

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

HTML, XHTML,
and CSS Bible

3rd Edition

Brian Pfaffenberger, Steven M. Schafer,
Charles White, Bill Karow

Wiley Publishing, Inc.

i

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

HTML, XHTML,
and CSS Bible

3rd Edition

Brian Pfaffenberger, Steven M. Schafer,
Charles White, Bill Karow

Wiley Publishing, Inc.

i

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

HTML, XHTML, and CSS Bible, 3rd Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright C© 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
e-Mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETE-
NESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SIT-
UATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEB SITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEB SITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEB SITES LISTED
IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS
WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please
contact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Cataloging-in-Publication Data: Available from Publisher

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

is a trademark of Wiley Publishing, Inc.

ii

eISBN: 0-7645-7718-2

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

About the Authors
Bryan Pfaffenberger is the author of more than 75 books on computers and the
Internet, including the best-selling Discover the Internet, from IDG Books Worldwide.
He teaches advanced professional communication and the sociology of computing in
the University of Virginia’s Division of Technology, Culture, and Communication.
Bryan lives in Charlottesville, Virginia, with his family and an extremely spoiled cat.

Steven M. Schafer is a veteran of technology and publishing. He programs in several
languages, works with a variety of technologies, and has been published in several
technical publications and articles. He currently is the COO/CTO for Progeny, an
open source–based service and support company. Steve can be reached by e-mail at
sschafer@synergy-tech.com.

Chuck White is a Web development professional who has written numerous articles
and books on Web development, including Mastering XSLT and Developing Killer Web
Apps with Dreamweaver MX and C#, and tutorials for IBM DeveloperWorks. His first
published work on CSS was for Web Techniques magazine in 1997, and he has been
working with large and small Web sites since 1996. He is currently a Web software
engineer for eBay.

Bill Karow, in addition to writing several computer books, has served as a
contributor or technical editor on more than 30 other books. Formerly in charge of
systems development for Walt Disney Entertainment, Bill now serves as a computer
consultant in the Orlando area when he’s not out riding his bicycle. He also has the
distinction of having stood atop many of the buildings at Walt Disney World, fanfare
trumpet in hand (with their permission, of course).

iii

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

Credits
Acquisitions Editor
Jim Minatel

Development Editor
Marcia Ellett

Production Editor
Gabrielle Nabi

Technical Editor
Wiley-Dreamtech India Pvt Ltd

Copy Editor
TechBooks

Editorial Manager
Mary Beth Wakefield

Vice President & Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Bob Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Erin Smith

Proofreading and Indexing
TechBooks Production Services

iv

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

To Miri, I’ll desperately miss
my late-night company.

Steve

v

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

Acknowledgments...
A book such as this is hard work, and only a small portion of that work is

performed by the authors. As such, the authors would like to thank
the following:

The management team at Wiley Publishing for continuing to support large, tutorial-
reference books so folks like you (the reader) can benefit.

Jim Minatel, for putting together the plan, assembling the team, and making us all
behave.

Bryan Pfaffenberger, the original author of the 1st and 2nd Editions of this book, for
providing a solid outline and organization for us to follow.

John Daily, who compiled the referential information in Appendixes A and B, for
stepping up and providing the critical attention to detail necessary for such work.

Marcia Ellett, for continuing to be one of the best development editors around—
keeping us all on track and organized—and for providing crucial insights and
feedback throughout the process.

Wiley-Dreamtech India Pvt Ltd. for providing the technical editing—ensuring that the
information is accurate and pertinent, as well as providing additional useful insights.

TechBooks, for ensuring that our text is easy to read and understand, despite our
best efforts.

The production crew who packaged the raw material into this nice package you
now hold.

And last, but definitely not least, our friends and family who give us the love and
support that enables us to do this in the first place.

vi

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

Contents at a Glance...
Acknowledgments . iv
Introduction . xxiii

Part I: Understanding (X)HTML. .1
Chapter 1: Introducing the Web and HTML . 3
Chapter 2: What Goes Into a Web Page? . 19
Chapter 3: Starting Your Web Page . 43

Part II: HTML/XHTML Authoring Fundamentals 53
Chapter 4: Lines, Line Breaks, and Paragraphs . 55
Chapter 5: Lists . 75
Chapter 6: Images . 91
Chapter 7: Links . 113
Chapter 8: Text . 127
Chapter 9: Special Characters .135
Chapter 10: Tables . 149
Chapter 11: Page Layout with Tables . 173
Chapter 12: Frames . 189
Chapter 13: Forms . 205
Chapter 14: Multimedia . 227
Chapter 15: Scripts. .257

Part III: Controlling Presentation with CSS . 267
Chapter 16: Introducing Cascading Style Sheets. .269
Chapter 17: Creating Style Rules . 279
Chapter 18: Fonts . 297
Chapter 19: Text Formatting . 313
Chapter 20: Padding, Margins, and Borders . 337
Chapter 21: Colors and Backgrounds . 347
Chapter 22: Tables . 359
Chapter 23: Element Positioning . 369
Chapter 24: Defining Pages for Printing . 387

Part IV: Advanced Web Authoring . 399
Chapter 25: JavaScript . 401
Chapter 26: Dynamic DHTML . 429

vii

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

viii Contents at a Glance

Chapter 27: Dynamic HTML with CSS . 449
Chapter 28: Introduction to Server-Side Scripting . 469
Chapter 29: Introduction to Database-Driven Web Publishing . 479
Chapter 30: Creating a Weblog . 495
Chapter 31: Introduction to XML . 505
Chapter 32: XML Processing and Implementations . 523

Part V: Testing, Publishing, and Maintaining Your Site 547
Chapter 33: Testing and Validating Your Documents . 549
Chapter 34: Web Development Software . 555
Chapter 35: Choosing a Service Provider. .567
Chapter 36: Uploading Your Site with FTP. .575
Chapter 37: Publicizing Your Site and Building Your Audience . 583
Chapter 38: Maintaining Your Site . 591

Part VI: Principles of Professional Web Design
and Development . 601

Chapter 39: The Web Development Process . 603
Chapter 40: Developing and Structuring Content .617
Chapter 41: Designing for Usability and Accessibility . 629
Chapter 42: Designing for an International Audience . 645
Chapter 43: Security . 659
Chapter 44: Privacy . 667

Part VII: Appendixes . 677
Appendix A: HTML 4.01 Elements . 679
Appendix B: CSS Properties . 743
Index . 773

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

Contents...
Acknowledgments . iv

Introduction. xxiii

Part I: Understanding (X)HTML 1

Chapter 1: Introducing the Web and HTML . 3
What Is the World Wide Web?. .3
How Does the Web Work? . 3
What Is Hypertext? . 4
Where Does HTML Fit In? . 5

The invention of HTML . 5
A short history of HTML . 6
So who makes the rules? . 8

What Is CSS? .10
The maintenance nightmare . 10
Enter CSS . 13
What does “cascading” mean? . 14

What Is XHTML? . 15
Creating an HTML Document . 15

Writing HTML . 16
Name your files with a Web-friendly extension . 16
Format your text . 16
Structure your document . 16

Don’t I Need a Web Server? . 17
Summary . 18

Chapter 2: What Goes Into a Web Page? . 19
Specifying Document Type . 19
The Overall Structure: HTML, Head, and Body . 20

The <html> tag . 20
The <head> tag. .20

Styles . 22
Block Elements: Markup for Paragraphs . 24

Formatted paragraphs . 25
Headings . 26
Quoted text . 27
List elements .28
Preformatted text . 30
Divisions . 30

Inline Elements: Markup for Characters . 31
Basic inline tags . 31
Spanning . 32

Special Characters (Entities) . 32

ix

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

x Contents

Organizational Elements . 33
Tables . 34
Forms . 36

Linking to Other Pages . 37
Images. .38
Comments . 39
Scripts. .40
Putting it All Together . 40
Summary . 41

Chapter 3: Starting Your Web Page . 43
Basic Rules for HTML Code. 43

Use liberal white space . 43
Use well-formed HTML . 44
Comment your code . 45

Creating the Basic Structure . 46
Declaring the Document Type . 46
Specifying the Document Title . 47
Providing Information to Search Engines . 48
Setting the Default Path . 49
Creating Automatic Refreshes and Redirects . 49
Page Background Color and Background Images . 50

Specifying the document background color . 50
Specifying the document background image . 51

Summary . 52

Part II: HTML/XHTML Authoring Fundamentals 53

Chapter 4: Lines, Line Breaks, and Paragraphs . 55
Line Breaks . 55

Paragraphs. .56
Manual line breaks . 59

Nonbreaking Spaces . 60
Soft Hyphens . 61
Preserving Formatting—The <pre> Element . 63
Indents . 64
Headings . 66
Horizontal Rules . 68
Grouping with the <div> Element . 70
Summary . 73

Chapter 5: Lists . 75
Understanding Lists . 75
Ordered (Numbered) Lists . 76
Unordered (Bulleted) Lists . 82
Definition Lists . 86
Nested Lists . 87
Summary . 89

Chapter 6: Images . 91
Image Formats for the Web . 91

Image compression . 91
Compression options . 91
Image color depth. .93
Enhancing downloading speed . 94

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xiContents

Creating Graphics . 95
Essential functions . 95
Free alternatives . 96
Progressive JPEGs and interlaced GIFs . 97

Inserting an Image . 99
Image Alignment . 100
Specifying Text to Display for Nongraphical Browsers. .102
Size and Scaling . 103
Image Borders .105
Image Maps . 106

Specifying an image map . 107
Specifying clickable regions. .107
Putting it all together . 109

Animated Images . 110
Summary . 111

Chapter 7: Links . 113
What’s in a Link? . 113
Linking to a Web Page . 115
Absolute versus Relative Links . 116
Link Targets . 117
Link Titles . 119
Keyboard Shortcuts and Tab Order . 119

Keyboard shortcuts. .120
Tab order . 120

Creating an Anchor .121
Choosing Link Colors. .121
Link Target Details . 123
The Link Tag . 125
Summary . 125

Chapter 8: Text . 127
Methods of Text Control. .127

The tag . 127
Emphasis and other text tags . 128
CSS text control . 128

Bold and Italic Text . 130
Monospace (Typewriter) Fonts. .131
Superscripts and Subscripts . 132
Abbreviations . 132
Marking Editorial Insertions and Deletions . 133
Grouping Inline Elements with the Tag . 134
Summary . 134

Chapter 9: Special Characters . 135
Understanding Character Encodings . 135
Special Characters . 136
En and Em Spaces and Dashes . 137
Copyright and Trademark Symbols. .138
Currency Symbols . 138
“Real” Quotation Marks . 139
Arrows . 140
Accented Characters . 140
Greek and Mathematical Characters. .142
Other Useful Entities . 146
Summary . 148

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xii Contents

Chapter 10: Tables .149
Parts of an HTML Table . 149
Table Width and Alignment. .151
Cell Spacing and Padding. .153
Borders and Rules .155

Table borders . 155
Table rules . 157

Rows . 157
Cells .159
Table Captions . 160
Row Groupings—Header, Body, and Footer. .163
Background Colors . 165
Spanning Columns and Rows . 166
Grouping Columns . 169
Summary . 171

Chapter 11: Page Layout with Tables . 173
Rudimentary Formatting with Tables . 173
Real-World Examples . 177
Floating Page . 179
Odd Graphic and Text Combinations . 182
Navigational Menus and Blocks . 185
Multiple Columns . 187
Summary . 188

Chapter 12: Frames .189
Frames Overview. .189
Framesets and Frame Documents . 191

Creating a frameset . 191
Frame margins, borders, and scroll bars . 194
Permitting or prohibiting user modifications. .196

Targeting Links to Frames . 196
Nested Framesets . 200
Inline Frames . 201
Summary . 204

Chapter 13: Forms . 205
Understanding Forms . 205
Inserting a Form. 208

HTTP GET . 208
HTTP POST . 209
Additional <form> attributes . 209

Field Labels . 210
Text Input Boxes . 210
Password Input Boxes . 210
Radio Buttons . 211
Check Boxes . 211
List Boxes . 212
Large Text Areas . 214
Hidden Fields . 215
Buttons . 216
Images . 217
File Fields . 217
Submit and Reset Buttons . 218
Tab Order and Keyboard Shortcuts . 219

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xiiiContents

Preventing Changes . 219
Fieldsets and Legends . 221
Form Scripts and Script Services . 222

Download a handler . 224
Use a script service . 224

Summary . 225

Chapter 14: Multimedia . 227
Introducing Multimedia Objects . 227

Your multimedia options .228
Including multimedia in your Web pages . 229

Multimedia Plug-Ins and Players. .233
Flash . 234
RealOne. .234
Windows Media Player . 234
QuickTime . 235

Animations . 236
Creating animated GIFs . 236
Keeping files sizes small . 236
Creating a Flash file . 239

Video Clips . 240
Sounds . 241
Slide Shows . 242

Exporting PowerPoint presentations to the Web . 242
Exporting OpenOffice.org presentations . 250

SMIL. .251
Summary . 256

Chapter 15: Scripts . 257
Client-Side versus Server-Side Scripting . 257

Client-side scripting. .257
Server-side scripting . 257

Setting the Default Scripting Language . 258
Including a Script. .259
Calling an External Script .259
Triggering Scripts with Events . 260
Hiding Scripts from Older Browsers . 264
Summary . 265

Part III: Controlling Presentation with CSS 267

Chapter 16: Introducing Cascading Style Sheets . 269
CSS Overview . 269
Style Rules . 270
Style Rule Locations . 271

Using the <style> element . 271
External style sheets . 271
Style definitions within individual tags . 272

Understanding the Style Sheet Cascade . 272
The CSS Box Formatting Model . 274

Box dimensions . 274
Padding . 275
Border . 276
Margins . 277

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xiv Contents

CSS Levels 1, 2, and 3 . 277
Summary . 278

Chapter 17: Creating Style Rules . 279
Understanding Selectors . 279

Matching elements by name . 280
Using the universal selector . 280
Matching elements by class . 280
Matching elements by identifier . 281
Matching elements that contain a specified attribute . 281
Matching child, descendent, and adjacent

sibling elements . 282
Understanding Inheritance . 284
Pseudo-classes . 285

Defining link styles . 285
The :first-child pseudo-class . 286
The :lang pseudo-class . 286

Pseudo-elements . 287
Applying styles to the first line of an element . 287
Applying styles to the first letter of an element . 288
Specifying before and after text . 289

Shorthand Expressions .291
Property Value Metrics . 293
Summary . 295

Chapter 18: Fonts. .297
Web Typography Basics . 297

The wrong way to describe fonts . 298
The right way to describe fonts . 301

Working with Font Styling Attributes . 303
Naming font families using CSS . 303
Understanding font families .304
Understanding fonts and font availability . 305
Working with font styles . 305
Establishing font sizes . 306
Using (or not using) font variants . 307
Bolding fonts by changing font weight . 307
Making font wider or thinner using font stretch . 308
Line height and leading . 308

Downloading Fonts Automatically . 308
Dynamic font standards and options. .308
Licensing issues . 309
Should you use font embedding or style sheets? . 309
How to add downloadable fonts to a Web page . 310
Syntax . 310

Summary . 310

Chapter 19: Text Formatting . 313
Aligning Text . 313

Controlling horizontal alignment .313
Controlling vertical alignment . 316

Indenting Text . 318
Controlling White Space within Text. .319

Clearing floating objects . 319
The white-space property. .320

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xvContents

Controlling Letter and Word Spacing . 322
Specifying Capitalization . 324
Using Text Decorations . 325
Formatting Lists . 326

An overview of lists . 326
CSS lists—any element will do . 327
List style type . 328
Positioning of markers . 330
Images as list markers . 330

Auto-generated Text . 331
Specifying quotation marks . 331
Numbering elements automatically . 332

Summary . 336

Chapter 20: Padding, Margins, and Borders .337
Understanding the Box Formatting Model . 337
Defining Element Margins . 339
Adding Padding within an Element . 341
Adding Borders . 341

Border style . 341
Border color . 343
Border width. .343
The ultimate shortcut: The border property . 344
Additional border properties . 344

Using Dynamic Outlines . 345
Summary . 346

Chapter 21: Colors and Backgrounds . 347
Foreground Color . 347
Background Color . 348
Sizing an Element’s Background . 348
Background Images . 349
Repeating and Scrolling Background Images . 351
Positioning Background Images . 355
Summary . 358

Chapter 22: Tables. .359
Defining Table Styles . 359
Controlling Table Attributes . 360

Table borders . 360
Table border spacing . 362
Collapsing borders .363
Borders on empty cells . 363

Table Layout . 364
Aligning and Positioning Captions . 365
Summary . 367

Chapter 23: Element Positioning . 369
Understanding Element Positioning . 369

Static positioning . 369
Relative positioning . 370
Absolute positioning . 371
Fixed positioning . 373

Specifying Element Position . 374

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xvi Contents

Floating Elements to the Left or Right . 377
Defining an Element’s Width and Height . 378

Specifying exact sizes . 378
Specifying maximum and minimum sizes . 379
Controlling element overflow . 379

Stacking Elements in Layers . 381
Controlling Element Visibility . 384
Summary . 385

Chapter 24: Defining Pages for Printing . 387
The Page Box Formatting Model .387
Defining the Page Size with the @page Rule. .389

Setting up the page size with the size property . 390
Setting margins with the margin property .390

Controlling Page Breaks . 391
Using the Page-Break Properties . 392

Using the page-break-before and page-break-after properties . 392
Using the page-break-inside property . 396

Handling Widows and Orphans. .396
Preparing Documents for Double-Sided Printing. .398
Summary . 398

Part IV: Advanced Web Authoring 399

Chapter 25: JavaScript . 401
JavaScript Background . 401
Writing JavaScript Code . 403

Data types and variables . 403
Calculations and operators . 404
Handling strings . 405
Control structures . 405
Functions . 408
Using objects . 409

Event Handling in JavaScript . 410
Using JavaScript in HTML Documents . 412

Adding scripts with the script element. .412
JavaScript execution . 413

Practical Examples . 414
Browser identification and conformance . 414
Last modification date . 416
Rollover images . 416
Caching images . 418
Form validation . 419
Specifying window size and location . 423
Frames and frameset control . 425
Using cookies . 425

Summary . 427

Chapter 26: Dynamic DHTML. .429
The Need for DHTML . 429
How DHTML Works. .429
DHTML and the Document Object Model . 430

Using event handlers . 430
It’s all about objects . 431

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xviiContents

Cross-Browser Compatibility Issues . 432
Browser detection . 432
Object detection . 434

DHTML Examples . 434
Breadcrumbs (page location indicator) . 434
Rollovers . 439
Collapsible menus . 445

Summary . 446

Chapter 27: Dynamic HTML with CSS . 449
DHTML and CSS Properties . 452

Setting CSS properties using JavaScript . 453
Using behaviors to create DHTML effects . 456

Internet Explorer Filters . 457
Filters . 458
Valid HTML filter elements . 458
Visual filters . 459

Summary . 467

Chapter 28: Introduction to Server-side Scripting. .469
How Web Servers Work. .469
Market-Leading Web Servers . 471

Apache . 471
IIS . 472

The Need for Server-Side Scripting . 472
Server-Side Scripting Languages . 473

Common Gateway Interface . 473
ASP, .NET, and Microsoft’s technologies .474
PHP . 476
ColdFusion. .477

Summary . 477

Chapter 29: Introduction to Database-driven Web Publishing 479
Understanding the Need for Database Publishing . 479
How Database Integration Works . 480
Options for Database Publishing . 480

Pre-generated content . 481
On-demand content . 481

Database Publishing Case Study—A Newsletter . 482
The manual method . 482
The database method. 482

Authentication and Security . 491
Summary . 493

Chapter 30: Creating a Weblog . 495
The Blog Phenomenon . 495
Blog Providers and Software . 496

Userland Software . 497
Movable Type. .497
Blosxom . 498

Posting Content to Your Blog . 498
Handling Comments . 499
Using Permalinks . 499
Using Trackbacks . 500

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xviii Contents

Syndicating Content with RSS . 501
RSS syntax . 502
Publishing the feed . 502

Building an Audience . 503
Summary . 504

Chapter 31: Introduction to XML . 505
The Need for XML . 506
Relationship of XML, SGML, and HTML . 507
How XML Works . 508

Getting started with XML parsers . 508
Begin with a prolog . 509
Understanding encoding . 509
Well-structured XML . 510

Document Type Definitions. .513
Using elements in DTDs . 515
Using attributes in DTDs . 518
Using entities in DTDs . 518
Using PCDATA and CDATA in DTDs . 519

XML Schemas . 519
Working with Schemas . 519
XML on the Web . 522
Summary . 522

Chapter 32: XML Processing and Implementations . 523
Processing XML . 523

XPath . 523
Style sheets for XML: XSLT . 530

XML Implementations . 543
XHTML . 543
Web services (SOAP, UDDI, and so on) . 545
XUL . 545
WML . 545

Summary . 546

Part V: Testing, Publishing, and Maintaining
Your Site 547

Chapter 33: Testing and Validating Your Documents 549
Testing with a Variety of Browsers . 549
Testing for a Variety of Displays . 550
Validating Your Code . 550

Specifying the correct document type definition . 550
Validation tools . 551
Understanding validation output . 552

Summary . 553

Chapter 34: Web Development Software . 555
Text-Oriented Editors . 555

Simple text editors . 555
Smart text editors. .556
HTML-specific editors . 557

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xixContents

WYSIWYG HTML Editors . 558
Microsoft FrontPage . 558
NetObjects Fusion . 560
Macromedia Dreamweaver. .560

Other Tools . 561
Graphic editors . 561
Macromedia Flash . 565

Summary . 565

Chapter 35: Choosing a Service Provider . 567
Types of Service Providers . 567

Web publishing services provided by ISPs . 568
Using shared hosting services . 568
Using dedicated hosting . 568
Using co-location services . 569

Estimating Your Costs . 569
Support and Service. .569
Bandwidth and Scalability . 571
Contracts . 571
Domain Names . 571
Summary . 572

Chapter 36: Uploading Your Site with FTP. .575
Introducing FTP . 575
FTP Clients . 576
Notable FTP Clients . 578
Principles of Web Server File Organization . 580
Summary . 581

Chapter 37: Publicizing Your Site and Building
Your Audience . 583

Soliciting Links . 583
Using link exchanges. .584
Newsgroups . 584

Listing Your Site with Search Engines . 584
Facilitating Search Engine Access . 585

Getting links from other sites . 585
Encouraging bookmarks . 586
Keeping your site current . 586
Predicting users’ search keywords and enhancing search retrieval 586

Strategies for Retaining Visitors On-Site . 588
Providing resource services . 589
Creating message boards and chat sites . 589

The Don’ts of Web Site Promotion . 589
Unsolicited e-mail . 589
Redundant URL submissions. .590
Usenet newsgroup flooding . 590
Chat room or forum flooding. .590

Summary . 590

Chapter 38: Maintaining Your Site . 591
Analyzing Usage via Server Logs . 591

Monitoring Apache traffic . 591
Monitoring IIS Traffic . 594
Finding the right log analyzer . 595

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xx Contents

Checking for Broken Links. .595
The W3C Link Checker . 595
Checkers built into development tools . 597
Local tools . 597
Watching your logs . 598

Responding to Feedback . 598
Backing Up Your Data . 599
Summary . 600

Part VI: Principles of Professional Web Design
and Development 601

Chapter 39: The Web Development Process . 603
Challenges of Developing Large-Scale Web Sites . 603
Project Management Basics . 604
The Need for Information Architecture . 605
Overview of the Web Development Process . 606

Defining your goals . 606
Defining your audience . 606
Competitive and market analysis . 606
Requirements analysis . 607
Designing the site structure . 607
Specifying content . 609
Choosing a design theme . 610
Constructing the site. .610
Testing and evaluating the site . 612
Marketing the site. .612
Tracking site usage and performance . 613
Maintaining the site . 614

Summary . 614

Chapter 40: Developing and Structuring Content . 617
Principles of Audience Analysis . 617
Performing an Information Inventory. .618
Chunking Information . 618
How Users Read on the Web. .619
Developing Easily Scanned Text . 619
Developing Meta Content: Titles, Headings, and Taglines . 620

Titles . 620
Headings . 620
Taglines . 620

Characteristics of Excellent Web Writing . 621
Be concise . 621
Creating easily scanned web pages . 621
Maintaining credibility . 622
Maintaining objectivity . 622
Maintaining focus and limiting verbosity. .622
Writing in a top-down style . 622
Using summaries . 623

Writing for the Web. .623
Using bulleted lists . 623
Using a controlled vocabulary . 624
Jargon and marketese. .624

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xxiContents

Basic Site Components . 624
Putting It All Together . 625
Summary . 628

Chapter 41: Designing for Usability and Accessibility 629
Usability Analysis Methods. .629
How People Use the Web . 630
Principles of Web Site Usability . 630
Usability Issues . 631

Advertising . 631
Animation, multimedia and applets . 631
Color and links. .632
Maintaining consistency . 632
Contents . 632
Drop-down menus . 632
Fonts and font size . 632
Using frames . 633
Including graphics . 633
Headings . 633
Horizontal scrolling . 633
JavaScript. .634
Legibility .635
Searches . 636
Sitemaps . 636
URL length . 636
Taglines . 636
Windows 1252 character set . 637

The Need for Accessibility . 637
Accessibility Mandates . 638

Americans with Disabilities Act . 638
International . 638

Web Content Accessibility Initiative (W3C) . 639
Accommodating visual disabilities . 639
Providing access to the hearing-impaired . 640
Helping users with mobility disabilities . 640
Addressing those with cognitive and learning disabilities . 640
Tools you can use. .640
Using forms and PDF . 643
Checking accessibility using a validation service . 643

Summary . 643

Chapter 42: Designing for an International Audience.645
Principles of Internationalization and Localization . 645
Introduction to Web Internationalization Issues . 645

Translating your Web site . 646
Understanding Unicode . 647

Basic Latin (U+0000 - U+007F) . 650
ISO-8859-1 .650
Latin-1 Supplement (U+00C0 - U+00FF) . 655
Latin Extended-A (U+0100 - U+017F) . 655
Latin Extended-B and Latin Extended Additional . 656

Constructing Multilanguage Sites. .656
Summary . 657

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xxii Contents

Chapter 43: Security . 659
Understanding the Risks . 659

Theft of confidential information. .659
Vandalism and defacement . 659
Denial of service . 660
Loss of data . 660
Loss of assets . 660
Loss of credibility and reputation . 660
Litigation . 661

Web Site Security Issues . 661
File permissions . 661
Unused but open ports . 662
CGI scripts . 662
Buffer overflows . 663
Compromised systems. .663

Overview of Web Security Methods . 664
Drafting a comprehensive security policy . 664
Checking online security warnings . 664
Excluding search engines . 665
Using secure servers .665

Summary . 666

Chapter 44: Privacy .667
Understanding Privacy . 667
Privacy Legislation and Regulations in the United States . 667

The Children’s Online Privacy Protection Act . 668
Electronic Communications Privacy Act . 669
The Patriot Act of 2001. .669
Fair Credit Reporting Act . 670

Privacy Legislation and Regulations in the EU . 670
Voluntary Solutions . 671

Platform for Privacy Preferences project . 671
Certification and seal programs . 674

Model Privacy Policy Pages . 675
Summary . 675

Part VII: Appendixes 677

Appendix A: HTML 4.01 Elements . 679

Appendix B: CSS Properties . 743

Index . 773

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

Introduction...
The World Wide Web has come a long way from its humble beginnings. Most

Internet historians recognize Gopher as the precursor to the Web. Gopher was
a revolutionary search tool that allowed the user to search hierarchical archives of
textual documents. It enabled Internet users to easily search, retrieve, and share
information.

Today’s World Wide Web is capable of delivering information via any number of
medium—text, audio, video. The content can be dynamic and even interactive.

However, the Web is not a panacea. The standards that make up the HTTP protocol
are implemented in different ways by different browsers. What works on one
platform may not work the same, if at all, on the next. Newly Web-enabled devices—
PDAs, cell phones, appliances, and so on—are still searching for a suitable form of
HTML to standardize on.

