field. Finally, summary
information about the exchange is included.

You can also use dig to get other types of information. For example, the -x option is used to do a
reverse name lookup:

bsd2# dig -x 205.153.63.30

; <<>> DiG 8.3 <<>> -x
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1
;; QUERY SECTION:
;; 30.63.153.205.in-addr.arpa, type = ANY, class = IN

;; ANSWER SECTION:
30.63.153.205.in-addr.arpa. 1D IN PTR sloan.lander.edu.

;; AUTHORITY SECTION:
63.153.205.in-addr.arpa. 1D IN NS lander.edu.

;; ADDITIONAL SECTION:
lander.edu. 1D IN A 205.153.60.5

;; Total query time: 10 msec
;; FROM: bsd2.lander.edu to SERVER: default -- 205.153.60.5
;; WHEN: Mon Nov 6 10:54:17 2000
;; MSG SIZE sent: 44 rcvd: 127

The mx option (no hyphen) will return mail records, the soa option will return zone authority records,
and so on. See the manpage for details.

nslookup and dig are not unique. For example, host and dnsquery are other alternatives you may want
to look at. host is said to be designed as a successor for nslookup and dig. But it does everything
online and can generate a lot of traffic as a result. While very useful tools, all of them rely on your
ability to go back and analyze the information returned. There are other tools that help to fill this gap.

10.1.4.2 doc, dnswalk, and lamers

doc is one such tool. It was originally written by Steve Hotz and Paul Mockapetris with later
modifications by Brad Knowles. Built on top of dig, doc is a script that attempts to validate the
consistency of information within a domain:

bsd2# doc lander.edu.
Doc-2.1.4: doc lander.edu.
Doc-2.1.4: Starting test of lander.edu. parent is edu.
Doc-2.1.4: Test date - Mon Nov 6 11:55:07 EST 2000
;; res_nsend to server g.root-servers.net. 192.112.36.4: Operation timed out
DIGERR (UNKNOWN): dig @g.root-servers.net. for SOA of parent (edu.) failed
Summary:
 ERRORS found for lander.edu. (count: 3)
 WARNINGS issued for lander.edu. (count: 1)

 205

Done testing lander.edu. Mon Nov 6 11:55:40 EST 2000

The results are recorded in a log file; in this case log.lander.edu. is the filename. (Note its trailing
period.)

dnswalk, written by David Barr, is a similar tool. It is a Perl script that does a zone transfer and checks
the database for internal consistency. (Be aware that more and more systems are disabling zone
transfers from unknown sites.)

bsd2# dnswalk lander.edu.
Checking lander.edu.
BAD: lander.edu. has only one authoritative nameserver
Getting zone transfer of lander.edu. from lander.edu...done.
SOA=lab.lander.edu contact=root.lander.edu
WARN: bookworm.lander.edu A 205.153.62.205: no PTR record
WARN: library.lander.edu A 205.153.61.11: no PTR record
WARN: wamcmaha.lander.edu A 205.153.62.11: no PTR record
WARN: mrtg.lander.edu CNAME elmer.lander.edu: unknown host
0 failures, 4 warnings, 1 errors.

Be sure to include the period at the end of the domain name. This can produce a lot of output, so you
may want to redirect output to a file. A number of options are available. Consult the manpage.

You'll want to take the output from these tools with a grain of salt. Even though these tools do a lot of
work for you, you'll need a pretty good understanding of DNS to make sense of the error messages.
And, as you can see, for the same domain, one found three errors and one warning while the other
found one error and four warnings for a fully functional DNS domain. There is no question that this
domain's database, which was being updated when this was run, has a few minor problems. But it does
work. The moral is, don't panic when you see an error message.

Another program you might find useful is lamers. This was written by Bryan Beecher and requires
both doc and dig. It is used to find lame delegations, i.e., a name server that is listed as authoritative
for a domain but is not actually performing that service for the listed domain. This problem most often
arises when name services are moved from one machine to another, but the parent domain is not
updated. lamers is a simple script that can be used to identify this problem.

10.1.4.3 Other tools

In addition to these debugging tools, there are a number of additional tools that are useful in setting up
DNS in the first place. Some, such as make-zones, named-bootconf, and named-xfer, come with bind.
Be sure to look over your port carefully. Others, often scripts or collections of scripts, are available
from other sources. Examples include h2n and dnsutl. There are a number of good tools out there, so
be sure to look around.

10.1.4.4 NIS and NIS+

NIS and its variants bring their own set of difficulties. If you are running both DNS and NIS, the
biggest problem may be deciding where the problem lies. Unfortunately, there is no easy way to do
this that will work in every case. The original implementation of nslookup completely bypasses NIS.
If it failed, you could look to DNS. If it succeeded, your problems were probably with NIS.
Unfortunately, the new, "improved" version of nslookup now queries NIS so this simple test is
unreliable. (For other suggestions, see Managing NFS and NIS by Hal Stern or DNS and BIND by Liu
et al.)

 206

If you are setting up NIS, your best strategy is to fully test DNS first. If you are having problems with
NIS, there are a number of simple utilities supplied with NIS. ypcat lists an entire map, ypmatch
matches a single key and prints an entry, and ypwhich identifies client bindings. But if you have read
the NIS documentation, you are already familiar with these.

10.1.5 Routing

If you are having routing problems, e.g., receiving error messages saying the host or network is
unreachable, then the first place to look is at the routing tables. On the local machine, you'll use the
netstat -r command as previously discussed. For remote machines, you can use SNMP if you have
SNMP access.

If you are using RIP, rtquery and ripquery are two tools that can be used to retrieve routing tables
from remote systems. rtquery is supplied as part of the routed distribution, while ripquery comes with
gated. The advantage of these tools is that they use the RIP query and response mechanism to retrieve
the route information. Thus, you can use either of these tools to confirm that the RIP exchange
mechanism is really working, as well as to retrieve the routing tables to check for correctness.

It really doesn't matter which of these you use, as the output from the two is basically the same. Here
is the output from ripquery:

bsd2# ripquery 172.16.2.1
84 bytes from NLCisco.netlab.lander.edu(172.16.2.1) to 172.16.2.236 version 2:
 172.16.1.0/255.255.255.0 router 0.0.0.0 metric 1 tag
0000
 172.16.3.0/255.255.255.0 router 0.0.0.0 metric 1 tag
0000
 172.16.5.0/255.255.255.0 router 0.0.0.0 metric 2 tag
0000
 172.16.7.0/255.255.255.0 router 0.0.0.0 metric 2 tag
0000

Here is the output from rtquery :

bsd2# rtquery 172.16.2.1
NLCisco.netlab.lander.edu (172.16.2.1): RIPv2 84 bytes
 172.16.1.0/24 metric 1
 172.16.3.0/24 metric 1
 172.16.5.0/24 metric 2
 172.16.7.0/24 metric 2

You'll notice that these are not your usual routing tables. Rather, these are the tables used by RIP's
distance vector algorithm. They give reachable networks and the associated costs. Of course, you
could always capture a RIP update with tcpdump or ethereal or use SNMP, but the tools discussed
here are a lot easier to use.

If you are using Open Shortest Path First (OSPF) (regretfully I don't at present), gated provides
ospf_monitor. This interactive program provides a wealth of statistics, including I/O statistics and
error logs in addition to OSPF routing tables. (For more information on routing protocols, you might
consult Routing in the Internet by Christian Huitema or Interconnections by Radia Perlman.)

10.1.6 NFS

 207

With time, Network File System (NFS) has become fairly straightforward to set up. At one time, there
were a number of utilities for debugging NFS problems, but finding current ports has become difficult.
At the risk of repeating myself, if you are having trouble setting up NFS, reread your documentation.
Keep in mind that the various implementations of NFS all seem to be different, sometimes a lot
different. By itself, generic directions for NFS don't work—be sure to consult the specific
documentation for your operating system!

Unlike most other protocols where a single process is started, NFS relies on a number of different
programs or daemons that vary from client to server and, to some extent, from system to system. If
you are having problems with NFS, the first step is to consult your documentation to determine which
daemons need to be running on your system. Next, make sure they are running. Be warned, the
daemons you need and the names they go by vary from operating system to operating system. For
example, on most systems, mountd and nfsd, respectively, mount filesystems and access files. On
some systems they go by the names rpc.mountd and rpc.nfsd. Since these rely on portmap, sometimes
called rpcbind, you'll need to make sure it is running as well. (NFS daemons are typically based on
RPC and use the portmapper daemon to provide access information.) The list of daemons will be
different for the client and the server. For example, nfsiod (or biod) will typically be running on the
client but not the server. Keep in mind, however, that a computer may be both a client and a server.

There are a couple of ways to ensure the appropriate processes are available. You could log on to both
machines and use ps to discover what is running. This has the advantage of showing you everything
that is running. Another approach is to use rpcinfo to do a portmapper dump. Here is an example of
querying a server from a client:

bsd2# rpcinfo -p bsd1
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100005 3 udp 1023 mountd
 100005 3 tcp 1023 mountd
 100005 1 udp 1023 mountd
 100005 1 tcp 1023 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs
 100024 1 udp 1011 status
 100024 1 tcp 1022 status

This has the advantage of showing that these services are actually reachable across the network.

Once you know that everything is running, you should check the access files, typically /etc/dfs/dfstab
or /etc/exports, to make sure the client isn't being blocked. You can't just edit these files and expect to
see the results immediately. Consult your documentation on how to inform your NFS implementation
of the changes. Be generous with privileges if you are having problems, but don't forget to tighten
security once everything is working.

Finally, check your syntax. Make sure the mount point exists and has appropriate permissions. Mount
the remote system manually and verify that it is mounted with the mount command. You should see
something recognizable. Here are mount table entries returned, respectively, by FreeBSD, Linux, and
Solaris:

bsd1:/ on /mnt/nfs type nfs (rw,addr=172.16.2.231,addr=172.16.2.231)
172.16.2.231:/ on /mnt/nfs (nfs)
/mnt/nfs on 172.16.2.231:/usr read/write/remote on Thu Nov 30 09:49:52 2000

 208

While they are not too similar, you should see a recognizable change to the mount table before and
after mounting a remote filesystem.

If you are having intermittent problems or if you suspect performance problems, you might want to
use the nfsstat command. It provides a wealth of statistics about your NFS connection and its
performance. You can use it to query the client, the server, or both. When called without any options,
it queries both client and server. With the -c option, it queries the client. With the -s option, it queries
the server. Here is an example of querying a client:

bsd2# nfsstat -c
Client Info:
Rpc Counts:
 Getattr Setattr Lookup Readlink Read Write Create Remove
 0 0 33 2 0 21 4 0
 Rename Link Symlink Mkdir Rmdir Readdir RdirPlus Access
 0 0 0 0 0 8 0 66
 Mknod Fsstat Fsinfo PathConf Commit GLease Vacate Evict
 0 13 3 0 2 0 0 0
Rpc Info:
 TimedOut Invalid X Replies Retries Requests
 0 0 0 0 152
Cache Info:
Attr Hits Misses Lkup Hits Misses BioR Hits Misses BioW Hits Misses
 232 36 74 33 0 0 0 21
BioRLHits Misses BioD Hits Misses DirE Hits Misses
 13 2 18 8 13 0

Unfortunately, it seems that every operating system has its own implementation of nfsstat and each
implementation returns a different set of statistics labeled in a different way. What you'll be most
interested in is the number of problems in relation to the total number of requests. For example, a
large number of timeouts is no cause for concern if it is a small percentage of a much larger number of
total requests. If the timeouts are less than a couple of percent, they are probably not a cause for
concern. But if the percent of timeouts is large, you need to investigate. You'll need to sort out the
meaning of various numbers returned by your particular implementation of nfsstat. And, unfortunately,
the labels aren't always intuitive.

Several other NFS tools were once popular but seem to have languished in recent years. You probably
won't have much luck in finding these or getting them running. Two of the ones that were once more
popular are nhfsstone and nfswatch. nhfsstone is a benchmark tool for NFS, which seems to have been
superseded with the rather pricey SFS tool in SPEC. nfswatch is a tool that allows you to watch NFS
traffic. tcpdump or ethereal, when used with the appropriate filters, provide a workable alternative to
nfswatch.

10.2 Microsoft Windows

Many of the services described in this chapter are traditionally provided by Unix systems. While more
and more are becoming available, there aren't a lot of tools that currently run under Windows. One
exception is nslookup, which is nearly identical to its Unix counterpart. Of course, the telnet-based
testing will work as shown. And you can always test a Windows server from a Unix client. If you
want Windows-based tools, the best place to start looking is in the appropriate Windows Resource Kit
from Microsoft.

 209

Chapter 11. Miscellaneous Tools
This chapter contains odds and ends that don't really fit any of the categories described in previous
chapters. Most of the software presented here isn't really designed with network troubleshooting in
mind, but it is, nonetheless, quite useful. These are tools that will make your life easier. With a few
notable exceptions, you should already be familiar with most of the tools described here.
Consequently, the descriptions of the tools are, for the most part, fairly brief. Feel free to jump around
in this chapter as needed.

11.1 Communications Tools

If you are going to effectively administer remote systems, you will need to log on remotely. Even with
small networks, it isn't reasonable to jump up and run to the remote system every time you need to do
this. This section has three subsections. First, a quick review of techniques you can use to record or
log your activities when using familiar tools like telnet, rlogin, and X Windows. Next comes a
discussion of vnc, a tool that allows you to view a computer's graphical display remotely. Then I
briefly discuss security concerns for these tools including a short description of ssh.

11.1.1 Automating Documentation

This book has assumed that you are familiar with tools like telnet, rlogin, and X Windows. To use
these tools effectively, you'll want to be able to record or log your activities from time to time.
Arguably, one reason documentation is so often flawed is that it is usually written after the fact. This
is often done from memory or an incomplete set of notes several days after changes have been made.
While the best time to write documentation is as you go, often this simply isn't possible. When your
network is down and management is calling every five minutes asking if it's fixed yet, you probably
won't be pausing to write much down.

There are a few things you can do to help simplify writing documentation after the fact. First, get
copious printouts at every stage, preferably with some kind of time and date stamp. When a
production system is down, it is not the time to worry about the cost of paper. Several commands you
are probably already familiar with may be easy to overlook with the stress of dealing with a dead
system.

If you are using X Windows, you can use the xwd command to capture windows. To use this
command, in an xterm window, type:

bsd1# xwd -out xwdfile

You can then click on the window you want to capture. In this example, the file xwdfile will be created
in the current directory. The file can be examined later or printed using tools such as xv or gimp. Be
sure to give these files meaningful names so that you can sort things out later.

If you are using a text-based interface and are interested in capturing the output of a single command,
you may be able to use the tee command. This command allows you to send output from a command
to both the screen and a file. For example, the following command will display the output of the
command arp -a on the screen and write it to the file outfile:

 210

bsd1# arp -a | tee outfile

The tee command may require special measures to work. For example, you must use the option -l with
tcpdump if you want to use tee. An example was given in Chapter 5. As with xwd, you should be
careful to use meaningful filenames, particularly if you are capturing windows on the fly.

An alternative to tee is script. It can be used to capture the output of a single command or a series of
commands. To capture a series of commands, you start script and then issue the commands of interest.
For example, the following command will create the file scriptfile and return to the system prompt:

bsd1# script scriptfile
Script started, output file is scriptfile

Everything that is displayed on your terminal will be logged to the file scriptfile. One advantage of
logging a series of commands is that you can embed documentation into the file as you go. Simply
type the comment character for your shell, and everything else you type on the line will be ignored.
For example, with the Bourne shell, you might type something like:

bsd1# #Well, the foo program didn't work. \
>Let's try the bar program.

The "\" character was used to continue the comment on a new line.

When you are done logging a session, type exit or press Ctrl+D as in:

bsd1# exit

Script done, output file is scriptfile

You can now print or edit the file as desired.

One option that is often overlooked is to include a command with the script command. For example:

bsd1# script scriptfile ifconfig -a

will run the program ifconfig -a, writing the output to the file scriptfile and displaying the output on
the screen as well. This file will include two time and date stamps, one at the beginning and one at the
end of the file.

You should be aware of a few problems with using script. First, the file can get very big very quickly.
This shouldn't be much of a problem unless you are pressed for disk space, but it can be painful to
read after the fact. Second, it is all too easy to lose the file. For example, if a system crashes or is
halted, the file may be lost in the process. Third, commands that directly control the screen such as vi
tend to fill the output file with garbage. Finally, since a new shell is started by script, environmental
changes made while script is running may be lost.

If you are connecting to a remote system using a variant of telnet, you may be able to log the session
or print the screen. This is particularly true for PC implementations of telnet. See the documentation
for the version you are using.

11.1.2 vnc

 211

vnc, short for virtual network computing, was developed by what is now the AT&T Laboratories at
Cambridge. vnc is actually a pair of programs. One is a server, which generates and sends the local
display's contents to another computer. The other is a viewer, which reconstructs the server's display.
You use the computer running the viewer program to control the remote computer running the server
program. An application, for example, would actually be running on the server's CPU but controlled
by the station running the viewer.

The program's implementation is based on the concept of a remote frame buffer (i.e., remote video
display memory). The server maintains the frame buffer, a picture of the server's display, and sends it
to the viewer. The viewer recreates the display on the local host. The updates to the remote frame
buffer may be the complete contents of the frame buffer or, to minimize the impact on bandwidth, just
what has changed since the last update.

In a Unix environment, vnc provides a way to deliver an X Windows session to a host that may not
support a native X Windows connection. On the surface, a vnc connection probably seems a lot like an
X Windows connection. There are, however, some fundamental differences. vnc is designed so the
viewer is a very thin client. Unlike an X Windows, almost no work is done at the viewer, and the
client software is stateless. And vnc is freely available on some non-Unix systems where X Window
isn't.

vnc can run in one of two modes. In view only mode, the screen is displayed, but the viewer is not
given control of the server's mouse or keyboard. If view only mode is not selected, the viewer will
share control of the mouse and keyboard. Please note, the mouse and keyboard will not necessarily be
disabled at the server.

