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Preface

With more than two billion customers, there is no doubt that 2G GSM and 3G UMTS

cellular technologies are a worldwide success, adopted by most countries and network

operators. The 3G UMTS technology has significantly evolved since the first declination.

The first release of the standard, published in 1999, was mostly oriented towards dedicated

channel allocation, and circuit-switched service support. Later on, the standard evolved to

high-speed packet radio interface for downlink transmission (HSDPA for High Speed

Downlink Packet Access) and uplink transmission HSUPA as a clear orientation towards

IMS (IP Multimedia Subsystem) and IP-based services.

EPS (Evolved Packet System) represents the very latest evolution of the UMTS standard.

EPS is also known by other acronyms related to technical study items being worked on at

3GPP standard committees: LTE (Long Term Evolution), which is dedicated to the

evolution of the radio interface, and SAE (System Architecture Evolution), which focuses

on Core Network architecture evolution.

Although still a 3G-related standard, EPS proposes a significant improvement step, with a

brand new radio interface and an evolved architecture for both the Access and the Core

Network parts. The two major disruptions brought by EPS are:

* Improved performances – characterized by a spectrum efficiency which is twice as

large as HSDPA/HSUPA.

* A packet-only system – resulting in a unified and simplified architecture.

EPS is specified as part of the 3GPP family and, from that perspective, EPS will benefit

from the same ecosystem that made the success of GSM and UMTS technologies. In

addition, it is believed that technical and architectural evolutions brought by EPS prefigure

future 4G networks (also known as IMT-Advanced networks).

This book presents the EPS evolution, as introduced in Release 8 of the 3GPP standard. It

is not a substitute to the 3GPP standard, and advanced readers willing to dig into any specific

domain of EPS are encouraged to consult the 3GPP specification documents which are

referenced, when appropriate, through the different chapters.

The objective here is rather to provide a comprehensive system end-to-end vision of EPS,

from the radio interface to the service level, including network architecture, radio protocols,

as well as subscriber and session management. As EPS was not thought of as a completely

new and standalone technology, the authors have also tried to show the inheritance and

relations with 2G GSM and early 3G UMTS in terms of ground principles and technical

aspects.



The technical content of this book is based on early documents and standards available at

the time of writing. For that reason, the view presented here might be slightly different from

the actual reference standard. This should, however, be constrained to very limited parts or

specific details of this book.
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Introduction

This chapter is an introduction to the evolution of UMTS systems, also known as EPS
(Evolved Packet System). It provides a picture of current wireless and cellular communica-
tions, as an introduction to the requirements and motivations for Evolved 3G systems, which
are the subject of the next chapter.

This chapter presents the following elements:

. A brief history of digital cellular systems, from 2G to the latest 3G evolutions.

. The evolution of the subscriber base.

. The various organizations which are supporting 3G and Evolved 3G system specifications.

. An overview of the spectrum usage.

. A list of Web links and documents directly connected to Evolved UMTS.

1.1 Wireless World Picture

Wireless cellular communication is certainly one of the major evolutions provided to the
telecommunication world, experiencing an exponential growth from the early 1990s.

Wireless communication systems started to emerge in the mid-1980s, first based on
so-called 1G (first-generation) analogue technologies like AMPS (Advanced Mobile Phone
System) in the United States or NMT (Nordic Mobile Telephone) in Northern Europe. Those
systems have evolved to 2G (second-generation) digital radio – providing robustness and
better spectral efficiency – and, ultimately, to 3G, so as to offer global mobility and improved
end-user experience over a wide range of services.

The unprecedented success of wireless communication has multiple business repercus-
sions, by developing the potential for voice traffic and added-value services like Instant text
and Voice Messaging, Multimedia Messaging (MMS), high-value content delivery or
streaming, location-based services, etc.

As of mid-2006, there were:

. 2.3 billion mobile subscribers worldwide.

. 1.8 billion GSM mobile subscribers – GSM represented a 78% market share of cellular
subscribers.

Evolved Packet System (EPS) P. Lescuyer and T. Lucidarme
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Figure 1.1 describes the evolution of the main 2G technologies during the past few years:

. GSM (Global System for Mobile communications), originated from Europe and worldwide
deployed.

. cdmaOne, corresponding the IS-95 North American standard. This technology is mainly
used in Asia-Pacific, North and Latin America.

. TDMA (Time Division Multiple Access), corresponding to the IS-136 North American
standard, mostly used in North America. This system is also called D-AMPS (Digital
Advanced Mobile Phone System), as it is an evolution to AMPS, an analogue 1G cellular
system.

. PDC (Personal Digital Cellular), the 2G standard developed and used exclusively
in Japan.

It can be observed that TDMA and PDC started to decline rapidly as 3G cdma2000 and
UMTS technologies became commercially available. This is true especially in Japan, where
UMTS was commercially offered at the end of 2001 under the commercial name of FOMA
(Freedom of Mobile Multimedia Access), and in North America, where 2G EDGE (Enhanced
Data rates for GSM Evolution) and 3G cdma2000 services were been released at the end of
2000. The same also applies to cdmaOne networks, which progressively migrated towards
early cdma2000 3G technology in 2002.

However, although new services like video-telephony and content streaming have been
proposed as 3G started to be commercial, GSM and cdmaOne have continued to grow
substantially along with first 3G network deployments, thanks to the remaining potential of
voice services.

Figure 1.2 presents the 3G subscriber evolution from 2002 to 2006 for the two main 3G
systems being deployed worldwide: the UMTS (Universal Mobile Telecommunications
System) and the cdma2000. This figure shows that the cdma2000 is ahead of UMTS over
this period of time in terms of subscribers. This can be explained by the fact that cdma2000
was released at the end of 2000 – earlier than UMTS, which only reached commercial
availability in 2003. However, because of the GSM subscriber base prevalence, it can be
expected that UMTS will follow the GSM trend within the next few years.
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Figure 1.1 Evolution of 2G technologies.
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1.2 About Technologies

This section provides an overview of the main 2G and 3G technologies, their evolutions, and
how they relate to each other. At first glance, the picture represented by Figure 1.3 contains
lots of different systems, but most of them actually fall into two main families: the �MAP� and
the �IS-41�. In mid-2006, MAP (Mobile Application Part) systems were adopted by 80% of the
subscriber base, while the IS-41 family captured the remaining 20%.

Most of the networks which were using PDC and TDMA moved towards MAP systems
(Japan PDC was replaced by UMTS in 2001 and most of the TDMA networks have been
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Figure 1.2 3G subscriber evolution.

Figure 1.3 Evolutionary path of 2G and 3G technologies.
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upgraded to 2G EDGE). This is the reason why PDC and TDMA systems are considered
in this picture as being part of the MAP family, although not being MAP technologies
as such.

Both 3G standard family systems are moving towards Evolved 3G technologies. On the
MAP side, Evolved 3G systems are known as EPS (Evolved Packet System), described in this
book. The IS-41 standard family will move towards cdma2000 Revision C, also known as
UMB (Ultra Mobile Broadband).

1.2.1 Heterogeneous 2G Systems

This section provides a very brief description of the main 2G systems� initial characteristics.
Table 1.1 highlights the main differences between the four leading 2G technologies, not
only in terms of radio basic parameters (such as radio modulation, carrier spacing and
radio channel structure), but also at the service level (initial data rate and voice-coding
scheme).

This table helps us to understand why the need for a common wireless technology became
obvious once the 2G systems started to be popular. The definition of a common specification
and product basis for 3G products was the only solution to offer simple global mobility to
wireless customers. Producing multi-standard terminals in large volumes only for covering
public cellular communications would have represented a dramatic waste of resource and
energy.

1.2.2 �MAP� and �IS-41� Systems

To understand what makes the difference between �MAP� and �IS-41� – the two main families
of cellular systems – Figure 1.4 shows a very simplified view of a cellular communication
system that all 2G and 3G systems comply to. The main components are:

. The end-user terminal, generally associated to an integrated circuit card containing
subscriber-related information such as identifiers, security keys, etc.

Table 1.1 Core parameters of the main 2G systems.

GSM cdmaOne TDMA PDC

Initial frequency band 900MHz 800MHz 800MHz 900MHz
Duplex separation 45MHz 45MHz 45MHz 130MHz
Modulation GMSK QPSK/BPSK QPSK QPSK
RF carrier spacing 200 kHz 1.25MHz 30 kHz 25 kHz
Carrier modulation rate 270 kbits/s 1.2288Mchip/s 48.6 kbits/s 42 kbits/s
Traffic channel per carrier 8 61 3 3
Access method TDMA CDMA TDMA TDMA
Initial data rate 9.6 kbits/s 14.4 kbits/s 28.8 kbits/s 4.8 kbits/s
Speech codec algorithm RPE-LTP CELP VSELP VSELP
Speech rate 13 kbits/s 13.3 kbits/s 7.95 kbits/s 6.7 kbit/s

4 Evolved Packet System (EPS)



. The Access Network part, which is responsible for radio-specific related tasks like secure
and reliable transmission over the radio interface, radio resource management, handling of
radio mobility procedures (this includes radio measurement processing as well as the
handover decision process), etc.

. The Core Network part, which is responsible for end-to-end session setup, subscriber data
management (this later includes authentication, authorization and billing), inter-working
with external packet and circuit-switched networks, etc.

As pointed out before, the cellular systems can be distributed into two categories: the �MAP�
one and the �IS-41� one. The difference between the two is not really about radio interfaces. Of
course, radio interfaces are different between the two families, but this happens anyway within
a given system, because of technological evolutions. These evolutions usually provide added
value, such as better protection over radio transmission errors, increased bit rate, better radio
resource usage efficiency, etc. These improvements often require the terminal manufacturers
to design multi-mode terminals able to cope with new modulations or new data-coding
schemes.

The major differences between those two families actually reside in the two following
points:

. The handling and management of user identities and subscription data – this refers to
the way customers are identified, and how these identities are stored in both network and
user terminals.

. The network procedures – GSM and other technologies derived from GSM rely on the
MAP (Mobile Application Part) protocol, whereas cdmaOne and cdma2000 rely on a
completely different IS-41 North American standard. MAP and IS-41 are end-to-end
protocols used between the terminal and the Core Network, and also between Core Network
entities, for the purpose of user registration and authentication, call or data session setup,
mobility management, and management of user subscription data.

In the past, systems from the two families used to be quite different and incompatible.
However, as in recent evolutions of the standards, lots of effort has been made to reduce the
gap and define synergies between MAP and IS-41 systems, for the benefit of R&D effort and
product simplification. This can be observed at many levels when looking into latest detailed

Figure 1.4 A simplified view of cellular communication systems.
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GSM/UMTS and cdma2000 specifications. For illustration purposes, the two following major
points are highlighted:

. User modules put in the terminal such as USIM (Universal Subscriber Identity Module) for
UMTS or R-UIM (Removable User Identification Module) for cdma2000 have lots of
similarities in terms of data organization and management process.

. The all-IP architecture evolution introduced in both UMTS and cdma2000 under different
names – IMS (IP Multimedia Subsystem) for UMTS and MMD (MultiMedia Domain) for
cdma2000 – are very close to each other in terms of architecture and underlining concepts.
Besides, both IMS and MMD make use of SIP (Session Initiation Protocol) to set up
communication sessions.

In the following sections, more details are provided about the main steps of the MAP and
IS-41 evolutionary paths.

1.2.3 The MAP Technologies

This section briefly describes the technologies part of the MAP family. Figure 1.5 compares
the typical user data throughput for each of them.

(i) GSM
The well known GSM (Global System for Mobile communications) entered into commercial
service in 1991. This technology uses a TDMA/FDMA (Time Division Multiple Access/
Frequency Division Multiple Access) radio multiplexing scheme and GMSK (Gaussian
Minimum Shift Keying) radio modulation. In its early days, GSM was only providing a voice
service, SMS (Short Message Service) and low-rate circuit-switched data at 9.6 Kb/s.

(ii) GPRS
GPRS (General Packet Radio Service) is an evolution of GSM, designed for packet data
communication. Based on the same GMSK modulation, GPRS provides, however, better user

Figure 1.5 Typical downlink user data throughput of MAP systems.
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rate by providing the least robust but fastest coding scheme (theoretical maximum bit rate is
around 20Kb/s per radio time slot) and the possibility to aggregate several radio slots for data
transmission.

This system was intended to be more suitable and efficient for packet data applications, as it
relies on sharing a set of radio channels among several terminals, for both uplink and downlink
transmission.

(iii) EDGE
EDGE (Enhanced Data rates for GSM Evolution) introduces the 8-PSK (8 Phase Shift
Keying) modulation, providing increased data rate. Using the fastest coding scheme, EDGE
provides a maximum theoretical bit rate of around 50Kb/s per radio time slot.

When combined with GPRS, it is possible to aggregate several EDGE-coded radio slots to
increase the peak data rate for packet applications.

(iv) UMTS
UMTS (Universal Mobile Telecommunications System) is based on a standard developed by
the 3GPP (3rd Generation Partnership Project), commercially launched in 2001 in Japan –
under the name of FOMA (Freedom of Mobile Multimedia Access) – and 2003 in other
countries. UMTS supports two variants: a FDD mode, being the most deployed, and a TDD
mode, mainly supported for the Chinese market.

UMTS relies on the CDMA (Code Division Multiple Access) multiplexing scheme using a
high chip rate direct spread sequence. In its first form, UMTS/FDD advantages were limited to
increased data rates (up to 384Kb/s per user on a single channel), the possibility of
simultaneous packet and circuit applications, and improved roaming capabilities.

A theoretical maximum bit rate of 2Mb/s over dedicated channels has been defined within
the specification, but has never been deployed as such in commercial networks.

UMTS is often presented as the 3G evolution of GSM networks. Although the UMTS radio
interface is completely different from the GSM/EDGE one, a lot of architectural concepts and
procedures have been inherited fromGSM. From a practical perspective, this can be expressed
as follows:

. UMTS SIM cards are backward-compatible with GSM, meaning that a UMTS SIM can be
inserted in a GSM phone, so that the SIM owner can benefit from services available under
the GSM coverage.

. The MAP protocol of UMTS networks is an evolution of the GSM MAP as well as the
packet and circuit session protocol being used between the terminal and the network.
Although new elements and procedures have been defined in 3G, they rely on the same basis
of concepts and principles.

. Specific network and user terminal procedures have beendefinedwithin the standard to ensure
seamless mobility between GSM and UMTS, for both packet and circuit applications.

(v) HSDPA
HSDPA (High Speed Downlink Packet Access) is a UMTS enhancement, commercially
available at the end of 2005.

The aim of HSDPA is to increase user throughput for packet downlink transmission (from
network to mobile). For this purpose, new modulation has been introduced – 16 QAM
(Quadrature Amplitude Modulation) – allowing a theoretical peak rate of 14.4Mb/s (using the
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lowest channel protection algorithm). At first, 1.8 or even 3.6Mb/s was expected as a realistic
user experience.

From a radio interface perspective, HSDPA is based on a shared radio scheme and real
time (every 2ms) evaluation and allocation of radio resources, allowing the system to quickly
react to data bursts. In addition, HSDPA implements a HARQ (Hybrid Automatic Repeat
Request) which is a fast packet retransmission scheme located in the Base Station as close as
possible to the radio interface. This allows fast adaptation to a change in radio transmission
characteristics.

(vi) HSUPA
HSUPA (High Speed Uplink Packet Access) is the equivalent of HSDPA for uplink (from
terminal to network) packet transmission.

HSUPA actually implements the same sort of techniques already used by HSDPA, such as a
HARQ packet retransmission scheme providing low latency packet repetition between the
terminal and the base station, and a reduced transmission time interval of 2ms. However,
unlike HSDPA, HSUPA is not based on a complete shared channel transmission scheme. Each
of the HSUPA channels is actually a dedicated channel with its own physical resources. The
actual resource sharing is provided by the Base Station, which allocates transmission power
for uplink HSUPA transmission based on resource requests sent by terminals.

In theory, HSUPA can provide up to 5.7Mb/s, using the top-level mobile category and
larger transmission resources than can be allocated to a single terminal.

HSUPA may be combined with HSDPA – the association of the two is often referred to as
HSPA (High Speed Packet Access) – so that data sessions can benefit from an increased data
rate for both uplink and downlink.

As described in the following chapters, it is interesting to note that Evolved 3Gmakes use of
techniques similar to HSDPA and HSUPA for transmission over the radio interface. The main
difference is that those techniques are integrated from the early beginning of the definition of
the Evolved 3G new interface and are applicable to all data-transmission flows. From a
historical perspective, HSDPA and HSUPA have been added on top of a UMTS radio access
initially designed for high bit rate, dedicated and circuit-oriented transmission.

(vii) HSPA+
High Speed Packet Access Plus, also known as �HSPA Evolution�, is an enhancement of
HSDPA and HSUPA technologies, and intends to provide a fully 3G backward-compatible
evolution step, until Evolved UMTS systems are available. HSPA+ is intended to be
commercially available in 2008.

It is expected that HSPA+ will be as efficient as Evolved UMTS within the typical 5-MHz
WCDMA channel bandwidth, thanks to a number of technical evolutions, including the use of
MIMO (Multiple Input Multiple Output) and higher-order modulations (like 64QAM in
downlink and 16QAM in uplink) for radio transmission and reception. Architectural
evolutions are also envisaged to reduce data-transmission latency.

HSPA+ has to be considered as an optional and intermediate step between current HSPA
and Evolved UMTS networks, intended to provide increased performance in a 3G backward-
compatible way. This offers operators an opportunity to smoothly upgrade their networks and
benefit from HSDPA enhancement until Evolved UMTS networks actually become commer-
cially available.

8 Evolved Packet System (EPS)



1.2.4 The IS-41 Technologies

The IS-41 technology family contains lots of evolutions. For clarity, Figure 1.6 describes the
various versions of cdma2000 standard, in relation to the names used in public and press
communications.

As opposed to the MAP standard family, North American CDMA technology has been
thought of in terms of a backward-compatible evolutionary path, starting from 2G IS-95 to 3G
cdma2000.

The 3G cdma2000 main branch leads to 1xEV-DV (Evolution Data and Voice), which is
probably never going to be available commercially on a large scale. The other 1xEV-DO
branch (Evolution Data Optimized) is already in service and provides an enhanced user rate.
This will eventually lead to the Revision C, which is the cdma2000 equivalent of Evolved
UMTS.

The rest of this section briefly describes the technologies part of the IS-41 family. Figure 1.7
compares the typical user data throughput for each of them.
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Figure 1.6 IS-41 standard family publication dates.
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(i) cdmaOne (IS-95A)
cdmaOne is the brand name of the first CDMA cellular system, deployed in September 1995,
initially based on IS-95A North American standards. This system provides voice services as
well as circuit-switched data up to 14.4 Kb/s.

This system was mostly deployed in North and Latin America, as well as other countries,
such as South Korea and Australia. This system provided a similar grade of service as the
GSM technology which was delivered at that time in other parts of the world.

(ii) cdmaOne (IS-95B)
IS-95B is a standard evolution of IS-95A systems, first deployed in September 1999, offering
simultaneous voice and packet data services up to 115Kb/s (maximum theoretical bit rate).

(iii) cdma2000 1X
cdma2000 1X – commercially deployed in October 2000 – is the first 3G system derived from
the IS-95 technology. The cdma2000 standard has been developed by 3GPP2 (3rd Generation
Partnership Project 2) and is part of approved radio interfaces for IMT-2000. (Please refer to
the section on standard organizations for further details.)

As opposed to the GSM/UMTS transition, the cdma2000 radio interface has been specified
as an evolution of the already existing CDMA-based 2G IS-95 standards. This can be seen in
many parts of the radio interface definition, such as the structure of the common radio channel
or the carrier spacing (the cdma2000 1.25-MHz carrier spacing is inherited from the IS-95
standard). This provides the reason why cdma2000 systems have been commercially available
around 3 years before 3G UMTS systems.

The �1X� name comes from the fact that this system relies on a single 1.25-MHz carrier, as
opposed to multi-carrier transmission schemes making use of three 1.25-MHz carriers. The
3XMC (or Multi-Carrier) scheme was only referred to as an IMT-2000 candidate technology,
but has never been deployed in this form.

Figure 1.7 Typical downlink user data throughput of IS-41 systems.
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Initially, cdma2000 1X was able to provide voice services as well as up to 307Kb/s
downlink packet data and 153Kb/s on the uplink on a single 1.25-MHz carrier.

More details about the physical layer of this system can be found in document C.S0002,
�Physical Layer Standard for cdma2000 Spread Spectrum Systems�, published by the 3GPP2
consortium.

From that initial cdma2000 1X version, two branches have emerged. The first one is based
on the evolution of the 1X specifications, leading to the 1xEV-DV (Evolution Data and Voice)
and providing a high bit rate as well as simultaneous voice and data services in a fully
backward-compatible way with 1X systems. The second branch, known as 1xEV-DO (for
�Evolution Data Only�, which was eventually renamed �Data Optimized�), provides improved
data transmission as an overlay technology.

Eventually, EV-DV development was stopped, due to the lack of interest from operators and
manufacturers.

(iv) cdma2000 1xEV-DO Revision 0
The 1xEV-DO (Evolution Data Optimized) has been in commercial service since the end of
2002.

This evolution allows the operator to provide simultaneous voice and high-speed packet
data at the cost of an additional 1.25-MHz carrier. For that reason, a 1xEV-DO requires
terminals to support multi-mode radio interface, in order to be fully backward-compatible
with 1X and IS-95 technologies.

EV-DO Revision 0 introduces new 8-PSK and 16-QAMmodulations, and is able to provide
theoretical peak data speeds of 2.4Mb/s on the downlink and 153Kb/s on the uplink.

More information about Revision 0 additions can be found in document C.S0024-0,
�cdma2000 High Rate Packet Data Air Interface Specification�, published by the 3GPP2
consortium.

(v) cdma2000 1xEV-DO Revision A
Commercially available in 2H2006, the Revision A objective was to improve the lack of real
Quality of Service for packet data transmission and limited uplink capabilities of Revision 0.

As a result, Revision A systems are able to deliver theoretical peak data speeds of 3.1Mb/s
on the downlink and 1.8Mb/s on the uplink. Moreover, packet prioritization schemes and
more robust algorithms for uplink transmission have also been introduced.

More information about Revision A additions can be found in document C.S0024-A,
�cdma2000 High Rate Packet Data Air Interface Specification�, published by the 3GPP2
consortium.

(vi) cdma2000 1xEV-DO Revision B
Revision B standard evolution was published in the first half of 2006 for planned commercial
availability in 2008. Its main objective is to improve multimedia experience and packet-based
delay-sensitive application performance in general.

This evolution introduces a new 64-QAM modulation scheme as well as a multi-carrier
transmission scheme. Thanks to these new radio capabilities, Revision B systems will be able
to deliver theoretical peak rates of 73.5Mb/s in the forward link (from network to terminal)
and 27Mb/s in the reverse link (from terminal to network) through the aggregation of 15
1.25-MHz carriers within 20MHz of bandwidth.
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(vii) cdma2000 1xEV-DO Revision C
Revision C, currently under development, is the equivalent of the 3GPP Evolved UMTS. This
new step in the EV-DO standard family is also known as UMB (Ultra Mobile Broadband).

It is planned that this evolution will support flexible and dynamic channel bandwidth
scalability from 1.25MHz up to 20MHz and will be backward-compatible with Revisions A
and B.

As for Evolved UMTS, Revision C is oriented towards �all over IP� service support over a
high-speed packet radio interface.

More information about Revision A additions can be found in document C.S0084-000,
�Overview for Ultra Mobile Broadband (UMB) Air Interface Specification�, published by the
3GPP2 consortium.

1.3 Standards and Organizations

The development and introduction of worldwide technology cannot be achieved without
global standard organizations.

This section describes the structure of the main standard organizations and support bodies
involved in future system definition, in an attempt to shed some light on the jungle of
acronyms, terms and initiatives emerging around 3G and its evolution.

1.3.1 The Role of ITU

The ITU (International Telecommunication Union), as a worldwide telecommunication
standard body, played a key role in 3G definition.

(i) ITU and the IMT-2000 Framework
The IMT-2000 framework (International Mobile Telecommunications 2000) was initially
launched by the ITU (International Telecommunication Union), in order to define 3G system
and evolution for heterogeneous 2G technologies (Figure 1.8). This was felt the best way to
define a common basis for performance, global access and seamless mobility requirements.

The IMT-2000 framework not only aims at defining international standards for 3G, but also
cares about frequency spectrum issues, technical specifications for radio and network
components, as well as regulatory aspects.

As a result of the call for the submission of candidate IMT-2000 radio interfaces, up to 16
candidates as Radio Access Technologies (RAT) have been proposed by various Regional
Standard Organizations. The proposals were related to the terrestrial radio interface, as well as
satellite systems. In 1999, a decision was eventually made by IMT-2000 to only accept five of
them, as described in document M.1457, �Detailed Specifications of the Radio Interfaces of
International Mobile Telecommunications – 2000�, published by the IUT:

. CDMA DS (Direct Spread): this corresponds to the FDD mode of UMTS.

. CDMA MC (Multi Carrier): this corresponds to the cdma2000 system family.

. CDMATDD: this corresponds to the TDD mode of UMTS. As in UMTS/TDD specifica-
tions, the two variants are represented: the low chip rate mode (1.6-MHz bandwidth) and the
high chip rate mode (5-MHz bandwidth).
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. TDMA SC (Single Carrier): this access technology is based on 2G GSM/EDGE interface
evolution.

. FDMA/TDMA: this corresponds to a high bit rate and packet data evolution of 2G DECT
standard (Digital European Cordless Telephone).

Although ITU documents describe five technologies for use in the IMT-2000 terrestrial
radio interface, only the CDMA-based first three systems have gained momentum within the
industry.

The definition of those three radio systems was eventually handled by two 3G cross-country
standardization bodies further described in this chapter: the 3GPP and the 3GPP2.

(ii) The IMT-Advanced Evolution
IMT-Advanced is a concept from the ITU for mobile communication systems with capabili-
ties which go further than that of IMT-2000. IMT-Advanced was previously known as
�systems beyond IMT-2000�. The initial objective of ITU is to enable the commercial
availability of IMT-Advanced compliant systems as early as 2011.

1.3.2 3G Cross-Country Standardization Bodies

The concept of �cross-country organization� emerged in 1998, resulting from IMT-2000
activities. This was felt as the best way to ensure worldwide 3G adoption and success.

IMT-2000 

ETSI

CDMA DS CDMA TDD CDMA MC TDMA SC FDMA/TDMA 

3GPP 3GPP2

UMTS/FDD UMTS/TDD cdma2000 … … 

ARIB

CCSA 
ATIS TTA

TTC 

TIA 

Figure 1.8 3G technologies and standard bodies.
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As a result of IMT-2000’s call for candidate 3G radio access technologies, two parallel
consortiums were created in early 1999: the 3GPP (3rd Generation Partnership Project) and
the 3GPP2 (3rd Generation Partnership Project 2), both aiming at producing technical
specifications for third-generation mobile systems.

The decision process within these two organizations is driven by the consensus (or by votes
in exceptional cases in which consensus is not reached), and a lot of care is given to
maintaining as much as possible the balance between regions in the process of attribution of
chairman seats of the various technical working groups.

The main difference between the two is that 3GPP is promoting UMTS (Universal Mobile
Telecommunications System) – the 3G evolution from the GSM/MAP system family –
whereas 3GPP2 is focusing on IS-41 technology evolution.

3GPP and 3GPP2 consortiums involve lots of different organizations like terminal and
network manufacturers, the main network operators, all of them representing the various
regional standard bodies listed in Table 1.2. The role of the regional organizations listed in this
table is to promote locally unified standards and may include product testing and certification.
Their scope of activity is not limited to cellular communication and may also include satellite
communication, broadcasting systems, private mobile radio systems, etc.

The regional organizations involved in 3GPP are ARIB, ATIS, CCSA, ETSI, TTA and TTC.
The regional organizations involved in 3GPP2 are ARIB, CCSA, TIA, TTA and TTC.

1.3.3 The Structure of 3GPP

As the focus of this book is Evolved UMTS, more details are provided about the 3GPP
structure and associated working groups (Figure 1.9).

The technical part of the 3GPP consortium is composed of four groups or TSG (Technical
Specification Groups):

. SA (Services and system Aspects), which is responsible for the overall architecture and
service definition.

. RAN (Radio Access Networks), which is responsible for the features, interfaces and
protocols of the Access Network.

. CT (Core Network and Terminals), which is responsible for Core Network specific
protocols and end-to-end protocols for call control and session management.

. GERAN (GSM EDGE Radio Access Network), which is responsible for the evolution of
the GSM/EDGE-based Radio Access Network. As described in previous sections, UMTS

Table 1.2 List of regional organizations involved in 3GPP and 3GPP2.

ARIB Association of Radio Industries and Businesses Japan
ATIS Alliance for Telecommunications Industry Solution North America
CCSA China Communications Standards Association China
ETSI European Telecommunication Standard Institute Europe
TIA Telecommunications Industry Association North America
TTA Telecommunications Technology Association Korea
TTC Telecommunications Technology Committee Japan
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inheritance from GSM technology is quite significant from a Core Network and Service
perspective. This is the reason why this TSG, initially part of the ETSI, was eventually
moved to the 3GPP organization in late 2000.

Each of these groups is composed of different working groups (or WG), each of them
having responsibility for an area of work requiring a specific level of expertise.

The SA TSG (Services and system Aspects) is composed of the following groups:

. SA1 is in charge of high-level service and feature requirements. SA1 produces specific
documents (called Stage 1 specifications) focused on system and service capabilities and
used as a baseline by other groups.

. SA2 has the responsibility of defining network architecture and the features to be supported
by the network entities, based on the stage 1 documents provided by SA1. SA2 produces
Stage 2 specifications, which are used as inputs by groups in charge of detailed interface
specifications.

. SA3 is the security group of 3GPP. Its role is to set up security requirements for the overall
system, and produce specifications for security algorithms to be applied in the network.

. SA4works on the specification of speech, audio, video and multimedia codecs applicable to
circuit and packet-based applications.

. SA5 is focused on network management. SA5 has the responsibility of specifying the
architecture, procedures and interface-related issues of network management, including
charging, configuration and performance management, inventory, etc.
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Figure 1.9 The structure of 3GPP.
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The RAN TSG (Radio Access Networks) is composed of the following groups:

. RAN1 is responsible for the definition of the physical (Layer 1) interface of the UTRAN
Access Network. This includes the specification of the radio modulation, channel coding,
physical layer measurements, etc.

. RAN2works on the radio interface protocols used on top of the physical layer. This includes
Layer 2 protocols for data transmission as well as the signalling procedures related to radio
interface such as radio resource allocation, handover management, etc.

. RAN3 is in charge of overall UTRAN architecture. This includes the definition of interfaces
between entities of the Access Network, as well as the specification of the UTRAN
transport network.

. RAN4 is responsible for the RF conformance aspects of UTRAN and produces test
specifications for radio network and terminal equipment regarding RF transmission and
reception performance.

. RAN5 works on radio interface conformance test specifications. RAN5 produces test
specifications, based on RAN4 documents, and signalling procedures defined by other
groups such as RAN2.

The CT TSG (Core Network and Terminals) is composed of the following groups:

. CT1 has the responsibility of specifying Layer 3 protocols, being used between the Core
Network and terminals to set up communication sessions for circuit, packet and IMS-based
applications.

. CT3 is in charge of the inter-working between 3GPP networks and external packet or circuit
networks. This includes signalling or protocol inter-working, as well as possible user plane
data adaptation.

. CT4 is in charge of supplementary service definitions (such as SMS or Call Transfer) as
well as the specification of interfaces and protocols between Core Network elements such as
the MAP.

. CT5works on UMTS OSA (Open Service Access) and produces Application Programming
Interfaces to facilitate UMTS service definition and creation.

. CT6 is in charge of the definition of the format of the Subscriber Identity Module (SIM).
This includes the specification of SIM card data content, format and organization, as well as
interfaces between the SIM card and external entities.

The GERAN TSG (GSM EDGE Radio Access Network) is composed of the following
groups:

. GERAN1 (the RAN1 equivalent) is responsible for the definition of the physical interface
of the GSM/EDGE Access Network.

. GERAN2 (the RAN2 equivalent) works on the radio interface protocols defined on top of
the physical layer.

. GERAN3 is in charge of conformance test specification for the GERAN access network.

In the scope of �Evolved UMTS�, the structure of 3GPP will not change. All existing TSG
and most of their Working Groups will extend their scope in order to cover Evolved UMTS
requirements and specifications.
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1.3.4 The NGN Evolution

NGN (Next Generation Networks) is a new broad term which refers to emerging network
architectures. Briefly, NGN is a concept of converged architecture which natively supports a
wide range of services, such as:

. Conversational services (person-to-person communications or voice call).

. Messaging (email, short or multimedia message exchange).

. Content-on-demand (streaming, video on demand, broadcast, multicast).

Beyond this very general and high-level statement, there are actually twomain ideas behind
NGN. All information is transmitted via packets with a strong support of Quality of Service
mechanisms ensuring that the end-to-end service-level agreement is reached. This mandates
that the packet transport network is aware of the Quality of Service requirements and supports
all the needed features to control and enforce them.

The second principle relates to the decoupling of service and transport layers, allowing
them to be offered separately and to evolve independently. This clear separation between
services and transport should allow the provision of new services independently from the
access technology and transport type.

NGN standardization is actively going on in parallel within two major standardization
bodies:

. The Global Standard Initiative (GSI) within the ITU-T.

. The TISPAN technical body (Telecommunication and Internet converged Services and
Protocols for Advanced Networking) within the ETSI.

Through a large number of working groups, the two standardization bodies study and define
technical aspects of NGN, such as the general architecture, Quality of Service support,
network management, signalling protocols, migration from existing network architectures
towards NGN, etc.

Initially, NGN has a focus on fixed access such as ADSL. However, wireless access will
also be considered in a second step as normal evolution.

It is interesting to note that Evolved UMTS is actually moving in the same direction as
NGN. As described in Chapter 2, Core Network simplification introduced by the Evolved
UMTS Packet Core is completely in line with NGN objectives. In some respects, IMS already
answers parts of the NGN requirements in providing a common framework for the support of a
large set of services, from interactive data services to Quality of Service-constrained voice or
streaming applications.

For illustration purposes, Figure 1.10 presents the TISPAN NGN overall architecture, as
described in specification 282 001, �NGN Functional Architecture Release 1�, from the ETSI.
The picture shows a clear separation of the transport and service parts of the network,
represented by the dotted horizontal line.

The main purpose of the Transport Layer is to provide IP connectivity to the end-user under
the control of Network Attachment and Admission Control subsystems. In principle, these
two subsystems are independent from the transport technology used below the IP network
layer, so this model is suitable for any type of fixed or wireless access.
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The Service part is represented as an integrated layer supporting applications, user profile
management and IMS (IP Multimedia Subsystem) elements. The �Core IMS� of the NGN is
actually a subset of the full 3GPP IMS architecture and re-uses the same principles in terms of
SIP-based session signalling and call servers as well as multimedia resource and gateway
functions. In addition, the Service Layer also provides access to other networks such as the
legacy PSTN (Public Switched Telephony Network).

In addition to basic communication session support, TISPAN NGN has also specified
a complete framework for supplementary services, similar to those proposed for
circuit-switched speech, and supported by a wireline and wireless legacy circuit infrastruc-
ture. This point is further described in Chapter 6.

In order to avoid the development of diverging IMS architectures and services, it was agreed
in June 2007 to migrate all TISPAN activity within 3GPP under a new framework known as
�Common IMS�. �Common IMS� is therefore an extension of 3GPP IMS activity handled by
the SA (System Architecture) group, enabling IMS services not only for wireless networks
(legacy mobile cellular and WLAN networks) but also for packet cable and fixed networks.
Common IMS is part of Release 8 of the 3GPP standard.

1.3.5 The NGMN Initiative

NGMN (Next Generation Mobile Networks) is an initiative led by a group of mobile
operators, including NTT DoCoMo, Vodafone, Orange, T-Mobile, China Mobile, Sprint
and KPN. The objective of NGMN is to provide a vision for 3G technology evolution
for commercial availability planned in 2010. NGMN expects the standardization phase of
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Figure 1.10 TISPAN NGN overall architecture (source: ETSI ES 282 001).
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the next generation to be completed by the end of 2008, so that the trial phase can start in
2009. NGMN is not a competitor to ITU or any other cross-country standardization body. It
rather intends to complete and support the work handled by the standardization committees
and to make sure that future systems will meet the needs of mobile operators and their
customers.

Not surprisingly, the target NGMN performance requirements in terms of data rate, latency
and spectrum efficiency are aligned with Evolved UMTS (as described in Chapter 2). The
same goes for the overall architecture concepts supported by NGMN, which is based on a
Packet Switched Core Network together with an evolved high-speed radio interface.

On the service side, NGMN initiative and Evolved UMTS also share the same interest on
three key subjects:

. Efficient Always-On support: as most of the new services (such as �Presence� or �Push-To-
Talk�) require the end-user to be �always connected�.

. Seamless mobility between systems: this applies not only to voice calls, but also to all
other services. In principle, no interruption or drop in performance should be experienced
by end-users when changing systems.

. Efficient Support of Broadcast and Multicast: this requirement is a consequence of the
growing interest of operators and customers in mobile broadcasting technologies such as
DVB-H.

The NGMN initiative is technology-independent, as it actually considers all 3G system
migration including UMTS as well as the cdma2000 1xEV-DO family.

Figure 1.11 describes the high-level architecture envisaged by NGMN. It is planned that
future systems will support all kinds of services and ultimately integrate all the circuit and
packet-switched services through one unique Packet Core network domain. As we will see in
Chapter 2, the convergence of all services on a common packet-based network architecture is
also a key concept of Evolved UMTS.

For more information about the NGMN initiative, please consult http://www.ngmn-
cooperation.com/.
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Figure 1.11 High-level NGMN system architecture.
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1.4 Spectrum

The radio spectrum is the most critical resource in radio communication systems, making
frequency regulation and allocation a complex issue:

. A scarce resource: because of physics laws, the amount of spectrum that can actually
be used for mobile (possibly high-speed) and high bit rate applications is quite limited.
The lower part of the spectrum (starting at 400MHz) is already overcrowded with
digital, analogue, public and military applications. The upper part of the spectrum, above
2GHz, offers more possibility for extensions and high bit rate-demanding applications,
at the cost of a shorter cell range because the propagation loss increases with the frequency.

. Lack of harmonization: because of the history of and disparities in regulation rules,
spectrum allocation is not consistent between countries. This complicates worldwide
system spectrum definition.

Coming back to cellular system history, GSM (the most popular 2G technology) was
initially built to work on a single 900-MHz frequency band. The way it was introduced in the
core specifications of GSM left quite limited possibilities for extension to other frequency
bands. However, as GSM became largely accepted, the need for additional frequencies
appeared as a requirement to support the increasing number of customers and operators. GSM
was therefore modified to be able to support other frequencies on the request of specific
countries, first in the 1800 and 1900-MHz bands, and then in the 450, 480 and 850-MHz
bands.

When 3G and IMT-2000 emerged, a lot of attention was paid to the issue of spectrum
allocation. One of the key IMT-2000 objectives was to allow global mobility, seamless service
access and increased user experience. This was felt as difficult to achieve without a minimum
level of spectrum harmonization. For that reason, the decision was made at the WARC-92
(World Administrative Radio Conference of 1992) to identify 230MHz of spectrum on a
worldwide basis for the operation of IMT-2000 networks. This amount of spectrumwas shared
in two bands:

. 1885–2025MHz.

. 2110–2200MHz.

In a second step, and because theWARC-92 spectrum studies were based on the assumption
of low bit rate services, the need for additional frequency was raised during the WRC-2000
(World Radiocommunication Conference of 2000). In order for the IMT-2000 to be able to
cope with upcoming multimedia services, three additional new bands have been defined,
adding close to 500MHz of spectrum to the initial WARC-92 allocation:

. 806–960MHz.

. 1710–1885MHz.

. 2500–2690MHz.

The IMT-2000 does not specify the way the spectrum is used. This point is left for decision
to the local regulator. In Europe, this activity is under the European Radiocommunications
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Committee (ERC)�s responsibility, within the CEPT (European Conference of Postal and
Telecommunications Administrations).

Figure 1.12 represents an overview of the spectrum allocated to IMT-2000 in comparison
with existing communication systems currently using those frequencies in Europe.

Regarding 3G frequencies, the spectrum is shared between the three following
technologies:

. UMTS/FDD (Frequency Division Duplex), which mandates paired spectrum allocation:
one band for uplink (UL) transmission (from terminal to network) and one band for
downlink (DL) transmission (from network to terminal).

. UMTS/TDD (Time Division Duplex), which is designed for unpaired spectrums. Uplink
and downlink transmissions are therefore using the same frequencies at different times.

. MSS (Mobile Satellite Services), which is the satellite component of IMT-2000.

In any case, and as opposed to GSM, one improvement point is that UMTS specifications
are flexible enough to accommodate a large range of frequencies (theoretically from 0 to
3276.6MHz).

Figure 1.12 also represents 2G technologies overlapping the IMT-2000 spectrum. As 2G
technologies will start to decline, spectrum can therefore easily be re-allocated to IMT-2000
systems. The major 2G systems subject to spectrum re-use are:

. The GSM technology, in the 900 and 1800-MHz bands (Figure 1.12 includes the Primary as
well as the Extended GSM 900 band), working in FDDmode and requiring paired spectrum.

. The DECT system (Digital European Cordless Telephone), working in TDD unpaired
spectrum.

At this point in time, the spectrum for systems beyond IMT-2000 is not yet identified. This
will be a subject for the WRC-07 conference, being held at the end of 2007.

1.5 The Evolution of UMTS

The need for 3G long-term evolution studies was stated at the end of 2004 within the 3GPP, in
order to maintain the competitive position of UMTS-based technologies for the future. It was
therefore decided to launch feasibility on overall system architecture and access network
evolution, with an objective to finalize core specifications by mid-2007.

1.5.1 1st Evolution Driver: The Move towards Data Applications

As described above, initial 2G systems were built for circuit-switched applications – voice
being the main one, and low-rate circuit-switched data being supported as well. As the World
WideWeb became a reality, 2G systems evolved towards packet data. This was not a complete
system redesign, as packet data network architecture was defined as an add-on to existing
networks – meaning increased costs for deployment and operation.

Within Evolved UMTS networks, all communication streams will be considered as packet
data, allowing converged and simplified network architectures.
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1.5.2 2nd Evolution Driver: Enhanced Radio Interface Capabilities

Over the past few years, fixed Internet access capabilities have been improving, from the
56-Kb/s V90 modem-based access to 10-Mb/s ADSL and 100-Mb/s fiber access, enabling
new services and much better user experience. As a consequence, it is not surprising that
wireless communication systems are also moving towards increased capabilities and perfor-
mances, so that the Quality of Service for existing and new services is kept acceptable when
used over the radio interface.

1.5.3 What Will Change Within the Network?

The evolution of UMTS consists of two parts (Figure 1.13):

. The Core Network evolution – as a consequence of the global move towards packet data
applications. The Evolved Packet Core network (or EPC) aims to provide a converged
framework for packet-based real-time and nonreal-time services.

. The Access Network – existing UMTS access network, also named as UTRAN (Universal
Terrestrial Radio Access Network) is evolving towards E-UTRAN (for Evolved-UTRAN)
so as to offer high-data-rate, low-latency and packet-optimized radio access technology.
This implies a new radio interface, new protocols and also new access network architecture,
as further described in this book.

Some vocabulary

The E-UTRAN Access Network (for Evolved UTRAN) is often referred to as LTE (for
Long Term Evolution) in 3GPP reports and specifications, which was the initial name given
to the 3G/UTRAN evolution study item.

Similarly, on the Core Network side, the evolution towards Evolved Packet Core, or EPC,
is referred to as SAE (for System Architecture Evolution).

The Evolved UMTS, which is basically the concatenation of the E-UTRAN access network
and EPC Core Network, is referred to as EPS (Evolved Packet System) in 3GPP standard
documents.

Figure 1.13 Towards �Evolved UMTS� networks.
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1.5.4 What is Described in this Book?

The technical details of UMTS evolution are further described, through the following
chapters:

. Chapter 2 provides an overview of �Evolved UMTS�. The major blocks and concepts are
described, as an introduction to the in-depth view presented in the following chapters.

. Chapter 3 is dedicated to the physical radio layer, as being a disruption with existing 2G
(TD/FDMA) or 3G (CDMA) systems.

. Chapter 4 is dedicated to the network architecture. Major blocks are presented – Access
and Core – as well as the main protocol layers and Transport Network.

. Chapter 5 aims at presenting the steps and procedures being implemented throughout the
life of the terminal (from power-on to mobility in ACTIVE mode).

. Chapter 6 describes the main services built on top of �Evolved UMTS�, focusing on how the
service is implemented over the architecture.

All through this book, lots of references are provided to standards and specifications, so that
the reader willing to dig into a specific area can refer to the right document.

1.6 Links and Documents

1.6.1 Useful Web Sites

Here is a list of Web sites which may be consulted for further information:

. http://www.3gpp.org/ This is the homepage of the 3GPP consortium. Lots of information
can be found here, from details on technical working groups to technical specifications.
Access to technical documents is free of charge.

. http://www.3gpp2.org/ This is the homepage of the 3GPP2 consortium. Access to 3GPP2
specifications is free of charge.

. http://www.rfc-editor.org/ The RFC Editor is the publisher of the IETF RFC documents
and is responsible for the final editorial review. All the IETF RFC mentioned in this book
can be found here, free of charge.

. http://www.openmobilealliance.org/ This link points to the home page of the OMA (Open
Mobile Alliance). Specifications of services presented in Chapter 6 of this book can be
accessed from this link, free of charge.

. http://www.itu.int/home/imt.html This address points to the IMT-2000 page hosted by the
ITU. General information about IMT-2000 can be found here. In most cases, access to ITU
documents is subject to charging.

1.6.2 Evolved UMTS Specifications

(i) The 3GPP Standard Releases
As for many standard committees, 3GPP work is organized into releases. This allows the
different groups to work on future evolutions and still allow corrections and bug tracking on
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previous stable versions. Each manufacturer (either on the network or on the terminal side) has
the flexibility to implement any version it prefers. In principle, specification progress is
backward-compatible, meaning that a given version includes all the basic and optional
features which were defined in all previous versions (except in some rare cases of �option
pruning�, where useless features are withdrawn from the standard).

Figure 1.14 represents all 3G standard releases supported by the 3GPP. The picture is
limited to 3G and post-3G evolutions and does not include GERAN versions of the standard.

Each version actually contains a great number of new features. The picture only shows the
main ones. E-UTRAN and complete Evolved Packet Core definition are actually part of
Release 8 of the 3GPP standard. The completion of all protocols and messages is planned for
the end of 2007.

(ii) The Main Documents
This section describes all the main 3GPP specifications related to Evolved UMTS, all
available from the 3GPP homepage.

The following documents are maintained by the SA2 3GPP group. They specify overall
network architecture (including Access and Core parts) as well as general procedures such as
network attachment, session setup and mobility:

. 23.401, �GPRS Enhancements for E-UTRAN Access�.

. 23.402, Architecture Enhancements for Non-3GPP Accesses�.

These documents are maintained by the RAN1 3GPP group. They specify the physical layer
of the E-UTRAN radio interface:

. 36.201, �LTE Physical Layer: General Description�.

. 36.211, �Physical Channels and Modulation�.

. 36.212, �Multiplexing and Channel Coding�.

. 36.213, �Physical Layer Procedures�.

. 36.214, �Physical Layer Measurements�.

2000 
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2007 

2006 

2005 

2004 

2003 

2002 

…

Release 3: Initial 3G UMTS release (‘dedicated channel’-oriented) 

Release 4: BICN (Bearer Independent Core Network) 

Release 5: HSDPA and IMS introduction 

Release 6: HSUPA, MBMS and WLAN inter-working 

Release 7: HSPA+ and IMS evolutions 

Release 8: LTE and SAE introduction; Common IMS 

Figure 1.14 3GPP standard releases.
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These documents are maintained by the RAN2 3GPP group. They specify the layer 2 and
E-UTRAN control protocols supported by the E-UTRAN radio interface:

. 36.300, �E-UTRAN Overall Description: Stage 2�.

. 36.302, �E-UTRAN Services Provided by the Physical Layer�.

. 36.304, �User Equipment (UE) Procedures in Idle Mode�.

. 36.306, �User Equipment (UE) Radio Access Capabilities�.

. 36.321, �Medium Access Control (MAC) Protocol Specification�.

. 36.322, �Radio Link Control (RLC) Protocol Specification�.

. 36.323, �Packet Data Convergence Protocol (PDCP) Specification�.

. 36.331, �Radio Resource Control (RRC) Protocol Specification�.

These documents are maintained by the RAN3 3GPP group. They specify the interfaces and
procedures supported by interfaces between network nodes of E-UTRAN:

. 36.401, �E-UTRAN Architecture Description�.

. 36.410, �S1 General Aspects and Principles�.

. 36.411, �S1 Layer 1�.

. 36.412, �S1 Signalling Transport�.

. 36.413, �S1 Protocol Specification�.

. 36.414, �S1 Data Transport�.

. 36.420, �X2 General Aspects and Principles�.

. 36.421, �X2 Layer 1�.

. 36.422, �X2 Signalling Transport�.

. 36.423, �X2 Protocol Specification�.

. 36.424, �X2 Data Transport�.

In addition to those specifications, 3GPP also produces a number of Technical Reports,
which record working assumptions and agreements until actual specifications are made
available:

. 24.801, �3GPP System Architecture Evolution: CT WG1 Aspects�.

. 29.804, �CT WG3 Aspect of 3GPP System Architecture Evolution�.

. 29.803, �3GPP System Architecture Evolution: CT WG4 Aspects�.

. 32.816, �Telecommunication Management; Study on Management of LTE and SAE�.

. 32.820, �Telecommunication Management: Study on Charging Aspects of 3GPP System
Evolution�.

. 33.821, �Rationale and Track of Security Decisions in LTE/SAE�.
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2

Evolved UMTS Overview

The objective of this chapter is to present an overview of the Evolved UMTS system, as an
introduction to the more in-depth view provided by the subsequent chapters.

In the two first sections, the main requirements and basic concepts are looked at, from the
radio interface and overall network architecture perspectives. Then, the overall architecture of
Evolved UMTS is described, highlighting common views and disruptions with existing 3G
UMTS systems, including a brief description of the terminal logical architecture and SIM card
aspects.

The IPMultimedia, as well as policy and charging features, is also described in this chapter.
Although being more related to the application level, those two domains are part of the
wireless network architecture. This chapter also describes how these features relate to the
existing 3G nodes, and how they progress in the scope of Evolved UMTS.

2.1 The Access Network Requirements

As stated in the previous chapter, one of the main objectives of Evolved UMTS is to design a
high-performance radio interface. The rest of this section describes in more detail the
performance criteria and the associated requirements of this new Radio Access Network.
These include:

. Radio interface throughput.

. Data transmission latency.

. Terminal state transition requirements.

. Mobility requirements.

. Flexibility in spectrum usage.

. Mobility requirements between systems.

In this section, as well as in the rest of this book, E-UTRAN (Evolved Universal Terrestrial
Radio Access Network) is referred to as the access network of Evolved UMTS (or EPS for
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Evolved Packet System), which not only includes the radio interface, but also the network
nodes and terrestrial interfaces supporting the radio-related features.

2.1.1 Radio Interface Throughput

The radio interface of E-UTRAN shall be able to support an instantaneous downlink (from
network to terminal) peak data rate of 100Mb/s within a 20MHz downlink spectrum
allocation and an instantaneous uplink (from terminal to network) peak data rate of
50Mb/s within a 20MHz uplink spectrum allocation. This corresponds to a spectrum
efficiency of 5 bits/s/Hz for the downlink, and 2.5 bits/s/Hz for the uplink.

It is interesting to compare those requirements with the initial objectives of UMTS, as
defined in 1998. At that time, 3G systems were expected to provide the following throughput:

. 144Kb/s in rural outdoor radio environments.

. 384Kb/s in urban or suburban outdoor radio environments.

. 2048Kb/s in indoor or low range outdoor radio environment.

. More than 2Mb/s in urban or low-range outdoor radio environments – this later was added
when HSDPA (High Speed Downlink Packet Access) was introduced in UMTS
specifications.

If we consider that UMTS is actually providing a theoretical maximum of 2Mb/s within a
5MHz spectrum allocation for dedicated channels and a theoretical maximum of 14.4Mb/s
within a 5MHz spectrum allocation when using HSDPA shared-channel techniques, the
corresponding spectrum efficiencies are, respectively, 0.4 and 2.9 bits/s/Hz for downlink
transmission.

2.1.2 Data Transmission Latency

The new E-UTRAN specifications shall enable a user data latency of less than 5ms in a
non-loaded condition (meaning that the system is only supporting a single data stream)
(Figure 2.1). This value corresponds to the maximum transfer delay between the E-UTRAN
access gateway and the user terminal, including the transfer delay between nodes within the
Access Network and the transmission over the radio interface.

Figure 2.1 E-UTRAN latency requirements.
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This very constraining requirement is the guarantee that the E-UTRAN Access Network
will be suitable for the most demanding existing and upcoming real-time services.

For information, and for an audio or video conversation, the maximum one-way transfer
delay that human perception can tolerate is 400ms, which corresponds to more than one
syllable (one syllable is around 250ms long); 150ms is the preferred value under normal
operation, as a commonly agreed value and as reflected by IMT-2000 performance and
Quality of Service requirements. Above the 400ms transfer delay, the quality of experience is
generally considered as nonacceptable for a conversational service.

It has to be noted that the 150ms figure is an end-to-end value, including not only
the Access Network, but also data transmission within the Core Network and a public
phone network. This indicates that the contribution of the evolved Access Network in
terms of transfer delay is set to a very small value when compared with the overall time
budget.

2.1.3 Terminal State Transition

This requirement is often referred to as �control plane latency� in the 3GPP specifications. This
requirement is actually related to what is better known as �efficient Always-On support�.

In traditional circuit-switched cellular networks, as for classical telephony, it was generally
understood that the end-user terminal could only be into two different states:

. The IDLE mode – a state in which the mobile is reachable (e.g. for the case of user-
terminated call setup) but no communication sessions are active.

. The ACTIVE mode – corresponding to the active phase of a session. In this mode, data are
actively transmitted to and from the user terminal, as in a voice call or circuit-switched data
session.

This duality is very much in line with the classical �dial-in� communication mode, inherited
from the traditional voice technology and modem-based circuit-switched data sessions.

From the emergence of new fixed Internet access technologies (such as ADSL) and the
development of new packet services characterized by bursts of activity separated by silent
periods of time, the need for a new terminal mode rose. The Standby mode was an answer to
this need, filling the gap between the IDLE and the ACTIVE modes. This state was initially
defined in the scope of 2G GPRS, and re-used from the first version of 3G UMTS
specifications. In such a state, the user terminal is silent (very limited data exchange is
allowed anyway) but always connected. In addition, this state is defined in such a way that it
allows a very short period of time for transition to the ACTIVE mode in case end-user session
activity is resumed.

The transition between the terminal states is under the Access Network�s responsibility, as
this mechanism is closely related to radio activity and radio resource usage. For that reason,
specific requirements have been introduced in E-UTRAN for terminal state transitions.

The support for efficient mechanisms to support always-connected terminals is a key
requirement for services like �Presence� (in which a group of people share each other�s
availability information in real time), �Instant Messaging� (in which people exchange a short
set of information at any time) and �Push-To-Talk� (which is the voice version of Instant
Messaging).
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As illustrated by Figure 2.2, the requirements related to E-UTRAN operation mandate
that:

. The transition from IDLE to ACTIVE state shall be less than 100ms (this time does not
include the time needed for paging procedures, in the case of mobile-terminated sessions).
Obviously, this does not correspond to a full call setup, but only to the period of time needed
for the network and the terminal to move from the IDLE state to an ACTIVE mode of
operation in which a dedicated resource is allocated for the transmission of signalling or
user information.

. The transition between ACTIVE and STANDBY states shall be less than 50ms (also
excluding possible paging procedures, if needed).

2.1.4 Mobility

In terms of mobility, E-UTRAN requires that user connectivity across the cellular network
shall be maintained at speeds from 120 to 350 km/h (or even up to 500 km/h, depending on the
frequency band).

2.1.5 Spectrum Flexibility

One of the major operational constraints of the UMTS network is about spectrum flexibility.
As in current UMTS, the spectrum allocation possible schemes are very limited.

In FDD (Frequency Division Duplex) mode, not less than 5MHz of spectrum can be
allocated to a given cell. This value is determined by the radio interface characteristics: a
CDMA direct spread system based on a chip rate of 3.84Mchips/s.

In TDD (Frequency Division Duplex) mode, the situation is a bit different. Like the FDD
option, TDD is also a CDMA direct spread system; however, two chip rates have been defined
by the 3GPP:

. The low chip rate option (1.28Mchips/s) corresponding to a channel occupation of
1.6MHz.

. The high chip rate option (3.84Mchips/s) corresponding to a channel occupation of 5MHz.
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Figure 2.2 Terminal state transition requirements.
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As an improvement to this situation, the evolved Access Network shall be able to operate in
spectrum allocations of different sizes, including 1.25, 2.5, 5, 10, 15 and 20MHz, for both
uplink and downlink. The intention is to allow flexible deployment and operation of spectrum
accordingly to the expected traffic and service requirements.

This flexibility will also be beneficial to the frequency attribution process held by local
regulators. Evolved UMTS introduction will be made easier in regions where large chunks of
spectrum are scarce. Besides, it will help to make the spectrum license price more affordable
and allow Evolved UMTS deployment to operators not willing to pay a heavy price for
spectrum that they don�t plan to use.

In addition, operation in paired and unpaired spectrums shall be supported by Evolved
UTRAN, so that the system supports asymmetric services (such as content streaming, or
broadcast/multicast services) in the most efficient way.

2.1.6 Co-existence and Inter-Working with Existing UMTS

From the beginning of UMTS standardization, inter-working between new and old technolo-
gies has always been a subject of concern. For that reason, lots of effort has been dedicated to
ensuring smooth and efficient transition between UMTS and GSM for terminals in ACTIVE
or IDLE mode.

It is not surprising that such a constraint is part of Evolved UTRAN foundations. Thus,
interruption time for handover between E-UTRAN and UTRAN/GERAN shall be less than
300ms for real-time services and 500ms for nonreal-time services.

Reference documents about wireless network requirements

ITU-R and ITU-T specifications:

. M.1079, �Performance and Quality of Service Requirements for IMT-2000 Access
Networks�

. G.114 �One-Way Transmission Time�

. G.174 �Transmission Performance Objectives for Terrestrial Digital Wireless Systems�

3GPP specifications:

. 22.105 �Services and Service Capabilities�

2.2 Evolved UMTS Concepts

This section describes the main concepts driving the structure of Evolved UMTS networks,
through the following sub-sections:

. The move towards �packet only� architecture.

. The evolution towards a fully shared radio interface.

. The opening towards other access types.
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2.2.1 A Packet-Only Architecture

In order to understand the major trends of evolved 3G architecture, it is necessary to look at the
main steps of wireless network evolution, starting with 2G networks.

(i) 2G Initial Architecture
2G GSM cellular networks were initially designed for voice and circuit-switched services. For
that reason, the architecture of such networks was comparatively simple and comprises two
main parts:

. The Access Network part, which includes the radio interface as well as the network nodes
and interfaces supporting radio-related functions. In initial 2G GSM systems, the radio
interface was specifically designed and optimized for voice or low bit rate circuit data
transmission.

. The CS part – or circuit-switched core network domain providing circuit services support
(this includes call setup, authentication and billing) and inter-working with classical PSTN
(Public Switched Telephone Network).

(ii) 2G Packet Evolution
With the emergence of IP and Web services, 2G GSM networks eventually evolved to
efficiently support packet data transmission:

. The Access Network part was partly redesigned to support packet transmission and shared
resource allocation schemes – as for GPRS and EDGE evolutions.

. A new Core Network domain (PS for Packet Switched) was added, in parallel to the CS
domain. This new domain has the same role as the CS domain, meaning support for packet
transmission (including authentication and billing) as well as inter-working with public or
private Internet (or IP) networks.

For illustration, the Figure 2.3 describes a simplified view of the dual Core Network
Domain. The CS domain is composed of a MSC/VLR (Mobile Switching Center/
Visitor Location Register) responsible for end-to-end call setup and in charge of main-
taining user location information (such information is typically used to page a user
terminal in order to establish user-terminated communication sessions). The GMSC
(Gateway MSC) is a specific type of MSC, as being the gateway switch responsible for
PSTN inter-working.

The PS domain is composed of the SGSN (Serving GPRS Support Node), which
basically plays the role of a MSC/VLR for the packet domain, and the GGSN (Gateway
GPRS Support Node), which is equivalent to the GMSC for inter-working with external
packet networks.

PS and CS domains may possibly be linked together in order to maintain consistent user
location information between the two domains and therefore reduce the amount of radio and
network signalling.

In addition to the domain-specific nodes, the Core Network also contains the HLR (Home
Location Register), accessed by both the CS and PS domains. The HLR is a key part of the
network architecture, containing all information related to user subscription.
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From a network operation point of view, the addition of a new Core Network domain
is not a simple move. As shown above, the deployment of a brand new PS domain archi-
tecture means new network nodes, and increased cost for network management and
engineering.

The network operation also becomes more complex, as the user terminal location needs to
be known by both domains (meaning a duplication of processes and information) and new
procedures and interfaces need to be defined between network nodes.

(iii) 3G IMS Evolution
From a system overview, initial 3G UMTS network architecture was more or less the same as
the 2G, as it included both circuit and packet Core Networks. Eventually, a new domain was
added on top of the PS domain: the IMS (IP Multimedia Subsystem).

The main objective of IMS was to allow the creation of standard and interoperable IP
services (like �Push-To-Talk�, �Presence� or �Instant Messaging�) in a consistent way across
3GPP wireless networks. The interoperability of IMS-based services comes from the fact that
IMS is based on flexible protocols like SIP (Session Initiation Protocol) developed by the
IETF (Internet Engineering Task Force – an international community dedicated to the
evolution of the Internet).

In addition, the IMS standard offers VoIP (Voice over IP) support and provides inter-
working with classical PSTN through signalling and media gateways.

As presented in Figure 2.4, the CS domain was still part of the 3G Core Network
architecture, along with the PS/IMS structure. The main reason for keeping the CS domain

Figure 2.3 The 2G dual Core Network model.
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was motivated by the need to support the – still dominant – circuit-switched voice services and
H324M-based video-telephony support.

Although IMS was presented as an interesting step towards service integration, legacy
network operators refrained from widely deploying and using it as a common platform for
all services (including voice, real-time and nonreal-time services) because of the lack of
support for voice services� seamless mobility between existing CS-based networks and
IMS.

(iv) EPS Architecture
Evolved UMTS networks have a clear objective to integrate all applications over a
simplified and common architecture. The main components of EPS architecture are the
following:

. A packet-optimized Access Network which can efficiently support IP-based nonreal-time
services as well as circuit-like services requiring constant delay and constant bit rate
transmission.

. A simplified Core Network, composed of only one packet domain, supporting all PS
services (possibly IMS-based) and inter-working capabilities towards traditional PSTN.

The CS domain is no longer present, as all applications (including the most real-time-
constraining ones) are supported over the PS domain. This obviously requires specific
gateway nodes – part of the IMS architecture – so that IP traffic is converted to PSTN
circuit-switched-based transport.

As a consequence of this network simplification, specific efforts have been produced in the
scope of Evolved UMTS standardization activity in order to maintain voice call continuity
between old and new systems. More details about the evolved 3G Core and Access
architecture are provided further in this chapter.
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Reference documents about 3GPP network architecture

3GPP technical specifications:

. 23.002, �Network Architecture�

2.2.2 A Shared Radio Interface

As Core Network architecture is moving towards packet or �all-IP� architecture, it becomes
critical that the Access Network provides efficient radio transmission schemes for packet data.

When using dedicated resources, as in early UMTS implementations, it is required to
allocate to each user a fixed amount of resource which may be used well under its capacity for
certain periods of time.

Evolved UTRAN relies on a fully shared radio resource allocation scheme, which allows
maximizing resource usage by combining all radio bearers on a sort of shared high bit rate
radio pipe. All services are therefore supported over shared radio resource, including
background or interactive services like Web browsing as well as real-time-constraining
services like voice or streaming applications. Dedicated and shared resources are compared in
Figure 2.5.

This differs from initial UTRAN radio interface, which allowed the possibility of allocating
within the same cell both dedicated radio resources (typically for CS domain guaranteed bit
rate services) as well as high-speed shared channels like HSDPA.

This evolution towards a fully shared radio access looks like a simplification, similarly to
what Wifi (IEEE 802.11) or WiMAX (IEEE 802.16) wireless Ethernet standard proposes
today. However, such an access scheme requires a fine and specific radio resource manage-
ment scheme, in order to ensure that all real-time services can be supported according to their
requirements in terms of bit rate and transfer delay.

2.2.3 Other Access Technologies

From early 2000, lots of high-speed and high-performance radio interfaces have been
developed for the use of WLAN or Wireless local networking. This includes the well known
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Wifi family (802.11b, 802.11g as well as the latest 802.11n multiple antenna evolution) and
the new 802.16 WiMAX.

As presented in Table 2.1, those technologies can provide data rates which are actually quite
close to what UTRAN and E-UTRAN propose. However, these technologies are far from full
network systems and solutions. IEEE specifications are focused on the radio interface data
link level and do not intend to specify higher levels, such as network architecture and
interfaces, subscriber management, services, network Quality of Service policing, etc.

Because these radio technologies are (or will become) increasingly popular, 3GPP
architecture had to consider them as potential alternative access technologies, taking advan-
tage of a widespread high radio chipset and devices combined with a complete packet-
networking framework which 3GPP provides.

Inter-working with WLAN access technologies has been a subject of interest since the
beginning of UMTS, and there is no doubt that Evolved UMTS will also follow that path in
providing support to seamless mobility between heterogeneous access networks.

2.3 Overall Evolved UMTS Architecture

Figure 2.6 describes the overall network architecture, not only including the Evolved Packet
Core and Access Network, but also other blocks, in order to show the relationship between
them. For simplification, the picture only shows the signalling interfaces. In some cases, both
user data and signalling are supported by the interface (like the S1, S2 or 3G PS Gi interfaces)
but, in some other cases, the interfaces are dedicated to the Control plane, and only support
signalling (like the S6 and S7 interfaces).

The new blocks specific to Evolved UMTS evolution, also known as the Evolved
Packet System (EPS), are the Evolved Packet Core (or EPC) and the Evolved UTRAN (or
E-UTRAN).

Other blocks from the classical UMTS architecture are also displayed, such as the UTRAN
(the UMTS Access Network), the PS and the CS Core Networks, respectively, connected to
the public (or any private) IP and Telephone Networks. The IMS (IP Multimedia Subsystem)
is located on top of the Packet Core blocks and provide access to both public or private IP
networks, and the public telephone network via Media Gateway network entities. The HSS,
managing user subscription information is shown as a central node, providing services to all
Core Network blocks of 3G and evolved 3G architecture. The picture does not represent the
nodes involved in the support of charging function. The architecture and interfaces related to
charging are described in a specific section, further in this chapter.

Table 2.1 IEEE radio access technologies.

Radio technology Peak bit rate over the air

802.11b 11 Mb/s
802.11g 54 Mb/s
802.11n 200 Mb/s
802.16 70 Mb/s
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For further information about dynamic interactions between the different network nodes
during network life (e.g. procedures like user registration, session setup, etc.), please refer to
Chapter 5.

The next sections of this chapter provide a more in-depth view of the evolved Access and
Core parts (respectively E-UTRAN and EPC) as well as the IMS subsystem and correspond-
ing interfaces. However, for further information about the detailed node features and the
protocols being used between nodes, please refer to Chapter 4.

2.3.1 E-UTRAN: The Evolved Access Network

Coming back to the first releases of the UMTS standard, the UTRAN architecture was initially
very much aligned with 2G/GSM Access Network concepts. As described in Figure 2.7, the
UTRAN network is composed of radio equipment (known as NodeB) in charge of transmis-
sion and reception over the radio interface, and a specific node – the RNC (Radio Network
Controller) – in charge of NodeB configuration and radio resource allocation. The general
architecture follows the good old 2G/GSM �star� model, meaning that a single controller (the
RNC) may possibly control a large number – the typical number in commercial networks is
about several hundreds – of radio Base Stations (the NodeB) over the Iub interface.
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Figure 2.6 The overall EPS architecture.
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In addition, an inter-RNC Iur interface was defined to allow UTRAN call anchoring at the
RNC level and macro-diversity between different NodeB controlled by different RNCs.
Macro-diversity was a consequence of CDMA-based UTRAN physical layers, as a means to
reduce radio interference and preserve network capacity. The initial UTRAN architecture
resulted in a simplified NodeB implementation, and a relatively complex, sensitive, high-
capacity and feature-rich RNC design. In this model, the RNC had to support resource and
traffic management features as well as a significant part of the radio protocols. Compared with
UTRAN, the E-UTRAN OFDM-based structure is quite simple. It is only composed of one
network element: the eNodeB (for �evolved NodeB�).

The 3G RNC (Radio Network Controller) inherited from the 2G BSC (Base Station
Controller) has disappeared from E-UTRAN and the eNodeB is directly connected to the Core
Network using the S1 interface. As a consequence, the features supported by the RNC have
been distributed between the eNodeB or the Core NetworkMME or Serving Gateway entities.

The standard does not provide much detail about the architecture of the eNodeB. It is only
defined as the network node responsible for radio transmission and reception in one or more
cells to the terminals (more details are, however, provided in Chapter 3 about the block model
of a Base Station). The �Node� term comes from the fact that the Base Station can be
implemented either as single-cell equipment providing coverage and services in one cell only,
or as a multi-cell node, each cell covering a given geographical sector. Possible eNodeB
models are shown in Figure 2.8.

A new interface (X2) has been defined between eNodeB, working in a meshed way
(meaning that all NodeBs may possibly be linked together). The main purpose of this interface
is to minimize packet loss due to user mobility. As the terminal moves across the access
network, unsent or unacknowledged packets stored in the old eNodeB queues can be
forwarded or tunnelled to the new eNodeB thanks to the X2 interface.

From a high-level perspective, the new E-UTRAN architecture is actually moving
towards WLAN network structures and Wifi or WiMAX Base Stations� functional
definition. eNodeB – as WLAN access points – support all Layer 1 and Layer 2 features
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associated to the E-UTRAN OFDM physical interface, and they are directly connected to
network routers. There is no more intermediate controlling node (as the 2G/BSC or 3G/
RNC was).

This has the merit of a simpler network architecture (fewer nodes of different types, which
means simplified network operation) and allows better performance over the radio interface.
As described in Chapter 4, the termination of Layer 2 protocols in eNodeB rather than in the
RNC helps to decrease data-transmission latency by saving the delay incurred by the
transmission of packet repetitions over the Iub interface.

From a functional perspective, the eNodeB supports a set of legacy features, all related to
physical layer procedures for transmission and reception over the radio interface:

. Modulation and de-modulation.

. Channel coding and de-coding.

Besides, the eNodeB includes additional features, coming from the fact that there are no
more Base Station controllers in the E-UTRAN architecture. Those features, which are further
described in Chapter 4, include the following:

. Radio Resource Control: this relates to the allocation, modification and release of resources
for the transmission over the radio interface between the user terminal and the eNodeB.

. Radio Mobility management: this refers to a measurement processing and handover
decision.

. Radio interface full Layer 2 protocol: in the OSI �Data Link� way, the layer 2 purpose is to
ensure transfer of data between network entities. This implies detection and possibly
correction of errors that may occur in the physical layer.

2.3.2 EPC: The Evolved Packet Core Network

The EPC (Evolved Packet Core) is composed of several functional entities:

. The MME (Mobility Management Entity).

. The Serving Gateway.

. The PDN Gateway (Packet Data Network).

. The PCRF (Policy and Charging Rules Function) – the role of this node is further described
in this chapter, within the section about �Policy and Charging�.

The omnidirectional model The sectorized (multi-cell) model

Figure 2.8 Possible eNodeB models.
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The rest of this section gives some more details on EPC nodes� role, as well as EPC
architecture interaction in the following cases:

. Non-roaming architecture – the simplest EPC architecture case.

. Roaming architecture – how the EPC works in a roaming situation in the �home routed
traffic� and �local breakout� cases.

. Non-3GPP access case – how the EPC interacts with non-3GPP access technologies like
WLAN, in trusted and non-trusted modes.

. 2G/3Gmobility architecture – how the EPC interacts with 2G/3G PS Core nodes in cases of
user mobility.

(i) The MME (Mobility Management Entity)
The MME is in charge of all the Control plane functions related to subscriber and session
management. From that perspective, the MME supports the following:

. Security procedures – this relates to end-user authentication as well as initiation and
negotiation of ciphering and integrity protection algorithms.

. Terminal-to-network session handling – this relates to all the signalling procedures used to
set up Packet Data context and negotiate associated parameters like the Quality of Service.

. Idle terminal location management – this relates to the tracking area update process
(described more in Chapter 5) used in order for the network to be able to join terminals in
case of incoming sessions.

The MME is linked through the S6 interface to the HSS which supports the database
containing all the user subscription information.

(ii) The Serving GW (Serving Gateway)
From a functional perspective, the Serving GW is the termination point of the packet data
interface towards E-UTRAN. When terminals move across eNodeB in E-UTRAN, the
Serving GW serves as a local mobility anchor, meaning that packets are routed through
this point for intra E-UTRAN mobility and mobility with other 3GPP technologies, such as
2G/GSM and 3G/UMTS.

(iii) The PDN GW (Packet Data Network Gateway)
Similarly to the Serving GW, the PDN gateway is the termination point of the packet data
interface towards the Packet Data Network. As an anchor point for sessions towards the
external Packet Data Networks, the PDN GW also supports Policy Enforcement features
(which apply operator-defined rules for resource allocation and usage) as well as packet
filtering (like deep packet inspection for virus signature detection) and evolved charging
support (like per URL charging).

(iv) The Non-Roaming Architecture
The standard does not require any physical architecture for EPC node implementation. For
example, it may be possible that the Serving and PDN Gateways are supported by a single
node, or that the MME and Serving Gateway are implemented in one physical node. These
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two options are described in Figure 2.9; for simplicity, only the EPC nodes are shown, all
belonging to the same network and operator (in other words, �the non-roaming case�).

This model shows the interface S1 which transports both signalling (the S1-C part) and User
plane data (the S1-U part) between E-UTRAN and EPC as well as interface SGi – the
equivalent of the 2G and 3G Packet Core Gi – towards public or private external IP networks,
or the IMS domain.

The right-hand option of the picture (with combined MME and Serving Gateway) may be
seen as a simpler solution to operate a Packet Core network, since it does not require
implementing and operating the S11 signalling interface between the MME and Serving GW.
However, implementing separated MME and User plane functions allows further flexibility in
terms of deployment, allowing independent scalability between the signalling load on the
Control plane and traffic handling on the User plane.

In any kind of implementation, the S5 interface has been defined in such a way as to allow
connectivity to multiple Packet Data Networks, providing the same flexibility as the Gn
interface defined between SGSN and GGSN 2G/3G nodes – the S5 interface is actually an
evolved version of the Gn interface based on the GTP (GPRS Tunnelling Protocol). The
typical use case of such a configuration would be, for example, to separate the access to an
Intranet from the public IP network access, as in Figure 2.10. In this case, access to each of the
networks is done through a specific PDN GW, which allows implementing specific policy-
enforcement rules, or packet-filtering algorithms, depending on the type of packet network
being addressed.

From a functional perspective, the association of MME and Serving GW features is
actually very close to a combination of 2G/3G SGSN. Similarly, the PDN GW logical node
can also be considered as a kind of 2G/3G GGSN, in its role to support policy-enforcement
and charging rules, inter-working with external packet networks, as well as terminal IP
address allocation.
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It is interesting to note that the separation of SGSN User and Control parts in EPS,
combined with the fact that S5 is optional (as in combined Serving and PDN GW), looks very
similar to one of the latest improvements brought to UMTS Packet Core and known as �Direct
Tunnel optimization�. This enhancement is described in Figure 2.11.

This initial objective of this optimization, which followed the introduction of HSDPA/
HSUPA high-speed radio techniques and IMS evolutions, is to allow a gain on network
scalability and better cope with increased user data volumes, due to the fact that packet data
are routed directly from the UTRAN edge node to the GGSN Internet gateway.

In this evolution, the SGSN has the possibility to set up a direct tunnel from the RNC to the
GGSN, instead of the two-tunnel approach from RNC to SGSN, and from SGSN to GGSN
(represented using dotted lines).