This turmoil makes a book like this difficult to write. Although standards exist, they
have been implemented in different ways and somewhat haphazardly. In addition,
there are more technologies at work on the Web than can be easily counted. One
book cannot hope to cover them all.

This book attempts to cover a broad subset of available technologies and
techniques, centering on the HTML 4.01 standard, along with a mix of newer,
upcoming standards such as XML and XHTML.

Who Should Read This Book?
This book is geared toward a wide audience. Those readers who are just getting
started with HTML and Web content will benefit the most as this book provides a
decent learning foundation as well as ample reference material for later perusal.
Experienced users will find the chapters covering new standards and technologies to
be the most useful, and will also appreciate having a comprehensive reference for
consultation.

Although the Web is technical in nature, we have done our best to boil down the
technology into simple and straightforward terms. Whether you are a computer
scientist or a computer neophyte, you should be able to understand, adopt, and
deploy the technologies discussed herein.

xxiii

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xxiv Introduction

Book Organization, Conventions,
and Features

The Wiley “Bible” series of books uses several different methods to present
information to help you get the most out of it. The book is organized according to
the following conventions.

Organization
This book is organized into logical parts. Each part contains related chapters that
cover complementary subjects.

Part I, Understanding (X)HTML, is your introduction to the HTML protocol.

Part II, HTML and XHTML Authoring Fundamentals, continues coverage on the basics
of the HTML protocol and familiarizes you with the basic HTML elements.

Part III, Controlling Presentation with CSS, covers Cascading Style Sheets—covering
how CSS works and introducing its various elements.

Part IV, Advanced Web Authoring, delves into more advanced topics such as
scripting, Dynamic HTML, and XML.

Part V, Testing, Publishing, and Maintaining Your Site, covers more details about the
tools and methodology for creating and publishing your content to the Web.

Part VI, Principles of Professional Web Design and Development, covers more
philosophical topics about developing structured, accessible content and how to
protect your content online.

Part VII, Appendixes, provides reference material on HTML tags, CSS conventions,
and language codes.

Conventions and features
There are many different organizational and typographical features throughout this
book designed to help you get the most from the information.

Tips, Notes, and Cautions
Whenever the authors want to bring something important to your attention, the
information will appear in a Tip, Note, or Caution. These elements are formatted like
this:

Caution This information is important and is set off in a separate paragraph with a special
icon. Cautions provide information about things to watch out for, whether these
things are simply inconvenient or potentially hazardous to your data or systems.

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xxvIntroduction

Tip Tips generally are used to provide information that can make your work easier—
special shortcuts or methods for doing something easier than the norm.

Note Notes provide additional, ancillary information that is helpful, but somewhat
outside the current discussion.

Code
It is often necessary to display code (HTML tags, JavaScript commands, script
listings) within the text. This book uses two distinct conventions, depending on
where the code appears.

Code in Text
A special font is used to indicate code within normal text. This font looks like this:
<body onLoad=“JavaScript:displaygraphics();”>.

Code Listings
Code listings appear in specially formatted listings, in a different font,
similar to these lines.

Feedback
Wiley Publishing, Inc., and the authors of this book value your feedback. We
welcome ways to improve the content presented here, such as being informed of
errors and omissions. You can visit www.wiley.com for information on additional
books and ways to provide feedback to the publisher.

P1: FMK

WY022-FM WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 23:23

xxvi

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

P A R T

IIUnderstanding
(X)HTML

✦ ✦ ✦ ✦

In This Part

Chapter 1
Introducing the
Web and HTML

Chapter 2
What Goes Into
a Web Page?

Chapter 3
Starting Your
Web Page

✦ ✦ ✦ ✦

1

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

2

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

11C H A P T E R

Introducing the
Web and HTML ✦ ✦ ✦ ✦

In This Chapter

Introducing the World
Wide Web

How the Web Works

Defining Hypertext

Where HTML Fits in

Defining CSS

Defining XHTML

Creating an HTML
Document

✦ ✦ ✦ ✦

This chapter addresses the questions most people have
when they’re getting started with HTML/XHTML, such as

what is the difference between HTML and XHTML, and when
do Cascading Style Sheets (CSS) come into play? If you’re
already familiar with the basic concepts discussed here, you
can get started with practical matters in Chapter 2. Still, I
encourage you to at least skim this chapter, making sure you
understand the very important distinction between structure
and presentation (see What Is CSS?) and how HTML, XML, and
XHTML are related (see What Is XHTML?).

What Is the World Wide Web?
The World Wide Web—the Web, for short—is a network of
computers able to exchange text, graphics, and multimedia
information via the Internet. By sitting at a computer that is
attached to the Web, using either a dialup phone line or a
much faster broadband (Ethernet, cable, or DSL connection),
you can visit Web-connected computers next door, at a nearby
university, or halfway around the world. And you can take full
advantage of the resources these computers make available,
including text, graphics, videos, sounds, and animation. Think
of the Web as the multimedia version of the Internet, and you’ll
be right on the mark.

How Does the Web Work?
The computers that make all these Web pages available are
called Web servers. On any computer that’s connected to the
Web, you can run an application called a Web browser.
Technically, a Web browser is called a Web client—that is, a
program that’s able to contact a Web server and request
information. When the Web server receives the requested

3

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

4 Part I ✦ Understanding (X)HTML

information, it looks for this information within its file system, and sends out the
requested information via the Internet.

They all speak a common “language,” called HyperText Transfer Protocol (HTTP).
(HTTP isn’t really a language like the ones people speak. It’s a set of rules or
procedures, called protocols, that enables computers to exchange information over
the Web.) Regardless of where these computers reside—China, Norway, or Austin,
Texas—they can communicate with each other through HTTP.

The following illustrates how HTTP works (see Figure 1-1):

✦ Most Web pages contain hyperlinks, which are specially formatted words or
phrases that enable you to access another page on the Web. Although the
hyperlink usually doesn’t make the address of this page visible, it contains all
the information needed for your computer to request a Web page from another
computer.

✦ When you click the hyperlink, your computer sends a message called an HTTP
request. This message says, in effect, “Please send me the Web page that I want.”

✦ The Web server receives the request, and looks within its stored files for the
Web page you requested. When it finds the Web page, it sends it to your
computer, and your Web browser displays it. If the page isn’t found, you see an
error message, which probably includes the HTTP code for this error: 404, “Not
Found.”

Client computer
running browser

Server

HTTP
request

Returns page or
error message

Figure 1-1: The client requests the page. Then the server evaluates
the request and serves the page or an error message.

What Is Hypertext?
You probably noticed the word “hypertext” in the spelled-out version of HTTP,
Hypertext Transfer Protocol. Originated by computing pioneer Theodore Nelson, the
term “hypertext” doesn’t mean “text that can’t sit still,” although some Web authors
do use a much-despised HTML code that makes the text blink on-screen. Instead, the
term is an analogy to a time-honored (but physically impossible) science fiction
concept, the hyperspace jump, which enables a starship to go immediately from one
star system to another. Hypertext is a type of text that contains hyperlinks (or just

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

5Chapter 1 ✦ Introducing the Web and HTML

links for short), which enable the reader to jump from one hypertext page to another.
You may also hear the word hypermedia. A hypermedia system works just like
hypertext, except that it includes graphics, sounds, videos, and animation as well as
text.

In contrast to ordinary text, hypertext gives readers the ability to choose their own
path through the material that interests them. A book is designed to be read in
sequence: Page 2 follows page 1, and so on. Sure, you can skip around, but books
don’t provide much help, beyond including an index. Computer-based hypertexts let
readers jump around all they want. The computer part is important because it’s hard
to build a hypertext system out of physical media, such as index cards or pieces of
paper.

The Web is a giant computer-based hypermedia system, and you’ve probably already
done lots of jumping around from one page to another on the Web—it’s called
surfing. If one Web page doesn’t seem all that interesting once you visit, you can click
another link that seems more related to your needs (and so on). The Web makes
surfing so easy that you’ll need to give some thought to keeping people on your
sites—keeping them engaged and interested—so they won’t surf away!

Where Does HTML Fit In?
Hypertext Markup Language (HTML) enables you to mark up text so that it can
function as hypertext on the Web. The term markup comes from printing; editors
mark up manuscript pages with funny-looking symbols that tell the printer how to
print the page. HTML consists of its own set of funny-looking symbols that tell Web
browsers how to display the page. These symbols, called elements, include the ones
needed to create hyperlinks.

The invention of HTML
HTML and HTTP were both invented by Tim Berners-Lee, who was then working as a
computer and networking specialist at a Swiss research institute. He wanted to give
the Institute’s researchers a simple markup language, which would enable them to
share their research papers via the Internet. Berners-Lee based HTML on Standard
Generalized Markup Language (SGML), an international standard for marking up text
for presentation on a variety of physical devices. The basic idea of SGML is that the
document’s structure should be separated from its presentation:

✦ Structure refers to the various components or parts of a document that authors
create, such as titles, paragraphs, headings, and lists. For example, you’re
reading an item in an unordered list, as it is termed in SGML (most people use
the more familiar bulleted list). In SGML, you mark up this item as a bulleted
list, but you don’t say anything about how it’s supposed to look. That’s left up
to whatever device displays or prints the marked-up file.

✦ Presentation refers to the way these various components are actually displayed
by a given media device, such as a computer or a printer. For example, this

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

6 Part I ✦ Understanding (X)HTML

book displays this bulleted list item with an indentation and other special
formatting.

What’s so great about separating structure from presentation? There are several
very important advantages:

✦ Authors usually aren’t very good designers. It’s wise, especially in large
organizations, to let writers compose their documents, and let designers worry
about how the documents are supposed to look. That’s particularly true when
an organization has a corporate look or style, such as Apple Computer’s
standard typeface, which you’ll see in all of its documents. The designers make
sure that every document produced within the organization conforms to that
style. So SGML doesn’t contain any features that control presentation.

✦ If markup consists of structure alone, the document’s appearance can be changed
quickly. All that’s necessary is to change the presentation settings on whatever
device is displaying the document.

✦ Documents containing only structural markup are much easier and cheaper to
maintain. When presentation markup is included along with structural markup,
the document becomes an unmanageable mess, and maintenance costs
skyrocket.

✦ If a document contains only structural markup, it is more accessible to people with
limited vision or other physical limitations. For example, a document marked up
structurally might be presented by a Braille printer for those with limited
vision, or by a text reader for those with limited hearing.

Sounds great, right? Still, from the beginning, HTML didn’t make the structure versus
presentation distinction as clearly as SGML purists would have liked. And as HTML
developed and the Internet became a commercial network, Web authors demanded
more tools to make their documents look attractive on-screen. The companies that
make Web browsers responded by introducing new, nonstandardized HTML
elements that contained presentation information. By 1996, many Web experts were
worried that HTML standards were spiraling out of control. The newly founded World
Wide Consortium, hoping to keep at least some kind of standard in place, tried to
standardize existing practices, including the use of presentation and structure. The
result was the W3C’s HTML 3.2 standard, which is still widely used. But organizations
found that HTML 3.2 exposed them to excessive maintenance costs. The SGML
purists were right: Structure and presentation should have been kept separate.

A short history of HTML
To date, HTML has gone through four major standards, including the latest 4.01. In
addition to the HTML standards, Cascading Style Sheets and XML have also provided
valuable contributions to Web standards.

The following sections provide a brief overview of the various versions and
technologies.

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

7Chapter 1 ✦ Introducing the Web and HTML

HTML 1.0
HTML 1.0 was never formally specified by the W3C because the W3C came along too
late. HTML 1.0 was the original specification Mosaic 1.0 used, and it supported few
elements. What you couldn’t do on a page is more interesting than what you could
do. You couldn’t set the background color or background image of the page. There
were no tables or frames. You couldn’t dictate the font. All inline images had to be
GIFs; JPEGs were used for out-of-line images. And there were no forms.

Every page looked pretty much the same: gray background and Times Roman font.
Links were indicated in blue until you’d visited them, and then they were red.
Because scanners and image-manipulation software weren’t as available then, the
image limitation wasn’t a huge problem. HTML 1.0 was only implemented in Mosaic
and Lynx (a text-only browser that runs under UNIX).

HTML 2.0
Huge strides forward were made between HTML 1.0 and HTML 2.0. An HTML 1.1
actually did exist, created by Netscape to support what its first browser could do.
Because only Netscape and Mosaic were available at the time (both written under
the leadership of Marc Andreesen), browser makers were in the habit of adding their
own new features and creating names for HTML elements to use those features.

Between HTML 1.0 and HTML 2.0, the W3C also came into being, under the
leadership of Tim Berners-Lee, founder of the Web. HTML 2.0 was a huge
improvement over HTML 1.0. Background colors and images could be set. Forms
became available with a limited set of fields, but nevertheless, for the first time,
visitors to a Web page could submit information. Tables also became possible.

HTML 3.2
Why no 3.0? The W3C couldn’t get a specification out in time for agreement by the
members. HTML 3.2 was vastly richer than HTML 2.0. It included support for style
sheets (CSS level 1). Even though CSS was supported in the 3.2 specification, the
browser manufacturers didn’t support CSS well enough for a designer to make much
use of it. HTML 3.2 expanded the number of attributes that enabled designers to
customize the look of a page (exactly the opposite of HTML 4). HTML 3.2 didn’t
include support for frames, but the browser makers implemented them anyway.

Note A page with two frames is actually processed like three separate pages within
your browser. The outer page is the frameset. The frameset indicates to the
browser, which pages go where in the browser window. Implementing frames
can be tricky, but frames can also be an effective way to implement a Web site.
A common use for frames is navigation in the left pane and content in the right.

HTML 4.0
What does HTML 4.0 add? Not so much new elements—although those do exist—as
a rethinking of the direction HTML is taking. Up until now, HTML has encouraged
interjecting presentation information into the page. HTML 4.0 now clearly

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

8 Part I ✦ Understanding (X)HTML

deprecates any uses of HTML that relate to forcing a browser to format an element a
certain way. All formatting has been moved into the style sheets. With formatting
information strewn throughout the pages, HTML 3.2 had reached a point where
maintenance was expensive and difficult. This movement of presentation out of the
document, once and for all, should facilitate the continued rapid growth of the Web.

Tip Use the W3C’s MarkUp Validation Service, available at http://validator
.w3.org/, to check your HTML against most of the versions mentioned in this
chapter.

XML 1.0
Extensible Markup Language (XML) was originally designed to meet the needs of
large-scale electronic publishing. As such, it was designed to help separate structure
from presentation and provide enough power and flexibility to be applicable in a
variety of publishing applications. In fact, many modern word processing programs
contain XML components or even export their documents in XML-compliant formats.

CSS 1.0 and 2.0
Cascading Style Sheets (CSS) were designed to help move formatting out of the
HTML specification. Much like styles in a word processing program, CSS provides a
mechanism to easily specify and change formatting without changing the underlying
code. The “cascade” in the name comes from the fact that the specification allows
for multiple style sheets to interact, allowing individual Web documents to be
formatted slightly different from their kin (following department document
guidelines but still adhering to the company standards, for example). The second
version of CSS (2.0) builds on the capabilities of the first version, adding more
attributes and properties for a Web designer to draw upon.

HTML 4.01
HTML 4.01 is a minor revision of the HTML 4.0 standard. In addition to fixing errors
identified since the inception of 4.0, HTML 4.01 also provides the basis for meanings
of XHTML elements and attributes, reducing the size of the XHTML 1.0 specification.

XHTML 1.0
Extensible HyperText Markup Language (XHTML) is the first specification for the
HTML and XML cross-breed. XHTML was created to be the next generation of
markup languages, infusing the standard of HTML with the extensibility of XML. It
was designed to be used in XML-compliant environments, yet compatible with
standard HTML 4.01 user agents.

So who makes the rules?
Every organization has its own rule-making body. In the case of the Web, the
rule-making body is the World Wide Web Consortium (W3C). The W3C is composed
of representatives from a number of high-tech companies who want to have a say in
the standards. The W3C tries to balance the interests of the academy, the companies

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

9Chapter 1 ✦ Introducing the Web and HTML

producing the Web browsers (notably Netscape and Microsoft), and the technology.
The W3C pulls together committees with representatives from interested members
and puts the specifications in writing for HTTP and HTML, as well as a host of
additional Web standards, including CSS. If the W3C weren’t maintaining all these
standards, the Web wouldn’t be as easy to use; in fact, it might not have become
anywhere near as popular as it is. You can visit their Web site at http://www.w3c
.org.

Buzz and scrambling
How does the W3C decide when a new technology must be standardized or a new
version of an existing technology must be developed? Newsgroups and mailing lists
exist where leading figures in the relevant field talk about the shortcomings of an
existing version or the idea of a new technology (that’s the buzz). If a ground swell of
support seems to exist for a new technology or a new version, the W3C begins the
process of specifying it.

Something else, however, carries more weight and more urgency than discussion by
agitators and activists. This is ongoing development by software developers (that’s
the scrambling). In reality, the W3C is mostly involved in trying to standardize the
proprietary extensions developed by software developers, such as Netscape and
Microsoft. If the W3C didn’t do this, within two versions of their browsers, HTML
might not run the same (or at all) on both systems. The W3C reins them in to some
degree. Neither wants to produce a browser that lacks support for recommended
HTML elements, so even if Netscape introduced a new element, Microsoft will
incorporate that element in the subsequent version of their own browser—after an
official recommendation by the W3C (and vice versa).

Committees and working drafts
When a new technology or a new version of an existing technology is required, the
W3C convenes a committee of interested parties to write the specification. The
committee publishes its work on an ongoing basis as a working draft. The point of
publishing these working drafts is this: Software developers who want to implement
the new technology or the new features of the new version can get a jump on things
and build their product to incorporate the new features. When the specification is
finalized and developers are ready to use it, products that implement it are on the
market.

There is also the issue of books. You want books on new technologies to be in the
bookstores the day the recommendation is finalized. For this to happen, authors
must write the books using the working drafts—a moving target—as the reference
materials. Working drafts have changed during the writing of this book. Sometimes
this works and sometimes it doesn’t. If the specification changes radically from the
working draft to the final version, the book will be inaccurate.

Voting process
Democracy: You just can’t get away from it. When a working draft reaches a point
where the committee is pleased and believes it is complete, the working draft is

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

10 Part I ✦ Understanding (X)HTML

released to the public as a proposed recommendation. Members of the W3C have up
to six weeks to vote on it—votes can take the form of any one of three choices: yes,
yes if certain changes are made, or no. At the conclusion of the voting process, the
W3C can recommend the specification officially, make the requested changes and
recommend the specification with the changes, or discard the proposal.

What Is CSS?
In 1997, the World Wide Web Consortium released the first HTML 4 recommendation,
the first to embody a serious effort to separate structure from presentation. The W3C
envisioned a transitional period, in which Web authors would continue to use some
presentation features in their pages, but the end point was clear: Any Web page that
wanted to conform strictly to HTML would have to omit presentation-related coding.

To see for yourself how difficult maintaining HTML 3.2 code can be, consider the
following HTML:

<FONT SIZE=“+1” FACE=“comic sans ms” FAMILY=“sans-serif”
COLOR=“#0000FF”><P>What does <i>Stay In
Touch</i> do?</P>
<FONT SIZE=“-1” FACE=“comic sans ms” FAMILY=“sans-serif”
COLOR=“#000000”><P><i>Stay In Touch</i> allows you to harness
the power of the World Wide Web to communicate with people
who visit your web site. Using <i>Stay In Touch</i> list
management service you can set up a sign-in page on your web
site today and customize it to match the rest of your web
site. Your visitors can sign into your site when they visit,
then you can send mail to your visitors based on a number of
criteria: the interest they indicate, the publications they
read, etc. To see an example of this, go to the Demo and view
the Send Mail option.</P>
<FONT SIZE=“+1” FACE=“comic sans ms” FAMILY=“sans-serif”
COLOR=“#0000FF”><P>How secure is my
list?</P>
<FONT SIZE=“-1” FACE=“comic sans ms” FAMILY=“Sans Serif”
COLOR=“#000000”><P>Only you have access to your list. Access
to your list is available exclusively from secure pages
residing on our server. You have enough to worry about. The
security of your list needn’t be one of those
things.</P>

Figure 1-2 shows what this HTML code looks like in a full page on a PC, while
Figure 1-3 shows what that same page looks like on a Mac (notice that the font is
slightly different).

The maintenance nightmare
From looking at the HTML and then seeing the HTML interpreted by the browser,
you can pretty much tell what part of the text is instructions to the browser and

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

11Chapter 1 ✦ Introducing the Web and HTML

Figure 1-2: How a PC browser displays the HTML code.

Figure 1-3: The previous text displayed in a browser on a Mac.

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

12 Part I ✦ Understanding (X)HTML

what part is the content. But would you feel comfortable making changes to the
content—say, adding another bulleted set of questions and answers? Probably not.
With all those codes embedded within the text, you might mess something up. And
you probably wouldn’t want someone else who didn’t know what all those codes
meant doing it either.

The worst maintenance nightmares occur when you want to change the look of your
pages throughout your Web site. Because the presentation code has to be included
in every page, you have to change every page to change the look of your site.

Consider the site map shown in Figure 1-4. Every screen should have the same
formatting: same font, same heading sizes, same alignment, same text color, and
same background color. With HTML 3.2, you could do this only by inserting all the
needed presentation code on every single page.

Figure 1-4: Map of a Web site.

HTML 4.01 enables you to return to the ideal of separating structure and
presentation. What does this mean to you and your ability to maintain a site? It’s
simple. HTML that contains nothing but structural code is vastly simpler and
cheaper to maintain.

Consider the following code. It produces the same results as the previous example in
the browser. Notice there is no formatting. All the HTML you see is related to the
structure.

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

13Chapter 1 ✦ Introducing the Web and HTML

What does <i>Stay In Touch</i> do?
<p><i>Stay In Touch</i> allows you to harness the power of
the World Wide Web to communicate with people who visit your
web site. Using <i>Stay In Touch</i> list management service,
you can set up a sign-in page on your web site today and
customize it to match the rest of your web site. Your
visitors can sign into your site when they visit. Then you
can send mail to your visitors based on a number of criteria:
the interest they indicate, the publications they read, etc.
To see an example of this, go to the Demo and view the Send
Mail option.</p>
How secure is my list?
<p>Only you have access to your list. Access to your list is
available exclusively from secure pages residing on our
server. You have enough to worry about. The security of your
list needn’t be one of those things.</p>

Note The use of the italic tags (<i>) in the preceding code is arguably “formatting”
and is used to simplify the example while conforming to the visual style of the
text “Stay In Touch.” When using HTML 4.01 and CSS it might be better to use
span tags () to refer to a CSS class instead of directly specifying the italic
text attribute. See Chapter 16 for more information on styles and span tags.

How comfortable would you be updating the previous HTML? How about if you
needed to add another set of questions and answers? Already, you can see that using
HTML 4.01 makes a world of difference.

There’s only one problem. The simpler, HTML 4.01-compliant code looks just terrible
on-screen; with no presentation information in the code, the browser falls back on its
default presentation settings.

Enter CSS
By themselves, strictly conformant HTML 4 documents are ugly. Web authors would
never have accepted HTML 4 if the W3C had not also developed Cascading Style
Sheets (CSS). In brief, CSS enables Web authors to specify presentation information
without violating the structure versus presentation distinction. The information the
browser must know to format the previous text is stored separately, in a style sheet.
The style sheet lists the presentation styles that the browser should use to display
the various components of the document, such as headings, lists, and paragraphs.
The style sheet is kept separate from the marked-up text. It can be stored in a special
section of the HTML document itself, away from the document’s text, or in a separate
file entirely.

The idea and the name come from the publishing industry, where style sheets are
still used today. And they’re cutting costs wherever Web documents are created and
maintained.

Think back to the problem of updating a Web site’s look, discussed earlier. Without
CSS, you’d have to make changes to the presentation code in each and every page.

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

14 Part I ✦ Understanding (X)HTML

Thanks to CSS, all you have to do is make changes to the single, underlying style
sheet that every page uses, and the entire site’s appearance changes.

What does “cascading” mean?
In Cascading Style Sheets, the term “cascading” refers to what computer people call
the order of precedence—that is, which style information comes first in the style
pecking order. Here’s the order:

✦ Element-specific style information comes first. This is style information that’s
embedded within the HTML. But wait—doesn’t this violate the structure
versus presentation rule? Yes, but sometimes it’s necessary. If element-specific
information is given, it takes precedence over page-specific and global styles.

✦ Page-specific style information is kept in a special section of the document,
called the head, that’s separate from the text. It defines the way a particular
page looks. If page-specific information is given, it takes precedence over
global styles.

✦ Global styles are specified in a separate style sheet file. They come into play
unless conflicting element- or page-specific styles are given.

See Figure 1-5 for a summary of these points.

Page-specific (also known
as local) styles defined
within an HTML document
(in the), using the

Element-specific styles are
defined within the element
definition using the
attribute.

Global styles defined in their
own document: GLOBAL.CSS

HTML page

 element.

Figure 1-5: The cascading model of style definitions.

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

15Chapter 1 ✦ Introducing the Web and HTML

HTML 4.01 almost eliminates the need to have an HTML expert perform site
maintenance. This means HTML 4.01 helps reduce the cost of maintaining your Web
site. When was the last time you heard anything about reducing costs being
associated with the Web?

What Is XHTML?
Combined with CSS, HTML 4.0 was a major advance, so one might expect even better
versions of HTML in the future, right? Not according to the World Wide Web
Consortium. Apart from a minor update (HTML 4.01) in 1999, HTML 4.0 is the last
version of HTML. That’s because it has been replaced by XHTML, which is the
version of HTML you’re going to learn in this book.

Actually, there’s very little difference between HTML and XHTML. It’s a matter of
making a few changes to your HTML 4.0 code to make sure it’s XHTML-conformant.
But there’s a much deeper reason for this change. To understand why HTML has
become XHTML, you must learn a little about XML, another World Wide Consortium
standard.

As you’ve learned, HTML is based on SGML, an international standard for markup
languages. Actually, SGML isn’t a markup language in itself. It’s a language that’s
useful for creating markup languages. You can use it to make up codes for just about
anything you want. For example, an accounting firm could use SGML to mark up the
structure of accounting documents; one code could be used to mark daily totals,
while a different code could be used to mark monthly totals. To keep a record of all
these newly created codes, as well as to specify them for presentation devices, a
special file, called a document type definition (DTD), is used. HTML 4.01 is defined in
a document type definition, written in SGML.

SGML isn’t equally loved by all. To many, SGML is outmoded, overly complex, and
too difficult to learn. So the World Wide Consortium decided to create a new version
of SGML that would be simpler and easier to learn. The result is the Extensible
Markup Language (XML). Like SGML, XML enables people to define new markup
languages that are exactly suited to their purposes.

Now that you know a little about what XML is, you’re ready to understand what
XHTML is. Just as HTML is a markup language defined in SGML, XHTML is a markup
language defined in XML.

Creating an HTML Document
Creating an HTML document is relatively easy. One of the nice properties of HTML is
it is just text. The content is text and the tags are text. As a result, you can write your
HTML in any text editor. If you are running any variety of Windows, you can use
Notepad, which comes installed with Windows. If you have a Mac on your desk, you
can use SimpleText. If you work in UNIX, you can use emacs, vi, jove, pico, or

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

16 Part I ✦ Understanding (X)HTML

whatever you normally use to edit text. Essentially, any text editor or editor capable
of producing text-only documents can be used to create HTML documents.

Writing HTML
What else do you need to know to write your HTML? Presumably, by now, you know
the following:

✦ What your purpose is (at least generally)

✦ You need to write your content from your focused message

✦ You mark up your content with HTML tags

✦ You can write your page with a text editor that is already installed on your
computer

Obviously, you need to know the elements. But before discussing those, here are a
few guidelines about how you should and shouldn’t use HTML.

Name your files with a Web-friendly extension
When saving an HTML file you should always give it a .html or .htm extension.
(The former, .html, is generally preferred.) This correctly identifies the file as
having HTML content so that Web browsers and servers correctly handle it.