To use vnc in a Unix environment, telnet to the remote computer and start the vnc server with the
vncserver command. The first time you run it, it will create a .vnc directory under your home directory
and will query you for a connection password that will be used for all future sessions. (You can
change this with the vncpasswd command.)

lnx1$ vncserver

You will require a password to access your desktops.

Password:
Verify:

New 'X' desktop is lnx1.lander.edu:1

Creating default startup script /home/jsloan/.vnc/xstartup
Starting applications specified in /home/jsloan/.vnc/xstartup
Log file is /home/jsloan/.vnc/lnx1.lander.edu:1.log

The command returns an address or hostname and a display number for the newly created display, in
this instance lnx1.lander.edu:1. (Alternately, you could start the vnc server while seated at the
machine and then go to the client. This will be necessary if you want to run the server on a Microsoft
Windows platform.)

Next, connect a viewer to the display. To start the viewer on a Unix system, start an X Window
session and then use the vncviewer command with the host and display number returned by the viewer
program as an argument to the command. By default, vncserver uses the twm X Window manager, but
this can be reconfigured.[1] If you are used to all the clutter that usually comes with gnome or
something similar, the display may seem a little austere at first but will perform better. The basic
functionality you need will be there, and you will be able to run whichever X programs you need.

TE
AM
FL
Y

Team-Fly®

 212

[1] To change the window manager, edit the file xstartup in the .vnc directory. For example, if you use
gnome, you would change twm to exec gnome-session.

vnc starts a number of processes; you'll want to be sure that they are all stopped when you are done.
You can stop vnc with the -kill option as shown here:

lnx1$ vncserver -kill :1
Killing Xvnc process ID 6171

Note that you need to specify only the display number, in this case :1. You should also be aware that
this sometimes misses a process on some systems. You may need to do a little extra housekeeping
now and then.

Once running, vnc supports sending special keystroke combinations such as Ctrl-Alt-Del. If both
systems support it, you can cut and paste ASCII data between windows.

vnc also provides a reasonable level of security. Once the password has been set, it is not transmitted
over the network. Rather, a challenge response system is used. In addition to the password, the
Microsoft Windows version of vncserver can be configured to accept connections from only a specific
list of hosts. It can also be configured to use a secure shell (SSH) session. The default port can be
reassigned to simplify configuration with firewalls.

The viewer and server can be on the same or different machines or can even be used on different
architectures. vnc will run on most platforms. In particular, the viewer will run on just about any
Microsoft Windows machine including Windows CE. It will run under an X Window session, on
Macintoshes, and as plug-ins for web browsers. vnc is available in Java, and the server contains a
small web server that can be accessed by some Java-aware browsers. To do this, you simply add 5800
to the window number for the HTTP port number. In the previous example, the window was :1, so
the HTTP port number would be :5801, and the URL would be http://lnx1.lander.edu:5801.

There is substantial documentation available at the AT&T Laboratories web site,
http://www.uk.research.att.com/vnc.

11.1.3 ssh

One of the problems with telnet, rlogin, rsh, and the like is a lack of security. Passwords are sent in
clear text and can be easily captured by any computer they happen to pass. And with the r-services, it
can be very easy to mimic a trusted system. Attach a laptop to the network, set the IP address
appropriately, and there is a good chance you can mimic a trusted host.

One alternative is ssh, written by Tatu Ylönen, a replacement for the r-services that uses encryption.
While the original version is free, with Version 2 ssh has evolved into a commercial product,
marketed by SSH Communications Security, Inc. However, Version 2 is freely available for academic
and noncommercial use. Recently, the OpenSSH project, a spin-off of the OpenBSD project, released
a free port that is compatible with both versions of ssh and is covered by the standard BSD license.

ssh is actually a set of programs that uses encryption to both authenticate users and provide encrypted
sessions. It provides four levels of authentication, ranging from trusted users and systems, like rsh and
rlogin, to RSA-based authentication. By doing host authentication as well as user authentication, DNS,
IP, and route spoofing attacks can be circumvented.

http://www.uk.research.att.com/vnc

 213

On the downside, ssh provides minimal protection once your systems have been compromised.
Version 1 of the SSH protocol has also been compromised by man-in-the-middle attacks when
incorrectly configured. Also, some of its authentication methods can be relatively insecure. ssh is not
trivial to configure correctly, but fortunately, there is a fair amount of documentation available for ssh,
including two books devoted exclusively to ssh. If you need particularly robust security, pay close
attention to how you configure it or consider Version 2.

The legality of ssh is yet another question. Since encryption is sometimes the subject of peculiar laws
in some countries, using or exporting ssh may not be legal. The OpenBSD and OpenSSH projects
avoid some of these problems by developing code outside of the United States. Consequently, the
distribution of their code is not subject to the United States' peculiar munitions export laws since it can
be obtained outside the United States.

Despite these concerns, ssh is something you should definitely consider if security is an issue.

11.2 Log Files and Auditing

A primary source of information on any system is its log files. Of course, log files are not unique to
networking software. They are simply another aspect of general systems management that you must
master.

Some applications manage their own log files. Web servers and accounting software are prime
examples. Many of these applications have specific needs that aren't well matched to a more general
approach. In dealing with these, you will have to consult the documentation and deal with each on a
case-by-case basis. Fortunately, most Unix software is now designed to use a central logging service,
syslog, which greatly simplifies management.

11.2.1 syslog

You are probably already familiar with syslog, a versatile logging tool written by Eric Allman. What
is often overlooked is that syslog can be used across networks. You can log events from your Cisco
router to your Unix server. There are even a number of Windows versions available. Here is a quick
review of syslog.

An early and persistent criticism of Unix was that every application seemed to have its own set of log
files hidden away in its own directories. syslog was designed to automate and standardize the process
of maintaining system log files. The main program is the daemon syslogd, typically started as a
separate process during system initialization. Messages can be sent to the daemon either through a set
of library routines or by a user command, logger. logger is particularly useful for logging messages
from scripts or for testing syslog, e.g., checking file permissions.

11.2.1.1 Configuring syslog

syslogd 's behavior is initialized through a configuration file, which by default is /etc/syslog.conf. An
alternative file can be specified with the -f option when the daemon is started. If changes are made to
the configuration file, syslogd must be restarted for the changes to take effect. The easiest way to do
this is to send it a HUP signal using the kill command. For example:

bsd1# kill -HUP 127

 214

where 127 is the PID for syslogd, found using the ps command. (Alternately, the PID is written to the
file /var/run/syslogd.pid on some systems.)

The configuration file is a text file with two fields separated by tabs, not spaces! Blank lines are
ignored. Lines beginning with # in the first column are comments. The first field is a selector, and the
second is an action. The selector identifies the program or facility sending the message. It is composed
of both a facility name and a security level. The facility names must be selected from a short list of
facilities defined for the kernel. You should consult the manpage for syslogd for a complete list and
description of facilities, as these vary from implementation to implementation. The security level is
also taken from a predefined list: emerg, alert, crit, err, warning, notice, info, or debug. Their
meanings are just what you might guess. emerg is the most severe. You can also use * for all or none
for nothing. Multiple facilities can be combined on a single line if you separate them with commas.
Multiple selectors must be separated with semicolons.

The Action field tells where to send the messages. Messages can be sent to files, including device files
such as the console or printers, logged-in users, or remote hosts. Pathnames must be absolute, and the
file must exit with the appropriate permissions. You should be circumspect in sending too much to the
console. Otherwise, you may be overwhelmed by messages when you are using the console,
particularly when you need the console the most. If you want multiple actions, you will need multiple
lines in the configuration file.

Here are a few lines from a syslog.conf file that should help to clarify this:

mail.info /var/log/maillog
cron.* /var/log/cron
security.* @loghost.netlab.lander.edu
*.notice;news.err root
*.err /dev/console
*.emerg *

The first line says that all informational messages from sendmail and other mail related programs
should be appended to the file /var/log/maillog. The second line says all messages from cron,
regardless of severity, should be appended to the file /var/log/cron. The next line says that all security
messages should be sent to a remote system, loghost.netlab.lander.edu. Either a hostname or an IP
address can be used. The fourth line says that all notice-level messages and any news error messages
should be sent to root if root is logged on. The next to last line says that all error messages, including
news error messages, should be displayed on the system console. Finally, the last line says emergency
messages should be sent to all users. It is easy to get carried away with configuration files, so
remember to keep yours simple.

One problem with syslog on some systems is that, by default, the log files are world readable. This is a
potential security hole. For example, if you log mail transactions, any user can determine who is
sending mail to whom—not necessarily something you want.

11.2.1.2 Remote logging

For anything but the smallest of networks, you really should consider remote logging for two reasons.
First, there is simply the issue of managing and checking everything on a number of different systems.
If all your log files are on a single system, this task is much easier. Second, should a system become
compromised, one of the first things crackers alter are the log files. With remote logging, future
entries to log files may be stopped, but you should still have the initial entries for the actual break-in.

 215

To do remote logging, you will need to make appropriate entries in the configuration files for two
systems. On the system generating the message, you'll need to specify the address of the remote
logging machine. On the system receiving the message, you'll need to specify a file for the messages.
Consider the case in which the source machine is bsd1 and the destination is bsd2. In the configuration
file for bsd1, you might have an entry like:

local7.* @bsd2.netlab.lander.edu

bsd2 's configuration file might have an entry like:

local7.* /var/log/bsd1

Naming the file for the remote system makes it much easier to keep messages straight. Of course,
you'll need to create the file and enable bsd2 to receive remote messages from bsd1.

You can use the logger command to test your configuration. For example, you might use the
following to generate a message:

bsd1# logger -p local7.debug "testing"

This is what the file looks like on bsd2:

bsd2# cat bsd1
Dec 26 14:22:08 bsd1 jsloan: testing

Notice that both a timestamp and the source of the message have been included in the file.

There are a number of problems with remote logging. You should be aware that syslog uses UDP. If
the remote host is down, the messages will be lost. You will need to make sure that your firewalls pass
appropriate syslog traffic. syslog messages are in clear text, so they can be captured and read. Also, it
is very easy to forge a syslog message.

It is also possible to overwhelm a host with syslog messages. For this reason, some versions of syslog
provide options to control whether information from a remote system is allowed. For example, with
FreeBSD the -s option can be used to enter secure mode so logging requests are ignored. Alternately,
the -a option can be used to control hosts from which messages are accepted. With some versions of
Linux, the -r option is used to enable a system to receive messages over the network. While you will
need to enable your central logging systems to receive messages, you should probably disable this on
all other systems to avoid potential denial-of-service attacks. Be sure to consult the manpage for
syslogd to find the particulars for your system.

Both Linux and FreeBSD have other enhancements that you may want to consider. If security is a
major concern, you may want to investigate secure syslog (ssyslog) or modular syslog (msyslog). For
greater functionality, you may also want to look at syslog-ng.

11.2.2 Log File Management

Even after you have the log files, whether created by syslog or some other program, you will face a
number of problems. The first is keeping track of all the files so they don't fill your filesystem. It is
easy to forget fast-growing files, so I recommend keeping a master list for each system. You'll want to
develop a policy of what information to keep and how long to keep it. This usually comes down to

 216

some kind of log file rotation system in which older files are discarded or put on archival media. Be
aware that what you save and for how long may have legal implications, depending on the nature of
your organization.

Another issue is deciding how much information you want to record in the first place. Many authors
argue, with some justification, that you should record anything and everything that you might want, no
matter how remote the possibility. In other words, it is better to record too much than to discover, after
the fact, that you don't have something you need. Of course, if you start with this approach, you can
cut back as you gain experience.

The problem with this approach is that you are likely to be so overwhelmed with data that you won't
be able to find what you need. syslog goes a long way toward addressing this problem with its support
for different security levels—you can send important messages one place and everything else
somewhere else. Several utilities are designed to further simplify and automate this process, each with
its own set of strengths. These utilities may condense or display log files, often in real time. They can
be particularly useful if you are managing a number of devices.

Todd Atkins' swatch (simple watcher) is one of the best known. Designed with security monitoring in
mind, the program is really suitable to monitor general system activity. swatch can be run in three
different ways—making a pass over a log file, monitoring messages as they are appended to a log file,
or examining the output from a program. You might scan a log file initially to come up-to-date on
your system, but the second usage is the most common.

swatch's actions include ignoring the line, echoing the line on the controlling terminal, ringing the bell,
sending the message to someone by write or mail, or executing a command using the line as an
argument. Behavior is determined based on a configuration file composed of up to four tab-separated
fields. The first and second fields, the pattern expression and actions, are the most interesting. The
pattern is a regular expression used to match messages. swatch is written in Perl, so the syntax used
for the regular expressions is fairly straightforward.

While it is a powerful program, you are pretty much on your own in setting up the configuration files.
Deciding what you will want to monitor is a nontrivial task that will depend on what you think is
important. Since this could be almost anything—errors, full disks, security problems such as privilege
violations—you'll have a lot of choices if you select swatch. The steps are to decide what is of interest,
identify the appropriate files, and then design your filters.

swatch is not unique. xlogmaster is a GTK+ based program for monitoring log files, devices, and
status-gathering programs. It was written by Georg Greve and is available under the GNU General
Public License. It provides filtering and displays selected events with color and audio. Although
xlogmaster is no longer being developed, it is a viable program that you should consider. Its successor
is GNU AWACS. AWACS is new code, currently under development, that expands on the capabilities
of xlogmaster.

Another program worth looking at is logcheck. This began as a shell script written by Craig Rowland.
logcheck is now available under the GNU license from Psionic Software, Inc., a company founded by
Rowland. logcheck can be run by cron rather than continuously.

You should be able to find a detailed discussion of log file management in any good book on Unix
system administration. Be sure to consult Appendix B for more information.

11.2.3 Other Approaches to Logging

 217

Unfortunately, many services traditionally don't do logging, either through the syslog facility or
otherwise. If these services are started by inetd, you have a couple of alternatives.

Some implementations of inetd have options that will allow connection logging. That is, each time a
connection is made to one of these services, the connection is logged. With inetd on Solaris, the -t
option traces all connections. On FreeBSD, the -l option records all successful connections. The
problem with this approach is that it is rather indiscriminate.

One alternative is to replace inetd with Panos Tsirigotis's xinetd. xinetd is an expanded version of inetd
that greatly expands inetd 's functionality, particularly with respect to logging. Another program to
consider is tcpwrappers.

11.2.3.1 tcpwrappers

The tcpwrappers program was developed to provide additional security, including logging. Written by
Wietse Venema, a well-respected security expert, tcpwrappers is a small program that sits between
inetd (or inetd-like programs) and the services started by inetd. When a service is requested, inetd
calls the wrapper program, tcpd, which checks permission files, logs its actions, and then, if
appropriate, starts the service. For example, if you want to control access to telnet, you might change
the line in /etc/inetd.conf that starts the telnet daemon from:

telnet stream tcp nowait root /usr/libexec/telnetd telnetd

to:

telnet stream tcp nowait root /usr/sbin/tcpd telnetd

Now, the wrapper daemon tcpd is started initially instead of telnetd, the telnet daemon. You'll need to
make similar changes for each service you want to control. If the service is not where tcpd expects it,
you can give an absolute path as an argument to tcpd in the configuration file.

Actually, there is an alternative way of configuring tcpwrappers. You can
leave the inetd configuration file alone, move each service to a new location,
and replace the service at its default location with tcpd. I strongly discourage
this approach as it can create maintenance problems, particularly when you
upgrade your system.

As noted, tcpwrappers is typically used for two functions—logging and access control.[2] Logging is
done through syslog. The particular facility used will depend on how tcpwrappers is compiled.
Typically, mail or local2 is used. You will need to edit /etc/syslog.conf and recompile tcpwrappers if
you want to change how logging is recorded.

[2] tcpwrappers provides additional functionality not described here, such as login banners.

Access is typically controlled through the file /etc/hosts.allow, though some systems may also have an
/etc/hosts.deny file. These files specify which systems can access which services. These are a few
potential rules based on the example configuration:

ALL : localhost : allow
sendmail : nice.guy.example.com : allow
sendmail : .evil.cracker.example.com : deny

 218

sendmail : ALL : allow

tcpwrappers uses a first match wins approach. The first rule allows all services from the local machine
without further testing. The next three rules control the sendmail program. The first rule allows a
specific host, nice.guy.example.com. All hosts on the domain .evil.cracker.example.com are blocked.
(Note the leading dot.) Finally, all other hosts are permitted to use sendmail.

There are a number of other forms for rules that are permitted, but these are all pretty straightforward.
The distribution comes with a very nice example file. But, should you have problems, tcpwrappers
comes with two utilities for testing configuration files. tcpdchk looks for general syntax errors within
the file. tcpdmatch can be used to check how tcpd will respond to a specific action. (Kudos to Venema
for including these!)

The primary limitation to tcpwrappers is that, since it disappears after it starts the target service, its
control is limited to the brief period while it is running. It provides no protection from attacks that
begin after that point.

tcpwrappers is a ubiquitous program. In fact, it is installed by default on many Linux systems.
Incidentally, some versions of inetd now have wrappers technology built-in. Be sure to review your
documentation.

11.3 NTP

One problem with logging events over a network is that differences in system clocks can make
correlating events on different systems very difficult. It is not unusual for the clock on a system to
have drifted considerably. Thus, there may be discrepancies among timestamps for the same events
listed in different log files. Fortunately, there is a protocol you can use to synchronize the clocks on
your system.

Network Time Protocol (NTP) provides a mechanism so that one system can compare and adjust its
clock to match another system's clock. Ideally, you should have access to a very accurate clock as
your starting point. In practice, you will have three choices. The best choice is an authoritative
reference clock. These devices range from atomic clocks to time servers that set their clocks based on
time signals from radios or GPS satellites.