At the end, the 3G/UMTS Iu interface is clearly split into User and Control parts (the same
way as the S1 interface) and the Gn becomes a pure Control plane interface equivalent to S11
(and actually based on the same GTP protocol).
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Figure 2.10 An example of S5 connectivity to multiple packet networks.
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(v) The Roaming Architecture
Figure 2.12 presents the EPC architecture support for roaming cases. In this example, a user
has subscribed to �Network a� but is currently under the coverage of the visited �Network b�.
This kind of situation may happen while the user is travelling to another country, or in the case
in which a national roaming agreement has been set up between operators, so as to decrease
the investment effort for national coverage. In such a roaming situation, part of the session is
handled by the visited network. This includes E-UTRAN access network support, session-
signalling handling by theMME, and User plane routing through the local Serving GW nodes.
Thanks to local MME and Serving GW, the visited network is then able to build and send
charging tickets to the subscriber home operator, corresponding to the amount of data
transferred and the Quality of Service allocated.

However, since the terminal user has no subscription with the visited network, the MME
needs to be linked to the HSS of the user home network, at least to retrieve the user-specific
security credential needed for authentication and ciphering. In the roaming architecture,
the session path goes through the home PDN GW over the S8 interface, so as to apply
policy and charging rules in the home network corresponding to the user-subscription
parameters.

The S8 interface introduced in this model supports both signalling and data transfer
between the visited Serving GWand the home PDNGW. Its definition is actually based on the
Gp interface defined in the 2G and 3G Packet Core roaming architecture between the visited
SGSN and the home GGSN.

Briefly, in such a model, the visited network provides the access connectivity (which also
involves the basic session signalling procedures supported by the visited MME, with the
support of the home HSS), whereas the home network still provides the access to external
networks, possibly including IMS-based services.

In this model, the call is still anchored to the home PDNGW, hence the �home routed traffic�
denomination. The user packet routing in such a scheme may, however, be quite inefficient in
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terms of cost and network resources, as the home PDN GWand visited Serving GW may be
very far from each other. This is the reason why the 3GPP standard also allows the possibility
of the user traffic to be routed via a visited PDN GW, as an optimization. This may be very
beneficial in the example of public Internet access – as routing the traffic to the home network
does not add any value to the end-user – and even more in the case of an IMS session
established between a roaming user and a subscriber of the visited network. In this last case,
local traffic routing avoids a complete round trip of user data through the home network packet
gateways.

Figure 2.13 describes possible network architecture in the case where the traffic is routed
locally – or the �local breakout� case. Both Gateways are part of the visited network. The
visited PCRF retrieves Quality of Service policy and charging control information from the
Home PCRF via the new S9 interface.

(vi) The Non-3GPP Access Architecture
Figure 2.14 represents the network architecture providing IP connectivity to the Evolved
Packet Core using non-3GPP type of access. This architecture is independent from the access
technology, which could be Wifi, WiMAX or any other kind of access type. This picture
applies to the trusted WLAN access, corresponding to the situations where the WLAN
network is controlled by the operator itself or by another entity (local operator or service
provider) which can be trusted due to the existence of mutual agreements.

As described below, some new network nodes and interfaces are needed to support
non-3GPP access types. In contrast, on the terminal side, no changes are required
except some slight software adaptations. This comes from the fact that AAA (Authen-
tication, Authorization and Accounting) mechanisms for mutual authentication and
access control are based on known IETF protocols but make use of 3GPP UICC stored
credentials.
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The 3GPPAAA Server�s role is to act as an inter-working unit between the 3GPP world and
IETF standard-driven WLAN networks from the security perspective. Its purpose is to allow
end-to-end authentication with WLAN terminals using 3GPP credentials. For that reason, the
3GPPAAA Server has an access to the HSS through the Wx interface, so as to retrieve user-
related subscription information and 3GPP authentication vectors.

From the 3GPP AAA Server, the Ta interface has been defined with the trusted access
network, aiming at transporting authentication, authorization and charging-related informa-
tion in a secure manner.

From the User plane perspective, the user data are transmitted from the WLAN network to
the PDN GW through the new S2 interface. As in legacy EPC architecture, the PDN GW still
serves as an anchor point for the user traffic.

In such a model, the Serving GW and MME nodes are not needed anymore. Terminal
location management is under the responsibility of the WLAN Access as well as the packet
session signalling and does not need any support from 3GPP EPC nodes (aside from the
provision of 3GPP security credentials). In the example of a 802.11 Wifi access point, user
association (the process by which a Wifi terminal connects to an access point), security
features as well as radio protocols are handled by the access point itself.

In addition to the trusted model, the standard defines another model, for the situations
where the WLAN network is nontrusted. This model is described in Figure 2.15. As an
example, this may correspond to a business entity deploying a WLAN for its internal use and
willing to offer 3GPP connectivity to some of its customers. In such a case, the WLAN-3GPP
interconnection looks a bit different due to additional mechanisms to maintain legacy 3GPP
infrastructure security and integrity.

This model introduced a ePDG node (for evolved Packet Data Gateway) which concen-
trates all the traffic issued or directed to the WLAN network. Its main role is to establish a
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secure tunnel for user data transmission with the terminal using IPSec and filter unauthorized
traffic.

In this model, the new Wm interface is introduced for the purpose of exchanging user-
related information from the 3GPP AAA Server to the ePDG. This will allow the ePDG to
enable proper user data tunnelling and encryption to the terminal.

The model described above is actually very similar to the architecture defined for non-
3GPP access to 3G/UMTS packet core, defined in the following specification:

. 23.234, �3GPP System to WLAN Interworking; System Description�.

The Wa (and its trusted mode Ta equivalent), Wx, Wm and Wn interfaces have
actually been inherited from this model and are functionally similar to their 3G/UMTS
equivalent.

(viii) The 2G/3G Mobility Architecture
Figure 2.16 represents the EPC interactions with 2G/3G Packet Core nodes. This model is
applicable to terminal mobility cases between E-UTRAN cells on one side and 3G/UTRAN or
2G/GERAN on the other side while a packet data context or a packet session is active.
GERAN (GPRS EDGE RAN) refers to the 2G/GSM access network, as in 3GPP terminology.
The 2G/3G mobility architecture model introduces two interfaces: S3 and S4.

The role of S3 is to support user and bearer information exchange between the SGSN and the
MME, as the terminal is moving from one access type to the other. For example, user context, as
well as negotiated Quality of Service and bearers� information, is exchanged between the two
nodes, so that the new servingMME or SGSN gets all the necessary information associated with
the on-going session. The S3 interface is based on the Gn interface designed for 2G/3G Packet
Core architecture to support mobility between SGSN nodes.
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The S4 interface is associated with the session User plane. It supports packet data transfer
between the SGSN and the Serving GWwhich plays the role of a mobility anchor point within
the EPC architecture. From the SGSN perspective, the Serving GW plays a role which is very
similar to a GGSN node. This is the reason why S4 is based on the Gn interface, defined
between the 2G/3G Packet Core SGSN and GGSN nodes.

Reference documents about EPC architecture

3GPP technical specifications:

. 23.401, �3GPP System Architecture Evolution: GPRS Enhancements for LTE Access�

. 23.402, �3GPP System Architecture Evolution: Architecture Enhancements for Non-
3GPP Access�

2.3.3 The HSS

The HSS (Home Subscriber Server) is the concatenation of the HLR (Home Location
Register) and the AuC (Authentication Center) – two functions being already present in
pre-IMS 2G/GSM and 3G/UMTS networks. The HLR part of the HSS is in charge of storing
and updating when necessary the database containing all the user subscription information,
including (list is nonexhaustive):

. User identification and addressing – this corresponds to the IMSI (International Mobile
Subscriber Identity) and MSISDN (Mobile Subscriber ISDN Number) or mobile telephone
number.
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. User profile information – this includes service subscription states and user-subscribed
Quality of Service information (such as maximum allowed bit rate or allowed traffic class).

The AuC part of the HSS is in charge of generating security information from user identity
keys. This security information is provided to the HLR and further communicated to other
entities in the network. Security information is mainly used for:

. Mutual network-terminal authentication.

. Radio path ciphering and integrity protection, to ensure data and signalling transmitted
between the network and the terminal is neither eavesdropped nor altered.

Introduced from the very beginning of GSM network standardization, HLR and AuC boxes
were eventually joined together in a single HSS node as IMS was defined by the 3GPP.

In its extended role, the HSS of Evolved UMTS networks integrates both HLR and AuC
features, including classicalMAP features (for the support of circuit and packet-based sessions),
IMS-related functions, and all necessary functions related to the new Evolved Packet Core.

This is illustrated by Figure 2.17, showing HSS support to the evolved Packet Core through
the S6 interface in addition to connections to 3G non-IMS Core Network nodes such as the
GMSC and MSC (through the C and D interfaces) for the CS domain and the SGSN and
GGSN (through the Gr and Gc interfaces) for the PS domain, but also to the CSCF IMS nodes
via the Cx interface.

As an illustration of the functions supported by the HSS, there are actually three main cases
in which the HSS is actively involved:

. At user registration – the HSS is interrogated by the corresponding Core Network node as
the user attempts to register to the network in order to check the user subscription rights.
This can be done by either the MSC, the SGSN or the MME, depending on the type of
network and registration being requested;

. In the case of terminal location update – as the terminal changes location areas, the HSS is
kept updated and maintains a reference of the last known area;
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. In the case of user-terminated session request – the HSS is interrogated and provides a
reference of the Core Network node corresponding to the current user location.

For further details, please refer to Chapter 5, about various steps and procedures applied by
living networks.

The standard does not specify how the HSS database is structured, but what kind of information
shall or should be stored. For illustration purposes, Table 2.2 describes part of the user subscription
information handled by the HSS. From a functional perspective, the HSS information can be split
into different categories: the general information (mainly containing identifiers or security
parameters), the GPRS-related information, the IMS-related parameters, as well as other
categories not listed in this table, such as data related to supplementary service or location
services. For each of the information pieces, the standard specifies whether it is part of the
permanent data (meaning it can only be changed by administration means) or the temporary data
(meaning the data may possibly change resulting from normal system operation).

Reference documents about HSS data organization

3GPP technical specifications:

. 23.008, �Organization of Subscriber Data�

. 23.016, �Subscriber Data Management: Stage 2�

Table 2.2 Subset of user information data stored in the HSS.

General data
IMSI International Mobile Subscriber Identity Permanent
MSISDN Mobile Subscriber ISDN Number Permanent
Authentication vector Security information for user authentication, data

confidentiality and data integrity
Temporary

. . . . . . . . .

GPRS-related data

SGSN Address Address of the SGSN the user is currently registered to Temporary
Subscribed QoS Specifies the Quality of Service attributes the user has

subscribed to
Permanent

. . . . . . . . .

IMS-related data
Authorized networks List of visited network identifiers the user is

allowed for roaming
Permanent

Private user identity In the form of �user@realm� Permanent
Public user identities List of user identities in the form of �sip:user@domain� Permanent
Registration status State of registration of a user IMS identity Temporary
S-CSCF name Identifies the S-CSCF the subscriber is registered to Temporary

. . . . . . . . .
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2.4 The IMS Subsystem

The IMS (IP Multimedia Subsystem) is a generic platform offering IP-based multimedia
services. IMS provides functions and common procedures for session control, bearer control,
policy and charging. From a network architecture perspective, IMS has to be considered as an
access-type agnostic overlay to the Packet Core.

Of course, IMS can be deployed on top of UTRAN access as well as over the 2G GPRS/
EDGE network. Because of its clear orientation towards efficient packet transmission support,
Evolved UTRANwill add a lot of value to IMS and allow more quality-demanding services to
be supported in a more efficient way.

The rest of the section is not to provide a full description of the IMS subsystem. The
objective here is to describe the main network entities, as an introduction to the detailed
service description which can be found in Chapter 6.

2.4.1 The Session Control Function

The CSCF (Call Session Control Function) plays a key role in IMS architecture, for
establishing, terminating or modifying IMS sessions. The CSCF is actually a specific type
of SIP (Session Initiation Protocol) server. SIP is the base protocol developed by the IETF for
the management of IP-based multimedia sessions and services; it is described in the following
document:

. RFC3261, �SIP: Session Initiation Protocol�.

A more detailed description of the SIP protocol in the scope of IMS session control is
provided in Chapter 4.

The CSCF can play three different roles in the IMS network: the Proxy (P-SCSF), the
Interrogating (I-CSCH) or the Serving (S-CSCF) one.

The P-CSCF is the first contact point reached by user terminal SIP messaging within the
IMS subsystem. In the case of roaming, the P-CSCF belongs to the visited network, and
forwards user-originated SIP requests towards the relevant I-CSCF or S-CSCF. As a SIP
session controlling entity belonging to the visited network, the P-CSCF actually supports two
main functions:

. The control of allocated bearers within the visited network.

. The generation of charging records, so that the visited network can charge the user home
network according to the allocation and usage of resources for this part of the session path.

Additionally, the P-CSCF is responsible for SIP header compression, in order to minimize
the bandwidth requirement for the transmission of SIP signalling over the visited Access
Network. More details about this feature are provided in Chapter 4.

The I-CSCF is an entry point for all connections related to a user belonging to its network.
The I-CSCFs main task is to identify the relevant S-SCSF (based on HSS interrogation) for a
user performing SIP registration, and to forward the registration request accordingly. In
addition, the I-CSCF may also serve as a THIG (Topology Hiding Inter-network Gateway) in
case an operator has some specific security requirements and is willing to hide the
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configuration and topology of its network from the outside. In this case, the I-CSCF applies a
specific process to the incoming and outgoing SIP signalling. This point is further described in
the IMS protocol section of Chapter 4.

The S-CSCF is the SIP server to which the user will be registered, and actually provides
access to Application Servers to the end-user. As in SIP terminology, the S-CSCF play three
types of roles:

. The �registrar� (the entity to which the SIP user is registered).

. The �proxy server� (when SIP service requests are forwarded to another SIP server).

. The �user agent� (when SIP request terminates at the P-CSCF).

The S-CSCF performs the session control services for the UE. It maintains a session state as
needed by the network operator for support of the services. Besides, the S-CSCF is in charge
of CDR generation (Charging Data Record) so that the end-user can be charged according to
the requested service, Quality of Service or amount of resource being allocated to the session.

As for the MME and UPE PS Core functional split, the standard does not mandate for a
specific hardware architecture for CSCF nodes. Thus, it is possible that some network
implementers aggregate the P-CSCF and I-CSCF logical nodes into one physical network
entity. Similarly, the I-CSCF and S-CSCFmay also be integrated into one single physical box.
This may be the right approach for early low-capacity IMS deployments, leaving open the
possibility of scaling the network while reducing the number of inter-node messages.

Figure 2.18 describes the IMS architecture. In the case of a roaming subscriber accessing a
home server from a visited network, the P-CSCF belongs to the visited network �A�, whereas
the I-CSCF and S-CSCF to which the user will register belong to the home network �B�. As

P-CSCF I-CSCF S-CSCF 

HSS

MGCF

MGW 

Network ‘B’Network ‘A’

PDN GW 

SGi

CxCx

Mg

MwMw
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Application
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ISCPCRF Rx+

S7

Mb Mn

Subscriber of 
network ‘B’ 

Figure 2.18 The IMS subsystem architecture.
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regards to the roaming architectures presented above in this chapter, this case corresponds to
the �local breakout� where traffic is routed through the local PDN GW. The figure only
describes the signalling path between network entities. The data bearer follows a different
path and is not processed by CSCF nodes. As described in IETF SIP specifications, a SIP
server (like the CSCF nodes) only cares about session signalling.

The figure shows, however, one example of a data bearer path, using dotted lines over the
Mb interface, in the case of a mobile terminal to fixed-line terminal voice call. In this example,
the Mb interface actually represents the User plane of the Gi interface coming from the PDN
GW node. Part of the bearer path, up to the MGW (Media Gateway), is carried over IP. The
call setup signalling procedures are SIP-based, up to the MGCF (Media Gateway Control
Function) which is in charge of signalling translation.

Figure 2.18 also describes the main interfaces defined by standard documents for the
communication between network nodes. The Mw as well as the ISC (IP multimedia
Subsystem Service Control) interfaces carry SIP signalling exchanged between CSCF session
control servers or between the SCSCF and the Application Servers. The CSCF nodes are
connected to the HSS via the Cx interface, which provides services for user data handling and
user authentication. Like the Mw interface, the Cx interface is using another IETF-originated
protocol known as Diameter, and specified in the following document:

. RFC3588, �Diameter Base Protocol�.

The Diameter protocol is one of the standard IETF protocols for network access and IP
mobility AAA (Authentication, Authorization and Accounting). In the scope of IMS, the
Diameter protocol provided by the IETF has been extended to support IMS and UMTS-
specific commands and corresponding information elements.

2.4.2 The Media Gateway Nodes

One of the IMS objectives is to be able to interact with legacy PSTN (Public Switched
Telephone Network) for voice services. Due to the fact that IMS handles voice as IP traffic,
this requires some adaptations for signalling and voice traffic, performed by the MGCF and
MGW nodes.

TheMGCF (Media Gateway Control Function) supports three main functions: call control
protocol conversion, MGW (Media Gateway) control and I-CSCF identification. The SIP
signalling used to set up the session is forwarded by the S-CSCF to the MGCF over the Mg
interface. This SIP signalling is then translated into ISUP (ISDN User Part) signalling by the
MGCF before transmission to the PSTN network, and vice versa. In addition, the MGCF is in
charge of selecting the relevant I-CSCF when a mobile-terminated call request is arriving
from the PSTN. This is performed on the basis of the analysis of the called party routing
number provided by the PSTN.

The MGW (Media Gateway) is responsible for media conversion, bearer control and
payload processing (e.g. codec, echo canceller, conference bridge) under the control of
the MGCF. The Mn interface between the MGW and the MGCF uses a H248 protocol.
This protocol is a sort of toolbox which contains all the necessary and generic features
to describe, create, modify and delete media streams within a Media Gateway. The
H248 standard, published by the ITU, is the international standard for media gateway
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control. An identical (and public) specification has also been released by the IETF under the
following reference:

. RFC3525, �Gateway Control Protocol Version 1�.

Reference documents about the IMS subsystem

3GPP technical specifications:

. 22.228, �Service requirements for the IP Multimedia Subsystem (IMS): Stage 1�

. 23.228, �IP Multimedia Subsystem (IMS): Stage 2�

2.5 Policy Control and Charging

Policy control is described in 3GPP specifications as being part of the Packet Core network
architecture. Actually, this feature interacts not only with Packet Core nodes, but also with SIP
servers belonging to the IMS subsystem, such as the P-CSCF.

This section describes the main concepts and added value of Policy Control, as well as the
evolution of this mechanism (together with the charging feature), from the early Release 5
UMTS implementation up to theRelease 7 enhancements andEvolvedPacketCore architecture.

2.5.1 Policy Control in UMTS

Policy control has not been invented with UMTS. Lots of attention has been paid to this in
IETF groups, as part of the activity related to the evolution an enhancement of IP networks.
Practically speaking, what could be a fair definition of �Policy Control�? One possible answer
can be found, for example, in IETF document RFC2753, �Framework for Policy-Based
Admission Control�, stating that �Policy Control is the application of rules to determine
resource access and usage�.

In early UMTS implementation (including the Release 5 of UMTS 3GPP specifications),
Policy Control was user-terminal driven. Depending on the requested service (Web browsing,
streaming, Push-To-Talk), the user terminal was requesting a PDP context (or Packet Data
Protocolcontext)withQualityofServiceattributesbeingset accordingly to the typeof theservice
(real-time versus nonreal-time service, maximum and mean bit rate, delay requirements, etc.).

The requested QoS parameters were eventually checked by the SGSN based on user
subscription limitation stored in the HSS. Using a set of CDR (Charging Data Record) defined
by the standard and generated by network elements such as the SGSN and GGSN, the operator
had the possibility of charging the end customer either on time, volume or on allocated Quality
of Service. However, it was not possible to apply differentiated charging rules for the different
service data flows which could possibly be aggregated within a single PDP context, as the end-
user has actually no constraints for opening a new PDP context for each new type of
application being used.

As IMS really began to emerge from the standard, and considering the future of IP-based
applications (including the upcoming VoIP transition), the 3GPP community decided to define
a new architecture for more flexible policy control and charging mechanisms.
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(i) The �Flow Based Control� Enhancement
Figure 2.19 illustrates this major evolution. As in the pre-Release 6 UMTS standard, one PDP
context corresponds to one set of negotiated Quality of Service attributes. Charging is applied
to each PDP context as a whole. Thanks to Release 6 evolution, the network has the possibility
to identify the different SDF (Service Data Flows) being aggregated within a single PDP
context. This gives the possibility to the network of controlling (meaning allowing or
blocking) each of the flows and charging the end-user having a much better accuracy.

Each of those elementary flows, also known as SDF (Service Data Flow), is defined
in 3GPP specifications as a 5-tuple (source IP address, destination IP address, source
port, destination port, protocol used above IP). This definition allows identifying each of
the information flows from the mass of IP packets sent and received by the terminal, for
example:

. AWeb-browsing session towards server �A�.

. Another Web-browsing session towards server �B�.

. A streaming session from server �Y�.

. A SIP-signalling flow associated to an IMS service.

. . . .

Figure 2.20 illustrates the new network elements introduced in the R6 standard to allow
flow-based policy control and charging. For that purpose, two new network elements have
been introduced:

. The Policy Decision Function (PDF).

. The Charging Rules Function (CRF).

The PDF is the network entity where the policy decisions are made. As the IMS session is
being set up, SIP signalling containing media requirements are exchanged between the
terminal and the P-CSCF. At some time in the session establishment process, the PDF receives
those requirements from the P-CSCF and makes decisions based on network operator rules,
such as:

. Allowing or rejecting the media request.

. Using new or existing PDP context for an incoming media request.

. Checking the allocation of new resources against the maximum authorized.

GGSN 

1 PDP bearers = 1 QoS flow 
→ PDP-based charging →

GGSN 

1 PDP bearer = n service flows 
→ Flow-based charging →

Up to UMTS R5 UMTS R6 enhancement

Figure 2.19 The evolution of Policy Control and Charging.
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The GGSN is in charge of enforcing policy decisions received from the PDF over the Go
interface. The policy rules are either �pushed� by the PDF, e.g. as new media are added to an
existing session, or �requested� by the GGSN itself, when the establishment of a new PDP
context is requested by the terminal. The policy-enforcement process performed by the
GGSN takes the form of a �gating� process. Each packet received by the GGSN in the
upstream or downstream direction is classified (meaning associated with one of the existing
Service Data Flow) and checked against filters being defined by the PDF for the correspond-
ing Service Data Flow (SDF).

The CRFs role is to provide operator-defined charging rules applicable to each service data
flow. TheCRF selects the relevant charging rules based on information provided by the P-CSCF,
such as Application Identifier, Type of Stream (audio, video, etc.), Application Data Rate, etc.

Charging rules are then provided by the CRF to the GGSN in the form of a packet filter
similar to the 5-tuple gate definition above. Using the charging rules, the GGSN is able to
count packets for each of the service data flows and generates corresponding charging
records.

The two new CRF and PDF network nodes interact with the GGSN and the P-CSCF using
specific interfaces named in the figure. As for many IMS-related interfaces, Gx, Go, Gq and
Rx interfaces make use of already existing IETF protocols. Go is based on COPS, which is
specified in the following IETF document:

. RFC2748, �The COPS (Common Open Policy Service) Protocol�.

The COPS protocol proposes generic policy control for packet networks and is based on a
simple client/server model. In the COPS terminology, two entities are defined:

. The PDP (Policy Decision Point), which is the policy server making the decision – in the
UMTS case, this role is supported by the PDF.

. The PEP (Policy Enforcement Point), which is the policy client, responsible for enforcing
the policy decisions – in the UMTS case, this role is supported by the GGSN.

The other policy control and charging interfaces (Gq, Gx and Rx) are all based on an
extended version of the IETF Diameter protocol, similarly to the Cx interface mentioned in
the HSS section above.

CRF 

PDF 

GGSN P-CSCF 
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Figure 2.20 UMTS R6 Policy Control architecture.
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(ii) The 3GPP R7 UMTS Enhancement
The major improvement brought by the Release 7 of 3GPP in terms of policy and charging is
the definition of a new converged architecture, so as to allow the optimization of interactions
between these two functions. The R7 evolution involves a new network node PCRF (Policy
and Charging Rules Function) which is actually a concatenation of PDF and CRF. As a result,
evolved versions of the R6 interfaces have been defined, as illustrated in Figure 2.21.

This model is actually not specific to UMTS or UTRAN access networks, as it was defined
for all types of IP access, including 3GPP access types and also WLAN and fixed IP
broadband access. In the generic policy and charging control 3GPP model, the PCEF (Policy
and Charging Enforcement Function) is the generic name for the functional entity which
supports service data flow detection, policy enforcement and flow-based charging. In the case
of WLAN non-3GPP access, the PCEF is implemented by the PDG (Packet Data Gateway).

Similarly, the AF (Application Function) represents the network element which supports
applications that require dynamic policy and/or charging control. In the IMS model, the AF is
implemented by the P-CSCF.

The new R7-Rx interface combines both the former Rx and Gq with message definition –
both based on the Diameter IETF protocol – were actually very close. The P-CSCF can
therefore provide service-dynamic information to the PCRF using a single procedure. The
R7-Gx is defined in a backward-compatible way, in order to ease introduction in already
deployed networks. This means that a R7 PCRF can interact with R6 P-CSCF using former Rx
and Gq interfaces. Similarly, a R7 P-CSCF can also interact with R6 PDF and CRF nodes.

The new R7-Gx interface supports Gx and Go capabilities, so that policy decisions and
charging rules are provided from the PCRF to the GGSN using a single message. As R6 Gx
and Go are not based on the same protocols (Gx is Diameter-based whereas Go relies on
COPS), the choice was made to use Gx as a basis and to enhance it with all necessary features
to allow service-based local policy.

Reference documents about policy control

3GPP technical specifications:

. 23.125, �Overall High Level Functionality and Architecture Impacts of Flow Based
Charging: Stage 2�

. 23.203, �Policy and Charging Control Architecture�
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Figure 2.21 The UMTS R7 evolution.
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. 23.207, �End-to-End Quality of Service (QoS) Concept and Architecture�

. 29.211, �Rx Interface and Rx/Gx Signalling Flows�

IETF documents:

. RFC2748, �The COPS (Common Open Policy Service) Protocol�

. RFC2753, �Framework for Policy-Based Admission Control�

. RFC3588, �Diameter Base Protocol�

2.5.2 Evolved UMTS Policy Control

Not surprisingly, the model for policy and charging architecture in EPS networks is aligned
with the latest 3GPP UMTS Release 7 evolution (Figure 2.22):

. The new S7 interface introduced in EPC is based on its R7-Gx.

. The PDN gateway plays the role of the PCEF, as an equivalent of the GGSN for the policy
and charging control functions.

2.5.3 The Charging Architecture

From the network operator point of view, charging is one of the most critical features. Network
subscriber charging is not only the major source of revenue, but also an area in which an
operator can innovate and differentiate from its competitors by creating cost-attractive
services and solutions while not jeopardizing the whole network profitability.

In legacy 2G or 3G circuit-switched based networks, charging was quite an easy task.
Any granted user service request involved the allocation of a fixed amount of resource for
a given time. Because circuit switched technology means guaranteed bandwidth and
delay, the charging rules are generally simply based on the allocated resource size and
use time.

When using packet applications and packet transmission, the picture is a bit different. The
end-user may be inactive for long periods of time [e.g. during the silent phase of a PoC (Push-
to-talk Over Cellular) session or during the time needed to read a Web page freshly
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Figure 2.22 The EPS policy and charging architecture.
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downloaded] and, during those inactivity phases, the resources may be used for another
purpose – this is one of the main benefits of packet-based networks. Therefore, it may be seen
as quite unfair to only charge the end-user for connection time or service-use duration.

The standard does not specify the charging schemes, leaving to the operator the choice to
charge the end-user based on any of the following (nonexhaustive list):

. Data volume.

. Session or connection time.

. Service type (Web, email, MMS, etc.).

. Allocated Quality of Service.

. Type of technology being used (2G, 3G, evolved 3G, WLAN, etc.).

For that purpose, the 3GPP standard proposes all the necessary features to allow a flexible
charging scheme to be implemented by operators. The charging process is based on the
collection of various events and information which are stored in a formatted record called the
CDR (Charging Data Record). The format of the CDR is specified by the 3GPP standard and
depends on each type of service:

. PS domain access (as in 2G and 3G networks).

. IMS service.

. Any type of service hosted by an AS (Application Server) under the control of the operator.
This includes Multimedia Messaging Service (MMS), Push-to-talk over Cellular (PoC),
Multimedia Broadcast and Multicast Service (MBMS).

Table 2.3 Examples of CDR.

PS domain CDR

IMSI International Mobile Subscriber Identity
IMEI The IMEI (International Mobile station Equipment Identifier) of the

user terminal
Charging ID An identifier of the PDP context being used
Record opening time Time stamp when PDP context is activated
Duration Duration of this record
Traffic data volumes The amount of data per Quality of Service type
RAT type Type of Radio Access Technology being used by the terminal
. . . . . .

IMS CDR

Session ID The SIP session ID, as defined in the SIP specification
Role of node Indicates if the CDR is issued by a P, I or S-CSCF
Service starting time The SIP session starting time
Service ending time The SIP session closing time
SDP description Description of the session, the list of media components being used
. . . . . .
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Table 2.3 is an example of CDR for the PS domain and IMS session.
Figure 2.23 presents the network elements involved in the charging process and their

interaction with 2G, 3G and IMS network nodes. The role of the CDF (Charging Data
Function) is to collect charging information from the different nodes through the Rf interface
and build the corresponding CDR. The type of nodes being linked to the CDF is not limited. It
includes the PDN Gateway from the EPC architecture, IMS nodes (such as the CSCF servers)
but may also include all kinds of Application Servers like the BM-SC (Broadcast Multicast
Service Centre) or the PoC server (Push-to-talk Over Cellular). Those two services are further
described in Chapter 6.

TheRf interface is based on theDiameter IETF protocol, also used inmany IMS interfaces.
The Rf declination of Diameter makes use of extensions specific to the charging process. The
CGF (ChargingGateway Function) is a gateway between the CoreNetwork nodes and the BD
(Billing Domain). Its main task is CDR collection through the Ga interface, CDR storage,
CDR management (like CDR opening, closing, deleting) and secure transfer to the BD. The
default CDR transfer method over the Bx interface proposed by the 3GPP standard is FTP
(File Transfer Protocol), which is defined in the IETF specification RFC959. The Ga
interface is based on a simple UDP/IP tunnelling protocol whose only purpose is to transfer
the CDR.

For a given session, charging information is issued by different network nodes (SGSN and
GGSN for a PS session; P, I or S-CSCF for an IMS session). This information is used by the
CDF or CGF to build complete CDR, putting together the various pieces from the network
elements. The redundant information (such as data traffic volumes or session start and stop
Timestamp) is used to check the consistency between the views reported by the network
elements.

The Roaming Case
Revenues generated from active subscribers in visited networks represent a significant part of
operators� revenues. The roaming case requires specific mechanisms to be implemented
between networks to ensure that a network operator gets the revenues corresponding to the
resources being used in its network by other networks� subscribers.
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Figure 2.23 The architecture for Charging.
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Figure 2.24 presents the different network elements and interfaces involved in a roaming
situation. In such a case, charging information needs to be collected by both visited and home
networks. In the case of the IMS session, the visited network P-CSCF collects local
information about the SIP session and the visited SGSN gathers information related to the
PDP context being allocated (including allocated Quality of Service and data volumes). So
does the home network through the S-CSCF and GGSN.

At some point, when the session is over, the visited network will send the bill to the
subscriber home network using TAP (Transferred Account Procedure). TAP is a protocol
defined by the GSM Association for interchange of billing data between different network
operators, allowing them to bill each other for the use of networks and services through a
standard process. The TAP format, originally defined for GSM circuit-switched services, has
been enhanced to also cover packet-switched and IMS sessions. This includes specification of
new TAP record attributes such as data volume counts, Timestamps, IP address, Access
Point Number (APN – representing the GGSN the user has accessed to), requested and
negotiated Quality of Service. The TAP record format is described by specifications
maintained by the GSM association. It can be seen as a detailed charging bill submitted
by the visited to the home network. As an illustration, here is a list of information contained in
the TAP record:

. TAP record creation date and time.

. Charged units.

. Charge rate.

. Taxation information (including tax rate and type).

. Discount rate (when applicable).

. Local currency and exchange rates.

. Details about allocated PDP context.

. User data volumes.

. User connection time.

. . . .
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Figure 2.24 Charging in a roaming case.
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It is worth noting that even if the call is free in the visited network, e.g. in the case of a user-
terminated session, the home network shall receive the TAP record. This may be needed in
case the call or session transfer from the home to the visited network is subject to specific
fees.

Reference documents about charging

3GPP technical specifications:

. 32.240, �Charging Architecture and Principles�

. 32.251, �Packet Switched (PS) Domain Charging�

. 32.260, �IP Multimedia Subsystem (IMS) Charging�

. 32.295, �Charging Data Record (CDR) Transfer� (the Ga interface)

. 32.297, �Charging Data Record (CDR) File Format and Transfer� (the Bx interface)

. 32.299, �Diameter Charging Applications� (the Rf interface)

The TAP record format, defined by the GSM Association:

. TD.57, �Transferred Account Procedure Data Record Format Specification Version
Number 3�

ITU-T Recommendation:

. D.93, �Charging and Accounting in the International Land Mobile Telephone Service�

2.6 The Terminal

2.6.1 The User Device Architecture

From the development of packet data services and support, mobile terminal integrate more
and more features, as described in Figure 2.25. Because of the reduced size, supporting all
applications on a single device may be too limiting to the end-user, for the following reasons:

. Limited man-to-machine interface: most of the time, only a small keypad is available or
�direction pad�, limiting the possibilities for interaction with the device.

. Limited end-user experience caused by the poor audio quality or reduced display size.

. Limited storage capability.

. Limited battery life: supporting all features like radio transmission as well as colour display
or headset powering is very consuming. All of this may quickly drain the batteries of a small
device.

For these reasons, it may be of some interest to dissociate the provision of the service itself
and the modem side of the service (this modem part relates to the pure data-transmission part
of the terminal, including the ability to support high bit rate transmission and seamless
mobility over a radio interface).
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To answer this need, the standard has defined a flexible architecture for terminal realization.
In this new model, all functions supported by a terminal are split between two elements: the
MT (Mobile Terminal) and the TE (Terminal Equipment). The model, shown in Figure 2.26,
presents the different parts of the mobile terminal (also called UE for �User Equipment� – a
term inherited from 3G/UMTS specifications). The terminal is described as a sum of a MT
module and a TE device, or possibly multiple TE devices. In addition, the UE also integrates
the user subscriber module (also known as the SIM card), further described into the next
section. With such a model, several user devices (or �TE� like a personal assistant or a camera)
may have simultaneous access to different Application Servers, using the same radio
equipment (the MT) and a single subscription (materialized by the SIM card).

Figure 2.26 Mobile terminal architecture split.

Figure 2.25 Mobile terminal and user services.
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The MT module contains all the functions related to the radio interface and wireless
network access and data transmission in general. Therefore, it supports the following features:

. Transmission and reception of data and signalling over the radio interface.

. Authentication and registration to the UMTS network.

. Management (including creation, de-activation and modification) of PDP (Packet Data
Protocol) contexts on request from a TE.

. Session control.

. Support of radio mobility functions, such as the handover.

The TE is the part the end-user has access to, as it supports all the functions related to user
applications and interfaces. It contains the following features:

. Control of application-related hardware functions, such as speaker, microphones, video
cameras, displays, etc.

. Support of user applications and services, such as email client, Web-browsing client,
instant-messaging client, etc.

. Support of application-related protocol and session-management functions (for IMS-based
applications, this includes protocol stacks like SIP, SDP and RTP).

The interface between MT and TE makes use of a simple command/response protocol
known as AT commands (for �ATtention�). This protocol interface allows the TE to control the
MT, for instance to request the establishment of a PDP context for setting up an IMS session,
or request the transmission of a SMS (Short Message), etc. The physical interface between the
TE and the MT is not defined by the standard. It may use any wired interface, like Ethernet,
USB or IEEE1394, or wireless interface, such as Bluetooth, IrDA infra red, 802.11 Wifi, etc.

Reference documents about the terminal interfaces

3GPP specifications:

. 27.007, �AT Command Set for User Equipment (UE)�

. 27.901, �Report on Terminal Interfaces�

2.6.2 Terminal Capabilities

In general, the standard defines mobile categories which correspond to different levels of
capabilities (represented by a set of supported features) and performances (expressed in terms
of maximum bit rate). This was the case in GPRS (the different classes of multi-slot
terminals), as well as for UMTS HSDPA and HSUPA. The interest is to limit complexity
for both terminal vendors (which can then choose which subset of the standard they will
implement as well as the degree of performance) and network manufacturers (which can limit
the list of possible terminal implementations and therefore reduce the effort in development
and inter-operability testing). Similarly, the standard defines classes of E-UTRAN terminal,
defined by a combination of reception and transmission bandwidth.
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2.6.3 The Subscriber Module

The provision of services to end-users through 3GPP technology (including GSM, UMTS and
Evolved UMTS) is dependent on a subscription to an operator. As a consequence, some user-
specific information needs to be stored on the terminal side, such as subscriber identity and
security credential, to allow the subscriber to authenticate to the network. For that purpose, the
operators make use of a UICC card (Universal Integrated Circuit Card), also known as a SIM
card (for Subscriber Identity Module) for GSM terminals or USIM (Universal SIM) for UMTS
terminals. All those terms are often described as equivalent. Strictly speaking, the UICC only
refers to the circuit card, its physical components, as well as the set of software and protocol
for data exchange with an external device which is common to all UICC cards. In contrast, the
SIM and USIM are referred to as the �application� supported by the UICC, represented by the
set of files, information and procedures specific to 3GPP networks.

TheUICC has therefore become a genericmulti-application platformwhich can support SIM
andUSIM applications, aswell as ISIM (IMSSIM),which covers all information related to IMS
functionsandsecurityprocedures. Inaddition, theUICCcansupportanyotherkindofapplication
forbanking,ticketingoraccesscontrol,e.g.basedontheJavaCardTechnology.Theavailabilityof
avalidUICCcard is a pre-requisite for a terminal to register to the network andactivate a service.
However, thestandardtoleratesoneexception:theemergencycall. In theemergencysituation, the
networkshallbeable toacceptcalls toemergencynumbers (suchas911forNorthAmericaor112
in Europe) initiated by terminals not containing any UICC (or an invalid UICC).

Therestof this sectionprovidessomedetailsabout thehardwareandsoftwaresideof theUICC.

(i) The Hardware Part
From a high-level perspective, the UICC is nothing more than a piece of plastic supporting a
microprocessor, ROM permanent memory containing the COS (Card Operating System), as
well as erasable and dynamic memory. The physical and electrical characteristics of the UICC
card are specified by a set of specifications issued by the ISO/IEC (International Organization
for Standardization/the International Electrotechnical Commission). The main reference
documents are:

. 7816-1, �Physical Characteristics�.

. 7816-2, �Dimensions and Location of the Contacts�.

. 7816-3, �Electronic Signals and Transmission Protocols�.

. 7816-4, �Interindustry Commands for Interchange�.
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Figure 2.27 The UICC �plug-in� format.
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Figure 2.27 describes one of the possible formats of the UICC, also known as the �plug-in�.
Two other formats exist: ID-1, which is the format used for credit cards and �mini-UICC�
(12� 15mm), which was introduced in early 2004 for small terminals.

Table 2.4 describes the role of the external contacts supported by the UICC, as in the ISO/
IEC 7816-2 standard. Over the years, the memory size of UICC modules has dramatically
increased, from a few kilo-bytes to a few hundreds of mega-bytes, so that the main limitation
of the UICC hardware is actually about the very limited data transfer rate (the current ISO/IEC
7816 standard transfer rate does not exceed 600Kb/s). In the 1980s, when 2G/GSM systems
were being defined, this was not felt as a limitation. However, the introduction of high-speed
smart-card alternative technologies – like the MMC (Multimedia Card) or the SD (Secure
Digital) card – able to cope with high-quality picture or video clip-based applications, makes
the UICC slow data transfer rate a real limitation.

This is the reason why the ETSI Smart Card Platform group (SCP) has adopted a new
technology for high-speed SIM card data transfer. This evolution was agreed at the end of
2006 for introduction in the Release 7 of the 3GPP standard and is therefore not specific to
Evolved UMTS networks. The new interface makes use of the two unused UICC contacts (C4
and C8). The data transfer specification is based on the USB �Inter-Chip� (IC) interface. This
modified version of the well known USB (Universal Serial Bus) specification has been
specially designed for short-distance communication between chips and is actually a minor
adaptation of the technology used on personal computers. The adaptations refer to, for
example, the interface voltage supply, which is no longer limited to 3.3V in order to cope with
other possible chip voltage classes, and the physical interface which does not require standard
USB connectors and twisted-pair cables. Table 2.5 describes the UICC contact assignments
when the USB-IC interface is active.

On the physical level of the USB interface, data are received and transferred using differential
DC voltage levels between the Dþ and the D� lines. As in the Inter-Chip USB standard
supplement, the maximum data transfer rate is about 12Mb/s, which corresponds to the legacy
USB 2.0 Full-speed mode of operation. In order to allow smooth introduction, the UICC USB
interface has been specified by the ETSI SCP group in a backward-compatible way. From a

Table 2.4 UICC contact assignment (from ISO/IEC 7816-2).

(Voltage supply) VCC C1 C5 GND (Ground)
(Reset signal) RST C2 C6 VPP (Variable voltage

for programming)
(Clock signal) CLK C3 C7 I/O (Data input/output)
Not used C4 C8 Not used

Table 2.5 UICC contact assignment for USB interface.

(Voltage supply) IC-VDD C1 C5 GND (Ground)
Not used C2 C6 Not used
Not used C3 C7 Not used
(Dþ data line) IC-DP C4 C8 IC-DM (D� data line)
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practicalperspective, thismeans thatUSB-capable terminaldevicesandUICCcards shallbeable
to interact with a non-USB-capable peer entity using the legacy ISO/IEC 7816 standard.

The ISO specifications listed at the top of this section are dedicated to the physical and
electrical aspects of the UICC. However, they also specify how information is transmitted to
and from the UICC as well as the file system to use in order to store and retrieve data on the
UICC card. This is a very important aspect of the subscriber module.

(ii) The UICC File System
All the data stored in the UICC are structured in a sort of file tree, as shown in Figure 2.28.
Each file contains one or several pieces of information and can be read individually by the user
terminal. There are three sorts of files:

. MF (Master File) is the entry point of the data structure.

. EF (Elementary File) is a set of bytes which actually represent the data stored.

. DF (Dedicated File) which allows functional grouping of files. A DF can contain a number
of EF plus some other DF.

A UICC card can contain quite a large number of files. Figure 2.28 only illustrates, in the
USIM application case, the highest levels of the tree structure. At the root of the tree, the UICC
contains key general files, such as:

. EFPL (Preferred Language), which defines the preferred language to be used on the terminal
user interface.

. EFICCID, which contains the UICC unique identifier.

The DFTelecom directory is also located at the top of the tree. It contains general-purpose
information, such as:

MF

EFICCIDEFPL

EFMSISDN

EFSMSP

DFPhonebook

DFGSM

EFHPLMN

EFIMSI

EFKc

EF…

DFTelecom

EF…

…

DFUSIM

EFKeys

EFIMSI

EF…

Figure 2.28 The USIM card file system.
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. EFMSISDN, related to the MSISDN numbers (or telephone numbers) associated to the
subscriber.

. EFSMSP, which contains information relative to the Short Message Service, such as the SMS
Center phone number, the message coding type, etc.

. DFPhonebook, which is a sub-structure containing the user-defined phone book.

In addition, two other DF are also present at the file root level: the DFGSM, containing all the
information needed by a GSM terminal to access to a 2G network, and the DFUSIM, which is
used by the terminal when accessing a 3G network. The UICC file structure is actually
designed in a backward-compatible way so that even a USIM card can be used in a 2G
terminal. When reading the UICC, the 2G terminal can retrieve all the information it would
have found in a genuine 2G UICC, thanks to the DFGSM structure. However, when such a card
is introduced in a 3G device, only the DFUSIM is considered by the terminal, which explains
the redundancies between the two DF.

For information, the following briefly describe the purpose of the EF present in the figure:

. EFHPLMN, which defines the home PLMN (or operator) scanning period when the
subscriber is roaming.

. EFIMSI contains the IMSI (International Mobile Subscriber Identity) of the subscriber.

. EFKc contains the GSM ciphering keys.

. EFKeys contains the 3G ciphering and integrity keys.

(iii) The Subscriber Module in Evolved UMTS
In order to allow backward compatibility, the EPS subscriber module will be based on the
UICC for the hardware part and on the USIM application for data organization and file
organization. This comes from the fact that EPS network standards rely on the assumption that
it may be possible for a subscriber having a 3G/USIM card plugged into an EPS-capable
terminal to access an EPS network. The additions to the existing data tree will be limited to the
additions specific to EPS networks, such as the specific security key and algorithms. More
details about EPS security aspects are provided in Chapter 5.

Reference documents about the UICC content and interface specification

ISO/IEC technical specifications:

. 7816-1, �Physical Characteristics�

. 7816-2, �Dimensions and Location of the Contacts�

. 7816-3, �Electronic Signals and Transmission Protocols�

. 7816-4, �Inter-Industry Commands for Interchange�

ETSI specifications:

. TS 102 221, �UICC-Terminal Interface: Physical and Logical Characteristics�

. TS 102 600, �UICC-Terminal Interface: Characteristics of the USB Interface�
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3GPP specifications:

. 31.101, �UICC-Terminal Interface: Physical and Logical Characteristics�

. 31.102, �Characteristics of the Universal Subscriber IdentityModule (USIM)Application�

. 31.103, �Characteristics of the IP Multimedia Services Identity Module (ISIM)
Application�

2.7 The Evolved UMTS Interfaces

This section intends to list all the interfaces defined in the scope of the EPS networks. From
the multiplicity of logical nodes in the architecture result many interfaces. Some of them are
brand new ones, whereas some others rely on existing 3G/UMTS ones – sometimes with
different names. Due to the difficulty in showing everything in a single picture, Table 2.6
should serve as a dictionary for all the EPS interfaces named in this chapter and in the rest of
the book.

2.8 Major Disruptions with 3G UTRAN-FDD Networks

The choice of OFDM technology on the radio interface and the various options chosen for the
E-UTRAN radio interface have some significant and disruptive impacts on the way the overall
network behaves. This section aims at describing the main impacts of some E-UTRAN
technical choices made in the standard definition on network architectures and supported
features, as regards to 3G/UTRAN FDD networks.

2.8.1 About Soft Handover

One of the main consequences of using a CDMA-based radio interface is about the need for
soft handover, also known as macro-diversity. In CDMA, each transmission channel behaves
as an interferer for the other channels. The consequence is that transmission power tuning is a
key point to preserve CDMA system capacity. This becomes critical at cell edge or in poor
coverage areas, where maintaining the radio link transmission quality is often a synonym to
increased transmission power. This is where soft handover helps, allowing the information to
be transmitted on different links – called the active set – and adding transmission diversity
gain. As illustrated in Figure 2.29, soft handover is a mechanism by which a terminal
maintains simultaneously several radio links in different cells for one single session or data
flow. Information is then recombined from the received radio links, either on the network or on
the terminal side, for the sake of transmitted power and associated interference. In 3G/
UTRAN, soft handover is applied to all dedicated channel transmission, including HSUPA
(the high-speed transmission technique for the uplink) also based on dedicated channels.
However, soft handover does not apply to HSDPA data transmission, which makes use of a
physical shared channel.

The consequence of soft handover on 3G/UTRAN architecture is that the Iur interface
between RNC is mandatory in case the different BTS involved by the soft handover are not
controlled by the same RNC. This is also a consequence of the fact that uplink and downlink
soft handover was actually defined as a RNC level feature. In such a case, 3G/UTRAN
standards distinguishes the SRNC (for Serving RNC) as being the RNC which controls the
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Table 2.6 Summary of Evolved UMTS interfaces.

Name Comments

S1 Between MME/Serving GW and eNodeB.
Supports the user and control plane traffic between the E-UTRAN and EPC.

S2 Between PDN GW and non-3GPP access.
Supports control and mobility procedures for non-3GPP access technologies.

S3 Between MME and 2G/3G SGSN.
Supports user and bearer information exchange for inter-system
mobility in idle or active state.
Based on the 2G/3G Gn interface (GTP protocol).

S4 Between Serving GW and 2G/3G SGSN.
Supports user plane data transfer for inter-system mobility.
Based on the 2G/3G Gn interface (GTP protocol).

S5 Between Serving GW and PDN GW.
Supports bearer management and user plane data tunnelling between the two gateways.
Based on GTP.

S6 Between the Evolved Packet Core nodes and the HSS.
Supports the procedures for user subscription data retrieval and location update.
Based on Diameter.

S7 Between the PDN GW and the PCRF.
Supports the procedures for Policy and Charging rule transfer from the PCRF to the EPC.
This interface is based on the 3GPP R7 Gx definition.

S8 Between the visited Serving GW and home PDN GW.
It supports packet and user plane transfer between the two gateways for the roaming cases.
This interface is a variant of S5, based on 2G/3G Gp interface (GTP protocol).

S9 Between the visited PCRF and the home PCRF.
This interface is a variant of S7 for the roaming cases.

S10 Between the MME nodes.
This interface is used in case of inter-MME mobility (or relocation) to
exchange session and user contexts between nodes.
Based on the Control part of GTP protocol (GTP-C).

S11 Between the MME and Serving GW.
Supports bearer management e.g. at user attachment or service request.
Based on the Control part of GTP protocol (GTP-C).

X2 Between eNodeBs.
Supports mobility and user plane tunnelling features.
Based on the same user plane protocol as S1.

Rx Between PCRF and P-CSCF.
Used to provide service dynamic information to the PCRF.
Based on an evolution of the IETF Diameter protocol.

SGi Between the PDN Gateway and the packet data network.
Based on the 2G/3G Gi interface.

Ga Between CDF and CGF.
Supports the transfer of CDR (Charging Data Record) from the CDF to the CGF.
Based on UDP/IP tunnelling.

Bx Between the CGF and the BD.
Supports secured transfer of the CDR to the BD.
Based on the FTP protocol.

Rf Between an IMS network entity or an Application Server and the CDF.
Supports charging information transfer to the CDF.
Based on an evolution of the IETF Diameter protocol.



communication with the terminal from the DRNC (for Drift RNC) as being the RNC which
only controls the BTS involved in a soft handover.

The cost for having an Iur interface is not negligible fromanoperational perspective.When an
operator mixes equipments from different manufacturers in the access network, or decides to
upgrade parts of it, lots of care has to be taken on interoperability between the RNC nodes being
connected through the Iur. In addition, the Iur requires the operator to pay for supporting the
inter-RNC connectivity and the traffic sent over the Iur. This traffic can, however, be reduced
thanks to the �relocation�mechanismwhich allows changing the call-controlling RNC to amore
appropriate RNC. In any case, even if Iur is not needed in most of the soft handover cases
(because all the cells involved in the active set are controlled by the same RNC), there is still the
cost of multiple Iub link transmission to be supported between the SRNC and all the BTS.

The side effects of the Iur interface have, however, to be mitigated by the fact that a RNC
can control a large number of cells, so that the Iur is actually only needed at the edge of the
RNC area. The actual figure depends, of course, on the implementation and physical capacity
of each RNC, as well as the traffic load. In any case, it is usually admitted that a RNC can
control several hundreds of cells. CDMA macro-diversity therefore has significant impacts in
terms network architectural definition and network operation. In E-UTRAN, from this
perspective, the picture is very different. Soft handover is no longer needed or required,
which is a significant change in terms of overall access network definition and operation.

As already mentioned, the E-UTRAN architecture introduces an X2 interface between
eNodeB. However, this new interface is not an Iur equivalent, as there is no soft handover
support in E-UTRAN. X2 is actually an optional interface, which provides a data-forwarding

(S)RNC

BTS

Iur

Core network

BTS

(D)RNC

RNC in uplink: frame selection 
based on estimated quality 

Terminal in downlink: recombination 
of received signals 

Iub

Iub

Figure 2.29 An example of UTRAN soft handover.
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service in case of inter-eNodeB mobility, for the sake of lossless mobility. More details about
X2 usage are provided in Chapter 5.

2.8.2 About Compressed Mode

One fundamental point of CDMA radio interface is that radio transmission is continuous, and
simultaneous for both uplink and downlink transmission. In principle, this would not be a
problem by itself, except for some specific radio mobility cases, which the CDMA radio
interface is not able to work out without some additions. When moving around cells of the
same frequency, the terminal CDMA receiver can quite easily monitor them – build its own
list of best cell, so that the active set is managed at best, thanks to the soft handover
mechanism. However, problems arise in the case of multi-frequency or multi-access technol-
ogy deployment, as is more and more the case in countries where cellular communications
have reached maturity. When continuously receiving radio frames, the CDMA terminal has no
time to switch its receiver to another frequency, and monitor neighbouring cells, e.g. in 2G/
GSM, of using another UMTS/FDD frequency band.

There may be multiple solutions to this issue. The most obvious one would be to build
multiple receiver terminals, which is a very costly and power-consuming option. Another
solution brought by the 3GPP standard was to change the CDMA radio frame structure in
order to artificially create some holes so that the terminal has time to perform other frequency
of even radio-system monitoring. This mechanism, widely deployed in UMTS networks, is
known as Compressed Mode.

Figure 2.30 shows an example of Compressed Mode operation. In this case, periodic
monitoring windows are created in uplink and/or downlink radio frames using Compressed
Mode, so that the terminal can decode beacon information of a neighboring GSM cell. The
3GPP UTRAN standard documents define different methods for creating these transmission
gaps, the main two being:

. Spreading Factor reduction: in this method, the same amount of data is sent in half the
time thanks to the use of a reduced SF code. The decrease in spreading gain is then
compensated by increased power during the time the code is used.

GSM 51-multiframe 
ª235 ms 

…

…

BCCH 
(GSM beacon) 

Compressed Mode 
monitoring window 

6 x 10 ms UTRAN FDD 

…

…

Figure 2.30 An example of UTRAN Compressed Mode operation.
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. Higher Layer Scheduling: this method is only suitable for non-real time communi-
cations, as it relies on the MAC data scheduler to limit data transmission at some specific
time.

There is no ideal method, and both of them have drawbacks. The Spreading Factor
reduction method requires more transmission power and creates more interference when the
compressed mode is active, which has some impact on network capacity. The second method
only results in a slight increase in radio transmission latency, but it is not applicable to circuit
services like voice.

As further described in Chapter 3, E-UTRAN OFDM-based radio interface relies on
frequency and timeslot allocation and does not mandate continuous transmission and
reception. This leaves the possibility for an E-UTRAN terminal to monitor neighboring
beacons, frequencies and systems when it is not required to receive or transmit data on the
radio interface. For that reason, Compressed Mode is no longer needed in E-UTRAN.

2.8.3 About Dedicated Channels

In its early definition, UMTS was mainly thought of in terms of a dedicated channel system,
based on the 384-Kb/s max DCH Dedicated Transport Channel. Initial UMTS standard also
proposed some limited possibilities for shared channel transmission on FACH (Forward link
Access Channel) or on the DSCH (Downlink Shared Channel). Transmission on FACH was
never intended for high bit rate, due to the lack of an efficient power control scheme and also
because of the limitation of the uplink RACH (the RACH is the Random Access Channel used
in combination with the FACH). Regarding DSCH, it was actually never developed and
deployed as a commercial solution because of its high degree of complexity and the lack of
real performance improvement.

HSDPA introduced a major change in UTRAN by allowing higher bit rate transmission on
shared channel or shared group of physical resources, also known as the HS-DSCH transport

DCH HS-DSCH FACHDCH 

Dedicated 
Transport Channel

Shared
Transport Channel

High-Speed Shared 
Transport Channel

1 2 1 2 1 2

Figure 2.31 The three options for downlink data transmission in 3G/UTRAN.
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channel. Thanks to new modulation scheme and fast HARQ packet repetition scheme, the
radio performances were significantly better than before. However, HSDPA still relies on an
associated dedicated channel used in downlink for power control commands. A dedicated
physical channel is also present in uplink to carry HARQ indications and channel quality
information.

In practice, all three transmission schemes (Figure 2.31) often co-exist with the same cell,
set of cells, or geographical area. For circuit-based services requiring constant delay and
bandwidth, transmission on DCH will still be applicable until HSDPA allows cost-efficient
guaranteed bit rate solution. In addition, for low bit rate packet data service or MBMS
(Multimedia Broadcast Service), transmission over the FACH will still be applied.

E-UTRAN data transmission on radio interface is based on shared channels, whatever the
service type and requested Quality of Service. Although this puts more constraints on the radio
scheduler (in the sense that the system needs to ensure that all data flows are transmitted with
the requested Quality of Service), there is only one unique solution for user data transmission
which is a major simplification for network design and operation. It is no more needed to
partition radio interface physical resources in different and competing sets of shared or
dedicated channels.

Evolved UMTS Overview 73





3

Physical Layer of E-UTRAN

3.1 Basic Concepts of Evolved 3G Radio Interface

From a radio and network point of view, E-UTRAN focuses on the UTRAN evolution and
optimization, keeping in mind that UTRAN HSDPA and HSUPAwill be highly competitive
for years. E-UTRAN is a significant technology step, aiming to ensure the competitiveness
continuation of the 3GPP family of technologies.

Among future challenges that E-UTRAN will have to face, one can list:

. The demand for higher data rate.

. The expectations of additional 3G spectrum allocations.

. A greater flexibility in the frequency allocation methods: E-UTRAN can operate in 1.25,
2.5, 5, 10, 15 and 20-MHz bandwidth in uplink or downlink, paired or unpaired spectrum.
Coexistence with GERAN and UTRAN should be possible.

. The competition with unlicensed technologies like WiMAX.

Therefore, the objectives of the system will roughly be:

. Significantly increased peak data rates: up to 100Mb/s in downlink and 50Mb/s in uplink in
a 20-MHz spectrum for a user throughput three or four times the user throughput of
UTRAN.

. Increased cell edge bits rate.

. Improved spectrum efficiency (three to four times the UTRAN DL and two to three times
the UL).

. Reduced latency: reduce the latency between RRC states change – from idle to active state –
and for transmission over the network radio access (less than 5ms).

. Scaleable bandwidth. (1.25/2.5/5/10/20MHz).

. Reduced operation cost.

. Acceptable system and terminal complexity, cost and power consumption.
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. Compatibility with previous releases and with other systems.

. Optimized for low mobile speed (<15 km/h) but supporting high mobile speed (up to
350 km/h).

Among all the modern concepts considered for future radio interfaces, two technologies
seemed particularly promising to be considered for UTRAN evolution: OFDM (Orthogonal
Frequency Division Multiplex) and MIMO (Multi Input Multi Output).

For most international experts, members of standardization bodies, it is granted now that
these two technologies will be added to the technological E-UTRAN puzzle whose original
3G system is the very first foundation. They present indeed some advantages with respect to
2G CDMA in terms of flexibility of resources allocation for packet transmissions and data rate
increase for a given complexity.

We will describe in a first part the main principles of these technologies and their variants
before focusing in a second part on the E-UTRAN technologies as such.

3.2 OFDM (Orthogonal Frequency Division Multiplex)

The OFDM principles were elaborated in the early 1960s with the first multi-carrier systems,
especially military systems but without massive impact because of the lacunas of the
electronic circuits and signal processing available at this date.

This technology came back in the 1980s for the application to multipath channels. Such
channels are characterized by a non-flat frequency response which includes deep holes known
as �selective fading�. The basic idea for OFDM is, as wewill see, to spread the information on a
lot of sub-carriers in order to create very narrow band channels, experimenting in each of them
a frequency response that can be considered as uniform or �flat�.

These multi-carrier modulations became practically interesting, since a completely nu-
merical structure of a modulator was highlighted based on Fast Fourier Transform (FFT).
Apart from the projects of future use of the OFDM for the applications of E-UTRAN radio
communication, the OFDM is used particularly in the digital audio broadcast system (DAB,
�Digital Audio Broadcasting�), and digital video broadcast system (DVB, �Digital Video
Broadcasting�), High data rate local area networks, and DSL type wire line networks. In
addition, this technology is used in the broadband wireless packet access of radio called
WiMAX.

The OFDM technology is thus a well known technique which consists of multiplexing on
frequency subcarriers some information to be transmitted on a channel of communication.
Moreover, the subcarriers are orthogonal between them, owing to the fact that the minimal
duration of information carried by each subcarrier is the reverse of the value of the band of
modulation of the subcarrier (Nyquist criterion).

Figure 3.1 illustrates the general principles of a transmission carried out by using
technology OFDM. A signal carrying information must be transmitted by a transmitter, to
be received and interpreted by a receiver. The information carried by this signal includes a
succession of binary characters.

Let Xn indicate a quantity of information in series to be transmitted for the n-user. Initially, a
module transforms this flow series into several N parallel flows Xn,0, Xn,1 . . . Xn,N�1. On a
purely illustrative basis, each one of these parallel flows can consist of a succession of binary
characters of duration equal to Tu. A quick study of the modulation shows that the signal sent
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on the channel is the reverse FFT (or IFFT, �Inverse Fast Fourier Transform�) of the source
signal. A reverse FFT is then carried out within the transmitter from the N input parallel flows
Xn,0, Xn,1. . . Xn,N�1.

At the end of the transmitting operation, an OFDM symbol Sm of Tu duration is obtained.
This OFDM symbol represents a set of binary data coded on frequencies separated by the
modulation band as indicated above. This modulation band obviously depends on the
modulation chosen to create on each subcarrier a modulated symbol – we represent a
classical QAM (Quadrature Amplitude Modulation) in Figure 3.1.

The OFDM symbol Sm is then transmitted by the transmitter on a channel of communica-
tion which can be a radio channel, for example.

Figure 3.2 underlines the N subcarriers case, in which the symbol OFDM is spread on
subcarriers Sm(i); i2[1, N].

From the reception side, the receiver, while listening to the channel, receives a symbol Sm
corresponding then to the transmitted symbol OFDM Sm, putting aside disturbances, intro-
duced by the channel or external interferences.

A Fast Fourier Transform or �FFT� is then carried out on the portion of received signal
corresponding to the symbol ŝm. Data elements X̂n;0; X̂n;1 . . . X̂n;N�1 are estimated starting
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Figure 3.2 The OFDM symbol.
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from this symbol, each data element corresponding to the information transmitted on a given
frequency subcarrier. Then, a parallel/serial conversion allows obtaining an estimate X̂n of the
transmitted information Xn.

The pulse shaping filters of Figure 3.2 may then be used to window the temporal shape of
the data with an aim of reducing their frequency spectrum spread out.

In addition, it is common to use a guard time interval in each symbol OFDM, aiming to
reduce the Intersymbol Interference (ISI).

Indeed, when the communication channel on which the signal is transmitted includes
multipaths, as it is generally the case for an urban radio channel, jamming replicas of the
signal can be received at the receiver with respective delays corresponding to the various
paths. It thus results in a certain overlapping between portions of signal relative to successive
OFDM symbols, likely to makemore difficult the estimate of information transmitted and thus
to degrade the quality of the reception.

The guard time interval consists of increasing the duration of each useful symbol OFDM, by
duplicating at the end of the symbol certain binary characters placed at the beginning of this
symbol, or conversely.

Such addition of redundant information is named �insertion of a cyclic prefix� to the symbol
OFDM, which will be withdrawn in the receiver after convolution with the impulse response
of the channel.

Obviously, this part of redundant information can be a prefix, i.e. consists of the duplication
of a given number of the starting bits of a slot, or a suffix, i.e. the duplication of a given number
of bits at the end of the slot, or even both a prefix and a suffix with duplication of bits of both
types.

The receiver then benefits from the duplication of certain binary characters to improve the
estimate of the useful information of each symbol.

This operation contributes to transform the convolution of the signal by the channel response
into a cyclic convolution (property of the circulating matrix), making easy the demodulation of
the symbol transmitted on each subcarrier. The Ts duration of the new extended transmitted
symbol is then equal to Tuþ Tg, where Tg indicates the duration of the guard time.

Mathematically, the basic idea of OFDM thus consists of dividing the band available into N
sub-bands and transmitting in each one of them to an N times weaker rate than that which
would be used in the total band. Subcarriers must be as close as possible, while preserving the
orthogonality. We will see that the equalization then becomes extremely simple.

For instance, assuming f0 is the bandwidth subcarrier,

SnðtÞ ¼
XN�1

i¼1

Xn;i:cosð2�n f0t þ �kÞ ¼ Re
XN�1

i¼1

cn;i:e
j:2�ðn f0tþ�nÞ

 !
; ð3:1Þ

in which we have, neglecting the index,

cn ¼ Xne
j:�n : ð3:2Þ

The Xn can be selected in order to exploit the band available in the best way possible. The
signal s(t) can be sampled at the frequency 2.N.f0 while respecting Shannon [the 2N samples of
the OFDM symbol to be transmitted can thus be obtained by inverse FFT on the vector
ð0; c1; . . . ; cN�1;0; c*N�1; . . . ; c1*ÞT: this construction ensures simplifying that the inverse
FFT is a real sequence but the inverse FFT can also be complex, as in E-UTRAN].
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This very effective implementation is one of the keys of the success of modulations OFDM.

To sum up: Advantages of OFDM for mobile radio

The advantages of the modulation OFDM essentially come from its performance in
comparison with the simplicity of realization of the associated receiver, which incorporates
only one device intended for carrying out the FFT of the received signal followed by a
simplified equalizer correcting on each subcarrier the resulting flat fading (one constant
complex gain per subcarrier).

The long symbol time makes the signal resistant to multipaths and the guard interval
limits the intersymbols� interferences.

The orthogonality between subcarriers allows a huge spectral efficiency.
No intra-cell interference cancellation system is required.
Moreover the OFDM has other advantages, with respect to the good filling of the

spectrum or flexible allowance of the frequencies.
No one can today easily predict the evolutions allowed by the regulatory bodies dealing

with the frequency spectrum in all the countries of the world. If the United States seems
technology agnostic when compared to the rest of the world, it remains that certain military
applications or television broadcasters occupymany portions of spectrum and do not intend
to be dislodged that easily.

However, it is particularly important to find some bands not too high in frequencies, to
offer a reasonable range in cellular telephony for reasonable cost. It is one of the interests of
the OFDM to be able to fill the small holes within a spectrum already partly allocated,
while placing here and there the adequate number of subcarriers.

Moreover, the final Fourier Transform can then be replaced by several Fourier
Transform with less complexity granted the convexity of the log function [complexity
of a fast transform of Fourier is in N.log.N, but n.log(n) +m.log(m)< (n+m).log(n+m)].
This also provides an advantage with respect to the spectrum scalability required for E-
UTRAN.

In case a feedback on the quality of the channel is available on the downlink, a base
station can allocate to a user the better data rate on the better subcarriers in the signal-to-
noise ratio sense, optimizing in mean the data rate for all users. This property is known as
�water-filing�.

A simplified global vision of an OFDM transmitter/receiver block scheme, for which we
have arbitrarily chosen the QAM modulation, is shown in Figure 3.3.

The role of the �subcarriers mapping� box will be discussed in the next section.

D
E
M
U
X

Q
A
M IFFT 

D
A
C

D
E
M
O
D

M
U
X

H Channel 

Full-
size 
FFT 

A
D
C

Sub-
carrier 
de-
mapping 

Sub-
carrier 
mapping 

Cyclic 
prefix 
insertion 

Cyclic 
prefix 
removal 

Z = H.F–1.S + N X S F–1.S

E

Q

U

A

L

Yi = Hi.Si

Figure 3.3 Simplified structure of a transceiver OFDM.

Physical Layer of E-UTRAN 79



3.2.1 OFDMA Multiple Access

OFDMA is a scheme chosen for the downlink for E-UTRAN.
OFDMA is a reliable technology that has been already chosen for WiFi, WiMAX, ADSL/

ADSL2+ or DVB technologies. It resists well to multipaths, allows a high spectral efficiency,
especially with its MIMO compatibility, and a reduced complexity of implementation.

In OFDM systems, there are several processes of multiple accesses which can be used to
distinguish the users. One of the simplest consists of choosing for a user given a unique law of
choice of subcarrier frequencies. More precisely, each user is characterized by the choice of a
set resource chosen in the frequency–time plane. The traffic multiplexing is performed by
allocating to each user a pattern of frequency–time slots, depending on its data rate. We then
speak of OFDMA. From a frequency point of view, according to the choice of mapping of
symbols on subcarriers, the subcarriers allocated to one joint can be joint or separated. From a
frequency diversity point of view, the separated scheme is obviously better.

Figure 3.4, still with an arbitrarily chosen QAM modulation, illustrates the two different
ways the mapping box of the above figure can map the subcarriers for a given user. The
scheme on the left provides much more diversity than the second one.

Figure 3.5 illustrates the resource distribution between user channels, common control
channels and pilot symbols. Common control channels bring classically some information on
the network, the cell, etc. Pilot symbols are useful to perform the identification of the channel
response. Thanks to these known symbols, channel response can be interpolated both in time
and frequency and simply equalized, as we will see in the following paragraph.

Figure 3.5 The time–frequency allocation pattern.
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Figure 3.4 OFDMA methods of separating multiple users.
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According to the speed authorized for the terminals, and the fading characteristics, a more
or less dense pilot�s pattern is needed, as the pilot position in the frequency domain is used to
determine with enough accuracy the frequency selectivity of the channel and the pilot position
in the time domain has to cope with high-speed mobiles.

It has been shown from a frequency and time channel sounding perspective that a good way
of arranging these pilot symbols is to place them so that they form some diagonals in the time–
frequency space.

(i) Pilot Symbols and Equalization
Once the cyclic prefix has been removed, the received signal can be written as

Z ¼ HF�1sþ n; ð3:3Þ
where s¼ [s0 . . . sN�1]

T are the transmitted OFDM symbols and F the matrix with Fourier
coefficients: fn,m¼ e j2nm/N

We have

H ¼

h0 0 � � � 0 hL � � � h2 h1
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0

0 � � � � � � 0 hL � � � h1 h0

2
666666666666664

3
777777777777775
;

which is the matrix defining the impulse response of the channel, the form of which is due to
the cyclic prefix addition and is well known as a circulating matrix whose properties allow to
consider to write the corresponding formulas in the frequency domain: theoretically, this
comes from the fact that the Fourier Transform of the convolution of the product is the product
of the Fourier Transform.

H can be diagonalized and its eigenvectors is the FFT of the pattern.
Thus,

H ¼ F�1DF; D ¼ diag ðH0; . . . ;HN�1Þ and ðH0; . . . ;HN�1Þ
¼ FFTðh0; . . . ; hL; 0; . . . ; 0Þ: ð3:4Þ

Then, the received signal is

Z ¼ F�1DFF�1sþ n ¼ F�1Dsþ n ð3:5Þ
And, after FFT achievement in the receiver, this can be written as

Y ¼ FZ ¼ FF�1Dsþ Fn ¼ Dsþ Fn ð3:6Þ
and is resuming in a pure simple scalar operation

Yi ¼ Hisi þ n0i; i ¼ 0; . . . ; N�1; ð3:7Þ
in which n� keeps the same Gaussian properties as n.
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Therefore the equalization scheme is ultra-simplified, as it consists only of dividing the
received signal after FFT Yi by the complex value of the signal channel response interpolated
on the pilot signals Hi:

Si � Y i=Hi: ð3:8Þ

3.2.2 MC-CDMA Multiple Access

Aside of OFDMA, some work has been done about the separation of the users on a CDMA
basis, while keeping the advantages brought by the OFDM. This type of technology is often
called MC-CDMA (Multi Carrier CDMA) (Figure 3.6). In this technique, like in classical
CDMA, some spreading codes are used to multiplex the different users on a code-per-code
basis before distributing the resulting summation on the OFDM subcarriers. This way of
arranging the multiple access schemes is mentioned here in this section as it is a scheme that
many actors of telecommunications, especially in Japan, advocated for in a fourth-generation
context. However, it has not been chosen for E-UTRAN.

The receiver functions by reversing the stages of the emission: FFT initially then followed
by a reverse spreading by orthogonal codes and/or pseudo-orthogonal ones (ci).

3.2.3 Common Points between OFDM, CDMA, MC-CDMA, etc.

(i) The OFDM: Still a Spreading-Out Matter
Spread spectrum per direct sequence (DS-CDMA) is well known. It is established that the

OFDM as well as the MC-CDMA is also obtained by spreading operators. Eventually, this
leads to a unified representation of these processes of modulation or transformation of the
signal in order to bring the two worlds closer.

For demonstration, we introduce a complex vector X(n.Ts)¼ [x0(n.Ts) . . . xN–1(n.Ts)]
T

containing a whole of N independent symbols of communications. These symbols must be
transmitted in the same Ts time interval from a basic station or an access node to some
terminals.

The DS-CDMA, OFDM,MC-CDMA solutions can be formalized as below, using a generic
vector transformation:

Sðn:TsÞ ¼ O:Xðn:TsÞ; ð3:9Þ

in which O is a matrix of spreading operator in the broad sense (N.N) for which each column
represents a particular sequence of spreading. The kth column of theOmatrix is the code used
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Figure 3.6 Transceiver MC-CDMA for the user m.
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for the xk(n.Ts) symbol. The vectors S(n.Ts) represent the samples of the signal which will be
received by the receiver after passing through the �air� interface.

For the DS-CDMA (direct sequence), the operator O is quite simply resulting from the
product of a diagonal matrix D whose elements come from a long scrambling code of gold
type (case of the UMTS) by a square matrix C of Walsh-Hadamard codes.

Thus,

O ¼ D:C: ð3:10Þ
For the OFDM case,O is simply the matrix with Fourier coefficients: fn,m = ej2nm/N, andO =F.

For the MC-CDMA, we thus have naturally, taking into account the linear character of the
transmitter and the receiver,

O ¼ F:D:C: ð3:11Þ
To reflect in a precise way the operations of demodulation, we need to introduce a model of

channel, by supposing that fading remains constant over a Ts time; we then have an expression
to model the channel:

Hðn:TsÞ ¼
XL
k¼0

�kðn:TsÞ:�ðn:Ts�� kÞ; ð3:12Þ

in which the coefficients ak are Gaussian-independent variables. Thanks to the insertion of a
prefix for the OFDM (or even for the CDMA) and to its suppression in the receiver, the
impulse response of the channel is finished and the receiver can only consider the symbols
resulting from the vector X(n.Ts).

Using a matrix notation, the channel is thus noted as

Hðn:TsÞ ¼
XL
k¼0

�kðn:TsÞ:Jk; ð3:13Þ

where J ¼ 0 1

IN�1:N�1 0

� �
is a N.N matrix.

The received signal is then

Zðn:TsÞ ¼ Hðn:TsÞ:Oðn:TsÞ:Xðn:TsÞ þ Bðn:TsÞ; ð3:14Þ
where N(n.Ts) is a white noise of power spectrum density N0 such that E(N(n.Ts).NH

(n.Ts))¼ s2.I. In the gap time [n.Ts, (nþ 1).Ts], we will simply write Z¼H.O.XþN.
From now, we can find the expression of a traditional receiver of MMSE type (Minimum

Mean Squared Error), the goal of which is to isolate a dispreading (in the broad sense) matrix
W which minimizes the error between the Xest¼WH.Z estimate and X. WH represents the
Hermitian transform of the W matrix.

And, mathematically, we are looking for W such that

E½ðWHZ�XÞ2� ð3:15Þ
is minimized. The well known solution of this equation is given by

WMMSE ¼ ðH:O:OH:HH þ �2:IÞ�1:H:O; ð3:16Þ
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in which we have supposed that each communication symbol is independent, white and has a
unit power, e.g. E[X.XH]¼ I.

In the case of the OFDM, one finds setting s¼ 0 in Equation (3.16)

WOFDM ¼ H�H:F; ð3:17Þ
which indicates, as already seen, that the receiver simply consists of a FFT followed by an
equalization. For the CDMA, one finds the traditional Rake receiver

Wrake ¼ H:D:C: ð3:18Þ

3.2.4 Frequency Stability Considerations for OFDM Systems

Coming back to OFDM, an important constraint is the overall stability requirements of the
system, whereas CDMAwas more penalized by the number of fast calculations required by
the �chip-level processing� operations required for synchronization and demodulation.

It can easily be understood that if fi and fi+1 are the closest subcarrier frequencies used in the
OFDM system, the drift due to frequency instability of the electronics and the Doppler effects
shall be estimated and compensated at the receiver side, in order to allow to keep the
orthogonality of the subcarriers and the overall properties of the OFDM signals. The increase
in the ICI (Inter-Carrier Interference) may reduce the performances of the network.

Therefore, an accurate frequency drift estimator is often necessary in OFDM receivers.

3.2.5 System Load in OFDMA Systems

In this section, still to compare with CDMA systems, we consider the downlink path of the
FDD mode.