Other Web files have their own extensions—for example, most PHP files use .php,
graphic files use .jpg, .gif, or .png, and so on. This book suggests appropriate
extension(s) as each technology is discussed.

Format your text
If you are already writing HTML pages, you may need to break your bad habits. You
probably already think in terms of getting the browser to make your page look the
right way. And you use HTML to make it do this. You may even use goofy
conventions such as 1-pixel-wide clear image files (usually GIFs) and stretch them to
indent your paragraphs.

With HTML 4, you needn’t out-maneuver the browser. Browsers that support the
HTML 4 standards display your pages as you define them—no more of that arrogant
printer stuff! And fortunately, with HTML 4, you can define the way you want your
pages to look outside of the content, so your HTML won’t be all cluttered with tags.

Structure your document
So, if you are not supposed to use HTML to format your pages, how should you use
HTML?

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

17Chapter 1 ✦ Introducing the Web and HTML

HTML defines your document’s structure. Then, outside the main body of the
document (or even in a separate file, if you prefer), you define the appearance of
each element of the structure (just like the publisher and the printer in the previous
example).

With few exceptions, you want all your paragraphs to be formatted the same—
uniform margins, indents, fonts, spacing between lines, and color.

So, within the main body of your document, you type your text for each paragraph
and mark up your document to indicate where each paragraph begins and ends.
Then, in a separate location and only once, you define how you want all your
paragraphs to look. Existing ways to override this universal definition are discussed
later.

The most important concept to remember—and this is a big change for you if you’ve
already been writing HTML 3.2 or earlier versions—is that the HTML only defines the
structure of your document. The formatting of your document is handled separately.

What is so great about this? First, your text doesn’t get all cluttered up with tags.
And second, you can define the look for your entire site in one place. You simply
have every page in the site (even if some pages in your site are being written by
people you have never met) point to the style sheet (the place where you put all
those style definitions).

Don’t I Need a Web Server?
Later chapters will show you how to upload your documents to a dedicated and
public Web server where others can see them. In the meantime, you can simply use
your computer’s hard drive and a local browser to dabble privately with HTML.

Server-side technologies such as PHP require an actual Web server.Note

Simply put the document on your hard drive and direct your browser at the file. For
example, in Windows you can double-click an HTML file in Windows Explorer (or any
other file manager) to open it in the default browser (normally Internet Explorer).
Most browsers also have an Open File option under their main File menu.

Create additional files, directories, and subdirectories on your local hard drive as
needed to hold additional pages or levels of a site.

Tip Apache, the Web’s most popular HTTP server, is available for several architec-
tures and best of all, it’s free to use. If you need a local Web server for testing
purposes, visit the Apache Web site (http://httpd.apache.org/) for more
information or to download a copy for your machine. For more information on
Apache, see Wiley’s Apache Server 2 Bible, 2nd Edition, by Mohammed J. Kabir.

P1: JYS

WY022-01 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 11:19

18 Part I ✦ Understanding (X)HTML

Summary
This chapter covered the basics of HTML and the Web. Before actually creating Web
documents, it is important to understand the evolution of the technologies behind
the Web, and the direction they will take in the future. The next few chapters discuss
the basic elements of HTML documents and get you on your way to creating your
own Web content.

✦ ✦ ✦

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

22C H A P T E R

What Goes Into
a Web Page?

✦ ✦ ✦ ✦

In This Chapter

Specifying the Document
Type

HTML, Head, and Body
Tags

Styles

Markup for Paragraphs

Markup for Characters

Special Characters

Organizational Elements

Linking to Other Pages

Images

Comments

Scripts

Putting it All Together

✦ ✦ ✦ ✦

HTML has come a long way from its humble beginnings.
However, despite the fact that you can use HTML (and

its derivatives) for much more than serving up static text
documents, the basic organization and structure of the HTML
document remains the same.

Before we dive into the specifics of various elements of HTML,
it is important to summarize what each element is, what it is
used for, and how it affects other elements in the document.
This chapter provides a high-level overview of a standard
HTML document and its elements. Subsequent chapters will
cover each element and technology in detail.

Specifying Document Type
One attribute of HTML documents that is frequently
overlooked is the Document Type Definition (DTD). This
definition precedes any document tags and exists to inform
client browsers of the format of the following content—what
tags to expect, methods to support, and so forth.

The <!DOCTYPE> tag is used to specify an existing DTD. The
DTD contains all the elements, definitions, events, and so on
associated with the document type. A DOCTYPE tag resembles
the following:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

This tag specifies the following information:

✦ The document’s top tag level is HTML (html).

✦ The document adheres to the formal public identifier (FPI)
“W3C HTML 4.01 Strict English” standards (PUBLIC “-//
W3C//DTD HTML 4.01//EN”).

19

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

20 Part I ✦ Understanding (X)HTML

✦ The full DTD can be found at the URL http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd.

The Overall Structure: HTML,
Head, and Body

All HTML documents have three, document-level tags in common. These tags,
<html>, <head>, and <body>, delimit certain sections of the HTML document.

The <html> tag
The <html> tag surrounds the entire HTML document. This tag tells the client
browser where the document begins and ends.

<html>
... document contents ...
</html>

Additional language options were declared within the <html> tag in previous
versions of HTML. However, those options (notably lang and dir) have been
deprecated in HTML version 4.0. The language and directional information is
routinely contained in the document type declaration (<!DOCTYPE>).

The <head> tag
The <head> tag delimits the heading of the HTML document. The heading section of
the document contains certain heading information for the document. The
document’s title, meta information, and, in most cases, document scripts are all
contained in the <head> section. A typical <head> section could resemble the
following:

<head>
<link rel=“stylesheet” type=“text/css” href=“/styles.css”>
<title>Title of the Document</title>
<meta name=“description” content=“Sample Page”>
<meta name=“keywords” content=“sample, heading, page”>
<script language=“JavaScript”>

function NewWindow(url){
fin=window.open(url,“”,
“width=800,height=600,scrollbars=yes,resizable=yes”);
}

</script>
</head>

Cross-
Reference

Most <head> level tags are covered in detail in Chapter 3. JavaScript scripting
is covered in more detail in Chapters 15 and 28.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

21Chapter 2 ✦ What Goes Into a Web Page?

Most of the content within the <head> section will not be visible on the rendered
page in the client’s browser. The <title> element determines what the browser
displays as the page title—on Windows machines, the document title appears in the
browser’s title bar, as shown in Figure 2-1.

Document title

Figure 2-1: In Windows, the document’s <title> appears in the browser’s title bar.

The main, visual content of the HTML document is contained within <body> tags.

Note that with HTML version 4.0, most attributes of the <body> tag have been
deprecated in favor of specifying the attributes as styles. In previous versions of
HTML, you could specify a bevy of options, including the document background,
text, and link colors. The onload and onunload attributes of the <body> tag, as
well as global attributes such as style, are still valid. However, you should specify
the other attributes in styles instead of within the <body> tag, such as in the
following example:

<html>
<head>
<title>Document Title</title>
<style type=“text/css”>
body { background: black; color: white}

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

22 Part I ✦ Understanding (X)HTML

a:link { color: red }
a:visited { color: blue }
a:active { color: yellow }
</style>
</head>
<body>
... document body...
</body>
</html>

Cross-
Reference

Styles are covered in detail in Chapters 16 and 24.

Styles
Styles are a relatively new element for HTML, but they have revolutionized how
HTML documents are coded and rendered. Styles are the main basis behind the
“extensible” in XHTML—they allow Web authors to create new styles to present their
content in a variety of custom, but consistent formats.

At their root, styles are simply an aggregation of display attributes, combined to
achieve a particular result. Those familiar with styles in word processing will have
little trouble understanding HTML styles.

Note Styles are typically presented in the context of cascading, as in the Cascading
Style Sheet (CSS) standard. The CSS standard defines a method where several
styles sheets (lists of style definitions) can be applied to the same document—
repeated style definitions supercede previously defined styles, hence the
cascade. You’ll find more information on styles, style sheets, and CSS in
Chapter 16.

For example, suppose you needed to highlight particular text in a document that
needed to be deleted. The text needs to be displayed in red and as strikethrough.
You could surround each section of text with and tags. However, that
approach has two distinct disadvantages:

✦ The tag has been deprecated and should not be used.

✦ If you later change your mind about the color or decoration (strikethrough),
you would have to find and change each set of tags.

Instead, define a style for the elements that contains the desired text attributes. The
following HTML code snippet defines such a style and uses it to highlight a sentence
later in the document:

<html>
<head>

<style>

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

23Chapter 2 ✦ What Goes Into a Web Page?

.redline { color: red; text-decoration: line-through; }
</style>

</head>
<body>
<h1>An Early Draft of the Declaration of Independence</h1>
<p>When in the Course of human events, it becomes necessary
for one people to dissolve the political bands which have
connected them with another, and to assume among the powers
of the earth, the separate and equal station to which the
Laws of Nature and of Nature’s God entitle them, a decent
respect to the opinions of mankind requires that they should
declare the causes which impel them to the separation. This document declares those
causes.</p>
</body>
</html>

This code results in the output shown in Figure 2-2.

Figure 2-2: The “redline” style is applied to applicable text via the tag.

Note Styles can also be applied directly to many HTML tags using the style attribute.
For example, to apply the red and strikethrough attributes to an entire para-
graph, you could use the following code:

<p style=“color: red; text-decoration: line-
through;”> sample paragraph </p>

However, using styles in this manner removes many of the easily modified
advantages gained by using styles.

If you later needed to change the text attributes, one edit in the <style> section of
the document would affect the change throughout the document. But what if you
had several documents that used the style? You would still have to edit each
document to make the style change. Luckily, HTML’s style implementation allows for
external style sheets that can be applied to multiple documents—then you only have
to change the external style sheet.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

24 Part I ✦ Understanding (X)HTML

The following code defines site-styles.css as an external style sheet in the
current HTML document:

<html>
<head>
<LINK rel=“stylesheet” href=“site-styles.css”
type=“text/css”>
</head>
<body> ...

The contents of the site-styles.css document would be the definitions that you
would have placed between the <style> tags. For the preceding redline example, the
contents of this file could simply be the following:

.redline { color: red; text-decoration: line-through; }

Cross-
Reference

There are many more attributes that can be applied to text and other objects
via styles. You’ll find more details on styles in Chapter 16.

Block Elements: Markup for Paragraphs
As with most word processors, HTML includes several tags to delimit, and hence,
format paragraphs of text. These tags include the following:

✦ <p>—Formatted paragraphs

✦ <h1> through <h6>—Headings

✦ <blockquote>—Quoted text

✦ <pre>—Preformatted text

✦ ,, <dl>—Unnumbered, ordered, and definition lists

✦ <center>—Centered text

✦ <div>—A division of the document

Each of the block elements results in a line break and noticeable space padding after
the closing tag. As such, the block elements only work when used to format
paragraph-like chunks of text—they cannot be used as inline styles.

More detail about each of these tags is covered in the following sections.

You’ll find more details on block elements and their formatting in Chapter 4.Cross-
Reference

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

25Chapter 2 ✦ What Goes Into a Web Page?

Formatted paragraphs
The paragraph tag (<p>) is used to delimit entire paragraphs of text. For example,
the following HTML code results in the output shown in Figure 2-3:

<p>The quick brown fox jumped over the lazy dog. The quick
brown fox jumped over the lazy dog. The quick brown fox
jumped over the lazy dog. The quick brown fox jumped over the
lazy dog.</p>
<p>The quick brown fox jumped over the lazy dog. The quick
brown fox jumped over the lazy dog. The quick brown fox
jumped over the lazy dog.</p>

Figure 2-3: Paragraph tags break text into distinct paragraphs.

As with most tags, you could define several formatting elements (font, alignment,
spacing, and so on) of the <p> tag. For example, you can center a paragraph by
adding an align attribute to the <p> tag:

<p align=“center”> The quick brown fox jumped over the lazy
dog. The quick brown fox jumped over the lazy dog. The quick

brown fox jumped over the lazy dog.</p>

However, such formatting has been deprecated in favor of specifying formatting via
style sheets. The following is an example of using style sheets to achieve the same
results as the align attribute:

<html>
<head>
<style type=“text/css”>
p.center {text-align: center}
</style>
</head>
<body>
<p class=“center”> The quick brown fox jumped over the lazy
dog. The quick brown fox jumped over the lazy dog. The quick
brown fox jumped over the lazy dog.</p>
</body>
</html>

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

26 Part I ✦ Understanding (X)HTML

Using either of the preceding methods results in the paragraph being center-justified
in the browser.

Headings
HTML supports six levels of headings. Each heading uses a large, usually bold
character-formatting style to identify itself as a heading. The following HTML
example produces the output shown in Figure 2-4:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”> <html>

<body>
<h1>Heading 1</h1>
<h2>Heading 2</h2>
<h3>Heading 3</h3>
<h4>Heading 4</h4>
<h5>Heading 5</h5>
<h6>Heading 6</h6>
<p>Plain body text: The quick brown fox jumped over the lazy dog.</p>
</body>
</html>

Figure 2-4: HTML supports six levels of headings.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

27Chapter 2 ✦ What Goes Into a Web Page?

The six levels begin with Level 1, highest, most important, and go to Level 6, the
lowest, least important. Although there are six predefined levels of headings, you
probably will only find yourself using three or four levels in your documents. Also,
because there is no limit on being able to use specific levels, you can pick and
choose which levels you use—you don’t have to use <h1> and <h2> in order to be
able to use <h3>. Also, keep in mind that you can tailor the formatting imposed by
each level by using styles.

Cross-
Reference

Styles are covered in Chapter 16.

Quoted text
The <blockquote> tag is used to delimit blocks of quoted text. For example, the
following code identifies the beginning paragraph of the Declaration of
Independence as a quote:

<body>
<p>The Declaration of Independence begins with the following paragraph:</p>
<blockquote>
When in the Course of human events, it becomes necessary for
one people to dissolve the political bands which have
connected them with another, and to assume among the powers
of the earth, the separate and equal station to which the
Laws of Nature and of Nature’s God entitle them, a decent
respect to the opinions of mankind requires that they should
declare the causes which impel them to the separation.
</blockquote>
</body>

The <blockquote> indents the paragraph to offset it from surrounding text, as
shown in Figure 2-5.

Figure 2-5: The <blockquote> tag indents the paragraph.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

28 Part I ✦ Understanding (X)HTML

List elements
HTML specifies three different types of lists:

✦ Ordered lists (usually numbered)

✦ Unordered lists (usually bulleted)

✦ Definition lists (list items with integrated definitions)

The ordered and unordered lists both use a list item element () for each of the
items in the list. The definition list has two tags, one for list items (<dt>) and
another for the definition of the item (<dd>).

The following HTML code results in the output shown in Figure 2-6.

<html>
<body>
A basic ordered list

First ordered item
Second ordered item
Third ordered item

Figure 2-6: A sample list in HTML.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

29Chapter 2 ✦ What Goes Into a Web Page?

Unordered list

First unordered item
Second unordered item
Third unordered item

<dl>Definition list

<dt>First definition item
<dd>First definition

<dt>Second definition item
<dd>Second definition

<dt>Third definition item
<dd>Third definition

</dl>
</body>
</html>

Because of the amount of customization allowed for each type of list, you can create
many substyles of each type of list. For example, you can specify that an ordered list
be ordered by letters instead of numbers. The following HTML code does just that,
resulting in the output shown in Figure 2-7.

<html>
<body>
<ol style=“list-style: lower-alpha;”>A basic ordered list (lower-case alpha)

First ordered item
Second ordered item
Third ordered item

</body>
</html>

Figure 2-7: Using various list styles, you can customize each list in your document. The list
shown uses the list-style lower-alpha.

Note Older versions of HTML allowed various list options to be specified in the list
tag(s). However, current versions of strict HTML and XHTML formats specify that
all list options be contained within styles.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

30 Part I ✦ Understanding (X)HTML

Preformatted text
Occasionally, you will want to hand format text in your document or maintain the
formatting already present in particular text. Typically, the text comes from another
source—cut and pasted into the document—and can be formatted with spaces, tabs,
and so on. The preformatted tag (<pre>) causes the HTML client to treat white
space literally and not to condense it as it usually would.

For example, the following table will be rendered just as shown below:

<pre>
+---------------+-------------------+
| name | value |
+---------------+-------------------+
| newsupdate | 1069009013 |
| releaseupdate | Wed, 8/28, 8:18pm |
| rolfstatus | 0 |
| feedupdate | 1069009861 |
+---------------+-------------------+
</pre>

Divisions
Divisions are a higher level of block formatting, usually reserved for groups of
related paragraphs, entire pages, or sometimes only a single paragraph. The division
tag (<div>) provides a simple solution for formatting larger sections of a document.
For example, if you need a particular section of a document outlined with a border,
you can define an appropriate style and delimit that part of the document with
<div> tags, as in the following example:

<html>
<head>

<style>
.bordered { border-style: solid; }

</style>
</head>
<body>
<p>This is a normal paragraph.</p>
<div class=“bordered”><p>This is a paragraph delimited with
the defined div style which includes a border.</p></div>
</body>
</html>

This code results in the output shown in Figure 2-8.

Cross-
Reference

For more information on how to format blocks of text with the <div> tag, see
Chapter 16.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

31Chapter 2 ✦ What Goes Into a Web Page?

Figure 2-8: <div> tags are used to delimit large sections of text.

Inline Elements: Markup for Characters
The finest level of markup possible in HTML is at the character level; just as in a
word processor, you can affect formatting on individual characters. This section
covers the basics of inline formatting.

Basic inline tags
Inline formatting elements include the following:

✦ Bold ()

✦ Italic (<i>)

✦ Big text (<big>)

✦ Small text (<small>)

✦ Emphasized text ()

✦ Strong text ()

✦ Teletype (monospaced) text (<tt>)

For example, consider the following sample paragraph, whose output is shown in
Figure 2-9.

<html>
<body>
<p>This paragraph shows the various inline styles, such as
bold, <i>italic</i>, <big>big text</big>, <small>small
text</small>, emphasized text, strong
text, and <tt>teletype text</tt>.</p>
</body>
</html>

Note that several inline tags, such as strikethrough (<strike>) and underline (<u>)
tags, have been deprecated in the current specifications. Even the font tag ()

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

32 Part I ✦ Understanding (X)HTML

Figure 2-9: Inline elements can affect words or even individual characters.

has been deprecated in favor of spanning styles (see the Spanning section later in
this chapter). As for the strikethrough and underline tags, they have been replaced
by delete () and insert (<ins>), which are used for revisions (delete for
deleted text, insert for inserted text).

Cross-
Reference

More information on inline elements is contained in Chapter 4.

Spanning
Spanning tags () are used to span inline styles across multiple characters or
words. In effect, the tag allows you to define your own inline styles. For
example, if you need to specify text that is bold, red, and underlined, you could use
code similar to the following:

<html>
<head>
<style>

.emphasis { color: red; text-decoration: underline;
font-weight: bold; }

</style>
</head>
<body>
<p>This text is emphasized,
while this text is not.</p>
</body>
</html>

The tag allows you to apply the stylistic formatting inline, exactly where you
want it.

Special Characters (Entities)
Some special characters must be referenced directly instead of simply typed into the
document. Some of these characters cannot be typed on a standard keyboard, such
as the trademark symbol (™) or copyright symbol (©); others could cause the
HTML client confusion (such as the angle brackets, < and >). Such characters are
commonly referred to as “entities.”

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

33Chapter 2 ✦ What Goes Into a Web Page?

Entities are referenced by using a particular code in your documents. This code
always begins with an ampersand (&) and ends with a semicolon. Three different
ways to specify an entity exist:

✦ A mnemonic code (such as copy for the copyright symbol)

✦ A decimal value corresponding to the character (such as #169 for a copyright
symbol)

✦ A hexidecimal value corresponding to the character (such as #xA9 for a
copyright symbol)

Note that if you use the decimal or hexadecimal methods of specifying entities, you
need to prefix the value with a number sign (#).

The following are all examples of valid entities:

✦ —A non-breaking space (see later)

✦ <—The less-than symbol, or left-angle bracket (<)

✦ ©—The copyright symbol (c©)

✦ &—An ampersand (&)

✦ ——An em dash (—)

Cross-
Reference

You’ll find more information on entities in Chapter 9.

Inappropriate Entity Use

One particular entity, the nonbreaking space, is often used and abused to add white space
to HTML documents. For example, to add a larger gap between paragraphs, the following
code is often used:

<p> </p>

This code results in a blank paragraph—without the space, most browsers will not render the
paragraph because it is empty.

However, that is not the intent of this entity—it is meant to keep words from being split
between rows of text. Using it to add white space is not recommended. Instead, use styles
as directed in the various sections of this book.

Organizational Elements
Two HTML elements help organize information in a document: tables and forms.
Tables allow you to present data in column and row format, much like a spreadsheet.
Forms allow you to present (and retrieve) data using elements common to GUI
interfaces—elements such as text boxes, check boxes, and lists.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

34 Part I ✦ Understanding (X)HTML

Tables
HTML tables are very basic, but can be very powerful when used correctly. At their
base level, tables can organize data into rows and columns. At their highest level,
tables can provide complicated page design—much like a page in a magazine or
newspaper, providing columns for text and sections for graphics, menus, and
so on.

Tables have three basic elements and, hence, three basic tags:

✦ The table definition itself is defined and delimited by <table> tags.

✦ Rows of data are defined and delimited by <tr> (table row) tags.

✦ Table cells (individual pieces of data) are defined and delimited by <td>
(table data) tags. Table cells, when stacked in even rows, create table
columns.

For example, consider the following code, which results in the output shown in
Figure 2-10:

<html>
<body>
<table border=“1”>

<tr><td>Name</td><td>Age</td></tr>
<tr><td>Angela</td><td>35</td></tr>
<tr><td>Branden</td><td>29</td></tr>
<tr><td>Doug</td><td>23</td></tr>
<tr><td>Ian</td><td>31</td></tr>
<tr><td>Jeff</td><td>34</td></tr>
<tr><td>John</td><td>33</td></tr>
<tr><td>Keith</td><td>39</td></tr>
<tr><td>Michael</td><td>25</td></tr>
<tr><td>Steve</td><td>38</td></tr>
<tr><td>Steven</td><td>40</td></tr>

</table>
</body>
</html>

This example is very straightforward because the table is very simple. However, due
to the number of options you can use in formatting table elements and the fact that
you can nest tables within tables, the tables in your HTML documents can get very
complicated (and very powerful). To illustrate this point, compare Figures 2-11 and
2-12. Figure 2-11 shows a page as it normally appears in the browser. However, if you
turn on the table borders you can see how several tables (and nested tables) are
used to provide the document layout, as shown in Figure 2-12.

Cross-
Reference

Tables are covered in detail in Chapter 10. Using tables for page layout is covered
in Chapter 11.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

35Chapter 2 ✦ What Goes Into a Web Page?

Figure 2-10: Eleven rows and two columns of data in a table.

Figure 2-11: This document uses invisible tables to achieve its layout.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

36 Part I ✦ Understanding (X)HTML

Figure 2-12: Making the table borders visible shows just how many tables are
involved in laying out the page and how they help constrain the layout.

Forms
HTML forms provide a method to use standard GUI elements to display and collect
data. HTML forms provide the standard litany of GUI elements, including text boxes,
check boxes, pull down (also referred to as drop-down) lists, and more. In addition
to providing basic GUI elements, HTML forms also provide a rudimentary method of
collecting data and passing that data to a data handler for validation, storage,
comparison, and so on.

A typical HTML form resembles the following code, the output of which is shown in
Figure 2-13.

<html>
<body>
<form>

<!-- Text field -->
Name: <input type=“text” name=“name” size=“40”>

<!-- Radio buttons -->
Age:

<input type=“radio” name=“age”> < 20
<input type=“radio” name=“age”> 21 -- 30
<input type=“radio” name=“age”> 31 -- 40
<input type=“radio” name=“age”> 41+

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

37Chapter 2 ✦ What Goes Into a Web Page?

<!-- Select list -->
What is your favorite ice cream?

<select name=“icecream”>
<option name=“chocolate”>Chocolate
<option name=“strawberry”>Strawberry
<option name=“vanilla”>Vanilla

</select>

<!-- Check boxes -->
How may we contact you for more information?

<input type=“checkbox” name=“phone”>Phone

<input type=“checkbox” name=“mail”>Mail

<input type=“checkbox” name=“email”>Email

<input type=“checkbox” name=“no”>Do not contact me

</form>
</body>
</html>

Figure 2-13: Form elements provide standard GUI controls for displaying and collecting
data.

The preceding example form is very simple, it shows only some basic elements, and
has no handler to process the data that is collected by the form. Real-world forms
can be quite complex and usually require validation scripts to ensure the data
collected is valid. However, this simple form illustrates the amount of control you
can assert over data and format using HTML.

Cross-
Reference

Forms are covered in detail in Chapter 13.

Linking to Other Pages
The main advantage to the World Wide Web is the ability to link to other documents
on the Web. For example, if you had a page that detailed local zoning laws, you might

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

38 Part I ✦ Understanding (X)HTML

want to include a link to a local government site where additional information could
be found. A link typically appears as underlined text and is often rendered in a
different color than normal text.

For example, a link might appear in a browser as follows:

More information can be found here.

The word here is linked to the other document—when the user clicks the word, the
user’s browser displays the specified page.

Create links by using the anchor tag, <a>. At its simplest level, this tag takes one
argument—the page to link to—and surrounds the text to be linked. The preceding
example could be created with the following code:

More information can be found
here

The href, or Hypertext REFerence attribute of the anchor tag, specifies the protocol
and destination of the link. The example specifies http:// because the destination
is a Web page to be delivered via the HTTP protocol. Other protocols (such as
ftp:// or mailto:) can also be used where appropriate.

Additional attributes can be used with the anchor tag to specify such things as
where the new document should be opened (for example, in a new browser window),
the relationship between the documents, and the character set used in the linked
document.

You can also use a variant of the anchor tag to mark specific places in the current
document. A link can then be placed elsewhere in the document that can take the
user to the specific place. For example, consider this HTML code:

For more information see Chapter 2
. . . More HTML . . .
Chapter 2

In this example, the user can click the Chapter 2 link to move to the location of the
Chapter 2 anchor. Note that the href link must include the hash symbol (#), which
specifies that the link is an anchor instead of a separate page.

Cross-
Reference

More information on links and anchors can be found in Chapter 7.

Images
One of the great innovations the World Wide Web and HTTP brought to the Internet
was the ability to serve up multimedia to clients. The precursors to full-motion video
and CD quality sound were graphical images, in the Web-friendly Graphics
Interchange Format (GIF) and Joint Photographic Experts Group (JPEG) formats.

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

39Chapter 2 ✦ What Goes Into a Web Page?

You can include images in HTML documents by using the image tag (). The
image tag includes a link to the image file as well as pertinent information used to
display the image (for example, the image size). A typical image tag resembles the
following:

<img src=“/images/tmoore.jpg” alt=“A picture of Terri”
width=“100” height=“200”>

The preceding example would result in the image tmoore.jpg being displayed at
the location in the document where the tag appears. In this case, the image is in the
images directory of the current server and will be displayed without a border,
100 pixels wide by 200 pixels high. The alt attribute is used to provide a textual
equivalent for browsers that cannot display graphics (or whose users have
configured them not to).

Images can also be used as navigation aids—allowing the user to click certain parts
of an image to perform an action, display another document, and so on. For example,
a map of the United States could be used to help a user select their state—clicking a
state would bring up the applicable page for that state. Navigational images are
commonly referred to as image maps and require a separate map of coordinates and
geometric shapes to define the clickable areas.

You’ll find more information on images in Chapter 6.Cross-
Reference

Comments
Although HTML documents tend to be fairly legible, there are several advantages to
adding comments to your HTML code. Some typical uses for comments include
aiding in document organization, document specific code choices, or marking
particular document sections for later reference.