The next best source is from a system that gets its clock setting from one of these reference clocks.
Such systems are referred to as stratum 1 servers. If you can't get your signal from a stratum 1 server,
the next best choice is to get it from a system that does, a stratum 2 server. As you might guess, there
is a whole hierarchy of servers with the stratum number incrementing with each step you take away
from a reference clock. There are public time servers available on the Internet with fairly low stratum
numbers that you can coordinate to occasionally, but courtesy dictates that you ask before using these
systems.

Finally, if you are not attached to the Internet, you can elect to simply designate one of your systems
as the master system and coordinate all your other systems to that system. Your clocks won't be very
accurate, but they will be fairly consistent, and you will be able to compare system logs.

NTP works in one of several ways. You can set up a server to broadcast time messages periodically.
Clients then listen for these broadcasts and adjust their clocks accordingly. Alternately, the server can

 219

be queried by the client. NTP uses UDP, typically port 123. Over the years, NTP has gone through
several versions. Version 4 is the current one, but Version 3 is probably more commonly used at this
point. There is also a lightweight time protocol, Simple Network Time Protocol (SNTP), used by
clients that need less accuracy. SNTP is interoperable with NTP.

For Unix systems, the most common implementation is ntpd, formerly xntpd, which is described here.
This is actually a collection of related programs including the daemon ntpd and support programs such
as ntpq, ntpdate, and ntptrace. You'll want to start ntpd automatically each time you boot your system.
ntpd uses a configuration file, /etc/ntp.conf, to control its operation. This configuration file can get
quite complicated depending on what you want to do, but a basic configuration file is fairly simple.
Here is a simple three-line example:

server 205.153.60.20
logconfig =syncevents +peerevents +sysevents +allclock
driftfile /etc/ntp.drift

The first line identifies the server. This is the minimum you'll need. The second establishes which
events will be logged. The last line identifies a drift file. This is used by ntpd to store information
about how the clock on the system drifts. If ntpd is stopped and restarted, it can use the old drift
information to help keep the clock aligned rather than waiting to calculate new drift information.

One minor warning about ntpd is in order. If your clock is too far off, ntpd will not reset it. (Among
other things, this prevents failures from propagating throughout a network.) This is rarely a problem
with computers, but it is not unusual to have a networking device whose clock has never been set. Just
remember that you may need to manually set your clock to something reasonable before you run ntpd.

ntpdate can be used to do a onetime clock set:

bsd2# ntpdate 205.153.60.20
 4 Jan 10:07:36 ntpdate[13360]: step time server 205.153.60.20 offset 11.567081
sec

ntpdate cannot be used if ntpd is running, but there shouldn't be any need for it if that is the case.

ntpq can be used to query servers about their state:

bsd2# ntpq -p 172.16.2.1
 remote refid st t when poll reach delay offset jitter
==
*ntp.lander.edu .GPS. 1 u 18 64 173 5.000 -1.049 375.210
 CHU_AUDIO(1) CHU_AUDIO(1) 7 - 34 64 177 0.000 0.000 125.020
 172.16.3.3 0.0.0.0 16 - - 64 0 0.000 0.000 16000.0
 172.16.2.2 0.0.0.0 16 u - 64 0 0.000 0.000 16000.0

In this example, we have queried a system for a list of its peers.

ntptrace can be used to discover the chain of NTP servers, i.e., who gets their signal from whom:

bsd2# ntptrace 172.16.2.1
NLCisco.netlab.lander.edu: stratum 2, offset 0.009192, synch distance 0.00526
ntp.lander.edu: stratum 1, offset 0.007339, synch distance 0.00000, refid 'GPS
'

Only two servers were involved in this example, but you should get the basic idea.

 220

Each of these tools has other features that are documented in their manpages. NTP can be an involved
protocol if used to its fullest. Fortunately, a lot of documentation is available. Whatever you want—
information, software, a list of public NTP servers—the best place to start is at
http://www.eecis.udel.edu/~ntp. The work of Dave Mills and others, this is a remarkable site.

11.4 Security Tools

A final group of tools that should not be overlooked is security tools. Security, of course, is an
essential part of systems management. While this isn't a book on network security, security is so broad
a topic that there is considerable overlap with it and the issues addressed in this book. Strictly
speaking, a number of the tools described in this book (such as portscan, nmap, and tcpwrappers) are
frequently described as security tools.

Basically, any tool that provides information about a network has both security implications and
management potential. So don't overlook the tools in your security toolbox when addressing other
networking problems. For example, security scanners like satan, cops, and iss can tell you a lot about
how your system is configured.

One particularly useful group of tools is system integrity checkers. This class of programs tracks the
state of your system and allows you to determine what is changing—such as files, permissions,
timestamps. While the security implications should be obvious, management and troubleshooting
implications should also be clear. Often described as tools to identify files that intruders have changed,
they can be used to identify files that have been changed or corrupted for any reason. For example,
they can be used to determine exactly what is changed when you install a new program.

The best known of these is tripwire. It is a considerable stretch to call tripwire a networking tool, but
it is an administrative tool that can make managing a system, whether networked or not, much easier.

11.4.1 tripwire

tripwire was originally written by Eugene Spafford and Gene Kim. It is another product that has
evolved into a commercial product. It is now marketed by Tripwire, Inc. The original free version is
still available at the company's web site as the Academic Source Release. The current version, in a
slightly modified form, is also available for free download for Linux. The current version is much
easier to use, but the older version is usable if you are willing to take the time to learn it.

tripwire creates a database of information about files on the system including cryptographic
checksums. A configuration file is used to determine what information is collected and for which files
it is collected. If security is a concern, the collected information should be stored offline to prevent
tampering.

As a security tool, tripwire is used to identify any changes that have been made to a compromised host.
It doesn't prevent an attack, but it shows the scope to the attack and changes to the system. As a
troubleshooting tool, it can be used to track any changes to a system, regardless of the cause—hacker,
virus, or bit rot. It can also be used to verify the integrity of transferred files or the consistency of
configurations for multiple installations.

If all you want is a checksum, you might consider just using the siggen program, which comes with
tripwire. siggen will generate a number of checksums for a file. Here is an example:

http://www.eecis.udel.edu/%7Entp

 221

bsd2# siggen siggen
sig0: nullsig : 0
sig1: md5 : 0EpNJLBbf7JJgh1yUdAPgZ
sig2: snefru : 25I3DS:thJ3N:16UchVdNR
sig3: crc32 : 0jeUpK
sig4: crc16 : 00056o
sig5: md4 : 02x6dNiYw7GwjSssW7IeLW
sig6: md2 : 30s7ugrC1gLhk129Zo1BXW
sig7: sha : EWed2qYLHGcK.i7P7bVDO2mtKvr
sig8: haval : 1cqs7t9CwipMcuWPM3eRF1
sig9: nullsig : 0

You can use an optional argument to limit which checksums you want. For example, the option -13
will calculate just the first and third checksums, the MD5 digest and the 32-bit CRC checksum.

I certainly wouldn't recommend that you install tripwire just for troubleshooting. But if you have
installed it as a security tool, something I would strongly recommend, then don't forget that you can
use it for these other purposes. Incidentally, with some systems, such as OpenBSD, integrity checking
is an integral part of the system.

11.5 Microsoft Windows

When documenting problems with Windows, the usual approach is to open a word processing file and
copy and paste as needed. Unfortunately, some tools, such as Event Viewer, will not allow copying. If
this is the case, you should look to see if there is a Save option. With Event Viewer, you can save the
messages to a text file and then copy and paste as needed.

If this is not possible, you can always get a screen dump. Unfortunately, the way to do this seems to
change with every version of Windows. Typically, if an individual window is selected, only that
window is captured. If a window is not selected, the screen is copied. For Windows 95 and NT, Shift-
PrintScreen (or Ctrl-PrintScreen) will capture the contents of the screen, while Alt-PrintScreen will
capture just the current window. For Windows 98, use Alt-PrintScreen. The screen is copied on the
system's clipboard. It can be viewed with ClipBook Viewer. While it is included with the basic
Windows distribution, ClipBook Viewer may not be installed on all systems. You may need to go to
your distribution disks to install it. With Windows NT, be sure to select Clipboard on the Windows
menu. Unfortunately, this gives a bitmapped copy of the screen that is difficult to manipulate, but it is
better than nothing.

As previously noted, vnc is available for Windows. The viewer is a very small program—an
executable will fit on a floppy so it is very easy to take with you.

There are a number of implementations of ssh for Windows. You might look at Metro State College of
Denver's mssh, Simon Tatham's putty, or Robert O'Callahan's ttssh extensions to Takashi Teranishi's
teraterm communications program. If these don't meet your need, there are a number of similar
programs available over the Web.

Although I have not used them, there are numerous commercial, shareware, and freeware versions of
syslog for Windows. Your best bet is to search the Web for such tools. You might look at
http://www.loop-back.com/syslog.htm or search for kiwis_syslogd.exe.

TE
AM
FL
Y

Team-Fly®

http://www.loop-back.com/syslog.htm

 222

ntpd can be compiled for Windows NT. Binaries, however, don't seem to be generally available. If
you just want to occasionally set your clock, you might also consider cyberkit. cyberkit was described
in Chapter 6. Go to the Time tab, fill in the address of your time server, select the radio button SNTP,
make sure the Synchronize Local Clock checkbox is selected, and click on the Go button. The output
will look something like this:

Time - Thursday, December 28, 2000 09:02:59
Generated by CyberKit Version 2.5
Copyright © 1996-2000 by Luc Neijens

Time Server: ntp.netlab.lander.edu
Protocol: SNTP Protocol
Synchronize Local Clock: Yes

Leap Indicator 0, NTP Version 1, Mode 4
Stratum Level 1 (Primary reference, e.g. radio clock)
Poll Interval 6 (64 seconds), Precision -8 (3.90625 ms)
Root Delay 0.00 ms, Root Dispersion 0.00 ms
Reference Identifier GPS
Time server clock was last synchronized on Thursday, December 28, 2000 09:02:38

Server Date & Time: Thursday, December 28, 2000 09:02:38
Delta (Running slow): 1.590 ms
Round Trip Time 29 ms

Local clock synchronized with time server

The last line is the one of interest. It indicates that synchronization was successful. The help system
includes directions for creating a shortcut that you can click on to automatically update your clock. Go
to the index and look under tips and tricks for adding cyberkit to the startup menu and under
command-line parameters for time client parameters.

A commercial version of tripwire is available for Windows NT.

 223

Chapter 12. Troubleshooting Strategies
While many of the tools described in this book are extremely powerful, no one tool does everything. If
you have been downloading and installing these tools as you have read this book, you now have an
extensive, versatile set of tools. When faced with a problem, you should be equipped to select the best
tool or tools for the particular job, augmenting your selection with other tools as needed.

This chapter outlines several strategies that show how these tools can be used together. When
troubleshooting, your approach should be to look first at the specific task and then select the most
appropriate tool(s) based on the task. I do not describe the details of using the tools or show output in
this chapter. You should already be familiar with these from the previous chapters. Rather, this
chapter focuses on the selection of tools and the overall strategy you should take in using them. If you
feel confident in your troubleshooting skills, you may want to skip this chapter.

12.1 Generic Troubleshooting

Any troubleshooting task is basically a series of steps. The actual steps you take will vary from
problem to problem. Later steps in the process may depend on the results from earlier steps. Still, it is
worth thinking about and mapping out the steps since doing this will help you remain focused and
avoid needless steps. In watching others troubleshoot, I have been astonished at how often people
perform tests with no goal in mind. Often the test has no relation to the problem at hand. It is just
something easy to do. When your car won't start, what is the point of checking the air pressure of the
tires?

For truly difficult problems, you will need to become formal and systematic. A somewhat general,
standard series of steps you can go through follows, along with a running example. Keep in mind, this
set of steps is only a starting point.

1. Document. Before you do anything else, start documenting what you are doing. This is a real
test of willpower and self-discipline. It is extremely difficult to force yourself to sit down and
write a problem description or take careful notes when your system is down or crackers are
running rampant through your system.[1] This is not just you; everyone has this problem. But
it is an essential step for several reasons.

[1] Compromised hosts are a special problem requiring special responses. Documentation can
be absolutely essential, particularly if you are contemplating legal action or have liability
concerns. Documentation used in legal actions has special requirements. For more information
you might look at Simson Garfinkel and Gene Spafford's Practical UNIX & Internet Security or
visit http://www.cert.org/nav/recovering.html.

Depending on your circumstances, management may require a written report. Even if this isn't
the usual practice, if an outage becomes prolonged or if there are other consequences, it might
become necessary. This is particularly true if there are some legal consequences of the
problem. An accurate log can be essential in such cases.

If you have a complex problem, you are likely to forget at some point what you have actually
done. This often means starting over. It can be particularly frustrating if you appear to have

http://www.cert.org/nav/recovering.html

 224

found a solution, but you can't remember exactly what you did. A seemingly insignificant
step may prove to be a key element in a solution.

2. Collect information and identify symptoms. Actually, this step is two intertwined steps. But
they are often so intertwined that you usually can't separate them. You must collect
information while filtering that information for indications of anomalous behavior. These two
steps will be repeated throughout the troubleshooting process. This is easiest when you have a
clear sense of direction.

As you identify symptoms, try to expand and clarify the problem. If the problem was reported
by someone else, then you will want to try to recreate the problem so that you can observe the
symptoms directly. Keep in mind, if you can't recognize normal behavior, you won't be able
to recognize anomalous behavior. This has been a recurring theme in this book and a reason
you should learn how to use these tools before you need them.

As an example, the first indication of a problem might be a user complaining that she cannot
telnet from host bsd1 to host lnx1. To expand and clarify the problem, you might try different
applications. Can you connect using ftp ? You might look to see if bsd1 and lnx1 are on the
same network or different networks. You might see if lnx1 can reach bsd1. You might include
other local and remote hosts to see the extent of the problem.

3. Define the problem. Once you have a clear idea, you can begin coming to terms with the
problem. This is not the same as identifying the symptoms but is the process of combining the
symptoms and making generalizations. You are looking for common elements that allow you
to succinctly describe the anomalous behavior of a system.

Your problem definition may go through several refinements. Continuing with the previous
problem, you might, over time, generate the following series of problem definitions:

o bsd1 can't telnet to lnx1.
o bsd1 can't connect to lnx1.
o bsd1 can't connect to lnx1, but lnx1 can connect to other hosts including bsd1.
o Hosts on the same network as lnx1 can't connect to lnx1.
o Hosts on the same network as lnx1 can't connect to lnx1, but hosts on remote

networks can connect to lnx1.

(Yes, this was a real problem, and no, I didn't get that last one backward.)

It is natural to try to define the problem as quickly as possible, but you shouldn't be too tied to
your definition. Try to keep an open mind and be willing to redefine your problem as your
information changes.

4. Identify systems or subsystems involved. As you collect information, as seen in the previous
example, you will define and refine not only the nature of the problem, but also the scope of
the problem. This is the step in which we divide and hopefully conquer our problem.

In this example, we have worked outward from one system to include a number of systems.
Usually troubleshooting tries to narrow the scope of the problem, but as seen from this
example, in networking just the opposite may happen. You must discover the full scope of the
problem before you can narrow your focus. In this running example, realizing that remote
connections could connect was a key discovery.

 225

5. Develop a testable hypothesis. Of course, what you can test will depend on what tools you
have, the rationale for this book. But don't let tools drive your approach. With the definition
of the problem and continual refinement comes the generation of the hypotheses as to the
cause or nature of the problem. Such generalizations are relatively worthless unless they can
be verified. (Remember those lectures on the scientific method in high school?) In this sense,
developing a set of tests is more important than having an exact definition of a problem. In
many instances, if you know the source of the problem, you can correct it without fully
understanding the problem. For example, if you know an Ethernet card is failing, you can
replace it without ever worrying about which chip on the card malfunctioned. I'm not
suggesting that you don't want to understand the problem, but that there are levels of
understanding. Your hypotheses must be guided by what you can test. As in science, an
untestable hypothesis is worthless.

In general, you want tests that will reduce the size of the search space (i.e., identify subsystem
involved), that are easy to apply, that do not create further problems, and so on.

In our running example, a necessary first step in making a connection is doing address
resolution. This suggests that there might be some problem with the ARP mechanism. Notice
that this is not a full hypothesis, but rather a point of further investigation. Having expanded
the scope of the problem, we are attempting to focus in on subsystems to reduce the problem.
Also notice that I haven't used any fancy tools up to this point. Keep it simple as long as you
can.

6. Select and apply tests. Not all tests are created equally. Some will be much easier to apply,
while others will provide more information. Determining the optimal order for a set of tests is
largely a judgment call. Clearly, the simple tests that answer questions decisively are the best.

Returning to our example, there are several ways we could investigate whether the ARP
mechanism is functioning correctly. One way would be to use tcpdump or ethereal to capture
traffic on the network to see if the ARP requests and responses are present. A simpler test,
however, is to use the arp command to see if the appropriate entries are in the ARP cache on
the hosts that are trying to connect to lnx1. In this instance, it was observed that the entries
were missing from all the hosts attempting to connect to lnx1. The exception was the router
on the network that had a much longer cache timeout than did the local hosts. This also
explained why remote hosts could connect but local hosts could not connect. The remote
hosts always went through the router, which had cached the Ethernet address bypassing the
ARP mechanism. Note that this was not a definitive test but was done first because it was
much easier.

7. Assess results. As you perform tests, you will need to assess the results, refine your tests, and
repeat the process. You will want new tests that confirm your results. This is clearly an
iterative process.

With our extended example, two additional tests were possible. One was to manually add the
address of lnx1 to bsd1's ARP table using the arp command. When this was done,
connectivity was restored. When the entry was deleted, connectivity was lost. A more
revealing but largely unnecessary test using packet-capture software to watch the exchange of
packets between the bsd1 and lnx1 revealed that bsd1's ARP requests were being ignored by
lnx1.