Correct performance of admission control algorithms and load balancing ones depends on
the current expression of the load of the system. Contrary to the CDMA system, the OFDMA
system load is not a direct function of the intra and inter-cell interferences, but a function of
time–frequency–space resource assignments and power resource assignments. The power
control, for instance, was of primary importance in WCDMA to mitigate the near–far effect
deriving from the presence of the intra-cell interference, whereas in OFDM systems, like the
E-UTRAN system, the users of a same cell are as orthogonal as possible with each other; thus,
the only interference present is from the other cells (intercell). Though, still important, the role
of the power control is reduced, compared to CDMA, to adapting the power to path loss and
shadow fading fluctuations and reducing other cell interference.

Adaptations of parameters are the set of the assigned downlink subcarriers, coding,
modulation, HARQ schemes including the spatial coding schemes and transmission power
values.

The normalized consumed downlink time–frequency resources can be written as the ratio
SDL:

SDL ¼ SDL

Smax
DL

; ð3:19Þ

where SDL is the downlink time–frequency–space resources consumed by all the users and
Smax
DL is the total time–frequency–space resource available on a downlink frame.
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The normalized consumed downlink transmission power resources can be written as the
ratio pDL:

pDL ¼ PDL

Pmax
DL

; ð3:20Þ

where PDL is the downlink power resources consumed by all the users and Pmax
DL is the

maximum power resource constraints.
The expression of the downlink load can then be defined as a nonlinear function of the two

above quantities and can be power or frequency resources limited:

UDL ¼ maxðsDL; pDLÞ: ð3:21Þ
The downlink load can then be obtained by solving the optimization task:

uDL ¼ minq; p;rðUDLÞ; such that pDLi; j;l � pQOSi; j;l ; ð3:22Þ
where q is the set of the coding and the modulation and spatial schemes assigned to the users in
the downlink frame, p is the set of transmission power values assigned to the users in the
downlink frame and r is the set of subcarriers time slots assigned to the users in the downlink
frame. pDLi; j;l is the transmission power for the service flow j of the user i on the downlink
subcarrier l and pQOSi; j;l is the minimum transmission power value that shall be assigned to the
service flow j of the user i on the subcarrier l to satisfy the Quality of Service requirements for
this service flow.

Optimization problem (1) can be solved thanks to fast suboptimal algorithms and the
obtained estimation can be used in admission control algorithms or radio resource allocation
algorithms. The packet scheduling aspect is detailed in Section 3.8.14.

3.2.6 SC-FDMA: The PAPR (Peak-Average-Power-Ratio) Problem

As OFDM is a multicarrier technique, and despite its benefits, it basically suffers from a
number of drawbacks, including a need for an adaptive or coded scheme to overcome spectral
nulls in the channel, and a high sensitivity to frequency offset and the high peak-average-
power ratio (PAPR), which is a problem due to constructive addition of subcarriers on a
random basis (Figure 3.7).

Max linear limit 

Figure 3.7 The PAPR problem on the Fresnel diagram.
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The effect of a high PAPR on the transmitted OFDM symbols results in a spectral spreading
(interferences between adjacent channels) and a higher BER (bit error rate) because of
mistakes in the constellation.

On the downlink, this problem may be more easily overcome than in the uplink by using
some high compression point PA (Power Amplifier) and sophisticated PAPR reduction
mechanisms that are much more difficult to use in low processing power devices.

That is the reason why in the uplink, as it is crucial to reduce the cost of power amplifier
directly linked to its compression point, some advanced scheme of OFDM called �Spread
OFDM� or SC-FDMA for �Single Carrier FDMA� have been proposed.
This scheme basically consists of spreading the symbols of the uplink user on a group of

subcarriers (contiguous or not) through the use of a unitary transformation F, �unitary�
meaning in the classical sense F.F�1¼ I.

By doing this, the peak on average ratio of the signal is reduced to the PAPR of only one
single carrier compared to the one resulting from association of the N subcarriers.

Concerning the F transformation, a Walsh-Hadamard transform (WHT) or a DFT
transform provides some good choices. DFT or �Discrete Fourier Transform� is the generic
name for the discrete version of the Fourier Transform, whose fast computing version is
the FFT.

If a DFT is chosen, this technology evolution is sometimes called SC-SOFDM, where SC
stands for �single carrier�.

This option has been selected for the uplink side of E-UTRAN. Single carrier modulation
should be followed by a frequency domain equalization and the complexity of SC-FDMA
systems is the same as the overall complexity of OFDMA systems. A simplified SC-FDMA
transceiver is shown in Figure 3.8.

In fact, the main difference with OFDM is that the signal is precoded before the IFFT in
order to map on the subcarriers not the symbols themselves, but their spectrum components,
introducing some small losses but helping to reduce this crucial PAPR level.

The DFT sizeM is a symbol block size and is much smaller than the IFFTof size N, which
relates to the number of subcarriers available. Then, the resulting OFDM signal is over-
sampled at a rate N/M compared to standard OFDM (see Figure 3.9). The signal becomes then
M periodic and the negative effects of the phase constructive addition are averaged. The result
is equivalent to an over-sampled single carrier (�S� in SC-FDMA stands for single) with a sin
(x)/x pulse shaping.
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Figure 3.8 A simplified SC-FDMA transceiver.
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In the time domain, when the process of subcarrier mapping is equidistant, the SC-FDMA is
equivalent to a periodical distribution of the symbols over the equivalent time of the OFDM
symbol with a user-dependent phase shift. Figure 3.10 provides a time domain interpretation.

As we explained in the OFDMA case, the allocation of the subcarriers can be made
localized or distributed on the uplink band used by the terminal transmitters (see Figure 3.11).

Total channel  bandwidth 

Localized FDMA: 

Interleaved FDMA: 

Figure 3.11 Subcarrier mapping modes.
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Figure 3.9 SC-FDMA transmit symbol.
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Figure 3.10 The SC-FDMA time domain interpretation.
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Indeed, if we note xS(n) as the input symbols, X(m) the signal after DFT, Xmap(l) the signal
after mapping and x(k) the signal after IFFT, and if we omit normalization factors, we can
deduce the following for the two cases:

. Interleaved FDMA (IFDMA) case.

. Localized FDMA (LFDMA) case.

(i) Interleaved FDMA(IFDMA) Case

xðkÞ ¼
XN�1

l¼0

XmapðlÞ·e
2� jlk
N ð3:23Þ

and

xðkÞ ¼
XM�1

m¼0

Xmap m·
N

M

� �
·e

2� jmkN
N·M : ð3:24Þ

Therefore, as for the interleaved case,

Xmap m·
N

M

� �
¼ Xmapðm·LÞ ¼ XðmÞ; ð3:25Þ

we find

xðkÞ ¼
XM�1

m¼0

XðmÞ·e2� jmk
M ¼ xsðkÞ; ð3:26Þ

as X(m) results from the direct transform of xs(k), and, since e
2� jmk
M ¼ e

2� jmðkþq:MÞ
M , we find

xðk þ q·MÞ ¼ �sðkÞ for k ¼ 0 . . .M�1 and for q ¼ 0 . . .N=M�1; ð3:27Þ

indicating that the users can be separated by assigning to each one a different phase
shift.

Here, we have also to state that in SC-FDMA, the mapping of pilot symbol is not
so straightforward compared to OFDMA, as one tone does not contain one symbol,
but M .

Therefore, the symbol vector of length M at the input of the first DFT cannot contain both
data and pilots, and the pilot symbols are necessarily time multiplexed.

Dealing with the PAPR, it is in this case determined by the number of users M ¼N /L
instead of the number of used subcarriers and will therefore, in most cases, be lower than for a
conventional OFDMA system without additional spreading. In the case ofM¼N, of course,
we find the classical OFDMA system. If the user data is spread overM<N subcarriers, then
the DFT of lengthM used for spreading does not directly cancel out with the length N IFFT of
the OFDMmodulator in general. Only when the spread symbols are mapped onto equidistant
located subcarriers with a spacing N/L¼M can the DFT spreading and the OFDM modula-
tion be removed in the transmitter structure.
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(ii) Localized FDMA(LFDMA) Case
The expression of the time domain symbols on a given subcarrier is much more complex in this
case, except for the first one of each of the L frames of M symbols.

We have

xðkÞ ¼
XN�1

l¼0

XmapðlÞ · e 2� jlk
N

ð3:28Þ

and

xðkÞ ¼
XM�1

m¼0

XðmÞ · e2� jmðL·kþqÞ
L·M : ð3:29Þ

Therefore, for q¼ 0, we find that

xðk:LÞ ¼ xsðkÞ ð3:30Þ
qnd, for q 6¼ 0, we find that

xðk:Lþ qÞ ¼ 1

L
1�e j2�qL

� �
·
1

M
·
XM�1

p¼0

x p

1�e
j2�

k� p
M þ q

LM

� � ! : ð3:31Þ

This expression indicates that, in the time domain, the localized FDMA signal has
exact copies of input time symbols in the M-multiple sample positions. In-between values
are the sum of all the time input symbols in the input block with different complex
weighting.

(iii) Summary of Differences between OFDMA and SC-FDMA
SC-FDMA and OFDMhave the same link-level performances. The data are sent in parallel on
several subcarriers for OFDM, with a high PAPR result. The data are sent in a serial way on a
single carrier for SC-FDMA, allowing a smaller PAPR.

For SC-CDMA, since the signals arrive at the eNodeB with substantial Inter-Symbol
Interference and because SC-FDMA uses single carrier modulation, block equalization is
performed at the receiver to cancel the effect of the radio channel over the received symbol
and makes it nonsensitive to spectra nulls.

Whereas OFDMA is prone to Inter-Carrier Interference due to narrow subcarriers, SC-
FDMA is not sensitive to frequency offset (Doppler) because of its single-carrier nature.

Practically, IFDMA is more desirable than LFDMAwhen choosing a subcarrier mapping
method because it leads to a slightly reduced PAPR; however, so far, only the localized FDMA
has been considered for the uplink solution of E-UTRAN.

3.2.7 Dimensioning an OFDM System

The purpose of this high-level study is now to look at the feasibility and basic dimensioning
numbers of an OFDM radio system in some E-UTRAN bands. The values provided below are
only given for example and are not directly related to the ones chosen for standardization
purposes.
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Key hypothesis are:

. Fc (carrier) around a few GHz.

. Small spectrum available <5MHz.

. Max speed around 300 km/h.

. Propagation environment: urban.

. Services to accommodate: data up to 10Mb/s.

In the following, we will choose fc¼ 2000MHz. We will suppose that:

. MAC efficiency layer is R¼ 85%.

. Estimated modulation efficiency: efficiency¼ 3 bit/s/Hz (achievable trade-off).

. Propagation environment: urban, rural: delay spread¼ Td¼ 10 ms.

. Application rate: 10Mb/s.

(i) System Calculations

Required bandwidth:

. B¼Mac-rate/eff¼Data-rate/(R�eff)¼ 10/(0.85�3)¼ 3.9MHz.

Thus, the minimum sampling frequency is 3.9MHz and the sample duration is Ts¼ 0.25 ms.
Physical data:

. V¼ 83 m/s; fc¼ 2000MHz; Bu¼ 5MHz could be available for future wireless multimedia
services: c¼ 3.108 m/s; Td¼ 10 ms typical.

Results:

. The Doppler spectrum is Bd¼ 2�fd¼ 2�fc�v/c¼ 2.2000.106.83/3.108¼ 1106Hz.

. The coherency time is Tc¼ 1/Bd¼ 0.9ms.

. The coherency bandwidth Bc¼ 1/Td¼ 100 kHz, i.e. there is a lot of frequency diversity in
the 5-MHz bandwidth. Therefore, something like 50 frequency pilots might be required.

(ii) Dimensioning Study
The guard time is supposed to null the ISI. Let D be the number of guard samples. Then, D.
Ts> Td. A classical choice (DAB system, HyperLan2 . . .) is D> 4.Td/Ts.

Let N be the number of useful samples. The channel is not supposed to vary a lot with
respect to the OFDM symbol, which is dependent on the mobility of the terminal.

Assuming that D is of the order of Td/Ts not to too lose to much useful data rate, then we
have D¼ 10/0.25¼ 40.

It is also generally assumed that D/N¼ 1/4; then, N¼ 160. The gap between subcarriers is
Bu/N¼ 5.106/160¼ 31.25 kHz.

It can be verified that:

. This inter-carrier spacing has usually to be much smaller than the coherency bandwidth in
order to stay under a flat fading hypothesis.
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. This inter-carrier spacing is much higher than the maximum Doppler frequency in order to
counter the Doppler effect.

. The inter-carrier spacing has also to be compatible with the phase noise of the oscillators so
that the noise created does not jam too much the neighbouring subcarriers.

The fact that the fading is slow or fast with our hypothesis really depends on the speed of the
terminal. At 300Km/h, we can then check that (NþD).Ts¼ 200.25.10�8¼ 0.05ms, which is
far below the coherency time Tc¼ 0.9ms of the channel.

Indeed, to remain under the flat fading hypothesis, it is better to keep the OFDM symbol
duration far below the coherency time of the channel.

3.3 MIMO (Multiple Input Multiple Output)

3.3.1 Traditional Beamforming

Among traditional methods of doing antenna processing, one can mention transmit diversity,
receive diversity or beamforming, which can be uplink and/or downlink (Figure 3.12).

None of these methods is handling multiple bit streams in the way that modern MIMO
systems do.

With these traditional methods, the channel capacity is still bounded by the Shannon limit:
C¼ log2(1 + SNR.T.R) bits/s/Hs, in which T and R are the number of transmit and receive
antennas, respectively.

Beamforming downlink or uplink still suffers some capacity limitation as compared to
MIMO with multiple bit streams: channel capacity is still low and fading depth still large.

The paragraph below recalls the basics of beamforming principles. Such principles can still
be applied on OFDM signals, although these are broadband signals. Indeed, narrowband

W1(θ) W2(θ) … W (θ)i … Wn(θ)

Σ

y(t)

x1(t) x2(t) x (t)i xn(t)

θ

d1

di

Figure 3.12 Rx beamforming.
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beamforming can be implemented on individual subchannels. Notice that, since the broad-
band channels are frequency-selective, the spatial channel characteristics vary from subcarrier
to subcarrier. By default, different beamforming vectors will be needed on different
subchannels.

Adaptive Rx beamformer example

The goal of a network of antennas with a formation of beams is to recreate at the exit y(t) of
the network the conditions of optimal combination, that is to say in simple terms: to add the
useful signal amplitudes in a coherent way (in phase), while noises, if they are non-
coherent, can only be added in power.

Thus, knowing that one receives N signals on N sensors coming from a s(t) source, and
knowing that each sensor receives the signal with a phase difference of 2.p.d.cos(y)/l
compared to the neighbouring sensor spaced by D.

Let us note di the distance from sensor i to a reference point expressed in a number of
half-lengths of wave.

We have y(t)¼wB
H.x(t) with wB¼ [w1(o),w2(o). . .,wn(o)]

# and opcos(y) and x(t)¼
[x1(t),x2(t), . . . , xM(t)]

H.
By definition, the weights w of the network are selected in order to direct a beam in a

specific direction y, thus:

wi ¼ ð1=ðnÞ1=2Þ:e� j:�:di:cosð�Þ ¼ ð1=ðnÞ1=2Þ:e� j:di:!:

The output power is then PB¼wB
H.R. wB, where R¼< x(t).xH(t)> is the (n� n)

covariance matrix of the received signal.
We can also find the expression of the weights wB with other criterion. The weights

defined above (wB) present the disadvantage not to minimize the contributions of other
signals in directions other than the useful signal�s one; this is why we can prefer sometimes
the estimator known as �Capon� which minimizes wH.R.w with |wH. wB|¼ 1 (the gain
according to the �useful� direction is constant).

In this case, we get wc =R
�1.wB/ðwH

B :R
�1:wBÞ and Pc¼ 1/ðwH

B :R
�1:wBÞ.

The classical beamforming or SDMA (Signal Division Multiplex Access) is a way of
increasing the cell capacity through the improvement of the data rate of the users especially
located at the cell edge, e.g. the mobiles for which the available signal-to-noise ratio would not
allow to have such a data rate with a MIMO multiplex scheme.

3.3.2 MIMO Channel and Capacity

This technology is based on the use of a multiplicity of antennas at the base station and/or in
the mobile (which can be a portable computer). In the same way as for traditional
�beamforming�, the principle of MIMO is to separate the users, depending on a different
space signature experimented by each of them.

However, in someMIMO cases, the antennas radiate in generally different symbols and can
be separated by a distance of about a few tens of wavelengths, sufficient to try out independent
signals.
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In contrast, traditional beamforming antennas are made up of radiating elements generally
spaced by less than half of the wavelength to avoid the gratings lobes.

In this section, we consider a transmission channel between a transmitter equipped with T
transmitting antennas and a receiver equipped with R receiving antennas. In a system with
transmission space diversity, the number T is higher than 1, whereas the number R can be equal
or higher than 1. The following analysis also includes the number of p physical multipaths
available in the channel. This is the very general case of MIMO, and this way of considering
the multipaths is valuable for the technologies for which the receivers are able to discriminate
them, like the rake receiver in CDMA systems.

In what follows, a sequence of complex symbols si(t) (1� i� n) is transmitted. The signal
zj(t) collected by the jth reception antenna (1� j�R) can be written as

z jðtÞ ¼
Xn
i¼1

½siðtÞ	hi jðtÞ� þ nðtÞ; ð3:32Þ

where 	 indicates the operation of convolution, and n(t) indicates a supposed white and
Gaussian noise. In a cellular system, the noise n(t) contains contributions relative to other
users of the system.

The impulse response hij(t) of the channel of propagation between the ith transmitting
antenna and the jth receiving antenna is classically estimated by the receiver thanks to known
pilot sequences respectively emitted by T transmitting antennas.

It is generally modelled by a set of p paths taken into account by couple of antennas (p� 1),
the kth path (1� k� p) corresponding to a reception delay of tk and a complex received
amplitude reception aijk. Each channel of propagation (ith transmitting antenna towards the jth
receiving antenna) is associated to a vector of p amplitudes Hi j ¼ ½hi j1 hi j2 � � � hi j p�T in
which T is the transposition operator.

The received signal consists of a vector Z ¼ ½z11 � � � z1 p � � � zR1 � � � zR p�T,
where zjk indicates the output of the matched filter relating to the antenna j, sampled with the
delay �k. Thus, at a given time, the system of equations is obtained:

Z ¼ HSþ N; ð3:33Þ
where

H ¼
H11 � � � HT1

..

. . .
. ..

.

H1R � � � HTR

2
64

3
75 ð3:34Þ

is a matrix representative of the multipath channel with R.p lines and T columns,
S ¼ ½s1 � � � sn�T is a vector containing n symbols transmitted at the considered time from
the T transmitting antennas and N is a vector of noise of size R.p.

The system (2) is of a form very usually met in signal processing and can be easily solved
by a traditional method of least squares estimation (MMSE, �minimum mean squared
error�), provided that the rank of the matrixH is at least equal to T. The solution of MMSE is
written

Ŝ ¼ ðH*HÞ�1H*Z: ð3:35Þ
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By supposing that the antennas are not perfectly correlated, the row of the matrix H is
generally equal to the smallest of Tand R.p. The necessary and sufficient condition to solve the
system by the MMSE method is then R.p� T.

Once this condition is checked, it is possible to solve the system according to the MMSE
method or another method such as MLSE (�maximum likelihood sequence estimate�), which
can also be applied if R.p< T, although less stable and sensitive to noise.

Generally speaking, the performances of the receiver depends on the conditioning of the
matrix of the channelH, which depends on the number R of receiving antennas, on the number
p of paths and on the decorrelation properties of the antennas.

In the case of OFDM systems, as pointed out before, there is an inherent resistance to
multipath-generated intersymbols distortion, due to the length of modulation symbols.
Natural multipath diversity can no more be used. The somehow artificial paths created by
the MIMO antennas provide for OFDM systems a simpler (compared to CDMA rake
receivers) and efficient way of getting some spatial diversity. Considering only OFDM
systems in what follows, we will set p¼ 1.

Correlated antennas cause bad conditioning owing to the fact that matrix H�H then has
eigenvalues close to zero, which disturb its inversion in the resolution according to Equation
(3.25).

That is why the operator of MIMO system antennas arranges them so that they
experiment enough decorrelation, by spacing them sufficiently and/or by making them
radiate according to different polarizations, as, in practice, the receiver being generally
mobile and of small size, it is common that the number R of receiving antennas is limited to
1 or lower than the number T of transmitting antennas (see Figure 3.13). This is why it is
thought that in the future, mobiles will advantageously obtain several antennas with
diversity of polarization, for example. In the known MIMO systems with, for instance,
T� 2 and R� 2, one seeks to increase the rate of communications for a given emitted
power, while transmitting different symbols s1, . . ., sn through the T transmitted antennas.
These symbols can be mutually correlated, if they result from a space–time coding, or
independent.

At the performance level, the fact of having several antennas within the terminals brings
much profit compared to the only one antenna case (MISO system: Multiple Individual Input
Output or SIMO system: Single Input Multiple Output), which were the well known ones in
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Figure 3.13 General MIMO system.
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cellular radios for downlink and uplink, respectively (see Figure 3.14). It was shown in the
mid-1990s that the capacity of a MIMO system was

CMIMO ¼
X	
i¼1

log2 1þ PT

�2:T

2
H;i

� �
; ð3:36Þ

with lH,i the square roots of the eigenvalues of H�.H, r¼min(T,R), which can be compared
with the famous Shannon equation for one channel:

C ¼ log2 1þ 1

�2
PT :jhj2

� �
; ð3:37Þ

in which h is the complex gain of the channel and s2 is the noise variance. This can also be
compared with the Equation (3.26) in the beamforming case.

Compared to a single antenna case or beamforming one, the capacity grows linearly with r,
instead of logarithmically for classical transmission.

This phenomenon is properly the amazing one withMIMO systems, as it is basically stating
that it is possible to increase the capacity of the system as a linear capacity of the number of
antennas without increasing the overall transmit power of the system.

One can show with Rayleigh fading, uncorrelated antennas and a signal/noise ratio of 10 dB
the curves in Figure 3.14.

Note on practical realization

In order to simplify, we assume that we are under noise-free conditions, so that the system
in Equation (3.27) can now be written:

Z ¼ H:S:

10 

5

25 

1

C B/s/Hz

Number of antennas = min(T,R) 

MIMO 

MISO: T = 1

SIMO: R = 1

Figure 3.14 Performances of MIMO systems.
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Provided that the MIMO system is not ill-conditioned, i.e. det(H) 6¼ 0, and if H is a
square matrix (R¼T), the solution to Equation (3.27) is obtained in an elementary manner
as:

S ¼ H�1:Z:

In practical applications, however, the number of channel outputs may be different from
the channel inputs and an appropriate inverse, known as the Moore-Penrose pseudoinverse,
needs to be calculated; instead of H�1, we have:

Hþ ¼ ðH*:HÞ�1:H*:

For a huge quantity of samples per column and under real-time processing conditions,
calculation of the inverse or pseudo inverse matrix may require too many operations and
computer load; therefore, methods have been developed to simplify such a task, like the QR
decomposition.

We have Z¼H.S and need to find S.
It can be shown in basic linear algebra that if H is a symmetric real matrix, it can be

decomposed into the product of one orthogonal matrixQ (so thatQ.QT¼ I) and one upper-
triangular matrix R. Then, assuming Q and R are known:

Z ¼ Q:R:S:

Let us note A¼R.S; we then have:
A¼R.S¼Q�1.Z¼QT.Z because Q is orthogonal and Q�1¼QT.
Therefore, calculating A is fast and only requires a few operations. The calculation of S

is then straightforward, asR is upper-triangular and can be done by substitution by degrees.
The determination ofH itself is the object of a well known identification method and can

easily be done using the following steps:

. Find an orthonormal U base of a known input S (previous Q matrix is OK).

. Calculate Fx¼U.S, the projection coefficient of S with respect to U.

. Calculate Fy¼U.Z, the projection coefficient of Z with respect to U.

We find:
Z¼U�1.Fy and

H:S ¼ H:U�1:Fx

<H> ¼ Fy:F
þ
x providing the expected estimate of the MIMO channel.

3.3.3 A Simplified View of MIMO 2.2

A simplified vision of a MIMO system is shown in Figure 3.15. In practice, in order to be
able to estimate the channel on each R.T �natural� paths of the system of antennas, the
receiver will have to benefit from different bits control transmitted on each transmitting
antenna.

Once the matrix of transferH is determined, it becomes possible by simple inversion to find
the transmitted symbols.
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Let us consider the simple example according to a system with two transmitting antennas
and two receiving antennas. The H matrix is written as

H ¼ h11 h12

h21 h22

� �
: ð3:38Þ

Let us call S the vector of the emitted symbols and Z the vector of the received symbols.
Then

Z ¼ H:S ð3:39Þ
and, from Equation (3.39),

S ¼ H�1:Z ðgranted thatH�1 existsÞ; ð3:40Þ
which is the expected result.

There are obviously some cases for which the distribution (with equalized power) of
symbols on the T antennas is not really useful in terms of data rate increase.

It is, for instance, the case when the channel only creates a few multiple paths, like the case
when the mobile is in direct sight of the base station. In such conditions, it is then preferred to
use another form of MIMO, named Alamouti�s scheme.

3.3.4 The Harmonious Coupling between OFDM and MIMO

As previously stated, The OFDM systems being not able like the CDMA systems to use the
multipaths delay diversity can exploit advantageously the spatial diversity brought by MIMO
systems with a low additional complexity.

It has been shown previously that the OFM demodulation system was equivalent to the set
of equations

Yi ¼ HiSi þ n0i; i ¼ 0; :::;N�1: ð3:41Þ

That is equivalent to N tone scalar channels to demodulate.
In the MIMO case, with T transmitting antennas and R receiving one, the system becomes

as in Section (3.3.1):

Yi ¼ HiSi þ N 0
i ; i ¼ 0; :::;N�1; ð3:42Þ

h 11

h 22

h 12

 Z S
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BTS 

h 21

Figure 3.15 Simplified vision of a MIMO system.
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where Yi and N 0
i are vectors of R components and Si is a vector of R components. Hi is the

channel matrix of size R.T.
Therefore, granted the small size of the H matrix, only a small system (R.T) has to be

inversed per tone. Moreover, space–time schemes can be implemented on a tone-per-tone
basis.

Figure 3.16 generalizes the MIMO schemes with the notations used in the above formulas
coming from Section 3.3.1. and neglecting the thermal noise.

3.3.5 MIMO: A Classification Attempt

According to a chronological approach of the apparition of the MIMO scheme, we can state
the following:

. Time–space multiplex: this consists of operating a sequence of information without any
space and time redundancy. The mathematical operation is a sort of space–time interleav-
ing. The system then transmits T useful symbols in each symbol period. BLAST (Bell Labs
Layered Space–Time) and its variants belong to such a category with its variants.

. Space Time Trellis Coded Modulation (STTCM): this a generalization for the MIMO case
of what already existed for the SISO channel. The transmitter consists of a battery of shift
registers and algebraic functions creating a codeword of T symbols simultaneously
transmitted. The receiver is usually using a Viterbi algorithm to find the path with the
best likelihood.

. Orthogonal Space Time Block Coded Modulation (OSTBCM): the complexity of the
decoding of the previous STTCM modulation has limited its expansion, but while working
on someway of reducing this complexity, Alamouti, whose scheme is provided below, found
some ways to simplify the decoding by using an orthogonal structure of coding. Some real
patterns exist and some complex ones as well. Real ones are restricted to 2, 4 and 8 spatial
dimension.This type of coding optimizes the diversity gain (the slopeof theBERvsC/I curve)
but offers no coding gain (a C/I offset of the BER¼ f(C/I) curve). Very often, the �STTD�
(SpaceTimeTransmitDiversity) name is used to designate theAlamouti�s family of solutions.
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Figure 3.16 A MIMO–OFDM transceiver.
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. Space–Time Coded Modulations with maximum diversity: this improves the former types
of modulations in rotating the constellation points, optimizing the provided diversity at a
higher price for the decoding.

. Linear Dispersion Coded Modulation (LDCM), Algebraic Coded Modulation and Code
Concatenation can also be mentioned but the studies of their properties fall outside the
scope of this book.

3.3.6 Some Classical Open Loop MIMO Schemes

Let us focus on the open loop MIMO scheme, whose advantages are easier implementation,
less signaling overhead and nonsensitivity to speed.

In the sections above, we described theMIMO schemewhich allows increasing the data rate
while taking benefit from the multiplex allowed by the different spatial �modes� proposed by
the channel.

This mode is known as the BLAST (Bell Lucent Layered Space Time coding) mode
and its variants. The simplest version of BLAST is known as V-BLAST (Vertical
BLAST), whereas more complex variant exists like D-BLAST (Diagonal BLAST). The
essential difference between D-BLAST and V-BLAST lies in the vector encoding
process. In D-BLAST, redundancy between the substreams is introduced through the use
of specialized intersubstream block coding. The D-BLAST code blocks are organized
along an elegant diagonally layered coding structure in which code blocks are
dispersed across diagonals in space–time. It is this coding that leads to D-BLAST�s higher
spectral efficiencies for a given number of transmitters and receivers. In V-BLAST,
however, the vector encoding process is simply a demultiplex operation followed by
independent bit-to-symbol mapping of each substream. No intersubstream coding, or
coding of any kind, is required, though conventional coding of the individual substreams
may be applied.

Other methods benefit from space diversity without increasing the data rate of the
communication. It is, for example, the case of the diagram of the space–time diversity
coding scheme (STTD, �Space–Time Transmit Diversity�) from Alamouti�s work, already
known within the framework of the cellular networks of the third generation with a single
receiving antenna.

Classically, the way the current wireless cellular systems choose their MIMO schemes is
part of link adaptation algorithms and can be done very dynamically, depending on the radio
characteristic of the propagation channel.

(i) Rank of the Channel Correlation Matrix
One interesting notion is the notion of the rank of the space correlation matrix
K¼<H.H�>. This notion of rank can be seen in a purely spatial way. This notion is
roughly equivalent to the notion of possible excitation energy modes inside a waveguide,
in which, depending on its physical dimension, only some propagation modes can be
generated or not.

The lower bound of the capacity of a MIMO system is obtained when there is only one
single propagation path between the emitter and the receiver: Rank (K)¼ 1.

Opposite to this, the upper bound is obtained when the system benefits from all the
possible propagation modes offered by the channel. In this case, Rank (K)¼min(R,T).
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The 3G STTD diversity: The Alamouti coding scheme

A diversity scheme, also known as STTD (Space Time Transmit Diversity), produces for
each physical channel two sequences, S1 and S2, starting from a unique entry sequence S.

S1 and S2 are radiated by two different antennas and carry the same symbol suits. The two
sequences S1 and S2 are produced so that when processed simultaneously, the demodulations of
the symbols are optimal. From a sequence of symbols s1, s2, s3, s4, one transmit on the first
antenna: s1, s2, s3, s4 and on the second antenna: –s3

�, s4�, –s2�, s1� (see Figure 3.17).
The receiver will receive the following symbols on three successive time intervals:

Antenna 0 Antenna 1

Time T S1 S2
Time t+ 3T –S2

� S1
�

It is supposed that fading in the channel is constant from one symbol to another. Still, let
us suppose that the impulse response of the channel between the first antenna (resp. the
second) A1 (resp. A2) and the mobile at the moment T is characterized by the complex
number:

h1ðtÞ ¼ �1:expð j:�1Þ ¼ h1ðresp: h2ðtÞ ¼ �2:expð j:�2Þ ¼ h2Þ:
The signals received by the receiver can then be written:

RðtÞ ¼ h1:S1 þ h2:S2 þ n1 and

RðtÞ ¼ �h1:S2*þ h2:S1*þ n2;

in which n1 and n2 represent the thermal noise and the interferences received by the
receiver at the two successive moments. As the receiver receives two distinct symbols
permanently coming from two different antennas, it can therefore estimate the two answers
h1 and h2 of the channel and transmit them to a diversity combiner which gives:

< S
1
> ¼ h1*:r1 þ h2:r2* ð< > means 'estimate' of Þ and

< S2 > ¼ h2*:r1�h1:r2*:

Consequently, we obtain the estimate of the signals by the following relations:

< S1 > ¼ ð�2
1 þ �2

2Þ:S1 þ h1*:n1 þ h2:n2* and

< S2 > ¼ ð�2
1 þ �2

2Þ:S2�h1:n2*þ h2*:n1*:

These relations show that the final result is improved by the contributions in terms of signal
to noise by the signals from the two sending antennas, in the same way as a receiver
processing two ways of diversity in optimal recombination (Maximum Combining Ratio).
The only difference consists of a rotation of the phases of the components of noises which
do not influence the signal with resulting noise.

When the receiver includes several receiving antennas, the above equations remain the
same but hi are replaced for each given tone by a R.T matrix which is easy to invert.
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(ii) More on Orthogonal Space-Time Codes
The above-described Alamouti scheme, which is part of the OSTBCM family mentioned
above, is characterized by its space–time code rate r, given by the ratio

r ¼ K

l
; ð3:43Þ

in which a number K of real or complex symbols is transmitted via N antennas over l symbol
time intervals. For aM-ary modulation, we may then define the spectral efficiency of a space–
time block code by the quantity

� ¼ r·log2ðMÞ: ð3:44Þ
From a general perspective, the patterns for such codes use symbols with the forms: {+S(n);
+S(n)�}.

For two antennas, as seen above, the scheme is:

. For real case: S ¼ S1 S2

�S2 S1

� �
.

. For complex case: S ¼ S1 S2

�S2* S1*

� �
.

For the three-antenna case:

. For real case: S ¼
S1 S2 S3

�S2 S1 �S4

�S3 S4 S1

�S4 �S3 S2

2
664

3
775.

. For complex case: S ¼

S1 S2 S3

�S2 S1 �S4

�S3 S4 S1

�S4 �S3 S2

S1* S2* S3*
�S2* S1* �S4*
�S3* S4* S1*
�S4* �S3* S2*

2
66666666664

3
77777777775
.
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Figure 3.17 Alamouti�s diversity scheme.
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Here, the blocks of K ¼ 4 symbols are taken and transmitted in parallel using N ¼ 3
antennas over l¼ 8 symbol periods. Therefore, the code rate is ½.

The principles of Alamouti�s STTD diversity described above can be extended to the case
when the receiver presents several antennas.

(iii) Open Loop Diversity Schemes Summary
To sum up, the MIMO systems may experiment with several types of scheme according to
various optimization criteria:

. A mode (like BLAST type) which aims at increasing both uplink and downlink transmitted
rates by using the additional degrees of freedom provided by the spatial modes available in the
channel and then placing different symbols on each transmission antenna. In such a case, the
richer the multipath profile, the higher the obtained rates.

. Some other modes [Alamouti�s (STTD) or OSTBC type of variants] which target efficiency
of transmission (less power for a given flow). These modes produce a diversity gain in
emission if the channel does not bring it enough while placing in a more or less clever way
the same symbols on different antennas.

Figure 3.18 provides a simplified vision of this two classical MIMO schemes.
Other types of diversity scheme – but not data-rate increasing – are also known, in which

same symbols are transmitted on several transmitting antennas but with different codes and/or
modulation MCS schemes (Modulation and Code Scheme). All of them have particular
benefits.

3.3.7 Notions of Cyclic Delay Diversity (CDD)

While considering the open loop schemes for providing additional diversity to the radio
channel, the following method has been selected for the E-UTRAN standards.

Cyclic delay diversity is part of the downlink of E-UTRAN. It is a simple approach that can
be easily combined with a follower space coder stage, and which introduces a simple
additional diversity without requiring any specificity inside the receiver.
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Figure 3.18 The classical MIMO schemes.
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The different codewords result in a changed channel impulse response in the receiver as
they insert some virtual echoes increasing frequency selectivity of the channel seen by this
receiver.

Compared to a simple delay diversity scheme in which the signal is simply delayed from
one antenna to another, thus being limited by the cyclic prefix time duration, the CDD
provides a cyclical shift of the signal with no restrictions for the cyclic shift. The cyclic
diversity scheme is given on Figure 3.19.

The OFDM initial signal to be transmitted can be written as

sðlÞ ¼
XN�1

k¼0

SðkÞ·e2� jlkN ; ð3:45Þ

where N is the number of subcarriers available and S(k) the symbol to transmit.
Then, the CCD signal can be written for the ith antenna port:

sððl��cyc;iÞmodðNÞ ¼
XN�1

k¼0

e
�2� jk·�cyc;i

N ·SðkÞ·e2� jlkN : ð3:46Þ

All these signals superimpose on the channels, thus creating a phase diversity effect that can
be seen in the first term of the right member in the above equation.

It can be noticed that the signal can be shifted in the time domain before the OFDM
transform, or in the frequency domain after the OFDM transform; in the scheme above, the
shift can take any of the values between 1 and N.

On average, CDD does not increase or decrease the total number of errors received in an
encoded OFDM system, but it changes the error distribution in a favourable way, yielding in
increased coding gain.

3.3.8 MIMO Schemes and Link Adaptation

Generally speaking, the dynamic choice of the MIMO scheme is part of the global link
adaptation process as well as the dynamic choice of the coding or modulation scheme,
based on some feedback information linked to the quality or the nature of the channel.
Therefore, there is a need for some adaptive switching algorithms between spatial multi-
plexing and diversity. The choice of a diversity mode or a spatial multiplexing mode
(including classical beamforming, not shown in Figure 3.20) may be done, for instance, on
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Figure 3.19 Cyclic transmit diversity scheme.
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the statistical analysis of the signals measured by the terminals and periodically provided to
the base stations.

Depending on the type of parameter to tune through the link adaptation process, several
time constants may be used to ensure a good trade-off between algorithm complexity and
measurement loads and performance optimization. As an example, for the downlink HARQ
process in Section (3.8.13), the link adaptation may play very dynamically on the coding and
modulation scheme for retransmission of the packets but may adapt the MIMO scheme with
another time constant.

3.3.9 Improving MIMO with Some Feedback

We have described a simplified way of operation of these open loop systems, i.e. that the
transmitter does not know the characteristics of the channel (H). It is clear that the
performances of these systems can be significantly improved if the transmitter can benefit
from a suitable feedback of the receiver to know the channel.

For instance, the mobile can estimate some weights to be applied by the transmitter to
optimize the received signal. A channel quality indicator (CQI) is also useful to know for each
of the possible subchannels.

For instance, similarly to UMTS FDD mode closed loop diversity, it becomes possible to
allocate more or less power on given transmitting antennas, depending on whether they are
privileged or not by the channel of propagation.

In general, simply said, it is better to increase the power of the antennas which are received
best by the receiver. Respective phases can also be tuned.

These schemes allow reaching a near optimum capacity. They, however, require a huge
feedback, sensitive to mobile speed, and therefore also present some drawbacks.

(i) The PARC Scheme
This scheme is a well known one and Figure 3.21 provides a general view of its
implementation.

This is a closed loop scheme which is a BLAST variant. In this scheme, named PARC (Per
Antenna Rate Control), a different coding and modulation scheme MCS is applied to each
antenna stream. An individual CQI (Channel Quality Indicator) per channel is provided for
each stream, so that individual rate adaptation is allowed.

Figure 3.20 The global link adaptation process.
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(ii) Precoding
One concept proposed for E-UTRAN is known as the precoding method. This MIMO concept
is a closed loop MIMO scheme where a set of precoding vectors (the codebook), arranged as
columns in a precoding matrix, is applied at the base station to take advantage of the array gain
and spatial interference suppression. The UE (the 3GPP name for mobile terminal) calculates
one or several preferred precoding vectors based on the expected pattern of bits on the pilot
channel, then finds the corresponding precoding vector index (PVI) described by a Q bit word
in a look-up table with 2Q entries and informs the base station about this. The base station
collects the preferred index from all the users, performs the scheduling and assembles a
precoding matrix with the columns corresponding to the precoding vectors of the scheduled
users, to be used to precode the transmitted data.

The precoding vectors, roughly speaking, may be seen as phase shifts to be introduced on
the signals transmitted from multiple antennas. This scheme is quite useful when the channel
conditions on the forward link and the reverse link are quite different, which might be the case
in FDD mode, where the downlink and uplink are several MHz apart.

We have

Z ¼ H:W:sþ N; ð3:47Þ
whereW is the selected precoding matrix, H is the channel matrix which has to be known by
the transmitter and s is the symbol vector.

The receiver will linearly compute an estimate of s:

s0 ¼ G:H:W:s: ð3:48Þ
The choice ofW is based onH; thus, the transmitter has to be informed at least partly ofH but
limited feedback is possible, for instance, in:

. Restricting W to lie in a finite codebook and considering unitary precoder, i.e.

WHW I ð3:49Þ
. Exploit coherence bandwidth of the channel.

Due to the channel frequency selectivity, these reported index and CQI are only valid for a
certain limited frequency interval and, thus, there is a need to feed back PVI and CQI for all
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Figure 3.21 The PARC scheme.
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the subchannels. However, the precoding scheme may be applied can be applied on a
subchannel or on all the available bandwidths, as in Figure 3.23.

The optimum precoding matrix is the one which offers maximum capacity. The UE
provides feedback on the uplink control channel regarding the preferred precoding matrix
(precoding vector as a special case). Ideally, this information is made available per resource
block or at least per group of resource blocks, since the optimum precoding matrix varies
between resource blocks.

Note that instead of the terminal to feedbackWmatrix, also know as �beamforming matrix�,
there exists some way of compressing the W matrix information, while using a codebook
vector u which can provide the matrix through some classical Householder transform(s)
W¼ I� 2.u.uH/uH.u. Such a method can be found in the last document provided in an annex
dealing with technical documents.

These methods are based on the singular value decomposition theorem which operates as an
operator of compression and decompression of the numbers contained in a matrix based on the
number of its significant eigenvalues.

The codebook entries depend on the number of antenna elements in the base station, which
must be known to the UE. Each precoding vector is associated to a group of other precoding
vectors for which it has a spatial correlation less than some parameter r. Note that r¼ 0
corresponds to orthogonal precoding vectors and the precoding matrices then become (semi-)
unitary.When a UE is scheduled for a certain subchannel using a certain precoding vector, this
subchannel can only be reused using another precoding vector belonging to the same group, to
assure low spatial intra-cell interference, i.e. another vector whose spatial correlation with the
first one is less than r.

These rules have to be adopted by the scheduler. The grouping depends on the parameter r
which can slowly be adapted by the base station according to the cell load. If a smaller r is
selected, there are fewer options for the scheduler to re-use a subchannel, but the spatial intra-
cell interference is lower. If a larger r is selected, more scheduling opportunities exist at the
cost of increased intra-cell interference.

With such a scheme, a sub-band can be reused by different users (MU-MIMO for Multi-
User MIMO). The MU-MIMO scheme can thus be seen as a spatial division multiple access
(SDMA) scheme and it has large benefits in a macrocell where inter-cell interference is
significant and the interference suppression by spatial precoding is useful, especially for cell
edge users (Figure 3.24).
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Figure 3.22 Closed-loop precoding concept.
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3.3.10 MU-MIMO, Virtual MIMO and Transmit Diversity

MU-MIMO consists of re-using the same physical resources in downlink or uplink for
different users. This obviously requires adaptive algorithms to pair various users and switch
between MU-MIMO mode and nonMU-MIMO modes. These algorithms are based on some
feedback information about the degree of potential correlation the spatial path might
experiment while re-using a given resource at a given power.

The result is an increasing spectrum statistical efficiency and a better average throughput in
a cell.

Uplink MIMO schemes for E-UTRAN will differ from downlink MIMO schemes to take
into account terminal complexity issues. For the uplink, MU-MIMO (Multi-User MIMO) can
be used. Multiple-user terminals may transmit simultaneously on the same resource block.
This is also referred to as spatial domain multiple access (SDMA). The scheme requires only
one transmit antenna at the UE side, which is a big advantage

The realistic scheme to consider for the UE is the two-antenna case leading to a pragmatic
2� 2 MIMO for which a lot of open or closed loop schemes can be considered.

It is interesting to notice that by comparison to a 2� 2MIMOwith the two antenna supported
by one mobile, a virtual MIMO can be defined as a mode for which the UE with two antenna is
�virtually� replacedby twoUEs, eachof them transmitting on a single antenna and usingmutually
orthogonal reference signals on their respective antenna. This scheme allows sharing for the two
mobiles the same frequency and timing resource allocation. However, a pairing mechanism for
the reference signals has to be planned between the two mobiles (see Figure 3.24).

To exploit the benefit of two or more transmit antennas but still keep the UE cost low,
antenna subset selection can be used. In the beginning, this technique may be used, e.g. a UE
will have two transmit antennas but only one transmit chain and amplifier. A switch will then
choose the antenna that provides the best channel to the eNodeB.
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3.3.11 Towards a Generalized Downlink Scheme

In the rush to get the highest data rate possible, it can be thought that a generalized MIMO
scheme will be envisaged in future standards for which each MIMO antenna port is not an
antenna part of a base station configuration but an antenna part of a radio site, even if
obviously the simpler case in which the transmit ports belong to a same NodeB is not
precluded.

In this scheme, a centralized processor calculates a P-matrix which basically inverses the H-
MIMO channel before the transmission. With the notation of Figure 3.22, we have:

P ¼ H*:ðH:H*Þ�1: ð3:50Þ

(P is the Penrose inverse of the H channel) and

S0 ¼ H:P:Sþ n; ð3:51Þ
which should be close to S, in which �n� is the thermal noise.

The calculation of P is effective if the number of users is less than the number of MIMO
sites. If done all right, the co-channels interferences are totally removed.

Various types of spectrum efficiency can be achieved, depending on the level of synchro-
nization among base stations, which may depend in some information exchanges on some
interfaces between NodeBs partly shown in Figure 3.25 with dotted lines. The synchroniza-
tion requirements are key to allow various types of spatial processing, from symbol
synchronization for space–time coding or BLAST, to carrier phase processing for classical
beamforming.

According to the performances and complexity wished at the system level, the scheme may
requires noncoherent or coherent combining at the terminals level and limited or extensive
cooperation between base stations.

Obviously, the knowledge of the channel feedback requires the processing of the feedback
sent by all the terminals over all received channels.
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UE1

The two UEs use the same time–
frequency resources but orthogonal 
reference signal patterns.  

UE

Virtual MIMO

UE2

Figure 3.24 Classical vs virtual MIMO.
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In TDDmode, this estimation can be directly estimated on the uplink, as there is reciprocity
of the downlink and the uplink channel conditions granted for the duration of the transmitted
frames.

3.4 Architecture of the Base Station

3.4.1 The Block Scheme of the Base Station

Figure 3.26 presents an example of an E-UTRAN base station, able to support a large number
of users. The architecture below is provided for illustrative purpose. This base station is
connected to the backhaul network by means of physical interfaces like optical fibre, like
STM1 of large data rate or evenmore classical E1/T1 2-Mb/s data link. It receives its user data
information from the Serving Gateway through the S1 interface based on IP packet transport
protocol.

(i) The Downlink Case
The downlink information coming from the MME/serving gateway to Node B reaches an IP
routing module, typically called a Core Control Module (CCM). Then, each packet is routed to
a modem – the Channel Element Module (CEM) –which is able to support all types of physical
coding for any type of physical possible channels: pilots, common channels, dedicated
channels, etc.

This module is able to treat N channels (flows) in parallel, performing for each the channel
coding, the radio conditioning of the signal: OFDM modulation, cyclic prefix insertion, etc.

The processing of all the signals dedicated to one sector can happen in the channel
module.

Each channel module then addresses the signals relative to a given sector to the routing
module, whose output feeds a Transceiver Radio Module (TRM) connected physically to the
relevant sector. According to some choices of architecture, a radio operator module can then
address a sector at a given frequency or several sectors at several different frequencies.

Figure 3.25 The generalized MIMO scheme.
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The radio operator module in question is sometimes called a �channelizer�, whose primary
goal is to over-sample the signals and shape them according to a chosen pulse filter, clip the
total signals and modulate them at the frequency Fi of the radio carrier. It has to treat as many
frequency bands as required by the operator.

In some cases, one may wish to share the power of one power amplifier (PA) on several
sectors. It can then be done by distributing passively the output of the PA on each sector
through microwave devices.

(ii) The Uplink Case
In uplink, each radio transceiver module receives the signals from the antennas of one or more
sectors. For instance, one can associate a transceiver module to a given frequency band. The
signals received in a sector are usually coming from several diversity antennas or from aMIMO
or beamforming antenna array. Then, they are amplified, filtered and digitally converted by an
analogical-to-digital converter.
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They are then transmitted to the Core Control Module and routed to the Channel Element
Modules, which include the respective modems performing the demodulation of the respective
signals (cyclic prefix removal, FFT, etc.).

The signals demodulated by the channel module are then retransmitted to the IP network
after demodulation by the routing module with the same transport protocol than the incident
protocol.

(iii) The Distributed Base Station
Anticipating the evolution of the markets towards a product more easily installable
(less weight, power consumption, etc.) and with lower engineering constraints, the
base station manufacturers propose in their portfolio a distributed base station concept
(see Figure 3.27), in which the TRM module and the RF part drawn in Figure 3.26 are
physically localized in an outdoor packaging, named RRH (Remote Radio Head), and
connected to the Core module by an optical fibre, or a RF link (dashed line on the above
figure).

In that perspective, the Common Public Radio Interface (CPRITM), created in 2003, is an
industry cooperation aimed at defining a publicly available specification for this internal
interface of radio base stations between the Core module and the Radio Remote Head (RRH).

The CPRI consortium aims at defining a specification for Layer 1 (physical) and Layer 2
(transport) but keep the Layer 3 messages proprietary.

The data rate on the interface on one optic fibre is close to 1.2Gb/s, allowing carrying of the
Ethernet or HDLC signalling, operation and maintenance signalling and I/Q radio samples.
The Core module can obviously feed numerous optic fibres like this one.

The RRH equipment can be daisy-chained, optimizing the overall installation for the best
coverage of a given geographical zone.

3.4.2 The Analogue-to-Digital Conversion

The converters are one of the most important components in the base station. Their
performances allows the conversion as close as possible of the antenna and to limit the
number of RF expensive and frequency specific components.
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Figure 3.27 A distributed BTS scheme.

Physical Layer of E-UTRAN 111



The key parameters of specification of the analogue-to-digital converter are: the sampling
rate, the bandwidth, the signal-to-noise ratio and the dynamics of the signals.

During the design, two problems are particularly important to consider:

. The consumption of the energy in the terminals.

. The filtering of the harmonics of sampling (aliasing) before ADC converters.

With respect to the analogue-to-digital converter itself, the essential parameter is the signal-
to-noise plus distortion ratio at the output side of the converter.

This one makes it possible to define the n-resolution of the converter in a number of
effective bits by the relation

ðSNRÞdB ¼ 6:02:nþ 1:76: ð3:52Þ
‘Today, the output performance of an ADC for radio-communication applications is in a range
between 107 and 109 samples per second. For such a speed, the main limiting factor is clock
time drift t which creates an error on the sampled signal equal to half a quantification step
(1/2n+1). The maximum resolution n is thus

2n ¼ 1ffiffiffi
3

p
:Fs:�

; ð3:53Þ

in which Fs is the input signal frequency. From the typical value of t – around 0.5 ps – the
maximum resolution can be deducted from the above equation.

The resolution equals 15 bits for 10M-samples/s, then decrease with a slope of �1 bit/
octave and reaches 7 bits at 2.5G-samples/s. It is thus seen that this limits the performances of
the ADC while, however, authorizing somehow the high-frequency acquisition of signals
having an important dynamic.

The more common technique used in order to divide by 2 the sampling rate is to proceed as
indicated in Figure 3.28, i.e. to carry out complex sampling by separating the received
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analogue signal in two paths shifted by 90
, each one processing half of the original
bandwidth. This obviously requires two converters.

Another promising technique consists of directly under-sampling the received signal at the
useful bandwidth of the signal. The useful band is thus �folded up� in a frequency band close to
zero.

Certain constraints exist in the choice of the sampling rate in order to avoid a certain
aliasing of the spectrum; however, once this carried out, one obtains a sufficiently low flow of
bits able to be treated by DSPs (Digital Signal Processors).

3.4.3 Power Amplification (PA) Basics

This topic is really important in the design and practice of current and future wireless cellular
networks. It is worth spending a section on this subject, as the PA arrangement and its
associated cooling system represented approximately 50% of the form factor of a classical
base station. Therefore, some optimizations towards miniaturization, minimization of eco-
logical impact, better install ability of the base stations required to improve the efficiency/
volume of the power amplifier.

The structure of the signals to be transmitted, such as phase–amplitude modulated
signals, with large constellation implies to work far below the input power point for which
the PA starts to compress the output signals and generates some that are spurious, as shown
Figure 3.29.

The difference between this maximum allowed output power and the compression level of
the PA is called the PA backoff.
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Figure 3.29 Compression of a power amplifier.
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For example, the GMSKmodulation chosen for the GSM is a frequencymodulation with no
envelope variation; therefore its backoff is null (peak on-average ratio is 0 dB).

HPSK modulation chosen for UMTS has at least 3.5 dB of PAR, whereas OFDM systems
like 802.11a have more than 6 dB. The operating point of the PA on the Figure 3.29 curve is
therefore chosen accordingly.

During the past few years, the PA efficiency has grown regularly but slowly. Figure 3.30
shows a state-of-the-art architecture of the transmission system in a base station.

This architecture is a common one. The grey boxes of the system are the frequency-
selective parts. In the current design, this grey part limits the ability of a single design to
address multiple frequency bands separated by a large gap of frequency.

Concerning the bandwidth that can be addressed, the limiting part is the DAC aperture time.
Today, the joint progress of the semi-conductors (high-power, high-speed and more linear
GaN transistors) and the regulation software of the transistor module of the PA, whose purpose
is to perform the closed-loop compensation of the distortion in the whole chain, allow to
foresee some improvement of the efficiency by using some architectures that can now bemade
possible, although their principles were known for a long time (Doherty, class S PA whose
studies are beyond the scope of this book).

In a few years� time, it is expected to achieve 50% power efficiency in a band of the order of
10-MHz bandwidth in cellular base station PA.

3.4.4 Cellular Antennas Basics

Antennas are the physical transducers that allow MIMO processing. This section gives some
more details about cellular antennas.

Usually, in cellular systems, directive diagrams are often designed in the vertical plane
(site) and broader ones in the horizontal plane (azimuth). To do so, the antenna is constituted
as an array of radiating elements: dipoles, slots, microstrip patches, each having its own
radiating Dsource.

Moreover, this array would have its own radiating diagram Disodiag as if it was constituted
with some isotropic sources. Radiation diagrams multiplication theorem leads to

D ¼ Dsource:Disodiag: ð3:54Þ
Most often, the radiating element itself is weakly directive or almost isotropic; therefore, the
directivity is provided by the array.

Figure 3.30 The PA regulation system plus antennas.
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For instance, a classical result for an n sources array fed with a constant phase step d is

Rð’Þ ¼ 1

n
:
E

E0

¼ sin n:�
2

� 	
sin �

2

� 	 with� ¼ 2:�:�



:sin’þ �

To create a given diagram, one plays on the amplitude/phase weighting law of feeding the
radiating elements (Figure 3.31).

Figure 3.32 shows a classical example in which the amplitude and phase law are chosen
so that the diagram forms an inverse cosecant function which allows the mobile to receive
more or less constant power, depending on the distance from the base station antenna.
Assuming the mobile antenna gain is zero, the received power coming from the base station
is

Pr ¼ ðA:4:�=
2Þ:ðPe=4:�:R
2Þ;

in which, in the first term, A is the effective area of the antenna, l is the radiated wavelength
and the second term is the isotropic power flow radiated at a distance R.

As R¼D/siny, this expression becomes Pr¼ [(A.Pe)/(l
2.D2)], sin2y showing the radiat-

ing diagram contained in A should vary as 1/sin2y to get a received power at the mobile
level substantially constant and independent of R.

Practically, getting the complex amplitude/phase law to feed the radiating elements to
form a given radiating diagram means solving an interpolation problem. The complex
weights can be obtained digitally through signal processing, or analogically through
microwave components like phasing or attenuating devices.

(i) Example of Possible Antennas for MIMO Applications
Figure 3.33 provides a simplified representation of a cross-polarization antenna for a base
station able to radiate two orthogonal polarizations+45
 with its feeding system. The number
of radiating elements may be adapted to the vertical gain wished for the antenna. Only four of
them are represented in Figure 3.33. For MIMO systems, the multi-polarization antennas are
of special interest because two radioelectric antennas can be located in one physical �box�,
avoiding the proliferation of spatially separated linearly polarized antennas.

Figure 3.31 Form factor of a radiating array.
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Let us consider a design with microstrip radiating square patches. These elements can be
modelled by two slots located at the edge, of one-half wavelengths long and radiating in phase.
In each patch, two orthogonal resonating modes are produced, through a feeding circuit, so
that it radiates a first radio signal with an electric field polarization of þ45
 and a second
signal with an electric field polarization of �45
.

Two antennas packaging like the one described below provide four antenna ports at the BTS
side.

+45° –45° 

l/2

Feeding network. Some 

amplitude and phase tuning 

elements can be inserted. 

Rectangular patches with two 

orthogonal modes +/– 45°. 

/2

Figure 3.33 Example of cellular antennas with patches as radiating elements.

Figure 3.32 The inverse cosecant diagram.
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The microstrip patch antenna plays a big role in modern cellular antennas, as it allows
reaching a high gain in restricted areas.

Figure 3.34 explains why the patch radiation is equivalent to the one generated by two
horizontal slots of approximately lg long in the selected substrate. These slots are parallel
to Oz in the xOy plane, spaced of lg/2 and center-fed.

The radiating diagram in the yOz plane is equivalent to a slot one above a ground plane:

E’
V0

�:R
:sin�:

sin �:w

 :cos�
� 	
cos�

;

where R is the distance from the antenna.
However, the radiated diagram in the xOy E plan is more directive, due to the vectorial

combination of the two fields from the two slots:

E’ ¼ 2:V0

�:R
:cos

�:L



:cos

� �
:

Finally, the width of the diagram in the two planes E andH is somehow the same and the
directivity is approximately 6 dB.
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Figure 3.34 Principle of a radiating rectangular patch.
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3.5 The E-UTRAN Physical Layer Standard

Although last 3GPP enhancements like HSDPA or HSUPA should provide a highly
competitive access technology, 3GPP aims to define a longer time frame evolutionary path
to ensure competitiveness. The new access technology is called E-UTRAN (Evolved
UTRAN).

Requirements for this new technology include:

. Higher data rates.

. Reduced latency.

. Improved capacity and coverage.

. Reduced operational costs.

. Future additional spectrum allocations compatibility.

. Less than 5-MHz bandwidth compatibility.

Like in classical 3G/UTRAN, both FDD and TDD mode are still considered; both duplex
schemes are still being imposed in most countries by the regulatory bodies.

At the early stage of E-UTRANdiscussions inmid-2005, six new radio conceptswere competing:

1. FDD UL based on SC-FDMA, FDD DL based on OFDMA.
2. FDD UL based on OFDMA, FDD DL based on OFDMA.
3. FDD UL/DL based on MC-WCDMA.
4. TDD UL/DL based on MC-TD-SCDMA.
5. TDD UL/DL based on OFDMA.
6. TDD UL based on SC-FDMA, TDD DL based on OFDMA.

Wewill not detail, in the following, the technical aspects of all the proposals; neither wewill
come back to the choice of the selected variant which is the first on the list.

All of these propositions had some attractiveness arguments and the classical game of
industrial lobbies did the rest, as usual.

It has rapidly been decided that future radio interface would be based on OFDM, especially
for receivers processing simplification purposes and spectral efficiency improvements
compared to WCDMA.

Roughly speaking, a consensus rapidly emerged on the OFDMA technology choice for the
downlink, whereas opinions were much more shared for the uplink choice.

Finally, the SC-FDMA reached the majority, mainly for its peak-to-average reduction
property. In the following, we will focus on describing the standard implementation of this
technical solution.

In the subsequent sections of this chapter, the details of E-UTRAN physical layer standard
are described, for the Downlink and Uplink directions.

3.6 FDD and TDD Arrangement for E-UTRAN

Part of the requirements for �evolved UTRAN� is the ability to cope with various spectrum
allocations from much less than 5MHz to much more than 5MHz, accommodating future 3G
spectrum allocations. Ultimately, the maximum achievable data rate available should be
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100Mb/s in 20MHz. Multicarrier technology should then allow a smooth migration from
1.25-MHz bandwidth to 20-MHz through 5, 10 and 15-MHz steps.

To increase this flexibility, the E-UTRAN air interface supports both frequency division
duplex (FDD) and time division duplex (TDD) modes of operation (Figure 3.35). Moreover,
most of the design parameters are common to TDD and FDD modes to reduce the complexity
of the terminal.

3.6.1 A Word about Interferences in TDD Mode

TDD mode often requires synchronization between various transmitters and receivers in
different cells. The reason why is discussed in the following and can easily be understood
when looking at Figure 3.36. Two problem cases can be observed, in which either:

. Two non-synchronized close UEs (User Equipments – the 3GPP term for mobile terminal)
jam each other in a near–far context. The strong signal from the UE1-TX (transmitter)

Figure 3.36 Interferences in TDD mode.

Combined FDD/TDD 

FDL

FUL

Pure TDD Pure FDD 

Figure 3.35 Possible TDD/FDD modes and interactions.
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destined to far station 1 RX (receiver) can jam the close UE2-RX if the TX-UE1/RX-UE2
ranges overlap.

. Two nonsynchronized close base stations jam each other in a near–far context. The strong
signal from the station2-TX (transmitter) destined to the far UE2 RX (receiver) can jam the
far station1-RX if station2-TX/station1-RX ranges overlap.

It is now easier to understand the synchronization requirements developed in the following
section.

3.6.2 Some Basic Physical Parameters

The size of various fields in the time domain is expressed as a number of time units Ts¼
1/(Df�N), where Df¼ 15kHz andN¼ 2048. In the frequency domain, the size is expressed as
multiples of Df. Physically, Ts represents somehow the achievable data rate period that could
handle the system for a binary modulation.

(i) The Type 1 Frame Structure: Basic Numerology
A first type of frame structure is applicable to both FDD and TDD transmissions (Figure 3.37).
Each radio frame is 10ms long and consists of 20 slots of length Tsf¼ 15360� T5¼ 0.5ms,
numbered from 0 to 19. For FDD, all 20 slots are either available for downlink transmission or
all 20 subframes are available for uplink transmissions. A subframe is defined as two
consecutive slots where subframe i consists of slots 2i and 2iþ 1.

For TDD, a subframe pair (0–1 subframe; 2–3 subframe; . . .) is allocated to either downlink
or uplink transmission. The first subframe pair in a radio frame is always allocated for
downlink transmission.

For TDD only, and especially for coexistence operation with the UMTS LCR TDD,
a second type of frame structure exists, in which each half frame of 5ms is divided
into seven subframes of 0.675ms and three special fields (DwPTS,GP and UpPTS)
(Figure 3.38).

The slot 0 and DwPTS are reserved for DL transmissions. The slot 1 and UpPTS are
reserved for UL transmissions. Each slot benefits from a time slot interval which can be used
as a guard period during the transition between UL to DL and reciprocally.

#0 #1 #2 #3 #19

One radio frame, Tf = 307200 × Ts = 10 ms 

#18

One subframe 

One slot, Tslot = 15360 × Ts = 0.5 ms 

Figure 3.37 Type 1 frame structure.
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3.6.3 TDD and Existing UTRAN Compatibility

The way the radio frames can be split into subframes and time slots can vary in order to be
backward-compatible with the already existing 3G TDD systems like LCR-TDD (Low Chip
Rate TDD, sometimes known as �Chinese TDD�) or HCR-TDD (High Chip Rate TDD) or
current TDD.

For instance, for LCR-TDD compatibility, a 10-ms radio frame is cut in two radio sub-
frames of 0.5ms each, which are divided into seven slots of 0.675ms each, compatible with
the slot duration of LCR-TDD.

Compatibility with LCR-TDD can be achieved by inserting dynamically through the
E-UTRA scheduler some idle symbols or subframes in the E-UTRA frame and applying
some offset or delays between the LCR-TDD frame and the E-UTRAN frame.

Compatibility with HCR-TDD can be obtained in two ways:

. Having a E-UTRAN slot whose duration is a sub-multiple of the HCR-TDD one. In this
case, the time slot is itself a subframe, whose duration is 0.01/15n s, where n¼ {1,2,3, . . .},
and it may be configured as uplink or downlink.

. Having a E-UTRAN slot whose duration is chosen so that k.E-UTRAN slot duration is
equal to p.HCR-TDD, as in Figure 3.39. Hence, the E-UTRA uplink and downlink may be
aligned with the HCR-TDD uplink and downlink, provided that the HCR-TDDUL:DL time
slot split is of the form 3.n/[3.(5� n)], where n is an integer. In this case, the E-UTRAUL:
DL split is 4.n/[4.(5� n)]. An example alignment of the HCR-TDD frame to the E-UTRAN
frame is shown in Figure 3.39, in which k¼ 4, p¼ 3, showing a 6:9 UL/DL. The flexible
frame structure of HCR-TDD allows existing HCR-TDD deployments to be migrated to a
3.n/[3.(5� n)] time slot split, so as to be ready for future E-UTRAN deployment in an
adjacent carrier.

#0 #1 #2 #3 #4 #5 #6

Guard interval

One radio frame, Tf  = 307200 × Ts = 10 ms 

One half-frame, 153600 × Ts = 5 ms 

One subframe, 

20736 × Ts = 0.675 ms 

DwPTS, 2560 × Ts ms 

Guard period, 1536 × Ts ms

UpPTS, 4352 × Ts ms

Figure 3.38 Type 2 frame structure.
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3.6.4 Combined FDD-TDD Mode

One possibility offered by the E-UTRAN system is to allow a combined FDD-TDD mode of
operation, which is described in Figure 3.40.

This mode might simplify some terminals in avoiding the duplexing function in FDDmode.

3.7 Downlink Scheme: OFDMA (FDD/TDD)

The basic downlink parameters are provided in Table 3.1. Several transmission bandwidths
(BW) are possible, in order to allow the positioning of the E-UTRAN physical layer in various
spectrum gaps. The value of the narrow band spectrum that modulates each subcarrier is
15 kHz (OFDM symbol duration¼ 66.67 ms); 7.5-kHz subcarrier spacing, more sensitive to
frequency offset, is considered for MBMS-dedicated channels, which gives a larger OFDM
symbol duration (133 ms). Granted the constant gap of 15 kHz between subcarriers, the FFT
size is growing as a function of selected bandwidth.

Two cyclic prefix lengths are possible, depending on the delay dispersion characteristics of
the cell. The longer cyclic prefix (16.67 ms) should then target multi-cell broadcast (MBMS)
and very-large-cell scenarios, for instance, for rural and low data rate applications at a price of
bandwidth efficiency.

Figure 3.40 Combined FDD/TDD.

HCR-TDD

E-UTRA

10 ms 

0.667 ms 

0.5 ms 

2 ms 

Figure 3.39 Compatibility between E-UTRA and HCR-TDD.
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Table 3.1 Parameters for downlink transmission scheme.

Transmission BW 1.25MHz 2.5MHz 5MHz 10MHz 15MHz 20MHz

Subframe duration 0.5ms
Subcarrier spacing 15 kHz
Sampling frequency 1.92MHz

(1/2� 3.84MHz)
3.84MHz 7.68MHz

(2� 3.84MHz)
15.36MHz

(4� 3.84MHz)
23.04MHz

(6� 3.84MHz)
30.72MHz

(8� 3.84MHz)
FFT size 128 256 512 1024 1536 2048
Number of occupied
subcarriers

76 151 301 601 901 1201

Number of OFDM
symbols per subframe
(short/long CP)

7/6

CP length
(ms/samples)

Short (4.69/9)� 6,
(5.21/10)� 1�

(4.69/18)� 6,
(5.21/20)� 1

(4.69/36)� 6,
(5.21/40)� 1

(4.69/72)� 6,
(5.21/80)� 1

(4.69/108)� 6,
(5.21/120)� 1

(4.69/144)� 6,
(5.21/160)� 1

Long (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512)



In what follows, the MBSFN acronym stands for Mobile Broadcast Single Frequency
Network and refers to mobile broadcasting network using a single band on which dedicated
and broadcasted signals are sharing a single �carrier�. This notion will be developed in
Section 3.8.11.

The short CP (5.21 ms) accommodates less delay spread and is suitable for urban and high
data rate application. The number of OFDM symbols per slot depends on the size of this cyclic
prefix, which is configured by the upper layers.

The minimum downlink TTI (Time Transmit Interval) duration, i.e. the time interval
corresponding somehow to the interleaving depth of the data, is corresponding to a subframe
duration, i.e. 1ms. The possibility to concatenate multiple subframes into longer TTIs, e.g. for
improved support for lower data rates and Quality of Service optimization, should be
considered. In this case, the TTI can either be a semi-static or a dynamic transport channel
attribute. The TTI can be implicitly given by the NodeB in indicating the modulation, the
coding scheme and the size of the transport blocks. In the case of semi-static TTI, the TTI is set
through higher layer signaling.

3.7.1 Downlink Physical Channels and Signals

A downlink physical channel corresponds to a set of resource atoms carrying information
originating from higher layers (Figure 3.41). The following downlink physical channels are
defined and synthetic information is provided:

. Physical Downlink Shared Channel: PDSCH. As for the HSDPA system, the radio channel
is allocated dynamically in an opportunistic way, somehow breaking the notion of a
dedicated channel to a given user. This may be seen as the major difference, or improve-
ment, of E-UTRAN compared to UMTS.

. Physical Downlink Control Channel: PDCCH. This is the channel used by the eNodeB to
carry control information to the UE. It carries an ACK/NACK response to the uplink channel,

Figure 3.41 The physical downlink channels.
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but also transport format allocation, UL scheduling grant and resource allocation information
for theUE. In the future, theremaybe a need formultiple control signals, downlink scheduling
control, uplink scheduling control and probably power control that needs to be dedicated for
each mobile. A physical control channel is transmitted on an aggregation of one or several
control channel elements, where a control channel element corresponds to a set of resource
elements. Multiple PDCCHs can be transmitted in a subframe.

. Physical Broadcast Channel: PBCH. This one carries the paging and other control signals.
The coded BCH transport block is mapped to four subframes (subframes #0) within a 40-ms
interval which is blindly detected, i.e. there is no explicit signalling. Each subframe is
assumed to be self-decodable, i.e the BCH can be decoded from a single reception,
assuming sufficiently good channel conditions.

. Physical Multicast Channel: PMCH, which carries the MCH.

. Physical Control Format Indicator Channel: PCFICH. It informs the UE about the number
of OFDM symbols used for the PDCCHs and is transmitted in every subframe.

. Physical Hybrid ARQ Indicator Channel: PHICH. The PHICH carries the hybrid-ARQ
ACK/NAK.

Additionally, some physical signals are defined:

. Reference signal.

. Synchronization signal. A primary synchronization channel (P-SCH) and a secondary
synchronization (S-SCH) channel can be used for slot synchronization and cell
identification.

The 3GPP standard uses the term �signal� rather than �channel�, as the carried information is
originated from the lowest layers of the system and not from the higher protocol layers.

3.7.2 Physical Signal Transmitter Architecture

The following general steps can be identified for downlink transmission on a physical channel.
All the following are mainly true for the PDSCH and the MCH channels, with some specific
aspects for the other physical channels:

. Scrambling of coded bits. This scrambling step is very classical in radio systems. It aims at
limiting the impact of radio fading or interferences that would be localized on all the bits of
a given codeword.

. Modulation of scrambled bits to generate complex-valued modulation symbols.

. Mapping of the complex-valued modulation symbols onto one or several transmission
layers.

. Precoding of the complex-valued modulation symbols on space layers for transmission on
the antenna ports. This space coding stage aims at applying to the various symbol flows to
be sent by all the antenna ports a given coding like the one we described in Figure 3.14. This
precoding stage can be adapted to transmit diversity or spatial multiplex.

. Mapping of complex-valuedmodulation symbols for each antenna port to resource elements.

. Generation of a complex-valued time-domain OFDM signal for each antenna port
(Figure 3.42).

Physical Layer of E-UTRAN 125



3.7.3 Downlink Data Multiplexing

The transmitted signal in each slot is described by a resource grid of NDL
RBN

RB
sc subcarriers and

NDL
symb OFDM symbols. The resource grid structure is illustrated in Figure 3.43. The quantity

NDL
RB depends on the downlink transmission bandwidth configured in the cell and shall fulfill

6 � NDL
RB � 110.

In the case of multi-antenna transmission, there is one resource grid defined per antenna
port. An antenna port is defined by its associated reference signal. The set of antenna ports
supported depends on the reference signal configuration in the cell:
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Resource element 
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Figure 3.43 The downlink time–frequency resource grid.
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Figure 3.42 Overview of downlink baseband signal generation.
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. Cell-specific reference signals, associated with non-MBSFN transmission, support a
configuration of one, two or four antenna ports, i.e. the index p shall fulfil p¼ 0,
p2 {0,1} and p2 {0,1, 2, 3}, respectively.

. MBSFN reference signals, associated with MBSFN transmission, are transmitted on
antenna port p¼ 4.

. UE-specific reference signals, supported in frame structure type 2 only, are transmitted on
antenna port p¼ 5.

Each element in the resource grid for antenna port p is called a resource element and is
uniquely identified by the index pair (k, l) in a slot where k and l are the indices in the frequency
and time domains, respectively. Resource element (k, l) on antenna port p corresponds to the
complex value að pÞk;l , where k ¼ 0; ;NDL

RBN
RB
sc �1 and l ¼ 0; ;NDL

symb�1. When there is no risk of
confusion, the index pmay be dropped. Quantities að pÞk;l corresponding to resource elements not
used for transmission of a physical channel or a physical signal in a slot shall be set to zero.

(i) Note on Resource Blocks
Physical and virtual resource blocks are defined.

N consecutive symbols can be organized into a block of M consecutive subcarriers called a
RB (Resources Block). A block of subcarriers may also be composed of a nonconsecutive
group of subcarriers but distributed, as discussed in the generalities chapter regarding OFDM.
The notion of virtual resource block (VRB) is sometimes used. A VRB can be localized or
distributed and can be mapped onto RBs.

In the literature, the notation of VRB is sometimes called a �chunk�.
The size of the baseline physical frequency resource block, SRB, is equal to M. Df, where

M¼ 12 and Df is equal to the bandwidth spread on one subcarrier, i.e. 15 kHz, then we have
SRB� 180 kHz. This results in the segmentation of the transmit bandwidth shown in Table 3.2.

As also discussed in Section 4, the minimum size of the physical resources that can be
allocated corresponds to the minimum TTI, i.e. one subframe of 1ms. Therefore, the quantum
of resources that can be allocated corresponds to two RBs, e.g. 14 OFDM symbols of 12
subcarriers (180 kHz). In addition, there is an unused DC subcarrier as it may be subject to a
too high level of interference.

A physical resource block is defined as NDL
symb consecutive OFDM symbols in the time

domain and NRB
sc consecutive subcarriers in the frequency domain, where NDL

symb and NRB
sc are

given in Table 3.2. The physical resource block thus consists of NDL
symb·N

RB
sc resource elements,

i.e corresponding to one slot in the time domain and 180 kHz in the frequency domain.

Table 3.2 Resource block parameters.

NDL
symb

Configuration NRB
sc

Frame structure
type 1

Frame structure
type 2

Normal cyclic prefix Df¼ 15 kHz 12 7 9
Extended cyclic prefix Df¼ 15 kHz 6 8

Df¼ 7.5 kHz 24 3 4
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The relationship between physical resource blocks and resource elements depends on NDL
RB

and the subframe number. The relationship between the physical resource block number nPRB

and the resource elements (k,l) in a slot is given by nPRB ¼ b k

NRB
sc

c , with the exception of

subframe 0 in the case of NDL
RB being an odd number, which are summarized in the 36.211

specification.
Another vision, depending on the spectrum available, can be found in Table 3.3, with

another block frequency size (M¼ 25) and various bandwidths available.
It is the role of the scheduling function of the BTS to map the data for a given UE into a given

RB at a given time. As already known in 2G or 3G systems, link adaptation (different
modulation and coding scheme MCS) based on UE-reported CQI (Channel Quality Indicator)
is also possible.

As a result of mapping VRBs to RBs, the transmit bandwidth is structured into a
combination of localized or distributed transmissions which could be allowed to vary in a
semi-static or dynamic (i.e. per subframe) way. The UE can be assigned multiple RBs by the
scheduler. The information required by the UE to correctly identify its resource allocation must
be made available to the UE by the scheduler.

(ii) Pilot symbols
As already explained in previous sections, pilot symbols are required for the following three
purposes:

. Downlink-channel-quality measurements.

. Downlink channel estimation for coherent demodulation/detection at the UE.

. Cell search and initial acquisition.