HTML uses the tag <!– to begin a comment and –> to end a comment. Note that the
comment can span multiple lines, but the browser will ignore anything between the
comment tags. For example, the following two comments will both be ignored by the
browser:

<!-- This section needs better organization. -->

and

<!-- The following table needs to include these columns:
Age
Marital Status
Employment Date

-->

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

40 Part I ✦ Understanding (X)HTML

Scripts
HTML is a static method of deploying content—the content is sent out to a client
browser where it is rendered and read, but it typically doesn’t change once it is
delivered. However, there is a need in HTML documents for such things as
decision-making ability, form validation, and, in the case of Dynamic HTML (DHTML),
dynamic object attribute changes. In those cases (and more), client-side scripting
can be used.

Cross-
Reference

For more information on client-side scripting, see Chapter 15.

Client-side scripting languages, such as JavaScript, have their code passed to the
client browser inside the HTML document. It is the client’s responsibility to interpret
the code and act accordingly. Most client-side scripts are contained in the <head>
section of the HTML document, within <script> tags, similar to the following
example:

<html>
<head>

<script language=“JavaScript”>
function MiscWindow(w,h,url){

opts = “width=”+w+“,height=”+h;
opts = opts+”,scrollbars=no,resizable=yes”;
fin=window.open(url,“”,opts);

}
</script>

</head>...

In most cases, the document needs to include events to run the script(s). These
events can be embedded in elements (via onmouseover or similar attributes), tied
to links, called via form elements, or run upon the document being loaded or
unloaded (via onload and onunload attributes in the <body> tag).

Note There are methods to run scripts automatically, that is, without a corresponding
event. However, such methods are typically thought of as bad form—it is much
better practice to always tie a script’s execution to an event.

Putting it All Together
As you can see, the standard HTML document is a fairly complex beast. However,
when taken piece by piece, the document becomes just like any other HTML
document. The following HTML listing shows how all of these pieces fit together.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”> <html>

<head>
<meta ... meta tags go here ... >
<title> title of the page/document goes here</title>

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

41Chapter 2 ✦ What Goes Into a Web Page?

<LINK rel=“stylesheet” href=“external style sheet name”
type=“text/css”>

<style>
... any document specific styles go here ...

</style>
<script>

... client-side scripts go here ...
</script>

<body>
... body of document goes here, paragraphs modified by
block elements, characters, words and sentences modified by
in line elements ...
</body>
</html>

All HTML documents should have a <DOCTYPE> specification, <html> and <body>
tags, and at least a <title> within the <head> section. The rest of the elements are
strictly optional, but help define the documents’ purpose, style, and ultimately its
usability, as you will see in the following chapters.

Summary
You have seen what basic elements make up an HTML document. Although the
amount of elements may seem daunting at first, you will quickly learn what purpose
each element serves, how it affects other elements in the document, and how to best
use each element to construct the best HTML document for your purpose. As you
read about the elements in more detail—within the next few chapters—try to match
their capabilities against your needs.

From here, you should read Chapters 3 through 24 to extend your understanding of
the various elements of HTML. Alternatively, jump to specific chapters that cover
elements that interest you, or that you don’t completely understand. (Follow the
various cross-references in each section in this chapter to find the relevant chapter
to the specific element you wish to learn more about.)

✦ ✦ ✦

P1: JYS

WY022-02 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:38

42

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

33C H A P T E R

Starting Your
Web Page ✦ ✦ ✦ ✦

In This Chapter

Basic Rules for HTML Code

Creating the Basic Structure

Declaring a Document Type

Specifying a Document Title

Providing Information to
Search Engines

Setting the Default Path

Creating Automatic
Refreshes and Redirects

Page Background Color
and Background Images

✦ ✦ ✦ ✦

Now that you know more about the background
of HTML and the types of elements involved in an HTML

document, it’s time to delve into the particulars of each
element. This chapter covers more specifics of the basic
elements and starts to show how easy it is to manipulate
HTML to create impressive documents.

Basic Rules for HTML Code
Creating HTML documents is actually quite easy—HTML
documents are simply text files embedded with HTML
commands. You can create the documents with any editor
capable of exporting raw text. In addition, HTML browsers are
very forgiving about white space—additional tabs, line feeds,
or spaces don’t matter.

As you create your first few HTML files, it is important to start
using some good coding habits, habits that will serve you well
as you code more complex pages later on. For example,
consider the practices outlined in the following sections.

Use liberal white space
Insert liberal line breaks to separate code sections, and use
spaces to indent subsequent elements. Both of these will help
you read and understand your code. Consider the following
two code samples:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
<title>The Declaration of Independence</title>
<meta name=“description” content=“Our Nation’s
Declaration of Independence”><meta name=“keywords”
content=“declaration, independence,

43

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

44 Part I ✦ Understanding (X)HTML

revolutionary, war, July, 4, 1776”></head><body><h1>The
Declaration of Independence</h1><p>IN CONGRESS, July 4,
1776.</p><p>The unanimous Declaration
of the thirteen united States of America,</p><p>When in the
Course of human events, it becomes necessary for one people
to dissolve the political bands which have connected them
with another, and to assume among the powers of the earth,
the separate and equal station to which the Laws of Nature
and of Nature’s God entitle them, a decent respect to the
opinions of mankind requires that they should declare the
causes which impel them to the separation.</p> <p>We hold
these truths to be self-evident, that all men are
created equal, that they are endowed by their Creator with
certain unalienable Rights, that among these are Life,
Liberty and the pursuit of Happiness. . .

and

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html><head><title>The Declaration of
Independence</title><meta name=“description” content=“Our
Nation’s Declaration of Independence”>
<meta name=“keywords” content=“declaration, independence,
revolutionary, war, July, 4, 1776”>
</head><body>
<h1>The Declaration of Independence</h1><p>IN CONGRESS, July
4, 1776.</p>
<p>The unanimous Declaration of the thirteen united States of
America,</p><p>When in the Course of human events, it becomes
necessary for one people to dissolve the political bands
which have connected them with another, and to assume among
the powers of the earth, the separate and equal station to
which the Laws of Nature and of Nature’s God entitle them, a
decent respect to the opinions of mankind requires that they
should declare the causes which impel them to the
separation.</p><p>We hold these truths to be self-evident,
that all men are created equal, that they are endowed by
their Creator with certain unalienable Rights, that among
these are Life, Liberty and the pursuit of Happiness. . .

As you can tell, the second example is much easier to read and, hence, easier to
troubleshoot.

Use well-formed HTML
Well-formed HTML means that your documents need to have the following
characteristics:

✦ Contain a <DOCTYPE> tag.

✦ Elements must be nested, not overlapping. This means that you need to close
elements in the opposite order of how they were opened. For example, the

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

45Chapter 3 ✦ Starting Your Web Page

following example is wrong:

<p>The last word is bold</p>

Note how the bold and paragraph tags overlap at the end of the block. Instead,
the bold tag should have been closed first, as in the following example:

<p>The last word is bold</p>

✦ Element and attribute names must be in lowercase. XHTML is case-sensitive;
the tag <HR> is different from the tag <hr>. All the tags in the XHTML
Document Type Definitions (DTDs) are lowercase—so your documents’ tags
need to be, as well.

✦ All non-empty elements must be terminated. For example, the following is not
allowed:

This is one paragraph<p>This is another paragraph<p>

Instead, each open paragraph tag needs to be closed.

✦ All attribute values must be quoted. For example, consider the two following
tags:

<table border=0>

and

<table border=“0”>

The first tag is incorrect because the attribute value is not quoted. The second
is correct because the attribute is correctly quoted.

✦ You cannot use minimized attributes, that is, attributes without values. For
example, consider the two following tags:

<input type=“checkbox” checked>

and

<input type=“checkbox” checked=“checked”>

The first tag has a minimized attribute; the checked attribute is named but has
no value.

✦ Any empty tag must have a closing tag or the opening tag must end with a slash
(/). For example, consider the <hr> tag, which doesn’t have a closing tag. As
such, it should always appear with an ending slash, <hr />.

Comment your code
Well-written code should speak for itself. However, there are plenty of instances
when including comments in your code is warranted. For example, in Chapters 22
and 23, you will learn how to use nested tables to create complex textual layouts.
However, such constructs often result in code such as the following:

</table>
</table>

</table>

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

46 Part I ✦ Understanding (X)HTML

Without comments, the nested tables are hard to follow. However, adding a few
comments allows you to more easily keep track of the nested elements’ purpose:

</table> <!-- /Top heading -->
</table> <!-- /Main body -->

</table> <!-- /Floating page -->

Creating the Basic Structure
The basic structure for all HTML documents is the same and should include the
following minimum elements and tags:

✦ <DOCTYPE>—The declared type of the document

✦ <html>—The main container for HTML pages

✦ <head>—The container for page header information

✦ <title>—The title of the page

✦ <body>—The main body of the page

These elements fit together in the following template format:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<meta ... meta tags go here ... >
<title>title of the page/document goes here</title>
<LINK rel=“stylesheet” href=“external style sheet name”

type=“text/css”>
<style>

... any document specific styles go here ...
</style>
<script>

... client-side scripts go here ...
</script>

</head>
<body>

... body of document goes here, paragraphs modified by
block elements, characters, words and sentences modified by
in line elements ...
</body>
</html>

The following sections provide more detail on each of the various elements.

Declaring the Document Type
The <DOCTYPE> declaration defines what format your page is in and what
standard(s) it follows. This is done by specifying what DTD the document adheres

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

47Chapter 3 ✦ Starting Your Web Page

to. For example, the following <DOCTYPE> definition specifies the strict HTML 4.01
DTD:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

Cross-
Reference

The format and options of the <DOCTYPE> tag are covered in more detail in
Chapter 2. You can find a list of valid, public DTDs on the W3C Web site at:
http://www.w3.org/QA/2002/04/valid-dtd-list.html.

This book will cover the strict HTML 4.01 DTD unless otherwise noted.

Specifying the Document Title
The <head> element of an HTML document contains several other elements
including the document title. The document title is delimited between <title> tags
and can include any character or entity. For example, consider the following <head>
section that includes a copyright symbol:

<title>This Page Copyright © 2003</title>

This title shows in the title bar of Internet Explorer, as shown in Figure 3-1.

Copyright symbol

Figure 3-1: Entities are rendered correctly in document titles.

Although it is useful to have the title of your document in the title bar of the client’s
browser, the title is used in several other locations, as well—it is used as the default
shortcut/favorite name in most browsers, it is linked to in most search engines, and
so on. As such, you should always include a title for your documents, and make it as
descriptive (but concise) as possible.

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

48 Part I ✦ Understanding (X)HTML

Providing Information to Search Engines
The <head> section of your document can also include <meta> tags. These tags are
not rendered as visible text in the document—they are used to pass information and
commands to the client browser.

As its name implies, the <meta> tag contains meta information for the document.
Meta information is information about the document itself, instead of information
about the document’s contents. Most of a document’s meta information is generated
by the Web server that delivers the document. However, by using <meta> tags, you
can supply different or additional information about the document.

The amount of information you can specify with <meta> tags is quite extensive. If
you use the HTTP-EQUIV parameter in the <meta> tag, you can supply or replace
HTTP header information. For example, the following <meta> tag defines the content
type of the document as HTML with the Latin character set (ISO-8859-1):

<meta http-equiv=“Content-Type” content=“text/html; charset=ISO-8859-1”>

In addition, you can control some aspects of how the client browser treats the
document. You can specify how long the document should be cached (if cached at
all), refresh the browser with a different page after a delay, and so forth. For example,
the following two <meta> tags tell the browser not to cache the current page
(pragma, no-cache) and to refresh the browser window with a different page after 3
seconds (refresh):

<meta http-equiv=“pragma” content=“no-cache”>
<meta http-equiv=“refresh”
content=“3;URL=http://www.example.com/newpage.html”>

Note For a comprehensive list of HTTP 1.1 headers, see the HTTP 1.1 definition on the
W3C Web site: http://www.w3.org/Protocols/rfc2616/rfc2616.html.

Always include at least a minimum amount of information in your documents to aid
search engines in correctly categorizing your documents. Two important pieces of
meta information are a description of the document and keywords relating to its
content. The description and keywords information is provided by the following two
<meta> tags:

<meta name=“description” content=“The latest movie news”>
<meta name=“keywords” content=“movie, movies, production,

genre, sci fi, horror, drama, comedy, anima, manga, news,
chat, bbs, discuss, review, recent”>

Search engines such as Google (www.google.com) will also list the provided
description and keywords in the site’s entry.

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

49Chapter 3 ✦ Starting Your Web Page

Setting the Default Path
When defining links and references in your HTML document, be as exact as possible
with your references. For example, when referencing a graphic with an tag,
you should make a habit of including the protocol and the full path to the graphic, as
shown in the following line of code:

However, it isn’t very practical to type the full path to every local element that is
referenced in your document. As such, a document residing on the example.com
server could reference the same graphic with the following code:

But, what happens if the document is relocated? The images directory might no
longer be a subdirectory of the directory where the document resides. The image
might be on a separate server altogether.

To solve these problems, you could use the <base> tag. The <base> tag sets the
default document base—that is, the default location for the document. Using the
preceding example, a document in the root directory of the example.com server
would have a <base> tag similar to the following:

<base href=“http://www.example.com/document.html”>

Any absolute references in the document (those with full protocol and path) will
continue to point to their absolute targets. However, any relative reference (those
without full protocol and path) will be referenced against the path in the <base> tag.

Creating Automatic Refreshes and Redirects
Meta tags can also be used to refresh a document’s content or redirect a client browser
to another page. Refreshing a document is useful if it includes timely, dynamic data,
such as stock prices. Redirection comes in handy when a document moves—you
can use a redirect to automatically redirect a visitor to the new document.

To refresh or redirect a document, use the http-equiv “refresh” option in a <meta>
tag. This option has the following form:

<meta http-equiv=“refresh” content=“seconds_to_wait; url”>

For example, suppose that a page on your site (example.com) has moved. The page
used to be on the root of the server as bio.html, but now the page is in a bio
directory as index.html (/bio/index.html). However, you want visitors who
previously bookmarked the old page to be able to get to the new page. Placing the
following document in the server’s root (as bio.html) would cause visitors to

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

50 Part I ✦ Understanding (X)HTML

automatically be redirected to the new page after a three-second wait:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>My Bio has Moved!</title>
<meta http-equiv=“pragma” content=“no-cache”>
<meta http-equiv=“refresh” content=“3;

URL= http://www.example.com/bio/index.html”>
</head>
<body>
<p>My bio has moved. You will be redirected to the new page
in 3 seconds, or you can click the link below.</p>
My new
bio.
</body>
</html>

To refresh the current page, simply place its absolute URL in the refresh tag.

Tip Using the pragma no-cache meta tag along with the refresh tag is always
a good idea. This helps keep the browser from caching the document and
displaying the cached copy of the document instead of the updated document.
Because different browsers treat the no cache pragma differently, it is also a
good idea to add an expires meta tag, as shown below:

<meta http-equiv=“expires” content=“0”>

This tag causes the document to be immediately expired in the cache and,
hence, not cached at all.

Page Background Color and
Background Images

One of the easiest changes you can affect on your Web pages is to change the
background color of your document. Most browsers use a white background, and
specifying a different background color or a background image can easily make your
document distinct.

Specifying the document background color
If you code your HTML against the transitional format of HTML, you can use the
bgcolor attribute in the <body> tag. However, using that attribute is not
recommended for the following reasons:

✦ The attribute is not valid for strict HTML and might impair the validation of
your document.

✦ If you want to change the background color of your documents, you must
change each individual body tag in each document.

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

51Chapter 3 ✦ Starting Your Web Page

A better practice is to use appropriate styles, typically in an external style sheet.

The document background color is set using the background-color property. For
example, to set the background color to blue, you would use the following style
definition:

<style>
body { background-color: blue; }

</style>

Cross-
Reference For more information on styles, refer to Chapters 15 and 16.

Specifying the document background image
Besides setting the background of the document to a solid color, you can also specify
an image to use as the document background. As with the background color
attribute for the body tag, there is also a background image attribute (background)
for the body tag. However, as with the background color attribute, it is not a good
idea to use that attribute.

Instead, use the background-image property in the body style, as shown here:

Figure 3-2: The grid in the background of the document is courtesy of an
image, grid.jpg.

P1: JYS

WY022-03 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 7, 2004 21:15

52 Part I ✦ Understanding (X)HTML

<style>
body { background-image: url(path_to_image); }

</style>

For example, the following style results in grid.jpg being placed as the document’s
background:

<style>
body { background-image: url(grid.jpg); }

</style>

The effect is shown in Figure 3-2.

Note When you change the background color to a dark color, or use a dark image,
you should also change the text color so it will contrast with the background.
For example, the following style sets the body background to black and the
body text color to white:

<style>
body { background-color: black; color: white; }

</style>

Summary
This chapter described the basic elements you need in all HTML documents. You
learned some basic guidelines for coding with HTML and how to add header
information to your documents, such as a title and meta information for search
engines. You also learned how to set a document’s base path and redirect a user to
another page. Lastly, you saw how to quickly make a document distinctive by
changing its colors.

The next few chapters cover various formatting elements in more detail.

✦ ✦ ✦

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

P A R T

IIIIHTML/XHTML
Authoring
Fundamentals ✦ ✦ ✦ ✦

In This Part

Chapter 4
Lines, Line
Breaks, and
Paragraphs

Chapter 5
Lists

Chapter 6
Images

Chapter 7
Links

Chapter 8
Text

Chapter 9
Special
Characters

Chapter 10
Tables

Chapter 11
Page Layout with
Tables

Chapter 12
Frames

Chapter 13
Forms

Chapter 14
Multimedia

Chapter 15
Scripts

✦ ✦ ✦ ✦

53

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

54

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

44C H A P T E R

Lines, Line
Breaks, and
Paragraphs

✦ ✦ ✦ ✦

In This Chapter

Line Breaks

Nonbreaking Spaces

Soft Hyphens

Preserving Formatting

Indents

Headings

Horizontal Rules

Grouping with <div>

✦ ✦ ✦ ✦

Just as the Web is made up of individual pieces—documents
or pages—those individual pieces are made up of smaller

elements themselves. Just like a textual document created
with a word processor, HTML documents comprise
paragraphs and other block elements. This chapter examines
block elements in detail.

Line Breaks
As mentioned in previous chapters, HTML is very forgiving of
white space—perhaps a bit too forgiving. Instead of simply
reproducing the white space contained within the code, client
browsers follow the rules of HTML, condensing white space
and only inserting formatting via tags.

For example, consider this code example:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Excerpt From Hamlet</title>
</head>
<body>
Scene I. Elsinore. A platform before the Castle.

[Francisco at his post. Enter to him Bernardo.]

Ber.
Who’s there?

Fran.
Nay, answer me: stand, and unfold yourself.

55

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

56 Part II ✦ HTML/XHTML Authoring Fundamentals

Ber.
Long live the king!

Fran.
Bernardo?

Ber.
He.

Fran.
You come most carefully upon your hour.

Ber.
‘Tis now struck twelve. Get thee to bed, Francisco.

Fran.
For this relief much thanks: ‘tis bitter cold,
And I am sick at heart.

Ber.
Have you had quiet guard?

Fran.
Not a mouse stirring.
</body>
</html>

This text, when rendered by a browser, resembles that shown in Figure 4-1. Note how
the formatting has been completely changed due to the browser condensing all the
white space—only rendering one space where line breaks and multiple spaces appear.

This has advantages and disadvantages, linked to the following two points:

✦ You can format your code almost however you like without worrying about
affecting the formatting in the client browser.

✦ You cannot rely upon visual formatting—using multiple spaces, tabs, and line
breaks—to format your HTML documents.

Instead of using plain text, you must use HTML tags to break your document into
discrete paragraphs.

Paragraphs
In HTML, paragraphs are delimited by the paragraph tag, <p>. The paragraph tag
controls the line spacing of the lines within the paragraph as well as the line spacing
between paragraphs. The default spacing is single space within the paragraph, and
double-space between paragraphs.

Each paragraph in your document should start with an opening paragraph tag (<p>)
and end with a closing paragraph tag (</p>). This ensures that each paragraph in
the document has the same formatting. For an example of using paragraph tags,
consider the following code and its output, shown in Figure 4-2:

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

57Chapter 4 ✦ Lines, Line Breaks, and Paragraphs

Figure 4-1: HTML browsers condense white space in the code to single spaces.

Figure 4-2: Paragraph tags control the spacing of lines within and between
paragraphs in a document.

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

58 Part II ✦ HTML/XHTML Authoring Fundamentals

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Excerpt From Black Beauty</title>
</head>
<body>
<p>01 My Early Home</p>
<p>The first place that I can well remember was a large
pleasant meadow with a pond of clear water in it. Some shady
trees leaned over it, and rushes and water-lilies grew at the
deep end. Over the hedge on one side we looked into a plowed
field, and on the other we looked over a gate at our master’s
house, which stood by the roadside; at the top of the meadow
was a grove of fir trees, and at the bottom a running brook
overhung by a steep bank.</p>
<p>While I was young I lived upon my mother’s milk, as I
could not eat grass. In the daytime I ran by her side, and at
night I lay down close by her. When it was hot we used to
stand by the pond in the shade of the trees, and when it was
cold we had a nice warm shed near the grove.</p>
<p>As soon as I was old enough to eat grass my mother used to
go out to work in the daytime, and come back in the
evening.</p>
<p>There were six young colts in the meadow besides me; they
were older than I was; some were nearly as large as grown-up
horses. I used to run with them, and had great fun; we used
to gallop all together round and round the field as hard as
we could go. Sometimes we had rather rough play, for they
would frequently bite and kick as well as gallop.</p>
</body>
</html>

Tip It is a good idea to visually format your text within the HTML code—inserting
line and paragraph breaks where you want them to appear. Doing so facilitates
formatting the text with tags and identifying where tags are missing.

As with most tags, you can use styles to control the spacing used by the paragraph
tag. For example, using the following styles will cause the paragraph’s internal line
spacing to be double-spaced by increasing the line height to double its normal size:

<style type=“text/css”>
p { line-height: 200%; }

</style>

If this style is applied to the example earlier in this section, it results in the output
shown in Figure 4-3.

Cross-
Reference

For more information on styles, refer to Chapters 16 and 17.

Standard paragraph formatting is left-justified, as shown in Figures 4-2 and 4-3. You
can control the justification by using a style that modifies the text-align attribute.

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

59Chapter 4 ✦ Lines, Line Breaks, and Paragraphs

Figure 4-3: You can control the spacing within a paragraph by modifying the line-
height attribute of the <p> tag.

For example, to set the standard paragraph justification to center, you would use a
style similar to the following:

p { text-align: center; }

Manual line breaks
Occasionally, you will want to manually break a line without ending the paragraph.
For example, consider the example earlier in this chapter from William
Shakespeare’s Hamlet:

Fran.
You come most carefully upon your hour.

Ber.
‘Tis now struck twelve. Get thee to bed, Francisco.

Fran.
For this relief much thanks: ‘tis bitter cold,
And I am sick at heart.

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

60 Part II ✦ HTML/XHTML Authoring Fundamentals

Since the text is from a play, it follows a particular style:

Actor-name
Dialogue

If you use a paragraph tag to cause each line break, you’ll end up with output similar
to the following:

Fran.

You come most carefully upon your hour.

Ber.

‘Tis now struck twelve. Get thee to bed, Francisco.

Fran.

For this relief much thanks: ‘tis bitter cold,
And I am sick at heart.

Instead, you should use a line break tag (
) where you need a line break in a
paragraph. The preceding text would be coded as follows:

<p>Fran.

You come most carefully upon your hour.</p>
<p>Ber.

‘Tis now struck twelve. Get thee to bed, Francisco.</p>
<p>Fran.

For this relief much thanks: ‘tis bitter cold,
And I am sick at heart.</p>

Note Typically, you would use several different styles of paragraph tags to delimit the
different elements. For example, when formatting a script for a play, you would
have a class for the actor and another for the dialogue. An example follows:

<p class=“actor”>Fran.</p>
<p class=“dialogue”>For this relief much thanks:
‘tis bitter cold,

And I am sick at heart.</p>

That way, you could easily control (and change) the format of each element
separately.

Nonbreaking Spaces
Just as you will want to break some text into discrete chunks, at other times you will
want to keep text together. For example, you wouldn’t want words separated in dates
(December 25, 2003), awkward phrases that include letters and numbers (24 hours),
or in some company names (“International Business Machine Corporation”).

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

61Chapter 4 ✦ Lines, Line Breaks, and Paragraphs

Suppose you were to use the phrase “12 Angry Men.” You would not want a browser
to split the “12” and “Angry” across two lines, as shown here:

A good example of this technique appears in the movie “12 Angry Men.”

In cases where you do not want the client browser to break text, you should use a non-
breaking space entity () instead of a normal space. For example, when coding
the “12 Angry Men” paragraph, you would use something similar to the following code:

<p>A good example of this technique appears in the movie
“12 Angry Men.”</p>

Cross-
Reference

For more information on special characters (entities, and so on), refer to
Chapter 9.

The browser will then be forced to keep the phrase together, treating it as one
cohesive word.

Tip Nonbreaking spaces have long been used to force formatting on the client
browser. For example, to indent a line by three spaces, HTML coders would use
something like the following:

 Indented by three spaces

Before robust CSS styles, this was the only way to “space fill” text. However, now
that there are a myriad of ways to achieve this result using styles, this technique
becomes sloppy and should not be used. Instead, create an appropriate style
and use it to achieve the same results.

Soft Hyphens
Occasionally, you will want to allow a browser to hyphenate long words to better
justify a paragraph. For example, consider the following code and its resulting
output in Figure 4-4:

<p style=“text-align: justify;”>The morbid fear of the number 13, or
triskaidekaphobia, has plagued some important historic figures like Mark Twain
and Napoleon.</p>

In cases where you want a client browser to be able to hyphenate a word if
necessary, use the soft hyphen entity (­) to specify where a word should be
hyphenated. Using the preceding example, you can hyphenate the word
“triskaidekaphobia” with soft hyphens:

<p style=“text-align: justify;”>The morbid fear of the number 13, or
tris­kai­deka­pho­bia, has plagued some important historic
figures like Mark Twain and Napoleon.</p>

The resulting output, shown in Figure 4-5, shows how the option hyphens are used to
break the word and achieve better justification results.

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

62 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 4-4: Long words can cause problems with fully justified
text. Note how the first line is spread out to fill the full line width.

Figure 4-5: Optional hyphens are used when the browser needs
to break a word.

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

63Chapter 4 ✦ Lines, Line Breaks, and Paragraphs

Preserving Formatting—The <pre> Element
Sometimes you will want the client browser to interpret your text literally, including
the white space and forced formatting (line breaks, and so on). In those cases, you can
use the preformatted tag (<pre>). The preformatted tag tells the client browser that
the text within the tag has been preformatted and should appear exactly as it appears
in the code. The tag also causes all text within to be rendered in a monospace font.

For example, consider the following output from a MySQL database:

mysql> select * from settings;
+---------------+-------------------+
| name | value |
+---------------+-------------------+
newsupdate	1069455632
releaseupdate	Tue, 1/28, 8:18pm
status	0
feedupdate	1069456261
+---------------+-------------------+
4 rows in set (0.00 sec)

If you wanted this to appear in a browser as-is, you would have to use liberal
nonbreaking spaces and line breaks, as well as specify a monospaced font, as shown
in the following code:

<p style=“font-family: courier;”>
mysql> select * from settings;

+---------------+-------------------+

| name
 | value
 |

+---------------+-------------------+

| newsupdate | 1069455632
 |

| releaseupdate | Tue, 1/28, 8:18pm |

| status
| 0
 |

| feedupdate | 1069456261
 |

+---------------+-------------------+

4 rows in set (0.00 sec)</p>

Not only is this a lot of work, but it also renders the code practically illegible. A
better way is to simply use the <pre> tag, as follows:

<pre>
mysql> select * from settings;
+---------------+-------------------+
| name | value |
+---------------+-------------------+
| newsupdate | 1069455632 |

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

64 Part II ✦ HTML/XHTML Authoring Fundamentals

| releaseupdate | Tues, 1/28, 8:18pm|
| rolfstatus | 0 |
| feedupdate | 1069456261 |
+---------------+-------------------+
4 rows in set (0.00 sec)
</pre>

As you can see in Figure 4-6, the browser does not attempt to format the text within
the <pre> tags, and renders it in a monospace font to ensure that the formatting
appears correct.