8. Develop and assess solutions. Once you have clearly identified the problem, you must
develop and assess possible solutions. With many problems, there will be several possible

 226

solutions to consider. You should not hastily implement a solution until you have thought out
the consequences. With lnx1, solutions ranged from rebooting the system to reinstalling
software. I chose the simplest first and rebooted the system.

9. Implement and evaluate your solution. Once you have decided on a solution and have
implemented it, you should confirm the proper operation of your system. Depending on the
scope of the changes needed, this may mean extensive testing of the system and all related
systems.

With our running problem, this was not necessary. Connectivity was fully restored when the
system was rebooted. What caused the problem? That was never fully resolved, but since the
problem never recurred, it really isn't an issue.

If restarting the system hadn't solved the problem, what would have been the next step? In
this case, the likely problem was corrupted system software. If you are running an integrity
checker like tripwire, you might try locating anything that has changed and do a selective
reinstallation. Otherwise, you may be faced with reinstalling the operating system.

One last word of warning. It is often tempting to seize on an overly complex explanation and ignore
simpler explanations. Frequently, problems really are complex, but not always. It is worth asking
yourself if there is a simpler solution. Often, this will save a tremendous amount of time.

12.2 Task-Specific Troubleshooting

The guidelines just given are a general or generic overview of troubleshooting. Of course, each
problem will be different, and you will need to vary your approach as appropriate. The remainder of
this chapter consists of guidelines for a number of the more common troubleshooting tasks you might
face. It is hoped that these will give you further insight into the process.

12.2.1 Installation Testing

Ironically, one of the best ways to save time and avoid troubleshooting is to take the time to do a
thorough job of testing when you install software or hardware. You will be testing the system when
you are most familiar with the installation process, and you will avoid disruptions to service that can
happen when a problem isn't discovered until the software or hardware is in use.

This is a somewhat broad interpretation of troubleshooting, but in my experience, there is very little
difference between the testing you will do when you install software and the testing you will do when
you encounter a problem. Overwhelmingly the only difference for most people is the scope of the
testing done. Most people will test until they believe that a system is working correctly and then stop.
Failures, particularly multiple failures, may leave you skeptical, while some people tend to be overly
optimistic when installing new software.

12.2.1.1 Firewall testing

Because of the complexities, firewall testing is an excellent example of the problems that installation
testing may present. Troubleshooting a firewall is a demanding task for several reasons. First, to avoid
disruptions in service, initial firewall testing should be done in an isolated environment before moving
on to a production environment.

 227

Second, you need to be very careful to develop an appropriate set of tests so that you don't leave
gaping holes in your security. You'll need to go through a firewall rule by rule. You won't be able to
check every possibility, but you should be able to test each general type of traffic. For example,
consider a rule that passes HTTP traffic to your web server. You will want to pass traffic to port 80 on
that server. If you are taking the approach of denying all traffic that is not explicitly permitted,
potentially, you will want to block traffic to that host at all other ports. You will also want to block
traffic to port 80 on other hosts.[2] Thus, you should develop a set of three tests for this one action.
Although there will be some duplicated tests, you'll want to take the same approach for each rule.
Developing an explicit set of tests is the key step in this type of testing.

[2] If you doubt the need for this last test, read RFC 3093, a slightly tongue-in-cheek description of how
to use port 80 to bypass a firewall.

The first step in testing a firewall is to test the environment in which the firewall will function without
the firewall. It can be extraordinarily frustrating to try to debug anomalous firewall behavior only to
discover that you had a routing problem before you began. Thus, the first thing you will want to do is
turn off any filtering and test your routing. You could use tools like ripquery to retrieve routing tables
and examine entries, but it is probably much simpler to use ping to check connectivity, assuming
ICMP ECHO_REQUEST packets aren't being blocked. (If this is the case, you might try tools like
nmap or hping.)

You'll also want to verify that all concomitant software is working. This will include all intrusion
detection software, accounting and logging software, and testing software. For example, you'll
probably use packet capture software like tcpdump or ethereal to verify the operation of your firewall
and will want to make sure the firewall is working properly. I hate to admit it, but I've started packet
capture software on a host that I forgot was attached to a switch and banged my head wondering why I
wasn't seeing anything. Clearly, if I had used this setup to make sure packets were blocked without
first testing it, I could have been severely misled.

Test the firewall in isolation. If you are adding filtering to a production router, admittedly this is going
to be a problem. The easiest way to test in isolation is to connect each interface to an isolated host that
can both generate and capture packets. You might use hping, nemesis, or any of the other custom
packet generation software discussed in Chapter 9. Work through each of your tests for each rule with
the rule disabled and enabled. Be sure you explicitly document all your tests, particularly the syntax.

Once you are convinced that the firewall is working, it is time to move it online. If you can schedule
offline testing, that is the best approach. Work through your tests again with and without the filters
enabled. If offline testing isn't possible, you can still go through your tests with the filters enabled.

Finally, don't forget to come back and go through these tests periodically. In particular, you'll want to
reevaluate the firewall every time you change rules.

12.2.2 Performance Analysis and Monitoring

If a system simply isn't working, then you know troubleshooting is needed. But in many cases, it may
not be clear that you even have a problem. Performance analysis is often the first step to getting a
handle on whether your system is functioning properly. And it is often the case that careful
performance analysis will identify the problem so that no further troubleshooting is needed.

Performance analysis is another management task that hinges on collecting information. It is a task
that you will never complete, and it is important at every stage in the system's life cycle. The most

 228

successful network administrator will take a proactive approach, addressing issues before they become
problems. Chapter 7 and Chapter 8 discussed the use of specific tools in greater detail.

For planning, performance analysis is used to compare systems, establish system requirements, and do
capacity planning and forecasting. For management, it provides guidance in configuring and tuning
the system. In particular, the identification of bottlenecks can be essential for management, planning,
and troubleshooting.

There are three general approaches to performance analysis—analytical modeling, simulations, and
measurement. Analytical models are mathematical models usually based on queuing theory.
Simulations are computer models that attempt to mimic the behavior of the system through computer
programs. Measurement is, of course, the collection of data from an existing network. This book has
focused primarily on measurement (although simulation tools were mentioned in Chapter 9).

Each approach has its role. In practice, there can be a considerable overlap in using these approaches.
Analytical models can serve as the basis for simulations, or direct measurements may be needed to
supply parameters used with analytical models or simulations.

Measurement has its limitations. Obviously, the system must exist before measurements can be made
so it may not be a viable tool for planning. Measurements tend to produce the most variable results.
And many things can go wrong with measurements. On the positive side, measurement carries a great
deal of authority with most people. When you say you have measured something, this is treated as
irrefutable evidence by many, often unjustifiably.

12.2.2.1 General steps

Measuring performance is something of an art. It is much more difficult to decide what to measure
and how to make the actual measurements than it might appear at first glance. And there are many
ways to waste time collecting data that will not be useful for your purposes.

What follows is a fairly informal description of the steps involved in performance analysis. As I said
before, listing the steps can be very helpful in focusing attention on some parts of the process that
might otherwise be ignored.[3] Of course, every situation is different, so these steps are only an
approximation. Designing performance analysis tests is an iterative process. You should go back
through these steps as you proceed, refining each step as needed.

[3] If you would like a more complete discussion of the steps in performance analysis, you should get Raj
Jain's exceptional book, The Art of Computer Systems Performance Analysis. Jain's book considers
performance analysis from a broader perspective than this book.

1. State your goal. This is the question you want to answer. At this point, it may be fairly vague,
but you will refine it as you progress. You need a sense of direction to get started. A common
mistake is to allow a poorly defined goal to remain vague throughout the process, so be sure
to revisit this step often. Also, try to avoid goals that bias your approach. For instance, set out
to compare systems rather than show that one system is better than another.

As an example, a network administrator might ask if the network backbone is adequate to
support current levels of traffic. While an extremely important question, it is quite vague at
this point. But stating the goal allows you to start focusing on the problem. For example,
formally stating this problem may lead you to ask what adequate really means. Or you might
go on to consider what the relevant time frame is, i.e., what current means.

 229

2. Define your system. The definition of your system will vary with your goal. You will need to
decide what parts of the system to include and in what detail. You may want to exclude those
parts outside your control. If you are interested in server performance, you will undoubtedly
want to consider the various subsystems of the server separately—such as disks, memory,
CPU, and network interfaces.

With the backbone example, what exactly is the backbone? Certainly it will include
equipment such as routers and switches, but does it include servers? If you do include servers,
you will want to view the server as a single entity, a source or sink for network traffic perhaps,
but not component by component.

3. Identify possible outcomes. This step consists of identifying possible answers to the question
you want to answer. This is a refinement of Step 1 but should be addressed after the parts of
the system are identified. Identifying outcomes establishes the level of your interest, how
much detail you might need, and how much work you are going to have to do. You are
determining the granularity of your measurements with this step.

For example, possible outcomes for the question of backbone performance might be that
performance is adequate, that the system suffers minor congestion during the periods of
heaviest load, or that the system is usually suffering serious congestion with heavy packet
loss. For many purposes, just selecting one of these three answers might be adequate.
However, in some cases, you may want a much more descriptive answer. For example, you
may want some estimation of the average utilization, maximum utilization, percent of time at
maximum utilization, or number of lost packets. Ultimately, the degree of detail required by
the answer will determine the scope of the project. You need to make this decision early, or
you may have to repeat the project to gather additional information.

4. Identify and select what you will measure. Metrics are those system characteristics that can be
quantitatively measured. The choice of a metric will depend on the services you are
examining. Be careful in your selection. It is often tempting to go with metrics based on how
easy the data is to collect rather than on how relevant the data is to the goal. For a network
backbone, this might include throughput, delay, utilization, number of packets sent, number
of packets discarded, or average packet size.

5. If appropriate, identify test parameters and factors.[4] Parameters and factors are characteristics
of the system that affect performance that can be changed. You'll change these to see what
effect they have on the system. Parameters include both system and load (or traffic)
parameters. Try to be as systematic as possible in identifying and evaluating parameters to
avoid arbitrary decisions. It is very easy to overlook relevant parameters or include irrelevant
ones.

[4] Further distinctions between parameters and factors are sometimes made but don't seem
relevant when considered solely from the perspective of measurements.

For a network backbone, system parameters may include interface speeds and link speeds or
the use of load sharing. For traffic, you might use a tool like mgen to add an additional load.
But for simple performance measurement, you may elect to change nothing.

6. Select tools. Once you have a clear picture of what you want to do, it is time to select the
tools of interest. It is all too easy to do this too soon. Don't let the tools you have determine
what you are going to do. Tools for backbone performance might include using ntop on a link
or SNMP-based tools.

 230

7. Establish measurement constraints. On a production network, establishing constraints usually
means deciding when and where to make your measurements. You will also need to decide on
the frequency and duration of your measurements. This is often more a matter of intuition
than engineering. This is something that you will have to do iteratively, adjusting your
approach based on the results you get. Unless you have a very compelling reason,
measurements should be taken under representative conditions.

For backbone performance, for example, router interfaces are the obvious places to look.
Server interfaces are another reasonable choice. You may also need to look at individual links
as well, particularly in a switched network. You will also need to sample at different times,
including in particular those times when the load is heaviest. (Use mrtg or cricket to
determine this.) You will need to ensure that your measurements have the appropriate level of
detail. If you have isochronous applications, such as video conferencing, that are extremely
sensitive to delay, five-minute averages will not provide adequate information.

8. Review your experimental design. Once you have decided what you want to measure and
how, you should look back over the process before you begin. Are there any optimizations
you can make to minimize the amount of work you will have to do? Will the measurements
you make really answer your questions? It is wise to review these questions before you invest
large amounts of time.

9. Collect data. The single most important consideration in collecting data is that you adequately
document what you are doing. It is an all too common experience to discover that you have a
wonderful collection of data, but you don't fully know or remember the circumstances
surrounding its collection. Consequently, you don't know how to interpret it. If this happens,
the only thing you can do is discard the data and start over. Remember, collecting data is an
iterative process. You must examine your results and make adjustments as needed. It is too
easy to continue collecting worthless data when even a cursory examination of your data
would have revealed you were on the wrong track.

10. Analyze data. Once the data is collected, you must analyze, interpret, and act upon your
results. This analysis will, of course, depend heavily on the context and goals of the
investigation. But an essential element is to condense the data and extract the needed
information, presenting it in a concise form. It is often the case that measurements will create
massive amounts of data that are meaningless until carefully analyzed.

Don't get too carried away. Often the simplest analyses are of greater value than overly
complex analyses. Simple analyses can often be more easily understood. But whatever you
conclude, you'll need to do it all again. System performance analysis is a never-ending task.

12.2.2.2 Bottleneck analysis

Since networks are composed of a number of pieces, if the pieces are not well matched, poor
performance may depend on the behavior of a single component. Bottleneck analysis is the process of
identifying this component.

When looking at performance, you'll need to be sure you get a complete picture. Generally, one
bottleneck will dominate performance statistics. Many systems, however, will have multiple
bottlenecks. It's just that one bottleneck is a little worse than the others. Correcting one bottleneck will
simply shift the problem—the bottleneck will move from one component to another. When doing
performance monitoring, your goal should be to discover as many bottlenecks as possible.

Often identifying a bottleneck is easy. Once you have a clear picture of your network's architecture,
topology, and uses, bottlenecks will be obvious. For example, if 90% of your network traffic is to the

 231

Internet and you have a gigabit backbone and a 56-Kbps WAN connection, you won't need a careful
analysis to identify your bottleneck.

Identifying bottlenecks is process dependent. What may be a bottleneck for one process may not be a
problem for another. For example, if you are moving small files, the delay in making a connection will
be the primary bottleneck. If you are moving large files, the speed of the link may be more important.

Bottleneck analysis is essential in planning because it will tell you what improvements will provide
the greatest benefit to your network. The only real way to escape bottlenecks is to grossly
overengineer your network, not something you'll normally want to do. Thus, your goal should not be
to completely eliminate bottlenecks but to minimize their impact to the point that they don't cause any
real problems. Upgrading the network in a way that doesn't address bottlenecks will provide very little
benefit to the network. If the bottlenecks on your network are a slow WAN connection and slow
servers, upgrading from Fast Ethernet to Gigabit Ethernet will be a foolish waste of money. The key
consideration here is utilization. If you are seeing 25% utilization with Fast Ethernet, don't be
surprised to see utilization drop below 3% with Gigabit Ethernet. But you should be aware that even if
the utilization is low, increasing the capacity of a line will shorten download times for large files.
Whether this is worthwhile will depend on your organization's mission and priorities.

Here is a rough outline of the steps you might go through to identify a bottleneck:

1. Map your network. The first step is to develop a clear picture of your network's topology. To
do this, you can use the tools described in Chapter 6. tkined might be a good choice. Often
potential bottlenecks are obvious once you have a clear picture of your network. At the very
least, you may be able to distinguish the parts of the network that are likely to have
bottlenecks from parts that don't need to be examined, reducing the work you will have to do.

2. Identify time-dependent behavior. The problems bottlenecks cause, unless they are really
severe, tend to come and go. The next logical step is to locate the most heavily used devices
and the times when they are in greatest use. You'll want to use a tool like mrtg or cricket to
identify time-dependent behavior. (Understanding time-dependent behavior can also be
helpful in identifying when you can work on the problem with the least impact on users.)

3. Pinpoint the problems. At this point, you should have narrowed your focus to a few key parts
of the network and a few key times. Now you will want to drill down on specific devices and
links. ntop is a likely choice at this point, but any SNMP-based tool may be useful.

4. Select the tool. How you will proceed from here will depend on what you have discovered. It
is likely that you will be able to classify the problem as stemming from an edge device, such
as a server or a path between devices. Doing so will simplify the decision of what to do next.

If you believe the problem lies with a path, you can use the tools described in Chapter 4 to
drill down to a specific device or single link. You'll probably want to get an idea of the nature
of the traffic over the link. ntop is one choice, or you could use a tool like tcpdump, ethereal,
or one of the tools that analyzes tcpdump traffic.

For a link device like a router or switch, you'll need to look at basic performance. SNMP-
based tools are the best choice here.

For end devices, you need to look at the performance of the device at each level of the
communications architecture. You could use spray to examine the interface performance. For
the stack, you might compare the time between SYN and ACK packets with the time between
application packets. (Use ethereal or tcpdump to collect this information.) The setup times
should be independent of the application, depending only on the stack. If the stack responds
quickly and the application doesn't, you'll need to focus on the application.

TE
AM
FL
Y

Team-Fly®

 232

5. Fix the problem. Once you have an idea of the source of the problem, you can then decide
how to deal with it. For poor link performance, you have several choices. You can upgrade
the link bandwidth or alter the network topology to change the load on the link. Adding
interfaces to a server is one very simple solution. Attaching a server to multiple subnets is a
quick way to decrease traffic between those subnets. Policy-based routing is yet another
approach. You can use routing priorities to ensure that important traffic is handled
preferentially.

For an edge device such as an attached server, you'll want to distinguish among hardware
problems, operating system problems, and application problems, then upgrade accordingly.

Bottleneck analysis is something you should do on an ongoing basis. The urgency will depend on user
perceptions. If users are complaining, it doesn't matter what the numbers say, you have a problem. If
users aren't complaining, your analysis is less pressing but should still be done.

12.2.2.3 Capacity planning

Capacity planning is an extremely important task. Done correctly, it is also an extremely complex and
difficult task, both to learn and to do. But this shouldn't keep you from attempting it. The description
here can best be described as a crude, first-order approximation of capacity planning. But it will give
you a place to start while you are learning.