The pilot or �reference� symbols are arranged in the time–frequency domain so that
they are time and frequency spaced, allowing correct interpolation of the channel. Depending
on some radio conditions (not much time dispersion), only a first set of reference symbols
might be required, spaced, for instance, by six subcarriers in the frequency domain and should
be placed at the fifth and fourth OFDM symbols of each slot in case of normal and extended
cyclic prefix. The obtained pattern is a rectangular one. If the radio conditions imply a second
set of reference symbols, these one will be placed in a diagonal way, allowing the best time–
frequency interpolation pattern for the radio channel estimation (Figure 3.44). The frequency
domain positions of the reference symbols may also vary between consecutive subframes.

In the case of multiple transmit antennas for high-order MIMO or even beamforming,
dedicated pilot symbols should be used in a given beam. Possible transmission of additional
UE-specific downlink references should be considered.

Table 3.3 Physical resource block bandwidth and number of physical resource blocks dependent on
bandwidth.

Bandwidth (MHz) 1.25 2.5 5.0 10.0 15.0 20.0

Physical resource block bandwidth (kHz) 375 375 375 375 375 375
Number of available physical resource blocks 3 6 12 24 36 48
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Cell-specific reference signals shall be transmitted in all downlink subframes in a cell-
supporting non-MBSFN transmission. In case the subframe is used for transmission with
MBSFN, only the first two OFDM symbols in a subframe can be used for transmission of cell-
specific reference symbols.

Cell-specific reference signals are transmitted on one or several of the antenna ports 0 to 3.

(iii) Reference Signals
Three types of downlink reference signals are defined:

. Cell-specific reference signals, associated with non-MBSFN transmission.

. MBSFN reference signals, associated with MBSFN transmission.

. UE-specific reference signals (supported in frame structure type 2 only). UE-specific
reference signals are supported for single-antenna-port transmission of PDSCH in frame
structure type 2 only and are transmitted on antenna port 5. The UE is informed by higher
layers whether the UE-specific reference signal is present and is a valid phase reference for
PDSCH demodulation or not.

There is one reference signal transmitted per downlink antenna port. We will develop
mainly the cell-specific reference signals case.

The two-dimensional reference signal sequence rm, n is generated as the symbol-by-symbol
product rm;n ¼ rOSm;n·rPRSm;n of a two-dimensional orthogonal sequence rOSm;n and a two-dimen-
sional pseudo-random sequence rPRSm;n . The two-dimensional sequence is a complex sequence,
defined as rOSm;n ¼ ½sm;n�; n ¼ 0; 1 and m ¼ 0; 1; ;Nr, where Nr is the number of reference
symbol positions in the OFDM symbol and [Sm,n] is the entry at the mth row and the nth
column of the matrix Si, defined as‘

STi ¼ �S
T

i
�S
T

i � � � �S
T

i

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nr

3

� �
repetitions

; i ¼ 0; 1; 2; ð3:55Þ

R1  : First reference symbol 

D D D D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D D D D

D D D D R2 D D D D D R2 D D D D D R2 D D
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R2  : Second reference symbol D  : Data 

D D D D D D D D D D D D D D D D D D D

R1 D D D D D R1 D D D D D R1 D D D D DD

Figure 3.44 Downlink reference signal structure (short CP).
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where

�S0 ¼
1 1

1 1

1 1

2
4

3
5; �S1 ¼

1 e j4�=3

e j2�=3 1

e j4�=3 e j2�=3

2
4

3
5; �S2 ¼

1 e j2�=3

e j4�=3 1

e j2�=3 e j4�=3

2
4

3
5 ð3:56Þ

for orthogonal sequence 0, 1 and 2, respectively.
There are Nos¼ 3 different two-dimensional orthogonal sequences and NPRS¼ [170]

different two-dimensional pseudo-random sequences. Each cell identity corresponds to a
unique combination of one orthogonal sequence and one pseudo-random sequence, thus
allowing for Nos�NPRS¼ 510 unique cell identities.

3.7.4 Scrambling

Each block of bits shall be scrambled prior to modulation. This is true for each type of downlink
physical channel: PDSCH, PDCCH, PBCH, PCFICH and PHICH. This bit level downlink
scrambling should be different for neighbours cells (except for MBSFN on the MCH) to ensure
interference randomization between them and full processing gain of the channel code.

3.7.5 Modulation Scheme

Supported downlink data-modulation schemes are QPSK, 16 QAM and 64 QAM, depending on
the physical channel considered. For instance, the three types of modulation are allowed for
PDSCH and PMCH, whereas only QPSK is allowed for PBCH, PDCCH, PHICH and PCFICH.

An improving future option for modulation

Some improvements have been studied in the past decade in order to avoid the inefficien-
cies due to the cyclic prefix (CP). A new type of modulation has been introduced: OFDM/
OQAM modulation, which does not require a CP. For this purpose, a pulse function
modulating each subcarrier has been proposed, which must be very well accurately
localized in the time domain, to limit the inter-symbol interference for transmissions
over multipath channels. It is mathematically proven that when using complex-valued
symbols, the prototype functions guaranteeing perfect orthogonality at a critical sampling
rate cannot be well localized both in time and frequency. For instance, the unity function
used in conventional OFDM has weak frequency localization properties and requires using
a cyclic prefix between the symbols to limit inter-symbol interference.

OFDM/OQAM introduced a time offset between the real part and the imaginary part of
the symbols. Orthogonality is then guaranteed only over real values. The OFDM/OQAM
transmitted signal is expressed as

sðtÞ ¼
X
n

XM�1

m¼0

am;n i
mþne2i�m�0tgðt�n�0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gm;nðtÞ

;

where am,n denotes the real-valued information value (can be the real part or the imaginary
part of the Offset complex QAM symbol) sent on themth subcarrier at the nth symbol,M is
the number of subcarriers, t0 is the inter-carrier spacing; it is the same as the classical
OFDM system. t0 is the OFDM/OQAM symbol duration; it is equal to Tu/2 (Tu is the
OFDM symbol duration), and g is the pulse function.
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It is important to note that the OFDM/OQAM symbol rate is twice the classical OFDM
symbol rate without cyclic prefix (t0¼N/2); meanwhile, since the modulation used is a
real one, the information amount sent by an OFDM/OQAM symbol is half the information
amount sent by an OFDM symbol. Figure 3.45 depicts the signal generation chain of an
OFDM/OQAM signal.

The modulator generates N real valued symbols, each t0, where t0¼ Tu/2. The real-
valued symbols are then phase-shifted, multiplied by im+n before the IFFT. The main
difference of OFDM/OQAM over conventional OFDM signal generation stays in the
filtering by the prototype function g after the IFFT, instead of the cyclic prefix addition.

One good candidate for OFDM/OQAM pulse-shaping filtering is the IOTA (Isotropic
Orthogonal Transform Algorithm) pulse obtained by orthogonalizing the Gaussian func-
tion in both time and frequency domains.

Another particularity of IOTA is the spectrumof thegenerated signal (Figure 3.46).Thanks
to its good frequency localization, the resulting spectrum is steeper than for conventional
OFDM.

With the OFDM/OQAM transmission scheme, we have CP¼ 0, which allows access to
the full time gap for transmission and we have 15 OQAM symbols per subframe. However,
the counterpart is the orthogonality of the subcarriers after filtering is no longer valid
and the receiver needs more CPU to perform the demodulation. IOTA might be part of the
future releases of E-UTRAN.
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Figure 3.46 Temporal and spectral representation of the IOTA pulse filter.
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Figure 3.45 OFDM/OQAM signal generation chain.
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3.7.6 Downlink Scheduling Information and Uplink Grant

Obviously, the UE has to be informed on how to process the downlink data transmission. This
scheduling information may be more or less dynamically transmitted, depending on its type.
Somemay be known a priori as operator-dependent, like the specific group ID the UE belongs to
or some resources assignment, whereas some are highly dynamic, like the ARQ in formations,
transmitted for every TTI. Modulation scheme and payload sizes are also provided.

Moreover, the UE is also granted some uplink resources (localized or distributed) and
transmission parameters (modulation scheme, payload size and MIMO-related information).
The transport format may, however, be selected by the UE on its own.

Concerning the ARQ process that we will describe later, the hybrid ARQ response to uplink
data transmission consists of a single ACK/NAK bit.

3.7.7 Channel Coding

Channel coding is based on UTRAN releasing six turbo-coding schemes. Other FEC (Forward
Error Correction) schemes are also envisaged to cope with additional E-UTRAN require-
ments, like codes polynomial for lower rates or repetition coding for higher processing gain.

The main topics in the discussion about the coding scheme are:

. Extension of the maximum code block size.

. Support of code rates lower than 1/3.

. Removal of the tail.

. Reduction of decoder complexity in the UE.

. Improvement in power efficiency (lower Eb/N0).

While decoder complexity reduction and power efficiency improvement are still under
discussion, other topics are already seen as acceptable options. The alternative coding
schemes currently under investigation are:

. Duo-binary turbo codes.

. Inter-block permutation turbo code (IBPTC).

. Rate-compatible/quasi-cyclic LDPC code (RC/QCLDPC).

. Concatenated zigzag LDPC code.

. Turbo single parity check (SPC) low-density parity check (LDPC) code.

. Shortened turbo code by insertion of temporary bits.

Although some LDPC codes show either an improvement in power efficiency for high code
rates or a potential complexity reduction of the decoder, the potential benefits may have not
yet been proven to be significant enough for the selection of an alternative coding scheme.

3.7.8 OFDM Signal Generation

The OFDM symbols in a slot shall be transmitted in increasing order of l. The time-continuous
signal sð pÞl ðtÞ on antenna port p in OFDM symbol l in a downlink slot is defined by

s
ð pÞ
l ðtÞ ¼

X�1

k¼�bNDL
RB

NRB
sc =2 c

a
ð pÞ
kð�Þ;l·e

j2�k� f ðt�NCP;lTsÞ þ
XdNDL

RB
NRB
sc =2 e

k¼1

a
ð pÞ
kðþÞ;l·e

j2�k� f ðt�NCP;lTsÞ ð3:57Þ
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for 0� t< (NCP,l +N)�Ts, where kð�Þ ¼ kþ bNDL
RBN

RB
sc =2c and kðþÞ ¼ kþ bNDL

RBN
RB
sc =2c�1.

The variable N equals 2048 for �f¼ 15 kHz subcarrier spacing and 4096 for �f¼ 7.5 kHz
subcarrier spacing.

Table 3.4 lists the value of NCP;l that shall be used for the two frame structures. Note that
different OFDM symbols within a slot may have different cyclic prefix lengths. For frame
structure type 2, note that the OFDM symbols do not fill all slots completely and the last part is
left unused.

3.7.9 Downlink MIMO

The basic configuration (i.e. realistic) is two transmit antennas at the cell site and two receive
ones at the UE, but higher-order MIMO (up to 4� 4) should be possible. For simplicity, open
loop MIMO should be preferred, as being able to cope with any UE speed. Simpler transmit
diversity mechanisms can replace MIMO schemes if performances/complexity trade-off is in
favor of that:

. Multiple codewords (including single codeword as a special case) that use the same time–
frequency resource and are independently channel-coded with independent CRC should
be investigated (see PARC MIMO scheme of Figure 3.12). Possible values for the
maximum number of codewords per resource block transmitted by the NodeB are 1, 2, 3
or 4. Possible values for the maximum number of codewords that can be received by the
UE are 1, 2, 3 or 4.

. The spatial division multiplexing of the modulation symbol streams for different UEs using
the same time–frequency resource could be supported, which may be denoted as Spatial
Division Multiple Access (SDMA) or multi-user (MU)-MIMO. Use of precoding as a
means to convert the antenna domain MIMO signal processing into the beam domain
processing should be investigated in the future.

Some transmit diversity techniques, whose detailed description is outside of the scope of
this book, can be applied when the rank of the spatial correlation matrix is determined to be

Table 3.4 OFDM parameters.

Configuration

Cyclic prefix length NCP;l

Frame
structure type 1

Frame
structure type 2 Guard interval

Normal cyclic
prefix

Df ¼ 15 kHz 160 for l¼ 0 512 for l¼ 8 in slot 0
224 otherwise

0 for slot 0
288 otherwise

144 for l¼ 1,2, . . . , 6
Extended cyclic
prefix

Df ¼ 15 kHz 512 for l¼ 0,1, . . . , 5 768 for l¼7 in slot 0
512 otherwise

0 for slot 0
256 otherwise

Df ¼ 7.5 kHz 1024 for l¼ 0,1,2 1280 for l¼ 3 in slot 0
1024 otherwise
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one; this is known as a rank adaptation mechanism, as explained in the MIMO generalities
chapter. Possible candidates for the transmit diversity mode are:

. Block-code-based transmit diversity (STBC, SFBC).

. Time (or frequency)-switched transmit diversity (or antenna permutation).

. Cyclic delay diversity.

. Complex rotation matrix.

. Precoded transmission using selected precoding vector(s) (including selection transmit
diversity); see Section 3.4.9.

Layer mapping and Precoding stage in the generic case.
The complex-valued modulation symbols for each of the codewords to be transmitted

are mapped onto one or several layers. Complex-valued modulation symbols
dðqÞð0Þ; . . . ; dðqÞðMðqÞ

symb�1Þ for codeword q shall be mapped onto the layers xðiÞ ¼
½xð0ÞðiÞ . . . xð�1ÞðiÞ�T .

The split between layer mapping and precoding steps allows to include all the antenna
processing schemes in a single formulation.

(i) Layer Mapping and Precoding for Spatial Multiplexing
The layer mapping operation is an intermediary operation preparing the mapping of the symbol
supported by the subcarriers at a given time and the mapping of these symbols on the respective
antennas. Based on the measurements of the downlink reference signals of the different
antennas, the mobile decides on the suitable rank to apply i.e. the number of layers and the
suitable matrix.

For spatial multiplexing, the number of layers u is equal to the rank r of the transmission and
the mapping shall be done according to Table 3.5.

Here, the notion of rank is associated with the number of Layers.
The precoding concepts have been partly discussed in Section 3.4.9. The precoder takes as

input a block of vectors xðiÞ ¼ ½xð0ÞðiÞ � � � xð�1ÞðiÞ�T from the layer mapping and generates
a block of vectors yðiÞ ¼ ½yð0ÞðiÞ � � � yðP�1ÞðiÞ�T to be mapped onto resources on each of the
antenna ports, where y(p)(i) represents the signal for antenna port p. The number of antenna

Table 3.5 Codeword-to-layer mapping for spatial multiplexing.

Transmission rank Number of codewords Codeword-to-layer mapping

1 1 x(0)(i)¼ d(0)(i)
2 2 x(0)(i)¼ d(0)(i)

x(1)(i)¼ d(1)(i)
3 2 d(0)(i) is mapped to layer 0

d(1)(i) is mapped to layers 1 and 2
4 2 d(0)(i) is mapped to layers 0 and 1

d(1)(i) is mapped to layers 2 and 3
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ports, P, is equal to or larger than the rank 	 of the transmission. Precoding shall be done
according to y(i)¼D(i)W(i)x(i), where the Precoding matrix W(i) is of size P · � and the
quantity D(i) is a diagonal matrix for the support of cyclic delay diversity, as described in the
chapter dedicated to generalities.

The matrix D(i) shall be selected from Table 3.5, where UE-specific values of � are
semi-statically configured in the UE and the Node B by higher layers. The quantity � in
Table 3.6 is the smallest number from the set {128, 256, 512, 1024, 2048} such that
��NDL

BW.
Note that, compared to the expression given in Section 3.4.5, in which the delay parameter

was assimilated as a number of frequency subcarriers, the parameter d is now given as a fraction
of the entire spectrum NDL

BW.
The current standard has planned that d could handle a small delay value or a bigger one,

depending potentially on the propagation conditions of the radio environment, which can be
more or less static.

For spatial multiplexing, the values ofW (i) shall be selected from the codebook configured
in the Node B and the UE. The configured codebook shall be equal to Table 3.7 or a subset
thereof. Note that the number of layers is equal to the transmission rank 	 in the case of spatial
multiplexing. The table lists the different possible values of W(i) for a number of antennas of
up to two.

The choice of the spatial code pattern can be done dynamically on a link adaptation basis,
based on the PVI and the CQI indications.

It can be noted that this precoded matrix is somehow associated with a given vector from a
predetermined codebook and can be obtained from a householder transform of such a vector,
leading to an efficient compression of the amount of data to feedback. The codebook of such
vectors is provided in the 36.211 specification.

Table 3.6 Cyclic delay diversity (CDD).

d

Number of
antenna
ports P D(i)

Transmission
rank r

No
CDD

Small
delay

Large
delay
(1,2)

1 [1] 1 — — —

2
1 0

0 e� j2��i��1

� �
1 0 [1/Z or 2/Z] 0

2 [1/2]

4 1 0 0 0

0 e� j2��i��1 0 0

0 0 e� j2��i�2�2 0

0 0 0 e� j2��i�3�3

2
664

3
775

1 0 0
2 [0 or 1/4]
3 [0 or 1/4]
4 [1/4]
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The beamforming case is a special case of the spatial multiplexing, in which there is a
single codeword, a transparent layer mapping and a precoding beamforming vector applied at
the precoding stage.

(ii) Layer Mapping and Precoding for Transmit Diversity
For transmit diversity, layer mapping shall be done according to Table 3.8. There is only one
codeword and the transmission rank shall be equal to one. The number of layers u is equal to
the number of antenna ports P used for transmission.

The precoding operation for transmit diversity is defined for two and four-antenna ports.
For transmit diversity, the precoding operation should not be understood under the adaptive
sense of Section 3.4.9. The precoding matrix is a deterministic coding allowing to apply the
Alamouti generalized form on the respective carriers symbols at a given time.

For transmission on antenna ports 0 and 1, the output yðiÞ ¼ ½yð0ÞðiÞ yð1ÞðiÞ�T of the
precoding operation is defined by

yð2iÞ
yð2iþ 1Þ
� �

¼
1 0 j 0

0 �1 0 j

0 1 0 j

1 0 � j 0

2
664

3
775 ReðxðiÞÞ

ImðxðiÞÞ
� �

ð3:58Þ

for i ¼ 0; 1; � � � ; b ðMsymb�1Þ=2 c where Msymb is the size of the block of complex-valued
modulation symbols.

As an exercise, the interested reader can check that successively applying on a symbol flow
the operation of layer mapping and precoding leads to finding the Alamouti scheme described
in Section 3.4.6.

Table 3.8 Codeword-to-layer mapping for transmit diversity.

Number of layers Number of codewords Codeword-to-layer mapping

1 1 x(0)(i)¼ d(i) i¼ 0, 1, . . . , Msymb� 1
2 1 x(0)(2i)¼ d(2i) i¼ 0, 1, . . . , b(Msymb� 1/2)c

x(1)(2iþ 1)¼ d(2i+ 1)

Table 3.7 Codebook for spatial multiplexing.

Number of
antenna
ports P

Transmission
rank r

Codebook

1 1 [1] — — — — —

2 1
1

0

� �
0

1

� �
1ffiffiffi
2

p 1

1

� �
1ffiffiffi
2

p 1

�1

� �
1ffiffiffi
2

p 1

j

� �
1ffiffiffi
2

p 1

� j

� �

2
1ffiffiffi
2

p 1 0

0 1

� �
1

2

1 1

1 �1

� �
1

2

1 1

j � j

� �
— — —
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Such a scheme has been generalized for a number of antennas greater than two. For
instance, for a transmission on four antenna ports, p2 {0, 1, 2, 3}, the output
yðiÞ ¼ ½yð0ÞðiÞ yð1ÞðiÞ yð2ÞðiÞ yð3ÞðiÞ�T of the precoding operation is defined by

yð0Þð4iÞ
yð1Þð4iÞ
yð2Þð4iÞ
yð3Þð4iÞ

yð0Þð4iþ 1Þ
yð1Þð4iþ 1Þ
yð2Þð4iþ 1Þ
yð3Þð4iþ 1Þ
yð0Þð4iþ 2Þ
yð1Þð4iþ 2Þ
yð2Þð4iþ 2Þ
yð3Þð4iþ 2Þ
yð0Þð4iþ 3Þ
yð1Þð4iþ 3Þ
yð2Þð4iþ 3Þ
yð3Þð4iþ 3Þ

2
666666666666666666666666664

3
777777777777777777777777775

¼

1 0 0 0 j 0 0 0

0 �1 0 0 0 j 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 j 0 0

1 0 0 0 � j 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 j 0

0 0 0 �1 0 0 0 j

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 j

0 0 1 0 0 0 � j 0

2
666666666666666666666666664

3
777777777777777777777777775

Reðxð0Þð4iÞÞ
Reðxð1Þð4iÞÞ
Reðxð2Þð4iÞÞ
Reðxð3Þð4iÞÞ
Imðxð0Þð4iÞÞ
Imðxð1Þð4iÞÞ
Imðxð2Þð4iÞÞ
Imðxð3Þð4iÞÞ

2
66666666664

3
77777777775

for i ¼ 0; 1; . . . ; b ðMsymb�1Þ=4 c .

3.7.10 Channels Layer Mapping, Precoding and Mapping to Resource
Elements

(i) Layer Mapping and Precoding
Dealing with the layer mapping and precoding stage, all the following physical channels:
PDSCH, PDCCH, PBCH, PCFICH and PHICH, can be arranged the same way as generically
described in Section 3.7.9, i.e. being conditioned for either transmit diversity (Alamouti�s
Space Time Coding) or spatial multiplexing.

(ii) Generic Mapping to Resource Elements
For each of the antenna ports used for transmission of the physical channel, the
block of complex-valued symbols yð pÞð0Þ; � � � ; yð pÞðMð pÞ

s �1Þ shall be mapped in sequence,
starting with yðpÞ(0), to virtual resource blocks assigned for transmission. The mapping to
resource elements (k,l,) on antenna port p not reserved for other purposes shall be in
increasing order of first the index k and then the index l, starting with the first slot in a
subframe.

(iii) Dealing with the PDSCH
The physical downlink-shared channel shall be processed and mapped to resource elements as
described previously, with the following exceptions:

. The set of antenna ports used for transmission of the PDSCH is {0}, {0,1} or {0,1,2,3} if
UE-specific reference signals are not transmitted.
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. The antenna ports used for transmission of the PDSCH is {5} if UE-specific reference
signals are transmitted.

(iv) Dealing with the PDCCH
The block of complex-valued symbols yðpÞ(0) , . . . , y(p) (Msymb� 1) for each antenna port used
for transmission shall be permuted in groups of four symbols, resulting in a block of complex-
valued symbols Z(p) (0), . . . , Z(p) (Msymb� 1).

The block of complex-valued symbols Z(p) (0), . . . , Z(p) (Msymb� 1) shall be cyclically
shifted by 4NCSS symbols, resulting in the sequence w(p) (0), . . . , w(p) (Msymb� 1), where
w(p)(i)¼ z(p)(iþ 4NCSS) mod Msymb).

The block of complex-valued symbols w(p) (0), . . ., w(p) (Msymb� 1) shall be mapped
in sequence starting with w(p)(0) to resource elements corresponding to the physical
control channels. The mapping to resource elements (k,l) on antenna port p not reservedfor
other purposes shall be in increasing order of first the index k and then the index l,
where l¼ 0, . . . , L� 1 and L� 3 correspond to the value transmitted on the PCFICH. In
the case of the PDCCHs being transmitted using antenna port 0 only, the mapping
operation shall assume reference signals corresponding to antenna port 0 and antenna
port 1 being present; otherwise, the mapping operation shall assume reference signals
being present corresponding to the actual antenna ports used for transmission of the
PDCCH.

(v) Dealing with the PBCH
The block of complex-valued symbols y(p) (0), . . . , y(p) (Msymb� 1) for each antenna port is
transmitted during four consecutive radio frames and shall be mapped in sequence starting with
d(0) y(0) to physical resource blocks number ðNDL

RB�1Þ=2�3 to ðNDL
RB�1Þ=2þ 2 if NDL

RB is an
odd number and NDL

RB=2�3 to NDL
RB=2þ 2 if NDL

RB is an even number. The mapping to resource
elements (k,l) not reserved for transmission of reference signals shall be in increasing order of
first the index k, then the index l in subframe 0, then the slot number and finally the radio frame
number. For frame structure type 2, only subframe 0 in the first half-frame of a radio frame is
used for PBCH transmission. The set of values of the index l to be used in subframe 0 in each of
the four radio frames during which the physical broadcast channel is transmitted is detailed in
the specification.

(vi) Dealing with the PMCH
The physical multicast channel shall be processed and mapped to resource elements in the same
way as the PDSCH, with the following exception:

. For transmission on a single antenna port, layer mapping and precoding shall be done
assuming a single antenna port and the transmission shall use antenna port 4, i.e. no transmit
diversity is specified.

(vii) Dealing with the PCFICH
The block of vectors yðiÞ ¼ ½yð0ÞðiÞ � � � yðP�1ÞðiÞ�T , i¼ 0, . . . , 15 shall be mapped to
physical resource elements in the first OFDM symbol in a downlink subframe.

(viii) Dealing with the PHICH
The block of modulation symbols d(0), . . . , d(Msymb� 1) shall be mapped to layers according
to one of Sections 6.3.3.1 or 6.3.3.3 and precoded according to one of Sections 6.3.4.1
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or 6.3.4.3, resulting in a block of vectors yðiÞ ¼ ½yð0ÞðiÞ � � � yðP�1ÞðiÞ�T , where y(p)(i)
represents the signal for antenna port p and where p¼ 0, . . . , P� 1 and the number of antenna
ports P2 {1,2,4}.
(ix) Regarding the Two-Dimensional Reference Signal Sequence rm,n

Let us consider the single antenna case first. The reference signals it shall be mapped to
resource atoms ak,l according to the following scheme, given in Figure 3.47.

However, as the numbers of downlink transmit antennas equals 1, 2, 3 or 4, the reference
signals have to be transmitted according to the following rules:

. Each antenna shall use some dedicated resource elements as reference signals.

. Each antenna element shall transmit nothing on a resource element used as a reference
signal on another antenna.

Figure 3.47 provides a mapping example for a type 1 frame structure with normal cyclic
prefix. For conciseness, the similar case (type 1 extended prefix, type 2 normal and extended
prefix, MBSFN reference signals case) are not shown but can be found in the 36.211
specification.

Figure 3.47 Mapping of downlink reference signals.
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(x) Regarding the Synchronization Signal
The primary synchronization signal is transmitted on 72 active subcarriers, centered on the
DC subcarrier. The primary synchronization signal d(n), whose use is described in Section
3.3.15, shall be mapped to the resource atoms ak,l according to

ak;l ¼ dðk þ 36Þ k ¼ �36; � � � ;�1

dðk þ 35Þ k ¼ 1; � � � ; 36:
�

ð3:59Þ

The primary synchronization signal is only transmitted in subframe l.
Other types of reference signals can also be mentioned:

. The MBSFN reference signals: MBSFN reference signals shall only be transmitted in
subframes allocated for MBSFN transmissions. MBSFN reference signals are transmitted
on antenna port 4.

. The UE-specific reference signals: they are only supported for frame structure type 2.
UE-specific reference signals are transmitted on antenna port 5. The UE is informed by
higher layers, whether the UE-specific reference signal is present and is a valid phase
reference or not.

3.7.11 E-MBMS Concepts

The support of MBMS (Multimedia Broadcast Multicast Services) is an essential requirement
for E-UTRAN. The so-called E-MBMS will therefore be an integral part of EPS.

E-MBMS provides a transport feature to send the same content information to a given set
of users in a cell to all the users (broadcast) or to a given set of users (multicast) for which a
notion of subscription applies in order to restrict the multicast services to a given set of
users.

But, as will be described in detail in Chapter 6, the E-MBMS multicast concept should not
be confused with the �IP multicast service� as, in the case of �IP multicast�, there is no sharing
of a given radio resource among all interested users, as it is only a pure IP notion (duplication
of some IP packets at some routers in the networks) and not a �radio� one.

MBMS (Multimedia Broadcast Multicast System) broadcast only depends on the users�
terminals� ability to receive the broadcast channel (like a TV receiver) and is a very
fashionable system, as its main commercial application is that it allows to carry efficiently
the TV channels broadcast on the small size screen of the mobile terminals in a given cell. For
instance, a medium data rate of 128 kb/s is enough to carry a video signal in an average radio
cell to a phone screen with a good perceived quality.

E-MBMS (which is the evolved version of the legacy MBMS system) should be able
to make use of some MIMOs� open loop scheme advantages. In E-MBMS, there
will be a single (single-cell broadcast) or multiple transmitting Node Bs and multiple
receiving UEs.

E-MBMS is a good application to demonstrate what MIMO can bring to the system. Indeed,
in the case of broadcast of the same signal on the same frequency band (see SFN below), the
transmission power has to be chosen so that the far mobiles should receive the signal with
good quality. To reduce the required power, increasing the number of transmit and receive
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antennas is a good solution. MIMO options, like spatial multiplexing, is possible in the
MBMS context.

(i) SFN Networks
In E-UTRAN, MBMS transmissions may be performed as single-cell transmissions or as
multi-cell transmissions. In the case of multi-cell transmission, the cells and content are
synchronized to enable for the terminal to soft-combine the energy from multiple transmis-
sions. The superimposed signal looks like multipaths to the terminal. This concept is also
known as Single Frequency Network (SFN). The E-UTRAN can configure which cells are
parts of an SFN for transmission of an MBMS service.

A MBMS Single Frequency Network is called a MBSFN. MBSFN is envisaged for
delivering services such as mobile TV using the LTE infrastructure, and is expected to be
a competitor to DVB-H-based TV broadcasts.

In MBSFN, the transmission happens from a time-synchronized set of eNodeBs using the
same resource block. The Cyclic Prefix (CP) used for MBSFN is slightly longer, and this
enables the UE to combine transmissions from different eNodeBs located far away from each
other, thus somewhat negating some of the advantages of SFN operation. There will be six
symbols in a slot of 0.5ms for MBSFN operation versus seven symbols in a slot of 0.5ms for
non-SFN operation.

For MBSFN operation, 3GPP is currently defining a SYNC protocol between the E-MBMS
gateway and the eNodeBs to ensure that the same content is sent over the air from all the
eNodeBs. As shown in Figure 3.48, a broadcast server is the source of the MBMS traffic, and a
gateway (E-MBMS gateway) is responsible for distributing the traffic to the different
eNodeBs of the MBSFN area.

�IP Multicast� may be used for distributing the traffic from the E-MBMS gateway to the
different eNodeBs.

3GPP has defined a control plane entity, known as the MBMS Coordination Entity (MCE),
that ensures that the same resource block is allocated for a given service across all the
eNodeBs of a givenMBSFN area. It is the task of theMCE to ensure that the RLC/MAC layers
at the eNodeBs are appropriately configured for MBSFN operation.

3GPP has currently assumed that header compression for MBMS services will be
performed by the E-MBMS gateway. In this case, the scrambling should be identical for
all cells involved in the MBSFN transmission.

Historically, the notion of SFN has been introduced in 3GPP for 3GPP R7, as, so far, each of
the broadcasting cells used to use its own frequency/scrambling code, meaning that even if the
same content is broadcasted from multiple cells, their signals interfere due to scrambling. In
SFN networks for UTRAN, the same scrambling/frequency is used in order to superimpose
signals like multipaths allowing HSDPA terminals to constructively combine them and
leading to a capacity gain of the broadcast network of up to three. However, in order for
each signal to fall inside the reception windows of the terminal, i.e. not exceeding the CP
length to cause inter-symbol interference, precise synchronization mechanisms of base
stations need to be achieved, for instance, based on the GPS system.

TheMBMS traffic can share the same carrier with the unicast traffic or be sent on a separate carrier.
In the case of subframes carrying MBMS SFN data, specific reference signals are used.

MBMS data are carried on the MBMS traffic channel (MTCH) as a logical channel. This
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logical channel is then mapped either on the MCH transport channel or on the DL-SCH
downlink shared channel. In the case of mapping on the MCH channel, the physical channel
associated is the PMCH.

When used with several cells, the reference symbols needed for MBMS reception are
identical in all cells to be considered for combining and transmission scheduling has to be
such that received packets are received in a range substantially less than the cyclic prefix.

MBMS transmissions may share the same carrier with unicast, or �dedicated� traffic. For
instance, for mobile TV, MBMS data can be sent on a separate carrier, not carrying anything
other than broadcast/MBMS-related information. Unicast multiplexing schemes such as FDM
or TDM are allowed (in the case of TDM, unicast transmissions are not sharing the same
subframe).

In case MBMS transmissions are handled using a separate carrier:

. There is only TDM multiplexing between different services.

. Only long CP is considered.

The physical layer coding and modulation chain for MBMS transmissions is the same as
unicast transmissions as a baseline.

Figure 3.48 MBSFN concept.
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When used with MBMS, feedback signalling from the UE may not be feasible, including
CQI. In the case of multi-codeword spatial multiplexing, dynamic adaptation of modulation
and coding, etc. for each codeword is not possible due to the absence of channel quality
feedback. However, different codewords can potentially use different modulation and coding
and/or power offsets in a semi-static fashion in order to enable efficient interference
cancellation at the UE receiver.

Since the baseline UE has only two antennas, the number of broadcast codewords are
limited to two. E-MBMS for UE limited to single codeword reception capability should be
further considered. E-MBMS signals from NodeB with more than two transmit antennas
should be transparent to the UE.

Finally, MBMS should be supported in paired or unpaired spectrum.

3.7.12 Downlink Link Adaptation

According to the position of the mobile in the cell and the interferences which it tries out
(signal/interference ratio reports, error rate, etc.), the operator of the network will be able to
optimize:

. The rate of the communications in the cell.

. The rate and the latency time of transmissions of the blocks jointly.

The radio resources allocator of the base station can manage the power of the transmitted
packets, the coding channel – meaning the number of packets to be transmitted for a given
volume of information – or the type of modulation.

It should be possible, for example, to transmit all the packets at maximum available power
in the sector of the cell and to adapt the choice of MCS (Modulation and Coding Scheme)
according to the radio conditions, resulting in a rate error value on the blocks [BLER (Block
Error Rate)] allowing to get either:

. a maximum capacity with a BLER not necessarily too weak (coding scheme/repetition
compromise); or

. a lower rate but a shorter latency time of block transmission because of an optimal BLER.

As indicated in Section 3.4.8, the dynamic choice of a MIMO scheme is also part of the
global link adaptation process (Figure 3.49).

3.7.13 HARQ

(i) Architectural Considerations
One of the architecture decisions made in 3GPP was to exclude ARQ functionality from the
Core Network Serving Gateway and to terminate ARQ in UE and eNodeB. This leads to the
question of whether E-UTRAN should use only a single (H)ARQ protocol or a two-layer
approach with HARQ and ARQ located at the RLC layer on top. It can be shown that achieving
the required reliability with a single HARQ layer can be very costly in terms of resources
needed for HARQ feedback. Thus, it has been decided that a two-layered ARQ/HARQ
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approach was the best way of achieving both high reliability and low resource cost for the
ARQ/HARQ feedback.

Considering that (H)ARQ in E-UTRAN is terminated in the eNodeB, using only one
HARQ protocol to ensure reliability may be attractive, as a second protocol may add
complexity, additional control signalling overhead, and harmful protocol interactions.
However, this approach suffers from some drawbacks, i.e. from the robustness constraint
on the HARQ feedback mechanism so as to obtain the expected error rate (10�6). Since the
end-to-end RTT (Round Trip Time) needs to be low to achieve a high throughput, it is
desirable to have fast and frequent HARQ feedback to correct transmission errors as soon as
possible. It is natural to consider the same approach used in HSPA, where a synchronous
one-bit ACK/NACK signal is sent every transmission attempt and the timing of the
feedback message is used to identify the corresponding data transmission, achieving the
fastest possible feedback while minimizing the information in the feedback message.
However, this binary feedback is susceptible to transmission errors and, in particular,
NACK reception errors (i.e. erroneously interpreted as ACKs at the receiver) lead to data
losses at the HARQ layer.

Thus, the reliability of the HARQ layer is bounded by the error rate of the feedback and not
the error rate of the data transmission and it is costly to achieve a sufficient HARQ feedback
reliability for the frequently transmitted feedback message, as the transmitter power require-
ments are high due to channel fading and the constraint that a single bit cannot be protected
with good Forward Error Correction (FEC) codes.

One solution for achieving a higher reliability without excessive expenditure on HARQ
feedback is to apply a second layer of ARQ on top of the MAC HARQ layer, e.g. to use an
RLC (Radio Link Control) Acknowledged Mode, as done for HSPA. Note that in this case,
the second ARQ layer is mainly responsible for correcting error events due to HARQ

Data rate 

Bit error rate 
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Dynamic change of 

modulation and/or coding 
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Figure 3.49 Link adaptation principle.
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feedback errors and not transmission errors themselves. One main benefit of the additional
ARQ protocol is that it provides a much more reliable feedback mechanism based on
asynchronous status reports with explicit sequence numbers that are protected by a cyclic
redundancy check (CRC).

This implies that the receiver of the status report can detect any errors in the report through
the CRC. The reliable transmission of the feedback information is further enhanced in
several ways. First, the status messages are protected by turbo codes. Secondly, HARQ is
also applied to status messages. Thirdly, the status messages are accumulative. Even if
the transmission of a status report fails, the subsequent status includes the information of the
lost one.

(ii) HARQ Process
The N-channel Stop-and-Wait protocol is used for downlink HARQ. Downlink hybrid
ARQ (HARQ) is based on Incremental Redundancy (IR). This means that the retransmis-
sions are basically nonidentical (chase or soft combining case). For instance, in the case of
turbo encoding of packets, different rate matching can be used between retransmissions.
The relative number of parity bits to systematic bits varies between retransmissions.
Obviously, this solution requires more memory in the user equipment. Practically, the
various encoding between different retransmissions can be done in �real time� for each
transmission or the data can be simultaneously encoded at the same time and stored in a
buffer.

HARQ can be also classified as synchronous or asynchronous. In principle, synchronous
operation with an arbitrary number of simultaneous active processes at a time instant could be
envisioned. Asynchronous operation already supports an arbitrary number of simultaneous
active processes at a time instant. Asynchronous HARQ offers the flexibility of scheduling
retransmissions based on air interface conditions.

Synchronous HARQ implies that (re)transmissions for a certain HARQ process are
restricted to occur at known time instants. No explicit signalling of the HARQ process
number is required, as the process number can be derived from, for example, the subframe
number. The various forms of HARQ schemes are further classified as adaptive or nonadap-
tive in terms of transmission attributes, e.g. the Resource Block (RB) allocation, modulation
and transport block size, and duration of the retransmission. Control channel requirements are
described for each case.

Synchronous HARQ transmission entails operating the system on the basis of a predefined
sequence of retransmission packet format and timing but the benefits of synchronous HARQ
operation when compared to asynchronous HARQ operation are:

. Reduction of control signalling overhead. (No signalling of the HARQ channel process
number.)

. Lower operational complexity if nonadaptive operation is chosen.

. Possibility to soft combine control signalling information across retransmissions for
enhanced decoding performance if nonadaptive operation is chosen.

Adaptive implies the transmitter may change some or all of the transmission attributes used
in each retransmission as compared to the initial transmissions (e.g. due to changes in the
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radio conditions). Hence, the associated control information needs to be transmitted with the
retransmission. The changes considered are:

. Modulation.

. Resource block allocation.

. Duration of transmission.

With those definitions, the HS-DSCH (shared transport channel in HSDPA) in 3G/UMTS
uses an adaptive, asynchronous HARQ scheme, while E-DCH (improved dedicated channel
of HSUPA standard) in 3G/UMTS uses a synchronous, nonadaptive HARQ scheme.

To sum up, the considerations provided in this section lead to the following ARQ concept
for E-UTRAN downlink:

. HARQ handles transmission errors and uses binary, synchronous feedback.

. The HARQ retransmission unit is a transport block that may contain data from more than
one radio bearer (MAC multiplexing).

. ARQ handles residual HARQ errors, i.e. it retransmits data for which the HARQ process
failed.

. ARQ retransmission unit is an RLC PDU.

. RLC performs segmentation or concatenation according to scheduler decisions. An RLC
PDU contains either a segment of a Service Data Unit (SDU), a complete SDU, or it may
contain data of several SDUs (concatenation).

. In the case of no MAC multiplexing, there is a one-to-one mapping between HARQ and
ARQ retransmission units.

. RLC performs in-order delivery to higher layers.

In the downlink, the current working assumption is to use an adaptive, asynchronous HARQ
scheme based on incremental redundancy (IR) for E-UTRAN. On the basis of the CQI reports
from the UEs, the scheduler in NodeB selects the time of the transmission and the
transmission attributes for the initial transmission and the retransmissions.

3.7.14 Downlink Packet Scheduling

The Node B scheduler (for unicast transmission) dynamically controls which time/frequency
resources are allocated to a certain user at a given time. Downlink control signalling informs
UE(s) what resources and respective transmission formats have been allocated. The scheduler
can dynamically choose the best multiplexing strategy from the available methods, e.g.
localized or distributed allocation. Obviously, scheduling is tightly interacting with link
adaptation and HARQ. The decision of which user transmissions to multiplex within a given
subframe may, for example, be based on:

. Minimum and maximum data rate.

. Available power to share among mobiles.

. BER target requirements according to the service.

. Latency requirement, depending on the service.

. Quality of Service parameters and measurements,
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. Payloads buffered in the Node-B ready for scheduling,

. Pending retransmissions,

. CQI (Channel Quality Indicator) reports from the UEs.

. UE capabilities.

. UE sleep cycles and measurement gaps/periods.

. System parameters such as bandwidth and interference level/patterns, etc.

Methods to reduce the control signalling overhead, e.g. pre-configuring the scheduling
instants (persistent scheduling for applications like VoIP, for instance) and grouping for
conversational services, should be considered.

Due to signalling constraints, only a given number of mobiles can be scheduled on the same
TTI (e.g. eight).

(i) Interactions between HARQ and Link Adaptation for Packet Scheduling
Figure 3.50 illustrates the interactions between the different entities involved in packet
scheduling (PS), which are located at the base station (eNodeB) in order to facilitate fast
channel-dependent scheduling in shortening the round trip delay. The basic time–frequency
resource available for data transmission is the physical resource block (PRB), which consists
of a fixed number of adjacent OFDM subcarriers and represents the minimum scheduling
resolution in the frequency domain. The Packet Scheduler is the controlling entity in the
overall scheduling process. It can consult the Link Adaptation (LA) module to obtain an
estimate of the supported data rate for certain users in the cell, for different allocations of
PRBs. LAmay utilize frequency-selective CQI feedback from the users, as well as Ack/Nacks
from past transmissions, to ensure that the estimate of supported data rate corresponds to a
certain BLER target for the first transmissions. Further, the offset calculation module in the
link-adaptation process may be used to stabilize the BLER performance in the presence of LA
uncertainties. It provides a user-based adaptive offset on a subframe interval that is applied to
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Figure 3.50 A packet-scheduling framework.
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the received CQI reports in order to reduce the impact of biased CQI errors on LA
performance. The aim of the scheduler is to optimize the cell throughput for the given load
condition under the applied scheduling policy in time and frequency. The HARQ manager
provides buffer status information as well as transmission format of the pending HARQ
retransmissions.

Among the possible scheduling policies, we can mention the:

. Fair allocation scheme in which each mobile (in DL or UL) is allocated the same amount
of available PRBs. The number of allocated PRBs per UE changes only when the number of
UE in the cell changes (handover).

. Proportional allocation scheme in which the user bandwidth is adapted to the changing
channel conditions while trying to match the signal-to-noise ratio bymeans of power control.

It can also be noted that the interference system in the frequency domain is somehow highly
dependent on the way the spectrum is used in the respective cells of the network. Frequency
planning tricks close to the ones well known in FDMA/TDMA systems – like GSM – may be
valid, including efficient packet scheduling under fractional re-use of the spectrum, e.g. the
whole spectrum is not used in the whole system in case of lack of traffic, to decrease cell edge
interference.

3.7.15 Cell Search and Acquisition

Cell search is the procedure by which a UE acquires time and frequency synchronization with
a cell and detects the cell identity of that cell. E-UTRAN cell search is assumed to be based on
two signals (�channels�) transmitted in the downlink: the �SCH� (Synchronization Channel)
and the �BCH� (Broadcast Channel), which is a transport channel carried by the PBCH.

The SCH (primary and secondary) enable acquisition of the symbol timing and the
frequency of the downlink signal.

The BCH carries cell/system-specific information (like for 3G/UTRAN). Indeed, the UE
must acquire at least:

. The overall transmission bandwidth of the cell.

. Cell ID.

. Radio frame timing information when this is not directly given by the SCH timing (SCH can
be transmitted more than once every radio frame).

. Information regarding the antenna configuration of the cell (number of transmitter
antennas).

. Information regarding the BCH bandwidth (multiple transmission bandwidths of the BCH
can be defined).

. CP length information regarding the subframe in which the SCH and/or BCH are
transmitted.

(i) SCH and BCH Timing Arrangement
The SCH and the BCH bursts are transmitted once or several times in a 10-ms radio time frame
and their respective numbers may not be the same (more SCH bursts than BCH ones). The
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BCH is placed at a well defined time instant after/before the downlink SCH by the time delay/
advance of t. The optimum number of SCH/BCH bursts depends on the cell detection time
specification.

SCH symbols are always placed in the same place within a subframe, i.e. the two last
symbols of the subframe. The reason is to ease the post-detection process (averaging of
multiple periodic detections).

(ii) Frequency Arrangement
The main problem faced is related to the multiplicity of possible supported bandwidths
(Figure 3.51). Indeed, E-UTRAN offers system flexibility by supporting systems and UEs of
multiple bandwidths.

This introduces a challenge in synchronization and bandwidth detection.
The chosen solution is that the SCH and the BCH symbols are placed at the center of

the transmission bandwidth. The simplified process is then the following one as shown in
Figure 3.52:

. The UE detects the central part of the spectrum, regardless of the transmission bandwidth
capability of the UE and that of the cell site.

. The UE moves to the transmission bandwidth according to the UE capability of the actual
communication.

The bandwidth used to transmit the SCH is set to 1.25MHz (72 subcarriers), whereas, for
diversity reasons, the BCH may use a bandwidth of 1.25 or 5MHz.

Cell site with 20 MHz bandwidth

10 MHz UE 

5 MHz UEs 

Dense traffic

1.25 MHz UE 

No traffic

Figure 3.51 The multiple bandwidth problem.
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(iii) Transmit Diversity Arrangement
As the SCH is the first physical channel for a UE to acquire, it must be received without a priori
knowledge of the number of transmitter antennas of the cell. Thus, transmit diversity methods
that do not require knowledge of the number of transmit antennas can only be considered [e.g.
time-switched transmit diversity (TSTD), frequency switched transmit diversity (FSTD), and
delay diversity including cyclic delay diversity (CDD)].

These diversity schemes can also be considered for the BCH in order to improve the packet
error rate (PER). Moreover, should the configuration of the transmitter antennas of the cell be
provided using the SCH or reference symbols, block code-based transmit diversity can be
considered for BCH.

(iv) SCH Signal Structure and Cell Search Procedure
Two principal structures of the SCH have been discussed by the 3GPP, depending on whether
the synchronization acquisition and the cell ID detection are obtained from the different SCH
signals (hierarchical SCH, like in UTRA), or from the same SCH signal (nonhierarchical
SCH). Performances criteria in terms of time, complexity and overhead will drive the need for
such and such SCH. The last decision of 3GPP tends to prefer a hierarchical structure of SCH,
like the one described below. Independently of the SCH structure, the basic cell search
procedure is provided in Figure 3.53.

. SCH symbol timing detection can be performed by several correlation methods, depending
on the type (hierarchical or not) of the received SCH.

. Radio frame timing detection can be done on the SCH or can be obtained by decoding the
BCH.
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Example: 10 MHz UE in 2- MHz cell site, SCH bandwidth = 1.25 MHz and BCH bandwidth = 1.25MHz

Figure 3.52 The cell search algorithm.
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. The cell ID identification can be indicated directly by the SCH sequence, or the SCH
sequence can indicate a group of cell IDs, on which an exhaustive search can be done, as in
3G/UTRAN.

Figure 3.54 provides the downlink physical channels for synchronization of the mobile and
system parameters acquisition.

From a hierarchical structure point of view, the SCHmay consist of two signals: the primary
SCH (P-SCH), used to obtain subframe level synchronization, and the secondary synchroni-
zation signal (S-SCH), used to obtain frame level synchronization.

The initial cell energy detection (closest cell) and subframe synchronization is done
through correlation (matched filter) with a sequence selected among three different ones on
the primary SCH which is transmitted over the centre 72 subcarriers on the last slots 0 and 10
in the first and sixth subframe of each frame.

Start

SCH symbol timing and frequency 
synchronization acquisition

Frame 
synchronization

Cell ID 
identification

End

Figure 3.53 The cell search procedure.

P-SCH: Slot subframe synchro

S-SCH: Frame synchro

Ref signals: Cell identifier

PBCH: Broadcast information

Figure 3.54 The physical channel roles for sysnchronization and system parameters acquisition.
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The secondary SCH is transmitted over the centre of 72 subcarriers on the second to last
symbol of slots 0 and 10 in the first and sixth subframe of each frame.

This signal in every cell carries the one among the 170 unique cell group identifiers, which
are basically pseudo-random sequences. Once the UE tunes into one of these 170 sequences,
the UE is subframe and frame synchronized.

Then, the mobile has still to decode the broadcast channel BCH (PBCH) information to find
the cell identifiers that are sent by the reference signal. The secondary SCH are arranged so
that each sequence maps to a cell group identifier of three cell-specific identifiers; therefore,
once the frame synchronization is obtained, there are only three cell-specific possible
identifiers (0,1 or 2 are the indexes of the cell identity group).

The primary synchronization signal is generated from a frequency-domain Zadoff-Chu
sequence. The primary synchronization signal is transmitted on 72 active subcarriers, centered
on the DC subcarrier according to

duðnÞ ¼ e
� j

�unðnþ 1Þ
63 n ¼ 0; 1; :::; 30

e
� j

�uðnþ 1Þðnþ 2Þ
63 n ¼ 31; 32; :::; 61

8>><
>>: ; ð3:60Þ

where the Zadoff-Chu root sequence index u is 25, 29 or 34 if the cell identity group is 0, 1 or
2, respectively.

The mapping of the primary synchronization signal depends on the frame structure.
For frame structure type 1, the primary synchronization signal d(n) is only transmitted in

slots 0 and 10 and shall be mapped to the resource elements according to

ak;l ¼ dðnÞ; k ¼ n�31þ NDL
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Resource elements (k, l) in slots 0 and 10 where

k ¼ n�31þ
�
NDL
RBN

RB
sc

2

�
; l ¼ NDL

symb�1; n ¼ �5;�4; . . . ;�1; 62; 63; . . . ; 66 ð3:62Þ

are reserved and not used for transmission of the primary synchronization signal.
For frame structure type 2, the primary synchronization signal is transmitted in the DwPTS

field. The second synchronization signal d(n) is a binary sequence. The sequence used for
the second synchronization signal is an interleaved concatenation of two length-31 binary
sequences obtained as cyclic shifts of a single length-31 M sequence generated by x5þ x2þ 1.
The concatenated sequence is scrambled with a scrambling sequence given by the primary
synchronization signal.

The secondary synchronization signal is transmitted on 72 active subcarriers, centered on
the DC subcarrier. The mapping of the secondary synchronization signal depends on the frame
structure.

For frame structure type 1, the secondary synchronization signal d(n) shall be mapped to the
resource elements according to

ak;l ¼ dðnÞ; k ¼ n�31þ
�
NDL
RBN

RB
sc

2

�
; l ¼ NDL

symb�2; n ¼ 0; � � � ; 61: ð3:63Þ
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Resource elements (k,l) in slots 0 and 10, where

k ¼ n�31þ
�
NDL
RBN

RB
sc

2

�
; l ¼ NDL

symb�2; n ¼ �5;�4; . . . ;�1; 62; 63; . . . ; 66; ð3:64Þ

are reserved and not used for transmission of the secondary synchronization signal, where
l ¼ NDL

symb�2. The secondary synchronization signal is transmitted in and only in slots where
the primary synchronization signal is transmitted.

For frame structure type 2, the secondary synchronization signal is transmitted in the last
OFDM symbol of subframe 0.

The BCH then carries the system information: the physical layer parameters (e.g.
bandwidth), system frame number (SFN), scheduling information of the most frequently
repeated scheduling unit (a group of system information which has the same periodicity):
network identities, tracking area code, cell identity, cell baring status, scheduling information
of other scheduling unit, etc.

3.7.16 Methods of Limiting the Inter-Cell Interference

To make the best use of the whole available spectrum and limit the complexity of frequency
planning, it is planned usually to use the whole spectrum in any cell, i.e. the re-use factor is set
to 1. However, granted that in that case, the cell edge users may suffer from interference of the
neighbouring cells, some approaches to mitigate these interferences may be required. Three
approaches to inter-cell interference mitigation, not necessarily mutually exclusive, are being
considered:

. Inter-cell-interference randomization. Methods considered for inter-cell-interference ran-
domizations include: cell-specific scrambling [or applying (pseudo) random scrambling
after channel coding/interleaving], cell-specific interleaving [also known as Interleaved
Division Multiple Access (IDMA)] and a third method, which consists of applying different
kinds of frequency hopping.

. Inter-cell-interference cancellation. Fundamentally, inter-cell-interference cancellation
aims at interference suppression at the UE beyond what can be achieved by just exploiting
the processing gain. For instance, spatial suppression by means of multiple antennas at the
UE can be considered. interference cancellation based on detection/subtraction of the inter-
cell interference also. One example is the application of cell-specific interleaving (IDMA)
to enable inter-cell-interference cancellation.

. Inter-cell-interference coordination/avoidance. Based on measurements performed by the
UE and communicated to the NodeB (CQI, path loss, average interference, etc.) and on
measurements performed by different network nodes and exchanged between them
(which requires inter-eNodeB synchronization) a better downlink allocation can be done
to mitigate interferences. For instance, soft frequency re-use (Figure 3.55) can be
achieved. This consists of having, for the cell edge users, a primary band with a
frequency re-use pattern of 1/3, for example, served by high-power transmission with
a good SNR, and a secondary band for the cell center users with the remaining spectrum
and power.
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(i) The IDMA Scheme
This scheme is a new scheme proposed for E-UTRAN: Interleave Division Multiple Access
(IDMA) as a way to mitigate the inter-cell interference (ICI) in a downlink EUTRA system.
The principle of IDMA is to employ distinct interleaving patterns in the neighbouring cells so
that the UE can distinguish the cells by means of cell-specific interleavers. IDMA has a similar
characteristic, with scrambling in whitening ICI when the traditional �single-user (NodeB)�
receiver is used.

Figure 3.56 illustrates the use of IDMA in the downlink case, in which UE1 and UE2 are
respectively served by NodeB1 and NodeB2 but allocated the same time–frequency resource
(chunk). Suppose NodeB1 interleaves the signal for UE1 with interleaving pattern1, while
NodeB2 interleaves the signal for UE2 with interleaving pattern2 (different from pattern1),
then UE1 (UE2) may distinguish the signals from the two NodeBs by means of different
interleavers.

(ii) IDMA with Iterative Receiver
Let us assume that the UEs can perform an iterative decoding of information coming both
from Stations 1 and 2.

Figure 3.55 Soft frequency re-use.

Station2-TX jams  UE1-RX with signals for UE2-RX 
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Figure 3.56 Using IDMA to suppress inter-cell interference.
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In the case of using the single-cell receiver, the interference from the other NodeB will be
whitened to noise. When iterative multi-cell receiver is used, the interference could be
effectively cancelled. Note that IDMA can be employed not only between neighbouring
NodeBs, but also potentially between neighbouring sectors.

The iterative multi-cell receiver is based on the interference cancellation and iterative
decoding. Let us briefly consider a two-cell case. In the first iteration, the single-user
decoding is performed for Cell 1. Assuming, after the decoding, a given information bit
in the frame is relatively unreliable [log-likelihood ratio (LLR) is small]. Then, the
information bits are re-encoded. Thus, the unreliable information bit is converted into a
given number of N unreliable code bits. The N unreliable code bits are scrambled to
distributed positions after re-interleaving for Cell 1. Then, the Cell 2 signal is obtained by
subtracting the Cell 1 from the received signal. After the interference subtraction, the
N unreliable bits in the Cell 1 frame are affecting the corresponding bits in the Cell 2 frame,
but then the Cell 2 signal is fed to the de-interleaver of Cell 2. If the two cells used the same
interleaver pattern, the N unreliable bits would be reassembled together. However, if IDMA
is used, Cell 2 is employing a different interleaver pattern from Cell 1. Hence, the N
unreliable bits in the frame will be scrambled to another series of distributed positions,
providing at the second iteration a good estimation of the N bits that were previously
doubtful.

3.7.17 Downlink Physical Layer Measurements

This paragraph deals with the important subject of measurements performed by the UE
on the downlink. These measurements are useful for scheduling purpose and mobility
management.

(i) Scheduling
The UE has to report to the Node B the channel quality of one resource block or a group of
resource blocks in the form of a CQI. This CQI is measured on a multiple of 25 or 50
subcarriers� bandwidth and is a key parameter to tune the following:

. Time/frequency-selective scheduling.

. Link adaptation.

. Interference management.

. Power control of downlink physical channel.

(ii) Mobility
The classical functions of mobility are based on measurements so as to be able to perform the
following:

. The PLMN selection according to their quality.

. The cell selection and reselection. (Detection of the most suitable cells.)

. The handover decision, including intra-frequency handover (the measurement are made on
a same carrier frequency band or the UE at least receives the common channel of the target
cell) or inter-frequency handover (the measurements are made on a different carrier
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frequency band or the UE at least does not receive the common channel of the target cell) or
even inter-RAT handover. Classically, the UE has to perform enough uplink/downlink idle
periods to efficiently manage the measurements on the serving cell and its neighbourhood.

3.8 Uplink Scheme: SC-FDMA (FDD/TDD)

3.8.1 Uplink Physical Channel and Signals

An uplink physical channel corresponds to a set of resource atoms carrying information
originating from higher layers. The following uplink physical channels are defined
(Figure 3.57):

. Physical Uplink Shared Channel, PUSCH, used for uplink shared data transmission.

. Physical Uplink Control Channel, PUCCH. The PUCCH shall be transmitted on a reserved
frequency region in the uplink. It is used to carry ACK/NACK, CQI for downlink
transmission and scheduling request for uplink transmission.

. Physical Random Access Channel, PRACH.

An uplink signal is used by the physical layer but does not carry information originating
from higher layers. The following uplink physical signals are defined:

. Reference signal.

3.8.2 SC-FDMA

The basic uplink transmission scheme is single-carrier transmission (SC-FDMA) with cyclic
prefix to achieve uplink inter-user orthogonality and to enable efficient frequency–domain
equalization at the receiver side. Frequency–domain generation of the signal, sometimes
known as DFT-SOFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division
Multiplex), is assumed and illustrated in Figure 3.58. This allows a relatively high degree of
commonality with the downlink OFDM scheme and the same parameters, e.g. clock
frequency, can be re-used.

The subcarrier mapping determines which part of the spectrum is used for transmission by
inserting a suitable number of zeros at the upper and/or lower end in Figure 3.59. Between
each DFT output, sample L-1 zeros are inserted. A mapping with L¼ 1 corresponds to
localized transmissions, i.e. transmissions where the DFT outputs are mapped to consecutive
subcarriers. With L> 1, distributed transmissions happens, which is considered as a

Physical Random Access Channel

Physical Uplink Shared Channel

Physical Uplink Control Channel

Figure 3.57 The uplink physical channels.
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complement to localized transmissions for additional frequency diversity. However, although
distributed mapping was planned originally for uplink, recent standardization decisions will
only allow a localized mapping and the frequency diversity can be obtained via intra or inter-
TTI frequency hopping.

The physical mapping to the N available subcarriers per one DFT-SOFDM symbol in the
RF spectrum shall be performed as illustrated in Figure 3.59, where fc is the carrier frequency
and where the transmission BW is 1.25/2.5/5/10/15/20MHz, and N is 75/150/300/600/900/
1200, and Nn is 38/75/150/300/450/600, respectively.

3.8.3 Uplink Subframe Structure

As for the downlink, there are also two types of frame structure: type 1 and type 2, designed for
compatibility purposes with the LCR UTRA TDD.

The transmitted signal in each slot is described by the contents of NUL
symb SC-FDMA

symbols, numbered from 0 to NUL
symb�1. Each SC-FDMA symbol carries multiple
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Figure 3.59 Localized mapping (left) and distributed mapping (right).
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Figure 3.58 Transmitter structure for SC-FDMA.
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complex-valued modulation symbols au,l representing the contents of resource element (u,l),
where u is the time index within the SC-FDMA symbol l.

For the type 1 frame structure, all SC-FDMA symbols are of the same size. The uplink slot
structure for the type 1 frame structure is illustrated in Figure 3.60.

For the type 2 frame structure, SC-FDMA symbol 1 and NUL
symb�2 are denoted by short SC-

FDMA symbols, used to carry the uplink demodulation reference signals. The uplink slot
structure for the type 2 frame structure is illustrated in Figure 3.61.

The number of SC-FDMA symbols in a slot depends on the cyclic prefix length configured
by higher layers and is given in Table 3.9.

In the case of type 2 frame structures, the long symbols are used for control and/or data
transmission, while the short ones are used for reference signals (pilot symbol for coherent
demodulation and control and/or data transmission).

The basic TTI duration is twice the slot duration, i.e. 1ms, containing 12 long OFDM
symbols; however, as for the downlink, several subframes can be concatenated to offer longer
TTI to potentially reduce higher layer protocol overhead (IP packet segmentation, RLC-MAC
header, etc.). This TTI duration can be dynamically adjusted through higher layer signalling in
a semi-static way or controlled by the eNodeB in a more dynamic way in order to improve
HARQ process, for instance.

Dealing with the size in terms of number of occupied subcarriers or samples for both types
of blocks, a long block is consuming twice the number of subcarriers or samples as a short one.
Each block is separated by a cyclic prefix, whose duration depends on the total available
bandwidth. A longer cyclic prefix is called an �extended cyclic prefix�.

0 1 2 Nsymb-3

One uplink slot, Tslot

Nsymb-1

Modulation symbol au,Nsymb-3

Nsymb-2

Figure 3.61 Uplink slot format (type 2 frame structure).

0 1 2 Nsymb-2

One uplink slot, Tslot

Nsymb-1

Modulation symbol au,Nsymb-2

Figure 3.60 Uplink slot format (type 1 frame structure).
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3.8.4 Resource Grid

The transmitted signal in each slot is described by a resource grid of NUL
RBN

RB
sc subcarriers and

NUL
symb SC-FDMA symbols. The quantity NUL

RB depends on the uplink transmission bandwidth
configured in the cell and shall fulfill 6 � NUL

RB � 110. Only the resources grid of type 1 is
provided in Figure 3.62.

Similarly to the downlink, each element in the resource grid is called a resource element and
is uniquely defined by the index pair (k,l) in a slot where k and l are the indices in the frequency

Table 3.9 Resource block parameters.

NUL
symb

Configuration NRB
sc Frame structure type 1 Frame structure type 2

Normal cyclic prefix 12 7 9
Extended cyclic prefix 12 6 8

Resource element (k,l)

N
R

B
U

L
 ×

 N
SC

R
B
 s

ub
ca

rr
ie

rs
 

Resource block 
NSYMB

UL × NSC
RB resource elements 

l = NSYMB
UL - 1l = 0

NSYMB
UL SC-FDMA symbols

One downlink slot, Tslot

Figure 3.62 Uplink slot format (frame structure type 1).
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and time domains, respectively. Resource element (k,l) corresponds to one complex-valued
modulation symbol ak,l where k ¼ 0; � � � ;NUL

RBN
RB
sc �1 and l ¼ 0; � � � ;NUL

symb�1. Modulation
symbols ak,l corresponding to resource elements not used for transmission of a physical
channel or a physical signal in a slot shall be set to zero.

A resource block is defined as NUL
symb consecutive SC-FDMA symbols in the time domain

and NRB
sc consecutive subcarriers in the frequency domain, where NUL

symb and NRB
sc are given in

Table 3.9. A resource block in the uplink thus consists of NUL
symb ·N

RB
sc resource elements,

corresponding to one slot in the time domain and 180 kHz in the frequency domain.
Assuming the TTI is 1ms, the basic uplink resource units are:

. Frequency resources: 12 subcarriers¼ 180 kHz.

. Symbols: 1ms.180 kHz¼ 14OFDM symbols�12 subcarriers¼ 168 modulation symbols.

At the opposite of the downlink, no unused subcarrier is defined as the DFT based precoding
reduces the PAPR impact of it, spreading it over the M modulation symbols.

3.8.5 PUSCH Physical Characteristics

The following general steps can be identified for transmission of the physical uplink shared
channel (Figure 3.63):

. Scrambling.

. Modulation of scrambled bits to generate complex-valued symbols.

. DFT-precoding to generate complex-valued modulation symbols.

. Mapping of complex-valued modulation symbols to resource elements.

. Generation of complex-valued time–domain SC-FDMA signal for each antenna port.

(i) Scrambling
If scrambling is configured, the block of bits b(0), . . . ,b(Mbit� 1), whereMbit is the number of
bits to be transmitted on the physical uplink shared channel, shall be scrambled with a
UE-specific scrambling sequence prior to modulation, resulting in a block of scrambled bits
c(0), . . . , c(Mbit� 1).

(ii) DFT-Precoding
The block of complex-valued symbols d(0), . . .,d(Msymb� 1) is divided into Msymb/Msc

sets, each corresponding to one SC-FDMA symbol. DFT-precoding shall be applied accor-
ding to

zðl · Msc þ kÞ ¼
XMsc�1

i¼0

dðl · Msc þ iÞe
� j

2�ik

Msc

k ¼ 0; . . . ;Msc�1

l ¼ 0; . . . ;Msymb=Msc�1

; ð3:65Þ

Modulation
mapper

DFT
precoder

Scrambling SC-FDMA
signal gen.

Resource
element mapper

Figure 3.63 Overview of uplink physical channel processing.
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resulting in a block of complex-valued modulation symbols z(0), . . ., z(Msymb� 1). The
variableMsc represents the number of scheduled subcarriers used for PUSCH transmission in
an SC-FDMA symbol and shall fulfill

Msc ¼ NRB
sc · 2�2 · 3�3 · 5�5 � NRB

sc ·NUL
RB ; ð3:66Þ

where a2, a3, a5 is a set of non-negative integers.

(iii) Modulation Scheme
The supported uplink modulation schemes are QPSK, 16 QAM and 64 QAM. The PUSCH can
be QPSK, 16-QAM or 64-QAM modulated.

(iv) Mapping

The block of complex-valued symbols z(0), . . . , z(Msymb� 1) shall be multiplied with
an amplitude scaling factor named bPUSCH and mapped in sequence starting with z(0) to
resource blocks assigned for transmission of PUSCH. The mapping to resource elements
(k,l) not used for transmission of reference signals shall be in increasing order of first the
index k and then the index l, starting with the first slot in the subframe. The index k is
given by

k ¼ k0 þ fhopð·Þ; . . . ; k0 þ fhopð·Þ þMsc�1; ð3:67Þ
where fhop(�) denotes the frequency-hopping pattern and k0 is given by the scheduling
decision.

Frequency hopping provides additional frequency diversity, assuming that the hops are in
the same order or larger than the channel coherency bandwidths.

3.8.6 PUCCH Physical Characteristics

(i) Scrambling
This process is identical to the PUSCH case.

(ii) Modulation
The physical uplink control channel, PUCCH, carries uplink control information. The PUCCH
is never transmitted simultaneously with the PUSCH.

The physical uplink control channel supports multiple formats, as shown in Table 3.10,
but only BPSK and QPSK modulations are supported, depending on the PUCCH format.

The scrambled signal c(0), . . . , c(Mbit� 1) is modulated according to Table 3.10,
depending on its format, to provide d(0), . . . , d(Msymb� 1); the result is multiplied bit per

Table 3.10 Slot formats supported by the PUCCH.

Format
Number of reference
symbols per slot Modulation scheme

Number of bits per subframe, Mbit

Normal cyclic prefix Extended cyclic prefix

0 3 OOK 1 1
1 3 BPSK 2 2
2 3 QPSK 20 20
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bit with two sequences, respectively, for PUCCH formats 0 and 1 and one sequence only for
PUCCH format 2. For the former case, there are a first cyclically shifted length NZC¼ 12
Zadoff-Chu sequence Zc(i) and a second orthogonal sequence w(i), depending on the mobile.
This signal aims to provide a high orthogonality between the respective signalling channels of
all the mobiles in the cells. For frame structure type 1, the w sequence is four length-4
Hadamard sequences.

The result dðiÞ:ZcðiÞ:wðiÞ is mapped to resource elements assigned for transmission of
PUCCH. For PUCCH format 2, the modulated signal is only modulated by the cyclically
shifted base sequence.

(iii) Mapping
The block of complex-valued symbols z(i) shall be mapped in sequence starting with z(0) to
resource elements assigned for transmission of PUCCH. The mapping to resource elements
(k,l) not used for transmission of reference signals shall start with the first slot in the subframe.
The set of values for index k shall be different in the first and second slots of the subframe,
resulting in frequency hopping at the slot boundary.

3.8.7 Uplink Multiplexing Including Reference Signals

As already discussed, the channel-coded, interleaved and data modulation information can be
arranged on a given number of resources units (RU), each being localized (LRU) or distributed
(DRU). A localized LRU consists of M consecutive subcarriers during N long blocks. A
distributed LRU consists of M equally spaced nonconsecutive subcarriers during N long
blocks.

With M¼ 25 (other choices are possible), we have Table 3.11.
Several RUs can be assigned by the NodeB to the UE. In the case of LRU, the allocation

should be contiguous in the frequency domain.

3.8.8 Reference Signals

As for the downlink, the reference signals are basically used by the eNodeB for channel
estimation purposes and quality estimation for packet scheduling. Reference signals are
transmitted within the two short symbols or �blocks� of the slot, which are time-multiplexed
with long �blocks� and with an instantaneous bandwidth equal to the bandwidth of the data
transmission. Multi-antenna mobiles may require multiple orthogonal reference signals for
MIMO purposes, but can also be allocated to different UEs controlled by the same
eNodeB.

Table 3.11 Number of resource units, dependent on bandwidth.

Bandwidth (MHz) 1.25 2.5 5.0 10.0 15.0 20.0

Bandwidth (kHz) occupied
by a resource unit

375 375 375 375 375 375

Number of available
resource units

3 6 12 24 36 48

162 Evolved Packet System (EPS)



Therefore, two types of uplink reference signals are supported:

. Demodulation reference signal, associated with transmission of uplink data and/or control
signalling.

. Sounding reference signal, not associated with uplink data transmission with a much larger
bandwidth than the former.

The same set of base sequences is used for demodulation and sounding reference signals.
The reference signals can be transmitted in a distributed or localized way. In the nominal

case, the orthogonality between uplink reference signals can be achieved in the Frequency
Domain (FDM), but it could be also done in the code domain, i.e. several reference signals
could be Code Division Multiplexed (CDM) on a contiguous subcarriers set. The uplink
reference signals are based on well known CAZAC sequences, leading to minimum
intercorrelation products. Various phase shift of a single CAZAC sequence may be also
used as a way of multiplexing the reference signals in the code domain. Within neighbours
cells, the uplink reference signals should be based on different ZC sequences.

A combination of the two above-mentioned methods may also be used.
The base sequence rð0Þ; . . . ; rðMRS

sc �1Þ of length MRS
sc is defined by a time–domain cyclic

shift in the frequency–domain truncated or extended Zadoff-Chu sequence (see
Section 3.4.12). Note that different cyclic shifts can be used in different slots of a subframe.
The cyclic shift to use in the first slot of the subframe is given by the uplink scheduling grant in
the case of multiple shifts within the cell.

Demodulation reference signals for PUSCH and PUCCH and sounding reference signals
are constructed from the base sequence.

Such or such method of multiplexing the reference signals will be selected, depending on
the scenario of the mobile spectrum allocation (same band or not), eNodeB selection, and also
antenna configuration (MIMO).

3.8.9 Multiplexing of L1/L2 Control Signalling

The uplink channel carries three types of information:

. The data.

. The data-associated signalling mandatory for uplink data demodulation. This includes the
transport format or the HARQ information (retransmission sequence number for synchro-
nous HARQ or hybrid ARQ process number, redundancy version, etc. in the case of
asynchronous ARQ).

. The signalling nonassociated to data, like, for instance, the information associated with the
downlink transmission, such as the downlink CQI (Channel Quality Indicator), ACK/
NACK due to downlink transmissions and scheduling request for uplink transmission
assigned by the eNodeB, Synchronous or asynchronous random access and MIMO-related
feedback information if required.

All of this information is time-multiplexed within the subframe and then mapped in the
time–frequency plan.

From a frequency point of view, information of various types can be time-multiplexed on a
given subcarrier part of a resource unit. For instance, the frequency resources can successively
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carry the pilot, some control information for multiple UEs, some data for a given set of UEs,
etc.

From a time perspective, information of various types can be frequency-multiplexed on
subframe duration. For instance, some control information for multiple UEs, some data for a
given set of UEs and multiple pilots can be transmitted at the same time on several resource units.

3.8.10 Channel Coding and Physical Channel Mapping

Channel coding is based on UTRAN release 6 turbo-coding schemes, i.e. turbo code with
R¼ 1/3. Other FEC (Forward Error Correction) schemes are also envisaged to cope with
additional E-UTRAN requirements, like codes polynomial for lower rates or repetition coding
for higher processing gain. This is similar to the downlink.

3.8.11 SC-FDMA Signal Generation

The SC-FDMA symbols in a slot shall be transmitted in increasing order of l. The time-
continuous signal sl(t) in SC-FDMA symbol l in an uplink slot is defined by

slðtÞ ¼
XdNUL

RBN
RB
sc =2 e�1

k¼�bNUL
RBN

RB
sc =2 c

akð�Þ;l · e
j2�ðkþ1=2Þ� f ðt�NCP;lTsÞ ð3:68Þ

for 0� t< (NCP, lþN)� Ts, where kð�Þ ¼ k þ bNUL
RBN

RB
sc =2 c. The variable N¼ 2048 and

�f¼ 15 kHz.
Table 3.12 lists the values of NCP,l that shall be used for the two frame structures. Note that

different SC-FDMA symbols within a slot may have different cyclic prefix lengths. For frame
structure type 2, note that the SC-FDMA symbols do not fill all uplink subframes completely,
as the last part is used for the guard interval.

3.8.12 The Random Access Channel

Asmentioned, the process can be synchronized or non-synchronized. In the non-synchronized
case, the random access burst is transmitted with no prior synchronization of the uplink with
respect to eNodeB. The minimum used bandwidth is 1.25MHz. In the frequency domain, the
random access burst occupies a bandwidth corresponding to NRA

BW ¼ 72 subcarriers for both
frame structures. Higher layers configure the location in frequency of the random access burst.

Table 3.12 SC-FDMA parameters.

Cyclic prefix length NCP,l Guard interval

Configuration Frame structure type 1 Frame structure type 2 Guard interval

Normal cyclic prefix 160 for l¼ 0 224 for l¼ 0, l, . . ., 8 288
144 for l¼ 1, 2, . . . , 6

Extended cyclic prefix 512 for l¼ 0, 1, . . . , 5 512 for l¼ 0, 1, . . . , 7 256
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The preamble sequence occupies TPRE¼ 0.8ms and the cyclic prefix occupies TCP¼ 0.1
ms, resulting in a guard period of TGT¼ 0.1ms in case one subframe pair is reserved for
random access. Higher layer signalling controls in which subframe pairs random access
preamble transmission is allowed.

The physical layer random access burst, illustrated in Figure 3.64, consists of a cyclic prefix
of length TCP, a preamble of length TPRE, and a guard time TGT, during which nothing is
transmitted. The parameter values are listed in Table 3.13 and depend on the frame structure
and the random access configuration. Higher layers control the preamble format. For instance,
up to four formats are allowed for random access burst parameters for type 1 frame structure.

For frame structure type 2, the start of the random access burst depends on the burst length
configured. For the normal burst length, the burst shall start TRA before the end of the UpPTS
at the UE. For the extended burst length, the start of the random access burst shall be aligned
with the start of uplink subframe 1.

In the frequency domain, the random access burst occupies a bandwidth corresponding to
NRA
BW ¼ 72 subcarriers for both frame structures. Higher layers configure the location in the

frequency of the random access burst.
Open loop power control is used to determine the initial transmit power level. It is possible

to vary the random access burst transmit power between successive bursts using power
ramping with configurable step size including zero step size for both the FDD and TDD cases.
Classically, the access burst comprises mainly a preamble used for signature detection and
time alignment and a few bits payload message.

The random access preambles are generated from Zadoff-Chu sequences with zero
correlation zones, generated from one or several root Zadoff-Chu sequences. The network
configures the set of preamble sequences the UE is allowed to use.

PreambleCP 

TPRETCP

TRA

TGT

Figure 3.64 Random access preamble format (frame structure type 1).