Figure 4-6: The <pre> tag tells the browser that the text has been preformatted and that it
should be rendered verbatim.

Preformatted text is best for textual tables, or to set certain element (such as lines of
code) apart from the main body of a document.

Indents
Occasionally, you will want to indent the first line of paragraphs in your documents.
To do so, you can use the text-indent property of the paragraph tag and an
applicable style. For example, if you wanted the first line of all paragraphs to be

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

65Chapter 4 ✦ Lines, Line Breaks, and Paragraphs

indented by half an inch, you would use a style similar to the following:

<style type=“text/css”>
p { text-indent: .5in; }

</style>

Tip If you want to have different styles of paragraphs in your document—some
indented, some not indented—define your style using classes. For example, the
following code defines an indent style of the paragraph tag:

<style type=“text/css”>
p.indent { text-indent: .5in; }

</style>

You would then specify the class in any paragraph tag where you wanted the
indent:

<p class=“indent”>This paragraph will be
indented.</p>

An example of indenting the first line of paragraphs is shown in the following code
and its output in Figure 4-7:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>First Line Indents</title>
<style type=“text/css”>

p{ text-indent: 0.5in; }
</style>

</head>
<body>
<p>When in the Course of human events, it becomes necessary
for one people to dissolve the political bands which have
connected them with another, and to assume among the powers
of the earth, the separate and equal station to which the
Laws of Nature and of Nature’s God entitle them, a decent
respect to the opinions of mankind requires that they should
declare the causes which impel them to the separation.</p>
<p>We hold these truths to be self-evident, that all men are
created equal, that they are endowed by their Creator with
certain unalienable Rights, that among these are Life,
Liberty and the pursuit of Happiness.--That to secure these
rights, Governments are instituted among Men, deriving their
just powers from the consent of the governed, --That whenever
any Form of Government becomes destructive of these ends, it
is the Right of the People to alter or to abolish it, and to
institute new Government, laying its foundation on such
principles and organizing its powers in such form, as to them
shall seem most likely to effect their Safety and Happiness.
Prudence, indeed...</p>
</body>
</html>

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

66 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 4-7: Using styles, you can control the indentation of paragraphs.

If you want to indent an entire paragraph, use the padding-left and, optionally,
the padding-right attribute. These attributes add additional space to the left and
right of the block element. For example, to add a half-inch indent to the left of a
paragraph, you could use this style definition:

<style type=“text/css”>
p.indent { padding-left: 0.5in; }

</style>

Tip You can use the <blockquote> tag to easily indent a paragraph (both left
and right). However, this method doesn’t allow the type of control possible in
defining a special style for elements you wish indented.

Headings
HTML has six predefined heading tags. Headings use <h> tags containing the number
of the heading. The <h1> tag specifies the highest (most important) level of
headings, while <h6> specifies the lowest (least important) level of headings.

As with most textual documents, HTML documents use larger fonts to specify
higher-level headings. For example, consider the following example and its output,
shown in Figure 4-8:

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

67Chapter 4 ✦ Lines, Line Breaks, and Paragraphs

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Heading Tags</title>
</head>
<body>
<h1>Heading Level 1</h1>
<h2>Heading Level 2</h2>
<h3>Heading Level 3</h3>
<h4>Heading Level 4</h4>
<h5>Heading Level 5</h5>
<h6>Heading Level 6</h6>
<p>Normal body text.</p>
</body>
</html>

Figure 4-8: There are six, predefined heading styles in HTML.

Each heading style acts like a paragraph tag, providing an automatic line break and
extra line spacing after the element. As you can see in Figure 4-8, the default spacing
after a heading is one line.

You can use heading tags to delimit a wide range of text. However, their default use is
to mark headings in a document, much like headings in a textual document. Also, like
most tags, you can use styles to customize the size and appearance of the heading

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

68 Part II ✦ HTML/XHTML Authoring Fundamentals

tags. For example, consider the following style code, which defines the first four
heading levels in relationship to the normal paragraph font:

<style type=“text/css”>
h1 { font-size: 18pt; font-family: Arial;

font-weight: bold; }
h2 { font-size: 16pt; font-family: Arial;

font-weight: bold; }
h3 { font-size: 14pt; font-family: Arial;

font-weight: bold; }
h4 { font-size: 12pt; font-family: Arial;

font-weight: bold; }
p { font-size: 12pt; font-family: Palatino;

font-weight: normal; }
</style>

Cross-
Reference

Additional font elements and style guidelines can be found in Chapters 8 and
16–18.

Horizontal Rules
Horizontal rules are used to visually break up sections of a document. The <hr> tag
creates a line from the current position in the document to the right margin and
breaks the line accordingly.

For example, if you were reproducing text from a book, you might want to use rules
to show a break between chapters, as shown in the following excerpt from Anna
Sewell’s Black Beauty:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Excerpt of Black Beauty</title>
</head>
<body>
<p>One day he was at this game, and did not know that the
master was in the next field; but he was there, watching what
was going on; over the hedge he jumped in a snap, and
catching Dick by the arm, he gave him such a box on the ear
as made him roar with the pain and surprise. As soon as we
saw the master we trotted up nearer to see what went on.</p>
<p>“Bad boy!” he said, “bad boy! to chase the colts. This is
not the first time, nor the second, but it shall be the last.
There -- take your money and go home; I shall not want you on
my farm again.”</p>
<p>So we never saw Dick any more. Old Daniel, the man who
looked after the horses, was just as gentle as our master, so
we were well off.</p>

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

69Chapter 4 ✦ Lines, Line Breaks, and Paragraphs

<hr>
<p>Chapter 02 The Hunt</p>
<p>Before I was two years old a circumstance happened
which I have never forgotten. It was early in the spring;
there had been a little frost in the night, and a light mist
still hung over the woods and meadows. I and the other colts
were feeding at the lower part of the field when we heard,
quite ... </p>
</body>
</html>

The output of this code is shown in Figure 4-9.

Figure 4-9: The <hr> tag inserts a horizontal rule in the document.

As with most tags, you can customize the look of the <hr> tag by using styles. For
example, consider the following style:

<style type=“text/css”>
hr { color: red; height: 5px; width: 50%; }

</style>

If this style were added to our last example, the results would be similar to the
output shown in Figure 4-10.

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

70 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 4-10: You can control various aspects of the horizontal rule, including its width, its
thickness (height), and the color.

Grouping with the <div> Element
Now that you know how to format paragraphs, what about groups of paragraphs?
Suppose, for example, that you wanted to indent an entire section of text and place a
border around the section. Although you can accomplish the indent by using styles
with paragraph tags, the unified border is harder to do. For example, consider the
following code, which uses styles and paragraph tags:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Paragraph Borders with Paragraph Tags</title>
<style type=“text/css”>

p.indent-highlight { padding-left: 50px;
padding-right: 50px; border: solid 3px; }

</style>
</head>
<body>
<p class=“indent-highlight”>For the first few days I could
not feed in peace; but as I found that this terrible creature
never came into the field, or did me any harm, I began to
disregard it, and very soon I cared as little about the

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

71Chapter 4 ✦ Lines, Line Breaks, and Paragraphs

passing of a train as the cows and sheep did.</p>
<p class=“indent-highlight”>Since then I have seen many
horses much alarmed and restive at the sight or sound of a
steam engine; but thanks to my good master’s care, I am as
fearless at railway stations as in my own stable.</p>
<p class=“indent-highlight”>Now if any one wants to break in
a young horse well, that is the way.</p>
</body>
</html>

The output of this code is shown in Figure 4-11. Note how each paragraph is
surrounded by its own border, which is not what you wanted.

Figure 4-11: Adding some formatting, such as borders, to paragraph tags causes the
formatting to distinctly appear around individual paragraphs.

This is where the division tag (<div>) comes in handy. The <div> tag is used to
delimit divisions of a document, which can include several paragraphs or other
block elements.

Instead of defining a style for the paragraph tag, define it as an unattached class (one
without a specified element) and use it with the <div> tag, as in the following code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

72 Part II ✦ HTML/XHTML Authoring Fundamentals

<head>
<title>Division Borders with Division Tags</title>
<style type=“text/css”>

.indent-highlight { padding-left: 50px;
padding-right: 50px; border: solid 3px; }

</style>
</head>
<body>
<div class=“indent-highlight”>
<p>For the first few days I could not feed in peace; but as I
found that this terrible creature never came into the field,
or did me any harm, I began to disregard it, and very soon I
cared as little about the passing of a train as the cows and
sheep did.</p>
<p>Since then I have seen many horses much alarmed and
restive at the sight or sound of a steam engine; but thanks
to my good master’s care, I am as fearless at railway
stations as in my own stable.</p>
<p>Now if any one wants to break in a young horse well, that
is the way.</p>
</div>
</body>
</html>

Note the output of this code in Figure 4-12.

Figure 4-12: Moving the border definition to the <div> tag causes the border to appear
around the entire division instead of around the individual pieces.

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

73Chapter 4 ✦ Lines, Line Breaks, and Paragraphs

Tip Note that the border in Figure 4-12 appears at the margins of the document, not
at the indent of the paragraphs it surrounds. This is because the style specifies
padding-left and padding-right, which affects the spacing between the
parent element (the border) and its children (the paragraphs). To indent the
border itself, you would need to specify values for margin-left and margin-
right.

Keep in mind that the <div> tag can be used to group combinations of block
elements as well—it is not limited to paragraph blocks. For example, you could
easily have included a headline, horizontal rule, or other block element(s) in the
paragraphs in the last example, and the border would have been rendered around
them all.

Summary
This chapter covered the details of most of the block elements of XHTML—
paragraphs, headings, horizontal rules, and more. The next few chapters cover more
specialized elements, such as lists, images, links, and tables.

After learning about the various elements you can create in an HTML document, Part
II of this book shows you how Cascading Style Sheets (CSS) contribute to creating
rich, online content.

✦ ✦ ✦

P1: JYS

WY022-04 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 15:27

74

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

55C H A P T E R

Lists
✦ ✦ ✦ ✦

In This Chapter

Understanding Lists

Ordered (Numbered) Lists

Unordered (Bulleted) Lists

Definition Lists

Nested Lists

✦ ✦ ✦ ✦

HTML and its various derivatives were originally meant to
be able to reproduce academic and research text. As a

consequence, particular care was taken to ensure specific
elements—such as lists and tables—were implemented and
robust enough to handle the tasks for which they serve.

In the case of lists, HTML defines three different types of lists:
ordered (commonly known as numbered) lists, unordered
(commonly known as bulleted) lists, and definition lists (for
term and definition pairs). This chapter covers all three types
of lists and the various syntax and formatting possibilities of
each.

Understanding Lists
All lists, whether ordered, unordered, or definition, share
similar elements. Each HTML list has the following structure:

<list_tag>
<item_tag>Item text</item_tag>
<item_tag>Item text</item_tag>
...

</list_tag>

Note Definition lists are slightly different in syntax because
they have an item tag (<dt> or “definition term”) and a
definition description tag (<dd>). See the Definition Lists
section later in this chapter for more information.

For each list you need the list opening tag, a corresponding
closing tag, and individual item tags (paired; open and close).

Each type of list has its own display format:

✦ An ordered list precedes its items with a number or letter.

✦ An unordered list precedes its items with a bullet (as in this
list).

✦ A definition list has two pieces for each item, a term and a
definition.

75

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

76 Part II ✦ HTML/XHTML Authoring Fundamentals

The ordered and unordered lists have many different display options available:

✦ Ordered lists can have their items preceded by the following:

• Arabic numbers

• Roman numerals (upper- or lowercase)

• Letters (upper- or lowercase)

• Numerous other language-specific numbers/letters

✦ Unordered lists can have their items preceded by the following:

• Several styles of bullets (filled circle, open circle, square, and so on)

• Images

More information on the individual list types is provided in the following sections.

Ordered (Numbered) Lists
Ordered lists have elements that are preceded by numbers or letters and are meant
to provide a sequence of ordered steps for an activity. For example, this book uses
numbered lists when stepping the reader through a process. Such a list might
resemble the following:

1. In Internet Explorer, open the Web page that displays the graphic you wish to
use as wallpaper for your desktop.

2. Right-click the image to open the context menu.

3. Choose Set as Background to save the image and use it as your desktop
wallpaper.

Ordered lists use the ordered list tag () to delimit the entire list and the list item
tag () to delimit each individual list item.

In the preceding example, the list has three elements numbered with Arabic
numbers. This is the default for ordered lists in HTML, as shown in the following
code, whose output is shown in Figure 5-1:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Example Ordered List</title>
</head>
<body>

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

77Chapter 5 ✦ Lists

In Internet Explorer, open the Web page that displays
the graphic you wish to use as wallpaper for your
desktop.

Right-click on the image to open the context menu.
Choose Set as Background to save the image and use it

as your desktop wallpaper.

</body>
</html>

Figure 5-1: The default ordered list uses Arabic numbers for its items.

To specify a different type of identifier for each item, you would use the list-style
attribute and define a style for the list, as shown in the following code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Example Ordered List - Letters</title>
</head>
<body>
<ol style=“list-style: upper-alpha”>

In Internet Explorer, open the Web page that displays
the graphic you wish to use as wallpaper for your
desktop.

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

78 Part II ✦ HTML/XHTML Authoring Fundamentals

Right-click on the image to open the context menu.
Choose Set as Background to save the image and use it

as your desktop wallpaper.

</body>
</html>

This code results in the list items being prefaced with uppercase letters, as shown in
Figure 5-2.

Figure 5-2: The upper-alpha value of the list-style attribute causes
the ordered list elements to be prefaced with uppercase letters.

Note Using letters or Roman numerals only makes sense for organizational lists (out-
lines, and so on), not for lists that outline a series of steps—especially if the steps
must be followed in order.

The list-style-type property supports the following values in CSS2:

✦ decimal

✦ decimal-leading-zero

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

79Chapter 5 ✦ Lists

✦ lower-roman

✦ upper-roman

✦ lower-greek

✦ lower-alpha

✦ lower-latin

✦ upper-alpha

✦ upper-latin

✦ hebrew

✦ armenian

✦ georgian

✦ cjk-ideographic

✦ hiragana

✦ katakana

✦ hiragana-iroha

✦ katakana-iroha

✦ none

Note Some of the list-style-types are font-dependent—that is, they are only
supported on certain fonts. If you are using a type such as hiragana with a
Latin-based font, you will not get the results you intend.

The list-style-types are self-explanatory. The default type is typically decimal,
but can be defined by the individual client browser. Keep in mind that your
document’s font and language options must support the language character sets
used by the list-type.

Ordered lists also support the list-style-position property. This property
controls where the number or character preceding each item appears. The property
has two possible values:

✦ outside—The number or character appears outside the left margin of the item
text.

✦ inside—The number or character appears inside the left margin of the item
text.

The default is outside, and the difference between the two options is shown in
Figure 5-3.

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

80 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 5-3: The list-style-position property controls where the list item numbers/characters
appear—outside or inside the list item margins.

Changing the Start Value of Ordered Lists

Previous versions of HTML allowed the use of the start attribute in the tag to control
what number or letter the list began with. For example, the following code starts a list with
the decimal number 12:

<ol start=“12” style=“list-style: decimal;”>

However, the start attribute of the tag was deprecated, and a replacement CSS style
has yet to be defined. Although you can use the start attribute, your document will no
longer validate against strict HTML.

If you find yourself needing consistent, yet flexible numbering, consider using the new CSS2
automatic counters and numbering feature. This feature uses the content property along with
the new counter-increment and counter-reset properties to provide a flexible yet powerful
automatic counter function.

The following style code will define a counter and cause any list to begin with an item
number of 12:

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

81Chapter 5 ✦ Lists

<style type=“text/css”>
ol { counter-reset: list 11; }
li { list-style-type: none; }
li:before {

content: counter(list,decimal) “. ”;
counter-increment: list; }

</style>

This code introduces quite a few CSS2 concepts—pseudo-elements, counters, and related
properties and methods. However, it isn’t as complex as it might first appear:

✦ The ol definition causes the counter (list) to be reset to 11 every time the tag is
used—that is, at the beginning of every ordered list.

✦ The li definition sets the list style type to none—the counter will display our number; if
we left the list style type set to decimal, there would be an additional number with each
item.

✦ The li:before definition does two things: 1) causes the counter to be displayed
before the item (using the begin pseudo-element and the content property) along
with a period and a space; 2) increments the counter. Note that the counter increment
happens first, before the display. That is the reason you need to reset the counter to one
lower than your desired start.

Using the preceding styles along with the following list code in a document results in a list
with items numbered 12-15:

Item 12
Item 12
Item 12
Item 12

Counters are a new, powerful feature of CSS2. Unfortunately, at the time of this writing, only
the Opera browser fully supports counters. However, the other browsers are sure to follow
suit. You’ll find more information on counters and the content property in Chapter 16.

Tip The various list properties can all be defined within one property, list-style.
The list-style property has the following syntax:

list-style: <list-style-type> <list-style-image>
<list-style-position>

You can use this one property to specify one, two, or all three list-style prop-
erties in one declaration. For example, to define an ordered list with lowercase
letters and inside positioning, you could use the following tag:

<ol style=“list-style: lower-alpha inside;”>

See Chapters 16 and 17 for more information on styles.

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

82 Part II ✦ HTML/XHTML Authoring Fundamentals

Unordered (Bulleted) Lists
Unordered lists are similar to numbered lists except that they use bullets instead of
numbers or letters before each list item. Bulleted lists are generally used when
providing a list of nonsequential items. For example, consider the following list of ice
cream flavors:

✦ Vanilla

✦ Chocolate

✦ Strawberry

Unordered lists use the unordered list tag () to delimit the entire list and the list
item tag () to delimit each individual list item.

In the preceding example, the list has three elements each preceded with a small,
round, filled bullet. This is the default for unordered lists in HTML, as shown in the
following code, whose output is shown in Figure 5-4:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

Figure 5-4: An example of an unordered list.

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

83Chapter 5 ✦ Lists

<title>Example Unordered List</title>
</head>
<body>

Vanilla
Chocolate
Strawberry

</body>
</html>

Unordered lists also support the list-style-type property, but with slightly
different values:

✦ disc

✦ circle

✦ square

✦ none

The default bullet type is disc, though the client browser can define the default
differently. The different bullet types are shown in Figure 5-5.

Figure 5-5: An example of the different bullet types for unordered lists.

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

84 Part II ✦ HTML/XHTML Authoring Fundamentals

As with ordered lists, you can define the list-style-position property, which in
the case of unordered lists controls where the bullet appears—outside or inside the
left margin of the item. For example, to move the bullet inside the item margins you
would use a style with the tag similar to the following:

<ul style=“list-style-position: inside;”>

Unordered lists support one other type of bullet for each item, an image. The image
for use in unordered lists must fit the following criteria:

✦ Be accessible to the document via HTTP (be on the same Web server or
deliverable from another Web server)

✦ Be in a suitable format for the Web (jpg, gif, or png)

✦ Be sized appropriately for use as a bullet

To specify an image for the list, you use the list-style-image property. This
property has the following syntax:

list-style-image: url(url_to_image);

This property can be used to add more dimension to standard bullets (for example,
creating spheres to use instead of circles) or to use specialty bullets that match your
content. For example, consider the two graphics shown in Figure 5-6, created in
Jasc’s Paint Shop Pro.

Figure 5-6: Two graphics that can be used as bullets.

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

85Chapter 5 ✦ Lists

Of course, the graphics must be scaled down to “bullet” size and saved in a
Web-friendly format. In this case, the graphics are reduced to 10-20 pixels square and
saved on the root of the Web server as sphere.jpg and cone.jpg. The following
code uses the images, and the output is shown in Figure 5-7.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Example Unordered List with Image Bullets</title>
</head>
<body>
<p>sphere</p>
<ul style=“list-style-image: url(sphere.jpg);”>

Vanilla
Chocolate
Strawberry

<p>cone</p>
<ul style=“list-style-image: url(cone.jpg);”>

Vanilla
Chocolate
Strawberry

</body>
</html>

Figure 5-7: Using graphics in unordered lists.

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

86 Part II ✦ HTML/XHTML Authoring Fundamentals

Note A few references state that the closing item tags () are not necessary in
lists. Although most browsers will render the list properly without them, your
code will not validate against the strict HTML unless you include them.

Definition Lists
Definition lists are slightly more complex than the other two types of lists because
they have two elements for each item, a term and a definition. However, there aren’t
many formatting options for definition lists, so their implementation tends to be
simpler than that of the other two lists.

Consider this list of definitions, highlighting popular Web browsers:

Internet Explorer
Developed by Microsoft, an integral piece of Windows products.

Mozilla
Developed by the Mozilla Project, an open source browser for multiple platforms.

Netscape
Developed by Netscape Communications Corporation, one of the first graphical
browsers.

Safari
Developed by Apple Computer, Inc., for Apple’s OSX operating system.

The bulleted items can be coded as list terms and their definitions as list definitions,
as shown in the following code. The output of this code is shown in Figure 5-8.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Example Definition List</title>
</head>
<body>
<dl>

<dt>Internet Explorer</dt>
<dd>Developed by Microsoft, an integral piece of Windows

products.</dd>
<dt>Mozilla</dt>
<dd>Developed by the Mozilla Project, an open source

browser for multiple platforms.</dd>
<dt>Netscape</dt>
<dd>Developed by Netscape Communications Corporation, one

of the first graphical browsers.</dd>
<dt>Safari</dt>

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

87Chapter 5 ✦ Lists

<dd>Developed by Apple Computer, Inc, for Apple’s OSX
operating system.</dd>

</dl>
</body>
</html>

Figure 5-8: Definition lists provide term and definition
pairs for each list item.

Note To add clarity to your definition lists, you will usually want to construct styles
that set the definition term in a different font or textual style. For example, you
might want the definition terms to be red, bold, and italic. The following style
definition accomplishes this:

<style type=“text/css”>
dt { color: red; font-style: italic;

font-weight: bold }
</style>

Nested Lists
You can nest lists of the same or different types. For example, suppose you have a
bulleted list and need a numbered list beneath one of the items, as shown:

✦ Send us a letter detailing the problem. Be sure to include the following:

1. Your name

2. Your order number

3. Your contact information

4. A detailed description of the problem

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

88 Part II ✦ HTML/XHTML Authoring Fundamentals

In such a case, you would nest an ordered list inside an unordered one, as shown in
the following code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Example Definition List</title>
</head>
<body>
<ul style=“list-style: disc;”>

Send us a letter detailing the problem. Be sure to
include the following:

<ol style=“list-style: decimal;”> Your name.
Your order number.
Your contact information.
A detailed description of the problem.

</body>
</html>

The output of the code is shown in Figure 5-9.

Figure 5-9: You can nest different types of lists within one another.

Note that the nested list does not span any open or close tags—it starts after the
close tag of the parent’s item and before any other tags in the parent list. It is also

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

89Chapter 5 ✦ Lists

formatted (indented) to make it easier to identify in the code. Using this method, you
can nest any list within any other list.

Summary
This chapter covered the ins and outs of the three different list types in HTML:
numbered, bulleted, and definition. You learned how to define and format each type
of list and how you can nest lists for more flexibility.

From here, if you are relatively new to HTML you should progress through the
chapters in order, learning about the various elements of an HTML document.
Starting in Chapter 16, you will begin learning how to effectively use CSS to format
and better control your documents. If you are more experienced with HTML, read
the chapters that interest you or that you need more information on and then read
the Chapters in Part III (Controlling Presentation with CSS) to get a good handle on
using CSS in HTML.

✦ ✦ ✦

P1: JYS

WY022-05 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:41

90

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

66C H A P T E R

Images
✦ ✦ ✦ ✦

In This Chapter

Image Formats for the Web

Creating Graphics

Inserting an Image

Image Alignment

Specifying Text to Display
for NonGraphical Browsers

Size and Scaling

Image Borders and Maps

Animated Images

✦ ✦ ✦ ✦

The Web was created as a graphical alternative to
the text-only limitations of tools such as Gopher. As such,

images play a pivotal role in Web documents—from being used
as navigation aids and decoration, to conveying complex
messages impossible with plain text. This chapter introduces
the various image formats supported “natively” by most user
agents and how to incorporate them into Web documents.

Image Formats for the Web
Most user agents support, to some degree, three graphics file
formats: GIF, JPEG, and PNG. The GIF and JPEG formats have
been supported for quite some time (since the origin of the
Web), while PNG is relatively new. This section covers the
basics of the image formats.

Image compression
All three of these graphics file formats use some form of
compression to store your image. Why is compression
important? Uncompressed images can be large—consider
Table 6-1, which compares image dimensions, number of
colors, and file size for some sample, uncompressed images.

As you can see, with file sizes like this, you would have to limit
yourself to mighty tiny images, or two-color, such as black and
white, images. Or, you could compress the files.

Compression options
When you implement file compression, you either have to
throw away some information about the image or find a way to
store the existing information about the image in a more
intelligent manner. GIF files throw away some color
information. JPEG files throw away some information about
the image itself. PNG files store the information using a more
intelligent algorithm.

91

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

92 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 6-1
Uncompressed Image File Size Comparison by Image

Dimensions and Number of Colors

Dimensions (in Inches) Colors File Size

1 × 1 2 9K

1 × 1 256 9K

1 × 1 16.7 million 18K

2 × 2 2 16K

2 × 2 256 24K

2 × 2 16.7 million 63K

3 × 3 2 16K

3 × 3 256 49K

3 × 3 16.7 million 139K

GIF
GIF was the earliest format in use in inline images on the Web. Version 1 browsers
could open GIF images inline, but required that JPEG images be opened out-of-line.
GIF uses a compression scheme—called LZW compression—that predates
CompuServe, even though you might see it called CompuServe GIF. CompuServe
implemented LZW compression, thinking it was in the public sphere and then found
out it was proprietary. A lot of lawyers sorted it out.

How does GIF work? Simply put, GIF indexes images to an 8-bit palette. The system
palette is 256 colors. Before you can save your file in GIF format, the utility you are
using simply makes its best guess at mapping all your colors to one of the 256 colors
in an 8-bit palette.

Is a reduction in color depth a problem? That depends. GIF uses dithering to achieve
colors between two colors on the palette. Even with dithering, however, GIF images
of a sunset have stripes of color, where a smooth gradation would be more natural.
GIF images also tend to have more cartoonish colors because flesh tones aren’t part
of the palette. A GIF image of a drawing of something like a checkerboard, however,
will look just fine.

Cross-
Reference

See Chapter 38 for a lesson in creating animated GIFs. Transparent GIFs are
discussed at the end of this chapter.

Note A system palette is the 256 colors your monitor is able to display if you set
your video board only to show 256 colors. These colors differ from a PC to a Mac.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

93Chapter 6 ✦ Images

JPEG
JPEG takes a different approach. JPEG stands for the Joint Photographic Experts
Group, the name of the group that created the standard. With JPEG, you get to keep
all your colors, but you don’t get to keep all the data about the image. What kinds
of images lend themselves to being compressed with JPEG? A tree. If you take a
photo of a pine tree, the acorns are in specific places, but when the image is
compressed and decompressed (opened on your Web page), the computer has to
approximate where those acorns went, because it had to throw away some of the
data. Is this a problem? Not with most photos of most pine trees. Faces also take well
to JPEG because the colors are all there; faces in GIF can look unnatural because of
the color loss.

Every generation 3 and higher browser can handle inline JPEGs. JPEGs are also ideal
for showing gradient filled graphics (when the color changes gradually from one
color to another). The same graphic would suffer enormously under the GIF
compression because all those in-between colors wouldn’t be there.

What suffers under JPEG compression? Text, schematic drawings, and any line art.
Of course, with JPEG, you can select the level of compression (usually either as a
percentage or as Maximum, High, Medium, or Low). You generally want to use the
maximum compression level your image can handle without losing image quality.
You won’t know how much compression your image can handle without loss until
you try it at different levels of compression.