Capacity planning is really an umbrella that describes several closely related activities. Capacity
management is the process of allocating resources in a cost-efficient way. It is concerned with the
resources that you currently have. (As you might guess, this is closely related to bottleneck analysis.)
Trend analysis is the process of looking at system performance over time, trying to identify how it has
changed in the past with the goal of predicting future changes. Capacity planning attempts to combine
capacity management and trend analysis. The goal is to predict future needs to provide for effective
planning.

The basic steps are fairly straightforward to describe, just difficult to carry out. First, decide what you
need to measure. That means looking at your system in much the same way you did with bottleneck
analysis but augmenting your analysis with anything you know about the future growth of your system.
You'll need to think about your system in context to do this.

Next, select appropriate tools to collect the information you'll need. (mrtg and cricket are the most
obvious tools among those described in this book, but there are a number of other viable tools if you
are willing to do the work to archive the data.) With the tools in place, begin monitoring your system,
recording and archiving appropriate data. Deciding what to keep and how to organize it is a
tremendously difficult problem. Every situation is different. Each situation is largely a question of
balancing the amount of work involved in keeping the data in an organized and accessible manner
with the likelihood that you will actually use it. This can come only from experience.

Once you have the measurements, you will need to analyze them. In general, focus on areas that show
the greatest change. Collecting and analyzing data will be an iterative process. If little is different from
one measurement to the next, then collect data less frequently. When there is high variability, collect
more often.

Finally, you'll make your predictions and adjust your system accordingly.

There are a number of difficulties in capacity planning. Perhaps the greatest difficulty comes with
unanticipated, fundamental changes in the way your network is used. If you will be offering new

 233

services, predictions based on trends that predate these services will not adequately predict new needs.
For example, if you are introducing new technologies such as Internet telephony or video, trend
analysis before the fact will be of limited value. There is a saying that you can't predict how many
people will use a bridge by counting how many people are currently swimming across the river. If this
is the case, about the best you can do is look to others who have built similar bridges over similar
rivers.

Another closely related problem is differential growth. If your network, like most, provides a variety
of different services, then they are probably growing at different rates. This makes it very difficult to
predict aggregate performance or need if you haven't adequately collected data to analyze individual
trends.

Yet another difficulty is motivation. The key to trend analysis is keeping adequate records, i.e.,
measuring and recording information in a way that makes it accessible and usable. This is difficult for
many people since the records won't have much immediate utility. Their worth comes from being able
to look back at them over time for trends. It is difficult to invest the time needed to collect and
maintain this data when there will be no immediate return on the effort and when fundamental
changes can destroy the utility of the data.

You should be aware of these difficulties, but you should not let them discourage you. The cost of not
doing capacity planning is much greater.

 234

Appendix A. Software Sources
This appendix begins with a brief discussion of retrieving and installing software tools. It then
provides a list of potential sources for the software. First I describe several excellent general sources
for tools, then I list specific sources.

Much of this software requires root privileges and could contain dangerous code. Be sure you get your
code from reliable sources. Considerable effort has been made to provide canonical sources, but no
guarantee can be made for the trustworthiness of the code or the sources listed here. Most of these
programs are available as FreeBSD ports or Linux packages. I have used them, when available, for
testing for this book.

A.1 Installing Software

I have not tried to describe how to install individual tools in this book. First, in my experience, a set of
directions that is accurate for one version of the software may not be accurate for the next version.
Even more likely, directions for one operating system may fail miserably for another. This is
frequently true even for different versions of the same operating system. Consequently, trying to
develop a reasonable set of directions for each tool for a variety of operating systems was considered
unfeasible. In general, the best source of information, i.e., the only information that is likely to be
reliable, is the information that comes with the software itself. Read the directions!

Having said this, I have tried to give some generic directions for installing software. At best, these are
meant to augment the existing directions. They may help clarify matters when the included directions
are a little too brief. These instructions are not meant as replacements.

Installing software has gotten much easier in the last few years, thanks in part to several developments.
First, GNU configure and build tools have had a tremendous impact in erasing the differences created
by different operating systems. Second, there have been improvements in file transfer and
compression tools as well as increased standardization of the tools used. Finally, several operating
systems now include mechanisms to automate the process. If you can use these, your life will be much
simpler. I have briefly described three here—the Solaris package system, the Red Hat package
manager, and the FreeBSD port system. Please consult the appropriate documentation for the details
for each.

A.1.1 Generic Installs

Here is a quick review of basic steps you will go through in installing a program. Not every step will
be needed in every case. If you have specific directions for a product, use those directions, not these!
(Although slightly dated, a very comprehensive discussion can be found in Porting Unix Software by
Greg Lehey.)

1. Locate a reliable, trustworthy source for both the software and directions. Usually, the best
sources are listed on a web page managed by the author or her organization.

2. If you can locate directions before you begin, read them first. Typically, basic directions can
be found at the software's home page. Frequently, however, the most complete directions are

 235

included with the software distribution, so you may need to retrieve and unpack the software
to get at these.

3. Download the tool using FTP. You may be able to do this with your web browser. Be certain
you use a binary transfer if you are doing this manually.

4. Uncompress the software if needed. If the filename ends with .tgz or .gz, use gunzip. These
are the two most common formats, but there are other possibilities. Lehey's book contains a
detailed list of possibilities and appropriate tools.

5. Use tar to unpack the software if needed, i.e., if the filename ends with .tar. Typically, I use
the -xvf options.

6. Read any additional documentation that was included with the distribution.
7. If the file is a precompiled binary, you need only move it to the correct location. In general, it

is safer to download the source code and compile it yourself. It is much harder to hide Trojan
horses in source code (but not impossible).

8. If you have a very simple utility, you may need to compile it directly. This means calling the
compiler with the appropriate options. But for all but the simplest programs, a makefile
should be provided. If you see a file named Makefile, you will use the make command to
build the program. It may be necessary to customize the Makefile before you can proceed. If
you are lucky, the distribution will include a configure script, a file that, when executed, will
automatically make any needed changes to the Makefile. Look for this script first. If you don't
find it, look back over your directions for any needed changes. If you don't find anything,
examine the makefile for embedded directions. If all else fails, you can try running make
without making any changes.

9. Finally, you may also need to run make with one or more arguments to finish the installation,
e.g., make install to move the files to the appropriate directories or make clean to remove
unused files such as object modules after linking. Look at your directions, or look for
comments embedded in the makefile.

Hopefully each of these steps will be explained in detail in the documentation with the software.

A.1.2 Solaris Packages

In Solaris, packages are directories of the files needed to build or run a program. This is the
mechanism Sun Microsystems uses to distribute software. If you are installing from a CD-ROM, the
files will typically be laid out just the way you need them. You will only need to mount the CD-ROM
so you can get to them. If you are downloading packages, you will typically need to unpack them first,
usually with the tar command. You may want to do this under the default directory /var/spool/pkg, but
you can override this location with command options when installing the package.

Once you have the appropriate package on your system, you can use one of several closely related
commands to manage it. To install a package, use the pkgadd command. Without any arguments,
pkgadd will list the packages on your system and give you the opportunity to select the package of
interest. Alternately, you can name the package you want to install. You can use the -d option to
specify a different directory.

Other commands include the pkgrm command to remove a package, the pkginfo command to display
information on which packages are already installed on your system, and pkgchk to check the integrity
of the package.

For other software in package format, you might begin by looking at http://sunfreeware.com or
searching the Web for Sun's university alliance software repositories. Use the string "sunsite" in your
search.

http://sunfreeware.com/

 236

A.1.3 Red Hat Package Manager

Different versions of Linux have taken the idea of packages and expanded on it. Several different
package formats are available, but the Red Hat format is probably the most common. There are
several programs for the installation of software in the RPM format. Of these, the Red Hat Package
Manager (rpm) is what I generally use. Two other package management tools that provide GUIs
include glint and gnorpm.

First, download the package in question. Then, to install a package, call rpm with the options -ivh and
the name of the package. If all goes well, that is all there is to it. You can use the -e option to remove a
package.

A variety of packages come with many Linux distributions. Numerous sites on the Web offer
extensive collections of Linux software in RPM format. If you are using Red Hat Linux, try
http://www.redhat.com. Many of the repositories will provide you with a list of dependencies, which
you'll need to install first.

A.1.4 FreeBSD Ports

Another approach to automating software installation is the port collection approach used by FreeBSD.
This, by far, is the easiest approach to use and has been adapted to other systems including OpenBSD
and Debian Linux. The FreeBSD port collection is basically a set of directions for installing software.
Literally thousands of programs are available.

Software is grouped by category in subdirectories in the /usr/ports directory. You change to the
appropriate directory for the program of interest and type make install. At that point, you sit back and
watch the magic. The port system will attempt to locate the appropriate file in the /usr/ports/distfiles
directory. If the file is not there, it will then try downloading the file from an appropriate site via FTP.
Usually the port system knows about several sites so, if it can't reach one, it will try another. Once it
has the file, it will calculate and verify a checksum for the file. It next applies appropriate patches and
checks dependencies. It will automatically install other ports as needed. Once everything is in place, it
will compile the software. Finally, it installs the software and documentation. When it works, which is
almost always, it is simply extraordinary. The port collection is an installation option with FreeBSD.
Alternately, you can visit http://www.freebsd.org. The process is described in the FreeBSD Handbook.

When evaluating a new piece of software, I have the luxury of testing the software on several different
platforms. In general, I find the FreeBSD port system the easiest approach to use. If I have trouble
with a FreeBSD port, I'll look for a Linux package next. If that fails, I generally go to a generic source
install. In my experience, Solaris packages tend to be hard to find.

A.2 Generic Sources

The Cooperative Association for Internet Data Analysis (CAIDA) maintains an extensive listing of
measurement tools on the Web. The page at http://www.caida.org/tools/measurement has a number of
tables grouping tools by function. Brief descriptions of each tool, including links to relevant sites,
follow the tables. This listing includes both free and commercial tools and seems to be updated on a
regular basis. Another CAIDA page, http://www.caida.org/tools/taxonomy/, provides a listing of tools
by taxonomy.

http://www.redhat.com/
http://www.freebsd.org/
http://www.caida.org/tools/measurement
http://www.caida.org/tools/taxonomy/

 237

Another web site maintaining a list of network-monitoring tools is
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html. In general, there are several collaborative
Internet measurement projects that regularly introduce or discuss measurement tools. These include
CAIDA and the Stanford Linear Accelerator Center (SLAC), among others.

Other sites that you might want to look at include those that develop tools, such as
http://moat.nlanr.net, http://www-nrg.ee.lbl.gov/, and http://www.merit.edu. Don't forget special
purpose sites. Security sites like http://www.cert.org and http://www.ciac.org/ciac/ may have links to
useful tools. Keep your eyes open.

Finally, several RFCs discuss tools. The most comprehensive is RFC 1470. Unfortunately, it is quite
dated. RFC 1713, also somewhat dated, deals with DNS tools, and RFC 2398 deals with tools for
testing TCP implementation.

A.3 Licenses

Although some commercial software has been mentioned, this book has overwhelmingly focused on
freely available software. But "freely available" is a very vague expression that covers a lot of ground.

At one extreme is software that is released without any restrictions whatsoever. You can use it as you
see fit, modify it, and, in some cases, even try to sell your enhanced versions. Most of the software
described here, however, comes with some limitations on what you can do with it, particularly with
respect to reselling it.

Some of this software is freely available to some classes of users but not to others. For example, some
software distinguishes between commercial and noncommercial users or between commercial and
academic users. For some of the tools, binaries are available, but source code is either not available or
requires a license. Some of the software exists in multiple forms. For example, there may be both free
and commercial versions of a tool. Other tools restrict what you do with them. For example, you may
be free to use the tool, but you may be expected to share any improvements you make.

You should also be aware that licensing may change over time. It is not uncommon for a tool to move
from the free category to the commercial category, particularly as new, improved versions are released.
This seems to be a fairly common business model.

I have not attempted to describe the licensing for individual tools. I am not a lawyer and do not fully
understand all the subtleties of license agreements. Different licenses will apply to different
organizations in different ways. In some cases, such as when encryption is involved, different
countries have laws that impact licenses in unusual ways. Finally, license agreements change so
frequently, anything I write could be inaccurate by the time you read this.

The bottom line, then, is that you should be sure to check appropriate licensing agreements whenever
you retrieve any software. Ultimately, it is your responsibility to ensure that your use of these tools is
permissible.

A.4 Sources for Tools

http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://moat.nlanr.net/
http://www-nrg.ee.lbl.gov/
http://www.merit.edu/
http://www.cert.org/
http://www.ciac.org/ciac/

 238

This section gives basic information on each tool discussed in this book. I have not included built-in
tools like ps. The tools are listed alphabetically. I have tried to make a note of which tools are specific
to Windows, but I did not list Windows tools separately, since many tools are available for both Unix
and Windows.

A few tools discussed in the book, particularly older tools, seem to have no real home but may be
available in some archives. This is generally an indication that the tool is fading into oblivion and
should be used as a last alternative. (Some of these tools, however, are alive and well as Linux
packages or FreeBSD ports.) While I was writing this book, a number of home pages for tools
changed. Also, several of the sites seem to be down more than they are up. I have supplied the most
recent information I have, but many of the tools will have moved.

These URLs are nothing more than starting points. If you can't find the tool at
the URL given here, consider doing an Internet search. In fact, I really
recommend doing your own search over using this list. I find that I have the
most luck with searches if I do a compound search with the tool's name and
the author's last name.

That one version of a tool is safe, stable, and useful doesn't mean the next
version won't have severe problems. New programs are introduced on an
almost daily basis. So keep your eyes open.

Analyzer—Piero Viano

This is a protocol analyzer for Windows. (Directions are available only in Italian.)
http://netgroup-serv.polito.it/analyzer/

argus—Carter Bullard

This is a generic IP network transaction auditing tool. ftp://ftp.sei.cmu.edu/pub/argus-1.5

arping—marvin@nss.nu

This ping-like program uses ARP requests to check reachability.
http://synscan.nss.nu/programs.php

arpwatch—Lawrence Berkeley National Laboratory

This tool watches for new or changed MAC addresses. ftp://ftp.ee.lbl.gov/arpwatch.tar.gz

AWACS—Georg Greve

This is log management software currently under development.
http://www.gnu.org/software/awacs/awacs.html

bb—BB4 Technologies, Inc.

This is web-based monitoring software. http://www.bb4.com/

bind—University of California at Berkeley and the Internet Software Consortium

http://netgroup-serv.polito.it/analyzer/
ftp://ftp.sei.cmu.edu/pub/argus-1.5
mailto:marvin@nss.nu
http://synscan.nss.nu/programs.php
ftp://ftp.ee.lbl.gov/arpwatch.tar.gz
http://www.gnu.org/software/awacs/awacs.html
http://www.bb4.com/

 239

This is the Berkeley Internet Name Daemon, i.e., domain name server software. It includes a
number of testing tools. http://www.isc.org/products/BIND/

bing—Pierre Beyssac

This tool measures point-to-point bandwidth.
http://www.freenix.fr/freenix/logiciels/bing.html

bluebird—Shane O'Donnell et al.

This is a general network management applications framework. http://www.opennms.org/

bprobe and cprobe

These tools measure the bandwidth at the slowest link on a path. ftp://cs-
www.bu.edu/carter/probes.tar.Z

cheops—Mark Spencer

This is a Linux-based network management platform. http://www.marko.net/cheops/

Chesapeake port scanner—Mentor Technologies

This is a simple port scanner for Windows.
http://www.mentortech.com/learn/tools/pscan.shtml

clink—Allen Downey

This is another pathchar variant, a tool for measuring the bandwidth of links on a path.
http://www.cs.colby.edu/~downey/clink/

CMU SNMP—Carnegie Mellon University

This set of SNMP tools has largely been superseded by NET SNMP. They are still commonly
available for Linux. http://www.gaertner.de/snmp/

cpm—CERT at Carnegie Mellon University

This tool checks to see if any interfaces are in promiscuous mode.
ftp://info.cert.org/pub/tools/cpm.tar.Z

cricket—Jeff Allen

This tool queries devices, collecting information over time, typically router traffic, and graphs
the collected information. http://cricket.sourceforge.net/

cyberkit—Luc Neijens

This multipurpose Windows-based tool includes ping, traceroute, scanning, and SNMP. It is
postcardware. http://www.cyberkit.net

http://www.isc.org/products/BIND/
http://www.freenix.fr/freenix/logiciels/bing.html
http://www.opennms.org/
ftp://cs-www.bu.edu/carter/probes.tar.Z
ftp://cs-www.bu.edu/carter/probes.tar.Z
http://www.marko.net/cheops/
http://www.mentortech.com/learn/tools/pscan.shtml
http://www.cs.colby.edu/%7Edowney/clink/
http://www.gaertner.de/snmp/
ftp://info.cert.org/pub/tools/cpm.tar.Z
http://cricket.sourceforge.net/
http://www.cyberkit.net/

 240

dig

Part of the bind distribution. This tool retrieves domain name information from a server.

dnsquery

Part of the bind distribution. This tool retrieves domain name information from a server.

dnsutl—Peter Miller

This is a tool to simplify DNS configuration.
http://www.pcug.org.au/~millerp/dnsutl/dnsutl.html

dnswalk—David Barr

This tool retrieves and analyzes domain name information from a server. http://www.cis.ohio-
state.edu/~barr/dnswalk/

doc—Steve Hotz, Paul Mockapetris, and Brad Knowles

This tool retrieves and analyzes domain name information from a server.

dsniff—Dug Song

This is a set of utilities that can be used to test or breach the security on your system.
http://naughty.monkey.org/~dugsong/dsniff/

echoping—Stéphane Bortzmeyer

This is an alternative to ping that uses protocols other than ICMP.
ftp://ftp.internatif.org/pub/unix/echoping/

egressor—Mitre

This tool set verifies that your router will not forward packets with spoofed addresses.
http://www.packetfactory.net/Projects/Egressor/

ethereal—Gerald Combs et al.