Table 3.13 Random access burst parameters.

Frame structure Burst format TCP TPRE

Type 1 0 3152� Ts 24576 · Ts
1 21012� Ts 24576� T s

2 6224� Ts 2� 24576� Ts

3 21012� Ts 2� 24576� Ts

Type 2 0 0� T s 4096 · Ts
1 0� Ts 16384� T s

2
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The uth root Zadoff-Chu sequence is defined by

xuðnÞ ¼ e
� j

�unðnþ1Þ
NZC ; 0 � n � NZC�1; ð3:69Þ

where the length NZC of the Zadoff-Chu sequence is given by Table 3.13.
From the uth root Zadoff-Chu sequence, random access preambles with zero correlation

zones are defined by cyclic shifts of multiples of NCS according to xu,v(n)¼ xu (nþvNCS) mod
NZC), where NCS is given by Table 3.14.

About the Zadoff-Chu sequence:

In 1972, Chu and, almost at the same time, Zadoff described a method to construct a
polyphase perfect sequence without constraint on the sequence length N. They observed
that original sequences always have the best peak-to-side peak ratios over all possible
decimations and shift values. In addition, the ratios grow linearly with the square root of the
length N of the sequences.

All out-of-phase periodic autocorrelation values are 0.
The PAPR and dynamic range of Zadoff-Chu sequences are far better than the Walsh

codes.
The so-called polyphase Zadoff-Chu sequences are among the most important class of

CAZAC (Constant Amplitude Zero Auto-Correlation) sequences, whose elements are
roots of unity. It has been shown that such sequences exist for all periods L. If L is odd, an
L-phase sequence can be constructed; if L is even, two L-phases are needed.

CAZAC sequences are useful for channel estimation and fast start-up equalization. They
are shown to be optimal under certain assumptions. The most important members of this
family are the polyphase sequences of lengths that are a power of 2 because of their suitability
for Fast Fourier Transform processing.

(i) Base Band Signals Generation for Random Access
The time-continuous random access signal s(t) is defined by

sðtÞ ¼ 
PRACH

XNZC�1

k¼0

XNZC�1

n¼0

xu;vðnÞ · e� j2�nkNZC · e j2�ðkþ’þKðk0þ1=2ÞÞ� fRAðt�TCPÞ; ð3:70Þ

where bPRACH is an amplitude scaling factor, 0< TPREþ TCP and k0 ¼ kRAN
RB
sc �NUL

RBN
RB
sc =2.

The location in the frequency domain is controlled by the parameter kRA, expressed as a

Table 3.14 Random access preamble sequence parameters.

Frame structure Burst format NZC NCS Number of preambles Preamble sequences per cell

Type 1 0–3 839 64
Type 2 0 139 552 16

1 557
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resource block number configured by higher layers and fulfilling 0 � kRA <NUL
RB�6. The

factor K¼ TPRE=(2048 · Ts) accounts for the difference in subcarrier spacing between the
random access preamble and uplink data transmission and the variable ’¼ 12 is a fixed offset
determining the frequency–domain location of the random access preamble within the
resource blocks.

(ii) The Access Procedure
Figure 3.65 provides one possible example of a random access procedure: the eNodeB responds
to the nonsynchronized random access attempt preamble with timing information and resource
allocation for transmission of scheduling request (and possibly any additional control signal-
ling or data).

(iii) Timing Information
On receiving a random access burst from a UE, the network determines if the UE needs a
timing advance (TA) adjustment and, if so, signals to the UE a TA indicator which is a multiple
of 0.52 ms and is applied as a one-step adjustment relative to the random access channel
preamble transmit timing.

ATA indicator received by the UE will be a multiple of 0.52 ms and is applied as a one-step
adjustment relative to current uplink timing.

UE then sends the scheduling request at the assigned time–frequency resource using the
shared data channel or physical random access channel (for coexisting LCR-TDD-based
frame structure). The eNodeB adjusts the resource allocation according to the scheduling
request from the UE.

In the case of the synchronized procedure, the UE uplink is synchronized with the eNodeB
so that the latency time of the access procedure can be reduced. The minimum bandwidth is
equal to the bandwidth of the uplink RU, i.e. 375 kHz, but can be wider.

Random Access Preamble 

Timing information + resource allocation 

Scheduling request 

Uplink resource allocation 

eNodeB 

Uplink data transmission 

Figure 3.65 Example of nonsynchronized RACH procedure.
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Downlink radio frame  #i

Uplink radio frame  #i

NTA × Ts time units

Figure 3.66 Uplink–downlink timing relation.

3.8.13 Uplink–Downlink Frame Timing (Figure 3.66)

Transmission of the uplink radio frame number i from the UE shall start NTA�Ts seconds
before the start of the corresponding downlink radio frame at the UE. Note that not all slots in a
radio frame may be transmitted. One example hereof is TDD, where only a subset of the slots
in a radio frame is transmitted.

3.8.14 Scheduling

Downlink control signalling informs UE(s) about resources and respective transmission
formats to be allocated. The decision of which user transmissions to multiplex within a given
subframe may, for example, be based on:

. Type of required services (BER, min and max data rate, latency, etc.).

. Quality of Service parameters and measurements.

. Pending retransmissions.

. Uplink channel quality measurements.

. UE capabilities.

. UE sleep cycles and measurement gaps/periods.

. System parameters such as bandwidth and interference level/patterns.

. etc.

The states of buffers inside the mobiles are unknown to the eNodeB; therefore, the
scheduling cannot be based also on this type of information, as for the downlink.

However, some time–frequency resources can be allocated for contention-based access.
Within these time–frequency resources, UEs can transmit without first being scheduled. As a
minimum, contention-based access should be used for random-access and for request-to-be-
scheduled signalling.

In unpaired spectrums, system capacity may be improved through the use of localized
FDMA contention-based access channels. The UE may select the access channel based upon
knowledge of the channel state information measured on a recent downlink subframe.

3.8.15 Link Adaptation

In a large sense, the uplink link adaptation process deals, according to the radio channel
conditions, with the following:
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. Adaptive transmission bandwidth.

. Transmission power control.

. Adaptive modulation and channel coding. The same coding and modulation is applied to all
resource units assigned to which the same L2 PDU is mapped on the shared data channel
scheduled for a user within a TTI.

Therefore, the global scheme for uplink link adaptation can be seen in Figure 3.67.

3.8.16 Uplink HARQ

As for the downlink case, there are two levels of retransmissions for providing reliability,
namely the Hybrid Automatic Repeat reQuest (HARQ) at the MAC layer and an outer ARQ at
the RLC layer. The outer ARQ is required to handle residual errors that are not corrected by
HARQ that is kept simple by the use of a single bit error-feedback mechanism. An N-process
stop-and-wait HARQ is employed that has synchronous retransmissions in the UL.

Thus, in the current standard for the uplink, a synchronous, nonadaptive HARQ is used for
SC-FDMA on the uplink of E-UTRAN. The main advantages of synchronous nonadaptive
HARQ are:

. Reduced control signaling.

. Lower complexity for HARQ operation.

. The possibility of soft-combining control information.

Nth (re) transmission 

Uplink quality estimation 

Bandwidth selection 

Coding and modulation selection 

Uplink power determination 
(target for received SNR) 

Figure 3.67 The uplink link adaptation process.
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In the case of synchronous HARQ, the uplink attributes of each of the retransmissions may
remain the same as for the first transmission.

Reference documents about E-UTRAN physical layer:

3GPP technical specifications:

. 36.201, �LTE Physical Layer: General Description�

. 36.211, �Physical Channels and Modulation�

. 36.212, �Multiplexing and Channel Coding�

. 36.213, �Physical Layer Procedures�

. 36.214, �Physical Layer Measurements�

Other documents:

. Moisseev (2006), �System load model for the OFDMA network�, IEEE Communication
Letters, 10(8).

. Meyer, Saford, Cheng (2006), �ARQ concepts for UMTS long-term-evolution�, IEEE,
Vehicular Technology Conference.

. Hicheri, Terre, Fino, �CDMA,OFDM, MC-CDMA quel choix pour une liaison
descendante�, Conservatoire National des Arts et Metiers.

. Milewski (1983), �Periodic sequences with optimal properties for channel estimation and
fast start-up equalization�, IBM J. Res. Develop., 27(5).

. Common Public Radio Interface, available online at www.CPRI.info.

. Improved Feedback for MIMO Precoding, IEEE C802.16e-04/527r4, Intel Corporation.
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4

Evolved UMTS Architecture

The aim of this chapter is to enter into the details of Evolved UMTS architecture, and
complete the general overview provided in Chapter 2. For that purpose, this chapter will
describe in more detail the functional entities of the network as well as the interfaces and
protocols. A special focus will be given on the radio interface, but the IMS protocol stack, built
on top of Evolved UMTS architecture, will also be described.

4.1 Overall Architecture

Figure 4.1 describes a simplified view of the EPS architecture. Not all the network nodes and
interfaces are represented here (as this was already done in Chapter 2). This picture rather
focuses on E-UTRAN/EPC interactions and user signalling and data connectivity and
architectural aspects which will be developed in this chapter.

Starting from the E-UTRAN part, the X2 interface shall be seen as a meshed interface rather
than a point-to-point between two specific E-UTRAN nodes. This optional interface has been
defined for the main purpose of forwarding packets between eNodeB so as to limit packet loss
for intra E-UTRAN user mobility.

The S1 interface shall also not be seen as a simple interface between one eNodeB and one
MME/Serving gateway (represented above as a single box for simplicity), since an eNodeB
can possibly be connected to more than one MME. This flexibility is known as S1-flex (an
equivalent of the Iu-flex 3G/UMTS option) described later in this chapter.

When MME and Serving GWare deployed as two separate physical boxes, the S1 interface
is split into two parts:

. The S1-U (for User plane) – which carries user data between eNodeB and Serving GW.

. The S1-C (for Control plane) – which is a signalling-only interface between the eNodeB and
the MME.

On the S5 side, a serving GWmay also be linked to different PDNGW, corresponding to the
fact that EPC may provide user connectivity to several different and separated IP networks.
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The following parts of this section provide a more detailed description of the EPC and E-
UTRAN nodes which were introduced in Chapter 2. In a second step, the specific aspects of
the S1 and X2 interface are presented.

4.1.1 Evolved UMTS Node Features

(i) In E-UTRAN
As presented in Chapter 2, the eNodeB is the only type of logical node present in the E-
UTRAN part of the network. The main features an eNodeB supports are the following:

. Radio Bearer management – this includes Radio Bearer setup and release and also involves
radio resource management features for initial admission control and bearer allocation. This
set of functions is under the control of the MME through the S1 interface during session
setup, release and modification phases.

. Radio interface transmission and reception – this includes radio channel modulation/
demodulation as well as channel coding and decoding.

. Uplink and Downlink Dynamic radio resource management and data packet scheduling –
this is probably the most critical function which requires the eNodeB to cope with many
different constraints (like radio-link quality, user priority and requested Quality of Service)
so as to be able to multiplex different data flows over the radio interface and make use of
available resources in the most efficient way.

. Radio Mobility management – this function relates to terminal mobility handling while the
terminal is in an active state. This function implies radio measurement configuration and
processing as well as the handover algorithms for mobility decision and target cell

Figure 4.1 EPS architecture – user and control plane connectivity.
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determination. Radio Mobility has to be distinguished from Mobility Management in Idle,
which is a feature handled by the Packet Core.

. User data IP header compression and encryption – this item is key to radio interface data
transmission. It answers to the requirements to maintain privacy over the radio interface and
transmit IP packets in the most efficient way.

. Network signalling security – because of the sensitivity of signalling messages exchanged
between the eNodeB itself and the terminal, or between the MME and the terminal, all this
set of information is protected against eavesdropping and alteration.

In addition, the eNodeB also supports some additional functions, which are less obvious but
still mandatory to make the overall system work:

. Scheduling and transmission of broadcast information – this function is present in most, if
not all, of the cellular systems. It refers to system information broadcasting so that idle
terminals can learn network characteristics and be able to access and register to it.

. Scheduling and transmission of paging messages – this function is essential for the network
to be able to set up mobile terminated sessions. In addition, paging is also used for nonidle
but inactive terminals which the network needs to join.

. Selection of MME at terminal attachment – this nonessential feature may be used to
increase network resilience to EPC node failure, and also helps to cope with network load
management. It is part of the �S1 flexibility� option described hereafter.

As described further in this chapter, the eNodeB is defined by the 3GPP using the traditional
OSI-like layered model. From that perspective, all the functions listed above are handled by
different layers, like the physical layer, the RLC/MAC data link layer, or the Radio Resource
Control signalling layer.

(ii) In EPC
Putting aside the HSS (Home Subscriber Server) already described in Chapter 2, the EPC
comprises three logical nodes:

. The MME (Mobility Management Entity) associated with the Control plane, or terminal to
network signalling handling.

. Two packet data gateways associated with the User plane: the Serving GWand the PDNGW.

The main features supported by the MME are the following:

. NAS signalling support – NAS (Non Access Stratum) signalling refers to the signalling
layer being used between the Packet Core and the terminal supporting functions such as
network attachment and data session setup.

. Active session mobility support – this refers to user context transfer in the case of active
session mobility, either between 2G and 3G systems (which involves user context transfer
over the S3 interface) or between MME nodes (which involves S10 support).

. Idle mode terminal Mobility Management – this function is also known as terminal location
tracking. It allows theEPCtoknowwhere topage terminals incaseofuser-terminated sessions.

. Authentication and Key Agreement (AKA) – this refers to user and network-mutual
authentication and session key agreement between terminal and EPC.
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. Determination of Serving and PDN GWat bearer establishment – this function is the EPC
equivalent of the GGSN selection function which is performed in 2G/GPRS and 3G/UMTS
networks by the SGSN.

The main features supported by the Serving GW are:

. Packet routing between E-UTRAN and EPC.

. Mobility anchoring – the Serving GW is actually the User plane anchor point in case of
active session mobility between 2G and 3G systems (which involves the S4 interface) or
between eNodeB in E-UTRAN. This is described in more detail in the mobility part of
Chapter 5.

In addition, the Serving GW shall support some buffering capabilities in case of network-
initiated service requests. This typically occurs when the network receives a downlink packet
for a terminal while no Radio Bearer is available and the terminal is inactive. In such a case,
MME needs to page the terminal and the Serving GW shall buffer downlink packets until the
Radio Bearer is established.

The main PDN GW features are:

. Packet routing between the EPC and external PDN (Packet Data Network). In this context,
PDN is a very generic term which covers any kind of IP network as well as IMS domain.

. Policy enforcement – based on the rules provided by the PCRF.

. Charging support – as being the EPC edge router, the PDN GW is in charge of applying
specific data-flow charging rules.

. IP address allocation for terminals – the IP address allocation is performed when the initial
bearer is set up during the network attachment procedure, as described in Chapter 5.

(iii) Moved Functions
The architecture of E-UTRAN has introduced some modifications about the location of the
main functions within the network. As a result, there are some differences in the way packets
are handled. These changes are presented in Figure 4.2, which focuses on the downlink User
plane.

In UMTS, taking high-speed HSDPA as an example, data packets used to be buffered twice,
as a result of the separation of the two data retransmission ARQ (Automatic Repeat Request)
loops. The outer loop supported by the RLC is located in the RNC, whereas the MAC Hybrid
ARQ loop is located in the NodeB, as HARQ is based on link adaptation mechanisms close to
the radio interface. When RLC is configured in AM (Acknowledged Mode) or UM
(Unacknowledged Mode) – which is the case for IP-based services transported over HSDPA –
the RLC layer is also in charge of data encryption.

The consequence of this physical separation of RNC and NodeB and related functions is
that UMTS data packet handling requires two separated packet buffers, one for each of the
repetition loops. This implies the implementation of flow control mechanism over the Iub
interface in order to avoid two potential issues:

. NodeB buffer overflow – if the NodeB receives more packets from the RNC than it can
actually buffer.

174 Evolved Packet System (EPS)



. NodeB data shortage – if the packet arrival rate at the NodeB is too small when compared to
the available radio resources. This means that the radio bandwidth is not used in an optimum
way.

In Evolved UMTS, Compression and Ciphering are both supported by the PDCP layer,
located in the eNodeB. As all retransmission mechanisms are also located in the eNodeB, data
packet processing requires only one buffer of header compressed and ciphered IP packets.

In addition, it is interesting to note that, in the UMTS/HSDPA case, the whole NodeB data
buffer will be lost when the terminal changes NodeB during its HSDPA session. Of course, the
lost data will be retransmitted, thanks to the overall RLC ARQ loop (when it is configured in
Acknowledged Mode) or even higher at the TCP application level (if RLC is configured in
UnacknowledgedMode and if TCP is used). The price to pay is an increased data recovery time,
as the reaction time at RLC and TCP levels is much higher than in the NodeBMAC. This is the
reason why the amount of buffered packets at the NodeB level shall be minimized by the RNC.
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Figure 4.2 Differences between UMTS and EPS in downlink User plane handling.
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In the E-UTRAN case, thanks to the X2 inter-eNodeB interface, the data buffer may be
forwarded between source and target eNodeB, which helps to minimize the probability of
packet loss at the lowest radio protocol level.

The last point to note is that there is no difference in the Packet Core gateway node as
regards to packet handling. From a User plane perspective, the role of the 2/3G SGSN or the
Serving SAE GW is limited to packet data routing, as the compression and ciphering features
remain in the Access network.

4.1.2 E-UTRAN Network Interfaces

The aim of this section is to provide some general information about the E-UTRAN S1 and
X2 network interfaces. Those two interfaces follow the same model, which is described in
Figure 4.3.

Similarly to the 3G/UTRAN network interfacemodel, the E-UTRANmodel is composed of
two main parts: the radio network layer – which encompasses the top-level protocols of the
interface – and the transport network layer – which only refers to as the way radio network
layer data are transported. This separation allows independence between the two layers, so
that, for example, the application part can evolve without impacting the transport layer, or the
other way around.

In addition to this OSI-like vertical separation, each interface is split between a User plane
and a Control plane.

The User plane transports all information considered as user data from the interface point of
view. This consists of pure user data (such as voice or video packets) as well as application-
level signalling (such as SIP, SDP or RTCP packets). Before transmission over the interface,
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Figure 4.3 The E-UTRAN network interface model.
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the different packets are simply submitted to the transport layer, without any kind of
processing. This is the reason why the radio network box of the User plane is void.

The Control plane relates to all messages and procedures strictly related to the interface-
supported features. This includes, for example, control messages for the handover manage-
ment or bearer management.

The physical layer, as part the transport layer, is common to both User and Control planes.
Aside from that, User and Control planes use specific protocol boxes which allow defining a
different and independent transport stack and bearers for each of the planes. As described below,
Control plane information is more constraining in terms of security, reliability and data loss,
whereas the User plane information can rely on simpler and less secured routing protocols.

As in 3G/UTRAN, the E-UTRAN interfaces are fully �open�, meaning that S1 and X2 are
completely defined by the 3GPP in all details and any manufacturers implementing an
E-UTRAN node shall conform to the way the interfaces are specified. This allows – in principle –
eNodeB from different manufacturers to be deployed in a single network and be inter-connected
over the X2 interface or with MME or Serving GW nodes over the S1 interface.

Although being shared between the Access and Core Networks, the S1 interface is under the
responsibility of the 3GPP Radio Access Network (RAN) group. This is due to the fact that
most of the functions supported by this interface are tightly related to E-UTRAN features,
such as the user mobility or Radio Bearer management.

Reference documents about the S1 interface

3GPP Technical specifications:

. 36.410, �S1 General Aspects and Principles�

. 36.411, �S1 Layer 1�

. 36.412, �S1 Signalling Transport�

. 36.413, �S1 Protocol Specification�

. 36.414, �S1 Data Transport�

Reference documents about the X2 interface

3GPP Technical specifications:

. 36.420, �X2 General Aspects and Principles�

. 36.421, �X2 Layer 1�

. 36.422, �X2 Signalling Transport�

. 36.423, �X2 Protocol Specification�

. 36.424, �X2 Data Transport�

4.1.3 S1 Interface

(i) S1 User Plane Interface
The S1-U (or S1 User plane interface) role is to transport user data packet between the eNodeB
and the Serving GW. This interface makes use of a very simple �GTP over UDP/IP� transport
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protocol stack which only provides user data encapsulation. There is no flow control or error
control, or any mechanism to guarantee data delivery over the S1-U interface.

The GTP (GPRS Tunnelling Protocol) is actually inherited from 2G/GPRS and 3G/UMTS
networks. In 2G/GPRS networks, GTP is used between GPRS nodes (the SGSN and the
GGSN). In 3G/UMTS networks, GTP is also used over the Iu-PS interface (between the RNC
and the SGSN).

(ii) S1 Control Plane Interface
The S1-C (or S1 Control plane interface) is a signalling interface which supports a set of
functions and procedures between the eNodeB and the MME. All the S1-C signalling
procedures belong to four main groups:

. Bearer-level procedures – this set corresponds to all procedures related to bearer setup,
modification and release. On the scope of the S1 interface, a bearer corresponds to the S1
segment of a session plus the radio interface path. These procedures are typically used
during the establishment or the release of a communication session.

. Handover procedures – which encompasses all the S1 functions related to user mobility
between eNodeB or with 2G or 3G 3GPP technologies.

. NAS signalling transport – this corresponds to the transport of terminal–MMEsignalling over
the S1 interface. The terminal–MME signalling is also called NAS (Non Access Stratum
signalling), as it is transparent to the eNodeB. Due to the importance of these messages, they
are transported over S1-Cusing specific procedures, rather than the nonguaranteedS1-UGTP.

. Paging procedure – which is used in case of user terminated session. Through the paging
procedure, the MME request the eNodeB to page to terminal in a given set of cells.

The S1-C interface shall provide a high level of reliability in order to avoid message
retransmission and unnecessary delay in control plane procedure execution.

Depending on transport network deployment, there may be some cases in which the UDP/IP
transport is not reliable enough.Besides, in case the transport network is notownedby themobile
radio network operator, it may happen that the transport network Quality of Service cannot be
guaranteedall the time.This is the reasonwhy theS1-C interfacemakesuseofa reliable transport
network Layer, which is set up end-to-end (between the eNodeB and the MME nodes).

In the EPS architecture, this service is ensured by SCTP.

(iii) About SCTP
STCP (Stream Control Transmission Protocol) is a reliable connection-oriented transport
protocol which is very similar to the well known and widely used TCP. As TCP, STCP
implements congestion and flow control, detection of data corruption, loss or duplication of
data and supports a selective retransmission mechanism.

As TCP, STCP works in connected mode, so that an �association� (the actual STCP term for
�connection�) needs to be set up between peers before data transmission can occur. In SCTP, an
association is defined by a (Source IP, Source Port, Destination IP, Destination Port) group.

When comparing TCP and SCTP from a functional perspective, SCTP provides two key
features which TCP does not support:

. The multi-streaming.

. The multi-homing.
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In the SCTP domain, a stream is a unidirectional sequence of user messages to be delivered
to upper layers. As a consequence, bi-directional communication between two entities
involves at least a pair of streams, one for each direction. The multi-streaming is the feature
from which the STCP name is actually derived. It allows setting up several independent
streams between two peers. In such a case, when a transmission error occurs on one of the
stream, it does not affect data transmission on the other streams.

In contrast, TCP only provides one stream for a given connection between IP peers, which
may cause additional data transmission delay when a packet or group of packets is lost. When
a transmission loss occurs on a TCP connection, packet delivery is suspended until the missing
parts are restored, as in-sequence data delivery (or data sequence preservation) is a key TCP
feature.

This important characteristic of TCP is not necessary in all cases. For example, in the case
of a multimedia document such as a Web page, multiple parallel streams may be opened in
parallel to retrieve the whole page content. Content delivery is more critical than content order
for such a kind of application. The same applies to independent signalling flows which are
transferred between two network nodes, such as theMME and the eNodeB. The delivery order
of each signalling flow (e.g. corresponding to one mobile-network connection) needs to be
preserved; however, all the flows can be delivered independently.

The other core added value of SCTP is multi-homing. This allows a SCTP endpoint to be
reached through multiple network addresses. The interest of multi-homing is about redun-
dancy, as it improves the resilience when network failures occur. In case of transmission
errors, retransmitted packets may be sent to alternate addresses in order to increase the
probability of successful transmission.

Of course, there are other differences between TCP and SCTP. The two which are worth
mentioning here are:

. SCTP framing: SCTP works at the message level whereas TCP is an octet stream protocol.
This was one of the main reasons for 3GPP adoption in E-UTRAN signalling transport.

. SCTP built-in cookie-based protection against denial of service attacks, which is described
hereafter.

(iv) Why SCTP?
There have been some debates in 3GPP working groups on which transport protocol would be
the most suitable for the E-UTRAN Control plane, to support signalling message exchange
between network nodes. Among the three most obvious candidates, UDP was quickly ruled
out as not being reliable enough.

From a high-level perspective, SCTP and TCP are quite close to each other, as they both
support reliable and ordered data delivery, as well as congestion control to regulate
network data flow. What really made the difference in favour of STCP was the
following:

. The multi-streaming feature.

. The fact that SCTP is message-oriented and supports framing of individual messages as
opposed to TCP, which is octet stream-oriented and does not preserve transmitted data
structure. In SCTP, messages are transmitted as a whole set of bytes (provided the maximum
length is not reached) which helps to improve transmission efficiency.
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. The resilience of SCTP against some types of denial of service attack TCP is vulnerable to,
like the �SYN flood�.

The �SYN flood� attack is special kind of attack, causing a TCP endpoint to receive a
connection request to reserve a resource context and memory for some incoming connections
that will never be fully set up by the initiator. At some point, this process can exhaust all
memory or processing resources in the receiver. To counter this, SCTP makes use of a �cookie�
mechanism. The actual seizure of association resource is only performed once the initiator
successfully answers with the correct cookie.

For illustration, Figure 4.4 describes the four steps of a SCTP association establishment.
On reception of the INIT message, the receiver builds a cookie and sends it to the initiator

using the INITACK message. To enable the association, the initiator must answer a COOKIE
ECHO containing the same cookie as received in the INITACK. Resource reservation related
to the association is only performed by the �B� side on reception of a COOKIE ECHO. At the
end, the COOKIE ACK is sent back to the initiator to acknowledge the association setup.

Resource attack is prevented by building the �cookie� in a special way. In principle, the
receiver of the INIT message is using a secret key and a hash mechanism to create it, so that on
reception of the COOKIE ECHO, it can then validate that the cookie was actually previously
generated by the receiver.

This protection is based on the fact that the receiving entity (the �B� part in the diagram)
does not reserve resources or keep context pending during the INIT phase. Resource activation
is only performed when a valid �COOKIE ECHO� message is received. Of course, this
assumes the rogue initiator does not process the answers, which is generally the case for denial
of service attacks.

The cookie structure is not fully specified by the SCTP recommendation, but it may
possibly contain a Timestamp corresponding to its creation time.

(v) SCTP in E-UTRAN Transport Network
In the S1 interface (and the same applies to the X2 interface described below), SCTP is used
over the usual IP network layer. There is only one association per instance of S1 interface (or
�eNodeB to MME� relation). Over this association, one SCTP stream is used for all common
procedures – such as the paging procedure – between two pieces of equipment.

INIT 

INIT ACK (cookie X) 

COOKIE ECHO (cookie X)

COOKIE ACK 

‘A’
initiator

‘B’ 
other end-point

Figure 4.4 The steps of SCTP association setup.
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Regarding all dedicated procedures – which include all procedures which apply to a
specific communication context – they all are supported over a limited number of SCTP
streams.

(vi) IP in E-UTRAN Transport Network
The transport network of the S1 and X2 interfaces makes use of the legacy IP network layer for
both User and Control planes. In addition to the basic services provided by this protocol, IP in
E-UTRAN shall also support the following:

. NDS/IP (Network Domain Security for IP) – which refers to a set of IP-level security
features (in the sense of confidentiality and integrity) defined by 3GPP for data exchange
between network entities. NDS/IP is further described in the security section of Chapter 5.

. Diffserv (Differentiated Services) – which refers to an enhancement of the IP protocol
providing service discrimination.

DiffServ re-uses an existing field present in the IP header [the IPv4 TOS field (Type of
Service) or IPv6 Traffic Class field] so as to define a new field known as the DS field (for
(DiffServ field). This DS field, assigned by IP edge routers, allows intermediate routers to
classify the packets and apply specific (or differentiated) processing known as PHB (Per Hop
Behaviour). Depending on the value of the DS field, an intermediate router is then able to, for
example, assign each packet to a given waiting queue and provide a better precedence to any
IP flow which would be marked as �high priority� by an edge router.

Reference documents

SCTP IETF documents:

. RFC2960, �Stream Control Transmission Protocol�

. RFC3286, �An Introduction to the Stream Control Transmission Protocol�

Diffserv IETF document:

. RFC2474, �Definition of the Differentiated Services Field in the IPv4 and IPv6 Headers�

. RFC2475, �An Architecture for Differentiated Services�

4.1.4 S1 Flexibility

In traditional 2G and 3G cellular networks, the connectivity between the Core Network and
Access Network part was defined as a one-to-multi hierarchical relationship: a Core Network
node (either the MSC on the Circuit domain or the SGSN in the Packet domain) serves a set of
radio Controllers (the 2G BSC or the 3G RNC), and a given controller is only assigned to one
Core Network node within a domain. In other words, each Core Network node is connected to
its own set of radio Controllers, having no intersections with other sets.

In Release 5 of the 3G/UMTS standard, a new feature was introduced, allowing more
flexibility in the inter-connection between Access and Core nodes, breaking the usual network
hierarchy. This feature has been introduced from the beginning in the EPS standard and is
known as �S1-flex�.
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As represented in Figure 4.5, S1-flex allows an eNodeB to be connected to more than one
MME or Serving GW node. In this picture, MME and Serving GWare combined in one node
for simplicity, but the S1 flexibility applies to both MME and Serving GW, independently.
This picture also introduces the notion of pool area.

Some definitions

. A pool area is an area which a terminal may move into without a need to change its
serving Core Network node.

. A pool area is composed of a predefined set of eNodeB, corresponding to one or several
TA (Tracking Areas).

. Pool areas can overlap.

. A pool area can be served by one or several MME and/or Serving GW.

. A given MME or Serving GW node may serve one or several pool areas.

Although an eNodeB can be connected to several MME, a terminal is only associated to one
MME at a time, due to the fact that the sessions of a subscriber are always under the control of
a single Core Network MME node.

S1 flexibility has many advantages:

. By extending the usual service area seen by a Core Network node, the S1 flexibility allows
the reduction of the number of inter-Core Network node handover procedures (in Connected
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Figure 4.5 Traditional Access–Core connectivity and S1-flex.
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mode) or Tracking Area updates (in Idle mode). This extends the possibility for a MME to
maintain the connectivity with a moving terminal, as long as the terminal remains in the
same pool area. As a consequence, the S1 flexibility helps to reduce the HSS load generated
by the change in MME.

. The S1 flexibility also helps to define network architectures shared by different operators.
As an example, part of the E-UTRAN network – represented by a set of eNodeB in a given
geographical – may be simultaneously operated by two different business entities. In such a
case, when a terminal attempts to register, the eNodeB can forward the initial registration
message to the MME, which corresponds to the network operator of the subscriber.

. S1 flexibility allows the network to become more robust to Core Node failure, as the loss
of one Core Network node will be compensated for by other nodes associated to the same
pool areas. This increased service availability is, however, not dynamic, meaning that in
case of failure, on-going communication sessions are not automatically transferred to a
new node.

And, at last, S1 flexibility has some advantages as regards to capacity upgrade and network
load management. Opening the possibility for an eNodeB to be connected to more than one
MME allows balancing and possibly redistributing the load by directing incoming terminal
connection requests to less loaded Core Network nodes.

The S1 flexibility relies on a new field of information which is actually a sub-part of the
temporary subscriber identity (S-TMSI). This new field uniquely identifies a MME in an area
served by multiple MMEs and is then used by the eNodeB to direct an initial connection
request towards the right MME – or set of MME – in case of network sharing, or to send the
terminal initial message to the MME it was registered to.

4.1.5 X2 Interface

(i) X2 User Plane Interface
The X2-U (or X2 User plane interface) role is to transport user data packets between eNodeBs.
This interface is only used for limited periods of time, when the terminal moves from one
eNodeB to another, and provides buffered packet data forwarding. X2-U makes use of the
same GTP tunnelling protocol already used over the S1-U interface.

(ii) X2 Control Plane Interface
The X2-C (or X2 Control plane interface) is a signalling interface which supports a set of
functions and procedures between eNodeBs. The X2-C procedures are very limited in number
and are all related to user mobility between eNodeBs, so as to exchange user context
information between nodes (including allocated bearers, security material, etc.).

In addition, the X2-C interface proposes the Load Indicator procedure whose purpose
is to allow an eNodeB to signal its load condition to neighbouring eNodeBs. The detailed
use of this function is not further detailed by the standard (as it relates to algorithms under
the control of the equipment manufacturer). The aim of this procedure is to help the
support of load-balancing management, or to optimize handover thresholds and handover
decisions.

The need for a reliable transport of signalling between nodes is the same as over the S1-C
interface. This is the reason why X2-C also uses an �SCTP over IP� transport layer.
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4.2 User and Control Planes

This section describes the overall end-to-end protocol structure of Evolved UMTS for the
User and Control planes, which correspond respectively to user data transmission and
signalling transmission.

4.2.1 User Plane Architecture

From the wireless network perspective – including both Access and Core parts – the User
plane not only includes user data such as voice packets or Web content, but also the signalling
associated to the application services such as the SIP or RTCP, which are described further in
this chapter. Although being considered as control information by the application layers, the
high-level signalling is transmitted via the User plane.

The end-to-end User plane is described in Figure 4.6, from the terminal up to the
application server. In this picture, the application layer, only present in the terminal and
application server, is based on an IP transport. The application-level packets are routed
through Packet Core Gateways before reaching the destination. In this example, the
application layer may comprise a very large set of protocol-like end-to-end transport protocols
(e.g. TCP or UDP) and RTP (Real Time Protocol) for user data transport, as well as
application-level signalling protocols mentioned above (SIP, SDP, RTCP, etc.). Further, in
this chapter, a section dedicated to IMS protocol stack describes the set of �application-level�
protocols which can be used to support IMS-based services.

In this picture, L1 and L2 refer respectively to physical and data link interfaces of S1, S5
and SGi-fixed network interfaces. For those layers, the EPS standard is quite flexible and
proposes many possible options suitable to IP networks.

(i) About GTP Data Tunnelling
In the telecommunication world, a tunnel is a generic term which designates a two-way point-
to-point communication path established between two entities. In 3GPP networks, the main
purpose of data tunnelling is to work out packet-routing issues consecutive to moving
terminals.

Considering packets arriving from the external network to the PDN GW, the actual route
such a packet has to follow may change during the session lifetime. For example, a change of

Figure 4.6 The User plane protocol stack.
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serving eNodeB or, to a lesser extent, a change of Serving GW may occur during a streaming
or Web-browsing session, so that the packet data path needs to be modified in order to
maintain service continuity.

In IP networks, there exist some solutions to cope with terminal dynamic changing
locations, the most popular being MIP (Mobile IP) defined by the IETF in RFC3220, �IP
Mobility Support for IPv4�. In MIP, special-purpose routers known as HA (Home Agent) and
FA (Foreign Agent) get updated about terminal location information, so that user data can be
forwarded – or tunnelled – to the terminal in its current position within the overall IP network.

The 3GPP Packet Core answer to terminal mobility is not based on MIP, although being
very close to it from a functional perspective. Like in MIP, the relevant Serving or PDN
Gateways are updated as the terminal is changing serving node. Tunnels towards new serving
nodes are set up as appropriate, in order to maintain the data path.

Figure 4.7 illustrates a case of terminal mobility requiring tunnel adaptation. In this
example, the terminal moves to a new serving eNodeB. The tunnel over S5 interface is not
changed; however, a new tunnel needs to be established between the serving GWand the new
eNodeB. A similar process would apply between the PDN GWand Serving GW if the Serving
GW were to be changed during the session.

In the 3GPP definition, user data tunnelling between network nodes is ensured by the GTP
layer (GPRS Tunnelling Protocol), inherited from the 2G/GPRS standard. This protocol is
actually composed of two parts:

. The User plane part (or GTP-U), which provides user data encapsulation and transmission
between two nodes.

. The Control plane part (or GTP-C), which is used on the EPC part of the network and
provides all the procedures and messages for tunnel management (to set up, modify and
release tunnels) and location management (to exchange moving user information between
nodes).

For illustration, Figure 4.8 shows how the GTP encapsulation process works. The data
packet itself – including the header and payload – is preserved and kept unchanged. The

Serving GW

PDN GW

S5 

S1Old tunnel
New tunnel 

New eNodeB
Old eNodeB

SGi

Figure 4.7 USE of GTP tunnels in case of terminal mobility.
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packet is just added a GTP header (containing mainly Tunnel endpoint identifiers and optional
GTP PDU sequence number) used by the receiving end to identify which tunnel the packet is
associated to. This GTP encapsulated packet is transported between the two tunnel endpoints
using a traditional UDP/IP stack.

For information, Table 4.1 describes the header of a GTP packet. The first byte contains
some usual fields such as �Version� and �PT� (Payload Type – which indicates if the packet is
pure user data or a GTP control message). The Tunnel Endpoint Identifier uniquely identifies
the receiving protocol entity. Each Tunnel Identifier corresponds to a Packet Data Protocol
(PDP) context (in the case of 2G/GPRS or 3G/UMTS packet core) or EPS bearer setup (in the
case of an EPC packet core) between the terminal and the network for the support of one or
several packet services.

Taking the example of Voice over IP data tunnelling, the �initial data packet� is about 72
bytes long (including a 20-IP header, an 8-byte UDP header, a 12-byte RTP header, plus 32
bytes of AMR 12.2 Kb/s of encoded speech). The cost of GTP tunnelling over transport
interfaces is 36 bytes. This represents 33% of the overall packet size, which is quite
significant.

Hopefully, on the radio interface segment, the picture is completely different. There is no
GTP tunnelling anymore, and the protocol headers of the �initial data packet� are dramatically
reduced, thanks to the PDCP radio interface layer described hereafter.

The tunnel setup is part of the data session establishment. For a given terminal, the network
builds as many sets of tunnels as separate EPS bearers or PDP contexts. The GTP tunnelling

IP head. Payload GTP head.UDP head.IP head. 

Initial data packet GTP transport layers 

8 bytes20 bytes 8 bytes

Figure 4.8 The effect of GTP tunnelling (using IPv4 for GTP transport).

Table 4.1 The GTP-PDU format.
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process is completely transparent to the terminal and application server, as its only purpose is
to cope with intermediate route updates between EPC and E-UTRAN network nodes.

Reference documents about mobility and data tunnelling

3GPP Technical specifications:

. 29.060, �GPRS Tunnelling Protocol (GTP) across the Gn and Gp Interface�
IETF documents about MIP (Mobile IP):

. RFC3344, �IP Mobility Support for IPv4�

(ii) About the Radio Interface
Radio interface distinguishes from wired transmission on the cost and scarcity of the medium,
as well as a much higher transmission error rate. Because of these characteristics, the radio
interface protocol stack is very specific. It is composed of the following layers:

. PHY (Physical Layer).

. MAC (Medium Access Control) – in charge of packet scheduling and fast repetition.

. RLC (Radio Link Control) – responsible for reliable data transmission.

. PDCP (Packet Data Convergence Protocol) – provides protocol header compression and
implements data encryption.

As in the OSI model, the E-UTRAN radio interface is composed of the traditional Layer 1
(or �Physical Layer�) implemented by the PHY part, and Layer 2 (or �Data Link Layer�)
supported by both RLC and MAC parts.

As in 2G/GPRS and 3G/UMTS radio interface definitions, Layer 2 is not supported by a
single box. TheMAC and RLC differentiation comes from the need to design a flexible model,
generic enough to accommodate changes or evolutions in the physical layer. This probably
shows the limit of strict application of layered modelling. Some Layer 2 functions are actually
much more efficient when being designed according to the specific characteristics and
constraints of the physical layer they are supposed to work with.

This is the reason why pure Layer 2 functions independent to the physical aspects of the
interface (like reliable data transmission and packet in-sequence delivery) are grouped into a
separate RLC layer, whereas other medium-dependent functions (like data scheduling, of fast-
repetition HARQ mechanisms) are part of the MAC layer.

In 3G/UMTS radio interface, several types ofMAC layers (or sub-layers) have been defined
in order to better cope with the specific aspects of transmission over the possible physical
channels, including the DCH (Dedicated transport channel), the FACH shared channel and
HSDPA (high-speed downlink shared channel), or any solution which may be designed in the
future.

On the other hand, the RLC layer is common to all MAC layers and was not modified in the
Standard, as new transport channel options were introduced.

To maintain the same degree of flexibility, the radio interface of E-UTRAN is following the
same modelling principle. It is worth noting that this principle is actually inherited from
the beginning of IEEE Local Area Network standardization work. As described in Figure 4.9,
the IEEE 802 model for LAN and WLAN networking is based on LLC (Link Layer Control,
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the equivalent of RLC) and multiple MAC layers, each of them specific to a type of physical
access technology, like Wifi, WiMAX or wired Ethernet.

4.2.2 Control Plane Architecture

The Control plane corresponds to the information flows actually considered as signalling by
E-UTRAN and EPC. For example this includes all the RRC (Radio Resource Control)
E-UTRAN signalling (supporting functions such as Radio Bearer management, radio
mobility, user paging) and NAS (Non Access Stratum) signalling, which refers to functions
and services being independent from the access technology. This later includes the GMM
(GPRS Mobility Management) and SM (Session Management) layers in charge of all the
signalling procedures between the user terminal and the Packet Core network MME for
session and EPS bearer management, security control and authentication.

Figure 4.10 describes the Control plane protocol stack. The stack stops at the MME level
because the top-level protocols terminate in the MME. On the radio interface, the Control
plane uses the same PDCP, RLC,MAC and PHY stack to transport both RRC (Radio Resource
Control) and Core Network NAS signalling. The RLC,MAC and PHY layers support the same
functions for both the User and Control planes.

However, this does not mean the User and Control plane information is transmitted the
same way. Several Radio Bearers can be established between the terminal and the network,
each of them corresponding to a specific transmission scheme, radio protection and priority
handling. This is the purpose of the radio channels, presented in the next section.
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Figure 4.9 Radio interface modelling principle.

Figure 4.10 The Control plane protocol stack.
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4.3 Radio Interface Protocols

4.3.1 The E-UTRAN Radio Layered Architecture

Figure 4.11, which introduces some new vocabulary, is an overview of radio protocol
structure, which is further described in the next section. It briefly describes the main purpose
of the different layers and how they interact with each other. This picture only describes the
protocol layering on the eNodeB side, but there, of course, exist similar – or dual – functions
and layers on the terminal side.

Starting from the top of the picture, the RRC layer (Radio Resource Control) supports all
the signalling procedures between the terminal and the eNodeB. This includes mobility
procedures as well as terminal connection management. The signalling from the EPC Control
plane (e.g. for terminal registration or authentication) is transferred to the terminal through the
RRC protocol, hence the link between the RRC and upper layers.

The PDCP layer (whose main role consists of header compression and implementation of
security such as encryption and integrity) is offered to Radio Bearers by E-UTRAN lower
layers. Each of these bearers corresponds to a specific information flow such as User plane
data (e.g. voice frames, streaming data, IMS signalling) or Control plane signalling (such as
RRC or NAS signalling issued by the EPC). Due to their specific purpose and handling,
information flows generated by �System Information Broadcast� and �Paging� functions are
transparent to the PDCP layer.
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Figure 4.11 Protocol layered structure in eNodeB for downlink channels.
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The RLC layer provides to the PDCP layer basic OSI-like Layer 2 services such as packet
data segmentation and ARQ (Automatic Repeat Request) as an error-correction mechanism.
There is one-to-one mapping between each RLC input flow and Logical channels provided by
RLC to the MAC layer.

TheMAC layer�s main task is to map and multiplex the logical channels onto the transport
channels after havingperformedpriorityhandlingon thedata flows received from theRLClayer.
The flowsbeingmultiplexedona single transport channelmaybeoriginatedbya singleuser (e.g.
one ormore instances ofDCCHandDTCH) ormultiple users (e.g. severalDTCH fromdifferent
users). The MAC also supports HARQ (Hybrid ARQ), which is a fast repetition process.

Finally, the MAC delivers the transport flows to the PHY layer, which will apply the
channel coding and modulation before transmission over the radio interface.

4.3.2 The Radio Channels

(i) About Channel Types
As for most radio communication systems, the radio interface of E-UTRAN faces many
challenges. In terms of requirements, the E-UTRAN shall be able to transmit high-rate and
low-latency information in the most efficient way. However, not all the information flows
require the same protection against transmission errors or Quality of Service handling.

In general, it is critical, especially in the case of radio mobility, that E-UTRAN signalling
messages are transmitted as fast as possible, using the best error-protection scheme.On the other
hand, voice or data streaming applications can accept a reasonable frame loss due to radio
transmission. Interactive connection-oriented applications (such as Web browsing) are also
different, as the end-to-end retransmission can help to recover from radio propagation issues.

In order to be flexible and allow different schemes for data transmission, the E-UTRAN
specifications introduce several types of channels:

. The logical channels – what is transmitted.

. The transport channels – how it is transmitted.

. The physical channels.

The logical channels correspond to data-transfer services offered by the radio interface
protocols to upper layers. Basically, there are only two types of logical channels: the control
channels (for the transfer of Control plane information) and the traffic channels (for the
transfer of User plane information). Each of the channels of these two categories corresponds
to a certain type of information flow.

The E-UTRAN logical control channels are:

. The BCCH (Broadcast Control Channel): this channel is a downlink common channel, used
by the network to broadcast E-UTRAN system information to the terminals presents in the
radio cell. This information is used by the terminal, e.g. to know serving cell network
operator, to get information about the configuration of the cell common channels, how to
access to the network, etc.

. The PCCH (Paging Control Channel): the PCCH is a downlink common channel which
transfers paging information to terminals presents in the cell, e.g. in case of mobile-
terminated communication session.
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. The CCCH (Common Control Channel): the CCCH is a special kind of transport channel,
used for communication between the terminal and E-UTRAN when no RRC connection is
available. Typically, this channel is used in the very early phase of a communication
establishment.

. The MCCH (Multicast Control Channel): this channel is used for the transmission of
MBMS (Multimedia Broadcast andMulticast Service) information from the network to one
or several terminals.

. The DCCH (Dedicated Control Channel): the DCCH is a point-to-point bi-directional
channel supporting control information between a given terminal and the network. In the
DCCH context, the control information only includes the RRC and the NAS signalling. The
spplication-level signalling (such as SIP of RTCP) is not handled by the DCCH.

The E-UTRAN logical traffic channels are:

. The DTCH (Dedicated Traffic Channel): the DCCH, the DTCH is a point-to-point bi-
directional channel, used between a given terminal and the network. It can support the
transmission of user data, which include the data themselves as well as application-level
signalling associated to the data flow.

. The MTCH (Multicast Traffic Channel): a point-to-multipoint data channel for the
transmission of traffic data from the network to one or several terminals. As for the
MCCH, this channel is associated to the MBMS service (Multimedia Broadcast and
Multicast Service), described in more detail in Chapter 6.

The transport channels describe how and with what characteristics data are transferred
over the radio interface. For example, the transport channels describe how the data are
protected against transmission errors, the type of channel coding, CRC protection or
interleaving which is being used, the size of data packets sent over the radio interface, etc.
All this set of information is known as the �Transport Format�.

As in the specification, the transport channels are classified into two categories: the
downlink transport channels (from the network to the terminal) and the uplink transport
channels (from the terminal to the network).

The E-UTRAN downlink transport channels are:

. The BCH (Broadcast Channel), associated to the BCCH logical channel. The BCH has a
fixed and predefined Transport Format, and shall cover the whole cell area.

. The PCH (Paging Channel), associated to the BCCH.

. The DL-SCH (Downlink Shared Channel), which is used to transport user control or traffic
data.

. The MCH (Multicast Channel), which is associated to MBMS user of control information
transport.

The E-UTRAN uplink transport channels are:

. The UL-SCH (Uplink Shared Channel), which is the uplink equivalent of the DL-SCH.

. The RACH (Random Access Channel), which is a specific transport channel supporting
limited control information, e.g. during the early phases of communication establishment or
in case of RRC state change.
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The physical channels are the actual implementation of the transport channel over the
radio interface. They are only known to the physical layer of E-UTRAN and their structure
is tightly dependent on physical interface OFDM characteristics, described in detail in
Chapter 3.

The physical channels defined in the downlink are the:

. Physical Downlink Shared Channel (PDSCH) – which carries user data and higher-layer
signalling.

. Physical Downlink Control Channel (PDCCH) – this channel carries scheduling assign-
ments for the uplink.

. Physical Multicast Channel (PMCH) – which carries Multicast/Broadcast information.

. Physical Broadcast Channel (PBCH) – which carries System Information.

. Physical Control Format Indicator Channel (PCFICH) – which informs the UE about the
number of OFDM symbols used for the PDCCH.

. Physical Hybrid ARQ Indicator Channel (PHICH) – which carries ACK and NACK
eNodeB responses to uplink transmission, relative to the HARQ mechanism.

The physical channels defined in the uplink are the:

. Physical Uplink Shared Channel (PUSCH) – which carries user data and higher-layer
signalling.

. Physical Uplink Control Channel (PUCCH) – this channel carries uplink control informa-
tion, including ACK and NACK responses from the terminal to downlink transmission,
relative to the HARQ mechanism.

. Physical Random Access Channel (PRACH) – which carries the random access preamble
sent by terminals to access to the network.

In addition to physical channels, the physical layer makes use of physical signals, which
include:

. Reference signals – one signal being transmitted per downlink antenna port.

. Synchronization signals – split into a primary and a secondary synchronization signals.

(ii) Mapping between Channels
Figure 4.12 represents the mapping between logical, transport and physical channels pre-
sented above. For obvious reasons, not all combinations are allowed, as some of the logical
channels have specific constraints.

PCCH and BCCH logical channels have particular transport and physical characteristics so
that the transport and physical channel mapping is specific to them. The mapping of the
BCCH on the BCH and DL-SCH transport channels is not an option. This comes from the fact
that the System Information is actually composed of two parts:

. Critical system information which has a fixed format and requires frequent update – this one
is mapped on the PBCH.

. Dynamic and less critical information which is mapped on a transport channel offering
more flexibility in terms of bandwidth and repetition period – the DL-SCH.
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On the other hand, some logical channels can benefit from different possible options as
regards to mapping to the transport channel. Typically, this is the case for the MCCH and
MTCHMulticast channels, which are mapped on a specific MCH transport channel in case of
multi-cell MBMS service provision. When an MBMS service is provided in a single cell,
MCCH and MTCH channels are mapped over conventional DL-SCH channels.

The other physical channels (such as PUCCH, PDCCH, PCFICH and PHICH) do not carry
information from upper layers (such as RRC signalling or user data). They are only intended
for the purpose of the physical layer, as they carry information related to the coding of physical
blocks, or HARQ-related information. This is the reason why those channels are not mapped
to any of the transport channels of the radio interface.

The RACH is a specific case of transport channel, having no logical channel equivalent.
This comes from the fact that the RACH only carries RACH preamble (which is basically the
very first set of bits the terminal sends to the network to request access). Once access is
granted by the network and physical uplink resources are allocated to the terminal, the RACH
is no longer used by the terminal.

(iii) Some Remarks about E-UTRAN and UTRAN Channels
Not surprisingly, the E-UTRAN channel model has been inherited from the UTRAN channel
model. The concept of separation between logical, transport and physical channels was
already present in the initial UTRAN model.

Figure 4.13 presents the logical-to-transport channel mapping performed in the MAC layer
of UTRAN RNC (Radio Network Controller) node for the FDD mode only. The first obvious
point is that the UTRAN and E-UTRAN models share almost the same logical channel
structure, showing that radio layers from both systems will actually provide the same types of
services to upper layers, i.e.:

. Broadcast and Paging services (associated to BCCH and PCCH), which are the basis of all
cellular systems.

. Dedicated – or point-to-point – information transfer (supported by DCCH and DTCH).

. Multicast – or point-to-multipoint – information transfer (supported by MCCH and
MTCH).

PCCH BCCH CCCH DCCH DTCH MCCH MTCH Logical 
channels 

Transport 
channels 

Physical 
channels 

PCH BCH RACHMCH

PBCH PDSCH PUSCH 
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DL-SCH UL-SCH

PRACH

Figure 4.12 E-UTRAN mapping between channel types (as in the network).
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However, when looking at the transport channel level, the two models are completely
different. The DCH (Dedicated transport Channel) present in the UTRAN model has
disappeared from the E-UTRAN model, which only supports shared transport channels.
This channel was designed for constant bit rate and real-time constraining services, such as
voice or streaming applications.

In the E-UTRAN model, all point-to-point data services are packetized, and supported by
only one kind of transport channel: the SCH (Shared Channel) for both uplink and downlink
transmission. This is an interesting evolution, as the radio interface concepts are following the
same �all-IP� direction as the Packet Core and service evolution. The newly introduced SCH
can actually be seen as an evolution of both HS-DSCH – the support of the well known
HSDPA (High Speed Downlink Packet Access) – and E-DCH – the high-speed evolution for
the uplink.

At the end, the channel model of E-UTRAN looks much simpler, as the number of transport
channels and cross-mapping between channel types has been greatly simplified and reduced.

4.3.3 PHY

The role of the PHY layer is to provide data transport services on physical channels to the
upper RLC andMAC layers. The PHY layer of E-UTRAN as well as the principles being used
for transmission over the radio interface is extensively described in Chapter 3. This section is
therefore limited to the description of the physical layer from a functional perspective and also
in terms of interactions with other radio interface layers.

Figure 4.14 describes the eNodeB physical layer model in the example of a downlink SCH
transport channel as being the most generic scheme. Of course, similar models exist for the
uplink (in the terminal), and for all the other transport channels listed in this chapter.

At each TTI (Transmission Time Interval), the physical layer receives a certain
number of Transport Blocks for transmission. To each Transport Block is added a CRC
(Cyclic Redundancy Check) or set of bits used by the receiving end to detect transmission
errors.

The Blocks are then protected by a robust channel-encoding scheme (like convolutional or
turbo coding) and size-adapted to make sure the encoded packet matches the physical channel
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Figure 4.13 The UTRAN/FDD logical-to-transport channel mapping in the network (from 3GPP
25.301).
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size. This phase is under the control of the MAC HARQ (Hybrid ARQ) process which may
adapt the channel coding rate (meaning the robustness to transmission errors) based on the
information reported by the receiving entity.

Interleaving is a process to improve robustness to radio transmission errors. When an error
occurs on an encoded packet transmitted over the radio interface, it will affect multiple
consecutive bits or symbols. On the receiving side, the action of de-interleaving will have the
effect of spreading the erroneous bits on the whole transmitted sequence on different
Transport Blocks. This will make it easier for the channel decoder to recover the exact bits
transmitted initially, as a single block will only be affected by a smaller part.

In the data-modulation process, the actual modulation is under the control of the MAC
scheduler. Resource mapping relates to the segmentation of transmitted data into resource
blocks. Antenna mapping relates to the mapping of resource blocks (as above) on available
antenna ports (MIMO).

CRC and interleaving processes are not controlled by higher layers. For those two
operations, the PHY layer uses static parameters and algorithms specified by the E-UTRAN
standard.

As mentioned above, there exist similar models for other transport channels. However,
there are more or fewer subsets of the shared channel model presented above. Transmission
over other transport channels such as the PCCH for paging or BCCH for system information
broadcasting is not flexible in terms of channel coding or modulation. For this type of
transport channel, the E-UTRAN standard does not propose any options or alternatives.

CRC addition 

Interleaving 

Coding, rate matching 

Data modulation 

Resource mapping 

Antenna mapping 

0010… 0010… …

N transport blocks 

MAC layer 
control 

MAC
HARQ process 

…

…

Figure 4.14 The Downlink Shared Channel PHY layer model.

Evolved UMTS Architecture 195



4.3.4 MAC

The Medium Access Control (MAC) radio protocol layer of E-UTRAN�s main purpose is to
provide an efficient coupling between the RLC Layer 2 services and the physical layer. From
that perspective, the MAC supports four main functions:

. Mapping between logical channels and transport channels – when the standard offers
different options for the transport of data for a given logical channel, it is up to the MAC
layer to choose the transport channel according to the configuration defined by the operator.

. Transport format selection – this refers to, for example, the choice of Transport Block size
and modulation scheme made by the MAC layer and provided as input parameters to the
physical layer.

. Priority handling between logical channels of one terminal as well as between terminals.

. Error correction through HARQ (Hybrid ARQ) mechanism.

(i) About Priority Handling
Priority handling is one of the main functions supported by the MAC layer. Priority handling
refers to the process which selects the packets from the different waiting queues to be submitted
to the underlying physical layer for transmission on the radio interface. This process is complex,
as it takes into account the different flows of information to be transmitted – including pure user
data (theDTCH logical channel) aswell as signalling initiated by the E-UTRANor the EPC (the
DCCH logical channel) – with their relative priority, as well packet repetition in case an already
transmitted packet has not been correctly received by the other end. For that reason, the �priority
handling� part of the MAC layer is tightly coupled with the �Hybrid ARQ� part.

In addition, the MAC layer on the network side is also responsible for uplink priority
handling, as it arbitrates between all the uplink scheduling requests from all the terminals
which share the same UL-SCH transport channel (Figure 4.15).

On the terminal side, the MAC layer only mixes flows from the terminal for uplink
transmission and has to arbitrate between its own information flows for uplink scheduling
requests and transmission. In contrast, for the Downlink Shared Channel, the eNodeB has to
consider all the flows (or logical channels) sent to all the users in the cell.

3 DTCH and 1 DCCH

for User 1 DCCH for User 2 DTCH and DCCH

for User 3

MAC priority
handling

HARQ retransmissions

To PHY layer

Figure 4.15 An illustration of priority handling in the eNodeB MAC layer.
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(ii) About HARQ
The principle of hybrid ARQ is to buffer blocks that were not received correctly and
consequently combine the buffered data with retransmissions. The actual method of doing
soft combining depends on the HARQ combining scheme selected. In the Chase combining
scheme, initial transmission and retransmission are identical. The receiver always combines
the full retransmission of the failed block. In the IR (Incremental Redundancy) schemes, new
parity bits are transmitted together with the failed block. The receiver receives coded symbols,
which introduce new information to the first transmitted block.

In E-UTRAN, HARQ is composed of several parallel parts, so that transmission can
continue on other processes while one of them is stuck with retransmissions.

In the downlink, HARQ is based on asynchronous retransmissions with adaptive trans-
mission parameters. In the uplink, HARQ is based on synchronous retransmissions.

In the synchronous scheme, retransmission can only occur at certain subframe numbers
following the first transmission. In the asynchronous scheme, packet retransmissions are not
constrained in terms of frame time.

Synchronous retransmission is preferred in uplink, because there is less protocol overhead.
Synchronous retransmission does not require to explicitly signal the HARQ process number,
since it can be deduced from the subframe number.

The HARQ in E-UTRAN is similar to those in 3G HSDPA (for the downlink transmission)
and E-DCH/HSUPA (for the uplink transmission).

4.3.5 RLC

The main purpose of the Radio Link Control (RLC) E-UTRAN protocol layer is to receive/
deliver a data packet from/to its peer RLC entity. For that purpose, the RLC proposes three
modes of transmission TM (Transparent Mode), UM (Unacknowledged Mode) and AM
(Acknowledged Mode).

The TM mode is the simplest one, as it does not change or alter the upper layer data. This
mode is typically used for BCCH or PCCH logical channel transmissions which require no
specific treatment from the RLC layer. The RLC Transparent Mode Entity receives data from
the upper layers and simply passes it to the underlying MAC layer. There is no RLC header
addition, data segmentation or concatenation.

The added value of the UM mode is to allow the detection of packet loss (the receiving
entity can detect that a RLC packet has not been received correctly) and provides packet re-
ordering and re-assembly. These operations can be performed thanks to the presence of a
Sequence Number in the RLC packet header. The UM mode can apply to any Dedicated or
Multicast logical channel, depending on the types of application and expected Quality of
Service.

Packet re-ordering refers to the re-sequencing of packets in case they have not been received
in order (which may happen in the case of HARQ repetition). Packet re-assembly is performed
when an upper-layer packet has been segmented by the sending RLC entity before
transmission.

Finally, the AM mode is the most complex one. In addition to UM mode-supported
features, an AM RLC entity is able to ask its peer for packet retransmission in case a loss is
detected. This mechanism, specific to the AM mode, is known as ARQ (Automatic Repeat
Request). For that reason, the AM mode only applies to DCCH or DTCH logical channels.
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Some words bout the ARQ process of RLC

. The ARQ process is only available in RLC AM mode

. ARQ retransmissions are triggered either by RLC status report exchanged between peers
(the receiving entity has detected missing packets), or on the sending side following a
failure of a HARQ process to deliver a Transport Block.

(i) The RLC Block Structure
Figure 4.16 describes the structure of a RLC PDU. RLC receives as input data the blocs
provided by the above PDCP layer (those blocks are referred to as RLC SDU for Service Data
Unit). In order to fill the payload part of the PDU, RLC makes use of two mechanisms used in
most of the data link layer protocols and known as segmentation and concatenation.

When a RLC-SDU cannot be added to a given payload because the remaining size of the
PDU is too short, the SDU is then segmented (as for SDU �n� and �nþ 3� in the picture) and
therefore transmitted using two different PDUs. Inversely, if the SDU size is smaller than the
PDU, the RLC layer will concatenate as many as possible in order to fill the payload.

As in the figure, the segmentation and concatenation are always done in sequence, so that
the RLC receiving entity can deliver the SDU to its PDCP upper layer in the correct order.

4.3.6 RRC

The RRC (Radio Resource Control) layer is a key signalling protocol which supports many
functions between the terminal and the eNodeB. The log list of procedures proposed by the
RRC layer can be classified into the following:

. RRC connection management – which includes the establishment and the release of the
RRC connection between the terminal and the eNodeB.

. Establishment and release of radio resources – which relates to the allocation of resources
for the transport of signalling messages or user data between the terminal and eNodeB.

. Broadcast of system information – this is performed through the BCCH logical control
channel. The information broadcast from the RRC layer is either related to the Access
Network (such as radio-related parameters) or to the Packet Core (for information such as
the cell corresponding geographical area or network identity).

n n + 1 n + 2 n + 3 

Header 

 … …

RLC SDU

RLC PDU

Payload

Figure 4.16 RLC AM or UM PDU structure.
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. Paging – this is performed through the PCCH logical control channel.

. Transmission of signalling messages to and from the EPC – these messages (known as NAS
for Non Access Stratum) are transferred to and from the terminal via the RRC; they are,
however, treated by RRC as transparent messages.

The RRC also supports a set of functions related to end-user mobility for terminals in RRC
Connected state. This includes:

. Measurement control – which refers to the configuration of measurements to be performed
by the terminal as well as the method to report them to the eNodeB.

. Support of inter-cell mobility procedures – which are also known as handover. More
information on handover procedures from an overall system perspective is provided in
Chapter 5.

. User context transfer between eNodeB at handover.

(i) The RRC States
The main function of the RRC protocol is to manage the connection between the terminal
and the E-UTRAN access network. To achieve this, RRC protocol states have been defined
(Figure 4.17). Each of them actually corresponds to the states of the connection, and describes
how the network and the terminal shall handle special functions like terminal mobility, paging
message processing and network system information broadcasting.

In E-UTRAN, the RRC state machine is very simple and limited to two states only:

. RRC_IDLE, and

. RRC_CONNECTED.

In the RRC_IDLE state, there is no connection between the terminal and the eNodeB,
meaning that the terminal is actually not known by the E-UTRAN Access Network.

The terminal user is inactive from an application-level perspective, which does notmean at all
that nothinghappens at the radio interface level.Nevertheless, the terminalbehaviour is specified
in order to save as much battery power as possible and is actually limited to three main items:

. Periodic decoding of System Information Broadcast by E-UTRAN – this process is required
in case the information is dynamically updated by the network.

RRC_IDLE RRC_CONNECTED 

Service activation by terminal user 
Answer to paging  

End of service 
Inactivity  

Figure 4.17 The RRC states.
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. Decoding of paging messages – so that the terminal can further connect to the network in
case of an incoming session.

. Cell reselection – the terminal periodically evaluates the best cell it should camp on through
its own radio measurements and based on network System Information parameters. When
the condition is reached, the terminal autonomously performs a selection of a new serving
cell.

Following cell reselection, it may happen that the terminal changes geographical area (or
Tracking Area). Should this occur, the terminal is required to update the network in order to be
still able to receive paging messages. For that purpose, the terminal has to leave temporarily
the RRC_IDLE state so as to be able to exchange the necessary signalling information with the
network. When the update procedure is over and if no service has been activated or answered
by the user in the meantime, the terminal returns to the RRC_IDLE state.

In the RRC_CONNECTED state, there is an active connection between the terminal and
the eNodeB, which implies a communication context being stored within the eNodeB for
this terminal. Both sides can exchange user data and or signalling messages over logical
channels.

Unlike the RRC_IDLE state, the terminal location is known at the cell level. Terminal
mobility is under the control of the network using the handover procedure, which decision is
based on many possible criteria including measurement reported by the terminal of by the
physical layer of the eNodeB itself.

How the RRC states machine relates to the other state machine handled at the EPC level is
described in Chapter 5.

4.3.7 PDCP

The main purpose of the Packet Data Convergence Protocol (PDCP) E-UTRAN protocol layer
is to receive/deliver a data packet from/to its peer PDCP entity. In principle, this function is
ensured by the RLC layer. From that perspective, the PDCP layer provides some additional
features, which are – in principle – out of the scope of a generic OSI-compliant Layer 2 protocol.

The PDCP added value relies in four main functions:

. Layer 2-related features, such as re-ordering of RLC packets in case of inter-eNodeB
mobility, or duplicate detection of RLC packets. As in the RLC layer, this function is
ensured thanks to a Sequence Number contained in the PDCP header.

. IP packet header compression and decompression. As opposed to its 3G/UMTS
equivalent, PDCP supports only one compression scheme, known as ROHC (Robust
Header Compression).

. Ciphering of data and signalling. �Data� relates to user data as well as application-level
signalling such as SIP or RTCP. �Signalling� relates to both RRC signalling messages sent by
the eNodeB and NAS (Non Access Stratum) signalling messages issued by the Evolved
Packet Core. The NAS part is further described in this chapter.

. Integrity protection for signalling. In the scope of PDCP, �signalling� includes both NAS
and RRC messages. Integrity is a mechanism which helps to prevent �man in the middle�
types of attacks, by providing the receiving side with a mean to determinewhether or not the
signalling message has been altered during the transmission.
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Figure 4.18 is an overview of the functional block model and the different combinations
offered by the PDCP layer. Ciphering and integrity are mandatory for the Control plane.
However, ciphering may optionally be used for user data. ROHC header compression is not an
optional process; however, ROHC supports a transparent �uncompressed� mode, which does
not provide any sort of header change or compression.

(i) About Ciphering and Integrity
Chapter 5 provides more details regarding security mechanisms, such as keys, algorithms and
the overall EPS security framework. However, in the scope of E-UTRAN radio protocol, it is
interesting to consider the impact of such mechanisms on the initial packet shape and format.

Ciphering protection makes use of block or stream-shared secret key ciphering algorithms
which have no impact on data length. The principle of such algorithms is that both sending and
receiving entities generate a set of bits – or keystream – using the secret key. This keystream is
then added (using the �exclusive OR� logical operation) to the plain data for ciphering at the
sending side, and added the same way on the receiving side for deciphering.

In contrast, integrity requires additional information to be sent, for the receiving entity to be
able to check the data are actually coming from a reliable source. This additional information
is known as the MAC (Message Authentication Code).

At the end, the input packet submitted by higher layers on the Control plane (which is either
the EPC Core Network or the RRC layer) is modified by the PDCP layer, as in Figure 4.19. A
header containing the PDCP Sequence Number (for re-ordering in inter-eNodeB mobility
case) is added to the data as well as the MAC code for integrity check.

The User plane is equivalent, except that, in this case, the integrity and MAC code do not
apply. The other difference is that ciphering applies to the output of the ROHC compressor
engine of the PDCP layer.

ROHC

Ciphering Ciphering

User plane 
(EPC data from Serving GW)

Control plane 
(NAS signalling from MME or 
RRC signalling from eNodeB) 

Integrity ROHC 

Figure 4.18 PDCP layer model.

Ciphered data 

Initial unciphered data 
The effect 
of PDCP 

MACPDCP SN

Figure 4.19 Overview of a PDCP packet (Control plane).
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(ii) ROHC Based Header Compression
All of the services that will be proposed by Evolved UMTS will actually be IP-based. Even in
the case of the called party still belonging to the circuit-switched telephony world, all the
UTRAN end Evolved Packet Core part of the service will be supported by IP and IETF
protocols, the signalling and bearer conversion being supported by wireless network edge
nodes when necessary.

From a radio perspective, the key point of this evolution resides in the fact that IETF
protocols suffer from large overhead. Those protocols are quite verbose and the messages have
significant header sizes at the network level (IP), transport level (TCP, UDP) as well as the
application level (RTP, SIP, etc.).

Besides, those network and transport protocols contain lots of information which becomes
redundant when the transmission occurs over a point-to-point medium such as the E-UTRAN
radio interface. In this case, lots of information fields are repeated from packet to packet (such
as the source and destination IP address) without any changes at all.

When considering wired high bit rate Internet, this is not much an issue, as reliable high-
transmission capacity networks are quite transparent to this extra bandwidth requirement.
However, when looking at the radio interface, the picture is not the same. Although the radio
physical layer is providing powerful error-protection schemes, the radio interface is still
characterized by a comparatively high error rate. Besides, radio resource is scarce and
expensive. Hence the need to apply an efficient compression scheme for the transmission over
the radio interface which could help avoiding sending redundant information while being
resilient to transmission errors.

There exist quite a lot of compression schemes proposed by the IETF world. However, they
are either limited to only one protocol level (such as the initial IP header compression scheme
described in RFC2507, which was the compression scheme defined for the first release of
UMTS) or have significant bandwidth impact in case of erroneous or lost packets; this requires
lots of information transfer to resynchronize compression and decompression machines. This
latter is a critical point in the domain of radio transmission, characterized by a much higher
error rate than fixed transmissions.

ROHC (Robust Header Compression), defined by the IETF, is an answer which tries to
address all those concerns.

ROHC has been defined within IETF as a general and extendable framework. The first
release of ROHC was documented in RFC3095, �RObust Header Compression (ROHC):
Framework and Four Profiles: RTP, UDP, ESP, and Uncompressed�.

At some time, it was decided to improve this initial specification by clearly separating
the ROHC framework defined in RFC3095 (such as the concepts, definitions, packet
types and formats, etc. which really constitute the basis of ROHC) from the profile
definition which defines the compressor and decompressor behaviour for the most typical
applications. Eventually, ROHC version 2 (or ROHCv2) describes all the frameworks of
ROHC (inherited and kept unchanged from version one) in a separate document, and
introduces new profiles, providing some substantial improvements in terms of overall
complexity and implementation simplicity, as well as robustness to out-of-order packet
delivery.

ROHC basically works on the notion of �profile�. Each profile describes the behaviour of the
compressor and the decompressor for specific protocol use cases, as well as the machine state
transitions, and the behaviour when transmission starts and errors occur.
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Table 4.2 describes all the profiles supported by ROHC in its first and second versions.

(iii) Some More Details on How ROHC Works
Figure 4.20 illustrates how ROHC works. Although the picture only shows one-way
compressed transmission, the compression can be applied to both. However, each direction
is handled independently from the other, having its own context, compression and decom-
pression state machine, and parameters.

The ROHCv2 decompressor is based on a three-level state machine: NC (No Context), IC
(Initial Context) and FC (Full Context). When starting, the decompressor enters the NC state
and stays in this state until it receives a packet with a correct ROHC header. In the FC states,
the decompressor successfully receives optimized compressed packets. As decompression
failures occur, the state machine transits back to IC or even NC states, and corresponding
negative feedback indications are sent to the compressor.

The compressor starts in unidirectional mode until it receives feedback from the compres-
sor. As feedback is received, the compressor assumes the decompressor context is valid, and
can increase the compression efficiency of transmitted packets.

As opposed to the v1, ROHCv2 does not specify the compressor state machine in a deep
level of detail. The compressor is, however, still required to ensure the decompressor gets the
proper information for packet decompression and works in the most efficient state, based or
not on the information it receives about the feedback channel.

Table 4.2 Profiles supported by ROHC versions 1 and 2.

Profile RFC (version) Use case

Uncompressed RFC3095 (v1) Used for packets for which compression has
not been defined (e.g. the RTCP packets) or
when compression is not possible, e.g. due to
resource constraints

RTP RFC3095 (v1) Applicable to the RTP/UDP/IP stack, mainly used
for voice and audio/video streaming applications

UDP RFC3095 (v1) Applicable to UDP/IP stack, mainly used for
conversational or streaming applications not
being RTP-based

ESP RFC3095 (v1) Used when ESP (Encryption Security Payload)
is applied

IP RFC3843 (v1) The IP only profile, very similar to the UDP profile,
the UDP part being put aside

RTP Draft RFC (v2) ROHCv2 equivalent of the version 1 profile
UDP Draft RFC (v2) ROHCv2 equivalent of the version 1 profile
ESP Draft RFC (v2) ROHCv2 equivalent of the version 1 profile
IP Draft RFC (v2) ROHCv2 equivalent of the version 1 profile
TCP RFC4996 (v2) Applicable to TCP/IP flows

Notes: At the time of writing, the reference for the ROHCv2 RFC for RTP, UDP, ESP and IP profiles is
not known and the document is still in the form of an IETF draft, known as �draft-ietf-rohc-rfc3095bis-
rohcv2-profiles�. The �IP� profile was actually not supported by 3G/UMTS, which only supported
ROHCv1 profiles.
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When the feedback channel is used, the decompressor can provide three kinds of information:

. ACK, which acknowledges the reception of compressed packets up to the transmission of
the ACK.

. NACK, which indicates that some of the dynamic fields received by the decompressor are
no longer valid.

. STATIC-NACK, which indicates that the static part of the decompressor context is no
longer valid, which is actually an explicit request for a complete context update.

On the compressor side, two categories of packets are defined:

. IR (for Initialization and Refresh), which contains the static and dynamic fields of the
packet header. This kind of packet is used when the transmission starts, or if negative
feedback is sent by the decompressor.

. CO (for Compressed), which is a standard packet with compressed header followed by user
data information. Depending on feedback received and algorithm in the compressor, not all
the fields may be compressed. A CO packet may contain uncompressed information which
the compressor chooses to send as is.

In any case, IR and CO packets include a CRC in order to protect packet header integrity
against transmission errors. When received, the CRC is checked by the decompressor, which
further decides if the packet is valid or not and possibly provides feedback information to the
compressor.

(iv) About ROHC Compression Methods and Efficiency
ROHC does not propose any magic compression encoding method. It rather reuses a set of
well known techniques to apply to each header field, depending on its type. These methods are
based on the fact that most of the IP, UDP or RTP header fields are either static (meaning that
they don�t vary once a transport session is set up), inferred (meaning their value can be
deduced for other values, such as the �frame size� field) or changing within a limited value set
of ranges or in a predictable manner.

Figure 4.20 ROHCv2 decompressor states.
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As an illustration, ROHCmakes use of the two following methods for field compression for
changing fields:

. The LSB (Least Significant bit) method.

. The scaled RTP Timestamp encoding.

The LSB method is suitable to large bit fields varying by a small value at each occurrence
(such as the 16-bit RTP packet sequence number incremented by one at each frame). In such a
case, the compressor builds and sends a reduced range field using the least significant bits
rather than sending the whole set of bits.

The scaled RTP Timestamp method is a kind of variation of the LSB method. As explained
later in this chapter, in case of voice application, the 32-bit long RTP Timestamp may be
incremented by large and constant values (e.g. 160) every packet. Rather than sending the
whole set of bits, the compressor builds a downscaled value. The original value can be
reconstructed by the decompressor by interpolation with a linear function, such as �y¼ a.
xþ b�, which the �a� and �b� parameters have been provided by the compressor.

As described above, ROHC is based on the notion of a profile which specifies, for each of
the header fields, what shall be the initialization value and the compression method to be used.

As an example, Table 4.3, extracted from the ROHC profile document, describes the field
classification for an IPv4 header. It basically defines the way the compressor (and the
decompressor) shall process all of the individual header fields for each profile. This table also
illustrates the potential gain that a sensible method for header compression may provide.
When looking into the details of the 160 bits of an IPv4 header, it appears that 115 of them are
either static or can be inferred (or deduced) from other information. The remaining fields of
information are changing randomly, so that they cannot be compressed using the ROHC
methods.