PNG
The Portable Network Graphics, or PNG format, was developed exclusively for the
Web and is in the public domain. The PNG format takes advantage of a clever way of
storing the information about the image so you don’t lose color and you don’t lose
image quality; it is a lossless format. The only drawback is, because the standard is
so new, only fourth-generation and later browsers support PNG graphics. Eventually,
PNG will replace GIFs for many color-rich, still image files. Only GIFs can support
animation and transparency.

Note File formats that implement compression schemes that discard information
about the image are called lossy file formats. Both GIF, which discards color
information, and JPEG, which discards image information, are lossy file for-
mats. File formats that don’t discard any information about an image are called
lossless. PNG is a lossless compression scheme.

Image color depth
In the computer world, everything is black or white, on or off. Computers operate
in the base two system, so when creating colors, your choices of colors are base
two numbers. A bit is a representation of on or off (1 or 0). One-bit color uses a
two-color palette (21). Two-bit color uses a four-color palette (22). Eight-bit color
uses a 256-color palette (28). Thirty-two-bit color uses a 16.7-million-color palette
(232).

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

94 Part II ✦ HTML/XHTML Authoring Fundamentals

Note Between the two system palettes, there are 216 colors in common. This is
called the 216-browser-safe palette. By limiting your graphics to colors from
this palette, you can be sure the browser won’t have to guess or dither to
achieve the color you want.

You might be thinking: Two colors: that’s not so bad. An artist can do a lot with two
colors; think of the ways you can blend them. Unfortunately, this isn’t how computers
work. When you select a color palette, you get only the colors in that palette, not any
blends of colors in that palette.

When you create an image, you want to balance the quality of the image against the
file size of the image. When you send an image file over the Internet to a Web page,
you send either information about the palette or you send the actual palette. With
GIF files, you send a color look-up table (CLUT) with the image. With JPEG files, you
send a palette. As you can imagine, this makes the files considerably larger.

Enhancing downloading speed
What can you do to ensure your pages download quickly? There are a few things:

✦ Limit image file sizes.

✦ Limit the number of images.

✦ Reuse images as much as possible so images can be loaded from cache.

✦ Use frames so only part of the browser windows need to reload.

✦ Use text rather than images, where possible.

Image file sizes
You can limit image file sizes by doing the following:

✦ Using the maximum compression your image will take

✦ Using the smallest bit-depth your image can stand

✦ Minimizing the dimensions of your image on the page

Test your pages at 640 × 480, 800 × 600, and 1024 × 768 to see how they will look to
different visitors. Often, an image that renders well at 1024 × 768 and doesn’t
dominate the page will look huge and overbearing at 640 × 480.

Number of images
How many images is the right number? You might be surprised to learn that
sometimes very small images with white space between them load faster than one
large image.

Take advantage of white space to contribute to your images. You can use two
intelligent techniques to get more image for the byte. By changing the background

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

95Chapter 6 ✦ Images

color to match the background color of your images, you can keep your images
smaller. By anti-aliasing the text against that background to blend the edges into the
background color, you can achieve the look of one large graphic with multiple small,
fast-loading images.

Reuse images
Reusing images is as simple as having a single graphic for “home” on all your pages.
Have a single bullet graphic (if you can’t stand to use the standard bullet) for every
bullet on every page. Why does this help your pages load faster? Your browser
checks to see whether an image it needs is already in cache and loads the image
from cache, if it can. This reduces the number of bytes that actually needs to be
downloaded.

Use frames
How can using frames speed download time? After the initial frameset loads, the
browser will usually be loading one new frame at a time. Also, because the images
are probably part of the banner and/or the navigational tools, the frame that does
reload is less likely to be image-intensive.

Tip By putting all or most of the images into one of your frames and the mostly
text-based content into your main frame, you can save visitors from having to
load the images more than once. After the initial load, subsequent loads will
be faster.

Use text rather than images
You’ve read this elsewhere in the book. You can use tricks to make text look
somewhat like an image. Instead of using a graphic with boxes and buttons for
navigation, use a table with cells assigned different background colors.

Creating Graphics
If you want to create top-notch graphics, the tool of choice among professionals is
Adobe Photoshop, available for the Mac and the PC (see Figure 6-1). Freeware and
shareware software programs also are available that perform subsets of the functions
performed by Photoshop. Photoshop LE, the lite version, ships with many scanners.

Essential functions
What should your graphics package be able to do? For existing images, such as
photographs, you want to sharpen, blur, and perform some special effects on the
image (for example, posterize, swirl, and mosaic). For images you create on the
screen, you want to create your own custom palette (so you can send as few colors
as you need). You also need some basic artist tools, such as a paintbrush, a pencil, a
spray can, and a magnifying glass for magnifying part of the image to see it better.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

96 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 6-1: Adobe Photoshop.

Regardless of whether the image is made by hand or based on a photograph or
clipart, you need the following capabilities:

✦ Reduce the bit-depth of any image you want to save as GIF.

✦ Index the color of the image so you can save the image to GIF.

✦ Save the image as an interlaced GIF.

✦ Save the image as a transparent GIF.

✦ Save the image as a PNG file.

✦ Save the image as a progressive JPEG, which is discussed at the end of this
chapter.

Note Progressive JPEGs are a nice addition to a Web page. They work the same as
interlaced GIFs. Before the entire image has been downloaded, you can begin
to see the image. Then the images slowly come into focus.

Free alternatives
If you aren’t ready to commit to a $500 software package to get all these great
functions, you can work with a number of small, free software packages and services
that do many of the things previously listed for you. On the Web, you can find sites
that turn your TIF file into a GIF, or make your GIF an interlaced GIF. The trade-off is

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

97Chapter 6 ✦ Images

the time. Finding, learning, and using a variety of small packages to solve all your
imaging needs obviously takes longer than learning one package and using it on your
desktop.

Capturing Graphics From Other Sites

What about taking graphics you like from another site? This is generally not an okay thing
to do. Unless you have explicit permission from the creator of the images—say, you are
taking graphics from a site that makes free images available or you have written permission
from the owner of the site—you are essentially stealing the images from the legitimate owner.
Images are intellectual property and are protected by copyright laws, and using them without
permission could get you an invitation to court.

Just because an image is on a Web page doesn’t mean it is in the public domain. Yes, it gets
downloaded onto your own computer (into cache), and, yes, your browser gives you the
ability to save the image as a local file (using the right mouse button or prolonged clicking
on a Mac), but it still doesn’t mean you own the image or the right to use the image. If you
see something you like on another page, write to the page owner and ask if he or she owns
the image and if you can use it. Chances are, the owner will be flattered by your request.
Be sure that person owns the image or permission won’t mean anything (if the image was
stolen from somewhere else).

Progressive JPEGs and interlaced GIFs
Once upon a time on the Web, you had to wait for an image to finish loading before
you knew what it was. Today, you can save your files using the progressive JPEG
format or the interlaced GIF format and watch the image come into focus as it loads.

The advantage to this approach is a visitor to your site knows roughly what an image
is before the entire image has downloaded. If download times are long, due to a poor
Internet connection, for example, the visitor to the site can actually take a link off the
page before the image has finished loading without missing anything.

Finally, these two image formats are good because the visitor participates in the
download time. Instead of waiting for the page to download—sitting idly by—the
visitor waits for the page to download while watching the images become clearer.
This is more of a reward for waiting—and less of a sense of waiting—for the visitor.

Note Specifying the size of the image in the image tag can also speed up the display
of your Web pages. See the Size and scaling section later in this chapter for
more information.

The sense of “coming into focus” that these types of images provide is the result of
the way the images are stored. Progressive JPEGs and interlaced GIFs download only
every eighth line at first, then every fourth line, then every second line, and then,
finally, the odd-numbered lines. The result is the image goes from blurry to focused.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

98 Part II ✦ HTML/XHTML Authoring Fundamentals

You create a progressive JPEG or an interlaced GIF by saving it into this format. In
Paint Shop Pro, when you save a file as a GIF file you can choose whether you want
the file to be normal or interlaced (see Figure 6-2). Freeware packages are also
available that convert your regular JPEGs and GIFs into progressive JPEGs and
interlaced GIFs.

Figure 6-2: Paint Shop Pro allows you to choose whether you want your GIF to be
interlaced or not.

Using Transparency

Two of the Web-supported graphics formats, GIF and PNG, support transparency, the ability
for parts of images to be completely transparent. Typically, transparency is used to soften
the edge of images, creating an illusion that the image is not rectangular. For example, see
Figure 6-3, which shows an image with a standard opaque background and the same figure
with a transparent background. The image with transparency allows the page background
to show through.

Using transparency can open up the design of a document, making it more airy and less
“blocky.” It gives the document a more professional appearance, looking more like a pub-
lished document than a Web page of the 1980s.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

99Chapter 6 ✦ Images

Different graphic editing programs handle transparency differently—some assign trans-
parency to the background layer, some allow you to pick one color that should be trans-
parent, some programs allow multiple colors to be transparent. Check the Help file for your
editor to determine how to accomplish transparency.

Figure 6-3: Transparency can soften an image, giving the
appearance that the image is not rectangular.

Inserting an Image
Images are inserted into HTML documents using the tag. The tag, at a
minimum, takes two attributes, alt and src.

The alt attribute specifies text that should be displayed in lieu of the image in
nongraphical browsers (see the section “Specifying text to display for nongraphical
browsers” later in this chapter). The src attribute tells the user agent what image file
should be displayed. For example, if you wanted to include the graphic cat.jpg in
your document, you could use code similar to the following:

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

100 Part II ✦ HTML/XHTML Authoring Fundamentals

Note The tag has no closing tag. However, in XHTML the tag must be
closed:

The src attribute’s value can be a file on the same Web server as the document, or
any valid URL pointing to an image on a different Web server. Just as with the anchor
tag, you can use absolute or relative URLs to specify the location of the image to
display. The reasons for using either URL are the same as the reasons for using
absolute or relative URLs in anchor tags.

Cross-
Reference

For more information about absolute or relative URLs, see Chapter 7.

Image Alignment
Most user agents will attempt to display the image where the tag is inserted.
For example, consider the following HTML code and the resulting display shown in
Figure 6-4:

Figure 6-4: The browser displays the image at the end of the paragraph where the
 tag is located.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

101Chapter 6 ✦ Images

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem
ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit anim id est laborum. <img alt=“Picture of
a cat” src=“cat.jpg”></p>

If the user agent cannot fit the image on the current line, it will wrap it to the next
line and follow the paragraph’s alignment and formatting.

Note how the default formatting (at least for Internet Explorer) of the image is to be
aligned with the baseline of neighboring text. This isn’t always ideal. At times, you
will want to specify the alignment of the image as it relates to the text and other
objects around it. Image alignment can be controlled by using the align attribute
with the tag. The align attribute can be set to the values shown in Table 6-2:

Table 6-2
Align Attribute Values

Value Function

Top Align with the top of nearby text or object

Bottom Align with the bottom of nearby text or object

Middle Align with the middle of nearby text or object

Left Align to the left of nearby text or object

Right Align to the right of nearby text or object

Figure 6-5 shows an example of each of these alignment options.

Note Most user agents render items in the order in which they appear in the docu-
ment. If you are using left-aligned images, they should appear before the text
that they should be positioned left of.

However, the align attribute has been deprecated in favor of using styles for image
alignment. The following CSS properties can be used to help align images:

✦ text-align—Used in surrounding text, this property aligns the text around an
image (versus aligning the image itself). See Chapter 8 for more information on
using the text-align property.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

102 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 6-5: The various alignment options for images.

✦ float—Floats the image to the right or left of the user agent. Note that some
user agents do not support the float property. The float property allows text
and other objects to wrap next to the image.

✦ vertical-align—Aligns the image vertically with neighboring text or objects.

Note that some user agents need to process the image alignment prior to the text
around it; if you are using CSS to position your images, it is usually best to position
the images before neighboring text in your HTML document.

Specifying Text to Display for
Nongraphical Browsers

As mentioned repeatedly in this book, it is important not to get caught up in the
graphical nature of the Web, forgetting that not all user agents support graphics. In
addition, some users turn off images in their browser to speed up browsing. You can
use the alt attribute of the tag to specify text that should be displayed when
the image cannot. For example, consider the following text and the display in Figure 6-6:

<p>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

103Chapter 6 ✦ Images

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.</p>

Figure 6-6: The alt attribute specifies text to use when the
image cannot be displayed.

Some user agents display the alt attribute text when the user mouses over
the image. This allows you to use the alt attribute to include additional information
about an image. If you have a lot of information to convey, consider using the
longdesc (long description) attribute as well. The longdesc attribute specifies a
URL to a document that is to be used as the long description for the figure. Note that it
is up to the user agent to decide how to enable access to the long description, if at all.

Size and Scaling
You can specify the size of an image by using the height and width attributes of
the tag. These attributes accept pixel and percentage values, allowing you to
specify the exact size of an image or a size relative to the current size of the browser
window.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

104 Part II ✦ HTML/XHTML Authoring Fundamentals

Tip Get in the habit of always using the width and height attributes with your
 tags. These attributes allow the user agent to reserve the correct amount
of space for the image while it continues to render the rest of the document.
Without these attributes, the user agent must wait for the image to be loaded
before continuing to load the rest of the document.

For example, suppose that you had a large, high-resolution image, but wanted to
display a smaller version. Using the pixel values of the sizing attributes, you can
specify a custom size of the larger image. For example, consider the following code
and the resulting display in Figure 6-7:

<!-- Full image is 180px wide -->
<p>Full Size Image<img alt=“Full size image”

src=“car.jpg”></p>
<p>Half Size Image<img alt=“Half-size image”

src=“car.jpg” width=“90px”></p>

Figure 6-7: Using percentage values, you can display
an image at any percentage of its normal size.

Note It is important to use both the correct height and width when specifying image
dimensions in an tag. If you change the proportions of the figure (by
specifying a wrong width or height), you will end up with a funhouse mirror
effect—the image will be stretched or shrunk in one dimension. Sometimes this
can be used for effect, but usually it is accidental.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

105Chapter 6 ✦ Images

Also note that you can specify only one of the dimensions and have the user
agent automatically figure out the other. However, the user agent must then
wait for the entire image to load before progressing with rendering the rest of
the page, so it is always better to specify both dimensions.

Image size attributes should not be used as a substitute for an appropriately sized
graphic. If you need a different sized image, create the appropriate size in an image
editor and use the new image instead. Although the width and height attributes can
be used to display an image smaller than it actually is, the user agent must still
download the entire image—the user agent must then scale the image accordingly.

Image Borders
You can use CSS styles to create borders around images. Previous versions of HTML
supported a border attribute for the tag, which worked similarly to the
border attribute of the <table> tag. However, this attribute has been deprecated
for use with the tag. Instead, you should use styles.

CSS supports quite a few border properties, as shown in Table 6-3.

Table 6-3
CSS Border Properties

Property Options Use

Border border-width
border-style
border-color

Define a simple border around all four sides
of the object, specifying the width, style, and
color in one property

border-color border-color Set the color of the border

border-style border-style Set the style of the border

border-top
border-bottom
border-left
border-right

border-width
border-style
border-color

Define individual sides of the border

border-top-color
border-bottom-color
border-left-color
border-right-color

border-color Define the color of the individual sides of the
border

border-top-width
border-bottom-width
border-left-width
border-right-width

border-width Define the width of the individual sides of
the border

border-width border-width Define the width of the border

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

106 Part II ✦ HTML/XHTML Authoring Fundamentals

For example, to define a 4-pixel-wide border around an entire image, you can use the
following code:

<img alt=“A picture of a cat” src=“cat.jpg”
style=“border: 4px solid black;”>

To define a border on just the left and right sides of an image, you would use the
following:

<img alt=“A picture of a cat” src=“cat.jpg”
style=“border-left: 4px solid black;
border-right: 4px solid black;”>

Tip To simplify defining a different border on one side of an image, use the border
property first to define a border on all sides and then the appropriate border-
side property for the side that is the exception, overriding the previous setting
for that side. For example, to create a border on all sides of an image except the
right, you could specify border-top, border-bottom, border-left, and
border-right properties individually. Or, you could use just border and
border-right:

<img alt=“A picture of a cat” src=“cat.jpg”
style=“border-left: 4px solid black;
border-right: none;”>

Image Maps
Image maps provide a way to map certain areas of an image to actions. For example,
a company Web site might want to provide a map of the United States that allows
customers to click a state to find a local office or store.

There are two types of image maps, client-side and server-side. Client-side image
maps rely upon the user agent to process the image, the area where the user clicks,
and the expected action. Server-side image maps rely upon the user agent only to tell
the server where the user clicked; all processing is done by an agent on the Web
server.

Between the two methods, client-side image maps are generally preferred. They allow
the user agent to offer immediate feedback to the user (like being over a clickable
area) and are supported by most user agents. Server-side agents can also bog down
a server if the map draws consistent traffic, hides many details necessary to provide
immediate feedback to the user, and might not be compatible with some user agents.

Tip If you want an image to be clickable and take the user to one particular desti-
nation, you don’t have to use an image map. Instead, embed the tag in
an appropriate anchor tag (<a>) similar to the following:

<img alt=“Picture of a
cat” src=“cat.jpg”>

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

107Chapter 6 ✦ Images

Specifying an image map
A client-side image map is generally specified within the contents of a <map> tag and
linked to an appropriate tag with the tag’s usemap attribute. For
example, to specify a map for an image, travel.jpg, you could use this code:

<img alt=“Travel reservations” src=“travel.jpg”
usemap=“#map1”>

<map name=“map1”>
...
</map>

Inside the <map> tags you specify the various clickable regions of the image, as
covered in the next section.

Specifying clickable regions
To specify an image map, a list of polygonal regions must be defined on an image and
referenced in the HTML document. Three different types of polygons are supported:
rectangle, circle, and free-form polygon.

✦ rect—Defines a rectangle area by specifying the coordinates of the four corners
of the rectangle.

✦ circle—Defines a circle area by specifying the coordinates of the center of the
circle and the circle’s radius.

✦ poly—Defines a free-form polygon area by specifying the coordinates of each
point of the polygon.

Note that all coordinates of the image map are relative to the top-left corner of the
image (effectively 0, 0) and are measured in pixels. For example, suppose you wanted
an image for a travel site with a picture of a car, plane, and hotel. When the user
clicks one of the pictures, they are taken to the right page for auto rentals, airfare, or
hotel reservations. Such an image would resemble the image shown in Figure 6-8.

Figure 6-8: An image ready to be used as an image map.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

108 Part II ✦ HTML/XHTML Authoring Fundamentals

The regions that can be used for the map are within the three icon squares (the
white squares around the icons). The regions are all rectangular, uniform in size
(121 pixels square), and have the following upper-left coordinates:

✦ car—35 x, 11 y

✦ plane—190 x, 11 y

✦ hotel—345 x, 11 y

Knowing the upper-left corner coordinates and the size of each rectangle, you can
easily figure out the coordinates of the bottom-right corner of each rectangle.

Tip Several tools are available to help create image map coordinates. Use your
favorite search engine to find a dedicated piece of software to map regions,
or examine your graphics program to see if it can create regions for you. Paint
Shop Pro is an excellent Windows-based image editor that has image map tools
built in.

Specifying regions using anchor tags
You can specify regions using anchor tags with shape and coords attributes. For
example, to specify the three regions previously outlined, you could use the
following:

<map name=“map1”>

Plane Reservations

Rental Cars

Hotel Reservations
</map>

Note that the link text helps the user determine what the clickable area leads to, as
shown by the Internet Explorer ToolTip in Figure 6-9.

Specifying regions using area tags
Another way to define regions is by using <area> tags instead of anchors:

<map name=“map1”>
<area href=“plane.html”

shape=“rect” coords=“35,11,156,132”
alt=“Plane Reservations”>

<area href=“car.html”
shape=“rect” coords=“190,11,311,132”
alt=“Rental Cars”>

<area href=“hotel.html”
shape=“rect” coords=“345,11,466,132”
alt=“Hotel Reservations”>

</map>

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

109Chapter 6 ✦ Images

In the case of the <area> tag, using the alt attribute helps the user determine what
the clickable area leads to, as shown by the Internet Explorer ToolTip in Figure 6-9.

Figure 6-9: The link or alt text of a clickable region helps the user determine
where the clicked region leads.

Putting it all together
A document with a working image map (as outlined in this section) would resemble
the following code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title></title>
</head>
<body>

<map name=“map1”>
<area href=“plane.html”

shape=“rect” coords=“35,11,156,132”
alt=“Plane Reservations”>

<area href=“car.html”
shape=“rect” coords=“190,11,311,132”
alt=“Rental Cars”>

<area href=“hotel.html”
shape=“rect” coords=“345,11,466,132”
alt=“Hotel Reservations”>

</map>
</body>
</html>

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

110 Part II ✦ HTML/XHTML Authoring Fundamentals

Note The image map example in this chapter is somewhat simplistic, using three
identical rectangles for its regions. Image maps can be used for more complex
purposes, such as the clickable U.S. map mentioned earlier in this chapter,
allowing users to click various buildings on a map for more information, or
parts on an exploded diagram of a machine.

Animated Images
The GIF format also supports rudimentary animation by showing different frames of
an image one after another. The effect is similar to drawing individual frames of
animation on different pages of a sketchbook and rapidly flipping the pages.
Animated GIF images are not supported by all user agents and should be used
sparingly due to their size—the image must store all the frames of the animation,
increasing the size of the image.

Some image editors include tools to help create animated GIF images, such as Jasc
Software’s Animation Shop, shown in Figure 6-10.

Figure 6-10: Programs such as Jasc Animation Shop can help you create animated GIFs,
in this case the animation of a spinning CD-ROM.

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

111Chapter 6 ✦ Images

Summary
In this chapter, you learned the basics of image formats and how you can include
them in your HTML documents. You learned the benefits and drawbacks of each
supported format, as well as how to include and format them in an HTML document.

Continue to read the chapters in order if you are new to HTML, learning each aspect
of creating Web documents. If you are not new to HTML and you are particularly
interested in media (images, video, and so on), check out Chapter 14.

✦ ✦ ✦

P1: JYS

WY022-06 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:42

112

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

77C H A P T E R

Links
✦ ✦ ✦ ✦

In This Chapter

What’s in a Link?

Linking to a Web Page

Absolute versus Relative
Links

Link Targets and Titles

Keyboard Shortcuts and
Tab Order

Creating an Anchor

Choosing Link Colors

The <link> Tag

✦ ✦ ✦ ✦

Links are what make the World Wide Web web-like.
One document on the Web can link to several other

documents, and those in turn to other documents, and so
forth. The resulting structure, if diagramed, resembles a web.
The comparison has spawned many “web” terms commonly
used on the Internet—electronic robots that scour the Web are
known as “spiders,” and so on.

Besides linking to other documents, you can link to just about
any content that can be delivered over the Internet—media
files, e-mail addresses, FTP sites, and so on.

This chapter covers the ins and outs of linking to references
inside and outside the current document and how to provide
more information about the relationship of your documents to
others on the Web.

What’s in a Link?
Web links have two basic components, the link and the target.

✦ The link is the text in the main document that refers to
another document.

✦ The target is the document (or particular location in the
document) to which the link leads.

For example, suppose a site on the Web reviews software. Each
review includes a link to the manufacturer’s Web site. Such an
arrangement would resemble the diagram shown in Figure 7-1.

The link has two components: a descriptor and a reference
to the target. The target is a document that can be delivered
via the Internet. In the preceding example, the review might
list the manufacturer’s name as the descriptor and the actual
Web URL would be the reference. Both are specified in the
anchor tag (<a>), as follows:

descriptor_text

113

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

114 Part II ✦ HTML/XHTML Authoring Fundamentals

xyz Inc
Home Page

Review
xyz Software

Developed by xyz Inc

Figure 7-1: The relationship of documents on the
Web via links—the user clicks the link in the review
document to reach the xyz Inc. home page.

The target reference is specified via the href attribute, and the descriptor appears
between the start and end anchor tags. For example, if the manufacturer is Acme
Computers and its Web site is acme.example.com, the anchor tag would resemble
the following:

Acme Computer’s Web Site

If you don’t give the name of a document in the link, the Web server (in this case,
www.example.com) will send the defined top-level document (known as an index
document)—typically, this document is named index.html or home.html. If such
a document doesn’t exist or one has not been defined for the server, an error will be
returned to the client browser.

The text “Acme Computer’s Web Site” would be highlighted in the document to show
it is a link. The default highlight for a link is a different color font and underlined,
though you will see how to change the highlight later in this chapter.

Note According to the “strict” HTML standard, anchor links need to be placed within
block elements (headings, paragraphs, and so on).

As mentioned in the introduction to this chapter, you can link to other things besides
HTTP documents. All you need is the URL of the item you wish to link to, and the
protocol necessary to reach the item. For example, if you wanted to link to a
document on an FTP site, you could use an anchor tag similar to the following:

Zipped copy of the files

Note that the protocol is specified (ftp: instead of http:), and the server name is
specified (ftp.example.com), as is the path and filename (/pub and example
.zip). A similar method can be used to link to an e-mail address
(href=“mailto:someone@example.com”). Clicking such a link will generally
spawn the user’s e-mail client ready to send an e-mail to the address specified.

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

115Chapter 7 ✦ Links

Note The rest of this chapter concentrates on linking to other HTML documents on the
Web. However, all the concepts addressed apply when linking to other content
types.

Linking to a Web Page
The most popular link style on the Web is a link to another Web page or document.
Such a link, when activated, causes the target page to load in the client browser.
Control is then transferred to the target page—its scripts run, and so on.

To link to another page on the Internet, you simply specify the target’s URL in the
anchor tag. Suppose you want to link to the products page of the Acme Web site and
the page is named products.html and resides in the products directory on the
Acme Web server. The href parameter of the link would be as follows:

http://www.example.com/products/products.html

Note that the URL (http://acme.example.com) contains the protocol, the server
name, the directory name, and the filename. Figure 7-2 shows a breakdown of the
various pieces of the URL.

directory
server

protocol
file/page

http://www.example.com/products/products.html

Figure 7-2: The various pieces of a URL.

In the case of this URL, the various pieces are separated by various key characters:

✦ The protocol is first, and ends with a colon (http:).

✦ The server name is next, prefaced with a double slash (//www.example.com).

✦ The directory (or directories) is next, separated with slashes (/products/).

✦ The filename of the page is last, separated from the directory by a slash
(products.html).

Note The server name is actually two pieces, the server’s name and the domain
on which it resides. In the www.example.com, www is the server name and
example.com is the domain.

There is a common misconception that all Web server names need to begin
with www. Although www is a standard name for a Web server, the name can be
almost anything. For example, the U.S.-based Web server for the Internet Movie
Database (imdb.com) is us.imdb.com.

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

116 Part II ✦ HTML/XHTML Authoring Fundamentals

Absolute versus Relative Links
There are two types of URL styles, and therefore two link types, that you need to
understand: absolute and relative. You have seen absolute links, where the URL used
in the link provides the full path, including the protocol and full server address.
These links are called absolute links because the URL itself is absolute—that is, it
does not change no matter where the document in which it appears is kept.

The other type of link, a relative link, does not provide all of the details to the
referenced page; hence, its address is treated as relative to the document where the
link appears. Relative links are only useful for linking to other pages on the same Web
site, because any reference off of the same site requires the remote server’s name.

It’s easier to understand the difference between the two types of links with an
example. Suppose you are the Webmaster of example.com. You have several pages
on the site, including the home page, a main products page, and hardware and
software products pages. The home page is in the root directory of the server, while
the product pages (all three) are in a products directory. The relative links back and
forth between the pages are shown in Figures 7-3 and 7-4.

Home

Products

Hardware Software

./hardware.html

/products/products.html

./software.html

Root Directory (/)

Products
Directory
(/products)

Figure 7-3: Relative links to subpages.

Note that you can use directory shortcuts to specify where the pages are:

✦ Starting a directory with a slash (/) references it as a subdirectory of the root
directory.

✦ Starting a directory with a period and a slash (./) references it as a
subdirectory of the current directory (the directory where the current page
resides).

✦ Starting a directory with a double period and a slash (../) references it as a
parent directory to the current directory.