This is a protocol analyzer that runs under X Window and Windows. It requires GTK+, which
in turn requires GLIB. http://www.ethereal.com

fping—Roland J. Schemers

This is a ping variant that can check multiple systems in parallel. http://www.fping.com

fressh—FreSSH Organization

This is another alternative to ssh. http://www.fressh.org/

http://www.pcug.org.au/%7Emillerp/dnsutl/dnsutl.html
http://www.cis.ohio-state.edu/%7Ebarr/dnswalk/
http://www.cis.ohio-state.edu/%7Ebarr/dnswalk/
http://naughty.monkey.org/%7Edugsong/dsniff/
ftp://ftp.internatif.org/pub/unix/echoping/
http://www.packetfactory.net/Projects/Egressor/
http://www.ethereal.com/
http://www.fping.com/
http://www.fressh.org/

 241

getif—Philippe Simonet

This is a multipurpose Windows tool that uses SNMP.
http://www.wtcs.org/snmp4tpc/testing.htm

gimp

This is an image manipulation program. It is also available for Windows.
http://www.gimp.org/

GTK+—Peter Mattis, Spencer Kimball, and Josh MacDonald

This is a GUI development toolkit. Its libraries may be needed by other tools.
http://www.gtk.org/

gtkportscan—Rafael Barrero

This is a port scanner that is written in GTK+. The last reported site was
http://armageddon.splorg.org/gtkportscan/.

GxSNMP

This is a network management applications framework. http://www.gxsnmp.org/

h2n

This Perl tool translates a host table to name server file format.
ftp://ftp.uu.net/published/oreilly/nutshell/dnsbind/dns.tar.Z

host

Part of the bind distribution. This tool retrieves domain name information from a server.

hping

Salvatore Sanfilippo. This tool sends custom packets and displays responses.
http://www.kyuzz.org/antirez/software.html

iperf—Mark Gates and Alex Warshavsky

This is a tool for measuring TCP and UDP bandwidth. http://dast.nlanr.net/Projects/Iperf/

ipfilter—Darren Reed

This is a set of programs to filter TCP/IP packets. It includes ipsend, a tool to send custom
packets. http://coombs.anu.edu.au/~avalon/ip-filter.html

ipload—BTT Software

This is a load generator for Windows. http://www.bttsoftware.co.uk/ipload.html

TE
AM
FL
Y

Team-Fly®

http://www.wtcs.org/snmp4tpc/testing.htm
http://www.gimp.org/
http://www.gtk.org/
http://armageddon.splorg.org/gtkportscan/
http://www.gxsnmp.org/
ftp://ftp.uu.net/published/oreilly/nutshell/dnsbind/dns.tar.Z
http://www.kyuzz.org/antirez/software.html
http://dast.nlanr.net/Projects/Iperf/
http://coombs.anu.edu.au/%7Eavalon/ip-filter.html
http://www.bttsoftware.co.uk/ipload.html

 242

ipsend—Darren Reed

This tool is part of the ipfilter package. http://coombs.anu.edu.au/~avalon/ip-filter.html

lamers—Bryan Beecher

This tool checks for lame delegations in a DNS database. Its current official location is
unknown. The last reported official site: ftp://terminator.cc.umich.edu/dns/lame-delegations. I
found links to copies at http://www.dns.net/dnsrd/tools.html.

logcheck—Craig Rowland

This log management tool is suitable for use with syslog files.
http://www.psionic.com/abacus/logcheck/

lsof—Victor Abell

This tool lists open files on a Unix system. ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/

MGEN—Brian Adamson and Naval Research Laboratory

This tool set generates and receives traffic. It is used primarily for load testing.
http://manimac.itd.nrl.navy.mil/MGEN/

mon—Jim Trocki

This is a general purpose resource-monitoring system for host and service availability.
http://www.kernel.org/software/mon/

mrtg—Tobias Oetiker and Dave Rand

This tool queries devices, collects information over time (typically router traffic) and graphs
collected information. http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/

mssh—Metro State College of Denver

This is a version of ssh for Windows. http://cs.mscd.edu/MSSH/index.html

msyslog—Core SDI

This is modular syslog, a replacement for secure syslog. http://www.core-
sdi.com/english/freesoft.html

nam—Steven McCanne and VINT

This is a Tcl/Tk-based network visualization and animation tool.
http://www.isi.edu/nsnam/nam/

nemesis—obecian@celerity.bartoli.org

http://coombs.anu.edu.au/%7Eavalon/ip-filter.html
ftp://terminator.cc.umich.edu/dns/lame-delegations
http://www.dns.net/dnsrd/tools.html
http://www.psionic.com/abacus/logcheck/
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/
http://manimac.itd.nrl.navy.mil/MGEN/
http://www.kernel.org/software/mon/
http://ee-staff.ethz.ch/%7Eoetiker/webtools/mrtg/
http://cs.mscd.edu/MSSH/index.html
http://www.core-sdi.com/english/freesoft.html
http://www.core-sdi.com/english/freesoft.html
http://www.isi.edu/nsnam/nam/
http://safari.oreilly.com/obecian@celerity.bartoli.org

 243

This tool generates a wide variety of custom IP packets. http://www.packetninja.net/nemesis/

nessus—Jordan Hrycij and Renaud Deraison

This is a security scanning and auditing tool. http://www.nessus.org/

NET SNMP—Wes Hardaker

This is an updated version of CMU SNMP. It is postcardware. http://net-
snmp.sourceforge.net/

netcat—hobbit@avian.org

This simple utility reads and writes data across network connections. It is available for both
Unix and Windows. http://www.l0pht.com/~weld/netcat/

netmon

Supplied with Microsoft NT Server. This is network-monitoring software. A basic, stripped-
down version of the netmon.exe program is supplied with Microsoft NT Server. The full
version is part of Microsoft's System Management Server.

netperf—Hewlett-Packard

This is network benchmarking and performance measurement software.
http://www.netperf.org/netperf/NetperfPage.html

nfswatch—Dave Curry and Jeff Mogul

This is a tool for watching NFS traffic. The last known site was
ftp://ftp.cerias/purdue.edu/pub/tools/unix/netutils/nfswatch/.

nhfsstone—Legato Systems

This is a tool for benchmarking NFS traffic. Current availability is unknown, but it was
originally from http://www.legato.com.

NIST Net—National Institute of Standards and Technology

This is a network emulation package that runs on Linux. http://is2.antd.nist.gov/itg/nistnet/

nmap—fyodor@dhp.com

This is a general scanning and probing tool with lots of functionality including OS
fingerprinting. http://www.insecure.org/nmap

nocol—Netplex Technologies, Inc.

This is system- and network-monitoring software. http://www.netplex-
tech.com/software/nocol/

http://www.packetninja.net/nemesis/
http://www.nessus.org/
http://net-snmp.sourceforge.net/
http://net-snmp.sourceforge.net/
http://safari.oreilly.com/hobbit@avian.org
http://www.l0pht.com/%7Eweld/netcat/
http://www.netperf.org/netperf/NetperfPage.html
ftp://ftp.cerias/purdue.edu/pub/tools/unix/netutils/nfswatch/
http://www.legato.com/
http://is2.antd.nist.gov/itg/nistnet/
mailto:fyodor@dhp.com
http://www.insecure.org/nmap
http://www.netplex-tech.com/software/nocol/
http://www.netplex-tech.com/software/nocol/

 244

ns—Steven McCanne, Sally Floyd, and VINT

This is a network simulator for protocol performance and scaling.
http://www.isi.edu/nsnam/ns/

nslookup

Part of the bind distribution. This tool retrieves domain name information from a server.

ntop—Luca Deri

This is a versatile tool for monitoring network usage. http://www.ntop.org/ntop.html

ntpd—David Mills

This is a collection of tools to set and coordinate system clocks using NTP.
http://www.eecis.udel.edu/~ntp/

openssh

This is another version of ssh. http://www.openssh.com/

p0f—Michal Zalewski

This is a passive stack fingerprinting system. http://lcamtuf.hack.pl/p0f-1.7.tgz

pathchar—Van Jacobson

This program measures the bandwidth of the links along a network path. ftp://ftp.ee.lbl.gov/
or http://ee.lbl.gov/

pchar—Bruce Mah

This tool is a reimplementation of pathchar.
http://www.employees.org/~bmah/Software/pchar/

portscan—Tennessee Carmel-Veilleux

This is a simple port scanner. http://www.ameth.org/~veilleux/portscan.html

putty—Simon Tatham

This is a Windows implementation of ssh.
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Qcheck—Ganymede

This is a Windows network benchmarking tool. http://www.qcheck.net

queso—savage@apostols.org

http://www.isi.edu/nsnam/ns/
http://www.ntop.org/ntop.html
http://www.eecis.udel.edu/%7Entp/
http://www.openssh.com/
http://lcamtuf.hack.pl/p0f-1.7.tgz
ftp://ftp.ee.lbl.gov/
http://ee.lbl.gov/
http://www.employees.org/%7Ebmah/Software/pchar/
http://www.ameth.org/%7Eveilleux/portscan.html
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/
http://www.qcheck.net/
http://safari.oreilly.com/savage@apostols.org

 245

This is an OS fingerprinting tool. http://savage.apostols.org/projects.html

ripquery

Part of the gated distribution. This tool retrieves the routing table from a system running RIP.
http://www.gated.org/

rrd—Tobias Oetiker

This is a round-robin database system useful for collecting and archiving data over time.
http://ee-staff.ethz.ch/~oetiker/webtools/rrdtool/

rtquery

Part of the routed distribution. This is a tool for retrieving the routing table from a system
running RIP.

samspade—Steve Atkins

This is a multipurpose Windows tool with a wide range of features. http://samspade.org/ssw/

Sanitize—Vern Paxson

This is a set of Bourne scripts that use the standard Unix utilities sed and awk. It is used to
clean up tcpdump traces to ensure privacy. http://ita.ee.lbl.gov/html/contrib/sanitize.html

scion—Merit Networks, Inc.

This is network statistics collection and reporting software (also called NetSCARF.) It is also
available for Windows. http://www.merit.edu/internet/net-research/netscarf/

scotty—Jürgen Schönwälder

This provides network management extension to the Tcl/Tk language.
http://wwwhome.cs.utwente.nl/~schoenw/scotty/

SFS—SPEC

This is a commercial (but nonprofit) NFS benchmark. http://www.spec.org

siphon—Subterrain Security Group

This is a passive OS fingerprinter. The last known site was
http://www.subterrain.net/projects/siphon/.

sl4nt—Franz Krainer

This is a Windows replacement for syslogd. http://www.netal.com/SL4NT03.htm

SNMP for Perl 5—Simon Leinen

http://savage.apostols.org/projects.html
http://www.gated.org/
http://ee-staff.ethz.ch/%7Eoetiker/webtools/rrdtool/
http://samspade.org/ssw/
http://ita.ee.lbl.gov/html/contrib/sanitize.html
http://www.merit.edu/internet/net-research/netscarf/
http://wwwhome.cs.utwente.nl/%7Eschoenw/scotty/
http://www.spec.org/
http://www.subterrain.net/projects/siphon/
http://www.netal.com/SL4NT03.htm

 246

This is a package of Perl 5 modules providing SNMP support.
http://www.switch.ch/misc/leinen/snmp/perl/

sock—W. Richard Stevens

This is a tool for generating traffic. It is a companion tool for Steven's book, TCP/IP
Illustrated, vol. 1, The Protocols. ftp://ftp.uu.net/published/books/stevens.tcpipiv1.tar.Z

socket—Juergen Nickelsen

This program creates a TCP socket connected to stdin and stdout.
http://home.snafu.de/jn/socket/

spidermap—H. D. Moore

This is a set of Perl scripts for network scanning. http://www.secureaustin.com

spray

This tool sends a burst of packets for load testing typically included with many systems.

ssh—Tatu Ylönen

This is a secure replacement for r-services. http://www.ssh.com/

ssyslog—Core SDI

This is a secure replacement for syslog. It has been replaced by modular syslog.
http://www.core-sdi.com/english/freesoft.html

strobe—Julian Assange

This program locates all listening TCP ports on a remote machine. The last known official
site was ftp://suburbia.net/pub/strobe.tgz.

swatch—Todd Atkins

This log management tool is suitable for use with syslog files.
http://www.stanford.edu/~atkins/swatch/

syslog-ng—BalaBit IT Ltd.

This is an enhanced syslog that features filtering and sorting logs to different destinations.
http://www.balabit.hu/en/products/syslog-ng/

Tcl/Tk—John Ousterhout

This is a general scripting language that has been extended to support many network
management tasks. http://dev.scriptics.com

http://www.switch.ch/misc/leinen/snmp/perl/
ftp://ftp.uu.net/published/books/stevens.tcpipiv1.tar.Z
http://home.snafu.de/jn/socket/
http://www.secureaustin.com/
http://www.ssh.com/
http://www.core-sdi.com/english/freesoft.html
ftp://suburbia.net/pub/strobe.tgz
http://www.stanford.edu/%7Eatkins/swatch/
http://www.balabit.hu/en/products/syslog-ng/
http://dev.scriptics.com/

 247

tcpdpriv—Greg Minshall

This program sanitizes tcpdump trace files. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

tcpdump—Van Jacobson, Craig Leres, and Steven McCanne

This is command-line-based packet capture program. http://ee.lbl.gov/,
http://www.tcpdump.org, or ftp://ftp.ee.lbl.gov/tcpdump.tar.Z

tcpflow—Jeremy Elson

This is a capture program that separates traffic into individual flows.
http://www.circlemud.org/~jelson/software/tcpflow

tcp-reduce—Vern Paxson

The program tcp-reduce and its companion program tcp-summary are Bourne shell scripts
used to selectively extract information from tcpdump trace files.
http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html

tcpshow—Mike Ryan

This program reads and decodes tcpdump files. The official home for this is unknown, but it
is available in several archives such as http://www.cerias.purdue.edu/coast/archive/.

tcpslice—Vern Paxson

This tool is used to create subsets of tcpdump trace files. ftp://ftp.ee.lbl.gov/tcpslice.tar.Z or
http://www.tcpdump.org/related.html

tcp-summary—Vern Paxson

The program tcp-reduce and its companion program tcp-reduce are Bourne shell scripts used
to selectively extract information from tcpdump trace files.
http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html

tcptrace—Shawn Ostermann

This is a tcpdump trace analysis program. http://www.tcptrace.org

tcpwrappers—Wietse Venema

This daemon sits between user and services to log and manage connections.
ftp://ftp.porcupine.org/pub/security/index.html

teraterm—T. Teranishi

This is a Windows telnet client that can be extended to support SSH. (See also TTSSH.)
http://hp.vector.co.jp/authors/VA002416/teraterm.html

http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://ee.lbl.gov/
http://www.tcpdump.org/
ftp://ftp.ee.lbl.gov/tcpdump.tar.Z
http://www.circlemud.org/%7Ejelson/software/tcpflow
http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html
http://www.cerias.purdue.edu/coast/archive/
ftp://ftp.ee.lbl.gov/tcpslice.tar.Z
http://www.tcpdump.org/related.html
http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html
http://www.tcptrace.org/
ftp://ftp.porcupine.org/pub/security/index.html
http://hp.vector.co.jp/authors/VA002416/teraterm.html

 248

tjping—Top Jimmy

This is a ping and traceroute program for Windows. http://www.topjimmy.net/tjs/

tkined—Jürgen Schönwälder

This provides a network management program based on scotty and Tcl/Tk.
http://wwwhome.cs.utwente.nl/~schoenw/scotty/

tmetric—Michael Bacarella

This tool finds available bandwidth. http://netgraft.com/downloads/tmetric/

top—William LeFebvre

This displays the most active processes on a system. http://www.groupsys.com/top/about.html

traceroute—Van Jacobson

This reconstructs the route taken by packets over a network. It is probably supplied with your
system. ftp://ftp.ee.lbl.gov/ or http://ee.lbl.gov/

trafshow—Vladimir Vorobyev

This full screen traffic capture program gives a continuous update on network traffic. Its last
reported site was http://www.rinetsoft.nsk.su/trafshow/index_en.html.

trayping—Mike Gleason

This is a Windows tool that monitors connectivity using ping.
http://www.ncftpd.com/winstuff/trayping/

treno—Matt Mathis

This is a tool to measure the bulk transfer capacity. ftp://ftp.psc.edu/pub/net_tools/

tripwire—Eugene Spafford and Gene Kim

This is a system integrity checker. http://www.tripwire.com or http://www.tripwire.org

ttcp—Mike Muuss

This is a load testing program for TCP. ftp://ftp.arl.mil/pub/ttcp/ttcp.c

TTSSH

This is a set of SSH extensions for Windows telnet program, teraterm.
http://www.zip.com.au/~roca/ttssh.html

vnc—AT&T Laboratories, Cambridge

http://www.topjimmy.net/tjs/
http://wwwhome.cs.utwente.nl/%7Eschoenw/scotty/
http://netgraft.com/downloads/tmetric/
http://www.groupsys.com/top/about.html
ftp://ftp.ee.lbl.gov/
http://ee.lbl.gov/
http://www.rinetsoft.nsk.su/trafshow/index_en.html
http://www.ncftpd.com/winstuff/trayping/
ftp://ftp.psc.edu/pub/net_tools/
http://www.tripwire.com/
http://www.tripwire.org/
ftp://ftp.arl.mil/pub/ttcp/ttcp.c
http://www.zip.com.au/%7Eroca/ttssh.html

 249

This tool displays X Window and Windows desktops on remote systems.
http://www.uk.research.att.com/vnc/

WinDump and WinDump95—Loris Degioanni, Piero Viano, and Fulvio Risso

These are ports of tcpdump to Windows NT and Windows 95/98. http://netgroup-
serv.polito.it/windump/

winping—Rich Morgan

This is another ping utility for Windows. http://www.cheap-price.com/winping/

xinetd—Panos Tsirigotis

This is a secure replacement for the inetd utility. http://www.synack.net/xinetd/

xlogmaster—Georg Greve

This is Greve's older log management software. You may want to check on the status of
AWACS before using it. http://www.gnu.org/software/xlogmaster/

xplot—David Clark

A tool for graphing data in an X Window environment. There are several programs with this
name, so be sure you have the right one. ftp://mercury.lcs.mit.edu/pub/shep/

xv—John Bradley

This is a modestly priced shareware program for the interactive display of images from an X
Window system. You should probably try gimp first. ftp://ftp.cis.upenn.edu/pub/xv

http://www.uk.research.att.com/vnc/
http://netgroup-serv.polito.it/windump/
http://netgroup-serv.polito.it/windump/
http://www.cheap-price.com/winping/
http://www.synack.net/xinetd/
http://www.gnu.org/software/xlogmaster/
ftp://mercury.lcs.mit.edu/pub/shep/
ftp://ftp.cis.upenn.edu/pub/xv

 250

Appendix B. Resources and References
A good network administrator is part librarian. Anyone who thinks he can learn everything he needs in
this profession from a single book, or even a couple of dozen books, is lost in a fantasy world. This
appendix is designed to get you up to speed quickly, but professional growth is a never-ending task. I
am not attempting to be exhaustive or definitive here. I'm just trying to give some starting places that
have worked for me. This is a personal overview of my favorites.