Finally, Figure 4.21 illustrates the performances of ROHC in the example of a RTP/UDP/IP
voice application. This example shows a typical 32-byte payload audio packet. Before
compression, the header part is even larger than the payload. Thanks to the ROHC

Table 4.3 IPv4 header field classification.

Field name Size (bits) Class

Version 4 Static
Header length 4 Static
Type of service 8 Changing
Packet length 16 Inferred
Identification 16 Changing
Flags 3 Static
Time to live 8 Changing
Protocol 8 Static
Header checksum 16 Inferred
Source address 32 Static
Destination address 32 Static
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compression process, the 40 bytes of RTP/UDP/IPv4 headers are reduced to a mean value
of 6 bytes.

Reference documents about ROHC

ROHC IETF documents:

. RFC3095, �ROHC: Framework and Four Profiles: RTP, UDP, ESP, and Uncompressed�

. RFC3843, �ROHC: A Compression Profile for IP�

. RFC4995, �The RObust Header Compression (ROHC) Framework�

. RFC4996, �RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)�

. Draft RFC, �RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP,
IP, ESP, and UDP Lite�

4.3.8 NAS Protocols

(i) About the AS/NAS Model
In order to better define the scope of NAS protocols, Figure 4.22 presents a model which was
introduced at the beginning of 2G/GSM and is still valid for the evolution of UMTS. This
model presents two areas – the AS (Access Stratum) and NAS (Non-Access Stratum) – which
span over several entities (Terminal, Access Network and Packet Core) and aims at classifying
the main functions supported by the whole set.

The Access Stratum corresponds to features linked to the radio interface. It is, however, not
limited to the access network and the radio part of the terminal, as it also mandates for a
specific support from the Packet Core. As an illustration, the main features supported by AS
are:

. Radio Bearer management – which includes Radio Bearer allocation, establishment,
modification and release.

32 
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Voice or audio data 

RTP header 

UDP header 

IPv4 header 

32

6 ROHC header 
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compression  

Figure 4.21 An example of ROHC performances on a VoIP flow.
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. Radio channel processing – including channel coding and modulation.

. Ciphering – this only refers to the ciphering process itself. The initiation of ciphering and
the choice of security algorithm are under the responsibility of the Non-Access Stratum. In
addition, and depending on applications, end-to-end ciphering main also be used, as in VPN
(Virtual Private Network).

. Radio mobility – also known as handover.

In 2G/UMTS, the AS features are actually supported by the PHY, MAC, RLC, RRC and
PDCP radio protocol layers, as well as all procedures defined within the Iu interface, between
the Packet Core and UTRAN Access Network.

In contrast, the Non-Access Stratum corresponds to functions and procedures which
are completely independent from the access technology. This includes features
such as:

. Session management – which includes session establishment, modification and release as
well as Quality of Service negotiation.

. Subscriber management – which corresponds to user data management, attach and detach
features initiated at mobile switch-on or off.

. Security management – this includes mutual user-network authentication as well as
ciphering initiation.

. Charging.

In 2G/GSM, the NAS features are supported by two sets of protocols, being the GMM
(GPRS Mobility Management) and SM (Session Management) layers, defined by 3GPP
specifications (Figure 4.23). Thanks to this independence from the access technology, the
NAS layer has evolved in a backward-compatible way. When UTRAN specifications were
defined in 1999, the corresponding NAS layers were actually inherited from the existing GSM
ones. Some additions were introduced, corresponding to UMTS enhancements (like, for
example, the Quality of Service handling) but most of the rest was actually duplicated from
the legacy GSM NAS layers.

Figure 4.22 Access and Non-Access Stratum model.
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(ii) About GMM and SM Protocols
The GMM layer is in charge of supporting the mobility of user terminals. In this context, the
term �mobility� does not refer to radio mobility, such as handover between cells, as radio
mobility is already supported by E-UTRAN. GMM rather refers to �terminal location
management�, which is required, for example, to join the terminal in case of mobile-
terminated session initiation. For that purpose, the Mobility Management layer supports the
following set of procedures:

. User attachment, which is part of the registration process initiated when the terminal is
switched on. A similar procedure is also used when the mobile is switched off.

. The terminal location updating procedures, performed as the terminal is moving or
periodically to refresh and keep updated the information stored in the Packet Core.

In addition to Mobility Management, the GMM layer also supports security functions,
such as:

. Mutual subscriber and network authentication.

. Activation of ciphering or integrity protection.

. Management of terminal states (Detached, Idle and Active).

The SM layer is built on top of the GMM and uses GMM services for the management of
sessions. The main function of SM is to support user terminal PDP (Packet Data Protocol)
context management and bearer management between the terminal and the SGSN. This
includes procedures for the activation, modification or deactivation of session context and
associated bearer.

Briefly, a PDP context is a context for packet transmission determined by a terminal address
(being an IP one) and a set of �Quality of Service� attributes such as maximum bit rate,
guaranteed bit rate, transmission delay, etc. which are negotiated between network and
terminal when the PDP context is set up. This concept, as well as examples of Session
Management procedures, is further described in Chapter 5.

(iii) About NAS Protocols in EPS
Not surprisingly, most of the NAS functions and procedures which are used in EPS networks
are based on the set of concepts and procedures inherited from GSM and UMTS networks.

Figure 4.23 The relationship between NAS and access protocol versions in 3GPP.
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The only exception is circuit-switched-based services and the corresponding MM (Mobility
Management) and CC (Call Control) layers (which are the circuit-switched equivalents of
GMM and SM). As Evolved UMTS is �Packet Only�, all the CS Core domain-related
procedures of the NAS layer are no longer applicable to Evolved UMTS. However, a
multi-access terminal able to access to 2G/GSM, 3G/UMTS and EPS networks will have
to support all of the procedures, as illustrated in Figure 4.24.

The Mobility Management layer of the EPS network is named EMM (for EPS Mobility
Management) and supports the same functions as its 2G and 3G GMM equivalents. Most of
these functions (like terminal location management and terminal state management) are
further detailed in Chapter 5.

As regards Session Management, the EPS SM layer supports the basic function set for EPS
Bearer establishment, modification and release, including bearer Quality of Service negotia-
tion. More examples about Session Management procedures are described in Chapter 5.

In 2G/GSM and 3G/UMTS, Mobility and Session Management-level procedures were
defined in a quite independent way, allowing procedures to be handled or performed
separately. Although re-using the same concepts, the way EPS NAS protocol is specified
in a fairly different way so as to limit as much as possible the amount of signalling
exchanged. For that reason, Mobility or Session Management-level information is often
transferred over the interface as part of other procedures such as S1 Bearer Management or
RRC Connection Management messages. Some examples to illustrate this are provided in
Chapter 5.

4.4 IMS Protocols

The aim of this section is to briefly describe the main application protocols used by IMS (IP
Multimedia Subsystem). All of these protocols have been defined by the IETF (Internet
Engineering Task Force), which is the international community dedicated to the evolution of
the Internet. Because they were designed in the scope of wired Internet communication
session setup, 3GPP had to adapt them to specific IMS architectures and requirements.

Figure 4.24 Combination of NAS protocols in a multi-access terminal.
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However, re-using worldwide standards for packet-based services within IMS has major
advantages:

. The development cycle for terminals and network nodes is reduced as IMS based
applications development only require adaptations to protocol stacks that already exist

. The inter-working between other packet networks is easier, as IETF application protocols
are now widely used in public and private networks.

The rest of this section describes the following:

. SIP (Session Initiation Protocol), which is the protocol for packet session control (estab-
lishment, modification and termination).

. SDP (Session Description Protocol), which is the standard for describing and negotiating
media components.

. RTP (Real Time Protocol), being the transport stack used by real-time sensitive packet-
based services.

The intention here is not to provide an extensive view of IETF protocols, but rather to give
an overview of the main characteristics (the main concepts and principles) and describe how
they fit with the other elements of evolved UMTS architecture.

For further information, the reader is invited to refer to standard documents, whose
references are provided in each section.

4.4.1 The IMS Protocol Stack

As an introduction to the IETF and IMS protocol description, Figure 4.25 describes an
overview of the protocol stack architecture for IMS services. The figure represents two end-
user terminals as well as an intermediate IP router. The name on the left corresponds to the
well known OSI model terminology.

Starting from the bottom, the Physical and Data Link layers are parts of Local Area
Network technologies, ensuring reliable data frame transmission between two points. From an
implementation perspective, these two layers may be supported by a lot of technologies, from
wired or wireless Ethernet to E-UTRAN access network. The Network layer is in charge of
packet routing through the network. This is generally implemented by the IP, which proposes a
solution enabling packet routing, intermediate nodes and endpoint addressing.

Above the Network layer, the Transport layer is an end-to-end service ensuring reliable data
transmission to application-layer protocols like SIP, RTP or RTCP. The Transport layer may
provide a reliable connected mode data-transmission service – as with TCP (Transmission
Control Protocol) – or an unreliable connectionless transmission service – as with UDP (User
Datagram Protocol). In most of the cases, transactional and interactive services like email
transfer orWeb browsing make use of TCP, whereas UDP is more often associated to real-time
flows like streaming of Voice over IP.

4.4.2 SIP

This section briefly describes the SIP (Session Initiation Protocol), one of the most popular
application protocols for establishing and terminating communication sessions over the
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Internet. Like other session-control protocols, SIP supports the following two main
features:

. An addressing schemewhich allows endpoints (could be a server or an end-user) to discover
each other.

. Session state management, from establishment to termination, including on-line session
modifications (such as the addition or removal of a media component).

SIP�s worldwide success and acceptance can be explained by many factors. The main ones
which are worth mentioning in the scope of this section are: its relative simplicity, the protocol
flexibility and its openness to future extensions.

. Simplicity: SIP protocol states are limited in number and the interaction with other sub-
protocols (like SDP) was made simple. In terms of protocol format, SIP messages are text-
based, meaning that debugging can be performed using standard interface dump tools. For
those two reasons, SIP is considered as comparatively easier to implement than other
session control protocols like H.323, which is intrinsically more complex.

. Flexibility: SIP can handle a very large set of real-time or nonreal-time session types, like
voice, video telephony, multimedia communications involving one or more participants and
also text services like �presence� or �event notification�. Besides, SIP was designed as being
independent from the underlying transport layers, and can be deployed over UDP (the most
common case) or TCP.

. Extensibility: SIP can easily be customized and extended, as it was made in order to deal
with specific IMS requirements. New message headers are defined in a backward-
compatible way (all unknown information is simply ignored).

Figure 4.25 IMS protocol architecture.
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SIP was defined as a generic protocol and is therefore not self-sufficient to establish a
session. Typically, SIP does not provide any means for media format description or Quality of
Service negotiation. For this reason, it is generally used in combination with SDP (the
protocol for media session description) and RTP/RTCP (the protocol for transport and control
of real-time application packet bearers) which are further described in this chapter.

(i) SIP Architecture Elements
Figure 4.26 describes an example of SIP session establishment. Basically, the whole process
looks like a three-way handshake:

. The initial INVITE request sent by Alice contains the address of Bob in the form of an URI
(Uniform Resource Identifier), but Alice does not know the exact location of Bob. This is
the reason why the INVITE request is sent to a local Proxy1, and forwarded to a Proxy2
serving Bob�s domain.

. As Bob accepts the session and decides to answer Alice, a �200 OK�message is sent back to
Alice using the same signalling route as the initial INVITE message.

. The final acknowledgement �ACK� sent by Alice may follow a different route, as each party
knows each other�s address.

As shown in this example, SIP not only describes the protocol, but also introduces
architecture elements, network logical nodes and associated features. As usual, this definition
does not mandate any specific network architecture, and a given physical network node may
aggregate several logical functions:

. User agent: this is a generic name for SIP clients (the entity which generates the request,
which is Alice�s terminal in the example above) and servers (the entity that generates the
response and could be either a machine like an application server or an end-user terminal
like Bob�s phone).

. SIP proxy: the role of SIP proxies is to make sure SIP messages (including requests and
answers) are routed appropriately. Some proxies (called stateful proxies) may maintain
client or server connection states based on the transactions they receive. Other proxies
(stateless proxies) just forward the requests and responses they receive.

. Registrar: the registrar is a particular SIP server whose role is to accept and process SIP
registration requests from users, in order to maintain end-user location information.

Figure 4.26 A simplified example of SIP session setup (the so-called SIP trapezoid).
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The SIP addressing scheme is based on URI (Uniform Resource Identifier) and is defined
by the following generic format:

sip:user:password@host:port;uri-parameters?headers

This format is very similar to email addresses (like, for example,mailto:johan@domain.com).
In addition, the SIP URI format may optionally include parameters used, for example, to
specify the transport parameters to be used when sending SIP messages to the corresponding
client, and headers to be added to the SIP request.
The following example illustrates this flexibility. This address specifies that all SIP messages
shall be sent to Alice using a TCP transport connection, and that an �urgent� priority field shall
be included in all requests.

sip:alice@atlanta.com;transport=tcp?priority=urgent

(ii) The SIP Methods
As in SIP terminology, a �method� is a primary function being invoked by a request initiated
from a client. SIP specification defines a list of methods, which are briefly described below:

. REGISTER: The registration is an important process in SIP, as it allows binding a SIP URI
(which is the SIP identity which does not give any indication about the actual user location)
to a contact address (which is generally an IP address). When a user registers to a SIP
Registrar, it provides both its SIP URI and its contact address. Further on, when a user-
terminated request is received by the user domain proxy, the contact address is retrieved by
the proxy so that the request can be transmitted to its destination.

. INVITE: This method is sent by user willing to initiate a session towards a SIP server,
which could be an application server or another end-user. Once the dialog is established
between the peer entities, the INVITE method can also be used to modify the existing
session, for example to add or remove a media stream, or change the addresses and ports
being used for the signalling or user packet transmission.

. BYE: This method is used to terminate a session initiated with a SIP INVITE.

. CANCEL: This one is used to cancel a pending request. This may happen in case an initial
INVITE message has been acknowledged by a �200 OK� answer but the final ACK has not
been yet received.

. OPTIONS: This method allows a User Agent to query another User Agent, or a SIP proxy
about its capabilities. This may be used, for example, to know the SIP methods supported by
the peer entity, or to check if a specific extension is supported.

As described above, the basic SIP methods specified in RFC3261 have been extended in
order to define additional services supported by the SIP framework. Among the multiple
extensions designed by IETF, this section will describe two of them, as being part of the IMS
domain:

. The Event Notification extension.

. The Instant Messaging extension.
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The SIP Event Notification extension
This SIP extension is specified in document RFC 3265, �Session Initiation Protocol (SIP)-
Specific Event Notification�, and allows SIP to manage events. This is a useful add-on to
support applications such as �Presence indication�.

In RFC3265, two additional SIP methods are defined, which the IMS terminal shall support.
However, in the case of a generic SIP terminal, the support of the RFC3265 extension can be
checked using the OPTIONS SIP method:

. SUBSCRIBE: This method is used to request current state and state updates from a remote
node. Many different event packages have been defined within IETF – such as �presence
events� or �registration events� – so that the SUBSCRIBE method includes which one the
subscription is related to.

. NOTIFY: Such messages are sent to inform subscribers of changes in the state to which the
subscriber has a subscription.

In the scope of IMS, the SIP Event Notification extension is used in association with the
registration process. Once registered, the terminal subscribes to the �registration event
package�. This further allows the network to notify the subscriber that it has been de-
registered, or that the terminal needs to re-authenticate.

The SIP Instant Messaging Extension
For the support of Instant Messaging, a new SIP method has been defined in RFC 3428,
�Session Initiation Protocol (SIP) Extension for Instant Messaging�:

. MESSAGE: This new method allows the transfer of Instant Messages. Correct reception
(not meaning the message has been read) is acknowledged by the receiver through a �200
OK� response.

(iii) SIP Messages

SIP Protocol Format
SIP messages are written in ASCII-coded plain text, like many IETF application protocols:
HTTP (Hyper Text Transfer Protocol) for Web browsing, POP3 (Post Office Protocol) for
email retrieval, SMTP (Simple Mail Transfer Protocol) for email posting, NNTP (Network
News Transfer Protocol) for news posting and reading, etc.

The SIP protocol format is actually very similar to the HTTP command/response
transaction model. Each request message contains an SIP method which is invoked, and a
list of parameters associated with the request. Figure 4.27 is an example of an INVITE
message sent by a client.

In this example, the user bob@proxy2.com is invited to a SIP session by alice@proxy1.
com for a session whose subject is �Project Update Meeting�. The INVITE message is sent
over the UDP transport protocol and contains an offer for session expressed by a SDP
description part.

In principle, the request is answered using a response code covering the normal completion
cases and the possible failures which may occur (the request is not correctly formatted or
rejected, etc.).
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Using plain text message definition makes the debugging much easier than other coding
schemes like ASN.1, which is used by H.323. Messages can easily be captured and displayed
by using very basic interface dumping tools like, for example, TCPDUMP. But, on the other
hand, this has the drawback of generating quite large messages (size may vary from hundreds
of bytes to a few thousands of bytes). This may not be so critical in a broadband wireline IP
context, considering the fact that SIP signalling is only exchanged at call setup. However, in a
wireless environment characterized by resource scarcity and high bit error rate, a more
optimized format is preferable in order to limit bandwidth requirement and keep signalling
transmission time as low as possible.

This is the reason why a specific SIP signalling compression has been defined by IETF.

SIP Message Compression
The SIP compression scheme, also known as SigComp, is defined in the following IETF
document: RFC3320, �Signalling Compression (SigComp)�.

Figure 4.28 illustrates the fact that SigComp is not a substitute for the compression process
performed at the PDCP level in Evolved in this chapter.

When being sent at the IP level, a SIP message looks like Figure 4.28: the SIP/SDP part
contains the SIP message itself, plus a SDP container, when applicable. The transport header
(a 20-byte TCP or 8-byte UDP) is added on top of it, as well as the IP header (the iPv4 header
is at least 20 bytes long, and the IPv6 is at least 40 bytes).

Via: SIP/2.0/UDP 
pc33.proxy1.com;branch=z9hG4bK776asdhds 
Max-Forwards: 70 
To: Bob <sip:bob@proxy2.com> 
From: Alice <sip:alice@proxy1.com>;tag=1928301774 
Call-ID: a84b4c76e66710@pc33.proxy1.com 
CSeq: 314159 INVITE 
Subject: Project update meeting 
Contact: <sip:alice@proxy1.com> 
Content-Type: application/sdp 
Content-Length: 142 

The header:
Contains the fields associated 
to the method 

<SDP session description part> The body:
The request contains a SDP 
session description part 

INVITE sip:bob@proxy2.com SIP/2.0 The 1st line:
Contains the name of the 
method or the response code 

Figure 4.27 An example of an SIP INVITE message.

SIP/SDP message TCP/UDP header IP header 

Scope of SigComp Scope of PDCP compression 

20–40 bytes 8–20 bytes 100–1000 bytes 

Figure 4.28 Handling of a SIP message.
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SigComp only applies to the SIP/SDP part of the IP packet and is independent for each
direction (meaning that SIP request from a client may be compressed whereas the responses
sent by the server are not).

The main principle of SigComp is that no compression algorithm is specified. This was
defined that way to allow each SigComp implementation to find its own compromise between
compression efficiency and memory requirements.

For that purpose, SigComp is based on a Universal Decompressor Virtual Machine
(UDVM) which makes use of an instruction set, or programming language, specifically
designed for the purpose of writing decompression algorithms. This language contains
instructions such as basic calculation, memory manipulation, etc.

The compression algorithm is chosen by the message sender, and coded using the UDVM
instruction set defined in RFC3320. The corresponding byte code is then included to the first
compressed message sent, and used by the receiver each time a compressed message arrives.

In addition, SigComp is based on a static dictionary, defined in RFC3485, �SIP and SDP
Static Dictionary for SigComp�. This document references the most common SIP and SDP
well known words which appear in most of the SIP and SDP messages, so that each of these
elements can be referred to using a common set of references.

For illustration purposes, Figure 4.29 describes the generic format of a SigComp message.
The first five bits of a SigComp message are set to �1�. Because this sequence never occurs in
ASCII coding, SigComp message can be sent along noncompressed ASCII-coded messages.

SigComp support is indicated by each entity by using an additional �comp¼ sigcomp�
parameter in SIP requests. This new information indicates that the requesting entity supports
SigComp and is willing to receive compressed messages.

As in IMS subsystems, SigComp is only applied to the signalling path from the user
terminal to the P-CSCF call server. Although SigComp support is mandatory in 3GPP
specifications, its use is optional and left to terminal and P-CSCF decisions.

(iv) IMS Differences to Standard IETF SIP
As mentioned in the introduction to this section, SIP implementation in the IMS context
slightly differs from the principles described in the IETF documents. The most significant
additions and differences, as well as the underlying reasons, are described hereafter.

1    1    1    1    1 T 0  0 

Return feedback 
…

Uploaded UVDM byte code 
…

The compressed SIP/SDP 
message

…

Code length 

Code length Destination 

SigComp message prefix 

Optional part 
(in principle, the UVDM code is only 
sent once per session) 
Typical size is from 200 to 500 bytes 

8 bits 

Figure 4.29 An example of a SigComp message.
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Need to Register and Authenticate at the SIP Level
As defined by the IETF, SIP does not require an end-user terminal to register before requesting
a SIP service through, for example, an INVITE or a SUBSCRIBE method.

In order to increase IMS security, 3GPP specifications mandate a mobile terminal to
register to its S-CSCF server before activating any of the SIP-based IMS services.

This IMS registration process is performed through the REGISTER method, and also
provides end-user IMS authentication. This authentication is actually a challenge/response
mechanism based on credentials stored on the user SIM card and HSS network node.

SIP Signalling Routing
In IMS networks, the SIP message routing is not free and the SIP user agent cannot choose the
signalling path, as in the SIP trapezoid example described above.

Because of user service authorization and billing requirements, IMS requires the SIP
signalling is routed towards the P, I and S-CSCF call servers. At some point, when the S-SCSF
has been reached once by the user SIP request, the I-CSCF server can be removed from the
signalling path. The only exception is when a topology hiding feature is being used, as
described further in this section.

IMS SIP Node Supported Features
Depending on the session procedure (or SIP method) which is invoked, each of these nodes
has a specific role as regards to charging, end-user authentication and SIP signalling handling
(like SigComp support in the P-CSCF, or specific treatment to be applied to SIP header
fields).

CSCF nodes are not simple or pure SIP proxies and routers, as in the RFC3261 spirit; they
are also requested to support specific features in a specific manner.

IMS Topology Hiding Specific Additions
This topology hiding feature is related to two items above, as it requires some specific rules for
SIP signalling processing and routing.

For security reasons, an operator may be willing to hide the topology and configuration of
its network to other external networks or entities. Practically speaking, this means that such an
operator would like to hide the URI of its CSCF nodes to the external world, preventing the
outside to know, for example, the addresses of the servers, to evaluate the number of such
servers or to detect any reconfiguration action the operator may apply. To achieve this, the
I-CSCF, which is basically the network entry point for SIP services, need to support specific
features, as illustrated in Figure 4.30.

When an initial incoming SIP request comes from the external world, the I-CSCF
supporting THIG adds its address (icscf@net.com in this example) to the SIP �Path� header,
in order to make sure it is kept in the signalling path for further responses.

Further on, when a SIP request or response is to be routed out of the network, the I-CSCF
translates all SIP node addresses (like the URI of the S-CSCF for a response to a REGISTER),
so that any external receiving entity can retrieve it. Similarly, when a SIP request or response
with a translated address arrives at the I-CSCF, the reverse translation is performed.

This process is potentially applied the following SIP headers:

. Via – which describes the path taken by the SIP message so far.
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. Record Route – this header is inserted by proxies willing to force SIP signalling routing
(such as the P-CSCF or the I-CSCF implementing THIG).

. Service Route – which contains a list of SIP proxies adding service to the message (like the
S-CSCF).

User Identification in IMS
SIP end-user identification is based on URI. As described in the section about SIP methods,
the REGISTERmethod allows binding the user URI to a contact address – being an IP address
in most cases. A user may have more than one URI, in which case the user is known by
multiple public identities and each of the identities needs to be registered independently if the
user is willing to be contacted through each of them.

In IMS, each subscriber is assigned one private identity (also known as IMPI for IP
Multimedia Private Identity) and one or more public identities (also known as IMPU for IP
Multimedia Public Identity), as illustrated by Figure 4.31.

The IMPI is used during the IMS Authentication and Key Agreement (AKA) process,
which aims at mutual user and network authentication as well as security key exchange
between network and terminal so as to protect the SIP signalling exchanged between the
different entities. The IMS AKA process is described in more detail in Chapter 5.

Briefly, during the IMS registration process, the subscriber has the possibility to register all
its IMS public identities using one single REGISTER SIP message.

On reception of the REGISTER message from the terminal, the S-CSCF retrieves the list of
public identities associated to it. The S-CSCF stores each of the public user identities and

…

I-CSCF 
icscf@net.com

THIG protection 

S-CSCF 2 

S-CSCF 1 

SIP initial request Path: icscf@net.com, … 

<Translated URI> 

<Translated URI> S-CSCF addresses 

S-CSCF addresses 

Figure 4.30 Illustration of SIP-based topology hiding.

IMS subscription 

Private user 
identity (IMPI) 

Public identity 1 Public identity 2 …

Figure 4.31 IMS and user identities.
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returns the full list in the SIP �200 OK� response sent to the terminal. This process is known as
�implicit registration�.

The IMS P-Header Extensions
Specific SIP header extensions (known as Private SIP headers) have been specified for the
purpose of SIP IMS implementation. This set of new headers carry IMS-related informational
parameters used by the terminal or network CSCF nodes.

The complete list is described in the following IETF documents:

. RFC3455, �Private Header (P-Header) Extensions to the Session Initiation Protocol (SIP)
for the 3rd-Generation Partnership Project (3GPP)�.

. RFC3325, �Private Extensions to the Session Initiation Protocol (SIP) for Asserted Identity
within Trusted Networks�.

For illustration purposes, here is an extract of this list:

. P-Associated-URI: is sent from the S-CSCF to the terminal and contains the list of
implicitly registered public identities.

. P-Access Network-Info: is sent from the terminal to the S-CSCF and contains the current
access network and cell identification information.

. P-Asserted-Identity: this field represents the IMS subscriber identity once it has
been authenticated. In IMS, this field is used to convey user URI from the P-CSCF to
the S-CSCF.

Reference documents about SIP

SIP IETF documents:

. RFC3261, �SIP: Session Initiation Protocol�

. RFC3265, �Session Initiation Protocol (SIP)-Specific Event Notification�

. RFC3428, �Session Initiation Protocol (SIP) Extension for Instant Messaging�

. RFC3665, �Session Initiation Protocol (SIP) Basic Call Flow Examples�

SIP IETF 3GPP specific documents:

. RFC 3455, �Private Header (P-Header) Extensions to the Session Initiation Protocol
(SIP) for the 3rd-Generation Partnership Project (3GPP)�

SigComp IETF documents:

. RFC3320, �Signaling Compression (SigComp)�

. RFC3485, �SIP and SDP Static Dictionary for SigComp�

. RFC3486, �Compressing the Session Initiation Protocol (SIP)�

3GPP technical specifications about SIP usage in IMS:

. 24.229, �IP Multimedia Call Control Protocol based on SIP and SDP�
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4.4.3 SDP

(i) Overview
SDP (Session Description Protocol) is probably not a protocol as such. It is rather a format
specification for multimedia session description. SDP is able to handle lots of different
information, in order to be able to define a multimedia session in the most accurate
manner. The session information items managed by SDP can be classified in the following
groups:

. Session name and information: this can be very general and provided for information only.
It helps to quickly understand the session purpose.

. Contact information: this describes a contact name, document or Web page that the receiver
can read in order to get more information about the session.

. Session starting and stopping times.

. Media types: this describes in detail all the media being used in the session (audio, video,
codec, sampling rate, etc.).

. Media connection information: this relates to, for example, the IP address and port to be
used for the media transport.

(ii) SDP Message Format
Like SIP, SDP is a plain-text ASCII protocol. This makes SDP very easy to read when
captured on the fly, unless it is compressed with SigComp. The SDP format is also very
simple, as it consists of a number of lines of text of the form <type>=<value>
describing session parameters. The RFC4566 describing the SDP format specifies the
basic set of parameters. This initial list has been further completed and extended in many
ways to allow, for example, grouping of media or endpoint capability information
exchange.

For illustration purposes, here is the list of the main session parameters supported by
SDP:

. v: the version of SDP being used.

. o: the owner/creator of the session. The (username, session ID, address) T-uple form a
unique session ID.

. s: the session name.

. i: the session information.

. u: a URI pointing to session information.

. e: email of a session contact person.

. c: session connection information.

. t: specifies the session start/end time. The coding allows time-limited or endless sessions
(e.g. for voice or conversational services).

. a: describes a session or media attribute.

. m: describes a media.

As illustrated in Figure 4.32, coming from the RFC4566, there are two types of SDP
parameters:
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. The parameters at the session level.

. The parameters at the media level. In case a SDP session contains more than one media type
(for example, voice and video), each media is described using its own set of parameters and
attributes

This example describes a time-limited multimedia broadcast session (session attribute is
�recvonly�, meaning that the participants are only allowed to receive information).

The session will support three media flows, which are described right after the session level
parameters:

. An audio flow on port 49170. The rest of the line specifies that the flow of data is encoded by
the Audio and Video Profile (AVP) 0 – which corresponds to the G.711 ITU codec – and
supported by RTP (Real Time Protocol).

. A video flow on port 51372. The codec is based on profile 31 – which corresponds to the
H.261 ITU coding scheme.

. An application data flow over UDP, which is not further specified in the SDP container, as it
is handled by a specific application (�wb� for whiteboard, which is a remote conferencing
tool for shared drawing).

(iii) SDP and SIP Interaction
In some cases of multimedia applications, it may happen that terminals are not able to support
the audio or video flows in the format proposed by the session initiator. This may happen, for
example, in the case of a newly deployed application of an information-coding scheme, or if
the called party has limited capabilities for any reason, such as energy-saving concerns,
requiring the display and graphical processor to be in power-save mode.

To cope with such a situation, a specific mechanism called �the Offer/Answer model� has
been specified and documented in RFC3264, allowing end-to-end session parameter negotiation

v=0
o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4 
s=SDP Seminar 
i=A Seminar on the session description protocol 
u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps 
e=mjh@isi.edu (Mark Handley) 
c=IN IP4 224.2.17.12/127 
t=2873397496 2873404696 
a=recvonly 

m=audio 49170 RTP/AVP 0

m=application 32416 udp wb 
a=orient:portrait

m=video 51372 RTP/AVP 31

Session level parameters 

1st media 

2nd media 

3rd media 

Figure 4.32 An example of SDP session description.
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for SIP/SDP sessions. This mechanism makes use of the three-way handshake in SIP session
establishment, and is applied to IMS session setup.

The principle, as it is applied in IMS, is illustrated in Figure 4.33:

. The initial INVITE SIP message contains the list of media types (audio, video, etc.) and a
list of codec types the initiator is able to propose, the preferred one being on the top of the
list.

. In the �183 Progress� provisional answer, the called party answers with the media codecs it
actually supports, chosen from the list received in the INVITE.

. On reception of the �183� response, the initiator chooses the codec which will eventually be
used for the session and informs the called party using a PRACK (Provisional ACK) SIP
method.

. The last �200 OK�message is the final acknowledgement sent by the called party on session
parameters.

Further on, the session characteristics may change because of media removal or addition, or
because of a change of codec. In such a case, a SIP UPDATE message is sent, containing new
SDP parameters. The UPDATE method is an extension to the SIP protocol, and is defined in:

. RFC3311, �The Session Initiation Protocol (SIP) UPDATE Method�

(iv) SDP and IMS
SDP implementation in IMS is quite straightforward. In addition to the SDP basis defined in
RFC4566, IMS makes use of some extensions, also subjects of IETF documents. This section
lists the main ones.

Grouping of Media Lines
This extension is described by RFC3388, �Grouping of Media Lines in the Session
Description Protocol�. It allows indicating a relationship between some of the media of a
SDP session. From a practical point of view, this extension makes it possible to group
together differentmedia streams (the �m¼ � lines in SDP session descriptions) for the purpose
of, for example:

Figure 4.33 The SIP/SDP offer/answer model in IMS.
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. Lip synchronization between an audio and a video stream.

. Flow grouping: in some cases of voice codec – such as 3GPPAMR – several classes of bits
are defined, each of them requiring specific handling and error correction. The flow
grouping is a way to indicate that each bit flow is actually part of the same voice
session.

Handling of Preconditions
This mechanism is described in RFC3312, �Integration of Resource Management and Session
Initiation Protocol�. This extension allows a participant of a multimedia session to specify
conditions within a SDP offer. Because the conditions are generally set at the media level, they
have been defined by the IETF at the SDP level rather than at the SIP level.

Reference documents about SDP

SDP IETF documents:

. RFC4566, �SDP: Session Description Protocol�

. RFC3264, �An Offer/Answer Model with the Session Description Protocol�

4.4.4 RTP

RTP (Real-time Transport Protocol) is an end-to-end transport protocol used for the transport
of real-time data over packet networks. This protocol can support a large range of real-time
services like Voice over IP, content streaming applications, point-to-point or point-to-
multipoint broadcast multimedia sessions.

RTP is described by RFC3550, �RTP: ATransport Protocol for Real-Time Applications�. As
explained below, this document not only specifies the data transport protocol, but also a set of
RTP control messages, also known as RTCP (Real-time Control Protocol), which are used to
support session setup and operation.

As mentioned in the section about SDP, there might exist simultaneously several RTP flows
from one sender to one or several receivers. This leaves the opportunity for terminals with
limited capability or connectivity to only receive some of the available flows.

What is the Need for a Real-Time Protocol?
The basis of packet data transmission (as opposed to circuit-switched transmission) is that
neither the transmission delay nor the user bandwidth is guaranteed. In principle, this has no
impact on nonreal-time services like Web browsing or email transfer, as variations in terms of
bandwidth and delay are not noticed by the end-user in most of the cases. However, in the case
of real-time-constraining applications like voice or streaming, the end-user experience may
suffer from too long transmission delays or variations in packet inter-arrival time.

Figure 4.34 illustrates the effect of real-time packet data transmission over an IP network.
On the transmission side, packets are sent in the correct sequence with a period of T. On the
reception side, due to network congestions, the packets experience different transmission
delays and may even arrive out of sequence. This effect is known as �jitter�.

The role ofRTP is to compensate the jitter so that the application on the receiving side canplay
the received flows as if the packet inter-arrival timewas not altered during the transmission. This

Evolved UMTS Architecture 223



canbe achieved thanks to theTimestamp– a time indication field containedby theRTPheader of
each packet, allowing the receiver to restore the correct packet sequencing.

RTP Generic Packet Format
Figure 4.35 describes the format of a RTP data packet. RTCP control packets are approxi-
mately of the same format. They are identified by specific values in the PT (Payload Type)
field.

The RTP header is at least 12 bytes long and contains the following information:

. V (Version) represents the version of RTP protocol being used. The version corresponding
to the RFC3550 is �2�.

. P (Padding) is the padding indicator. Padding may be added at the end of the packet for the
purpose of specific ciphering algorithms mandating specific bloc size.

. X (eXtension) indicates whether or not the header is followed by an extension.

. CC (CSRC Count) indicates the number of CSRC identifiers.

. PT (Payload Type) specifies either the coding type of user data (for a RTP packet) or the
type of packet (for a RTCP packet).

. Sequence number is increased by one for each RTP data packet. This field allows the
receiver to detect out-of-sequence or lost packets.

. Time stamp indicates the sampling corresponding to the first byte of the payload. This field
is used by the receiver to remove the jitter.

Figure 4.34 The effect of packet network transmission.

Figure 4.35 RTP packet format.
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. SSRC (Synchronization Source) is a random field identifying the source of the RTP flow.

. CSRC (Contributing Source) identify a source having contributed to the packet. This is
typically used in the case of a conference call, when the speech inputs from multiple
speakers have been mixed together before distribution.

As described above, the Payload Type (PT) field provides an indication on the coding of the
payload data. The possible values of PTare specified in a separate document – RFC3551, �RTP
Profile for Audio and Video Conferences with Minimal Control�. From this field, the receiver
knows exactly the audio and/or video codec applied to the data flow. In case of a RTP session
being set up with SIP/SDP, the value of the RTP header Payload Type shall correspond to the
�RTP/AVP� value being indicated in the SDP session description and described above in this
chapter.

For illustration purposes, Table 4.4 contains some typical values of PT, corresponding to the
most well known coding schemes.

The Timestamp field of the RTP header is the information the receiver will use to evaluate
packet arrival jitter. As opposed to the Sequence Number, which is increased by one at each
packet, the Timestamp follows different rules, as it represents a time value associated with the
first sample of the RTP data payload.

In the example of an audio codec with a clock rate of 8000Hz, if a RTP packet is sent every
20 ms, then each packet will contain 160¼ 8000 � 20�10–3 speech samples. Therefore, the
value of the Timestamp will be incremented by 160 for each packet.

About RTCP
RTCP is the control protocol associated to RTP for real-time session operation. RFC3550
defines only five types of RTCP messages, each of them having a specific RTP header PT
value:

. SR (Sender Report).

. RR (Receiver Report).

. SDES (Source Description) – this message contains information about the source of the
flow, such as name, email address, phone number, etc.

Table 4.4 Some examples of RTP Payload Type values.

PT Name Description

0 PCMU G.711 speech codec at 64Kb/s using m-law
3 GSM GSM speech codec
4 G.723 Dual rate (5.3 and 6.3Kb/s) speech codec intended for H.324 videophone services
8 PCMA G.711 speech codec at 64Kb/s using A-law
12 QCELP North-American IS-95 CDMA speech codec
34 H.263 Low bit rate video codec intended for H.324 videophone services
32 MPV MPEG-1 and MPEG-2 video streams
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. BYE – this message is sent by an entity which leaves a RTP session.

. APP (APPlication) – this message format is left to application-specific features. This kind
of message is used, for example, to support Talk Burst messages in PTT (Push-To-Talk)
services. This service is further described in Chapter 6.

The Sender and Receiver Reports (SR and RR) messages are used to periodically exchange
reception-quality feedback indications. These reports may contain lots of different informa-
tion, such as the number of received or sent packets, the number of lost packets, an estimation
of the variance of the jitter, etc. The aim of these reports is to allow the other party to adapt the
session parameters based on the problem reported by the receiving entity. In the case of a
broadcast or multicast session, this may help the session source to check that each participant
is receiving the session in good condition.

RFC3550 does not impose any limitation on the RTCP traffic amount. However, it is
recommended that RTCP traffic does not exceed 5% of the total session bandwidth.

For illustration purposes, Figure 4.36 is an example of RTP and RTCP messages exchanged
between two terminals in the case of a unidirectional speech session from Alice to Bob. For
simplicity, the figure does not display SIP and SDP signalling being exchanged to set up and
terminate the session.

The RTP data frames contain encoded speech samples. From time to time, a Sender or
Receiver Report is transmitted between the two parties. At some time, Bob decides to leave
the session and a RTCP BYE message is sent to Alice.

An illustration of RTP and RTCP usage is provided in Chapter 6, through the Voice over IP
and PoC (Push-To-Talk over Cellular) service description.

Reference documents about RTP

RTP IETF documents:

. RFC3550, �RTP: A Transport Protocol for Real-Time Applications�

. RFC3551, �RTP Profile for Audio and Video Conferences with Minimal Control�

Figure 4.36 An example of a RTP session.
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4.4.5 A SIP/SDP IMS Example

As an illustration, Figure 4.37 describes an example of a SIP INVITE message initiated by a
terminal and received by a P-CSCF, in the case of a point-to-point video telephony session set
up between two subscribers. This message contains SIP parameters as well as a SDP part
corresponding to session media parameters.

The message is represented in its uncompressed plain-text form; its length is around 1400
bytes (the INVITE is the largest SIP message exchanged during a SIP session setup) including
the 28-byte overhead added by UDP/IP transport. Thanks to the SigComp compression
method, the overall message size is approximately divided by two.

The SIP header part contains elements which have been mentioned in above sections,
like:

INVITE tel:+1-212-555-2222 SIP/2.0 
Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7 
Max-Forwards: 70 
Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:scscf1.home1.net;lr> 
P-Preferred-Identity: "John Doe" <sip:user1_public1@home1.net> 
P-Access-Network-Info: 3GPP; cell-id-3gpp=234151D0FCE11 
Privacy: none 
From: <sip:user1_public1@home1.net>;tag=171828 
To: <tel:+1-212-555-2222> 
Call-ID: cb03a0s09a2sdfglkj490333  
Cseq: 127 INVITE 
Require: precondition, sec-agree 
Proxy-Require: sec-agree 
Supported: 100rel 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-c=98765432; spi-s=87654321;

port-c=8642; port-s=7531 
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp> 
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE 
Content-Type: application/sdp  
Content-Length: 545 

m=video 3400 RTP/AVP 98 99 
b=AS:75 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos none remote sendrecv 
a=rtpmap:98 H263 
a=fmtp:98 profile-level-id=0 
a=rtpmap:99 MP4V-ES 

m=audio 3456 RTP/AVP 97 96 
b=AS:25.4 
a=curr:qos local none 
a=curr:qos remote none 
a=des:qos mandatory local sendrecv 
a=des:qos none remote sendrecv 
a=rtpmap:97 AMR  
a=fmtp:97 mode-set=0,2,5,7; mode-change-period=2 
a=rtpmap:96 telephone-event 
a=maxptime:20 

v=0 
o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd 
s=- 
c=IN IP6 5555::aaa:bbb:ccc:ddd  
t=0 0 

SDP general parameters 

SDP video media parameters 

SDP audio media parameters 

SIP header 

Figure 4.37 An example of an IMS SIP/SDP INVITE message.

Evolved UMTS Architecture 227



. The To and From parameters which respectively identify the called and calling party.

. The comp¼ sigcomp field in the Via parameter, indicating the support of SIP signalling
compression by the terminal.

. The Route parameter, which contains the address of the P-CSCF through which the SIP
signalling shall be routed and the S-CSCF it is registered to.

. The P-headers which are IMS-specific extensions to SIP, carrying user identity and access
network information.

. The Content-Type parameter, indicating the SIP message contains a SDP session descrip-
tion part.

The SDP part of the message contains a general part, applicable to the session and all its
media flows. The �t¼ 0 0� parameter indicates that the session is permanent, starting
immediately, with no time limit. Then, the SDP part describes two bidirectional media flows
(the sendrecv attribute) – one for video and one for audio. Each SDP media part describes the
proposed information coding schemes and the application protocol for data transport (RTP).
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5

Life in EPS Networks

The objective of this chapter is to describe the different steps and mechanisms which are part
of terminal and network life. To be more pragmatic, all these mechanisms are described from
the viewpoint of the subscriber life, starting with the initial attachment at power-on to
communication session setup and mobility in different conditions. In each, the interactions
between the terminal and the network are described, as well as the related mechanisms which
take place in the EPS network.

For that purpose, this chapter is split into four different parts:

. Network attachment – which focuses on the mechanisms in place to allow user initial
registration.

. Communication sessions – which describes the different aspects of sessions, including
session setup, Quality of Service negotiation, security procedures, etc.

. Mobility in IDLE mode – covering all procedures which take place when the terminal is
inactive and moving through the network.

. Mobility in ACTIVE mode – which describes the most representative cases of user
mobility during an active communication session.

5.1 Network Attachment

Network attachment is a key process by which the terminal registers to the network, so as
to allow the subscriber to initiate or accept incoming communication sessions. Until this
step is successfully completed, the user has no access to the network, except in case of
emergency.

The network attachment is generally performed when the terminal is switched on, and relies
on many different mechanisms within the network and the terminal, which are further
described in this section.
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5.1.1 Broadcast of System Information

Broadcast of system information is an operation performed by the network. It is not specific to
E-UTRAN networks, as similar processes exist, e.g. for UMTS, GSM and North-American
CDMA systems, as well as IEEE Wireless Ethernet technologies. It is essential for terminals
to understand which kind of network is present in terms of available technology, operators,
and which channels and parameters shall be used to connect to the network in order to attempt
a registration procedure.

Lots of different information can be broadcasted by the network so as to ease terminal life.
However, the amount of broadcasted information shall not compromise the radio capacity.
This trade-off has always been a subject of concern in standard committees, looking for
solutions which allow the transmission of many parameters in the most efficient way.

Looking back to 2G/GSM, the broadcast channel was quite limited in terms of capacity (a
few hundreds of bits per second) with very limited flexibility for extensions and the
scheduling of information. In E-UTRAN networks, the system information broadcast
mechanism is quite different, and makes use of two different schemes based on the BCH
or DL-SCH transport channel.

The most critical information is broadcasted over the BCH transport channel, using fixed
scheduling and transport format. The information broadcasted on this channel is called MIB
(Master Information Block) and refreshes every 40ms. The MIB contains key parameters,
mainly related to the physical layer, such as:

. Downlink system bandwidth.

. Number of antennas.

. Reference signal transmit power.

In addition, less critical information is broadcasted on the DL-SCH transport channel,
offering more flexibility in terms of the amount of information being broadcasted and the
refresh period. The information broadcasted on this channel is structured in SU (Scheduling
Units), where an SU consists of one or more SIB (System Information Blocks). The first of
these SU is called SU-1; it is the most frequently broadcasted SU (every 80ms) and has a
specific purpose, as it describes the scheduling information (or periodicity) of all the other
SUs. In addition, SU-1 contains key information for network access, such as:

. Current cell identity.

. TA code – or code of the Tracking Area the cells belongs to (details and purpose of Tracking
Areas are described in the section about IDLE mode mobility).

. PLMN Identifier list – or the identities of the networks the cell belongs to (in some network-
sharing deployment schemes, the cell may allow access to subscribers from different
operators).

. Cell-barring status – which indicates if the terminal has permission to select this cell, e.g. for
initiating a session.

Other SU contain other System Information, such as common and shared physical channel
parameters, common radio measurement configurations, neighbouring cell list with
associated thresholds (this is used for the cell reselection criteria evaluation, as described
further in this chapter), etc.
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For illustration, Figure 5.1 describes the flow of messages related to the system information
broadcast mechanism.

The aim of the Scheduling Block message is to provide the terminal with scheduling
information (i.e. periodicity) of the Scheduling Units. Each Scheduling Unit is composed of
different System Information Block messages.

5.1.2 Cell Selection

�Cell selection� is the process by which the mobile terminal chooses a suitable cell that it will
camp on to perform initial registration.

In early cellular network deployment, cell selection used to be a fairly simple process,
limited to the search of a cell in one frequency band and one unique radio technology.With the
emergence of multi-layered networks combined with the availability of multi-mode terminals,
this process is becoming more complex.

Basically, the cell selection criterion takes into account four types of information:

. Network operator (or PLMN, for Public Land Mobile Network) – A terminal equipped
with a valid UICC card will naturally search for its home PLMN, or a cell which belongs to
the network the user has subscribed to. However, there might be some cases in which the
home operator is not available. When in a roaming situation, the terminal has to select
another operator (possibly using a list of preferred visited operators that the user may have
defined for service availability or charging cost reasons).

. Technology – the user (as well as the home operator) has the possibility to indicate and store
in the USIM module a list of preferred technologies.

. Radio criteria – the received signal quality from the selected cell shall be good enough to
allow user service. The parameters used in the cell quality-selection criteria (depending on
the access technology) are broadcasted on the BCCH System Information.

Figure 5.1 Contention-based random access procedure.
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. Cell status – this refers to the possible barring and reserved status of the cell defined by the
operator.

About Cell Status
In its network, the operator has the flexibility to change the cell status for each of its cells, so
as to allow or prevent the terminals to select and reselect some of the cells. This information is
broadcasted by the network on the BCCH and shall be taken into account by all terminals in
the cell-selection process.

In the normal case, for a cell being in service, the cell status is set to �not Barred� and �not
Reserved�. The �Barred� status means the terminal shall not select (or reselect) this cell, even for
emergencycases.The �Reservedforoperatoruse�statusmeansthat thecell is reservedforoperator
use.Onlyonespecificcategoryofsubscriber– theoperatorstaff,corresponding toAccessClasses
11 and 15 – may consider this cell for cell selection. Otherwise, all other categories of users,
including public subscribers and emergency services, shall behave as if the cell is barred.

Such flexibility can be used, for example, during the early phases of network extension.
Until the end of the network tuning phase, it is not desired that the terminal can select newly
deployed cells so as to initiate or receive a service.

5.1.3 The Initial Access

In order to register to the network (and also on the occasion of a call setup), the terminal needs
to go through the initial access procedure. This procedure makes use of the Random Access
process, for the mobile to be able to setup a RRC connection with the network.

However, prior to this, the terminal needs to determine whether or not it can actually access
the network through the cell it has selected – which is the purpose of Access Classes.

(i) About Access Classes
The concept of Access Class has been around since the beginning of 2G/GSM and is re-used in
3G/UMTS and EPS networks. The objective is to dynamically prevent or limit network access
under specific conditions, such as:

. Exceptional network load.

. Emergency conditions – in such cases, priority should be given to public utilities and
security services.

For this purpose, 16 Access Classes have been created, and each cell of the network
broadcasts on the BCCH the list of classes which are barred from network access. The 0 to 9
class range corresponds to the public classes. Each subscriber is randomly allocated one of
them, stored on the USIM card. In addition, some subscribers may also be allocated one of the
specific purpose classes being defined by the standard for high-priority users. These classes
allow a subscriber being a member of a specific corresponding category to initiate a call or
answer an incoming one in situations where all public classes have been barred:

. Class 11 – reserved for PLMN use.

. Class 12 – for security services.

. Class 13 – for public utilities (e.g. water/gas suppliers).
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. Class 14 – for emergency services.

. Class 15 – for PLMN staff.

Finally, class 10 has a specific purpose and corresponds to emergency calls. It allows the
network to indicate if emergency calls are allowed on a per-cell basis. If class 10 is allowed,
public class (from 0 to 9) terminals and even terminals without a valid USIM module can
initiate an emergency call.

When the network load increases, the operator can then selectively bar one or several public
classes from a given cell or group of cells. In the worst case, all public classes can be barred so
as to save network resources for emergency or security services.

The Access Class restriction is a mechanism which does not substitute the cell status
described in the previous section. The cell �Barring� or �Reserved� status only relates to the
cell-selection (or reselection) process, regardless of terminal on-going activity. In contrast, the
Access Class restriction is evaluated by the terminal at the occasion of access to the network and
has no impact on the cell-selection and reselection processes. As a consequence, the fact that all
public classes are barred in a given cell does not prevent a terminal from selecting such a cell.

Reference documents about terminal procedures in IDLE mode

3GPP technical specifications:

. 22.011, �Service Accessibility�

. 23.122, �Non-Access-Stratum (NAS) Functions Related to Mobile Station (MS) in Idle
Mode�

. 36.304, �User Equipment (UE) Procedures in Idle Mode�

(ii) About Random Access
Once the terminal has checked its Access Class is not restricted by the network, the Random
Access procedure is the mechanism by which the terminal is attempting to access to the
network while not having any other means to do so in the form of a dedicated communication
channel. This procedure is used in many cases, which fall in three main categories:

. Initial access from RRC-IDLE state: This happens on many occasions of inactive
terminals willing to set up a connection with the network. The most obvious user-related
reason for doing so would be a terminal answering to an incoming session request (or
paging) or a subscriber attempting to set up a session. In addition, Initial Access is also used
in relation to pure signalling events, such as the initial registration (or attachment)
performed when the terminal is powered on, or the Tracking Area Update procedures.

. During handover procedure:When the terminal arrives in the new target cell, it first needs
to perform a RandomAccess before being able to resume the service which was in use in the
old serving cell.

. At uplink or downlink packet arrival in RRC-CONNECTED mode: At some time, and
while being in RRC-CONNECTED mode, the terminal may lose synchronization with the
network or may not be allocated scheduled transmission resources in the uplink. This kind
of situation may occur during a period of data transfer inactivity, or following a long DRX
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cycle (as described in the section about data transmission). In such a case, a RandomAccess
procedure is required, so that the terminal is able to resume packet data transmission or
reception.

The terminals in those situations within a given cell will all compete between each other to
gain access to the network. This is the reason why the Random Access procedure is possibly
subject to collisions, failures and retries. In addition, the execution of the Random Access
procedure is quite often critical. Excessive time spent in this process may lead to – depending
on the situation – increased call setup time, degraded packet transfer delay performances and,
at worst, call drop.

The E-UTRAN standard defines two types of Random Access procedures:

. The contention-based procedure – which is applicable to all events described above.

. The noncontention-based procedure – which only applies to handover and downlink packet
arrival. This procedure is an optimized version of the �contention-based� procedure in the
case in which the eNodeB already knows the terminal identity.

(iii) The Contention-Based Random Access
Figure 5.2 describes the four steps of the contention-based Random Access procedure.

The �Random Access Preamble� is sent on the RACH transport channel and contains a 5-bit
random identity (which intends to identify uniquely the sending terminal on the RACH). The
preamble sequence to be used is randomly chosen by the terminal among the available list
broadcasted by the eNodeB on the BCH beacon channel.

The �Random Access Response� answered by the network contains the random identity
provided by the terminal in the preamble, a temporary C-RNTI and an initial uplink resource
grant, which the terminal uses to transmit the �Scheduled transmission� on the uplink shared
transport channel. The Random Access Response�s main purpose is to provide requesting
terminals with an early resource allocation, so as to minimize the time to set up the RRC
connection. This specific procedure was designed to comply with the very constraining
requirement about terminal state change.

Figure 5.2 The principle of �contention-based Random Access procedure�.
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The C-RNTI, allocated by the eNodeB, is a Radio Network Temporary Identifier at the cell
level. It is used to uniquely identify a terminal having an RRC connection in the Access
Network. The �Scheduled transmission� is sent using the simplest RLC TM (transparent)
mode, meaning that the message is not segmented. In the case of initial access from RRC-
IDLE state, the �Scheduled transmission� sent by the terminal is actually an RRC Connection
Request message. If the size of the early resource allocation permits, this initial message
possibly contains a first NAS message, such as a Service Request, an initial attachment
message or a Tracking Area update message.

The �Contention resolution�message is not linked to the �Scheduled transmission�. It aims at
providing the actual contention resolution and identifying a winning terminal in case multiple
terminals have requested access to the same resource at the same time. This message is sent
early in the initial access process, in order to minimize latency for terminals not being elected
which will try another attempt. Priority is, however, given to early allocation, so as to
minimize the overall connection time for successful terminals.

(iv) The Noncontention-based Random Access
As described above, the noncontention-based procedure (Figure 5.3) is intended to Random
Access in cases in which the eNodeB already has a reference for the requesting terminal. This
is the reason why this procedure is applicable to inter-eNodeB handover cases, as well as
downlink transmission resuming whilst the terminal is in RRC-CONNECTED mode.

At some time, the terminal is allocated a contention-free Random Access Preamble which
does not belong to the list of preamble sequences broadcast on the BCH. In the case of
handover, this information is provided by the target eNodeB (the one the terminal will access
to) through the old serving eNodeB, using the RRC handover message.

(v) The Establishment of the RRC Connection
Figure 5.4 is an example of the use of the Random Access procedure to set up a RRC
connection and send an initial NAS (Non Access Stratum) message to the EPC Core Network.
This sequence may occur at the occasion of a user registration (described in the next section)
or to initiate a data session setup.

In such a case, the terminal �scheduled transmission� is actually a RRC Connection Request
message which contains an initial NAS (Non Access Stratum) message intended to the MME.

Figure 5.3 Noncontention-based Random Access procedure.
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The RRC Connection Reconfiguration is a multi-purpose procedure which performs the
Random Access contention resolution, allows the eNodeB to establish, modify and release a
RRC connection with a terminal, and possibly allocate signalling Radio Bearer resources.

When a Radio Bearer is allocated, the RRCConnection Reconfigurationmessage contains a
Radio Bearer description so as to support the signalling messages further exchanged between
the terminal and the eNodeB or theMME, e.g. for the purpose of the authentication procedure.

5.1.4 Registration

User registration is a mandatory process so that the subscriber can receive service from the
network. The concept of being able to �receive service� not only refers to the possibility for the
subscriber to set up a voice or data session or any kind of multimedia session or service like
�Presence�; it also includes the possibility for the subscriber to be joined for a user-terminated
session. Until the registration is successfully passed, the subscriber will be unable to exchange
any kind of user data.

The only exception is emergency calls. Although being a useful feature, emergency calls are
not considered a real service (in operator terminology), subject to registration and charging.

In short, the registration process serves four main purposes:

. Mutual user-network authentication – so that the terminal can trust the network it is connected
to and also in order for the network to make sure it will get paid for the service used, etc.

. Allocation of temporary identity – the use of temporary identity allows maintaining the
confidentiality of the user�s private identity, also known as IMSI (International Mobile
Subscriber Identity).

. User location registration – this allows the network to know the user�s current location, and
be able to page the terminal in case of an incoming mobile-terminated session request.

. Establishment of a default bearer – this is new to EPS networks and allows always-on
connectivity for the end-user.

Random Access Preamble 

Random Access Response 

RRC Connection Request (service request) 

eNodeB 

RRC Connection Reconfiguration (signalling RB allocation)/contention resolution 

MME 

Initial UE message (service request) 

RRC Connection Reconfiguration complete 

Figure 5.4 RRC connection setup and initial NAS message transmission.
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Figure 5.5 describes the signalling and procedures exchanged during the registration process.
The registration process is always triggered by the terminal itself when it is switched on, or

if it loses completely the network coverage for some time and needs to register again.
Following the Random Access procedure (described in more detail in the �Session Setup�

section of this chapter), the terminal sends the Attach Request to the MME, which includes its
identity. This identity may be either the subscriber�s private identity (or IMSI) or a valid
temporary identity (S-TMSI for S-Temporary Mobile Subscriber Identity).

Because the IMSI uniquely addresses each subscriber, it is seen as critical information from
a security point of view and its transmission clearly has to be avoided as much as possible. By
spying on andmonitoring the IMSI, attackers could, for example, track a subscriber�s location,
movement and activity, determine user home country and operator. This is the reason why the

HSS MME 

IP 

Attach Request (user identity)

Update location (IMSI)

Insert subscriber data

Insert subscriber data Ack 

Update location Ack 

Create bearer request 

Create bearer response 

RB Establishment Request (Attach Accept)

RB Establishment Response (Attach Complete)

Attach Complete 

Attach Accept (possible new S-TMSI)

S1 

PDN GW Serving GWeNodeB Terminal 

S6 

SGi S5 

Authentication 
(the AKA procedure) 

Random Access 
procedure 

S11 

Figure 5.5 An example of subscriber registration.
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NAS procedures make use of the S-TMSI temporary identity as much as possible instead of
the IMSI. As described below, an S-TMSI is allocated by the network when the terminal has
none, and its value is frequently renewed by the network.

Once the user identity is retrieved, the AKA process (Authentication and Key Agreement)
is performed, so that network and terminal can mutually authenticate. More details on the
AKA procedure, and EPS security concepts in general, is provided further in this chapter.

Because this is thevery first attach performed at terminal power-on, theMMEneeds to update
the HSS, so that the HSS can register the current MME corresponding to the subscriber
(identified by its IMSI). In return, theHSSprovides theMMEwith user subscription information
(including Quality of Service limitations and access restriction), which will be further used by
the MME to control and limit packet data context requests initiated by the terminal.

As part of the attachment procedure, the MME attempts to create a default bearer, which
may be used by the terminal once the registration procedure is completed to initiate, for
example, an IMS registration. The possibility to group registration and initial bearer
establishment did not exist in GPRS or 3G/UMTS, as these two systems clearly separate
the two procedures. The advantage of this evolution is that less signalling and processing time
for both network and terminal is required.

Some definitions

. The default bearer is established when the terminal connects to the Packet Data
Network. It remains established though the whole lifetime of the connection and
provides the user with �Always-On� connectivity.

. Any additional bearer established for the support of a specific service is called a
Dedicated Bearer.

. The distinction between those two types of bearers in only meaningful for the Packet
Core (meaning it is transparent to E-UTRAN), as each type of bearer has its own
characteristics in terms of packet policing and Quality of Service.

The Serving and PDN GW which will support the packet bearer are chosen by the MME
(similarly to the 2G/GPRS and 3G/UMTS architecture in which the SGSN is in charge of the
determination of the GGSN). The default bearer is established using the Create Bearer GTP
procedure, which implies both Serving GW and PDN GW.

Eventually, radio resources are set up over the air interface using the Radio Bearer
Establishment procedure. To be more efficient, the request message sent by the eNodeB
contains the Attach Acceptmessage answered by the MME. This later may contain an S-TMSI
allocated to the terminal in case it does not already have one, or to renew an old S-TMSI.

As a result of the whole registration procedure, the terminal gets an IP address (allocated by
the PDN GW during the Create Bearer procedure and communicated to the terminal within
the Attach Accept message) and full connectivity to the external IP network or IMS domain.

(i) About PDN GW Selection
The choice of the PDN GW is an important process supported by the MME during the
subscriber registration process and is based on the concept of APN (Access Point Name)
which is also used in 2G/GPRS and 3G/UMTS architectures. The role of the APN is to identify
the gateway the subscriber will access to in order to get IP connectivity.
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For this purpose, the APN uniquely identifies a 2G/3GGGSN or a PDNGW, either from the
home operator, or from the visited network in the case of roaming.

From a network deployment perspective, the operator may use this concept in a very
simplified way by defining a single APN in its network, providing public IP connectivity to all
its subscribers. Another possibility would be to allow multiple APN corresponding to, for
example, an access to public Internet, access to IP operator-hosted services like streaming or
Web-based information services, or a secured Intranet access.

During the session setup, the selection of the actual PDN GW is under the responsibility of
the MME. This is a complex process which is able to address all the possible cases and to take
into account information – or requests – from the subscriber as well as subscription
information provided by the MME.

In addition, this process is backward-compatible with the APN selection process specified
in the 2G/GPRS and 3G/UMTS standard, so as to allow IP connectivity through the EPC to
subscribers under 2G and 3G radio access coverage.

(ii) About IMSI Structure
For information, Figure 5.6 describes the structure of the user IMSI private identity, which is
common to 2G/GSM, 3G/UMTS and EPS subscribers.

The IMSI length is 15 decimal digit maximum. It is composed of three fields:

. The MCC (Mobile Country Code) – which uniquely identifies the country of the mobile
subscriber�s home operator.

. The MNC (Mobile Network Code) – which identifies the home operator of the subscriber
within the country. Initially, this field was a two-digit field. It has been extended from the
GSM specifications, to allow more operators in large countries like North America.

. The MSIN (Mobile Subscriber Identification Number) – which identifies the subscriber
within the operator.

The concatenation of MCC and MNC codes forms the PLMN Identifier (Public Land
Mobile Network), which uniquely identifies a network. The PLMN identifier is broadcasted
on the BCCH, so as to inform the terminal about the operator the cells belongs to.

Reference documents about 3GPP network identities

3GPP technical specifications:

. 23.003, �Numbering, Addressing and identification�

MCC MNC MSIN

2/3 digits3 digits 

IMSI (not more than 15 digits) 

PLMN identifier 

Figure 5.6 The structure of the IMSI (International Mobile Subscriber Identity).
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5.1.5 De-registration

The de-registration procedure is the counterpart of registration, described in the previous
section. Once it is performed, the terminal has no more access to the network.

There are basically two kinds of de-registration procedures (or �detach� procedures, as in the
3GPP terminology):

. The explicit detach – in which either the network or the terminal initiates the de-registration
procedure. On the terminal side, this may be caused by the user switching its device off. On
the network side, the reason may be the operator who decides to remove a customer from its
network.

. The implicit detach – when terminal and network have lost communication for a certain
period of time, each side implicitly considering that the registration is no longer active. The
implicit detach is a necessary procedure to be avoided in the network to keep context and
resources for subscribers whose terminal has disappeared from the network because of lack
of coverage or any case in which the explicit detach could not be preformed.

Figure 5.7 describes an example of explicit detach initiated by the terminal.

HSS MME 

IP 

Detach Request 

Delete Bearer Request 

Delete Bearer Response 

Detach Accept 

PDN GW Serving GWeNodeB Terminal 

S6

SGiS5

Random Access 
procedure 

Radio Resource 
release 

S1 Release Command 

S1 Release Complete 

Purge UE 

Purge UE Ack 

S1 

S11 

Figure 5.7 An example of terminal-initiated de-registration.
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On receipt of the Detach Request, the MME initiates the bearer release procedure so as to
release context and resources for the user tunnels supported by the Serving and PDN GW. The
Detach Acceptmessage is only sent back to the terminal if the cause of de-registration is not a
terminal switch-off.

At the end, the release of radio-related resources and S1 resources is triggered by the S1
Release procedure initiated by the MME.

Once the resource release is done, the MME may keep the terminal-related context and
subscriber information, so as to be able to perform a later attach from the subscriber without
having to access the HSS. At some time, when the MME decides to delete the subscriber
context, the Purge procedure is used to inform the HSS that it has deleted subscription data
and that the corresponding subscriber is no longer attached to the network.

5.2 Communication Sessions

5.2.1 Terminal States

When presenting the evolved UMTS requirements, we briefly introduced the notion of
�terminal state�. In circuit applications, only two states are really useful (�connected� and
�disconnected�), reflecting the actual service state. However, when considering the various
ranges of packet applications, intermediate states may have some interest, e.g. in phases where
the session is set up but not active for a certain period of time. Such states would allow the
network (including the Access Network and also the Evolved Packet Core) to manage
resources in a more efficient way. This kind of flexibility cannot be provided by circuit-
switched applications, as �connected� implies guaranteed service capabilities in terms of bit
rate and transfer delay.

For that purpose, two terminal state machines have been introduced within the
standard, both maintained by the terminal and the network (Figure 5.8). The first machine
is located at the RRC layer and maintained in the network by the eNodeB; the other is
placed at the MM level and maintained in the network at the aGW level within the Packet
Core.

Figure 5.8 RRC and MM state machines.
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(i) The Evolved UMTS Terminal States
The MM and RRC levels of state management do not exclude each other. As in Figure 5.9, the
standard defines how they relate to each other and what the possible transitions are.

At the Packet Core level, three states are defined: LTE-DETACHED, LTE-ACTIVE and
LTE-IDLE.

LTE-DETACHED corresponds to a state in which the mobile has been powered-on but is
not registered to the network. It may be because it has not yet registered, or because the
registration has failed in case no suitable network is available.

LTE-IDLE is a state in which the terminal is registered to the network, but not actually
active. This corresponds to a low power consumption mode. In this state, the mobile location
is known to the Packet Core domain at the Tracking Area level. In case of service setup or re-
activation, the terminal is able to switch in LTE-ACTIVE mode within a very short period of
time. In this state, the terminal mobility is ruled by the cell reselection algorithms and is
therefore not controlled by the network. In LTE-IDLEmode, an EPS bearer may or may not be
present between the network and the terminal. This allows a terminal in IDLEmode to resume
a previously active data session without having to set up the EPS bearers again and renegotiate
the associated Quality of Service attributes.

LTE-ACTIVE is the only real active state in which the terminal is exchanging data and
signalling information with the network. This state is the only one where the terminal has a
RRC connection being set up. In all other states, the terminal is not even known by the Access
Network. In LTE-ACTIVE, the terminal location is also more accurate as the network knows
its current cell, and the terminal mobility is ruled by the handover algorithms controlled by the
network.

n principle, the terminal can de-register from any state. When in LTE-IDLE, de-registration
can be either explicit, e.g. following a user action such as terminal power-off, or implicit. The
aim of the implicit de-registration is to avoid maintaining context in the network for terminals
which can no longer be reached. This can typically happen if the battery is suddenly removed,
or if the mobile stays for a long period of time within a coverage hole. In such a case, the
terminal is implicitly de-registered by the network, as no periodic location update is
received.

LTE-ACTIVE

RRC-CONNECTED

LTE-DETACHEDLTE-IDLE 

RRC-IDLE 

Registration 

De-registration 

Inactivity 

Incoming or 
outgoing traffic 

Explicit or
automatic de-registration in absence of 

periodic location update 

Figure 5.9 Evolved UMTS Terminal states and transitions.
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The Access layer terminal state view is slightly simpler, as the RRC only supports two
states: RRC-IDLE (meaning that the terminal has no RRC connection being set up with any
eNodeB) and RRC-CONNECTED which corresponds to the LTE-ACTIVE state.

(ii) Comparison with 2G/GPRS and UMTS
The evolved UMTS MM state model is actually very close to what has been defined for 2G/
GPRS and UMTS Packet domain. The IDLE, READY and STANDBY 2G/GPRS Mobility
Management states are functionally equivalent to the LTE-DETACHED, ACTIVE and IDLE
states. As represented in Figure 5.10, the transitions between the 2G/GPRS states are also
similar to those defined for evolved UMTS.

The only difference is that 2G and 3G/UMTS systems are actually supporting two state
machines at the MM level – one for the PS (Packet) domain and the other for the CS (Circuit)
domain. In Evolved UMTS, there is only one state machine, as all services are supported on
one unique Packet Core network domain.

At the RRC level, the situation is a quite different. The UTRAN RRC layer introduced not
less than four states (represented in by the grey box in Figure 5.11), reflecting the multiplicity
of possible transport channels and combinations for data transmission over the radio interface.
The intention was to define protocol states for transmission on dedicated channels (like
CELL-DCH) and additional states to allow optimized resource management for connected
users when the terminal is allocated shared resources (as in CELL-FACH) or no radio resource
at all (as in CELL-PCH and URA-PCH). At the end, the standard looks quite flexible and gives
lots of options for resource management optimization. The price to pay is a rather complex
overall picture, not only to design, but also to operate.

From that perspective, E-UTRAN has been simplified, as all user data transmissions are
supported by a single type of shared transport channel (putting aside the Multicast and
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or cancel location
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GPRS detach
or cancel location
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STANDBY

READY timer expiry 
or force to STANDBY 
or abnormal RLC condition 

Figure 5.10 GPRS Mobility Management state machine (from 3GPP 23.060).
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Broadcast transmissions). Therefore, the RRC state machine of E-UTRAN is much simpler, as
it only proposes an idle and a connected state.

(iii) An Example of �Evolved UMTS� State Transition
Figure 5.12 is an example of an MM state transition sequence which may happen when the
mobile is powered-on or decides to register to the network once it finds a suitable cell.

Until it is successfully registered to the network, the terminal is in the LTE-DETACHED
state. Once registered, the terminal may activate an EPS bearer (or use the default one), e.g. for
IMS registration, or to update its �Presence� information (the �Presence� service is described in
Chapter 6) and stays in the LTE-ACTIVEmode until inactivity detection occurs. The transition
to LTE-IDLE has only the effect of releasing the RRC connection and the corresponding radio
resources. All EPS bearers which were set up between the terminal and theMME are preserved,
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Figure 5.11 The 3G/UMTS RRC state machine (from 3GPP 25.331).
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Figure 5.12 Example of MM state transition.
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meaning that the terminal can resume all previously active sessions without having to
renegotiate the session parameters and Quality of Service attributes.

When in the LTE-IDLE state, the user may start activity such as MMS transmission, which
triggers a transition to the LTE-ACTIVE state. Once the data transmission is over, the terminal
may move back to the LTE-IDLE state, based on inactivity detection criteria.

In any case, once the terminal is registered, it may be reached for in a user-terminated
session in any of the LTE-ACTIVE or LTE-IDLE states.

5.2.2 Quality of Service in Evolved UMTS

(i) Concept of EPS Bearer
The definition of Quality of Service parameters and algorithms cannot be performed
independently from the definition of information flows to which they will apply. For that
purpose, the notion of �EPS bearer� has been added to the standard.

The EPS bearer is an equivalent of the �PDP context� being used in 2G/GPRS and
3G/UMTS standards. It is a logical concept which applies between the terminal and the
PDN GW and aggregates one or several data flows transported between the two entities, as
illustrated by Figure 5.13. An EPS bearer is actually composed of the three following
elements:

. An S5 bearer – implemented by a tunnel which transports packets between the Serving and
PDN Gateways.

. An S1 bearer – implemented by a tunnel which transports packets between the Serving GW
and eNodeB.

. A Radio Bearer – implemented by a RLC connection between the eNodeB and the
terminal. There is one RLC protocol machine per Radio Bearer.

The elementary data flows being transported by the EPS bearer are known as Service Data
Flow (SDF). Each of them is characterized by the IP 5-tuple (source IP address, destination IP
address, source port number, destination port number, protocol ID of the protocol above IP),
which identifies both termination points (in the IP sense) as well as the application or service

Figure 5.13 An example of two EPS bearers, from terminal to PDN GW.
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being used. Practically speaking, a SDFmay correspond to a connection to aWeb or streaming
server, or to a mailbox server.

From an Evolved UMTS perspective, an EPS bearer corresponds to one Quality of Service
policy applied within the EPC and E-UTRAN. This means that all the SDF flows transported
by the EPS bearer will be applied to the same packet scheduling algorithm, using the same
priority, the same E-UTRAN RLC configuration, etc.

This notion is the EPS equivalent to the �UMTS Bearer Service� of 3G/UMTS networks.
In addition to those mechanisms, and as described in Chapter 2, the PDN GWmay enforce

policy decisions (through packet filters) at the SDF level within an EPS bearer, based on rules
provided by the PCRF (Policy and Charging Rules Function) node.

What is described in the rest of this section is:

. How the Quality of Service of an EPS bearer is characterized.

. How the EPS quality of service concept inter-works with 2G/3G 3GPP systems.

(ii) Quality of Service in EPS
An EPS bearer is characterized by the following parameters:

. Allocation Retention Priority (ARP) – this parameter refers to the priority used for the
allocation and retention mechanisms. ARP is typically used for the allocation of the bearer
resources at session setup or during handover mechanisms and also in the scope of resource
pre-emption, for example, to decide which bearers need to be preserved in the case of a
congestion situation. Once the bearer is established, the ARP has no impact on scheduling
or packet-handling mechanisms.

. Guaranteed Bit Rate (GBR) – only applicable to bearers which require guaranteed Quality
of Service for services such as voice or streaming.

. Maximum Bit Rate (MBR) – the MBR parameters help to set a limit on the data rate
expected for the related service. In case the observed bit rate exceeds this limit, the EPS
network can limit the effective rate by applying traffic-shaping functions.

. QoS Class Identifier (QCI) – which is used as a reference to a set of Access Network-
related Quality of Service (QoS) parameters, for the transmission between the terminal and
the eNodeB.

The purpose of the QCI, and associated parameters, is to provide a representation of QoS
parameters to be shared between Core and Access parts of the network.

Each QoS class is associated with the following parameters:

. Bearer Type – this parameter indicates whether or not resources associated with the bearer
need to be permanently allocated during the whole bearer lifetime, reflecting the difference
between GBR (Guaranteed Bit Rate) and non-GBR bearers.

. L2 Packet Delay Budget (L2PDB) – This parameter describes the maximum time that
packets shall spend transiting through RLC and MAC layers within the network and the
terminal. In principle, this attribute is used to derive waiting queues and MAC HARQ
operating parameters. For Guaranteed Bit Rate bearers, L2PDB indicates a maximum limit
for packet transmission time. For nonGuaranteed Bit Rate bearers, this parameter does not
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have the same strict meaning. It may be used, for example, as an input to the RLC/MAC
queue-management system, in order to discard packets which have spent too much time in
the waiting queue due to radio congestion.

. L2 Packet Loss Rate (L2PLR) – This parameter describes the maximum ratio of L2
packets which have not successfully delivered to the peer entity. As for the L2PDB, this
parameter is intended for RLC and MAC HARQ configuration.

In addition to the bearer level parameters, the terminal is associated with another Quality of
Service parameter: the Aggregate Maximum Bit Rate (AMBR). This parameter applies to
nonguaranteed bit rate bearers only. Its purpose is to limit the overall bit rate of all bearers
associated with this limit for a given Packet Data Network. This means that in case this limit is
exceeded, the network has the possibility to apply traffic-conditioning algorithms for both
uplink and downlink transmission, as for the MBR limit which is defined at the EPS bearer
level.

GSM/GPRS and UMTS Quality of Service representations contain lots of parameters and
do not limit the possible configuration which can possibly be defined. This results in a large
number of possible parameter configurations which may lead to very different network
implementation and behaviour on the field. The purpose of the QoS class is to limit this
number of possible configurations by explicitly defining in the standard a list of �label
characteristics� or predefined sets of parameters which can fit to the various services that can
be used.

Table 5.1 is an example of the possible QoS class definition for some GBR and non-GBR
bearer types. In each case, some RT (Real-Time) and NRT (nonReal-Time) example services
are given.

The Default Bearer (which is established when the terminal connects to the PDN network,
at registration) can only be a non-GBR bearer type.

At the session setup, as part of the EPS bearer establishment, the terminal indicates associated
requestedQuality of Service attributes. These attributes are checked by theMME, as regards the
user subscription rights provided by the HSS to the MME during the registration phase.

Eventually, an answer is provided to the terminal, possibly containing reduced values of the
attributes, if the terminal request exceeded the user subscription.