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

117Chapter 7 ✦ Links

Home

Products

Hardware Software

./products.html

../home.html

./products.html

Root Directory (/)

Products
Directory
(/products)

Figure 7-4: Relative links to parent pages.

Relative links are easier to maintain on sections of Web sites where the pages in that
section never change relationships to one another. For example, in the case of the
site shown in Figures 7-3 and 7-4, if the products pages move as a whole unit to
another place on the site, the relative links between the product pages won’t change.
If the links were coded as absolute (for example, http://www.example.com/
products/hardware.html), they would have to change.

Link Targets
Normally, links open the page they refer to in the active browser window, replacing
the page currently displayed. However, you can control where the page opens using
the target attribute in the link tag.

Note The target attribute has been deprecated in strict HTML. It appears here be-
cause most browsers still support the attribute and it can be useful. However,
keep in mind that your documents will not validate against strict HTML if you
use the target attribute.

The target attribute supports the values shown in Table 7-1.

Table 7-1
Target Attribute Values

Value Description

_blank Opens the linked document in a new browser window

_self Opens the linked document in the same frame as the link

Continued

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

118 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 7-1 (continued)

Value Description

_parent Opens the linked document in the parent frameset

_top Opens the linked document in the main browser window, replacing
any and all frames present

name Opens the linked document in the window with the specified name

For example, to open a linked document in a new window you would use a tag similar
to the following:

New Window

Caution The debate about whether you should ever open a new window is fierce. Most
users are accustomed to all new windows being of the pop-up ad variety—and
very unwelcome. However, from a user interface standpoint, new windows can
be used very effectively if they are used like dialog boxes or new windows that
an operating system spawns. In any case, you should make a habit of informing
users when you are going to open a new window so you don’t surprise them.

The last value listed for target, name, can also aid in the user interface experience, if
used correctly. Certain methods of opening windows (such as the JavaScript
window.open method) allow you to give a browser window a unique name. You can
then use that name to push a linked document into that window. For example, the
following code displays two links; the first opens a new, empty browser window
named NEWS, and the second pushes the content at www.yahoo.com into the
window:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
<script language=“JavaScript”>
function NewsWindow(){

fin=window.open(“”,“NEWS”,“width=400,height=400”);
}
</script>
</head>
<body>
<p>Open Window</p>
<p>Fill Window</p>
</body>
</html>

Cross-
Reference

For more information on JavaScript and the window.open method, refer to
Chapter 25.

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

119Chapter 7 ✦ Links

Link Titles
You can also title a link, using the title attribute in the anchor tag. This causes
most current browsers to display the text of the title as a ToolTip when the mouse
hovers over them. For example, the following link will cause Internet Explorer 6 to
display “Example.com’s Web Site,” as shown in Figure 7-5.

More information can be found <a
href=“http://www.example.com” title=“ Example.com’s Web
Site”>here.

Figure 7-5: The title attribute causes a ToolTip
display when the mouse hovers over the link.

You can use this feature to give the user more information on the link, before they
click it.

Keyboard Shortcuts and Tab Order
In the modern world of computers it is easy to make assumptions about users, their
hardware, and capabilities. Several years ago, no one would have dreamt of
delivering rich, multimedia content over the Web. Today, however, it is easy to
assume that everyone is using the latest browser, on a high-end computer, across a
broadband connection.

However, that isn’t always the case. In fact, some users who visit your site may not
even have a mouse to aid in browsing. The reason could be a physical handicap, a
text-only browser, or just a fondness for using the keyboard. It is important to

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

120 Part II ✦ HTML/XHTML Authoring Fundamentals

accommodate these users by adding additional methods to access links on your
page.

Keyboard shortcuts
Each link can be assigned a shortcut key for easy keyboard-only access using the
accesskey attribute with the anchor tab. The accesskey attribute takes one letter
as its value, the letter that can be used to access the link. For example, the following
link defines “C” as the access key:

Table of
Contents

Note that different browsers and different operating systems handle access keys
differently. Some browser and operating system combinations require special keys
to be pressed with the defined access key. For example, Windows users on Internet
Explorer need to hold the Alt key while they press the access key. Note, also, that
different browsers handle the actual access of the link differently—some browsers
will activate the link as soon as the access key is pressed, while others only select
the link, requiring another key to be pressed to actually activate the link.

Tip Keyboard shortcuts won’t help your users if you don’t give them a clue as to
what the shortcut is. In the example earlier in this section, the defined shortcut
key (“C”) was used in the link text and highlighted using the bold font attribute.

Tab order
It will also help your users if you define a tab order for the links in your document. As
with most graphical operating systems, the tab key can be used to move through
elements of the interface, including links.

Typically, the default tab order is the same as the order that the links appear in the
document. However, upon occasion, you might wish to change the order using the
tabindex attribute. The tabindex attribute takes an integer as its value; that
integer is used to define the tab sequence in the document. For example, the
following document switches the tab order of the second and third links:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
<title>Tab Ordered Document</title>
</head>
<body>
<p>This is the <a href=“http://www.example.com”

tabindex=“1”>first link.</p>
<p>This is the <a href=“http://www.example.com”

tabindex=“3”>second link.</p>

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

121Chapter 7 ✦ Links

<p>This is the <a href=“http://www.example.com”
tabindex=“2”>third link.</p>

</body>
</html>

Note As with most interface elements in HTML, the browser defines how tabindex
is implemented and how tabbed elements are accessed.

Creating an Anchor
Anchor tags have another use; they can be used as a marker in the current document
to provide a bookmark that can be directly linked to. For example, a large document
might have several sections. You can place links at the top of the document (or in a
special navigation frame) to each section, allowing the user to easily access each
section.

To create an anchor in a document, you use the anchor tag with the name attribute. For
example, the following code creates a chapter01 anchor at the “Chapter 1” heading:

<h1>Chapter 1</h1>

To link to the anchor you use a standard link, but add the anchor name to the end of
the URL in the link. To identify the name as an anchor, you separate it from the rest
of the URL with a pound sign (#). For example, suppose the Chapter 1 anchor
appears in the document book.html. To link to the Chapter 1 anchor, you could use
the following code:

Go to Chapter 1

Note Because the URL in the link tag can contain the server and document names as
well as the anchor name, you can link to anchors in the same document or any
accessible document. If you are linking to an anchor in the same document,
you can use a shortcut form of the URL, using only the pound sign and the
anchor name as the URL.

In addition to using the anchor tag for bookmarks, you can link to a block element’s
id attribute. For example, if Chapter 1 appears inside an <h1> tag, you can set the
<h1> tag’s id attribute to Chapter1 and omit the anchor link altogether, as shown in
the following code example:

<h1 id=“chapter1”>Chapter 1</h1>

Choosing Link Colors
It is important that links stand out from the normal content in your documents. They
need to be recognizable by users. Each link has four different status modes:

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

122 Part II ✦ HTML/XHTML Authoring Fundamentals

✦ Link—The standard link in the document that is not active, nor visited (see
other modes).

✦ Active—The target of the link is active in another browser window.

✦ Visited—The target of the link has been previously visited (typically, this means
the target can be found in the browser’s cache).

✦ Hover—The mouse pointer is over the link.

Each of these modes should be colored differently so the user can tell the status of
each link on your page. The standard colors of each link status are as follows:

✦ Link—Blue, underlined text

✦ Active—Red, underlined text

✦ Visited—Purple, underlined text

✦ Hover—No change in the appearance of the link (remains blue, red, or purple)

Note As with other presentation attributes in HTML, the browser plays a significant
role in setting link colors and text decorations. Most browsers follow the color
scheme outlined in this section, but there are browsers that don’t conform to
this scheme.

To change the text color and other attributes of links, you can modify the properties
of each type of anchor tag. For example, the following style, when used in an HTML
document, sets the default visited link text to bold and yellow:

a:visited { color: yellow; font-weight: bold; }

Tip Setting the properties of the anchor tag without specifying a mode changes all
of the link modes to the characteristics of the style. For example, this style sets
all types of links (link, active, visited) to red:

a { color: red; }

So why would you want to change the color of links in your document? One reason
would be that the normal text of your document is the same color as the default link.
For example, if your text is blue, you probably want to change the default color of
the links in your document to better enable users to recognize them.

It is a good idea to define all of the link attributes instead of haphazardly defining
only one or two of the link status colors. The following styles define each type of link,
ensuring they appear how you want in the document:

a:link { color: #003366;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; text-decoration: underline; }

a:visited {color: #D53D45;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; text-decoration: underline; }

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

123Chapter 7 ✦ Links

a:active {color: #D53D00;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; font-weight: bold;
text-decoration: underline; }

a:hover {color: #D53D45;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; text-decoration: none; }

Note the redundancy in the styles—there are only subtle changes in each style. You
should strive to eliminate such redundancy whenever possible, relying instead upon
the cascade effect of styles. You could effectively shorten each style by defining the
anchor tag’s attributes by itself, and defining only the attributes that are different for
each variant:

a { color: #003366;
font-family:verdana, palatino, arial, sans-serif;
font-size:10pt; text-decoration: underline; }
a:visited {color: #D53D45; }
a:active {color: #D53D00; font-weight: bold; }
a:hover {color: #D53D45; text-decoration: none; }

Link Target Details
There are a host of other attributes that you can add to your anchor tags to describe
the form of the target being linked to, the relationship between the current
document and the target, and more.

Table 7-2 lists these descriptive attributes and their possible values.

Table 7-2
Link Target Details

Attribute Meaning Value(s)

Charset The character encoding of the target char_encoding
for example, “ISO 8859-1”

Hreflang The base language of the target language_code
for example, “en-US”

Rel The relationship between the current
document and the target

alternate
designates
stylesheet
start
next
prev
contents

Continued

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

124 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 7-2 (continued)

Attribute Meaning Value(s)

index
glossary
copyright
chapter
section
subsection
appendix
help
bookmark

Rev The relationship between the target
and the current document

alternate
designates
stylesheet
start
next
prev
contents
index
glossary
copyright
chapter
section
subsection
appendix
help
bookmark

Type The MIME type of the target Any valid MIME type

An example of how the relationship attributes (rel, rev) can be used is shown in
the following code snippet:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
<title>Chapter 10</title>
</head>
<body>
<p>Table of
Contents</p>
<p>Chapter 9</p>
<p>Chapter 11</p>
...

The anchor tags define the relationships between the chapters (next, previous) and
the table of contents (chapter, contents).

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

125Chapter 7 ✦ Links

The Link Tag
You can use the link tag to provide additional information on a document’s
relationship to other documents, independently of whether the current document
actually links to other documents or not. The link tag supports the same attributes
as the anchor tag, but with a slightly different syntax:

✦ The link tag does not encapsulate any text.

✦ The link tag does not have an ending tag.

For example, the following code could be used in chapter10.html to define that
document’s relationship to chapter9.html and chapter11.html:

<link href=“chapter9.html” rel=“next” rev=“prev” />
<link href=“chapter11.html” rel=“prev” rev=“next” />

The link tag does not result in any visible text being rendered, but can be used by
user agents to provide additional navigation or other user-interface tools.

Another important use of the link tag is to provide alternate content for search
engines. For example, the following link references a French version of the current
document (chapter10.html):

<LINK lang=“fr” rel=“alternate” hreflang=“fr”
href=“http://www.example.com/chapter10-fr.html” />

Other relationship attribute values (start, contents, and so on) can likewise be
used to provide relevant information on document relationships to search engines.

Summary
This chapter covered links—what they are and how to use them to reference other
content on the Web. You learned how to construct a link and what attributes are
available to the anchor and link tags. You also learned how to define relationships
between your document and other documents, and why this is important.

From here, you should progress through the next few chapters, familiarizing yourself
with the other various pieces of an HTML document.

✦ ✦ ✦

P1: JYS

WY022-07 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 9:44

126

P1: KTX

WY022-08 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 7:43

88C H A P T E R

Text
✦ ✦ ✦ ✦

In This Chapter

Methods of Text Control

Bold and Italic Text

Monospace (Typewriter)
Fonts

Superscripts and Subscripts

Abbreviations

Marking Editorial Insertions
and Deletions

Grouping Inline Elements
with the Tag

✦ ✦ ✦ ✦

Although the modern-day Web is a haven of multimedia,
text is still vitally important. Only through text can

some messages be succinctly communicated. Even then,
diversity in text can help further clarify a message. For
example, emphasizing one word with bold or italic font can
change the tone and meaning of a sentence.

This chapter discusses how to format elements inside of block
elements (words or sentences inside of paragraphs).

Methods of Text Control
There are various means to control the look and formatting of
text in your documents. It should come as no surprise that the
more direct methods— tags and the like—have been
deprecated in favor of CSS controls in HTML 4.01 and XHTML.
The following sections cover the various means possible for
historical and completeness purposes.

Tip Although it is sometimes easier to drop a direct format-
ting tag into text, resist the urge and use styles instead.
Your documents will be more flexible and more stan-
dards compliant.

The tag
The tag enables you to directly affect the size and
color of text. Intuitively, the size attribute is used to change
the size of text, and the color attribute is used to change the
color. The size of the text is specified by a number, from 1-7, or
by signed number (also 1-7). In the latter case, the size change
is relative to the size set by the <basefont> tag. The
<basefont> tag has one attribute, size, which can be set to a
number, 1-7.

Note Default font type and size is left up to the user agent.
No standard correlation exists between the size used in
a tag and the actual font size used by the user
agent. As such, the default size of the font (1-7) varies
between user agents.

127

P1: KTX

WY022-08 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 7:43

128 Part II ✦ HTML/XHTML Authoring Fundamentals

For example, if you wanted larger text in a red color, you could use a tag similar to
the following:

this is larger, red text

Note that using “+3” for the size increases the text within the tag by a factor of 3 from
the base font size.

Emphasis and other text tags
You can use a handful of tags to emphasize portions of text. Although these tags
have not been deprecated in HTML 4.01, it is strongly recommended that you make
use of CSS instead.

Table 8-1 lists the emphasis tags and their use. A sample of their use is shown in
Figure 8-1.

Table 8-1
Emphasis Tags

Tag Use

<cite> Citation

<code> Code text

<dfn> Definition term

 Emphasized text

<kbd> Keyboard text

<samp> Sample text

 Strongly emphasized text

<var> Variable(s)

The creation and adoption of these tags seems somewhat haphazard. As such, the
support for the tags is not standard across user agents—you may not be able to tell
the difference between text coded with <cite> or , for example.

CSS text control
CSS provides several different properties to control text. Table 8-2 lists some of the
more popular properties.

As you can see, CSS offers a bit more control over your text, allowing you to specify
actual fonts and actual font sizes. However, the advantage to using CSS properties
over hardcoded tags is not found in the list of available properties, but in the
flexibility in formatting and effecting later changes. For example, suppose you were

P1: KTX

WY022-08 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 7:43

129Chapter 8 ✦ Text

Figure 8-1: An example of text using emphasis tags.

Table 8-2
CSS Text Properties

Property Values Use

color Color Change the color of text

font font-style
font-variant
font-weight
font-size

Shortcut property for setting
font style, variant, weight, and
size

font-family family-name Set the font family (face)

font-size font-size Set the font size

font-stretch normal | wider | narrower |
ultra-condensed |
extra-condensed | condensed |
semi-condensed |
semi-expanded | expanded |
extra-expanded |
ultra-expanded

Expand or compress the letter
spacing

Continued

P1: KTX

WY022-08 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 7:43

130 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 8-2 (continued)

Property Values Use

font-style Normal | italic | oblique Set font to italic

font-variant Normal | small-caps Set small-caps

font-weight Normal | bold | bolder | lighter Set font to bold

text-decoration none | underline | overline |
line-through | blink

Set under/overlining

text-transform none | capitalize | uppercase |
lowercase

Transform font capitalization

creating documentation for a programming language and wanted to format all
reserved words a particular way—perhaps in a slightly larger, red, bold font. Using
tags, the code would resemble the following:

<p>The date
function can be used to...

Later, you might decide that the red color is too much emphasis, and larger, bold text
is enough. You must then change every tag used around reserved words.

Suppose, instead, that you used CSS, as shown in the following code:

<head>
<style type=“text/css”>

.reservedword { font: 14pt bold; color: red }
</style>

</head>
<body>
<p>The date function can
be used to...

If you later decided to change the formatting of reserved words, you would only have
to make one change to the style definition at the top of the document. (If you used an
external style sheet, that one change could change an unlimited number of
documents that used the sheet.)

Bold and Italic Text
Two surviving text emphasis tags are bold and italic. Their effect on text is, as
expected, to make it bold or italic, as shown in the following code example and in
Figure 8-2:

<p>This is normal text.</p>
<p>This is bold text.</p>
<p><i>This is italic text.</i></p>

P1: KTX

WY022-08 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 7:43

131Chapter 8 ✦ Text

Figure 8-2: Bold and italic tags at work.

Note Not every font has a bold and/or italic variant. When possible, the user agent
will substitute a similar font when bold or italic is asked for but not available.
However, not all user agents are font-savvy. In short, your mileage with these
tags may vary depending on the user agent being used.

For the same reasons mentioned elsewhere, it is advisable to use CSS instead of
hardcoded bold and italic tags.

Monospace (Typewriter) Fonts
Another text tag that has survived deprecation is the teletype (<tt>), or
monospaced, tag. This tag tells the user agent that certain text should be rendered in
a monospaced font. Such uses include reserved words in documentation, code
listings, and so on. The following code shows an example of the teletype tag in use:

<p>Consider using the <tt>date</tt> function instead.</p>

This tag is named for the teletype terminals used with the first computers, which
were only capable of printing in a monspaced font.

P1: KTX

WY022-08 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 7:43

132 Part II ✦ HTML/XHTML Authoring Fundamentals

Tip Again, the use of styles is preferred over individual inline tags. If you need text
rendered in a monospace font, consider directly specifying the font parameters
using styles instead of relying upon the <tt> tag.

Superscripts and Subscripts
There are two tags, <sup> and <sub>, for formatting text in superscript and
subscript. The following code shows an example of each tag, the output of which is
shown in Figure 8-3.

<p>This is normal text.</p>
<p>This is the 16th day of the month.</p>
<p>Water tanks are clearly marked as H₂O.</p>

Figure 8-3: Examples of superscript and subscript.

Abbreviations
You can use the abbreviation tag (<abbr>) to mark abbreviations and, optionally,
give readers the expansion of the acronym used. For example, you could use this tag
with acronyms such as HTML:

<abbr title=“Hypertext Markup Language”>HTML</abbr>

P1: KTX

WY022-08 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 7:43

133Chapter 8 ✦ Text

Note that the expansion of the abbreviation is placed in the <abbr> tag’s title
attribute. Some user agents will display the value of the title attribute when the
mouse/pointer is over the abbreviation.

Marking Editorial Insertions and Deletions
To further strengthen the bond between HTML documents and printed material,
the insert and delete tags have been added to HTML. Both tags are used for
redlining documents—that is, a visually marked-up document showing suggested
changes.

For example, the following paragraph has been marked up with text to be inserted
(underlined) and deleted (strikethrough). The output of this code is shown in
Figure 8-4.

<p>Peter are<ins>is</ins> correct, the proposal
from Acme is lacking a few minor details.</p>

Figure 8-4: The <ins> and tags can provide for suitable redlined
documents.

Note that the underline tag (<u>) has been deprecated in favor of the <ins> tag.

P1: KTX

WY022-08 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 7:43

134 Part II ✦ HTML/XHTML Authoring Fundamentals

Grouping Inline Elements with
the Tag

When using CSS for text formatting, you need a method to code text with the
appropriate styles. If you are coding block elements, you can use the <div> tag to
delimit the block, but with smaller chunks (inline elements) you should use .

The tag is used like any other inline tag (, <i>, <tt>, and so on),
surrounding the text/elements that it should affect. You use the style or class
attribute to define what style should be applied. For example, both of the following
paragraph samples would render the word red in red text:

<head>
<style type=“text/css”>

.redtext { color: red; }
</style>

</head>
<body>
<!-- Paragraph 1, using direct style coding -->
<p>We should paint the document
red.</p>

<!-- Paragraph 2, using a style class -->
<p>We should paint the document
red.</p>
</body>

Of the two methods, the use of the class attribute is preferred over using the style
attribute because class avoids directly (and individually) coding the text. Instead,
it references a separate style definition that can be repurposed with other text.

Summary
This chapter covered the formatting of inline elements. You learned two distinct
methods (direct tags and styles) and the various tags to supplement textual
formatting. Keep in mind that you should use <div> or other block tags to format
larger sections of a document.

✦ ✦ ✦

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

99C H A P T E R

Special
Characters ✦ ✦ ✦ ✦

In This Chapter

Understanding Character
Encodings

Special Characters

En and em Spaces and
Dashes

Copyright, Trademark, and
Currency Symbols

Real Quotation Marks

Accented Characters

Arrows and Greek and
Mathematical Characters

Other Useful Entities

✦ ✦ ✦ ✦

Although its roots are firmly grounded in plain
text, HTML needs to be able to display a wide range of

characters—many that cannot be typed on a regular keyboard.
Language is rich with extended and accented characters, and
there are many reserved characters in HTML.

The HTML specification defines many entities—specific
codes—to insert special characters. This chapter introduces
you to the concept of entities and lists the various entities
available for use.

Note The W3C Web site is a good source of information about
entities. The HTML 4 entities are listed at http://
www.w3.org/TR/html4/sgml/entities.html.

Understanding Character
Encodings

Character encoding at its simplest is the method that maps
binary data to their proper character equivalents. For
example, in a standard, U.S. English document character, 65 is
matched to a capital A.

Most English fonts follow the American Standard Code for
Information Interchange (ASCII) coding. So when a Web designer
inserts a capital A, he is assured that the user will see the A.

There are, of course, plenty of caveats to that statement. The
document must be encoded as English, the specified font must
also be encoded as English, and the user agent must not
interfere with either encoding.

Note Document encoding is typically passed to the user agent
in the Content-Type HTTP header, such as the follow-
ing:

Content-Type: text/html; charset=EN-US

135

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

136 Part II ✦ HTML/XHTML Authoring Fundamentals

However, some user agents don’t correctly handle encoding in the HTTP header.
If you need to explicitly declare a document’s encoding, you should use an
appropriate meta tag in your document, similar to the following:

<meta http-equiv=“Content-Type” content=“text/html;
charset=EN-US”>

So what happens when any of the necessary pieces are different or changed from
what they were intended to be? For example, what if your document is viewed in
Japan, where the requisite user agent font is in Japanese instead of English? In
those cases, the document encoding helps ensure that the right characters are used.

Most fonts have international characters encoded in them as well as their native
character set. When a non-native encoding is specified, the user agent tries to use
the appropriate characters in the appropriate font. If appropriate characters cannot
be found in the current font, alternate fonts can be used.

However, none of this can be accomplished if the document does not declare its
encoding. Without knowing the document encoding the user agent simply uses the
character that corresponds to the character position arriving in the data stream. For
example, a capital A gets translated to whatever character is 65th in the font the user
agent is using.

Special Characters
Several characters mean special things in HTML and are used for special purposes
by user agents. For example, the less than symbol (<) signals the beginning of a tag.
As such, you cannot use that character in normal text. Instead, you must use an
equivalent code, or entity. When the user agent renders the document, the entity is
rendered as the correct character.

Entities in HTML begin with an ampersand (&), end with a semicolon (;), and contain
a numeric code or mnemonic phrase in between.

Numerically coded entities can use decimal or hexadecimal numbers. Either must be
preceded by a pound sign (#). Hexadecimal numbers also need to be preceded by an
x. A nonbreaking space is character number 160. The following entity in decimal
references this character:

The following entity in hexadecimal also reference character 160:

Mnemonic entities use a few characters to specify the entity—the characters usually
are an abbreviation or mnemonic representation of the character they represent. For
example, the following entity represents a nonbreaking space:

A few other essential entities are listed in Table 9-1.

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

137Chapter 9 ✦ Special Characters

Table 9-1
Essential Entities

Decimal Entity Mnemonic Entity Character

" " Double quote mark

& & Ampersand

< < Less than symbol

> > Greater than symbol

 Nonbreaking space

Additional special-use characters are covered in the following sections.

En and Em Spaces and Dashes
There are two additional types of spaces and dashes, en and em spaces and dashes.
The characters got their name from their relative size—en characters are as wide as
a capital N, while em characters are as wide as a capital M.

These characters have specific uses in the English language:

✦ En spaces are used when you need a larger space than a normal space
provides. For example, en spaces can be used between street numbers and
street names (123 Main) for clarity.

✦ Em spaces are used to separate elements such as dates and headlines, figure
numbers and captions, and so on. (Figure 2-1 A simple prompt)

✦ En dashes are used instead of hyphens in constructs such as phone numbers,
element numbering, and so on.

✦ Em dashes are used grammatically when you need to divide thoughts in a
sentence. (The excuse was nonsense—at least that’s how it seemed to me)

Table 9-2 lists the entities for en/em elements.

Table 9-2
En and Em Entities

Decimal Entity Mnemonic Entity Character

    En space

    Em space

– – En dash

— — Em dash

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

138 Part II ✦ HTML/XHTML Authoring Fundamentals

Copyright and Trademark Symbols
Copyright and trademark symbols are special symbols that indicate a legal
relationship between individuals (or companies) and text.

The Copyright symbol (c©) is used to indicate that someone has asserted certain
rights on written material—text included with the symbol usually indicates which
rights. For example, many written works include the following phrase as a copyright:
“Copyright c© 2003. All rights reserved.”

The trademark and registered marks (™ and ®) are used to indicate that a particular
word or phrase is trademarked—that is, marked (trademarked) or registered for
unique use by an individual or company. For example, “Windows” is a registered
trademark of Microsoft, and “For Dummies” is a registered trademark of Wiley.

Note Trademark and registered trademark symbols are typically superscripted after
the word or phrase to which they apply. As such, you should generally use each
within superscripted (<sup>) tags.

Table 9-3 lists the entities for Copyright, trademark, and registered symbols.

Table 9-3
Copyright, Trademark, and Registered Entities

Decimal Entity Mnemonic Entity Character

© © Copyright symbol

® ® Registered trademark symbol

Note that there are fonts that include the trademark symbol (™). However, because
the symbol is actually two characters, it is included as an exception, not a rule. As
such, you shouldn’t rely upon an entity to display the symbol, but specific small and
superscript font coding such as the following:

<small>TM</small>

Note Use of styles is generally preferred over the use of the <small> tag.

Currency Symbols
There are many currency symbols, including the U.S. dollar ($), the English pound
(£), the European euro (€), and the Japanese yen (¥). There is also the general

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

139Chapter 9 ✦ Special Characters

currency symbol (¤). Table 9-4 lists many of the most common currency
symbols.

Table 9-4
Currency Entities

Decimal Entity Mnemonic Entity Character

¢ ¢ The cent symbol (¢)

£ £ English pound

¤ ¤ General currency

¥ ¥ Japanese yen

€ € European euro

Note that the dollar symbol ($) is typically ASCII character 24 (in U.S. fonts) and can
be accessed directly from the keyboard.

“Real” Quotation Marks
Real quotation marks, used in publishing, cannot be typed on a standard keyboard.
The quote marks available on the keyboard (“ and ’) are straight quotes; that is, they
are small, superscripted, vertical lines.

Quote marks used in publishing typically resemble the numbers 6 and 9—that is,
dots with a serif leading off of them. For example, the following sentence is set off
with real quote marks:

“This sentence is a real quote.”

The opening quote marks resemble the number 6, closing quote marks resemble the
number 9. Table 9-5 lists the entities for real quotes.

Table 9-5
Quote Mark and Apostrophe Entities

Decimal Entity Mnemonic Entity Character

‘ ‘ Left/Opening single-quote

’ ’ Right/Closing single-quote and apostrophe

“ “ Left/Opening double-quote

” ” Right/Closing double-quote

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

140 Part II ✦ HTML/XHTML Authoring Fundamentals

Arrows
A variety of arrow symbols are available as entities. Table 9-6 lists these entities.