B.1 Sources of Information

While this appendix is devoted primarily to books, there is a variety of other obvious resources. You
should already be familiar with most, but the following checklist may be useful in jogging your
memory. It is in no particular order.

User groups

These seem less popular than they once were, but they still exist. For system administrators,
USENIX at http://www.usenix.org and SAGE at http://www.sage.org are two good places to
start.

Mailing lists

There are thousands of these. Finding ones that are helpful can be painful. Be prepared to
subscribe, lurk, and then unsubscribe to a number of different lists (or visit their archives).
Follow a list for a while before you start posting to the list.

Newsgroups

Keep in mind that you may find an answer in related groups. Your Solaris problem may be
answered in a Linux newsgroup posting. A quick search of Deja News can sometimes be
helpful.

Vendor web sites

In networking and telecommunication, a vendor that doesn't maintain a reasonable web site
probably should be avoided. This is the most obvious way to disseminate information about
their products. Some vendors have excellent problem resolution sites, such as Microsoft's
TechNet. Other sites, like Cisco's, contain such a staggering amount of information that
whatever you want is there, but it can take forever to find it. Be prepared to spend a lot of
time searching wherever you go.

Software web sites

Don't forget the home pages for software, particularly operating systems. It is easy to forget
about sites like http://www.linux.org and http://www.freebsd.org. And even minor tools may
have a site devoted exclusively to them.

http://www.usenix.org/
http://www.sage.org/
http://www.linux.org/
http://www.freebsd.org/

 251

Chatrooms

Frankly, I don't have time for chatrooms, but some people find them useful, particularly those
devoted to specific pieces of software.

FAQ list

This is often an excellent starting point, particularly when you are installing new software.
Keep in mind these may change frequently, so make sure you are looking at a current list.

README files

In the rush to get things running, many people skip these. If everything appears to work, they
never go back. Don't forget to look at these even if you don't have a problem.

Comments in makefiles and source code

This is a long shot, but if you are using open source software, there is an off chance you can
find something of value.

Service contracts

For some reason, some timid people seem reluctant to use their service contracts. If you have
paid for a service contract, you should not be intimidated from placing reasonable calls.

I always try to get an idea of what resources the technicians are using to answer my questions. I've had
technicians send me some truly remarkable "internal" documents. Before I hang up, I always try to ask
how I could have resolved the question without calling them. Most technicians seem delighted to
answer that question.

Formal training

This could be from the vendor or from a third party. This is a big business, particularly with
the recent trend toward certification. Short courses can be very focused-providing exactly
what you need. Beware, these courses can be quite expensive and what you learn can become
dated very quickly. Some companies, e.g., Microsoft and Novell, now cancel certification if
you don't recertify within an established time limit.

Formal courses at colleges and universities tend to be more general and, consequently, often remain
relevant for a much longer period of time. I would recommend a formal degree over certification any
day, but I'm biased. Some potential employers may have different biases.

Printed and online vendor documentation

The undeniable trend is toward putting as much online as possible. This reduces costs and
allows the user to search the material. With Unix, online manpages accessible through the
man command are universally available. Recently, there has been a movement toward
alternatives such as info pages, HOWTOs, AnswerBooks, and web-based documentation. Use
whatever is appropriate to your system, but consider buying printed copies. I kill a lot of trees
printing online documentation. I want something I can read in comfort and something I can
write on. And then when I can't find what I've printed, I print it again, and again, and

TE
AM
FL
Y

Team-Fly®

 252

Diagnostic software

This is often provided by the vendor with the initial purchase of their software or equipment
or as downloads from their web site. It can supply the answer to your question. However,
diagnostic software is often limited in what it can test. A clean bill of health from diagnostic
software does not necessarily mean that there isn't a problem with the vendor's product.

Helpdesks

Keep in mind that many people use these in place of reading the documentation. The first
person you talk to probably won't be very helpful (unless you didn't read the documentation).
With perseverance, it is usually possible to get your call escalated a couple of times so that
you end up talking to someone who is helpful. Be prepared to be on the phone for a while.
And be polite!

Magazines and journals

For me, these are most useful for tutorials on new topics and for product reviews. I read
NetworkWorld for general news and NetworkMagazine and IEEE Computer for articles with a
little more depth. Cisco's Internet Protocol Journal is also a favorite. I also enjoy Wired. (Just
don't believe everything you read in it.) Don't overlook business magazines. Knowing what
company is about to fold can save you from making a costly mistake. Both the ACM and
IEEE have online searches for registered users. For less technical information, Computer
Select is an excellent (but expensive) source of information.

e-magazines and magazine web sites

There are a number of magazines or similar sites published online that you should not forget.
These include http://www.bsdtoday.com, http://www.linuxgazette.com, and
http://www.oreillynet.com/meerkat/ among others. Also, many print magazines have web
sites with back issues online. These sites, since the content has been edited and reviewed, are
my first choice when searching the Web. Try http://sw.expert.com, http://www.sunworld.com,
http://www.networkworld.com, and http://www.networkmagazine.com for starters. Microsoft
Windows users might try http://www.zdnet.com/pcmag/. There are many, many more.

Trade shows

While the first person you're likely to talk to will be a sales rep, there is probably a technical
person lurking somewhere in the background to help out when the rep discovers she is out of
her depth. This may be your only real chance to meet face-to-face with someone technically
involved in a product.

Friends, colleagues, and teachers

Ask yourself who you know who might be able to help. But remember this is a two-way
street, so be prepared to help others in the future. Always remember, even the best expert will
sometimes provide poor advice.

Other network managers and administrators

http://www.bsdtoday.com/
http://www.linuxgazette.com/
http://www.oreillynet.com/meerkat/
http://sw.expert.com/
http://www.sunworld.com/
http://www.networkworld.com/
http://www.networkmagazine.com/
http://www.zdnet.com/pcmag/

 253

People at similar institutions are often willing to share information. It's better, of course, to
build a network of contacts before you need them. In particular, your predecessor, if he left on
good terms, can be an ideal contact.

While these might be obvious resources, it is not uncommon to overlook one or more of them when
trying to solve some hairy problem. You may want to highlight this list and add to it in the margin.
Many of these sources have standards of etiquette that should be observed. Don't abuse them! Even if
you are paying for the call and your contact can't answer your question, try to remain pleasant. Save
your hostilities for calls from telemarketers.

B.2 References by Topic

This section describes books grouped by topic. Full bibliographical citations follow. Online sites like
http://www.amazon.com and http://www.bn.com have replaced Books in Print for me. They make it
easy to find out what is available for whatever topic I'm interested in. Bookstores and libraries are the
best ways to see if a book is really useful. Even well-intentioned advertisements and reviews can be
very misleading.

Often there is a lot of consistency, for better or worse, among books from the same publisher, so you
may want to visit their web sites as well. For example, the majority of the books mentioned here are
O'Reilly books because O'Reilly & Associates has specialized in Unix tool books longer than anyone
else. Addison Wesley Longman does a very good job with some of the more theoretical treatments of
protocols. Prentice Hall is a reliable source for textbooks on network related topics.

B.2.1 System Management

This book assumes that you understand the basics of system administration. If this isn't the case, you
should consider several books. My top choices are Unix System Administration Handbook by Nemeth
et al. and Essential System Administration by Frisch. Both provide extensive overviews of the tasks
system administrators face. For general tools, you may want to look at Unix Power Tools by Peek, et
al.

B.2.2 TCP/IP

You aren't going to get very far dealing with TCP/IP without a thorough understanding of the
protocols. There are actually several approaches you can take, depending on your goal. The definitive
treatments are in the relevant RFCs. These are probably too terse for most readers. They are certainly
not where you will want to start if you are new to TCP/IP. (If you do use them, be sure to check the
RFC-INDEX so that you are using the current version.)

If your goal is TCP/IP administration, then there are two paths you can take. TCP/IP Network
Administration by Craig Hunt is an excellent general introduction. (PC users should look at
Networking Personal Computers with TCP/IP by Hunt.) Alternatively, you might want to go to
vendor-specific documentation for the operating system you are dealing with. These won't teach you
the theory, but they will tell you enough to get something done.

If you want a general introduction to the TCP/IP protocol, there are several reasonable books. One
good choice is Eric Hall's Internet Core Protocols: The Definitive Guide. This will give you a fairly

http://www.amazon.com/
http://www.bn.com/

 254

complete picture that should meet your needs for quite a while. The book comes with Shomiti's
Surveyor Lite on a CD-ROM in the back. This is a good place to start for most network administrators.

If you want a treatment with all the details of the protocols, and you are willing to put out the effort
needed, there are two sets of books you should consider. Internetworking with TCP/IP by Douglas
Comer et al. and TCP/IP Illustrated by W. Richard Stevens et al. Both are multi-volume sets running
about 2000 pages per set. You'll get a pretty complete picture if you just read the first volume of either.
Comer is somewhat more descriptive of general behavior and gives a better sense of history. His book
is also a little more current. Stevens takes a hands-on, experimental approach, looking closely at the
behavior of the protocols. You'll see more of the details in his book. Because of the sheer size of these,
you'll need a high degree of commitment to make it through either.

Finally, if you want a good overview of routing algorithms, take a look at Perlman's Interconnections
or Huitema's Routing in the Internet. Both are considerably more theoretical than most of the books
listed here, but quite worthwhile.

B.2.3 Specific Protocols

When it comes to specific protocols, there are a number of books on each and every protocol. Here a
few suggestions to get you started:

DNS

For name services, DNS and BIND by Liu et al. is the standard.

Ethernet

For a complete overview of Ethernet, the place to start is Spurgeon's Ethernet: The Definitive
Guide. For Fast Ethernet and Gigabit Ethernet, you may want to add Gigabit Etherenet by
Kadambi et al. to your collection.

Email

Basic administration is discussed in the books listed under system administration and will
probably meet your needs. The most commonly cited book on sendmail is sendmail by
Costales et al. For IMAP, you might consider Managing IMAP by Mullet and Mullet.

NFS

For NFS, you have a couple of choices. If you want to understand the inner working, consider
Callaghan's NFS Illustrated. If you want to get NFS working, consider Stern's Managing NFS
and NIS.[B]

[B] At the time this was written, the current version of Stern's book was quite dated but a
second edition was in the works and is probably now available.

PPP

PPP Design and Debugging by Carlson is the best book on the internals. Sun's Using &
Managing PPP is the place to turn to get PPP up and running.

 255

SNMP

There are a number of books on SNMP, none perfect. I think Held's LAN Management with
SNMP and RMON and Network Management: A Practical Perspective by Leinwand and
Conroy are readable introductions. Udupa's Network Management Systems Essentials does a
very nice job of describing the standard MIB objects but is awfully dry reading. You may also
want to visit http://www.simple-times.org/, an online magazine devoted to SNMP. If you are
using Windows, you'll want to consider Murry's Windows NT SNMP.

SSH

Get Barrett and Silverman's SSH, the Secure Shell: The Definitive Guide.

Web protocols

For an overview of a number of web services, consider getting Managing Internet
Information Services by Liu et al.

There are a lot of other books out there, so keep your eyes open.

B.2.4 Performance

Performance is a difficult area to master and requires a lot of practical experience. Jain's The Art of
Computer Systems Performance Analysis is a truly outstanding introduction to the theory and practice
of performance analysis. But it won't supply you with much information on the tools you'll need. As a
network administrator, you'll need to know the basics of system administration. For a practical
introduction, you'll want to get Loukides' System Performance Tuning. This is primarily oriented to
system administrators rather than network administrators, but it is a good place to start.

B.2.5 Troubleshooting

The definitive book on troubleshooting has yet to be written. I doubt it ever will be considering the
breadth of the subject. One of the goals of this book is to introduce you to tools you can use in
troubleshooting. But this is only one aspect of troubleshooting. There are other tool books, most
notably Maxwell's Unix Network Management Tools. There is considerable overlap between this book
and Maxwell's. This book covers considerably more tools, but Maxwell's provides greater depth and a
different perspective on some of the tools. Both are worth having.

There are several other worthwhile books. Haugdahl's Network Analysis and Troubleshooting is a
good overview, but more details would have been nice. Miller has several useful books. Two you
might want to consider are LAN Troubleshooting Handbook and Troubleshooting TCP/IP.

B.2.6 Wiring

While this is a little off topic for this book, you won't get very far without good wiring. For a general
introduction, look at LAN Wiring: An Illustrated Guide to Network Cabling by Trulove or, my
personal favorite, Cabling: The Complete Guide to Network Wiring by Groth and McBee. For a more
formal treatment, the TIA/EIA standards for cabling are available from Global Engineering
Documents (http://www.global.ihs.com/). The two that are most useful are TIA/EIA-606, which

http://www.simple-times.org/
http://www.global.ihs.com/

 256

discusses labeling and TIA/EIA-568-A, which discusses infrastructure. These standards are not easy
reading. Visit your local library before you buy, as they are quite expensive.

B.2.7 Security

For general Unix security, nothing even comes close to Practical UNIX & Internet Security by
Garfinkel and Spafford. This is a must-have for any Unix system administrator. For firewalls, you
have several excellent choices. For general treatments, consider Firewalls and Internet Security by
Cheswick and Bellovin or Building Internet Firewalls by Zwicky et al. If you are using Linux or
OpenBSD, you might consider Building Linux and OpenBSD Firewalls by Sonnernreich and Yates.
Don't forget security organizations like CERT at http://www.cert.org or CIAC at
http://www.ciac.org/ciac/.

B.2.8 Scripting

Quite a few scripting languages are available for Unix. Apart from standard shell scripts, I use only
Tcl and Perl, so I can't comment on the others. For Perl, I began with Schwartz's Learning Perl and
now use Programming Perl by Wall et al. as a reference. For more detailed guidance with system
administration tasks, you might also consider Perl for System Administration by Blank-Edelman.

For Tcl, Ousterhout's Tcl and the Tk Toolkit, while not necessarily the best, is the standard
introduction. He did invent the language. For network applications, you might consider Building
Networking Management Tools with Tcl/Tk by Zeltserman and Puoplo. If you just want a quick
overview of Perl or Tcl, there are a number of tutorials on the Web.

B.2.9 Microsoft Windows

For Windows, you might begin by looking at Frisch's Essential Windows NT System Administration or
the appropriate Windows Resource Kit from Microsoft. Frisch is more readable and doesn't always
follow the Microsoft party line. The Microsoft documentation can be quite comprehensive. There are
different versions for each flavor of Windows.

B.3 References

1. Barrett, Daniel, and Richard Silverman. SSH, the Secure Shell: The Definitive Guide.
Sebastopol, CA: O'Reilly & Associates, Inc., 1999.

2. Blank-Edelman, David. Perl for System Administration. Sebastopol, CA: O'Reilly &
Associates, Inc., 1999.

3. Callaghan, Brent. NFS Illustrated. Reading, MA: Addison Wesley Longman, 1998.
4. Carasik, Anne. Unix Secure Shell. New York, NY: McGraw-Hill, 1999.
5. Carlson, James. PPP Design and Debugging. Reading, MA: Addison Wesley Longman, 1998.
6. Cheswick, William, and Steven Bellovin. Firewalls and Internet Security. Reading, MA:

Addison Wesley Longman, 1994.
7. Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and Architectures, vol.

1, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2000.
8. Costales, Bryan et al. sendmail, 2d ed. Sebastopol, CA: O'Reilly & Associates, Inc., 1997.
9. Frisch, Æleen. Essential System Administration. Sebastopol, CA: O'Reilly & Associates, Inc.,

1991.

http://www.cert.org/
http://www.ciac.org/ciac/

 257

10. ———. Essential Windows NT System Administration. Sebastopol, CA: O'Reilly &
Associates, Inc., 1998.

11. Garfinkel, Simson, and Gene Spafford. Practical UNIX & Internet Security. Sebastopol, CA:
O'Reilly & Associates, Inc., 1990.

12. Groth, David, and Jim McBee. Cabling: The Complete Guide to Network Wiring. Alameda,
CA: Sybex, 2000.

13. Hall, Eric A. Internet Core Protocols: The Definitive Guide. Sebastopol, CA: O'Reilly &
Associates, Inc., 2000.

14. Haugdahl, J. Scott. Network Analysis and Troubleshooting. Reading, MA: Addison Wesley
Longman, 2000.

15. Held, Gilbert. LAN Management with SNMP and RMON. New York, NY: John Wiley &
Sons, 1996.

16. Huitema, Christian. Routing in the Internet, 2d ed. Upper Saddle River, NJ: Prentice Hall,
2000.

17. Hunt, Craig. Networking Personal Computers with TCP/IP, 2d ed. Sebastopol, CA: O'Reilly
& Associates, Inc., 1995.

18. ———. TCP/IP Network Administration, 2d ed. Sebastopol, CA: O'Reilly & Associates, Inc.,
1998.