Table 5.1 An example of label characteristics.

QCI Bearer type L2PDB L2PLR Example services

1 GBR Low (<50ms) Low (<10�6) RT: Gaming
2 GBR Medium (<100ms) High (<10�3) RT: Voice, Video (live)
3 GBR High (<300ms) Low (<10�6) RT: Video (playback)
4 Non-GBR Low (<50ms) Low (<10�6) NRT: SIP/SDP (IMS signalling)
5 Non-GBR Medium (<100ms) High (<10�3) NRT: Web browsing

RT: Interactive gaming
6 Non-GBR High (<300ms) Low (<10�6) NRT: Bulk data transfer

RT: Video (playback)
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When the MME requires E-UTRAN to set up the Radio Bearer, the Quality of Service
attributes are translated by the eNodeB into radio resource allocation, scheduling priority,
etc.

(iii) Comparison and Inter-Working with 2G/GSM and 3G/UMTS Systems
Table 5.2 describes the equivalence between the Quality of Service attributes defined in
different versions of the standard:

. R97/98 PDP attributes refer to the Quality of Service attributes of PDP contexts for the 2G/
GPRS part of the 3GPP standard up to Releases 1997 and 1998.

. R99 PDP attributes refer to the Quality of Service attributes of PDP contexts for 3G/
UMTS as well as 2G/GPRS networks which implement Release 99 of the 3GPP
standard.

From this table, it is interesting to consider how 3GPP Quality of Service has evolved from
2G technologies to EPS. 2G/GPRS standardization was initiated in 1996, in a wireless market
which was mainly driven by circuit-switched applications. At that time, given the limitations
of 2G/GSM radio interface technology, cellular packet data services were mainly thought of in
terms of best-effort services with no guarantee of any kind in terms of transfer delay and bit
rate. Later on, when UMTS and R99 were defined, lots of parameters were added to the
Quality of Service representation. The intention was to allow all the possible flexibility for the
network in terms of resource-allocation mechanisms, scheduling algorithms, etc., given all the

Table 5.2 Equivalence for PDP context QoS attributes.

R97/98 PDP attributes R99 PDP attributes EPS bearer attributes
Traffic class

Delay class
Traffic handling priority

Bearer type

SDU error ratio

Residual bit error ratioReliability class

Delivery of erroneous SDU

L2PLR

Max bit rate for uplink
Peak throughput class

Max bit rate for downlink
MBR

Precedence class ARP ARP

Mean Throughput Not applicable Not applicable
Not applicable Max SDU size Not applicable
Reorder ing requiredb Delivery order Delivery orderb

Not applicablea Transfer delay L2PDB

Not applicablea Guaranteed bit rate GBR

Not applicable Not applicable AMBR
aaTransfer delay in R99 only applies to real-time traffic classes (i.e. Conversational and Streaming).
This is the reason why it has no R97/R98 equivalent, as GPRS is a best-effort service without
guaranteed Quality of Service.
cbIn 2G/GPRS (respectively EPS), this attribute is not part of user-requested attributes; it is only
present in SGSN and GGSN (respectively MME and User Plane Gateways).
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circuit and packet service types known at that time and envisaged for the future. This level of
flexibility was consistent with all the possible options allowed by the standard for the
definition of dedicated transport channels in UTRAN.

Eventually, in the all-IP EPS world, Quality of Service representation is much simpler,
based on fewer attributes and associated with predefined labels so as to limit the huge number
of possible combinations and maintain consistency between network implementations from
different manufacturers for a given type of service. The attribute set is actually limited to the
minimum for resource allocation on shared radio channels, which is the only transmission
scheme E-UTRAN allows. From this perspective, EPS looks more like a 2G/GPRS extension
than an evolution of 3G/UMTS.

5.2.3 Security Overview

In the scope of EPS communication session management, it is important to spend some time
on the security mechanisms put in place in the network and the terminal. In this chapter, two
areas of security are envisaged:

. User to network security – which protects the network-to-terminal exchanges over the radio
interface.

. Network domain security – which protects the interfaces between the EPS and IMS network
nodes.

This section provides a brief description of the two, and subsequent sections give some
more details about user-to-network security.

(i) User-to-Network Security
The overview of user security mechanisms in Evolved UMTS and IMS network parts is quite
complex due to the multiple and imbricate mechanisms being defined between the terminal
and network nodes. The overall simplified view is provided in Figure 5.14.

Figure 5.14 Overall and simplified security picture of user security architecture.
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At the EPS level, data exchange between the terminal and the eNodeB is protected by
ciphering and integrity mechanisms (this includes user data as well as RRC signalling).
The security keys used as inputs to those mechanisms are provided by the MME to the
eNodeB once the USIM (in the terminal) and the MME have been mutually authenticated.
In addition, the NAS signalling is ciphered and integrity-protected between the terminal
and the MME using separate keys. The latter did not exist in 3G/UMTS, which only
provided one level of security protection over the radio segment between the terminal and
the RNC.

Similarly, at the IMS level, the SIP signalling is protected by ciphering and integrity
mechanisms, based on keys provided by the S-SCSF once terminal USIM and S-CSCF have
been mutually authenticated.

The outcome of such a scheme is that some information sent over the radio interface benefit
from multiple and combined security mechanisms. This is what will happen to SIP signalling
exchanged between the terminal and the S-CSCF or an application server. When ciphering is
applied at the P-CSCF, a ciphered SIP message will also be ciphered by the eNodeB before
transmission over the radio interface.

In any case, the security protection and mechanisms performed at each level all derive from
information provided by the HSS, or, to be more precise, the AuC (Authentication Center) part
of the HSS.

EPS and IMS security mechanisms are then all based on user-specific secret information
shared by the network and the subscriber module (USIM or ISIM) and make use of symmetric
cryptographic algorithms. In short, �symmetric cryptography� means that security algorithms
(for example, ciphering and de-ciphering) are identical and using the same key, as opposed to
�asymmetric cryptography�, which makes use of public and private keys for ciphering and de-
ciphering.

It is interesting to note that, in contrast, most of the secured Web or IP-based services make
use of certificates, such as recent radio technologies like WiMAX. The main reason for this
situation was that EPS and IMS security was actually designed as an extension to 2G/GSM
security concepts and architecture. Using security procedures based on certificates would
have required deep architecture changes and the introduction PKI (for Public Key Infrastruc-
ture) for the creation and delivery of certificates.

The next two sections describe the user-security mechanisms in both EPS and IMS network
parts in more detail.

(ii) Network Domain Security
Network Domain Security for IP (or NDS/IP) refers to as the user data and signalling
exchange protection over the interfaces between network entities, either in the EPC (Packet
Core) or E-UTRAN (Access Network). NDS/IP does not apply to terminal network data and
signalling transmission, which is covered by �user to network security�.

From a NDS/IP perspective, the network resembles Figure 5.15.
The overall network is composed of a single or multiple security domains, each domain

being a subset of the network that is managed by a single administrative authority.
The SEG (Security Gateway) are located at the border of a security domain which

concentrates all the traffic which enters or leaves the security domain. The NE (Network
Entity) can be any kind of network nodes already presented and belonging to the E-UTRAN,
EPC and IMS domains, such as an eNodeB, a MME, a S-CSCF, etc.
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Zb applies between NE or between NE and SEG in a single domain and is under the sole
responsibility and control of the operator.

In contrast, the Za interface connects two SEG of different security domains and is subject
to roaming agreements between operators. As an example, E-UTRAN and EPC may be
managed by different operators and therefore belong to different security domains so that the
S1 interface will be mapped over a Za interface. Za may also be used between the EPC and
IMS domains.

The purpose of NDS/IP is to provide security protection for sensitive information
exchanged between network nodes. This includes user data, subscription information,
authentication vectors and network data such as MM contexts, policy and charging informa-
tion, as well as IMS-related information exchanged between CSCF nodes.

The NDS/IP framework provides three kinds of protection:

. Data origin authentication – to protect the receiving entity from packet injection from a
rogue entity.

. Data integrity – to protect transmitted data to be modified.

. Data confidentiality – to prevent eavesdropping.

As a trade-off between security requirements and processing requirements on the
hardware, not all the protections may be needed in all cases. For example, integrity and
confidentiality protection is important over the S1 between eNodeB and MME, because of
sensitive information exchanged over this interface such as user security keys and user
identities.

However, user data integrity protection is not seen as critical enough to justify this
mechanism to be implemented in all eNodeBs and MME equipment in the network. This
is the reason why the user plane is only encryption-protected against eavesdropping.

For information, the NDS/IP mechanisms applicable to the interfaces of EPS networks are
listed in Table 5.3.
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Figure 5.15 NDS architecture for IP-based networks (from 3GPP 33.210).
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From the NDS/IP point of view, network nodes are seen as pure IP nodes, regardless of their
actual role within the network. Therefore, and not surprisingly, NDS/IP in 3GPP networks
makes use of the classical security set of procedures and mechanisms defined by the IETF:

. The security between network elements is ensured through IPSec tunnels.

. The data authentication, integrity and confidentiality protection is provided by ESP
(Encapsulating Security Payload) in �tunnel mode�.

. The security keys are negotiated using the IKE (Internet Key Exchange) protocol.

(iii) About ESP
As described above, ESP is a complete security mechanism which provides three levels of
protection and proposes for each of them a wide set of security algorithms. Figure 5.16 shows
the effect of ESP protection in �tunnel mode� in the example of a data packet with a TCP and IP
header. In addition to TCP, ESP can actually accommodate any kind of transport layer,
including UDP. In the �tunnel mode�, the whole initial packet is fully protected and
encapsulated in a new IP header, as opposed to the ESP �transport mode� which does not
protect the initial IP header.

The ESP header only contains an index (which identifies the ESP Security Association) and
a packet sequence number. The ESP trailer�s purpose is to contain padding bits, depending on
the encryption algorithms (block cipher algorithms require fixed block size). The ESP
authentication data contain information to check the packet�s integrity. The format and
length depend on the chosen algorithm.

Table 5.3 Summary of network domain security protection.

Integrity/authentication Encryption

S1 User plane No Yes
X2 User plane No Yes
S1 Control plane Yes Yes
X2 Control plane Yes Yes
EPC interfaces Yes Optional

Data  TCP headerIP header 

Data  TCP headerIP header ESP header ESP trailer ESP Auth New IP head 

After applying ESP 

encrypted 

authenticated 

Initial TCP/IP packet 

Figure 5.16 The effect of ESP protection in tunnel mode.
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In the scope of 3GPP networks, the only mandatory algorithm for confidentiality is
the recent AES (Advanced Encryption Standard). However, older 3DES (triple-DES
for Data Encryption Standard) may also be used. The authentication and integrity protection
can be provided using algorithms like SHA-1 (mandatory for 3GPP networks) or MD5.

Reference documents about NDS/IP (Network Domain Security for IP)

SIP IETF documents:

. RFC2401, �Security Architecture for the Internet Protocol�

. RFC2406, �IP Encapsulating Security Payload (ESP)�

. RFC2409, �The Internet Key Exchange (IKE)�

3GPP technical specifications:
. 33.210, �3G Security; Network Domain Security: IP Network Layer Security�

5.2.4 User Security in EPS

(i) Some Principles about Security in EPS
EPS systems propose three kinds of security protections, actually very similar to what exists in
3G/UMTS networks:

. Ciphering – which is the basic feature most of the wireless communication systems provide.
Ciphering helps to ensure data confidentiality by providing protected information from
being overheard. In EPS, ciphering not only applies to user data, but also to signalling
messages. The latter is also important, as signalling messages convey in some cases user
identity or network sensitive information that an attacker may use to gain unauthorized
access to the network or breach network security protections.

. Integrity – this is the process by which the receiving entity is able to verify that signalling
data have not been modified in an unauthorized way since it was sent by the sending entity.
In EPS, integrity only applies to RRC and NAS signalling. The application-level signalling
(such as, for example, RTCP, SIP and SDP) is not integrity-protected, as it is considered part
of user data.

. Mutual authentication – which is used by the network to corroborate the subscriber�s
identity and, by the terminal, to make sure it is actually connected to an authorized serving
network.

As described further in this section, EPS security procedures are based on security
credentials and algorithms stored in the USIMmodule present in the terminal. EPS procedures
have been designed in such a way that 3G/UMTS USIM cards will be able to access to an EPS
network – ensuring backward compatibility to 3G/UMTS subscribers. This possibility is
enabled by LTE-specific key derivation algorithms which will help to build E-UTRAN keys
from 3G/UMTS CK (ciphering) and IK (integrity) keys – or the other way around.

However, 2G/GSM SIM access to EPS networks is not allowed because 2G security has
been considered to be not robust enough (GSM network security is based on 64-bit encryption
keys, whereas 3G/UMTS makes use of 128-bit encryption and integrity keys and 2G
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algorithms appear to be not so secured with time). In addition, and as explained below, the 2G/
GSMAKA process lacks some important features which are seen as critical security threats in
the scope of future E-UTRAN network deployments.

(ii) The AKA Procedure (Authentication and Key Agreement)
All the operations required for user security protections – i.e. security key derivation and
mutual authentication – are performed during the AKA process (Authentication and Key
Agreement). In short, the AKA process makes use of a challenge–response-based mechanism
based on symmetric – or secret key – cryptography.

As in 2G/GSM and 3G/UMTS, the security procedures in EPS are all based and derived
from a unique and permanent secret key, shared by both the subscriber module (or the USIM
card) and the network AuC (Authentication Center) part of the HSS.

TheAKAprocess used in EPS networks is the same as the one used in 3G/UMTS. TheUMTS
AKA was considered as secure enough for future EPS network deployment. This process is
described in Figure 5.17 and differs from the 2G/GSM one by three major points:

. GSM does not provide mutual authentication, meaning that the USIM is not able to verify
the identity and validity of the network entity it is connected to. This is prevented by the
addition of the AUTN authentication token in the AKA procedure.

. GSM does not offer signalling protection (aside from the GSM ciphering, which protects –
when activated – all data or signalling exchanged over the radio). This basically means the

Figure 5.17 The UMTS AKA process.
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signalling messages can be altered or simply replayed as such by rogue radio equipments.
This is what integrity protection aims to prevent.

. GSM does not support anti-replay mechanisms, which means that an authentication vector
(only composed of three elements in GSM) can be used more than once. The 3G
authentication vector makes use of a sequence number which prevents the network (or
rogue equipment) from re-using an eavesdropped authentication vector.

The UMTS AKA process is triggered by a connection or service request initiated by the
terminal, and represented in Figure 5.17 by the �First NAS message�, which may be, for
example, an Attach Request or a Service Request message. In most cases, the initial
connection request is performed at the occasion of the terminal registration at power-on.
The AKA process may, however, be performed on many occasions, such as a state change
from IDLE to ACTIVE. This initial connection message contains the user identity which is
used in the rest of the procedure.

Upon the user connection request, the SGSN (respectively, the MME) requests authenti-
cation information from the HSS over the Gr (respectively, S6) interface. The HSS answers
with a set of one to five authentication vectors (AV), also called �Quintets�, as each of them
contains the following five elements:

. RAND – the random challenge, which is one of the input parameters used to generate the
four other elements of the vector.

. XRES – the Expected Result used by the network for USIM authentication.

. AUTN – the Authentication Token used by the USIM for network authentication.

. CK – the Ciphering Key.

. IK – the Integrity Key.

Using one of the vectors in the list, the SGSN (or MME) will actually engage the AKA
procedure towards the USIM. This is done by sending to the terminal an authentication request
containing the RAN and AUTN parameters.

Using the RAND and its own stored value of the K secret, the USIM is able to authenticate
the network by verifying the value of the authentication token AUTN provided by the network.
Then, the USIM generates a RES value, which is further checked by the SGSN (or MME)
against the XRES expected result, so that the network can authenticate the USIM.

On the terminal side, the CK and IK security keys are computed in the same way as in the
HSS, using the same algorithms and secret input values. In order not to compromise security,
they are never exchanged over the radio interface.

(iii) The EAP-AKA Procedure
When the terminal attempts to access to the network using non-3GPP access (such as a WLAN
access point), the AKA process presented above cannot be used. As presented in Chapter 2, the
terminal in this case shall authenticate to the network through an AAA server (Authentication,
Authorization andAccounting) which does not implement the protocol supported by theMME.

For that reason, a specific AKA protocol has been defined, known as EAP-AKA
(Extensible Authentication Protocol). The EAP is an authentication and session key distribu-
tion framework defined by IETF which supports multiple authentication methods. The EAP
protocol itself is quite similar to the UMTS AKA from a functional perspective.
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EAP-AKA is a specific declination of the generic EAP, making use of security credentials
and key derivation methods specified by the 3GPP. EAP-AKA therefore allows a terminal
equipped with a USIM to authenticate with a 3GPP-AAA server using the IETF EAP protocol
and the same credential and algorithms used in an E-UTRAN or 3G/UMTS network.

For information, Figure 5.18 describes the different steps of the EAP-AKA procedure.
Followingarequest fromtheWLANaccesspoint, the terminalsendsits identity in theformofa

NAI (Network Address Identifier). This identifier, which follows the IETF generic
�username@realm� format, is built using the user IMSI, and the MCC and MNC parts of it.
Figure 5.19 is an example of such aNAI (for information, the leading digit is not part of the IMSI.

Figure 5.18 The EAP-AKA procedure.

999999999@wlan.mnc150.mcc234.3gppnetwork.org 1500 234

IMSI 

Figure 5.19 An example of NAI coding.
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�0� indicates theNAIcorresponds toEAP-AKAauthentication, and �1� refers toSIM-AKA,which
is another authentication process allowing WLAN access to 2G/GSM SIM-based credentials).

The MNC/MCC information is actually used by theWLAN to determine the relevant 3GPP
AAA server which corresponds to the user. On reception of the EAP Identity, the AAA server
retrieves a set of authentication vectors, similarly to the UMTS-AKA process, and selects one
of them.

Then, the 3GPPAAAServer sends theAKAChallengemessage to the terminal, containing the
usualRAND,AUTNandaMAC(MessageAuthenticationCode).As in theUMTSAKA,AUTN
will be used by theUSIMcard to authenticate the network. If successful, the terminal generates a
RES (allowing the network to authenticate the terminal) as well as the CK and IK keys.

When the terminal is successfully authenticated, the private session keys are transmitted
from the AAA Server to the WLAN so as to protect further transmission between the terminal
and WLAN Access Point.

There is actually no fundamental difference between the UMTS-AKA and EAP-AKA
presented above. EAP-AKA is slightly more consuming in terms of signalling due to the fact
that there is no equivalent to EAP Success in UMTS AKA, and also because the AAA server
may optionally check again user identity before the challenge/response procedure.

Reference documents about EAP-AKA

IETF documents:

. RFC3748, �Extensible Authentication Protocol (EAP)�

. RFC4187, �Extensible Authentication Protocol Method for 3rd Generation Authentica-
tion and Key Agreement (EAP-AKA)�

3GPP technical specification:
. 33.234, �Wireless Local Area Network (WLAN) Interworking Security�

(iv) The EPS Key Hierarchy
In order to apply the right security protection for the different information flows, a key
hierarchy has been introduced in the standard, described in Figure 5.20.

K is the secret key permanently stored on the USIM and in the Authentication Centre AuC. It
serves actually as the basis for all key-derivation algorithms in GSM, UMTS and EPS systems.

CK, IK is the pair of keys (respectively the Ciphering Key and the Integrity Key) derived in
the AuC and in the USIM when the Security Association is set up.

KASME is an intermediate key derived by the terminal and in HSS from CK, IK during the
AKA process. In the security specification document terminology, the ASME (Access
Security Management Entity) is the network entity in charge of establishing and maintaining
Security Associations with terminals based on keys received from the HSS. In EPS networks,
ASME role is handled by the MME.

KeNB is an intermediate key derived by terminal andMME from KASME. KeNB, whose value
is dependent on the eNodeB identity, is used in the eNodeB for the derivation of keys for RRC
traffic and the derivation of keys for UP traffic.

Eventually, the five keys are generated, for integrity and confidentiality protection of the
three different types of flows: NAS signalling (between terminal and MME), AS (RRC)
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signalling (between terminal and eNodeB) and User Plane data (between terminal and Serving
GW):

. KNASenc is derived by the terminal and theMME fromKASME. It is used for the protection of
NAS traffic with a particular encryption algorithm.

. KNASint is derived by the terminal and the MME from KASME. It is used for the protection of
NAS traffic with a particular integrity algorithm.

. KUPenc is derived by the terminal and the eNodeB from KeNB. It is used for the protection of
User plane traffic with a particular encryption algorithm.

. KRRCenc is derived by the terminal and the eNodeB from KeNB. It is used for the protection
of RRC signalling traffic with a particular encryption algorithm.

. KRRCint is derived by the terminal and the eNodeB from KeNB. It is used for the protection
of RRC signalling traffic with a particular integrity algorithm.

The function of each key is summarized in Figure 5.21 for the downlink flows, from
network to terminal. As the security algorithms in 3GPP are symmetrical, similar processes
are applied for uplink flows.

As described in Chapter 4, E-UTRAN integrity protection and ciphering are both applied by
the PDCP layer, located within the eNodeB.

In the 3G/UMTS standard, and in the case of handover from GSM to UMTS, the GSM 64-
bit Kc ciphering key is converted to 128-bit IK and CK keys, which is felt secure enough in the
context of 3G-UMTS networks.

However, in the case of handover from GSM to E-UTRAN, and as stated above, the GSM
security keying system is not considered as future-proof. For that reason, when a terminal
moves from GSM to E-UTRAN, the security context needs to be re-established and new keys
have to be determined by the E-UTRAN target system.

For the other direction (from E-UTRAN to 2G or 3G), the 2G/GSM or 3G/UMTS are
derived from EPS keys, allowing secure handover to those systems.

K

CK / IK 

KASME

KeNB

KUP enc KRRC enc KRRC int

KNAS enc KNAS int

Terminal / eNodeB 

Terminal / HSS

USIM / AuC

Terminal / MME

Figure 5.20 The key hierarchy in EPS.
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In 3G/UMTS, the Security Association (which corresponds to the CK and IK ciphering
and integrity keys) is identified by a KSI (Key Set Identifier). KSI is allocated by the
network during the authentication process and stored in the USIM. It is used by the
network to know which are the keys stored by the terminal and they can be re-used at
subsequent connection requests. This allows the start of ciphering on a new connection
without authentication.

EPS network security makes use of a similar mechanism. In the EPS case, KSI identifies
KASME from which all the session keys are derived.

(v) About E-UTRAN Ciphering and Integrity Algorithms
In the early versions of 3G/UMTS, only one set of Encryption and Integrity algorithms were
defined: UEA1 (for UMTS Encryption Algorithm 1) and UIA1 (for UMTS Integrity Algorithm
1), both derived from theKASUMI block cipher algorithmdeveloped in the scope of 3GPP. This
algorithm is defined in 3GPP Technical Specification 35.202, �Specification of the 3GPP
Confidentiality and Integrity Algorithms; Document 2: Kasumi Specification�.

From Release 7 of UMTS, a new set of algorithms has been introduced: UEA2 and UIA2,
both derived from the SNOW 3G stream cipher algorithm and defined in 3GPP Technical
Specification 35.216, �Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2; Document 2: SNOW 3G specification�. This specification does not provide
much detail about the algorithm itself, as SNOW 3G was actually specified by the SAGE
(Security Algorithms Group of Experts) ETSI committee.

The intention behind UEA2 and UIA2 introduction was to provide an alternative to the
KASUMI set, in case KASUMI should be broken.

Regarding E-UTRAN, it was decided to base confidentiality and integrity protection on the
UAE2/UIA2 set inherited from 3G/UMTS. As an alternative, it was also decided to specify the

From eNodeB 

KUPenc

KNASenc

KNASint

KRRCenc

KRRCint

From  
Serving GW 

NAS 
signalling

RRC signalling 
User plane 

data

Encryption 

Integrity 

Encryption 

Integrity 

Encryption 

From MME 

PDCP 

Figure 5.21 Correspondence between security keys and information flows in the network.
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use of AES (Advanced Encryption Standard) for encryption and an AES-based algorithm for
integrity protection.

AES is one of the most popular and worldwide used symmetric cryptography algorithms
providing block cipher encryption. It became an official standard in 2002.

5.2.5 User Security in IMS

The IMS domain applies two kinds of user security procedures:

. The IMS AKA (Authentication and Key Agreement) – which provides user and S-CSCF
mutual authentication.

. The IMS SA (Security Association) – which provides security protection for SIP signalling
between the terminal and the P-CSCF.

(i) The IMS AKA Procedure
The IMS AKA aims at providing mutual authentication between the ISIM (the IMS
application present on the terminal UICC card) and the IMS domain. In addition, IMS AKA
also provides the means to agree on session keys on the network and terminal side, so as to
build the IMS Security Association between the terminal and the P-CSCF and protect SIP
signalling with confidentiality and integrity. The IMS AKA is a mandatory process and shall
be performed before the subscriber can get any sort of IMS services.

As described in Figure 5.22, the IMS AKA is very similar to the UMTS AKA and is based
on the same algorithms to derive the keys, verify the AUTN and generate the XRES for mutual
authentication. The main difference is that IMS AKAmakes use of the SIP signalling (instead
of 3GPP-specific messages) and different input parameters like an IMS-specific long-term key
(the equivalent of K) combined with the user�s IMS private identity.

For simplicity, the figure does not represent P-CSCF and I-CSCF nodes, whose role
in the IMS AKA process is limited to SIP signalling routing and identification of the
S-CSCF.

As in the UMTSAKA, the authentication vectors are provided from the HSS to the S-CSCF,
following a request from the terminal to register to IMS.Once the S-CSCF has chosen one of the
authentication vectors, it sends a SIP 401 Unauthorized response which contains the RAND
random challenge, as well as the AUTN, which the ISIM will use to authenticate the network.

Once the terminal and network are mutually authenticated, the S-CSCF sends a SIP 200 OK
to the terminal through the P-CSCF. Those keys are removed from the answer and stored by
the P-CSCF, so as to further build the Security Association with the terminal.

(ii) The Security Association (SA) between the Terminal and the P-CSCF
The aim of the Security Association built between the terminal and the P-CSCF is to protect
the SIP signalling exchanged between these two entities. The Security Association provides
two levels of protection:

. SIP signalling Integrity protection – which is mandatory.

. SIP signalling Ciphering – which is optional.

As the terminal and the P-CSCF are two IP nodes, the Security Association is actually
an IPSec tunnel and makes use of ESP (Encapsulating Security Payload) in �transport
mode�.
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Figure 5.22 The IMS AKA process.

Reference documents about IMS and EPS Security

3GPP technical specifications:

. 33.102, �3G Security: Security Architecture�

. 33.203, �3G Security: Access Security for IP-Based Services�

5.2.6 Session Setup

This section describes the different phases involved in a communication-session setup. From
this point, it is assumed that the subscriber terminal is switched on and successfully registered
to a PDN network based on the procedures described above in this chapter.

Because of the Always-On intrinsic nature of EPS, session setup in an Evolved UMTS
network is fairly different from the traditional circuit-switched call setup. For that reason, the
two following types of procedures are described in this section:

. Service Request – this procedure is used by the terminal to request the network for a Radio
Bearer. This corresponds to an IDLE to ACTIVE terminal state transition because the user is
resuming a data session or activating a new service.
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. Dedicated Bearer activation – which corresponds to a service activation while the terminal
is in ACTIVE mode.

(i) Paging
Paging is the mechanism by which the network can inform a registered subscriber about an
incoming call (or mobile-terminated call). Before being able to page a terminal (or send
paging information on the PCCH logical channel), the network needs to know the actual
terminal location. In E-UTRAN and EPC networks, terminal location management is enabled
by the �Tracking Area Update�mechanism, further detailed hereafter in section 5.3, dedicated
to �Mobility in IDLE Mode�.

In any case, when the terminal receives a paging message, it sets up a connection in the
same way as in a mobile-originated call setup.

In order to avoid the terminals listening to the paging channel all the time, a DRXmode (for
discontinuous reception) is proposed, configured by the network and which is similar to the
one which exists in 2G/GSM and 3G/UMTS networks. When this mode is used, the terminal
only decodes the paging channel at some specific periods of time. On the network side, paging
indications are sent to terminals according to those periods, also called �paging groups�.

(ii) Service Request
Figure 5.23 describes the different steps of a user-initiated service request. This sequence of
messages occurs when, for example, the terminal user in IDLE mode is resuming a Web
session, initiating a voice call or activating any kind of service, including the whole set of IMS
services. This whole process actually results in a transition from the IDLE state to the
ACTIVE state.

The network-triggered Service Request looks exactly the same. The only difference is that
the Service Request is actually triggered by the reception by the terminal of a paging
containing its identity.

As part of the �Always-On� EPS philosophy, when the terminal changes to IDLE mode, all
the EPS bearers are �preserved� in the Core Network, with their Quality of Service
characteristics. This means that when the terminal becomes ACTIVE again, there is no need
to re-establish the bearers in the Serving or PDN network. Only the E-UTRAN part of the
bearer (also referred to as the �Radio Bearer�) needs to be set up again.

To initiate the service, the terminal sends a Service Request NAS message to the MME
using the Random Access procedure described above. On the S1 interface, for the transmis-
sion between the eNodeB and the MME, this message is encapsulated in the Initial UE
Message. The Service Requestmessage contains the user�s temporary identity (or S-TMSI) as
well as an indication about the requested service type (like �data� or �answer to a paging
message�).

When needed, the NAS authentication procedure takes place, based on the AKA procedure
presented above.

Once the AKA procedure is performed, the terminal and the MME are mutually authenti-
cated and share a common (and secret) session key system. The MME can therefore possibly
set up or change NAS signalling integrity and ciphering protection, using the NAS security
Mode Command message. The KSIASME parameter identifies the set of NAS keys to be used
for those algorithms.

Once the NAS security is effective, the MME performs the Initial Context Setup procedure,
which aims at creating the EPS bearer(s) and terminal context within the eNodeB. In addition,
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this procedure also aims at establishing the necessary resources on the Radio and S1 interface
bearers. On this occasion, the Initial Context Setup message contains NAS elements such as
the Quality of Service attributes associated to the EPS bearer(s) as well as integrity and
ciphering algorithms chosen by the MME and KeNB – the set of keys which will be used by the
eNodeB at the PDCP level for integrity and encryption. Access Network-level security is
started as part of the Radio Bearer (RB) establishment procedure.

At the end of the this procedure, all the bearers (including the default EPS bearer and
possibly other Dedicated Bearers) which were active between the network and the terminal
before the last transition to IDLE mode are available and usable again.

Eventually, theMME updates the user-related bearer for the Serving GW, which is then able
to transmit downlink data to the terminal. There is no signalling exchange between the Serving

HSS MME 

IP 
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Update Bearer Response 

RB Establishment Request 

RB Establishment Response 

Initial Context Setup Complete 

Initial Context Setup Request (EPS Bearer QoS, Selected security algorithms, K eNB)

PDN GW Serving GWeNodeB Terminal 

S6 

SGi S5 

Authentication (the AKA procedure) 

Initial UE message (Service Request)

Preamble 

Response 

Contention resolution 

RRC Connection Reconfiguration 

RRC Connection Reconfiguration Complete 

S1 

S11 

NAS Security Mode Command (Selected security algorithms, KSIASME)

NAS Security Mode Complete 

Figure 5.23 An example of a user-initiated Service Request.
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and PDN GW due to the fact that this segment of the EPS bearers was preserved in the EPC
while the terminal was IDLE.

When thewhole procedure is over, in order to copewith the user�s application requirements,
a new additional EPS bearer – or Dedicated Bearer – may be created with specific Quality of
Service characteristics.

(ii) Dedicated Bearer Activation
TheDedicatedBearer activationprocedure is usedwhen the terminal or the network is activating
a new application service while in ACTIVE mode. Therefore, to activate a new bearer in this
condition, there is no need to set up a RRC connection or perform the AKA process.

In Figure 5.24, it is assumed that application-level signalling is exchanged between the
terminal and its peer (which could be an application server or another terminal), possibly
based on SIP and SDP, as presented in Chapter 4.

At some point, the PDN GW – which plays the role of PCEF (Policy and Charging
Enforcement Function) – determines the Quality of Service (QoS) characteristics for the new
EPS bearer and initiates the creation of the bearer. This action can be triggered by the PCRF
(Policy and Charging Rules Function) node, not represented in the figure.

Further on, associated resources are created on the S1 and radio interface using, respec-
tively, the S1 Bearer Setup Request procedure and the RB Establishment Request RRC

MME 

IP 
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RB Establishment Response 

Bearer Setup Complete 

Bearer Setup Request (EPS Bearer QoS)
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Create Dedicated Bearer Request (EPS Bearer QoS)
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Figure 5.24 An example of Dedicated Bearer activation.

264 Evolved Packet System (EPS)



message. The QoS parameters – part of the SM layer (Session Management) – are transferred
from the MME to the terminal via those messages so as to limit the amount of signalling.

5.2.7 Data Transmission

(i) DRX in Connected Mode
Discontinuous reception (or DRX) is a key point for terminal battery saving. While being
active (or in the LTE-ACTIVE state), there may be some period of time during which the
terminal has no need to maintain radio reception and associated processing capability. This is
typically the case for some nonreal-time packet applications, like Web browsing, Instant
Messaging or Push-To-Talk. Existing WLAN technologies like WiMAX also support similar
mechanisms, known as �Power Save Mode�.

The �DRX in connected mode� is actually a kind of trade-off between the ACTIVE and
IDLE states. This mode is only applicable to terminals in the ACTIVE state and does not
introduce any additional complexity in the �terminal state� model already presented in this
chapter.When it was specified in the standard, the objective of the DRXmodewas to allow the
terminal to maintain its connection with the network while consuming the same amount of
power as in IDLE mode.

Power saving is not the only interest of the DRXmode. It is also good to know that in such a
mode, the terminal can resume its activity much quicker than in IDLEmode, as a consequence
of the fact that less signalling is needed accordingly. Another side effect is that the paging load
on the network is reduced, since the terminal position is known at the cell level in ACTIVE
mode.

However, the price to pay for the DRX mode is the need to maintain in the eNodeB a full
communication context (and associated memory resources) for each terminal being in such a
mode. If we assume that all terminals in a network are possibly using this mode, this can lead
to significant resource usage. Besides, for fast-moving mobiles, the DRX mode may not be
appropriate. Fast terminals involve frequent cell change and cell update procedures, which
spoil the benefit of DRX in terms of power saving and increases the amount of radio
signalling.

Figure 5.25 shows an example of the DRXmode in E-UTRAN, using periodic �DRX cycles�
composed of �On� periods of time, during which the terminal will decode the downlink
physical channel, and �Off� periods, during which the terminal receiver is turned off.

DRX cycle 

…

On Off

Figure 5.25 The DRX mode.
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The DRX mode is terminal-specific (meaning that each terminal has its own DRX mode-
handling and configuration) controlled by the MAC layer, based on parameters provided by
the eNodeB.

The length of the DRX cycle is flexible and can be as long as the DRX mode for IDLE
modes (related to the reception of the Paging channel).

5.3 Mobility in IDLE Mode

5.3.1 Cell Reselection Principles

As in 2G/GSM or 3G/UTRAN, the purpose of cell reselection is to ensure that the terminal in
IDLEmode (meaning not active and not engaged in an on-going service) is camped on the best
cell in terms of signal strength and quality. In wireless networks, cell reselection is a necessary
process, mainly because of terminal mobility, but also because of the fluctuation in the radio
environment, which implies variations in the signal strength and interference level, even for a
still or slow-moving terminal.

As a basic principle (still being used from 2G/GSM networks), the cell reselection criteria
are evaluated by each terminal, using radio measurements performed by the terminal itself
(like received beacon channel levels) and parameters (such as threshold values) provided by
the network and part of the System Information. For a multi-mode terminal in an environment
which provides multiple access types, the terminal needs to evaluate the reselection criteria
using measurements from the different available frequencies and access technologies.

The fact that the network controls the value of parameters used in the reselection criteria
allows the network to drive terminals in IDLE mode towards the most relevant network layer
when appropriate. Some examples are provided below:

. Network sharing – When the coverage of a country is shared between different operators
(which typically occurs in low-density areas), cell reselection proposes mechanisms to
direct the terminal to the appropriate network operator at a network-sharing border

. Network load condition – Depending on the load condition of certain layers or access
technologies of the network, cell reselection helps to give a better precedence to appropriate
cells.

. Private networks and home zones – Similarly, cell reselection may be used to give
precedence in the criteria evaluation to private/home cells.

5.3.2 Terminal Location Management

Location management is a critical function for cellular networks. When being active, the
mobile location is known at the cell level, as the network needs to quickly react to terminal cell
change, allocate new resources in the new cell and release old, unused resources in the
previously serving cell. In this case, the terminal mobility is driven by handover procedures,
described further in this chapter.

For all mobiles not being active (or being in �IDLE mode�), location management is still
an important item, as the network needs to know the current terminal location at any time in
case of mobile-terminated session setup or push services. However, IDLE mode procedures
do not require the network to know each terminal location with a high degree of accuracy
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(such as the cell level). For that reason, the concept of Tracking Area (TA) has been
introduced.

Basically, a TA is defined as a set of contiguous cells. The identity of the TA the cell belongs
to, or TAI (Tracking Area Identity), is part of the system information broadcast on the BCCH.
As in the 3GPP definition, Tracking Areas do not overlap each other. When the network needs
to join the terminal, a paging message is sent in all the cells which belong to the Tracking
Area.

The dimensioning of TA is a typical network-engineering issue, which results from a trade-
off between network signalling load and radio paging load:

. If TA are too small, terminal moves will result in a large number of TA update
procedures and high signalling load. This issue can be worked out by increasing the size
of the TA.

. On the other hand, if the TA are too large, all the cells within the TAwill have to cope with a
high traffic load on the Paging channel. Since the Packet Core does not know the idle
terminal location with more accuracy than the TA, one single mobile-terminated call will
generate a paging message in each cell of the TA in which the terminal is located.

In practice, Tracking Areas are dimensioned according to the estimation of IDLE mode
terminal density. In hot-spot, or low-speed, dense urban areas, TA are usually small so as to
limit the paging load. In contrast, in rural or low-speed, dense areas, TA size can be increased
without compromising the network signalling load.

There are actually three cases in which the current terminal TA is signalled to the Core
Network:

. At initial registration, the terminal communicates to the Core Network its current Tracking
Area.

. When the terminal changes zones, as a result of subscriber move within the network, the
new TA is updated in order to keep the Packet Core network updated.

. In addition, the current TA is periodically updated (or refreshed), even if it does not change,
so that the Packet Core network does not keep alive a context for a terminal which is no
longer reachable in the network. This can happen if the terminal fails to de-register or
suddenly runs out of coverage.

(i) Multi-TA Registration
As an enhancement to UMTS, and in order to allow further optimization of the signalling load
exchanged between the network and terminal in IDLE mode, the standards leave the
possibility for the terminal to be registered into multiple Tracking Areas. In this situation,
the terminal does not perform any TA update as long as it remains under the coverage of the
Tracking Areas it was registered to (like TA1, TA2 and TA3 in Figure 5.26), with the exception
of periodic TA update. The multi-TA registration mechanism helps to reduce the number of
TA updates that the networks has to process for terminals located at the edge of tracking areas.

The list of TA that the terminal is registered to is communicated by the network during the
TA update process. The terminal considers it is registered to the whole TA list until it enters a
TA which does not belong to the list, or gets an updated list from the network, e.g. on the
occasion of a periodic TA update.
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(ii) Comparison with 2G/GPRS and UMTS
The concept of location area, such as the Tracking Area, is not new to Evolved UMTS, as it
was introduced at the beginning of 2G/GSM systems. Later on, when 2G/GPRS and UMTS
were introduced in the standard, this principle became more complex. In UMTS, as presented
in Figure 5.27, no less than four types of areas are being used:

. LA (Location Area), which is the type of area supported by the Circuit Core network
domain MSC/VLR.

. RA (Routing Area), which is the equivalent of the LA for the Packet Core network domain.
RA is defined in such a way that a LA may include one or more RA.

. URA (UTRAN Registration Area), which is a registration area for the use of the UMTS
Access Network. URA was introduced to provide flexibility in UTRAN terminal location

Figure 5.27 Relationship between UMTS localization areas (from 3GPP 23.221).
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Figure 5.26 An example of multi-TA registration.
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management, in connection with the protocol states which were introduced in the UTRAN
RRC layer (see section on terminal states). As it is managed by the Access Network, URA
has no relation with the Core Network LA and RA.

. Cell, which provides the best accuracy localization information.

LA and RA are quite similar to the concept of TA, as being a nonoverlapping group of cells.
However, the URA concept has no equivalent in E-UTRAN. The possibility of defining
overlapping URA was introduced as a way to decrease the signalling load impact of �URA
update� procedure, similarly to the �Multi-TA Registration� concept presented above.
From the perspective of terminal location management, Evolved UMTS has been simpli-

fied, as there is only one type of Core Network Domain (the Evolved Packet Core) and no
registration area has been defined for the Access Network – like the 3G/UMTS URA. As
described further in this chapter, this will also have an impact on RRC state management
simplification.

5.3.3 Tracking Area Update

Figure 5.28 describes an example of a Tracking Area update (TAU). In this case, the terminal
changes both MME and Serving GW nodes. A similar procedure also applies when the
terminal is moving between EPS and the 2G or 3G network. In such a case, the terminal moves
between two different types of zones: a TA on the EPS side, and a RA (Routing Area) on the
2G or 3G side. However, the principles for such a procedure are not that different from the
intra-EPS Tracking Area Update described hereafter.

PDN GW 

IP network 

Old TA New TA 

HSS 

User context 
transfer

Update 
Location 

Old
MME 

Old
Serving GW 

New
MME 

New
Serving GW 

Figure 5.28 An example of a Tracking Area Update.
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In short, the following operations need to be performed during a TAU:

. Bearer path update – when a bearer is available, as a consequence of the Always-On IP
connectivity, the bearer path in the EPC (corresponding to the initial default bearer, or any
bearer the subscriber would have asked for) needs to be updated. This implies that the PDN
Gateway is updated with the reference of the Serving GW in charge of the new TA, and a
new bearer needs to be created between the terminal and new Serving GW.

. User context transfer from old to newMME – this allows the newMME to get the subscriber
context information from the old MME. This context includes information such as user
IMSI and subscription data.

. HSS database update – at the end, the HSS is updated with the terminal�s new serving MME
identity and IP address.

Figure 5.29 shows the messages exchanged between the network entities so as to achieve
the operations listed above. Not all Tracking Area Updates generate as much signalling. In the
case that the new and old TA are served by the same MME and Serving GW, the overall
procedure is much simpler and only limited to the TA update between the terminal and the
MME, without involvement of the PDN GW and the HSS.

At some time, following a cell reselection, the terminal detects that it has entered into a TA
which does not belong to the list of TA it is registered to. This triggers the initiation of a TA
Update Request message sent to the new MME which serves the current eNodeB. This
message contains two key parameters: the S-TMSI (which identifies the subscriber) and the
old TAI. This will help the new MME to identify the old serving MME.

The new MME can then retrieve the user information from the old MME, using the MME
Context Request procedure, which contains the S-TMSI and the old TAI. This context contains
the user�s IMSI, user�s subscription information as well as a set of authentication vectors. The
new MME can therefore run the AKA procedure in order to authenticate the terminal and
protect all subsequent signalling exchanges over the radio interface.

Once the TA update is accepted by the newMME, the bearer path needs to be updated. This
operation is under the control of the new MME (using the Create Bearer Request message)
and relayed by the new Serving GW to the PDN GW.

Following this phase, the HSS is updated with the new terminal location (Update Location
procedure) and the old MME is informed by the HSS that the subscriber has been successfully
located within anotherMME. This later triggers the old bearer release between the old Serving
GW and the PDN GW.

Eventually, the new MME informs the terminal about the successful outcome of the whole
procedure. The TA Update Accept message may contain a new S-TMSI allocated by the new
MME, which is acknowledged by the terminal using the TA Update Complete message.

5.4 Mobility in ACTIVE Mode

This section aims at presenting how EPS networks support mobility cases for active terminals
engaged in communication sessions. As opposed to IDLEmode, active terminal mobility (also
called handover) is completely under the control of the network. The decision tomove aswell as
the choice for the target cell and technology (when applicable) is made by the current serving
eNodeB, based on measurements performed by the eNodeB itself and the terminal. In addition,
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ACTIVEmodemobility requires some specific features to be supported and implemented by the
network so as to limit interaction on user experience and preserve the on-going service.

In this domain, the E-UTRAN handover cases follow (as much as possible) two main
principles inherited from 2G/GSM and 3G/UMTS systems:

. Make before break. In all the cases, the resources and context in the target nodes (whatever
the target technology is) are reserved before the actual handover (or change of radio
equipment which serves the terminal) is performed. This ensures that the interruption time
is kept to a minimum, since the time for resource reservation in the target nodes is not
predictable – if it does not fail . . .
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Figure 5.29 Inter-MME Tracking Area Update – message flow.
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. Packet data forwarding. Due to the nature of the E-UTRAN radio interface, the amount of
packets stored in radio equipment before scheduled transmission over the radio may not be
negligible. For that reason, some mobility cases make use – when applicable – of packet-
forwarding mechanisms between source and target nodes so as to limit packet loss during
the overall handover.

There may be many drivers for terminal mobility in ACTIVE mode. The most common one
is related to degrading radio conditions due to, for example, increasing interference or
terminal mobility. In such conditions, not doing the handover to a suitable cell in a timely
manner will most probably lead to a call drop. However, there may be some other reasons to
perform a handover, corresponding to less critical conditions, which may depend on operator
policy and network engineering constraints. For example, this may include:

. Traffic load balancing between network layers using different frequencies or radio access
technologies.

. Handover for service reasons, depending on the service being used or requested by the end-
user.

. Network sharing. When local agreements have been set up between operators, a roaming
subscriber may be handed over a cell from its home network when available.

The next sections provide some more details on a subset of mobility cases considered as
being the most representative, from the simplest to the most complex:

. Intra-E-UTRAN mobility with X2 support – the basic one.

. Intra-E-UTRAN mobility without X2 support – a refinement of the previous case, when
direct communication between the source and target eNodeB is not available.

. Intra E-UTRAN mobility with EPC node relocation – a more complex case involving
more support of Packet Core nodes.

. Mobility between 2G/3G packet and E-UTRAN – an example of inter-technology packet
handover.

. Voice Call Continuity between 2G/Circuit and E-UTRAN – this case combines a change
of service domain and technology so as to ensure legacy 2G/GSM circuit voice continuity.

For illustration purposes, the next sections present some message exchange flows. In
general, they all are composed of two parts:

. The preparation phase, which corresponds to the handover decision (made by the source
nodes) and the resource reservation (in terms of radio, terrestrial interfaces and possibly
memory context and processing capability) in the target nodes.

. The execution phase, which is the handover execution itself, including the synchronization
to the target radio nodes and resource release in the old serving nodes.

5.4.1 Intra-E-UTRAN Mobility with X2 Support

Figure 5.30 shows the general architecture of an intra E-UTRAN mobility case, which is the
simplest case of radio mobility in ACTIVE mode. In this example, the whole procedure
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benefits from the availability of the X2 interface between the source and target eNodeB, so
that the involvement of the MME and Serving GW in the handover process itself is at a
minimum. In addition, as described below, the X2 interface allows packet loss limitation
thanks to buffered packet forwarding from source to target eNodeB.

The only impact on EPC nodes relates to the update of the signalling and user plane
connectivity. As the terminal is moving from one node to the other, the new eNodeB needs to
build an S1 connection with the MME which is in charge of the user session, and also needs to
build a new tunnel for user data transmission with the Serving GW. Once the handover is
completed, the old resources and connections on the radio and S1 interface (represented using
dotted lines) are released. In any case, the handover is completely transparent to the PDNGW,
which keeps tunnelling user data to and from the same Serving GW.

Figure 5.31 describes in more detail the different steps and signalling messages which are
part of the handover procedure.

When in ACTIVE mode, the handover decision is made by the source eNodeB, based on
measurements reported by the terminal and also possibly made by the eNodeB itself.

Once the decision is made, the source eNodeB sends a Handover Requestmessage over the
X2 interface to the target eNodeB, which allocates all needed resources to accept the incoming
terminal and associated bearers. When done with the allocation phase, the target eNodeB
answers with a Handover Request Ack message which encapsulates the Handover Command
content eventually sent to the terminal by the source eNodeB. On reception of the Handover
Request Ack, the source eNodeB forwards all buffered downlink RLC SDUs that have not
been acknowledged by the terminal to the target eNodeB. Those packets will be stored by the
target eNodeB until the terminal is able to receive them.

Once the terminal is synchronized with the target eNodeB, it sends a Handover Confirm,
which triggers the transmission of the Path Switch procedure to the MME. The role of the Path
Switch Requestmessage is to inform the MME about the successful completion of an intra E-
UTRAN handover performed via the X2 interface and request a path switch of the user plane
data towards the new eNodeB. On reception of this message, the MME is now aware that the
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Figure 5.30 Overview of intra E-UTRAN mobility with X2 support.
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terminal has successfully changed eNodeB and can therefore update the Serving GWabout the
new data path (the Update Bearer exchange). Once the Handover Confirm is received, the
target eNodeB can transmit over the radio the buffered packets for the downlink.

Eventually, the Release Resource is sent by the target eNodeB over X2, which has the effect
of releasing old resources allocated in the Source eNodeB.

5.4.2 Intra-E-UTRAN Mobility without X2 Support

In some cases, it may happen that the X2 interface is not available between eNodeBs. This
may result from network equipment failure, or simply from the fact that the operator is not
willing to deploy X2 connectivity between eNodeB for cost reasons.

In such a case, the network architecture picture is the same as the previous case. However,
the overall handover process is much more complex, as there is no direct communication
between source and target eNodeB. As a consequence, the MME is no longer transparent to
the handover process, as it acts as a signalling relay between the two eNodeBs.
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Figure 5.31 Intra-E-UTRAN mobility with X2 support – message flow.
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The procedures and messages being exchanged between entities in this case of handover are
described in Figure 5.32. Although looking different, the main principles are actually very
similar to the previous case.

Instead of being sent directly to the target eNodeB, the request for handover is transmitted
from the source eNodeB via the MME, using the Handover Required and Handover Request
S1 messages. Similarly, once the resources have been allocated in the target eNodeB, the
answer is sent back to the source eNodeB using the Handover Request Ack and Handover
Command S1 messages. As in the �X2 support� case, this answer message contains informa-
tion related to the target cell radio resource.

Finally, once the handover is completed, the resources in the source eNodeB are released
under the MME control, once the MME receives the Handover Notifymessage informing that
the handover procedure is successful from the E-UTRAN perspective. In parallel, the Serving
GW is updated about the new data path towards the new eNodeB.
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Figure 5.32 Intra-E-UTRAN mobility without X2 support – message flow.
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The main difference from the �X2 support� previous case is that no data-forwarding is
performed between the source and target eNodeBs. As a consequence, all the RLC PDU being
buffered at the source eNodeB level will be lost. The impact on user perception will depend on
the application and the corresponding protocol stack being used.

For all nonreal-time applications (like Web browsing) which rely on secured end-to-end
transport layers like TCP, such a handover may induce a delay in end-to-end information
transmission, but no actual loss of data due to data-recovery mechanisms implemented at the
OSI layer 4 transport level.

However, for real-time applications based on unsecured transport layers like UDP (for
example, streaming or voice), the handover will result in a loss of data frames, with a possible
impact on user quality of experience.

5.4.3 Intra-E-UTRAN Mobility with EPC Node Relocation

In this mobility case, the target eNodeB has no connectivity with the current MME and
Serving GW. For that reason, the terminal mobility will also imply a relocation of Evolved
Packet Core nodes (Figures 5.33 and 5.34). From the terminal and eNodeB perspective, this
handover is not different from the previous �no X2 support� case. The only real difference
relies on the fact that the session needs also to be handed over from one MME to the other. In
practice, this is performed by transferring the user communication context from the source
MME to the target MME using the S10 interface. In addition, the PDN GW needs also to be
updated, so as to maintain User plane connectivity.

If there is X2 connectivity between the source and the target eNodeB, packet forwarding
can be applied so as to limit packet loss during the handover.

Depending on the network engineering choice, there might be other simpler cases of
mobility with EPC node relocation. As Serving GW and MME are separate nodes, it may
happen that a user mobility case implies a change of MME with no change of Serving GW.
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Figure 5.33 Overview of intra-E-UTRAN mobility with EPC relocation.
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Similarly, the source and target eNodeBs may be connected to the same MME, but different
Serving GW.

Although looking more complex than the previous example (Intra E-UTRAN mobility
without X2 support), this mobility case uses the same principles. The main difference is in the
fact that the source and target MME are different nodes, which requires the transfer of the user
context (containing the user IMSI, user subscription information, authentication vectors as
well as on-going allocated EPS bearers) between the twoMME using the Forward Relocation
Response/Request exchange. In addition, a new User plane bearer is created between the PDN
GW (which is the User plane anchor point for the session) and the new Serving GW.

During the execution phase, once the handover is complete from the Access Network
perspective, the new MME informs the old one about the successful outcome using the
Forward Relocation Complete, so that the old radio resources and bearer path can be released.
In addition, the bearer path is updated using the Update Bearer procedure, so that the PDNGW
can transmit the downlink packet to the relevant new Serving GW.

Figure 5.34 Intra-E-UTRAN mobility with EPC relocation – message flow.
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At the end (not represented in the diagram), if the terminal determines that the new cell
belongs to a Tracking Area it is not registered to, a TAUpdate procedure is performed towards
the new MME. As a consequence, the HSS is updated accordingly.

5.4.4 Mobility between 2G/3G Packet and E-UTRAN

As a basic feature, EPS networks are able to support seamless mobility to and from 2G and 3G
packet systems. Figure 5.35 describes an example of such a mobility case, for a terminal
moving from a E-UTRAN access towards a 3G/UTRAN target cell.

For simplicity, the target 3G RNC and BTS nodes are represented as one box, connected to
the target SGSN towards the standard UMTS Iu interface. In the case of mobility towards a
2G/GPRS system, the picture would actually be quite similar, as the SGSN node exists in both
2G and 3G packet core architecture.

As represented in the figure, the Serving GWacts as a sort of User plane anchor point. The
control plane for NAS signalling (for session setup and control) is moved over the S3 interface
from the serving MME to the target SGSN, which is the standard point for terminating this
protocol in 2G and 3G packet architecture. Regarding the User plane, a new tunnel is built
between the Serving GW and the target SGSN over the S4 interface so as to ensure packet
transmission continuity.

Since the Serving GW still remains in the data path, the PDN GW is not involved in the
mobility procedure. There is, however, one little exception to that. Due to the change in radio
access technology, the Serving GW may inform the PDN GWabout the handover, mainly for

Figure 5.35 Overview of E-UTRAN to 2G/3G mobility.

278 Evolved Packet System (EPS)



charging purpose. This gives flexibility to the charging system to apply different rate and
billing procedures, depending on the access system technology and associated specific
Quality of Service representation.

Once the handover is completed, the old resources and connections on the radio as well as
S1 user and signalling interface (represented using dotted lines) are released.

Figure 5.36 describes the messages and procedures involved in such an E-UTRAN to 2G or
3G mobility. Handover in the other direction is not further described, as it actually makes use
of very similar principles and procedures.

When the handover decision is made, the session context (including session-related EPS
bearers and associated Quality of Service attributes) is moved from the source MME to the
target SGSN using the Forward Relocation procedure, as in the �Intra E-UTRAN mobility
with EPC nodes relocation� mobility case. This procedure is actually an extension of the
existing Forward Relocation procedure which applies in the case of inter-SGSN mobility
within 2G or 3G networks.
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On this occasion, the MME translates the EPS Quality of Service attributes (presented
above in this chapter) into their 2G or 3G equivalent, in the form of PDP context attributes.

E-UTRAN to 2G/3G mobility may support data forwarding, from the eNodeB to the target
SGSN, so as to avoid that all packets still stored at the eNodeB may eventually be sent to the
terminal. Data forwarding is always requested by the eNodeB (and reflected by the content of
the Handover Requiredmessage). The 3GPP standard proposes two types of data forwarding:

. Direct forwarding – in which buffered data are sent directly from the eNodeB to the target
SGSN. All necessary information (such as IP address and Tunnel identifier) is part of the
Forward Relocation Response message.

. Indirect forwarding – in which buffered data are transmitted to the target SGSN via a
Serving GW.

The handover execution phase is then triggered by a Handover Command message. When
applicable, this message contains all information for the eNodeB to be able to forward
buffered data, either in direct or indirect mode.

Once the terminal is synchronized on the target BTS and the handover considered as
completed from the Access Network point of view, a Forward Relocation Complete is sent
from the SGSN to the MME. This signal is used as an indication that resources in the old
serving E-UTRAN andMME nodes are no longer useful and can be released. Simultaneously,
the target SGSN updates the bearer path towards the Serving GW using the Update Bearer
procedure.
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6

The Services

The aim of this chapter is to describe some of the typical services which can be run on top of
Evolved UMTS networks. Most of these services are not specific to EPS networks. Therefore,
this chapter focuses on how the services would be supported over EPS, in trying to emphasis
what are the added value and specific aspects of service deployment over such packet-based
new networks.

In this chapter, the following services are described:

. Push-to-talk Over Cellular (PoC) – which can be seen either as an enhancement of text-
based Instant Messaging or an alternative to the traditional voice service.

. Presence – which is sometimes considered as a companion service to PoC or Instant
Messaging.

. Multimedia broadcast and multicast.

. Multimedia telephony – which includes Voice over IP as well as video telephony.

6.1 The Role of OMA

The availability of attractive end-user services is one of the main conditions for the success of
a communication technology. However, being attractive is not the only condition for mass-
market adoption and success. It is also critical that services are designed with a specific focus
on inter-operability, not only between devices and service platforms, but also when moving
across access technologies, network operators and country borders.

This becomes obvious when considering that several hundreds of handset device models
have been made available worldwide for 3G technologies (either cdma2000 or UMTS), with a
commercial life which does not exceed 12–18 months.

In the area of service inter-operability, the Open Mobile Alliance (OMA) plays a central
role. The OMA is responsible for the delivery of a set of open technical specifications for
application and service frameworks. The OMA is a global organization, which includes a
large list of members, mainly product and service manufacturers; most of them are also
represented in standard organizations such as the 3GPP or 3GPP2.
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The OMA activity is oriented towards the main existing or upcoming service definition and
evolution. Here is an extract of the list of those applications:

. Multimedia Messaging Service (MMS). MMS provides the possibility to exchange rich
content (audio, video, text) between subscribers.

. Digital Rights Management: the OMA has defined a framework to enable secured
packaging and content distribution to subscribers.

. Push-to-talk Over Cellular (PoC), which is basically a walkie-talkie type of communication
service.

. Presence Service, which allows a subscriber to make its Presence information available to
other service users.

. WAP, which was formerly handled by the WAP Forum. The WAP Forum has actually been
consolidated into the OMA and no longer exists as an independent organization.

. Mobile Location Service.

. Instant Messaging.

In the next chapters, some of these services are described more in detail.

6.2 Push-to-talk Over Cellular

Push-to-talk Over Cellular (PoC) is very similar to the well known walkie-talkie communi-
cation service. It provides a one-to-one or one-to-many speech service to a group of people in
half-duplex mode, which means that only one participant can talk at a given time, while the
others are listening. Like traditional walkie-talkie services, a session participant requests
the floor by pressing a �talk button� on its terminal. As the participant stops talking, he releases
the talk button, allowing another participant to request the speech channel.

However, there are some basic differences with analogue or digital low-cost solutions
which everyone can buy and easily deploy, due to the fact that PoC is not only supported by the
terminal, but also relies on a full network infrastructure. The added value of PoC can be
summarized by the two following points:

. PoC provision is not limited to a geographical area. The fact that PoC is supported on top of
IMS architecture makes it available to every network subscriber attached to the network,
regardless of its current location within the network coverage and access technology.

. In a PoC session, access to the speech channel is under the control of a PoC server and is not
fully left on human being behaviour policy. This offers many possibilities to define evolved
algorithms for speech access contention resolution. For example, a PoC server may queue
and serve requests based on user priority, enforce specific service policy (such as imposing a
maximum speech burst duration), or allow pre-empting the current talker in case of
emergency speech access.

PoC is much more efficient than conventional speech services in terms of resource usage.
The service is, however, not quite the same. Because PoC mandates each user to request the
floor before talking, there is not the same level of interactivity between users and the quality of
experience may also not be as good as conventional speech services. Because PoC is actually
not a real-time conversational service, it is more tolerant to jitter, packet loss and overall
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packet transmission delay. As described later in this chapter, this is obviously not the case for
multimedia conversational services.

As an example, Figure 6.1 compares two types of voice sessions. In the case of a legacy
voice session, there is almost no silent period of time. In order to guarantee the Quality of
Service, resources are reserved for the whole duration of the call and only released when the
call is torn down. In the case of a PoC session, there might be some silent periods during which
resources may be released by the network. PoC offers the possibility to the network to reserve
resources �on demand�, each time the floor is requested, and release them if nobody is talking
anymore.

Because it is quite an efficient service in terms of consumed radio and network resources,
this service is very popular for professional services and is provided on top of most PMR
(Private Mobile Radio) systems. This service is also becoming popular on public networks, as
an evolution or voice declination of the text Instant Messaging service.

It is worth noting that PoC is independent of the access technology, provided the
available bandwidth and latency figures are good enough. For example, PoC could be
provided over EDGE/GPRS 2G systems. However, user experience will definitely benefit
from very low E-UTRAN latency and the ability to wake up from standby states. The
high-level requirements and capability of E-UTRAN will enable optimized strategies
for network manufacturers to deliver efficient resource-management schemes for PoC
services.

To be efficient, PoC depends on two companion services, also defined by OMA:

. The Group Management service.As PoC provides a one-to-many communication mode,
the Group Management service is an easy way to predefine groups so that PoC sessions can
be initiated very easily.

. The Presence service.This service will indicate to any PoC user if other people from the
group it is part of can be reached or are still part of the PoC session.

As described below, PoC makes use of the existing IETF protocol suite. The PoC sessions
are managed using SIP protocol, and session signalling and bearer transport are performed
through RTP/RTCP. On top of RTCP, PoC has defined its own extension – known as TBCP
(Talk Burst Control Protocol) – for the purpose of speech channel management. This part is
further described in this section.

Traditional circuit 
voice session 

PoC session 

Radio resource usage 

Radio resource usage 

2 minutes 

Figure 6.1 Comparison between traditional voice and PoC resource usage.
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And, finally, this section gives some figures about the signalling and application bandwidth
that a typical PoC session would require.

6.2.1 Service Architecture

Figure 6.2 describes the PoC service architecture and shows the signalling and bearer path
between PoC entities. The key part of the PoC service is based on a PoC server. However, for
each session, there may be two types of PoC servers: one unique Controlling server, and
possibly one or many Participating PoC functions. The PoC controlling server is mainly in
charge of managing the SIP session with each of the PoC session participant and managing the
access to the floor. In addition, the Participating function may provide local charging
information or may support local policy enforcement (such as access control or session
barring) in case the PoC session spans over more than one area or network.

In terms of data transmission, the PoC service does not work in multicast or broadcast
mode. Speech packets received by the server from the participant having access to the speech
channel are forwarded to all other participants in unicast mode, even if several participants to
the same session are localized in the same radio cell or group of cells.

More details about PoC interfaces and associated functions are provided in Figure 6.3.
When engaged in a session, each subscriber is linked to the server through the POC-3
interface, which supports both speech frame and PoC-related signalling – also known as Talk
Burst Control protocol – for session joining, leaving and floor management. As described
later in this section, POC-3 is based on RTP for speech transport and RTCP for signalling
exchange.

POC-1 and POC-2 interfaces support the SIP signalling to set up and tear down the PoC
session. From an IMS and PS Core domain perspective, a PoC session is seen as a classical
IMS packet session, set up using SIP signalling through the S-CSCF that the subscriber is
currently registered to. In order to support session data and signalling (including SIP and PoC
signalling) transport, a PDP context (or an EPS bearer) over the Core and Access network is
established, from the terminal to the GGSN or PDN GW in the case of an EPC Core network.

Figure 6.2 Relationship between PoC entities.
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About XDMS Servers
The PoC server is in relation to two additional servers:

. The PoC XDMS (XML Document Management Server), which maintains information
about the PoC groups.

. The Shared XDMS, which is a multipurpose XDMS server. In the scope of the PoC service,
this server provides Presence information about the members of a PoC group. More details
are provided about the �Presence� service in the next section.

In the OMA architecture, the role of XDMS servers is to manage user-specific service-
related information in the form of XML (eXtensible Markup Language) documents.
�Managing documents� is a global concept which includes document creation, modification,
retrieval and deletion. XDMS is not specific to PoC or Presence services, as it is a general
framework which is able to handle information associated to other kinds of existing future
services.

In a given network, there might be different types of XDMS servers, depending on the type
of information to manage. However, they all rely on the same concepts:

. The use of XML as a common standard or format to manipulate information. Briefly, XML
is a kind of language or set of rules to structure data. From a visual perspective, XML looks
very similar to HTML, making use of tags, attributes and the well known �<� and �>�
separators.

Figure 6.3 PoC service architecture.
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. XDMS proposes a client–server model. The application protocol used to support requests
and answers is HTTP (Hypertext Transfer Protocol), as for Web servers.

Figure 6.4 is an example coming from OMA specifications of XML-structured data
managed by the �PoC XDMS� server. This server is in charge of managing PoC-specific
information, including PoC Groups and PoC User Acess Policy.

The URI �sip:myconference@example.com� represents the PoC group identity. The <list>
element contains the PoC group members. In this example, there are only two members; one is
represented using a legacy telephone number, and the other is addressed through its SIP URI. As
specified by the<max-participant-count>, this group cannot acceptmore than 10 participants.

In addition to group attributes, the XML PoC group syntax allows defining a set of rules for
each group. In this example:

. <join-handling>set to �true� means that the request initiated by clients to join a PoC
session will be accepted by the PoC server.

. <allow-anonymity>set to �true� means that the PoC Server accepts anonymous access to
the PoC session.

As mentioned above, POC-5 and POC-8 make use of HTTP protocol to exchange
information between the PoC server (which plays the role of a XDMS client) and the two

<?xml version="1.0" encoding="UTF-8"?> 

<group xmlns="urn:oma:params:xml:ns:list-service" 
xmlns:rl="urn:ietf:params:xml:ns:resource-lists" 

xmlns:cr="urn:ietf:params:xml:ns:common-policy" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

    <list-service uri="sip:myconference@example.com"> 
        <display-name xml:lang="en-us">Friends</display-name> 

        <list> 
            <entry uri="tel:+43012345678"/> 

            <entry uri="sip:hermione.blossom@example.com"/> 

        </list> 
        <max-participant-count>10</max-participant-count> 

        <cr:ruleset> 
            <cr:rule id="a7c"> 

                <cr:conditions> 

                    <is-list-member/> 
                </cr:conditions> 

                <cr:actions> 

                    <join-handling>true</join-handling> 
                    <allow-anonymity>true</allow-anonymity> 

                </cr:actions> 
            </cr:rule>

        </cr:ruleset> 

    </list-service> 

</group>

Figure 6.4 An example of PoC description using XML.
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XDMS servers it is connected to. HTTP is the well known application-level protocol
defined by IETF for information transfer, as the basis of many Web-based services.

Any XDMS client willing to retrieve information from the server will make use of the GET
method defined in HTTP, as for Web-page retrieval. Similarly, any client willing to create a
group will use the PUT method.

6.2.2 PoC Protocol Suite

(i) Overview
Figure 6.5 represents the stack of protocols being used for PoC sessions between each client
and the PoC server. This protocol stack is in charge of ensuring three main functions:

. PoC session establishment and termination.As for all IMS applications, this is ensured
by SIP and SDP layers. SDP (Session Description Protocol) is used to describe all the
media flows and speech codec intended for the PoC session. As for VoIP, a 3GPP PoC
session can possibly make use of any of the speech codecs being defined by the 3GPP
documents.

. Audio frame transmission and feedback control.Speech block transmission is performed
using RTP (Real-Time Protocol), as PoC data are sensitive to transfer delay variation. In
addition, both participants and PoC servers may send RTP-quality feedback reports using
RTCP Sender and Receiver Reports.

. Floor control.All features associated to the access of the speech channel are supported by a
PoC-specific protocol layer know as TBCP (Talk Burst Control Protocol). Built on top of
RTCP, the TBCP messages are actually defined as application-specific RTCP messages.

Figure 6.5 The PoC protocol stack.
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All information (including SIP signalling or RTP-related data) are supported over a UDP
transport layer, in unacknowledged mode.

(ii) The TBCP Messages
The main purpose of the TBCP layer (Talk Burst Control Protocol) is to arbitrate access to the
floor for all the PoC session participants. The TBCP name comes from the PoC OMA
terminology which defines a �Talk Burst� as being an audio flow issued by a client who has the
permission to send it. The actual Talk Burst control is performed through a small set of
messages. For illustration purposes, some of them are briefly described hereafter:

. Talk Burst Request: this request is issued by a participant willing to access the floor. This
request contains a �priority level� which the user can use to notify the server about the
importance of the request.

. Talk Burst Granted/Deny: this is used by the server to notify the requesting client that its
request has been either accepted or rejected. In case the Talk Burst was granted, the server
may notify a �stop talking� timer in order to limit the length of the Talk Burst.

. Talk Burst Release: this is sent by a client to notify the server that it has finished sending a
Talk Burst.

. Talk Burst Idle/Taken: this is used by the server to notify the participants whether the floor
is free or not.

. Talk Burst Revoke: this is used by the server to pre-empt an on-going Talk Burst. This may
be used, for example, for emergency purposes. This message provides a cause value to the
client, indicating whether the pre-emption was done because the Talk Burst was too long or
because a higher-priority request has arrived.

Figure 6.6 describes the generic format of a TBCP message, showing that they actually are
defined as application-specific RTCP messages.

The TBCP messages contain the following fields:

. Subtype: this field identifies the type of TBCP message.

. PT (payload type): this field has the value 204, which indicates that the RTCP packet is
application-specific.

. SSRC: this field identifies the PoC entity sending the message. In PoC, each client assigns
itself a unique SSRC.

. Application name: this field is ASCII-coded. In PoC the value is assigned to �PoC1�.

Synchronization Source (SSRC) Identifier 

Application name (PoC1) 

Length PT = APP (204) Subtype V

32 bits 

Application-dependent data 

Contains the body of the TBCP message 

Header 

P

Figure 6.6 TBCP message format.
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(iii) An Example of TBCP Signalling Exchange
In order to illustrate TBCP protocol operation, Figure 6.7 describes an example of Talk Burst
management.

1. In the first phase, it is assumed that the Talk Burst is idle. Alice sends a
Talk Burst Request to the PoC server, which decides to accept. As a result,
Alice receives a Talk Burst Granted message while the others receive a
Talk Burst Taken message.

2. When Alice stops talking and releases the speech button, her terminal
sends a Talk Burst Release message to the PoC server. As nobody is
granted the floor anymore, the PoC server sends a Talk Burst Idlemessage
to all participants of the session.

6.2.3 An Example of PoC Session Setup

This section describes an example of PoC session setup with manual answer (meaning that the
invited participants need to answer manually to the invitation). In this example, it is assumed
that there is only one PoC server controlling the session. Figure 6.8 describes the signalling
exchange between Alice (initiating the session) and Bob (a participant being invited to the
session).

For simplification, the preliminary steps are not described. When Alice decides to initiate
the PoC session, it is assumed that a PDP context or an EPS bearer for signalling support is
already established between her terminal and the GGSN, and all participants are IMS-
registered to their S-CSCF.

1. In the first phase, Alice sends an INVITE message to the PoC server in
order to initiate a session. The message contains a SDP part, which
describes the session media parameters, and an XML-encoded part
describing the participants whom Alice is willing to contact. Like any

Figure 6.7 An example of Talk Burst control.
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end-to-end SIP signalling, the INVITE message is forwarded by the server
to Bob (as one of the recipients) through Alice and Bob�s S-CSCF servers.

2. The �180 ringing� is a SIP notification sent to Alice indicating that Bob�s
terminal is ringing, and the �200 OK� message is sent as Bob accepts the
session. In the mean time, Bob�s terminal has requested a specific bearer in
order to support the PoC session data transfer (which includes both RTP
data frames and TBCP signalling).

3. As the SIP session is established end-to-end, the PoC server grants Alice
for the floor and indicates to Bob that the Talk Burst is not free. At that
time, speech frames can be sent from Alice to all the participants.

(i) What about PoC Bearers, Transport Connections and Media Flows?
The OMA standard is quite flexible as regards to the resources to be established for PoC
session support. In terms of PDP context or EPS bearer, the standard does not mandate for any
specific solution to be applied. The network has the flexibility to either set up a unique context
for both PoC session SIP signalling and data (RTP and RTCP) transport or allocate separated
bearers in the case of specific Quality of Service requirements.

Figure 6.8 An example of PoC session setup – manual answer.
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Figure 6.9 describes an example of the bearers being used for a PoC session, as seen by the
terminal and the network (including the Access and Core network views).

At the Transport OSI level, there are three UDP flows being set up to support the SIP session
signalling, and the audio and TBCP messaging. Those three flows may be supported over two
separated bearers. The first one supports the SIP signalling with Quality of Service require-
ments corresponding to an interactive service. The other, supporting the User plane data, has
more constraining Quality of Service requirements, as for streaming or conversational
services.

These two logical traffic channels may then be supported by transport channel levels having
different configurations and characteristics. For example, the SIP signalling logical channel
may be supported by a E-UTRAN RLC AM (Acknowledged Mode) transport channel,
whereas the audio channel is supported by a RLC UM (Unacknowledged Mode) transport
channel.

(ii) What about the Data Rate Induced by PoC Services?
This paragraph proposes an estimation of the requirements of PoC service in terms of
signalling and pure user data bandwidth, as a comparison to what classical voice service
requires.

In the following example, we consider a 1-minute PoC session with two participants only.
Five-second Talk Bursts are sent alternatively by each participant, so that each participant is
six times talker, six times listener during the session. For simplification, it is assumed that no
Sender or Receiver Reports for quality feedback are exchanged during the session.

Also for simplification, it is assumed that the TBCP messages have a mean length of 16
bytes (which includes the RTCP header and the TBCP message part).

In this example, all speech frames are encoded using the 3GPPAMR 12.2 full-rate speech
algorithmwhich delivers around 32 bytes every 20ms. These bytes are further encapsulated by a
12-byteRTPheader.Asmentioned inRFC3267, �RTPPayloadFormat forAMRandAMR-WB�,
a RTP framemay contain more than oneAMR speech frame. This has the virtue of reducing the
amount of protocol overhead relative to the speech data, at the expense of an increased latency.

Figure 6.9 An example of control and user flow mapping.
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All sent packets (including the media packets or the RTCP ones) are encapsulated by UDP
(adding an 8-byte overhead) and IPv4 (adding a 20-byte overhead), as illustrated in Figure 6.10.

Table 6.1 describes the number of bytes sent and received by a given participant during the
1-minute session.

The first obvious remark is that although the channel is used in half-duplex mode (one
talker at a time), the channel occupation is about the same as a full-duplex speech service. This
is due to the fact that the IPv4/UDP/RTP encapsulation adds 40 bytes of overhead on top of the
32 bytes of encoded speech.

This basically means that PoC cannot be a commercially viable service on wireless
networks without a minimum level of protocol header compression. Thanks to RoHC, the
compression layer of Evolved UMTS presented in Chapter 4, the amount of overhead can be
efficiently reduced. The figures in the table assume that the 40-byte IPv4/UDP/RTP overhead
is reduced to 6 bytes, which is the common value observed under reasonable radio conditions.
The resulting bit rate is halved, which is more in line with traditional voice-over circuit
occupation.

The use of a reduced-rate speech codec is another way to reduce the service bandwidth
requirements, at the expense of lower speech quality.

Finally, it is worth noting that, in the scope of the example above, the TBCP protocol does
not add much overhead to the number of bytes being sent. In the case of a 5-second Talk Burst,
the TBCP overhead is less than 0.5%.

6.2.4 Charging Aspects

As usual, the standard does not mandate any specific charging scheme to be applied, but
provides manufacturers and network operators with all the mechanisms to define flexible
mechanisms for PoC charging.

3GPP AMR 12.2 speech  UDP headerIP header 

Scope of PDCP compression 

32 bytes 8 bytes 20 bytes 

RTP header 

12 bytes 

Figure 6.10 An example of a speech packet.

Table 6.1 PoC session example data rate estimation for one participant.

Without RoHC compression With RoHC compression

Sent as listener 0 0
Received as listener 108528 57120
Sent as talker 108528 57120
Received as talker 528 120
Resulting bit rate UL or DL 14.5Kb/s 7.6Kb/s
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The network entity in charge of producing charging data is the PoC controlling server. The
server can distinguish the session owners among all the participants and apply specific
charging rules to each of them. Besides, as the PoC controlling server has responsibility for
arbitrating the speech channel, receiving and forwarding all the Talk Bursts, it can provide lots
of detailed information for the purpose of PoC charging. In addition, the PoC participating
server may also collect local charging information, e.g. in case the PoC session spans over
multiple networks.

The charging architecture is similar to what has been presented in Chapter 2. PoC-
related CDR (Charging Data Record) are sent by the PoC controlling or participating
servers to the CDF (Charging Data Function) through the Rf interface, using the Diameter
IETF protocol.

Table 6.2 is an extract of the information that the CDR may contain. In case PoC
Participating nodes are also involved in the session, the CDF may contain more than one
CDR. Ultimately, the CDF will consolidate all the information it receives before sending the
final report to the BD (Billing Domain).

Reference documents about PoC

3GPP technical specifications:

. 23.279, �3GPP Enablers for OMA Push-to-Talk over Cellular (PoC) Services: Stage 2�

. 32.272, �Push-to-Talk over Cellular (PoC) Charging�

OMA specifications:

. OMA-AD-PoC, �Push to Talk over Cellular (PoC): Architecture�

. OMA-TS-PoC-ControlPlane, �PoC Control Plane�

. OMA-TS-PoC-UserPlane, �PoC User Plane�

. OMA-TS-PoC-XDM, �PoC XDM Specification�

Table 6.2 Extract of PoC CDR.

PoC CDR

Start Timestamp PoC session starting time
End Timestamp PoC session ending time
SDP session description Describes the PoC session media components

and their parameters
Originator Describes the asserted SIP identity of the PoC session originator
Number of participants The number of invited parties of the PoC session
List of participants Contains the addresses (in the form of a SIP URI or E.164

phone number) of the parties of the session
List of Talk Burst exchanges Contains detailed information about the number of Talk Bursts,

Talk Burst bearer volume, sum of Talk Burst times
. . . . . .
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6.3 Presence

The Presence service�s purpose is to allow a subscriber to make its Presence information
available to other users of Application Servers in the network. By extension, the Presence
service is not limited to user availability information. During the past few years, there have
been lots of new extensions brought to this service, coming from IETF activities or OMA
specifications. These may also include lots of different information being defined by IETF
documents, or by the OMA Presence specifications. These extensions provide richer
information about the subscriber status, such as:

. The current activity (travelling, sleeping, . . .).

. The current location (at home, in office, . . .).

. The mood (afraid, hungry, . . .).

. Time offset (specifies the current time zone of the person).

. Contact address (an address in the form of a URL to which the user can be joined).

. The services the user has access to, e.g. PoC, Instant Messaging, . . ..

. The list of devices and network connectivity the user has access to (802.11, GPRS, IMS, . . .).

The rest of the section describes the service architecture as well as the relations with other
parts of the Evolved UMTS network, and an example of Presence service usage.

6.3.1 Service Architecture

Figure 6.11 is a simplified overview of the Presence service architecture, as described in OMA
specifications. The service itself relies on a central node – the Presence Server – in charge of

Figure 6.11 Presence Service architecture.
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storing and distributing Presence information. From the IMS perspective, the Presence Server
is seen as a SIPApplication Server. The Presence Server is linked through the PRS-5 interface
to the Shared XDMS server, already presented in the section about the PoC service. The
Shared XDMS server is in charge of managing user-specific service-related information,
including the Presence information provided by the Presence Server.

On the other side, as the OMA Presence Server is build on top of IMS architecture, the
Presence Server is also linked through the PRS-3 interface to IMS SIP servers such as the S-
CSCF. As regards the Presence service, the role of the S-SCSF is only to route SIP signalling
to and from the server.

The end-user terminal involved in the Presence Service may play two different roles, which
are described in the specifications as �Presence Source� or �Watcher�. Those two roles do not
exclude each other, as a given terminal may be simultaneously a Presence Source for himself
and a Watcher to somebody else�s information.

When being a �Presence Source�, the terminal provides its Presence information to the
Presence Server via the S-CSCF and the PRS-1 interface. When being a �Watcher�, the
terminal subscribes to Presence information and receives notifications from the server through
the PRS-2 interface. Although PRS-1 and PRS-2 are presented as two different functional
interfaces, they may be supported by the same PDP context (or EPS bearer) between the
terminal and the GGSN (or PDN GW).

6.3.2 An Example of a Presence Session

(i) Presence Information Format
The Presence information in the OMA specification is structured in three components:

. Person: this set of information contains attributes related to the user itself.

. Service: this set describes the services that the user has access to.

. Device: this describes which physical devices are associated to each of the supported
services. This part also indicates the kind of connectivity that the device has access to.

The Presence information is distributed between Source, Watcher and Server using XML-
generic format. Figure 6.12 is a simplified example from the OMA Presence specification,
describing what Presence information looks like. This example includes the following
elements:

. <status> and<willingness> indicate the availability and willingness of the user to receive
a PoC service request, PoC being the service listed further in the XML description.

. <registration-state> and <barring-state> parameters indicate that the user is registered
to PoC and that no incoming or out-going service communication barring is active.

. A<contact> information is also part of the Presence information, to be used by other parties
willing to contact the user through the PoC service.

. The <timestamp> is an indication of the time the Presence information has been issued.

The format defined by OMA is mainly based on RFC3863, �Presence Information Data
Format (PIDF)� and other IETF extensions.
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(ii) Presence Signalling Procedures
The Presence service makes use of three SIP methods, all defined by IETF documents:

. SUBSCRIBE: used by a Watcher to subscribe to Presence information. In the SIP message
header, the Watcher indicates the user�s identity whose events he wants to subscribe to.

. PUBLISH: used by a source to provide its Presence information to the server. The PUBLISH
message is actually a SIP message which encapsulates XML-coded Presence information.

. NOTIFY: usedbythePresenceserver tonotifyWatchersaboutPresenceinformationchangeor
availability. Like the PUBLISH message, Presence information is also XML-coded. The
informationmay, however, be different from the one provided by the source, as the Servermay
process the information suchas filteringorcomposing information fromdifferentuserdevices.

Figure 6.13 describes how these methods are used in the scope of a Presence session.
As for IMS SIP signalling, the Presence messages are subject to header compression based

on SigComp. Although OMA strongly suggests that Presence messages should be com-
pressed, it is still an option to do so. The decision is actually left to the endpoints (e.g.
Watchers and Presence Sources) and shall be enforced by IMS CSCF nodes.

<?xml version="1.0" encoding="UTF-8"?> 
<presence xmlns="urn:ietf:params:xml:ns:pidf" 
xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid" 
xmlns:op="urn:oma:xml:prs:pidf:oma-pres" 
entity="sip:someone@example.com"> 
    <tuple id="a1232"> 
        <status> 
            <basic>open</basic> 
        </status> 
        <op:willingness> 
            <op:basic>open</op:basic> 
        </op:willingness> 
        <op:registration-state>active</op:registration-state> 
        <op:barring-state>terminated</op:barring-state> 
        <op:service-description> 
            <op:service-id>org.openmobilealliance:PoC-session</op:service-id> 
            <op:version>1.0</op:version> 
        </op:service-description> 
        <contact>sip:someone@example.com</contact> 
        <timestamp>2005-02-23T12:14:56Z</timestamp> 
    </tuple> 
</presence> 

Figure 6.12 An example of XML-encoded Presence information.

Figure 6.13 An example of a Presence session.
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In terms of transmission requirements, Presence does not require a large number of
resources. In most cases, XML-encoded Presence information and associated SIP headers
sent to or received from each subscriber should not be much larger than 1000 bytes.

From a Core and Access network perspective, Presence requires the user (either Watcher or
Presence Source) to be IMS-registered and have a PDP context or EPS bearer established
while the service is active. However, there is no need for radio physical resource to be
allocated from the beginning to the end of the session.

In terms of RRC and MME states, the terminal needs to be RRC-connected in order to
publish or be notified about a Presence state change. When in RRC IDLE mode, the terminal
needs to connect to the network before any kind of activity related to the Presence Service (as
for any other service). In the case of an incoming Notify to be sent to an IDLE mode terminal,
the network has to send a paging message which will cause the receiving terminal to connect
to the network.

6.3.3 Charging Aspects

Thanks to SIP signalling, the intermediate S-CSCF node has the possibility of monitoring and
counting any kind of event associated to a SIP message. This includes, as an example:

. Presence service registration.

. Subscription to Presence information published by another user.

. Presence information retrieval to the XDMS server.

. Reception of Presence information notifications.

This gives flexibility for the operator to implement any kind of charging algorithm, based
on the different events.

Reference documents about Presence

IETF documents:

. RFC3856, �A Presence Event Package for the Session Initiation Protocol (SIP)�

. RFC3863, �Presence Information Data Format (PIDF)�

. RFC3903, �SIP Extension for Event State Publication�

3GPP technical specifications:

. 22.141, �Presence Service: Stage 1�

. 23.141, �Presence Service: Architecture and Functional Description: Stage 2�

. 24.141, �Presence Service Using the IP Multimedia (IM) Core Network (CN) subsystem�

. 33.141, �Presence Service: Security�

OMA specifications:

. OMA-AD-Presence-SIMPLE, �Presence SIMPLE Architecture Document�

. OMA-TS-Presence-SIMPLE, �Presence SIMPLE Specification�

The Services 297



6.4 Broadcast and Multicast

This section describes the broadcast and multicast service, as specified by the 3GPP
documents. This service is known as MBMS (Multimedia Broadcast and Multicast Service).

From a general perspective, the benefit of broadcast and multicast on networks is that
multiple subscribers can receive the same data at the same time, sent only once on each link.
For the radio interface, the obvious benefit is that in a given cell, the radio resource cost is
limited to what is needed for one transmission in a given cell, for the sake of radio interference
and capacity. The gain on terrestrial interfaces is not also not negligible, as the interfaces
between the content source and the radio equipment will also benefit from broadcast
techniques.

Back to history, GSM networks already offers a text-based broadcast service known as
SMSCB (Short Message Service Cell Broadcast). The SMSCB is limited to low bit rate data,
transmitted to all subscribers in a given set of cells over a shared broadcast radio channel. The
capacity of the GSM broadcast channel is quite limited, as it only allows sending a block of 88
bytes of text every eight 51-multiframe (approximately 2 seconds), which provides a
maximum bit rate of around 350 bits per second.

As described below, MBMS has a much broader set of rates and applications, allowing
multimedia types of data to be delivered.

MBMS shall not be confused with �IP Multicast� – the multicast solution proposed by IETF.
IP Multicast can, however, be supported by wireless networks but, in this case, it does not
allow sharing common radio resources for subscribers located in the same radio cell.

6.4.1 Some Definitions

The MBMS 3GPP service is actually composed of two distinct services: broadcast and
multicast. There are many common areas between broadcast and multicast. However,
although supported in the same way over the radio interface, the two services shall be
distinguished, as there is a key difference between them:

. Broadcast service may be received by any subscriber located in the area in which the service
is offered.

. Conversely, multicast services can only be received by users having subscribed to the
service and having joined the multicast group associated with the service.

In the MBMS scope, broadcast and multicast services are unidirectional point-to-multi-
point transmissions of multimedia data. These two services may be used to broadcast, for
example, text, audio, picture, video from a single source (which is called the BM-SC for
Broadcast Multicast Service Centre) to:

. Any user located in the service area (in the case of a broadcast service).

. Only members of a multicast group (in the case of a multicast service).

Broadcast only requires the service to be enabled by the user on its terminal. For this
reason, the operator cannot apply charging rules to the end-user, as the network does not
know which subscribers have received the service and for how much time the users have

298 Evolved Packet System (EPS)



been receiving it. For such a service, only the broadcast service providers can be charged,
possibly based on the amount of data broadcasted, size of service area or broadcast service
duration.

Multicast is subject to service subscription, and requires the end-user to explicitly join the
group in order to receive the service. Because it is subject to subscription, the multicast service
allows the operator to set specific user charging rules for this service.

6.4.2 Typical Applications

This section gives some examples of typical applications suitable for MBMS. The list is not
exhaustive, but tries to explore the possible service range, along with the corresponding rates
and real-time characteristics.

(i) Audio and/or Video Streaming
This set of applications includes all kinds of news or advertisement message distribution. This
could be, for example, a weather report, an announcement for time-limited discount in a store
or pay-per-view video access. As for streaming applications, such a service puts some Quality
of Service constraints on the network in terms of bandwidth, packet transfer delay and jitter.
The typical application bit rate requirements is from 32Kb/s to more than 300Kb/s,
depending on the quality and media type.

(ii) Audio and/or Video Downloading
MBMS could also be used for multimedia content distribution, for off-line use. As opposed to
streaming, the provision of real-time transfer services is not required. However, enough
bandwidth shall be provided to the broadcast/multicast server especially for large content
downloading.

(iii) File Downloading
A less obvious application of MBMS is the possibility to efficiently download data to large
populations of terminals. This could be, for example, for the purpose of software update (user
terminal application update of new codec or plug-in downloading) or virus list update
downloading.

Here, again, we see the interest of multicasting versus broadcasting, as it allows restricting
the service to the set of end-users which have actually subscribed to it.

(iv) Still Image and Text Distribution
This kind of application is closer to what GSM SMSCB already provides. The requirements in
terms of bandwidth are similar to what a classical messaging service would mandate, i.e. a
maximum bit rate of around 10Kb/s, with no specific real-time constraint.

6.4.3 Service Architecture

The MBMS service architecture is based on the Packet Core domain, and is therefore
compatible with Enhanced Packet Core, as well as 2G/GSM or 3G UMTS Packet Core nodes
like the SGSN and GGSN.

MBMS is, however, not part of the standard features supported by the Packet Core, as it
requires specific additional capabilities from the relevant nodes for the purpose, for example,
of broadcast or multicast session establishment, or multicast authorization.
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In the scope of EPS networks, it was decided to create two additional logical network
entities: the MCE and the MBMS GW, as presented in Figure 6.14.

The MCE (Multi-cell/multicast Coordination Entity) is a new logical entity, responsible for
allocation of time and frequency resources for multi-cell MBMS transmission. The MCE
actually does the scheduling on the radio interface. The MCE is a logical node which may be
integrated as part of the eNodeB (in which case, theM2 interface becomes an internal eNodeB
interface).

The MBMS GW (MBMS Gateway) is the entry point of incoming broadcast/multicast
traffic. Its role is to broadcast the packets to all eNodeBs within a service area, as well as
MBMS session management (like Session Start and Session Stop). It is also in charge of
collecting charging information relative to the distributed MBMS traffic for each terminal
having an activeMBMS session. In 2G/GPRS and 3G/UMTS networks, this role is ensured by
the GGSN.

The Broadcast Multicast Service Centre (BM-SC), already present in 2G and 3G MBMS
architectures, is the functional entity in charge of providing the service to the end-user. For
that purpose, the BM-SC serves as an entry point for content providers or any other broadcast/
multicast source which is external to the network.

The BM-SC is in charge of the following main functions:

. Membership function, which is responsible for providing authorization for terminals
requesting to activate an MBMS service.

. Session and transmission function, which is responsible for the scheduling of broadcast and
multicast sessions.

Figure 6.14 The MBMS logical architecture.
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. Service announcement function; MBMS session announcement is triggered by the BM-SC
but can be performed through different mechanisms such as SMS (Short Message Service)
or any kind of Push service.

. Security function, which ensures integrity and confidentiality protection of MBMS data.

From the BM-SC, two interfaces are defined: the SGmb and SGi-mb.
The SGmb interface supports all the MBMS signalling procedures between the BM-SC and

the MBMS GW. This includes MBMS bearer signalling for setting up and releasing context at
MBMS session establishment and termination. The SGmb also supports user-related signal-
ling, e.g. for Multicast session authorization, or user session joining or detach.

From a protocol perspective, the SGmb interface is based on 3GPP-specific extensions to
the Diameter protocol defined at the IETF in the document RFC3588, �Diameter Base
Protocol�.

The SGi-mb interface supports the MBMS traffic plane. This also introduces some
interfaces:

. The M1 interface, associated to the MBMS data (or User plane) makes use of IP multicast
protocol for the delivery of packets to eNodeBs.

. The M3 interface supports the MBMS session control signalling, e.g. for session initiation
and termination.

. TheM2 interface is used by the MCE to provide the eNodeB with radio configuration data.

Figure 6.15 represents the architecture of the EPS User plane for the MBMS service. The
MCE is not represented here, as it is not part of the MBMS data-transmission path. The top-
level layer represents the MBMS application protocol; more details on this part are provided
later in this section.

The TNL (Transport Network Layer) boxes represent the IP-based transmission protocols
used on network interfaces. The TNL on the M1 interface is based on �IP Multicast�, so as to
allow point-to-multipoint delivery of MBMS data for multi-cell transmission.

The SYNC protocol, used over the M1 interface, has a specific purpose. Its main role is to
allow content synchronization in the case of multi-cell transmission. SYNC carries additional

Figure 6.15 MBMS User plane architecture.
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information so as to allow eNodeBs to identify transmission radio frame timing and detect
packet loss.

(i) The MBMS Protocol Suite
Figure 6.16 describes the MBMS protocol suite for MBMS data transfer. There are actually
two options for data transfer, depending on the type of service.

For streaming services, MBMS data transfer is based on RTP/RTCP (Real Time Protocol/
Real Time Control Protocol), described in Chapter 4. This type of protocol allows the
receiving end to regenerate packet data timing information which may be altered by
transmission jitter. A FEC (Forward Error Correction) block is appended to each RTP data
packet to allow error detection and possibly correction at the receiving end. It allows the
receivers to reconstruct missing portions of the source block.

For download services (e.g. for still image, 3GPP audio/video file or binary data transfer),
MBMS makes use of the FLUTE protocol (File Delivery over Unidirectional Transport), as
defined in the RFC3926 IETF document. FLUTE is a unidirectional file-transfer protocol
specifically designed for multicast transmission and massively scalable distribution, although
it may also be used for unicast (point-to-point) file distribution.

FLUTE provides a generic format for describing files to be transferred. This format, known
as FDT (File Delivery Table), specifies the name, size and type (among other parameters) of
file to be transferred). In addition, because FLUTE is inherently designed for multicast traffic,
it does not require feedback or even connectivity from the receiver to the sender. As for
streaming services, data-transfer reliability is ensured using a FEC scheme integrated into
FLUTE.

Both streaming and download application services are eventually supported over a UDP/IP
transport scheme. In addition to those protocols, specific to data transfer, MBMSmakes use of
other existing layers:

. The 3GPP NAS (Non Access Stratum) protocol for packet session management has been
modified, as MBMS requires the terminal to open a �MBMS context�. This new type of
�packet context� is equivalent to the classical �PDP context� for an IP multicast address.

Figure 6.16 The MBMS data transport protocol suite (simplified view).
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. The existing IETF IGMP (Internet Group Management Protocol) is also part of MBMS
signalling protocols, as it is used by subscribers for joining or leaving MBMS sessions.

. The IETF SDP (Session Description Protocol), described in Chapter 2, is used as a basis for
the description of MBMS sessions.

(ii) Some Vocabulary
MBMS specifications make a difference between service and session.
A session is a period of time during which broadcast or multicast data are transmitted, either

in one set or using several data files. As in Figure 6.17, there might be several consecutive
sessions of data transfer for one single service. In principle, the service is announced up to the
end of the last session of the service. From a receiver point of view, mobiles can join or leave
the service at any time, even during a data-transfer session.

6.4.4 MBMS Security

When compared to point-to-point communications, multicast service security faces some new
specific challenges. In the MBMS context, ciphering has a different purpose, as MBMS
subscribers have no real interest in broadcast or multicast privacy. However, encryption is a
key feature for operators and content providers, as it is the only way to prevent unauthorized
customers from receiving the data for free.

MBMS security mechanisms like ciphering need to be designed in a way which is suitable
for point-to-multipoint communications. In addition, those mechanisms shall prevent any
bypass attempts from subscribers, by exchanging keys or passwords, for example. This is the
reason why MBMS security mechanisms are quite specific, involving complex key structures
and frequent key updates.

As described Figure 6.18, the MBMS key structure is based on three different types of keys:

. The MUK (MBMS User Key).

Figure 6.17 Timeline of an MBMS service.
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. A set of MSK (MBMS Service Key) per MUK.

. A set of MTK (MBMS Traffic Key) per MSK.

As opposed to most point-to-point communications, MBMS security is not applied on a
specific part of the transmission path (like the radio segment) but is rather performed end-to-
end, between the BM-SC and the subscribers. The basis of MBMS security is that the
multicast data are protected by a symmetric key (the MTK), which is a secret key shared by
both the sender (the BM-SC) and the receivers (the MBMS subscribers). In order not to
compromise security, MTK generation and distribution follow a complex process, illustrated
in Figure 6.18.

At first, each terminal builds its own unique secret MUK, derived from CK (Ciphering Key)
and IK (Integrity Key), both stored on the terminal USIM. Those references are also stored
within the HSS, so that the network can also build its own reference of the MUK. The MUK is
further used by the terminal to retrieve the MSK provided by the BM-SC during the
authorization process.

MSK and MTK key sets are the actual keys to secure MBMS data; they are both generated
by the BM-SC. Each MTK corresponds to a unique data flow (either a streaming or FLUTE
file download flow) and is used to cipher the data block for this flow. The set of MTK is
transmitted to the authorized subscribers by the BM-SC in a secured way, protected by the
MSK.

As a way of enhancing security, it is then possible for the BM-SC to define two different sets
of MSK (and associatedMTK) and update theMTK during a service or a session by indicating
to the authorized receivers the new MSK to use.

MSK and MTK are usually updated in a subscriber�s terminal using unsolicited �push�
procedures from the BM-SC. The protocol used to perform this update is MIKEY (Multime-
dia Internet Keying) – a key-distribution protocol defined by the IETF and documented in
RFC3830.

MUK

MSKMSK …

MTK MTK …

Data stream

CK, IK 

MTK …

Data stream

Figure 6.18 MBMS key structure.
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6.4.5 The MBMS Service Steps

Figure 6.19 describes the various steps of multicast and broadcast service provision. This
illustrates the fact that multicast is actually a superset of the broadcast service, as it requires
user subscription and access authorization procedures to prevent nonsubscribers from
accessing the data.

The Subscription phase role, specific to multicast, is to build the relationship between the
end-user and the service or content provider. As a result, the end-user is allowed to receive
the multicast service. One of the consequences of the subscription phase is that the USIM of the
subscriber is updated with MBMS-specific information, such as MBMS service keys and user
keys, so that the user will be able to join upcoming multicast sessions and be able to decipher
the data received.

The Service announcement phase aims at informing end-users about the available MBMS
services.

During the joining phase, specific to multicast, the subscriber indicates its willingness to
listen for a specific service, so that it can be charged for the multicast data.

The Session start phase is the actual start of the MBMS session. Network resources to
support the MBMS bearers are reserved and established at that time.

TheMBMS notification phase is used to inform users about the upcomingMBMS sessions.
During the Data transfer phase, the MBMS data are transferred to the terminals.
At Session stop, network resources previously allocated are released by the network.
At the end, the Leaving phase, corresponding to the joining, is an explicit indication to the

user that it is no longer willing to follow the session and is not receiving anymore.
In the rest of the chapter, more details are provided on the Service announcement phase.

Subscription 

Service announcement 

Joining 

Session start 

MBMS notification 

Data transfer 

Session stop 

Leaving 

Phases of multicast service

Service announcement 

Session start 

MBMS notification 

Data transfer 

Session stop 

Phases of broadcast service

Figure 6.19 Phases of MBMS services.
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Service Announcement
Service announcement is the procedure by which the end-user is informed about the available
MBMS services. Service announcement is part of the features supported by the BM-SC. There
might be several ways to achieve this, using, for example, services like SMS, MMS, WAP
Push service or even an existing MBMS bearer. For that reason, the standard does not further
specify the signalling and mechanisms for doing the announcement, but only the format of
information that needs to be sent to the subscribers.

Service announcement involves the delivery of �metadata fragments�, or blocks of infor-
mation which contain the details of the services. To be more efficient, the data may possibly be
sent compressed, using the well known GZIP algorithm. As examples, these blocks of
information include:

. Service description: As specified by the 3GPP, MBMS service description is done using
SDP (Session Description Protocol), similarly to an IMS session description. Figure 6.20 is
an example of such a description.

. Associated service delivery procedures: This XML-encoded set of information is related to
MBMS transmission auxiliary procedures, e.g. for file post-delivery repair, or reception
reporting. All these procedures have to be initiated by the MBMS terminal receivers.

. Service protection method: This XML-encoded set contains information for service key
management and related security procedures necessary for information decryption.

. MBMS data error control related information: MBMS streams make use of a generic
Forward Error Correction (FEC) mechanism. This allows the receiver to detect and possibly
repair data-transmission errors.

v=0 
o=ghost 2890844526 2890842807 IN IP4 192.168.10.10 
s=3GPP MBMS Streaming SDP Example 
i=Example of MBMS streaming SDP file 
u=http://www.infoserver.example.com/ae600 
e=ghost@mailserver.example.com 
c=IN IP6 FF1E:03AD::7F2E:172A:1E24
t=3034423619 3042462419 
b=AS:77 
a=mbms-mode:broadcast 1234 
a=source-filter: incl IN IP6 * 2001:210:1:2:240:96FF:FE25:8EC9 
a=FEC-declaration:0 encoding-id=1 

m=video 4002 UDP/MBMS-FEC/RTP/AVP 96 
b=TIAS:62000 
b=RR:0 
b=RS:600 
a=maxprate:17 
a=rtpmap:96 H264/90000 
a=fmtp:96 profile-level-id=42A01E; packetization-mode=1 

Session parameters 

1st medium parameters 
(video stream) 

m=audio 4004 UDP/MBMS-FEC/RTP/AVP 98 
b=TIAS:15120 
b=RR:0 
b=RS:600 
a=maxprate:10 
a=rtpmap:98 AMR/8000 
a=fmtp:98 octet-align=1 
a=FEC:0 

2nd medium parameters 
(audio stream) 

Figure 6.20 An example of MBMS session description.
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The picture is an example of an MBMS streaming session description based on SDP. As
usual in SDP, the description is split into several parts, the first on presenting session-level
parameters, and the subsequent ones relate to parameters at the medium level (in this example,
there are two media – one for the audio stream, and one for the video stream).

This description contains all the required parameters for a subscriber to be able to join the
session and decode the information:

. The sender IP address (an IPv6 in this example) is described by the �a¼ source-filter�
parameter

. The session start and end times are specified by the SDP timing field �t¼ �

. The session bearer mode is described by the �a¼mbms-mode:broadcast�. In this line,
�1234� is the session Temporary Mobile Group Identity (TMGI) which the subscriber refers
to when it is joining the service

. The data codec and transport protocol are specified for each of the data bearers (in
this example, the video stream is H264 encoded, whereas the audio is encoded as AMR
8KHz).

6.4.6 The E-UTRAN Aspects of MBMS

E-UTRAN is quite flexible and offers many possible options for MBMS service deployment.
In MBMS, the operator has the possibility of reserving a frequency layer to MBMS
transmissions. In this case, the cells belonging to this layer only offer MBMS service. In
those dedicated cells, there is no support for unicast (or point-to-point) service.

In contrast, when no specific frequency is reserved for MBMS, mixed cells provide
simultaneous unicast and MBMS services.

In parallel, there may be two types of MBMS data transmission in E-UTRAN:

. Single-cell transmission – in this case, MBMS data are only provided and available over the
coverage of one single cell.

. Multi-cell transmission – in this case, the MBMS data sent in the different cells are tightly
synchronized. This allows the receiving terminal to recombine the signals received from
various cells and improve the signal-to-noise ratio, as compared with conventional point-to-
multipoint transmission.

More information about the radio physical aspects of MBMS are provided in Chapter 3.

6.4.7 Charging Aspects

MBMS charging mechanisms have two objectives. First, they aim at collecting charging
information related to mobile subscribers receiving MBMS services. This is more applicable
to the multicast service (which require a user-authorization phase) than the broadcast service,
as the end-user may join a broadcast session or service without the support of explicit
signalling. In addition to end-user charging, information related to content or service
providers delivering content using MBMS are also collected.

MBMS charging architecture follows the global 3GPP charging architecture presented in
Chapter 2. The BM-SC is actually considered as an Application Server from the CDF.
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As for other Application Servers, the BM-SC is in charge of sending charging information
to the CDF over the Rf interface, and using the Diameter protocol. From its side, the CDF
generates CDR (Charging Data Record), which are further used as the basis for the actual
charging. Because the MBMS requires both subscribers and content providers to be charged,
two different formats of CDR have been defined. An example of the information fields of
these two CDR types are described in Table 6.3.

In principle, the CDR shall allow the network operator to charge based on the size of the
broadcast/multicast area, the type of Quality of Service required (e.g. in terms of bit rate), the
amount of data actually being sent, and the number of recipients.

MBMS charging is triggered by typical events, parts of MBMS session establishment and
termination, such as �Session Start� and �Session Stop� messages (actually related to network
resource allocation and release), and successful user authorization.

Reference documents about MBMS

3GPP technical specifications:

. 22.146, �Multimedia Broadcast/Multicast Service (MBMS): Stage 1�

. 22.246, �Multimedia Broadcast/Multicast Service (MBMS) User Services: Stage 1�

. 23.246, �Multimedia Broadcast/Multicast Service (MBMS): Architecture and Functional
Description�

. 26.346, �Multimedia Broadcast/Multicast Service (MBMS): Protocols and Codecs�

. 33.246, �3G Security; Security of Multimedia Broadcast/Multicast Service (MBMS)�

. 32.273, �Multimedia Broadcast and Multicast Service (MBMS) Charging�

IETF documents:

. RFC3830, �MIKEY: Multimedia Internet KEYing�

. RFC3926, ‘FLUTE: File Delivery over Unidirectional Transport’

Table 6.3 Extract of MBMS CDR.

MBMS subscriber CDR
Served IMSI Contains the IMSI of the subscriber
Bearer services description Describes the MBMS SDP session media parameters
Duration Describes the time period to which the CDR applies
TMGI Describes the Temporary Mobile Group Identity allocated to the

MBMS service

. . . . . .

MBMS content provider CDR
Served PDP address Describes the IP multicast address which was used for the service
Recipient address list Contains the addresses of the recipients registered to receive the service
Service area Describes the area over which the MBMS bearer service was distributed
Service type Indicates whether the CDR corresponds to Broadcast or Multicast service
. . . . . .
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6.5 Voice and Multimedia Telephony

This section deals with voice and general-purpose real-time conversational multimedia
services in Evolved UMTS networks.

Video telephony in not new to Evolved UMTS networks, as it is already proposed as a
service by 3G networks using two alternatives:

. The circuit-switched solution, based on the ITU H.324M standard (M for �Mobile�).
H.324M is actually the low bit rate variant of H.324, using 3GPP voice-coding algorithms
specially designed for wireless transmission.

. The packet-based solution, using IETF protocols for signalling and data transport like the
3GPP IMS solution.

In the scope of Evolved UMTS networks, only this latter alternativewill be described in this
chapter. In its most general definition, an IMS multimedia session may include any
combination of the following three media types: voice, video and text.

While voice and video media flows are very constraining from real-time and requested
resource perspectives, text transmission only requires a low bit rate bearer, as the transmission
rate does not exceed 30 characters per second. Unlike text-messaging services, typed
character flow is simply time-sampled so that no specific action is needed from the user
to request transmission. In principle, the characters typed on a keyboard or drawn on a screen
on the sending terminal should be rendered in real time on the display of the receiving
terminal.

The media flows being set up for a multimedia session may not necessarily be arranged in
duplex mode. This means that, for example, video transmission may only be configured from
terminal A to terminal B, but not in the other direction.

6.5.1 About Circuit and Packet Voice Support

(i) Circuit Voice in 2G Networks
2G/GSM Cellular network was actually thought of as an extension of public land-line
telephone networks, also known as PSTN (Public Switched Telephone Network), and was
therefore specifically optimized for voice transport.

For transmission over PSTN, audio sound is digitized at an 8-kHz sample rate using 13-bit
PCM (Pulse Coded Modulation) samples. Each sample is then compressed to 8 bits using a
logarithmic compression system (the �m-law� in North America and Japan and �A-law� in
Europe and most of the rest of the world). Eventually, one voice channel occupies a full-
duplex 64-Kb/s channel.

A side effect of the 8-KHz sampling value is that any voice frequency above 4KHz is
distorted or completely lost, still allowing voice recognition but definitely not high-grade
quality.

The traditional PSTN voice processing was never envisaged to be used as such on public
cellular networks, not only because of the too high requested bandwidth, but also because the
voice-coding process was not designed for high bit error rate radio transmission.

This is the reason why a specific voice-coding scheme was introduced in all cellular
networks, most of them being based on LPC (Linear Prediction Coding). Those coding
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algorithms allow dividing the voice rate by a factor of four (and even more for low bit rate
coders) whilst preserving the specific characteristics of sounds generated by the vocal tract
(the throat and mouth). As in GSM, this voice-coding operation is handled by the TRAU
(Transcoding and Rate Adaptor Unit). In the example of Figure 6.21, voice is encoded into a
12-Kb/s EFR (Enhanced Full Rate) voice stream.

As a result, voice transmission over the GSM radio interface benefits from quite a high
degree of optimization, which can be summarized by the four following items:

. UEP (Unequal Error Protection): As a result of speech coding algorithms, the TCU
produces blocks of data or speech frames containing three classes of bits. Class 1a, as
the most critical bits, are protected by both cyclic and convolutional codes, whereas class 1b
bits are only protected by the convolutional code. Class 2 bits, being less critical, are sent
unprotected over the radio interface. This mechanism, known as UEP (Unequal Error
Protection), allows optimizing the amount of protection and redundancy to be added to user
data sent over the radio interface, for the sake of efficient resource usage.

. Very limited overhead: In GSM speech handling, the access network is fully aware of the
voice channel characteristics in terms of codec and voice frame structure. For that reason,
the speech frame overhead over the radio interface is reduced to the minimum and limited to
a few bits.

. High-quality low bit rate voice-coding algorithms: Thanks to evolved signal-processing
algorithms, the GSM radio interface can transmit voice with almost no impact on voice
quality as compared to PSTN, using only 25% of the bandwidth required for a PSTN voice
circuit.

. Discontinuous transmission: Discontinuous transmission (also known as DTX) has been
introduced in 2G/GSM voice processing, considering the fact that in a normal conver-
sation, participants are actually not talking at the same time. When silent periods are
detected by the terminal, SID (Silence Descriptor) frames are sent instead of full frames;
these SID frames are used by the other terminal to generate local background comfort
noise. As silent terminals are able to reduce the amount of information they transmit,
DTX helps to increase battery life. In addition DTX also reduces the average interfer-
ence level over the air interface, leading to better spectrum efficiency, although full-
duplex radio resources are allocated for the whole duration of the call in circuit voice
systems.

Figure 6.21 Voice transport in 2G/GSM networks.
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(ii) From Circuit to Packet Voice
As described above, circuit speech processing over the radio used to be a very optimized
process. As a comparison, VoIP was very often perceived as a technology not suitable for radio
resource-constrained public cellular networks, mainly because VoIP speech generates lots of
protocol overhead. The encapsulation of speech frames into the full set of RTP/UDP/IP
protocols is a source of a significant amount of signalling in addition to user data.

In addition, VoIP speech does not take advantage of UEP (Unequal Error Protection). The
codec information is negotiated end-to-end, so that intermediate nodes (like a radio base
station) are not aware of the details of the frame format. When the IP-encapsulated speech
packet to be transmitted to the terminal arrives, the base station has no indication about the
type and format of the information to be transmitted.

However, thanks to the introduction of HSDPA and other high-speed transmission schemes
into wireless access, some new techniques have been studied and evaluated so as to reduce the
gap between circuit and IP packet voice:

. PS voice handling can benefit from high-speed channels and availability of fast HARQ
mechanisms.

. Efficient and error-resilient header compression schemes like ROHC dramatically reduce
the VoIP overhead contribution.

Figure 6.22 describes how voice packets are processed over an EPS network inter-
connected with the legacy PSTN. The Media Gateway is in charge of voice transcoding,
between the IP world and the PCM transport. Putting aside ROHC compression (which
reduces the RTP/UDP/IP overhead), the speech packets are unmodified, from the Media
Gateway to the terminal. The HARQ process is implemented only on the last segment of the
communication, over the radio interface between the terminal and the eNodeB.

CS allows guaranteed delay and bit rate offered to applications for full-duplex commu-
nications, which is a good point for real-time conversational services. However, voice does not
require strict CS bearer, at least for the two following reasons:

. Communication is rarely real full-duplexmode, as only one participant is speaking at a time
in most cases.

. The actual voice rate is not constant but implies some low bit rate silent periods.

Figure 6.22 Voice transport in Evolved UMTS network.
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Finally, the user bit rate of a voice service is far from being constant, so that an All-IP
transport can obviously be a suitable solution to voice, even on the radio interface.

6.5.2 Service Architecture

Figure 6.23 describes the architecture of a mobile-to-mobile multimedia service based on
IMS, in the case of a subscriber from an Operator A calling a subscriber from an Operator B.

In the control path, the SIP signalling used to set up, possibly modify and tear down, the
session goes through the various IMS SIP servers already introduced in Chapter 2. The P-CSCF
is the first SIP proxy server seen by each of the subscribers and the S-CSCF is actually the SIP
server that each terminal is subscribed to. The role of the I-CSCF is to interrogate the HSS
database in order to retrieve the actual S-CSCF that the called party B is currently registered to.

In addition to session setup signalling support, the CSCF nodes as well as the multimedia
Telephony AS (Application Server) are also involved in the support of associated supple-
mentary services, which are described in a subsequent session.

Aside from the control path, the user data packets may be routed through a complete
separated media path, as in Figure 6.23.

On the EPS side, both signalling and user data are transported in EPC via PDN and Serving
GW, as well as the E-UTRAN Access Network.

Figure 6.24 describes the protocol stack supported by an IMSmultimedia terminal, for both
the User and the Control planes. As part of the Control plane, IMS-based multimedia sessions
rely on SIP and SDP for end-to-end session setup, media parameter negotiation and
configuration. On the User plane, user data (being audio, video or text) are transported by
a RTP/UDP/IP stack, as for the PoC service. The RTCP (RTP Control Protocol) is used to

Figure 6.23 The architecture of a mobile-to-mobile IMS-based multimedia service.
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report statistic and feedback to the peer entity. In addition, RTCP is also used for end-to-end
speech Codec control.

Multimedia telephony services may be associated to a set of supplementary services,
providing support for features such as multi-user conference or call forwarding to a voice
mailbox if no answer. Depending on the service, the support of a specific telephony Application
Server may be required, so as, for example, to store and enforce end-user preferences for call
forwarding. In addition, the subscriber has the possibility of activating, de-activating or
interrogating the status, depending on what each individual service allows. In the IMS-based
architecture, this is provided by a specific XCAP (XML Configuration Access Protocol).

The XCAP protocol is based on the flexible XML (eXtensible Markup Language) to
describe information exchanged between the client (or subscriber terminal) and the server on
the network side. XCAP uses the well known HTTP methods PUT, GET and DELETE to
access and modify the information stored in the server.

6.5.3 About Information Coding

(i) Speech Coding
The speech-encoding algorithms of Evolved UMTS are based on those defined for 3G/UMTS
and listed in Table 6.4. The list on the left contains all modes defined for 3G/UMTS speech

Figure 6.24 The IMS Multimedia Telephony protocol stack.
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services. It is interesting to note that the list not only contains the legacy 2G/GSM EFR
(Enhanced Full Rate) codec, but also some originated from other 2G technologies, such as the
IS-641 coder from the TDMA IS-136 standard, as well as the EFR codec from the PDC
Japanese system.

The list on the right contains all the WB (Wide Band) modes. WB coders were introduced
into the wireless standard in order to improve the voice quality of the traditional 8-KHz
sampling process. The WB coders rely on a 16-KHz up-sampling process, so that the speech
bandwidth is increased from the typical land-line 3400Hz to 7000Hz. As a result, the voice
sounds more natural, with quality being a bit closer to what face-to-face conversation would
provide.

The WB modes do not apply to PSTN communications because of the limitations of the
8-KHz PCM coding still largely in use for land-line networks. However, for terminal-to-
terminal voice communications and provided the terminals engaged in the session support
these modes, AMR-WB can contribute to significantly improve the voice quality, at the cost of
an increased transmission bit rate.

The SID (Silence Descriptor) modes correspond to SID frames being sent when no voice
activity is detected. Those frames are used by the receiving terminal to generate background
comfort noise so as to avoid the feeling of communication interruption on the part of the
listener. The bit rate is calculated assuming that SID frames are continuously transmitted.

For any voice call, a fixed codec among the lists above can be chosen for the whole duration
of the call. This leaves the possibility for the operator to propose service grades in which
premium customers would be served by a higher source rate codec and benefit from higher
quality, or to optimize system capacity by, for example, allocating lower source rate as the
network load increases.

Another possibility is to allocate a list of possible codecs for the speech call and benefit
from the codec adaptation mechanisms, known as AMR (Adaptive Multi-Rate). The main
interest of AMR is to allow a trade-off between speech quality and channel protection as the
radio transmission bit error rate varies. When the transmission quality is good enough,
characterized by high values of C/I (Carrier to Interference ratio), high source codec bit rate,
like AMR_12.20, is preferable in order to privilege voice quality.

Table 6.4 AMR and AMR-WB source codec bit rate (from 3GPP 26.071 and 26.171).

Codec mode Source codec bit rate Codec mode Source codec bit-rate

AMR_12.20 12.20 kbit/s (GSM EFR) AMR-WB_23.85 23.85 kbit/s
AMR_10.20 10.20 kbit/s AMR-WB_23.05 23.05 kbit/s
AMR_7.95 7.95 kbit/s AMR-WB_19.85 19.85 kbit/s
AMR_7.40 7.40 kbit/s (IS-641) AMR-WB_18.25 18.25 kbit/s
AMR_6.70 6.70 kbit/s (PDC-EFR) AMR-WB_15.85 15.85 kbit/s
AMR_5.90 5.90 kbit/s AMR-WB_14.25 14.25 kbit/s
AMR_5.15 5.15 kbit/s AMR-WB_12.65 12.65 kbit/s
AMR_4.75 4.75 kbit/s AMR-WB_8.85 8.85 kbit/s
AMR_SID 1.80 kbit/s AMR-WB_6.60 6.60 kbit/s

AMR-WB_SID 1.75 kbit/s
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In contrast, when the radio transmission quality degrades, received frames contain more
errors, leading to degraded voice quality. This can be compensated for by AMR, through the
use of a lower bit rate source codec, like AMR_10.2, and an increased amount of channel
protection, aimed at correcting the transmission errors.

This adaptation is illustrated in Figure 6.25, showing the best performing codec, as regards
C/I radio conditions. In this diagram, voice quality is expressed in terms of MOS (Mean
Opinion Score). MOS is calculated by averaging the results of subjective tests in which a
group of listeners are asked to rate the audio quality of test sentences. The MOS rating varies
from 1 (bad) to 5 (excellent).

Each of the curves shows how the corresponding codec performs accordingly to the radio
quality. The radio block size is represented by a rectangle, the greyed part being the part
dedicated to the channel protection.

(ii) Video Coding
IP multimedia video coding makes use of the following list of algorithms:

. H263 – this was a mandatory video-coding component for H.324 services and actually the
only mandatory one for IMS.

. MPEG4.

. H264.

H.263 video coding, initially released in 1996 by ITU, was targeted to low bit rate
communications. Numerous additional coding tools have been brought to this initial version
in 1998 and 2000 so as to enhance picture fidelity, coding efficiency, error resilience, reduce
encoder and decoder complexity, etc.

In order to limit option combinations and bound implementation complexity, several
profiles have been created, each of them corresponding to a set of coding options to be
implemented. In the scope of 3GPP networks, only two of them are expected to be supported
by terminals:

MOS 

Excellent 

Bad 

C/I 
 woL hgiH

AMR 12.2 AMR 10.2 AMR 7.95

Figure 6.25 AMR codec adaptation.
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. Profile 0, which is the mandatory baseline profile and does not contain any optional modes
of operation.

. Profile 3, which is the optional profile suited to interactive and streaming wireless
transmission. This profile has been defined in order to provide enhanced coding efficiency
performance and enhanced error resilience for wireless transmission.

The basic H.263 picture format is known as CIF (Common Intermediate Format), which has
288 lines of 352 pixels. All the other four formats are built using CIF dimensions, like QCIF
(Quarter CIF), whose size is one-quarter of CIF, and 4CIF, which is four times the CIF size.

H.263 video coding was initially defined for up to 64-Kb/s transmissions. However,
depending on the picture size and rate, it may happen that H.263 delivers a much higher
bit rate. This is illustrated by Table 6.5.

H.264 video coding, initially released in 2003, is also known as AVC (Advanced Video
Coding). It is to be considered as an evolution of the previous H.263 generation. The aim of
H.264 was to be able to cope with the growing need for higher compression techniques for the
benefit of generic audiovisual applications such as video telephony, video conferencing,
television broadcasting and Internet streaming.

Like H.263, H264 proposes a set of profiles corresponding to different levels of complexity
and service grade. For 3GPP IMS multimedia telephony, it is expected that only the baseline
profile is supported by terminals.

(iii) Real Time Text Coding
Text transmission is based on ITU T.140, which specifies the �Protocol for Multimedia
Application Text Conversation�.

All the transmitted characters shall comply with ISO 10646-1, which is one of the standards
for multiple octet character sets. The objective of this standard is to support all the characters
from the widest range of alphabets. In the T.140 scope, all the characters sent shall comply
with the two octet version of the ISO 10646-1 standard.

Reference documents about information coding

3GPP technical specifications:

. 26.071, �AMR Speech Codec: General Description�

. 26.171, �AdaptiveMulti-Rate–Wideband (AMR-WB)SpeechCodec:GeneralDescription�

. 26.114, �IMS Multimedia Telephony: Media Handling and Interaction�

Table 6.5 Some H.263 modes of operation.

Format Picture size Picture rate (Hz) Max bit rate (Kb/s)

QCIF 176� 144 15 64
QCIF 176� 144 30 128
CIF 352� 288 15 128
CIF 352� 288 30 384
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6.5.4 About Supplementary Services

The concept of supplementary services was initially related to legacy circuit-switched-based
infrastructure. It refers to services which are not provided by default to subscriber, but can be
subscribed to in addition to other services. The supplementary services were introduced first
in the wireline telephone networks, and were also part of wireless 2G/GSM network standards
from the beginning.

The supplementary services encompass a very large set of services and functions, some of
them very well known and popular, like �call forwarding to a voice messaging system�, or
�calling line identity presentation�. As a possible source of revenue for the operators,
supplementary services are, in most cases, subject to registration and de-registration, as well
as activation and de-activation from the end-user.

As an illustration, Table 6.6 presents some of the supplementary services available for 2G/
GSM and 3G/UMTS circuit-based services.

As a basic principle, supplementary services have been defined and implemented, regardless
of the access technology, using a specific set ofmessaging protocols to allow all possible actions
for the end-user. However, when moving to IMS networks based on a completely different
signalling and infrastructure, the key question that operators and subscribers would ask is

Table 6.6 Some CS-based supplementary services.

CFU Call Forwarding Unconditional
Allows a called mobile subscriber to have the network send all
incoming calls to another directory number, such as another fixed
or wireless terminal, or a voice-messaging service

CFNRy Call Forwarding on No Reply
Same as CFU, except that the call forwarding is only performed
if the called subscriber does not answer the incoming call

HOLD Call Hold
Allows a mobile subscriber to interrupt communication on an existing
active call and then, subsequently, if desired, re-establish communication

CW Call Waiting
Allows a mobile subscriber to be notified of an incoming call whilst
already engaged in another active or held call. Subsequently, the
subscriber can either accept, reject or ignore the incoming call

AoCI Advice of Charge – Information
Allows providing the terminal with the information to produce an
estimate of the cost of the service used

BAOC Barring of All Outgoing Calls
Allows the subscriber to have barring of all outgoing calls,
except emergency calls

CLIP Calling Line Identification Presentation
Provides the called subscriber with the possibility of receiving the
line identity – or telephone number – of the calling party

CLIR Calling Line Identification Restriction
Allows the calling party to prevent presentation of the line
identity to the called party
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�How is it possible to preserve and implement those services so as to maintain customer service
grade and operator revenues?�

To answer this question, a new set of SIP-based services has been defined, which aims at
providing the same support as the supplementary services. All this activity was handled by the
TISPAN technical body (Telecommunication and InternetConvergedServices andProtocols for
AdvancedNetworking),whichispartoftheETSI;alltheresultshavebeentakenasabasisforIMS-
basedmultimedia services. However, as theremay be some differences in theway some features
are supported, the TISPAN services are more often referred to as �PSTN simulation services�.

The services defined by TISPAN to emulate the PSTN supplementary services have been
grouped into several categories, which more or less cover all of them:

. OIP/OIR (Originating Identity Presentation/Restriction)– see below.

. TIP/TIR (Terminating Identity Presentation/Restriction)– see below.

. CDIV (Communication Diversion)– this category contains equivalents to all call-forward-
ing supplementary services like CFNRy (Call Forwarding on No Reply) and CFB (Call
Forwarding on Busy user).

. HOLD (Communication HOLD)– see below.

. CB (Call Barring)– this category contains equivalents to all call-barring PSTN services like
BAOC.

. MWI (Message Waiting Indication)– this service enables the network to indicate to a
subscriber that there is at least one message waiting in its mailbox.

. CONF (Conference)– this service enables a subscriber to set up a session involving several
users simultaneously.

. ECT (Explicit Call Transfer)– this service enables a subscriber involved in a communica-
tion to transfer that communication to a third party, as a opposed to CDIV services, which
only apply to the service setup phase.

In general, IMS emulation of supplementary services makes use of SIP protocol extensions,
SDP protocol (when the media bearers are involved in the service) as well as support when
required from the telephony Application Server (which maintains, for example, the subscriber
busy of barring status) or CSCF IMS control nodes.

In the rest of the section, some of these categories are described in more detail, to illustrate
how IMS-based emulation of supplementary services is performed.

(i) OIP/OIR (Originating Identity Presentation/Restriction); TIP/TIR (Terminating Identity
Presentation/Restriction)
OIP and OIR services deal with possibility of presenting or restricting the identity of the
originator to the called party. Similarly, TIP and TIR services allow displaying or restricting
called party identity to the calling party. Those four services are the IMS equivalents of CLIP,
CLIR, COLP and COLR circuit-switched supplementary services.

To allow subscriber identity presentation or restriction, the service makes use of SIP
extension header fields to convey useful information and requires specific actions from
terminals and S-CSCF nodes to add useful information when needed. These extensions,
briefly presented in Chapter 4, are defined as part of SIP IMS specifications:

. The From header field.
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. The P-Preferred-Identity header field.

. The P-Asserted-Identity header field –which represents the IMS subscriber identity once it
has been authenticated.

. The Privacy header field.

(ii) HOLD (Communication HOLD)
The HOLD supplementary service enables a user to suspend an established session and
resume it at a later time. This feature is typically used when a subscriber receives an incoming
call while being engaged in an active session. If nothing specific is done, the incoming call is
eventually forwarded to the voice mailbox as the called party does not answer (and provided
the corresponding Call Forwarding Service was configured accordingly).

Otherwise, if the HOLD service is active, the subscriber may put the on-going active
session on hold, accept the incoming call, and resume the held session when the second one is
over.

In the IMS world, and as illustrated in Figure 6.26, this service is provided through the SDP
protocol whose role (in the scope of the HOLD service) is to suspend or resume the media
streams of the session.

In the case of a full-duplex voice session, when a user presses the �hold� button, its terminal
will update the media stream attribute from �sendrecv� (which is the normal value for an active
conversational service) to �sendonly� (meaning that the held terminal shall not transmit
anymore on its media bearers) using a SIP INVITE message. In addition, the HOLD
requesting terminal will also locally mute, so that no media are sent and played out at the
held terminal side. This INVITE message is acknowledged by the peer terminal using a SIP
200 OK containing the new media attribute, as seen by terminal B.

Terminal A P-CSCF S-CSCF P-CSCF Terminal B 

INVITE (‘sendonly’) 

ACK

200 OK (‘recvonly’) 

Active session 

RTP frames are no more send 

Network B Network A 

Figure 6.26 An example of a HOLD service.
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For the HOLD service, all the signalling is transmitted through P-CSCF and S-CSCF IMS
nodes, as any other SIP messages that would be exchanged between the two terminals.
Further on, when the initial session is resumed, the media stream attribute is changed back to
�sendrecv�.

This behavior is not specific to IMS multimedia communication, as it was initially
described in the document RFC3264, �An Offer/Answer Model with the Session Description
Protocol (SDP)�, as the normal procedure to put a unicast media stream on hold.

Reference documents about supplementary services

3GPP technical specifications:

. 22.004, �General on Supplementary Services�

. 24.173, �IMS Multimedia Telephony Service and Supplementary Services�

ETSI TISPAN technical specifications:

. 181002, �Multimedia Telephony with PSTN/ISDN Simulation Services�

. 183004, �Communication Diversion (CDIV)�

. 183005, �Conference (CONF)�

. 183006, �Message Waiting Indication (MWI)�

. 183007, �Originating Identification Presentation (OIP) and Originating Identification
Restriction (OIR)�

. 183008, �Terminating Identification Presentation (TIP) and Terminating Identification
Restriction (TIR)�

. 183010, �Communication HOLD (HOLD)�

. 183011, �Anonymous Communication Rejection (ACR) and Communication Barring
(CB)�

. 183029, �Explicit Communication Transfer (ECT)�

6.5.5 Multimedia Services in EPS Systems

The major issues for supporting a conversational real-time service over a packet network are
jitter (or transmission delay variation) and packet loss. Packet-based radio systems like E-
UTRAN will experience the same radio conditions as radio systems based on dedicated
resources (like 2G/GSM or 3G/UTRAN). However, shared radio systems like EPS are more
sensitive to traffic load, so that scheduling algorithms have to be designed in a very specific
way, so as to ensure that latency and jitter values do no compromise the end-user�s quality of
experience.

The jitter is not a problem by itself, as long as it remains within an acceptable range. As in
most of the existing IP-based real-time applications, it can easily be compensated for by using
a buffer at the receiving terminal, so that the packet timing variation can be regenerated. This
is exactly what real-time transport protocols like RTP, presented in Chapter 4, can propose.
Each RTP data packet contains a Timestamp which aims to reconstruct the exact data time
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sequence. However, jitter compensation for a conversational service shall not compromise the
overall transmission delay.

In addition, packet data schedulers have to cope with additional points which may affect
real-time resource allocation:

. Sender Reports and Receiver Reports (SR and RR)– these messages are part of the
RTCP layer, sent from time to time. These reports are sent periodically and the induced
traffic load should not exceed 5% of the total session bandwidth, as requested by the IETF
RTP document.

. ROHC Full packet header transmission– At some time, or when a transmission error
occurs, ROHC compression and decompression machines need to be resynchronized, as the
decompressor may not be able to successfully retrieve compressed information. Resyn-
chronization is achieved by the compressor by sending a full uncompressed header. This is
unpredictable, as it depends on radio transmission quality as well as ROHC implementation.
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Glossary

This includes definitions of all acronyms and technical terms used.

16 QAM (16 Quadrature Amplitude Modulation). 16 QAM is a 16-state phase and
amplitude modulation scheme used in HSDPA radio interface.

3GPP (3rd Generation Partnership Project). 3GPP is a cross-country organization
initially in charge of the definition of the 3G UMTS standard.

3GPP2 (3rd Generation Partnership Project 2). 3GPP2 is a cross-country organisation
in charge of the definition of the 3G cdma2000 standard and its evolutions.

8PSK (8 Phase Shift Keying). 8PSK is an eight-state phase-modulation scheme used in
EDGE radio interface.

AAA (Authentication, Authorization and Accounting). AAA is a generic model for IP
network access control, initiated and developed by IETF.

AES (Advanced Encryption Standard). AES is a robust symmetric encryption algorithm.

AF (Application Function) AF is the generic name for the network element which supports
applications that require dynamic policy and/or charging control. For 3GPP IP access types,
the AF is supported by the P-CSCF.

AKA (Authentication and Key Agreement). The AKA process is a challenge–response-
based mechanism which aims at mutual network/terminal authentication and security key
distribution.

AMR (Adaptive Multi-Rate). The AMR speech coder is a single integrated speech codec
with multiple source rates, allowing a trade-off between speech quality and channel protection
as the bit error rate varies.

ARQ (Automatic Repeat Request). ARQ is a method for repetition of erroneous or lost
packets.

AS (Access Stratum). The AS is the set of features associated to the radio interface and
Access Network.
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AuC (Authentication Centre). The AuC is one of the HSS components.

AUTN (Authentication Token). AUTN is the parameter used by theUSIM to authenticate the
network.

AUTN. is part of the authentication vector (AV).

AV (Authentication Vector). The AV is a set of five elements (RAND, AUTN, CK, IK,
XRES) which enables the EPC to run the AKA process.

BCH (Broadcast Channel). The BCH is a downlink E-UTRAN transport channel
associated to the BCCH.

BCCH (Broadcast Control Channel). The BCCH is a downlink E-UTRAN logical
channel supporting broadcast of system information.

BLAST (Bell Lucent Layered Space Time coding). BLAST is a MIMO technology
consisting in placing different symbols in different respective antennas.

BLER (Block Error Rate).

CCCH (Common Control Channel). The CCCH is an uplink E-UTRAN logical channel
for signalling transmission until a RRC connection is available.

CDF (ChargingData Function). The CDF is in charge of building CDRwhich content and
format are specified by 3GPP standard documents.

CDMA (Code Division Multiple Access). CDMA is a medium-access method in which
different users are allocated different code sequences.

CDR (Charging Data Record). A CDR is a collection of information (connection time,
allocated resources, etc.) for use in billing and accounting.

CGF (Charging Gateway Function). The CGF is a gateway between the
Core Network nodes and the Billing Domain. It supports CDR storage and management
(opening, closing).

CK (Ciphering Key). CK is the secret key used to ensure transmission confidentiality
between the terminal and the eNodeB. CK is part of the authentication vector (AV).

CQI (Channel Quality Indicator).

CRF (Charging Rules Function). The CRF is a PS Core Network element introduced in
UMTS for IMS flow-based charging.

CP (Cyclic Prefix).

CS (Circuit Switched domain). The CS domain is the subset of the 2G/GSM
and 3G/UMTS Core Network domain dedicated to the support of packet-based
services.

CSCF (Call Session Control Function). The CSCF is a SIP-based server in the IMS
architecture for establishing, terminating or modifying IMS sessions.

DAB (Digital Audio Broadcast). Digital radio broadcast based on OFDM technology.
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DCCH (Dedicated Control Channel). DCCH is a bi-directional E-UTRAN logical
channel for the transmission of control information.

DFT (Discrete Fourier Transform). DFT is a version of the continuous Fourier Transform
using digital samples.

DFT-SOFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division
Multiplex). DFT-SOFDM is a method of modulation allowing the decrease of transmitted
signal PAPR.

DL (Downlink). Communication link from Base Station to mobile.

DL-SCH (Downlink Shared Channel). The DL-SCH is a downlink E-UTRAN transport
channel for the transmission of user and control data.

DTCH (Dedicated Traffic Channel). DTCH is a bi-directional E-UTRAN logical channel
for the transmission of traffic information.

DVB (Digital Video Broadcast). DVB is a digital television broadcast system based on
OFDM technology.

E-UTRAN (Evolved-UTRAN). E-UTRAN is the Access Network evolution for 3GPP 3G
standards.

E-DCH (Enhanced Dedicated Channel). E-DCH is the enhanced channel defined in
HSUPA 3G standards.

EAP (Extensible Authentication Protocol). EAP is an authentication framework which
supports multiple authentication methods. It is defined by the RFC3748 IETF document.

EDGE (Enhanced Data rates for GSM Evolution). EDGE is a high bit rate evolution of
2G/GSM networks.

EMM (EPS Mobility Management). EMM refers to the set of signalling procedures
between the terminal and the MME used for user attachment and location management.

eNodeB (evolved NodeB). eNodeB is the radio transmission and receiver node of
E-UTRAN Access Network.

EPC (Evolved Packet Core). EPC is the Packet Core Network evolution for 3GPP 2G/3G
standards.

EPS (Evolved Packet System). EPS is the 3GPP name for the evolution of UMTS. EPS
encompasses both E-UTRAN and EPC.

FDD (Frequency Division Duplex). FDD is a duplex transmission method based on
frequency separation.

FDMA (Frequency Division Multiple Access). FDMA is a medium-access method in
which different users are allocated different frequencies.

FFT (Fast Fourier Transform). FFT is a mathematical transformation on which OFDM is
based.
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FLUTE (File Delivery over Unidirectional Transport). FLUTE is a protocol for the
unidirectional delivery of files over the Internet, suited to multicast networks. In particular,
FLUTE is used in the 3GPP MBMS service.

FOMA (Freedom of Mobile Multimedia Access). FOMA is the commercial name for the
3G/UMTS network initially deployed in Japan by DoCoMo.

GERAN (GPRS EDGE Radio Access Network). GERAN is the 3GPP name for the GSM
access network. It refers to as the initial 2G/GSM voice system, as well as GPRS and EGDE
evolutions.

GGSN (Gateway GPRS Support Node). The GGSN is a 2G/GSM and 3G/UMTS Core
Network entity supporting packet data transmission to and from mobile terminals.

GMSC (Gateway Mobile Switching Center). The MSC is a specific type of MSC, used as
a gateway with the PSTN.

GPRS (General Packet Radio Service). GPRS is an evolution of 2G GSM networks for
packet data service support.

GSM (Global System for Mobile communications). GSM is the well known 2G cellular
telephony system.

GTP (GPRS Tunnelling Protocol). GTP is a protocol used in EPC for establishing data
sessions; it also provides data encapsulation between network nodes. GTP has been inherited
from 2G/GPRS standard.

HARQ (Hybrid Automatic Repeat Request). HARQ is a method of repeating at the
emission and combining at the reception the noncorrectly received packets.

HCR-TDD (High Chip Rate Time Division Duplex). HCR-TDD is the 3GPP UMTS TDD
version in which the spreading is realized in 3.84MHz.

HLR (Home Location Register). The HLR is one of the HSS components.

HSDPA (High Speed Downlink Packet Access). HSDPA is a high-speed enhancement of
3G/UMTS networks for network-to-terminal transmission.

HS-DSCH (High Speed Downlink Shared Channel). HS-DSCH is the high-speed
transport channel used in 3G HSDPA.

HSPA (High Speed Packet Access). HSPA designates the combination of HSDPA and
HSUPA.

HSS (Home Subscriber Server). The HSS is the master database of 3G networks contain-
ing the user subscription-related information.

HSUPA (High Speed Uplink Packet Access). HSUPA is a high-speed enhancement of 3G/
UMTS networks for terminal-to-network transmission.

IDMA (Interleaved Division Multiple Access). IDMA is a method of reducing the inter-
cell interference.
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IETF (Internet Engineering Task Force). IETF is an international community dedicated
to the evolution of Internet and Internet standards.

IEEE (Institute of Electrical and Electronics Engineers). IEEE is a professional associ-
ation for the advancement of technology. It covers a wide range of technical areas, including
wireless telecommunications.

IFFT (Inverse Fast Fourier Transform). IFFT is the reciprocal transform of the FFT.

IK (Integrity Key). IK is the secret key used to ensure signalling transmission integrity
between the terminal and the eNodeB. IK is part of the authentication vector (AV).

IOTA (Isotropic Orthogonal Transform Algorithm). IOTA is a pulse Shaping Filter.

ISIM (IMS Subscriber Identity Module). See SIM.

ITU (International Telecommunication Union). ITU is an international organization in
charge of global telecom networks and services coordination.

IMS (IP Multimedia Subsystem). IMS is a 3GPP framework, designed for delivering IP
multimedia services to end-users.

IMSI (International Mobile Subscriber Identity). The IMSI is a private unique mobile
subscriber identifier used in 3GPP networks including GSM, UMTS and EPS technologies.

IMT-2000 (International Mobile Telecommunications 2000). IMT-2000 is the ITU name
for post-2G network evolutions. 3GPP/UMTS and 3GPP2/cdma2000 are part of the IMT-2000
standard family.

IR (Incremental Redundancy). IR is a packet repetition method used in HARQ.

ISI (Inter-symbol Interference). ISI is the perturbation brought by late-arrived radio
symbols on previous ones in dispersive channels.

LCR-TDD (Low Chip Rate-Time Division Duplex). LCR-TDD is the 3GPP UMTS TDD
version in which the spreading is realized in 1.28MHz.

LTE (Long Term Evolution). LTE is a 3GPP work item aiming at the definition of 3G
Access Network evolution, also known as E-UTRAN.

MAC (Medium Access Control). MAC is the E-UTRAN radio interface Layer 2 protocol
in charge of priority handling and data scheduling over the radio interface.

MAP (Mobile Application Part). MAP is the general-purpose protocol used between Core
Network nodes for communication, subscriber data and mobility management.

MBMS (Multimedia Broadcast and Multicast Service). MBMS is a broadcast/multicast
service defined by the 3GPP.

MC-CDMA (Multi-Carrier Code Division Multiple Access). MC-CDMA is an OFDM
modulation system operating on a code division multiple access system.

MCC (Mobile Country Code). The MCC is part of the IMSI and uniquely identifies the
home country of the subscriber.
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MCCH (Multicast Control Channel). The MCCH is a downlink E-UTRAN logical
channel supporting control information associated to MBMS.

MCH (Multicast Channel). The MCH is a downlink E-UTRAN transport channel
supporting the MCCH and MTCH logical channels.

MCS (Modulation and Code Scheme). MCS represents a coding and modulation scheme
applied to a physical channel.

MIB (Master Information Block). The MIB contains key System Information parameters
broadcast by E-UTRAN on the BCCH.

MIMO (Multi Input Multi Output). MIMO is a generic term for multi-port systems. It is
usually applicable to antenna systems for E-UTRAN.

MTCH (Multicast Traffic Channel). TheMTCH is a downlink E-UTRAN logical channel
for the transmission of MBMS-related data.

MGCF (Media Gateway Control Function). The MGCF is an IMS node in charge of
signalling inter-working with PSTN for voice circuit-switched services.

MGW (Media Gateway). The MGW is responsible for media conversion to and from the
PSTN, under the control of the MGCF.

MME (Mobility Management Entity). MME is an entity part of the EPC network, in
charge of session and user-mobility management.

MMD (MultiMedia Domain). MMD is the cdma2000 equivalent of the IMS subsystem of
UMTS networks.

MMSE (Minimum Mean Square Error). MMSE is an estimation criterion for parameter
estimation. Example of use: radio channel identification

MNC (Mobile Network Code). The MNC is part of the IMSI and uniquely identifies the
home operator of the subscriber in its country.

MSC (Mobile Switching Center). The MSC belongs to the Circuit Core Network and is
responsible for circuit-switched call control.

MSISDN (Mobile Subscriber ISDN Number). The MSISDN is the telephone number for
mobile terminals.

MT (Mobile Terminal). MT is the part of the terminal which supports the radio-related
protocols and components, as well as the UICC module.

NAI (Network Address Identifier). The NAI is identity, built using the IMSI and used by
the subscriber when accessing a 3GPP network through a WLAN.

NAS (Non Access Stratum). The NAS is the set of access-independent network features
related to the management subscriber data and communication contexts. In EPC network, the
NAS signalling terminates in the MME.

NGN (Next Generation Network). NGN refers to the new packet-based converged
network architecture.
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NodeB. NodeB is the radio transmission and receiver node of the 3G/UTRAN access
network.

OFDM (Orthogonal Frequency Division Multiplexing). OFDM is the radio technology
family chosen for the E-UTRAN physical layer. It is based on the mapping of a
wide-band signal to be transmitted onto large numbers of narrow-band modulated
subcarriers.

OFDMA (Orthogonal Frequency Division Multiple Access). OFDMA is a multi-user
multiplexing technique based on OFDM subcarrier arrangement.

P-GW (PDN Gateway). The Packet Data Network Gateway is part of the EPC. It is the
functional network entity which terminates the SGi interface towards the PDN.

PARC (Per Antenna Rate Control). PARC is a MIMO technology consisting of encoding
the same symbols with different MCS on different antennas.

PAPR (Peak on Average Power Ratio). PAPR is a parameter which dimensions the
linearity specification of a power amplifier.

PBCH (Physical Broadcast Channel). PBCH is a downlink physical channel which carries
system information.

PCH (Paging Channel). The PCH is a downlink E-UTRAN transport channel associated to
the PCCH.

PCCH (Paging Control Channel). The PCCH is a downlink E-UTRAN logical channel
supporting the transmission of paging information.

PDCCH (Physical Downlink Control Channel). PDCCH is a downlink physical channel
which carries scheduling assignment.

PDSCH (Physical Downlink Shared Channel). PDSCH is a downlink physical channel
which carries user data and higher-layer signaling.

PMCH (Physical Multicast Channel). PMCH is a downlink physical channel which
carries multicast/broadcast information.

PUCCH (Physical Uplink Control Channel). PUCCH is an uplink physical channel which
carries uplink control information.

PUSCH (Physical Uplink Shared Channel). PUSCH is an uplink physical channel which
carries user data and higher-layer signaling.

PCEF (Policy and Charging Enforcement Function). PCEF is the generic name for the
functional entity which supports service data flow detection, policy enforcement and flow-
based charging. For 3GPP IP access types, the PCEF is supported by the GGSN.

PCRF (Policy and Charging Rules Function). The PCRF is actually a concatenation of
PDF and CRF network nodes.

PDCP (Packet Data Convergence Protocol). PDCP is the radio interface protocol layer in
charge of header compression and security protection.
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PDF (Policy Decision Function). The PDF is a PS Core Network element introduced in
UMTS for IMS flow policy control.

PDP Context (Packet Data Protocol Context). PDP is the name for the 2G/GPRS or 3G/
UMTS packet session context which is set up between the terminal and the Packet Core
Network. �EPS bearer� is the equivalent of the PDP context in EPS networks.

PHY (Physical Layer). PHY is the E-UTRAN physical layer in charge of channel coding
and modulation.

PLMN (Public LandMobile Network). A PLMN is a public mobile network owned by an
operator. It is uniquely identified by a concatenation of MNC and MCC codes.

PoC (Push-to-talk over Cellular). PoC is a walkie-talkie-like speech service defined by the
OMA.

PS (Packet Switched domain). The PS domain is the subset of the 2G/GSM and 3G/UMTS
Core Network domain dedicated to the support of packet-based services.

PSTN (Public Switched Telephone Network). PSTN is the public worldwide circuit-
switched-based telephone network.

PSK (Phase Shift Keying). PSK is the generic name of a modulation constellation whose
(n) points are separated in phase. If n= 2, then BPSK terminology is used. If n = 4, then QPSK
terminology is used.

PRB (Physical Resource Block).

QAM (Quadrature Amplitude Modulation). QAM is the generic name for a modulation
constellation whose (n) points are separated in amplitude and phase.

RACH (Random Access Channel). The RACH is an uplink E-UTRAN transport channel
for the transmission of initial access requests from terminals.

RAND (Random). RAND is the random challenge parameter used during the AKA
procedure. RAND is part of the authentication vector (AV).

RB (Resource Block).

RLC (Radio Link Control). RLC is the E-UTRAN radio interface Layer 2 protocol in
charge of data segmentation and error correction.

RNC (Radio Network Control). The RNC belongs to the UTRAN and is in charge of radio
protocols and the control of UTRAN Base Stations.

ROHC (Robust Header Compression). ROHC is a compression header framework
suitable for IP-based applications.

RRC (Radio Resource Control). The RRC layer is the E-UTRAN control protocol
associated to the radio interface.

RTCP (Real Time Control Protocol). RTCP is an application-layer control protocol
developed by the IETF, used together with RTP for the control of real-time application
bearers.
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RTP (Real Time Protocol). RTP is an application-layer protocol developed
by the IETF, used as the transport protocol for real-time-sensitive packet-based
services.

RU (Resource Units). RU are uplink radio resources. RU can be localized (LRU) or
distributed (DRU).

S-GW (Serving Gateway). The Serving GW is part of the EPC. It is the functional network
entity which terminates the interface towards E-UTRAN.

S-TMSI (S-Temporary Mobile Subscriber Identity). The S-TMSI is a temporary
user identity used in the terminal–network signaling procedure, so as to preserve IMSI
privacy.

SAE (System Architecture Evolution). SAE is a 3GPP work item aimed at the definition
of 3G Packet Core network evolution, also known as EPC.

SC-FDMA (Single-Carrier FDMA). OFDM modulation technique which overcomes the
PAPR problem. Consists of a DFT followed by a FFT.

SCH (Synchronization Channel).

SCTP (Stream Control Transmission Protocol). SCTP is a reliable connection-oriented
transport protocol similar to the well known TCP and used over the S1 E-UTRAN interface.

SDF (Service Data Flow). An SDF is a flow of packet data identified by the IP 5-tuple
(source IP address, destination IP address, source port number, destination port number,
protocol ID of the protocol above IP).

SGSN (Serving GPRS Support Node). The SGSN is a 2G/GSM and 3G/ UMTS Core
Network entity supporting packet data transmission to and from mobile terminals.

SIM (Subscriber Identity Module). Like the USIM (for UMTS) and ISIM (for IMS), the
2G/SIM is an application of the UICC card put in the user terminal and supporting user-related
information such as identity, security credentials, phonebook, and application-specific
information.

SDP (Session Description Protocol). SDP is an application-layer control protocol devel-
oped by the IETF. SDP is the standard for describing and negotiating media components used
in a session.

SDMA (Spatial Division Multiple Access). SDMA is a space multiplexing technique
making use of antenna processing.

SIB (System Information Block). ASIB is a set of information broadcast by the E-UTRAN
on the BCCH.

SIP (Session Initiation Protocol). SIP is an application-layer control protocol developed
by the IETF which is used for establishing IP-based multimedia services such as Voice over IP,
or the �Presence� service.

SM (Session Management). SM refers to the set of signalling procedures between the
terminal and the MME used for bearer management.
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SMS (Short Message Service). SMS is the well known text-message service introduced in
2G/GSM networks.

STTD (Space Time Transmit Diversity). STTD is a transmit diversity technique based on
space–time coding. Alamouti�s version is a famous one chosen for 3GPP.

SU (Scheduling Unit). A SU consists of one or more SIB and is broadcast by E-UTRAN on
the BCCH using its own scheduling period.

TA (Tracking Area). The TA is a group of contiguous cells which helps to track terminal
locations in IDLE mode.

TAI (Tracking Area Identity). The TAI uniquely identifies a TA within a network.

TAU (Tracking Area Update). TAU refers to as the procedure performed between the
terminal and the network to update the current subscriber�s TA.

TCP (Transmission Control Protocol). TCP is a reliable end-to-end connection-oriented
data-transport protocol defined by the IETF.

TDMA (Time Division Multiple Access). TDMA is a medium-access method in which
different users are allocated different time periods.

TAP (Transferred Account Procedure). TAP is a protocol defined by the GSM Associa-
tion for the interchange of billing data between different network operators.

TBCP (Talk Burst Control Protocol). TBCP is a protocol layer specific to the PoC service,
in charge of speech access arbitration between the participants.

TDD (Time Division Duplex). TDD is a duplex transmission method based on time
separation.

TE (Terminal Equipment). TE is the part of the terminal which supports user applications
and application-level protocols, as well as user interface.

TISPAN (Telecommunication and Internet converged Services and Protocols for
Advanced Networking). TISPAN is the ETSI technical body in charge of next-generation
converged network definition.

TTI (Time Transmit Interval). Time spreading of one channel-coded block.

UDP (User Datagram Protocol). UDP is a connectionless end-to-end nonreliable transport
protocol defined by IETF.

UE (User Equipment). UE is the 3GPP name for a mobile terminal. AUE is composed of a
TE and a ME.

UICC (Universal Integrated Circuit Card). The UICC is a general-purpose circuit card
used as a physical support for SIM and USIM applications.

UL (Up-Link). Communication link from mobile to Base Station.

UL-SCH (Uplink Shared Channel). The UL-SCH is an uplink E-UTRAN transport
channel for the transmission of user and control data.
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UMB (Ultra Mobile Broadband). UMB is the 3GPP2 equivalent of the EPS standard.

UMTS (Universal Mobile Telecommunications System). UMTS is the 3G standard
developed by the 3GPP consortium.

USIM (Universal Subscriber Identity Module). See SIM.

UTRAN (Universal Terrestrial Radio Access Network). UTRAN represents the access
network (or the radio-specific part) of a 3G UMTS network.

VRB (Virtual Resource Block).

WCDMA (Wide band Code Division Multiple Access). The chosen radio technology for
3GPP UTRAN.

WiMAX (Worldwide Interoperability Microwave Access). The IEEE packet radio
standard for short and long-range wireless Internet.

XRES (Expected Result). XRES is the parameter used by the EPC to authenticate the
USIM. XRES is part of the authentication vector (AV).
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