19. Jain, Raj. The Art of Computer Systems Performance Analysis. New York, NY: John Wiley &
Sons, 1991.

20. Kadambi, Jayant, Ian Crayford, and Mohan Kalkunte. Gigabit Ethernet: Migrating to High-
Bandwidth LANs. Upper Saddle River, NJ: Prentice Hall, 1998.

21. Killelea, Patrick. Web Performance Tuning. Sebastopol, CA: O'Reilly & Associates, Inc.,
1998.

22. Kurtzweil, Ray. The Age of Spiritual Machines: When Computers Exceed Human Intelligence.
New York, NY: Viking Penguin, 1999.

23. Lehey, Greg. Porting Unix Software. Sebastopol, CA: O'Reilly & Associates, Inc., 1995.
24. Leinwand, Allan, and Karen Conroy. Network Management: A Practical Perspective, 2d ed.

Reading, MA: Addison Wesley Longman, 1996.
25. Liu, Cricket et al. Managing Internet Information Services. Sebastopol, CA: O'Reilly &

Associates, Inc., 1994.
26. Liu, Cricket, Paul Albitz, and Mike Loukides. DNS and BIND, 4th ed. Sebastopol, CA:

O'Reilly & Associates, Inc., 1998.
27. Loukides, Mike. System Performance Tuning. Sebastopol, CA: O'Reilly & Associates, Inc.,

1990.
28. Maxwell, Steve. Unix Network Management Tools. New York, NY: McGraw-Hill, 1999.
29. Miller, Mark. LAN Troubleshooting Handbook, 2d ed. New York, NY: M&T Books, 1993.
30. ———. Troubleshooting TCP/IP, 2d ed. New York, NY: M&T Books, 1996.
31. Mullet, Dianna, and Kevin Mullet. Managing IMAP. Sebastopol, CA: O'Reilly & Associates,

Inc., 2000.
32. Murry, James. Windows NT SNMP. Sebastopol, CA: O'Reilly & Associates, Inc., CA, 1998.
33. Nemeth, Evi et al. Unix System Administration Handbook, 3d ed. Upper Saddle River, NJ:

Prentice Hall, 2001.
34. Ousterhout, John K. Tcl and the Tk Toolkit. Reading, MA: Addison Wesley Longman, 1994.
35. Peek, Jerry, Tim O'Reilly, and Mike Loukides. Unix Power Tools, 2d ed. Sebastopol, CA:

O'Reilly & Associates, Inc., 1998.
36. Perlman, Radia. Interconnections, 2d ed. Reading, MA: Addison Wesley Longman, 2000.
37. Peter, Laurence, and Raymond Hull. The Peter Principle. New York, NY: W. Morrow, 1969.
38. Robichaux, Paul. Managing the Windows 2000 Registry. Sebastopol, CA: O'Reilly &

Associates, Inc., 2000.
39. Schwartz, Randal. Learning Perl. Sebastopol, CA: O'Reilly & Associates, Inc., 1993.
40. Sonnernreich, Wes, and Tom Yates. Building Linux and OpenBSD Firewalls. New York, NY:

John Wiley & Sons, 2000.

 258

41. Spurgeon, Charles. Ethernet: The Definitive Guide. Sebastopol, CA: O'Reilly & Associates,
Inc., 2000.

42. Stern, Hal. Managing NFS and NIS. Sebastopol, CA: O'Reilly & Associates, Inc., 1991.
43. Stevens, W. Richard. TCP/IP Illustrated, vol. 1, The Protocols. Reading, MA: Addison

Wesley Longman, 1994.
44. Sun, Andrew. Using & Managing PPP. Sebastopol, CA: O'Reilly & Associates, Inc., 1999.
45. Thomas, Steven. Windows NT 4.0 Registry: A Professional Reference. New York, NY:

McGraw-Hill, 1998.
46. TIA/EIA. Administration Standard for the Telecommunications Infrastructure of Commercial

Buildings (TIA/EIA-606). Englewood, CO: Global Engineering Documents, 1993.
47. ———. Commercial Building Telecommunications Cabling Standard (TIA/EIA-568-A).

Englewood, CO: Global Engineering Documents, 1995.
48. Trulove, James. LAN Wiring: An Illustrated Guide to Network Cabling. New York, NY:

McGraw-Hill, 1997.
49. Udupa, Divakara. Network Management Systems Essentials. New York, NY: McGraw-Hill,

1996.
50. Wall, Larry, Tom Christiansen, and Randal Schwartz. Programming Perl, 3d ed. Sebastopol,

CA: O'Reilly & Associates, Inc., 2000.
51. Zeltserman, Dave, and Gerard Puoplo. Building Networking Management Tools with Tcl/Tk.

Upper Saddle River, NJ: Prentice Hall, 1998.
52. Zwicky, Elizabeth, Simon Cooper, and D. Brent Chapman. Building Internet Firewalls, 2d ed.

Sebastopol, CA: O'Reilly & Associates, Inc., 2000.

 259

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Network Troubleshooting Tools is a basilisk, a lizard belonging to the
iguana family. Its name comes from the mythological basilisk (also known as a cockatrice), a reptile
with a deadly gaze and breath, said to have been hatched from a rooster's egg by a serpent.

Though the two crests along their backs may make them look ferocious, basilisk lizards aren't deadly
to anyone but the bugs and occasional worms and small animals they eat. They grow to about two or
two and a half feet long, with most of that length in their tail. The banded basilisk is brown with a
yellow stripe along each side of its body, and other basilisk species are green or brown.

Unlike their mythological counterparts, real basilisks are hatched from basilisk eggs. The female
basilisk digs a shallow hole in moist dirt, lays up to 18 eggs in the hole, and covers them with dirt.
Then she goes back to her swinging single basilisk life, leaving the eggs and later the young lizards to
fend for themselves. They do this quite well, taking up residence in trees and finding their own food
soon after hatching.

The talent that basilisks are most known for is their ability to do something that looks remarkably like
walking on water. In reality, their webbed hind feet trap a bubble of air beneath them as they run,
buoying them up so that their feet don't sink more than an inch or so below the water. A small basilisk
can run like this for up to 60 feet without sinking.

Catherine Morris was the production editor and proofreader, and Norma Emory was the copyeditor for
Network Troubleshooting Tools. Sarah Jane Shangraw, Emily Quill, and Claire Cloutier provided
quality control. Jan Wright wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with Quark XPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout based on a series design by Nancy Priest. Anne-Marie
Vaduva converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike
Sierra. The text and heading fonts are ITC Garamond Light and Garamond Book; the code font is
Constant Willison. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by
Leanne Soylemez.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

	Network Troubleshooting Tools.pdf
	Table of Content
	Preface
	Audience
	Organization
	Conventions
	Acknowledgments

	Chapter 1. Network Management and Troubleshooting
	1.1 General Approaches to Troubleshooting
	1.2 Need for Troubleshooting Tools
	1.3 Troubleshooting and Management
	1.3.1 Documentation
	1.3.2 Management Practices
	1.3.2.1 Professionalism
	1.3.2.2 Ego management
	1.3.2.3 Legal and ethical considerations
	1.3.2.4 Economic considerations
	Table 1-1. Cost estimates

	Chapter 2. Host Configurations
	2.1 Utilities
	2.1.1 ps
	2.1.2 top
	2.1.3 netstat
	2.1.4 lsof
	2.1.5 ifconfig
	2.1.6 arp
	2.1.7 Scanning Tools
	Figure 2-1. Chesapeake Port Scanner

	2.2 System Configuration Files
	2.2.1 Basic Configuration Files
	2.2.2 Configuration Programs
	2.2.3 Kernel
	2.2.4 Startup Files and Scripts
	2.2.5 Other Files
	2.2.5.1 Application files
	2.2.5.2 Security files
	2.2.5.3 Log files

	2.3 Microsoft Windows
	
	Figure 2-2. winipcfg

	Chapter 3. Connectivity Testing
	3.1 Cabling
	3.1.1 Installing New Cabling
	3.1.2 Maintaining Existing Cabling
	3.1.3 Testing Cabling
	3.1.3.1 Link lights
	3.1.3.2 Cable testers
	3.1.3.3 Other cable tests

	3.2 Testing Adapters
	3.3 Software Testing with ping
	3.3.1 ping
	3.3.2 How ping Works
	3.3.2.1 Simple examples
	3.3.2.2 Interpreting results
	3.3.2.3 Options
	3.3.2.4 Using ping

	3.3.3 Problems with ping
	3.3.3.1 Security and ICMP
	3.3.3.2 Smurf Attacks
	3.3.3.3 Ping of Death
	3.3.3.4 Other problems

	3.3.4 Alternatives to ping
	3.3.4.1 fping
	3.3.4.2 echoping
	3.3.4.3 arping
	3.3.4.4 Other programs

	3.4 Microsoft Windows

	Chapter 4. Path Characteristics
	4.1 Path Discovery with traceroute
	4.1.1 Options
	4.1.2 Complications with traceroute
	Figure 4-1. First six hops on path
	Figure 4-2. First four hops on reverse path
	Figure 4-3. IP source spoofing

	4.2 Path Performance
	4.2.1 Performance Measurements
	4.2.2 Bandwidth Measurements
	4.2.2.1 ping revisited
	Figure 4-4. Link traffic measurements
	Table 4-1. Raw data
	Table 4-2. Calculated bandwidth
	4.2.2.2 pathchar
	4.2.2.3 bing
	4.2.2.4 Packet pair software

	4.2.3 Throughput Measurements
	4.2.3.1 ttcp
	4.2.3.2 netperf
	4.2.3.3 iperf
	4.2.3.4 Other related tools

	4.2.4 Traffic Measurements with netstat

	4.3 Microsoft Windows

	Chapter 5. Packet Capture
	5.1 Traffic Capture Tools
	5.2 Access to Traffic
	5.3 Capturing Data
	5.4 tcpdump
	5.4.1 Using tcpdump
	5.4.2 tcpdump Options
	5.4.2.1 Controlling program behavior
	5.4.2.2 Controlling how information is displayed
	5.4.2.3 Controlling what's displayed
	Table 5-1. Packet analysis summary
	5.4.2.4 Filtering
	5.4.2.4.1 Address filtering.
	5.4.2.4.2 Protocol and port filtering.
	5.4.2.4.3 Packet characteristics.
	5.4.2.4.4 Compound filters.

	5.5 Analysis Tools
	5.5.1 sanitize
	5.5.2 tcpdpriv
	5.5.3 tcpflow
	5.5.4 tcp-reduce
	5.5.5 tcpshow
	5.5.6 tcpslice
	5.5.7 tcptrace
	5.5.8 trafshow
	5.5.9 xplot
	5.5.10 Other Packet Capture Programs

	5.6 Packet Analyzers
	5.6.1 ethereal
	5.6.1.1 Using ethereal
	Figure 5-1. ethereal
	Figure 5-2. ethereal Capture Preferences
	Figure 5-3. ethereal Capture
	Figure 5-4. ethereal Summary
	5.6.1.2 Display filters

	5.7 Dark Side of Packet Capture
	5.7.1 Switch Security
	5.7.2 Protecting Yourself

	5.8 Microsoft Windows
	
	Figure 5-5. netmon for Windows

	Chapter 6. Device Discovery and Mapping
	6.1 Troubleshooting Versus Management
	6.1.1 Characteristics of Management Software
	6.1.2 Discovery and Mapping Tools
	6.1.3 Selecting a Product

	6.2 Device Discovery
	6.2.1 IP Address Management
	6.2.2 nmap
	6.2.3 arpwatch

	6.3 Device Identification
	6.3.1 Stack Fingerprinting
	6.3.2 queso
	6.3.3 nmap Revisited

	6.4 Scripts
	6.4.1 Tcl/Tk and scotty

	6.5 Mapping or Diagramming
	6.5.1 tkined
	Figure 6-1. A network map constructed with tkined
	6.5.1.1 Drawing maps with tkined
	6.5.1.2 Autodiscovery with tkined
	Figure 6-2. Route and network discovery with tkined

	6.6 Politics and Security
	6.7 Microsoft Windows
	6.7.1 Cyberkit
	Figure 6-3. IP scan with cyberkit

	6.7.2 Other Tools for Windows

	Chapter 7. Device Monitoring with SNMP
	7.1 Overview of SNMP
	
	Figure 7-1. SNMP messages
	Figure 7-2. Partial OID structure

	7.2 SNMP-Based Management Tools
	7.2.1 NET SNMP (UCD SNMP)
	7.2.1.1 snmpget
	7.2.1.2 Configuration and options
	7.2.1.3 snmpgetnext, snmpwalk, and snmptable
	7.2.1.4 snmpset
	7.2.1.5 snmptranslate
	7.2.1.6 snmpnetstat
	7.2.1.7 snmpstatus
	7.2.1.8 Agents and traps

	7.2.2 scotty
	7.2.3 tkined
	Figure 7-3. Demo network
	7.2.3.1 ICMP monitoring
	Figure 7-4. IP-Monitor menu
	Figure 7-5. Monitor job parameters
	Figure 7-6. Map with stripcharts
	7.2.3.2 SNMP traps
	Figure 7-7. SNMP-Monitor menu
	Figure 7-8. SNMP monitor report
	7.2.3.3 Examining MIBs
	Figure 7-9. SNMP tree
	Figure 7-10. MIB Browser
	Figure 7-11. Walk for IP
	7.2.3.4 Monitoring SNMP objects
	7.2.3.5 Other commands
	Figure 7-12. SNMP devices
	Figure 7-13. SNMP-Trouble reports
	7.2.3.6 Caveats

	7.3 Non-SNMP Approaches
	7.4 Microsoft Windows
	7.4.1 Windows SNMP Setup
	7.4.2 SNMP Tools
	Figure 7-14. getif Parameters tab
	Figure 7-15. getif MBrowser tab

	7.4.3 Other Options

	Chapter 8. Performance Measurement Tools
	8.1 What, When, and Where
	8.2 Host-Monitoring Tools
	8.3 Point-Monitoring Tools
	8.3.1 ntop
	8.3.1.1 Interactive mode
	8.3.1.2 Web mode
	Figure 8-1. ntop's home page
	Figure 8-2. ntop's All Protocols page
	Figure 8-3. ntop's Traffic page under Stats
	Figure 8-4. Host information
	Figure 8-5. Measuring local and remote traffic

	8.4 Network-Monitoring Tools
	8.4.1 mrtg
	Figure 8-6. mrtg interface report
	8.4.1.1 mrtg configuration file

	8.4.2 rrd and the Future of mrtg
	8.4.3 cricket
	Figure 8-7. cricket router interfaces
	Figure 8-8. Traffic on a single interface

	8.5 RMON
	8.6 Microsoft Windows
	
	Figure 8-9. netmon traffic monitoring
	Figure 8-10. Windows NT perfmon

	8.6.1 ntop, mrtg, and cricket on Windows
	8.6.2 getif revisited
	Figure 8-11. getif graph

	Chapter 9. Testing Connectivity Protocols
	9.1 Packet Injection Tools
	9.1.1 Custom Packets Generators
	9.1.1.1 hping
	9.1.1.2 nemesis
	9.1.1.3 Other tools

	9.1.2 Load Generators
	9.1.2.1 spray
	9.1.2.2 MGEN

	9.2 Network Emulators and Simulators
	9.2.1 NISTNet
	9.2.2 ns and nam
	Figure 9-1. nam example

	9.3 Microsoft Windows

	Chapter 10. Application-Level Tools
	10.1 Application-Protocols Tools
	10.1.1 Email
	10.1.2 HTTP
	10.1.3 FTP and TFTP
	10.1.4 Name Services
	10.1.4.1 nslookup and dig
	10.1.4.2 doc, dnswalk, and lamers
	10.1.4.3 Other tools
	10.1.4.4 NIS and NIS+

	10.1.5 Routing
	10.1.6 NFS

	10.2 Microsoft Windows

	Chapter 11. Miscellaneous Tools
	11.1 Communications Tools
	11.1.1 Automating Documentation
	11.1.2 vnc
	11.1.3 ssh

	11.2 Log Files and Auditing
	11.2.1 syslog
	11.2.1.1 Configuring syslog
	11.2.1.2 Remote logging

	11.2.2 Log File Management
	11.2.3 Other Approaches to Logging
	11.2.3.1 tcpwrappers

	11.3 NTP
	11.4 Security Tools
	11.4.1 tripwire

	11.5 Microsoft Windows

	Chapter 12. Troubleshooting Strategies
	12.1 Generic Troubleshooting
	12.2 Task-Specific Troubleshooting
	12.2.1 Installation Testing
	12.2.1.1 Firewall testing

	12.2.2 Performance Analysis and Monitoring
	12.2.2.1 General steps
	12.2.2.2 Bottleneck analysis
	12.2.2.3 Capacity planning

	Appendix A. Software Sources
	A.1 Installing Software
	A.1.1 Generic Installs
	A.1.2 Solaris Packages
	A.1.3 Red Hat Package Manager
	A.1.4 FreeBSD Ports

	A.2 Generic Sources
	A.3 Licenses
	A.4 Sources for Tools

	Appendix B. Resources and References
	B.1 Sources of Information
	B.2 References by Topic
	B.2.1 System Management
	B.2.2 TCP/IP
	B.2.3 Specific Protocols
	B.2.4 Performance
	B.2.5 Troubleshooting
	B.2.6 Wiring
	B.2.7 Security
	B.2.8 Scripting
	B.2.9 Microsoft Windows

	B.3 References

	Colophon