Table 9-6
Arrow Entities

Decimal Entity Mnemonic Entity Character

← ← Leftwards arrow

↑ ↑ Upwards arrow

→ → Rightwards arrow

↓ ↓ Downwards arrow

↔ ↔ Left right arrow

↵ &crarr ; Downwards arrow with
corner leftwards

⇐ ⇐ Leftwards double arrow

⇑ ⇑ Upwards double arrow

⇒ ⇒ Rightwards double arrow

⇓ ⇓ Downwards double arrow

⇔ ⇔ Left right double arrow

Accented Characters
There are many accented character entities available in the HTML standard. These
characters can be used in words such as résumé. Table 9-7 lists the accented
character entities.

Table 9-7
Accented Character Entities

Decimal Entity Mnemonic Entity Character

À À Latin capital letter A with grave

Á Á Latin capital letter A with acute

Â Â Latin capital letter A with circumflex

Ã Ã Latin capital letter A with tilde

Ä Ä Latin capital letter A with diaeresis

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

141Chapter 9 ✦ Special Characters

Decimal Entity Mnemonic Entity Character

Å Å Latin capital letter A with ring above

Æ Æ Latin capital letter AE

Ç Ç Latin capital letter C with cedilla

È È Latin capital letter E with grave

É É Latin capital letter E with acute

Ê Ê Latin capital letter E with circumflex

Ë Ë Latin capital letter E with diaeresis

Ì Ì Latin capital letter I with grave

Í Í Latin capital letter I with acute

Î Î Latin capital letter I with circumflex

Ï Ï Latin capital letter I with diaeresis

Ð Ð Latin capital letter ETH

Ñ Ñ Latin capital letter N with tilde

Ò Ò Latin capital letter O with grave

Ó Ó Latin capital letter O with acute

Ô Ô Latin capital letter O with circumflex

Õ Õ Latin capital letter O with tilde

Ö Ö Latin capital letter O with diaeresis

Ø Ø Latin capital letter O with stroke

Ù Ù Latin capital letter U with grave

Ú Ú Latin capital letter U with acute

Û Û Latin capital letter U with circumflex

Ü Ü Latin capital letter U with diaeresis

Ý Ý Latin capital letter Y with acute

Þ Þ Latin capital letter THORN

ß ß Latin small letter sharp s = ess-zed

à à Latin small letter a with grave

á á Latin small letter a with acute

â â Latin small letter a with circumflex

ã ã Latin small letter a with tilde

ä ä Latin small letter a with diaeresis

Continued

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

142 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 9-7 (continued)

Decimal Entity Mnemonic Entity Character

å å Latin small letter a with ring above

æ æ Latin small letter ae

ç ç Latin small letter c with cedilla

è è Latin small letter e with grave

é é Latin small letter e with acute

ê ê Latin small letter e with circumflex

ë ë Latin small letter e with diaeresis

ì ì Latin small letter i with grave

í í Latin small letter i with acute

î î Latin small letter i with circumflex

ï ï Latin small letter i with diaeresis

ð ð Latin small letter eth

ñ ñ Latin small letter n with tilde

ò ò Latin small letter o with grave

ó ó Latin small letter o with acute

ô ô Latin small letter o with circumflex

õ õ Latin small letter o with tilde

ö ö Latin small letter o with diaeresis

ø ø Latin small letter o with stroke

ù ù Latin small letter u with grave

ú ú Latin small letter u with acute

û û Latin small letter u with circumflex

ü ü Latin small letter u with diaeresis

ý ý Latin small letter y with acute

þ þ Latin small letter thorn

ÿ ÿ Latin small letter y with diaeresis

Greek and Mathematical Characters
Table 9-8 lists various Greek symbol entities.

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

143Chapter 9 ✦ Special Characters

Table 9-8
Greek Symbol Entities

Decimal Entity Mnemonic Entity Character

Α Α Greek capital letter alpha

Β Β Greek capital letter beta

Γ Γ Greek capital letter gamma

Δ Δ Greek capital letter delta

Ε Ε Greek capital letter epsilon

Ζ Ζ Greek capital letter zeta

Η Η Greek capital letter eta

Θ Θ Greek capital letter theta

Ι Ι Greek capital letter iota

Κ Κ Greek capital letter kappa

Λ Λ Greek capital letter lambda

Μ Μ Greek capital letter mu

Ν Ν Greek capital letter nu

Ξ Ξ Greek capital letter xi

Ο Ο Greek capital letter omicron

Π Π Greek capital letter pi

Ρ Ρ Greek capital letter rho

Σ Σ Greek capital letter sigma

Τ Τ Greek capital letter tau

Υ Υ Greek capital letter upsilon

Φ Φ Greek capital letter phi

Χ Χ Greek capital letter chi

Ψ Ψ Greek capital letter psi

Ω Ω Greek capital letter omega

α α Greek small letter alpha

β β Greek small letter beta

γ γ Greek small letter gamma

δ δ Greek small letter delta

ε ε Greek small letter epsilon

Continued

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

144 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 9-8 (continued)

Decimal Entity Mnemonic Entity Character

ζ ζ Greek small letter zeta

η η Greek small letter eta

θ θ Greek small letter theta

ι ι Greek small letter iota

κ κ Greek small letter kappa

λ λ Greek small letter lambda

μ μ Greek small letter mu

ν ν Greek small letter nu

ξ ξ Greek small letter xi

ο ο Greek small letter omicron

π π Greek small letter pi

ρ ρ Greek small letter rho

ς ς Greek small letter final sigma

σ σ Greek small letter sigma

τ τ Greek small letter tau

υ υ Greek small letter upsilon

φ φ Greek small letter phi

χ χ Greek small letter chi

ψ ψ Greek small letter psi

ω ω Greek small letter omega

ϑ ϑ Greek small letter theta symbol

ϒ ϒ Greek upsilon with hook symbol

ϖ ϖ Greek pi symbol

Table 9-9 lists a variety of mathematical symbols.

Table 9-9
Mathematical Symbol Entities

Decimal Entity Mnemonic Entity Character/Symbol

× × Multiplication sign

÷ &division; Division sign

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

145Chapter 9 ✦ Special Characters

Decimal Entity Mnemonic Entity Character/Symbol

∀ ∀ For all

∂ ∂ Partial differential

∃ ∃ There exists

∅ ∅ Empty set = null set = diameter

∇ ∇ Nabla = backward difference

∈ ∈ Element of

∉ ∉ Not an element of

∋ ∋ Contains as member

∏ ∏ n-ary product = product sign

∑ ∑ n-ary summation

− − Minus sign

∗ ∗ Asterisk operator

√ √ Square root = radical sign

∝ ∝ Proportional to

∞ ∞ Infinity

∠ ∠ Angle

∧ ∧ Logical and = wedge

∨ ∨ Logical or = vee

∩ ∩ Intersection = cap

∪ ∪ Union = cup

∫ ∫ Integral

∴ ∴ Therefore

∼ ∼ Tilde operator = varies with = similar to

≅ ≅ Approximately equal to

≈ ≈ Almost equal to = asymptotic to

≠ ≠ Not equal to

≡ ≡ Identical to

≤ ≤ Less than or equal to

≥ ≥ Greater than or equal to

⊂ ⊂ Subset of

⊃ ⊃ Superset of

Continued

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

146 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 9-9 (continued)

Decimal Entity Mnemonic Entity Character/Symbol

⊄ ⊄ Not a subset of

⊆ ⊆ Subset of or equal to

⊇ ⊇ Superset of or equal to

⊕ ⊕ Circled plus = direct sum

⊗ ⊗ Circled times = vector product

⊥ ⊥ Up tack = orthogonal to = perpendicular

⋅ ⋅ Dot operator

⌈ ⌈ Left ceiling

⌉ ⌉ Right ceiling

⌊ ⌊ Left floor

⌋ ⌋ Right floor

〈 ⟨ Left-pointing angle bracket

〉 ⟩ Right-pointing angle bracket

Other Useful Entities
Table 9-10 lists other miscellaneous entities.

Table 9-10
Miscellaneous Entities

Decimal Entity Mnemonic Entity Character/Symbol

¡ ¡ Inverted exclamation mark

¦ ¦ Broken bar = broken vertical bar

§ § Section sign

¨ ¨ Diaeresis = spacing diaeresis

ª ª Feminine ordinal indicator

« « Left-pointing double angle quotation
mark = left pointing guillemet

¬ ¬ Not sign

­ ­ Soft hyphen = discretionary hyphen

¯ ¯ Macron = spacing macron = overline =
APL overbar

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

147Chapter 9 ✦ Special Characters

Decimal Entity Mnemonic Entity Character/Symbol

° ° Degree sign

± ± Plus-minus sign = plus-or-minus
sign

² ² Superscript two = superscript digit
two = squared

³ ³ Superscript three = superscript
digit three = cubed

´ ´ Acute accent = spacing acute

µ µ Micro sign

¶ ¶ Pilcrow sign = paragraph sign

· · Middle dot = Georgian comma =
Greek middle dot

¸ ¸ Cedilla = spacing cedilla

¹ ¹ Superscript one = superscript digit
one

º º Masculine ordinal indicator

» » Right-pointing double angle
quotation mark = right pointing
guillemet

¼ ¼ Vulgar fraction one quarter =
fraction one quarter

½ ½ Vulgar fraction one half = fraction
one half

¾ ¾ Vulgar fraction three quarters =
fraction three quarters

¿ ¿ Inverted question mark = turned
question mark

Œ Œ Latin capital ligature OE

œ œ Latin small ligature oe

Š Š Latin capital letter S with caron

š š Latin small letter s with caron

Ÿ Ÿ Latin capital letter Y with diaeresis

ˆ ˆ Modifier letter circumflex accent

˜ ˜ Small tilde

    Thin space

Continued

P1: JYS

WY022-09 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:44

148 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 9-10 (continued)

Decimal Entity Mnemonic Entity Character/Symbol

‌ ‌ Zero width non-joiner

‍ ‍ Zero width joiner

‎ ‎ Left-to-right mark

‏ ‏ Right-to-left mark

‚ ‚ Single low-9 quotation mark

„ „ Double low-9 quotation mark

† † Dagger

‡ ‡ Double dagger

‰ ‰ Per mille sign

‹ ‹ Single left-pointing angle quotation mark

› › Single right-pointing angle quotation mark

Summary
Although most of your Web documents will contain standard characters, there are
times when you need accented or special characters as well. Taking character and
language encoding into account, you can also fall back on HTML entities to insert
these special characters.

✦ ✦ ✦

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

1010C H A P T E R

Tables
✦ ✦ ✦ ✦

In This Chapter

Parts of an HTML Table

Table Width and Alignment

Cell Spacing and Padding

Borders and Rules

Rows and Cells

Table Captions

Grouping Rows

Background Colors

Spanning Columns
and Rows

Grouping Columns

✦ ✦ ✦ ✦

Tables are a powerful HTML tool that can be used in many
ways. Developed originally to help communicate tabular

data (usually scientific or academic-based data), tables are
now used for many purposes, including actual page design.
This chapter covers the basics of tables.

Parts of an HTML Table
An HTML table is made up of the following parts:

✦ Rows

✦ Columns

✦ Header cells

✦ Body cells

✦ Caption

✦ Header row(s)

✦ Body row(s)

✦ Footer row(s)

Figure 10-1 shows an example of an HTML table with the
various parts labeled.

The table shown in Figure 10-1 is defined by the following code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>A HTML Table</title>
</head>
<body>

<table border=“1”>
<caption>Table Caption</caption>
<thead>

<tr><td colspan=“2”>Table Header</td></tr>
</thead>

149

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

150 Part II ✦ HTML/XHTML Authoring Fundamentals

<tfoot>
<tr><td colspan=“2”>Table Footer</td></tr>

</tfoot>
<tbody>

<tr><th>Header Cell 1</th><th>Header Cell 2</th></tr>
<tr><td>Body Cell 1</td><td>Body Cell 2</td></tr>

</tbody>
</table>

</body>
</html>

Figure 10-1: HTML table elements.

Many parts of the HTML table are optional—you only need to delimit the table (with
<table> tags) and define rows (via <tr> tags) and columns (via <td> tags). Such a
minimum table would resemble the following:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>A HTML Table</title>
</head>
<body>

<table border=“1”>
<tr><td>Body Cell 1</td><td>Body Cell 2</td></tr>

</table>
</body>
</html>

Tip It is possible to nest tables within one another. In fact, a particularly popu-
lar HTML technique—using tables for layout (covered in the next chapter)—
depends on this ability. Tables must be nested within table cells (<td> tags).
See the Cells section later in this chapter for more information on the <td>
tag.

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

151Chapter 10 ✦ Tables

Table Width and Alignment
Typically, an HTML table expands to accommodate the contents of its cells. For
example, consider the following code and the resulting tables shown in Figure 10-2:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>HTML Table Widths</title>
</head>
<body>
<p>

Short Text Table

<table border=“1”>

<tr><td>Short Text 1</td><td>Short Text 2</td></tr>
</table>

</p>
<p>

Longer Text Table

<table border=“1”>

<tr><td>Longer Text 1</td><td>Longer Text 2</td></tr>
</table>

</p>
</body>
</html>

Figure 10-2: HTML tables expand to accommodate their
content.

Once a table expands to the limits of its container object—whether the browser
window, another table, or sized frame—the contents of the cells will wrap, as shown
in Figure 10-3.

Sometimes you will want to manually size a table, either to fill a larger space or to
constrain the table’s size. Using the width attribute in the <table> tag you can set a
table’s size by specifying the table width in pixels or a percentage of the containing
object.

For example, if you specify “50%” as in the following code, the table’s width will be
50% of the containing object, as shown in Figure 10-4.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

152 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 10-3: Cell contents wrap if a table cannot expand any further.

Figure 10-4: A 50% width table occupies 50% of the available width.

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

153Chapter 10 ✦ Tables

<html>
<head>

<title>50% Table Width</title>
</head>
<body>
<p>

50% Table Width

<table border=“1” width=“50%”>

<tr><td>Cell 1</td><td>Cell 2</td>
<td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>
</body>
</html>

Note Besides specifying the width of the full table, you can also specify the width
of each column within the table, using width attributes in <th> and <td>
tags, or specifying width within <col> or <colgroup> tags. These tech-
niques are covered in the “Cells” and “Grouping Columns” sections later in this
chapter.

Using a percentage in the width attribute allows the table to size itself dynamically to
the size of its container. For example, if a table is set to 50%, the table will display as
50% of the browser window, whatever size the window happens to be.

If you need to specify the exact width of a table, you should specify the width of the
table in pixels instead. For example, if you need a table to be 400 pixels wide, you
would specify the table with the following tag:

<table width=“400px”>

However, what happens if the specified width exceeds the table’s container object? If
the container is scroll-bar enabled (like a browser window), horizontal scroll bars
will appear to allow the user to scroll the entire table. For example, consider the
table shown in Figure 10-5.

Note If the table’s specified width exceeds the container’s width, and the container is
not scrollbar enabled, it is up to the browser to handle the table. Most browsers
will resize the table to fit the width of its container.

The <table> tag also supports the align attribute, which controls where the table
is positioned in the containing element. The align attribute supports left, right,
and center values—the table’s position is appropriately adjusted by the setting of
this attribute. Note that this attribute has no visible effect on a table that occupies
the full width of its container object.

Cell Spacing and Padding
There are two cell spacing options—padding and spacing—that you can control in
your HTML tables. Cell spacing is the space between cells. Cell padding is the space

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

154 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 10-5: Tables too wide for their environment can get some help from
scrollbars.

between the cell border and its contents. Refer back to Figure 10-1 for the
relationship of cell padding and cell spacing to the table.

Cell spacing is controlled with the cellspacing attribute and can be specified in
pixels or percentages. When specified by percentage, the browser uses half of the
specified percentage for each side of the cell. The percentage is of the available
space for the dimension, vertical or horizontal. This is illustrated in Figure 10-6,
where the table’s cell spacing is set to 20%.

Cell padding is controlled with the cellpadding attribute. As with cell spacing, you
can specify padding in pixels or a percentage.

Tip Keep in mind that cell spacing and cell padding can have a drastic effect on the
available size for cell content. Increasing both spacing and padding decreases
the cell content size.

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

155Chapter 10 ✦ Tables

Figure 10-6: Cell spacing percentages.

Borders and Rules
The border around HTML tables and in between cells can be configured in many
ways. The following sections cover the various ways you can configure table borders
and rules.

Table borders
You can use the border attribute of the <table> tag to configure the outside border
of the table. For example, consider the following code containing three tables and
the resulting output in Figure 10-7.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Table Outside Borders</title>
</head>

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

156 Part II ✦ HTML/XHTML Authoring Fundamentals

<body>
<p>

No Borders

<table border=“0”>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>
<p>

Border = 1

<table border=“1”>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>
<p>

Border = 5

<table border=“5”>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>
</body>
</html>

Figure 10-7: Examples of table border
widths.

The border attribute’s value specifies the width of the border in pixels. The default
border width is 0, or no border.

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

157Chapter 10 ✦ Tables

Tip Borders are an effective troubleshooting tool when dealing with table problems
in HTML. If you are having trouble determining what is causing a problem in
a table, try turning on the borders to better visualize the individual rows and
columns. If you are using nested tables, turn on the borders of tables individually
until you narrow down the scope of the problem.

To specify which outside borders are displayed, use the frame attribute with one of
the values displayed in Table 10-1.

Table 10-1
Values to Use with the Frame Attribute

Value Definition

Void Display no borders

Above Display a border on the top of the table only

Below Display a border on the bottom of the table only

Hsides Display borders on the horizontal sides (top and bottom) only

lhs or rhs Display only the left side or the right side border only

Vsides Display borders on the vertical sides (right and left) only

box or border Display borders on all sides of the table (the default when border
attribute is set without specifying frame)

Note Not all user agents follow the defaults for table borders (no borders, or
box/border when a border width is specified). If you want a table to show up
with particular formatting, take care to specify all options.

Table rules
You can use the rules attribute of the <table> tag to control what rules (borders
between cells) are displayed in a table. Table 10-2 shows the rules attribute’s
possible values.

Note that the width of rules is governed by the table spacing attribute. For example,
setting cellspacing to a value of 5px results in rules 5 pixels wide.

Rows
Table rows are the horizontal elements of the table grid and are delimited with
table row tags (<tr>). For example, a table with five rows would use the following

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

158 Part II ✦ HTML/XHTML Authoring Fundamentals

pseudocode:

<table>
<tr> row 1 </tr>
<tr> row 2 </tr>
<tr> row 3 </tr>
<tr> row 4 </tr>
<tr> row 5 </tr>

</table>

Table 10-2
Possible Rules Attribute Values

Value Definition

none Display no rules

groups Display rules between row groups and column groups only

rows Display rules between rows only

cols Display rules between columns only

all Rules will appear between all rows and columns

The rows are divided into individual cells by embedded <td> or <th> tags (see the
next section, “Cells,” for more details).

Note The row ending tag (</tr>) is optional. However, for clarity in your code you
should consider always including appropriate ending tags.

The <tr> tag supports the following attributes shown in Table 10-3.

Table 10-3
Tag Attributes

Attribute Definition

Align Set to right, left, center, justify, or char, this attribute controls the
horizontal alignment of data in the row. Note that if you use char alignment,
you should also specify the alignment character with the char attribute
described below.

Char Specifies the alignment character to use with character (char) alignment

Charoff Specifies the offset from the alignment character to align the data on. Can be
specified in pixels or percentage

Valign Set to top, middle, bottom, or baseline, this attribute controls the vertical
alignment of data in the row. Baseline vertical alignment aligns the baseline of
the text across the cells in the row

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

159Chapter 10 ✦ Tables

For an example of how baseline vertical alignment differs from bottom alignment,
consider the two tables in Figure 10-8.

Figure 10-8: Baseline alignment aligns the baseline of the text.

If you use the alignment attributes in a <tr> tag, that alignment will be applied to
all cells in that row. To format cell alignment individually, specify the alignment
attribute(s) in individual cell tags (<th> or <td>) or in <col> or <colgroup>
tags.

Note The bgcolor attribute, used to set the background color for the row, has been
deprecated in HTML 4.01. Instead of using this attribute, it is recommended
that you use applicable styles to accomplish the same effect.

Cells
Individual cells of a table are the elements that actually hold data. In HTML, cell
definitions also define the columns for the table. You delimit cells/columns with table
data tags (<td>).

For example, consider the following code:

<table border=“1” cellpadding=“5”>
<tr>

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>
<tr>

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>

</table>

Tip Formatting your tables with ample white space (line breaks and indents) will
help you accurately format and understand your tables. There are just as many
ways to format a table in HTML as there are Web programmers—find a style
that suits your taste and stick to it.

This code defines a table with two rows and three columns, due to the three sets of
<td> tags.

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

160 Part II ✦ HTML/XHTML Authoring Fundamentals

You can also use table header tags (<th>) to define columns that are headers for the
columns. Expanding on the previous example, the following adds column headers:

<table border=“1” cellpadding=“5”>
<tr>

<th>Header 1</th><th>Header 2</th><th>Header 3</th>
</tr>
<tr>

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>
<tr>

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>

</table>

Table header tags make it easy to format column headings, without having to result
to character formatting. For example, the preceding code results in most user agents
rendering the <th> cells in a bold font (the default for <th>). To accomplish the
same formatting without header tags, you would need to include bold character
formatting similar to the following:

<tr>
<th>Header 1</th>
<th>Header 2</th>
<th>Header 3</th>

</tr>

Using CSS, your formatting options with <th> are practically limitless; simply define
appropriate formatting or several formatting classes as necessary.

Note Most user agents will not properly render an empty cell (for example,
<td></td>). When you find yourself needing an empty cell, get in the habit
of placing a nonbreaking space entity () in the cell (for example,
<td> </td>) to help ensure the user agent will render your table
correctly.

Although cells represent the smallest element in a table, surprisingly, they have the
most attributes for their tags. Supported attributes include those shown in Table 10-4.

Note Previous versions of HTML also supported a nowrap attribute to control
whether a cell’s contents wrapped or not. In HTML 4.01, this attribute has been
deprecated in favor of styles. See Chapters 16 and 17 for more information on
styles.

Table Captions
Table captions (<caption>) provide an easy method to add descriptive text to a
table. For example, suppose you wanted to caption a table detailing the refresh rates

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

161Chapter 10 ✦ Tables

Table 10-4
Cell Attributes

Attribute Definition

Abbr An abbreviated form of the cell’s contents. User agents can use the
abbreviation where appropriate (speaking a short form of the contents,
displaying on a small device, and so on). As such, the value of the abbr
attribute should be as short and concise as possible

Align The horizontal alignment of the cell’s contents—left, center, right, justify, or
char (character)

Axis Used to define a conceptual category for the cell, which can be used to
place the cell’s contents into dimensional space. How the categories are
used (if at all) is up to the individual user agent

Char The character used to align the cell’s content if the alignment is set to char

Charoff The offset from the alignment character to use when aligning the cell
content by character

Colspan How many columns the cell should span (default 1). See the Spanning
Columns and Rows section for more information

Headers A space-separated list of header cell id attributes that corresponds with
the cells used as headers for the current cell. User agents use this
information at their discretion—a verbal agent might read the contents of
all header cells before the current cell’s content

rowspan How many rows the cell should span (default 1). See the Spanning
Columns and Rows section for more information

Scope The scope of the current cell’s contents when used as a header—row, col
(column), rowgroup, colgroup (column group). If set, the cell’s contents
are treated as a header for the corresponding element(s)

Valign The vertical alignment of the cell’s contents—top, middle, bottom, or
baseline

of a monitor. The following code adds an appropriate caption to a table, whose
output is shown in Figure 10-9.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Monitor Settings</title>
</head>
<table border=“1” cellpadding=“3” cellspacing=“2”>
<caption>Supported Refresh Rates</caption>
<tr>

<th>H Resolution</th><th>V

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

162 Part II ✦ HTML/XHTML Authoring Fundamentals

Resolution</th><th>Frequency</th>
</tr>
<tr>

<td>640</td><td>480</td><td>60 to 120 Hz</td>
</tr>
<tr>

<td>800</td><td>600</td><td>55 to 110 Hz</td>
</tr>
<tr>

<td>832</td><td>624</td><td>55 to 106 Hz</td>
</tr>
<tr>

<td>1024</td><td>768</td><td>55 to 87 Hz</td>
</tr>
<tr>

<td>1152</td><td>870</td><td>55 to 77 Hz</td>
</tr>
<tr>

<td>1280</td><td>1024</td><td>55 to 66 Hz</td>
</tr>
</table>
</body>
</html>

Figure 10-9: Captions (“Supported Refresh Rates” in this example)
are displayed above the table.

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

163Chapter 10 ✦ Tables

Note that the <caption> tag must appear immediately after the <table> tag.
Captions typically appear centered above the table to which they are
attached—although different user agents may interpret the caption differently.

Cross-
Reference

You can use styles to format the caption however you like. For more information
on styles, see Chapters 16 and 17.

Row Groupings—Header, Body, and Footer
Simple tables only have one section, the body, which consists of rows and columns.
However, you might want to include additional information in your table by defining
a table header and footer to complement the information in the body.

For example, the header could contain the header rows, the body could contain the
data, and the footer totals for each column. The advantage to breaking up the table
into the three sections is that some user agents will then allow the user to scroll the
body of the table separately from the header and footer.

Note The HTML 4.01 specification dictates that you must use all three sections—
header, body, and footer—if you use any. You cannot use only a header and
body section without a footer, for example. If you don’t intend to use one of
the elements, you must still include tags for the section, even if the section is
otherwise empty.

The table header is delimited by <thead> tags—otherwise, its content is exactly like
any other table section, delimited by <tr>, <td>, and optionally <th> tags. For
example, consider the following table header section:

<thead>
<tr><th>Name</th><th>Hire Date</th><th>Title</th></tr>

</thead>

Other than being delimited by <tbody> tags, the table body is defined and
formatted just like any other table element. The table footer is delimited by <tfoot>
tags and is formatted like the other two sections.

Tip Although it seems counterintuitive, you should place the <tfoot> section
before the <tbody> section in your code to allow the user agent to correctly
anticipate the footer section and appropriately format the <tbody> section.

All three section tags support align and valign tags for controlling text alignment
within the section. (The char and charoff attributes are also supported for
align=“char”.)

For an example of a table with all three sections, consider the following code and its
output, shown in Figure 10-10.

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

164 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 10-10: The three table sections (header, body, footer) can be set
off by custom rules.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Page Estimates</title>
</head>
<body>
<table border=“1” cellpadding=“3” cellspacing=“2”

rules=“groups”>
<thead align=“center”>

<tr>
<th>Chapter</th><th>Pages</th><th>Figures</th>

<th>Illustrations</th>
</tr>

</thead>
<tfoot align=“center”>

<tr>
<td>Totals</td><td>51</td><td>13</td><td>6</td>

</tr>
</tfoot>
<tbody align=“center”>

<tr>

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

165Chapter 10 ✦ Tables

<td>1</td><td>10</td><td>0</td><td>2</td>
</tr>
<tr>

<td>2</td><td>12</td><td>4</td><td>1</td>
</tr>
<tr>

<td>3</td><td>9</td><td>2</td><td>0</td>
</tr>
<tr>

<td>4</td><td>20</td><td>7</td><td>3</td>
</tr>

</tbody>
</table>
</body>
</html>

Note how the three sections are set off by rules, but the table is otherwise devoid of
rules. This is because of the rules=“groups” attribute in the <table> tag. Also
note how alignment attributes are used in the section tags to center the text in the
table.

Background Colors
In previous versions of HTML, you could use the bgcolor attribute in the <table>,
and <tr>, <th>, and <td> tags to set a color background for the element. This
attribute has been deprecated in HTML 4.01 in favor of using styles to set the
background color of table elements.

Using the deprecated method, you can set the background of a header row to yellow
with code similar to the following:

<tr bgcolor=“yellow”>
<th>H Resolution</th>
<th>V Resolution</th>
<th>Frequency</th>

</tr>

Using CSS to accomplish the same effect would resemble the following code (output
is shown in Figure 10-11).

<tr style=“background-color: yellow;”>
<th>H Resolution</th>
<th>V Resolution</th>
<th>Frequency</th>

</tr>

However, not all user agents adequately support background colors in tables. Older
browsers are particularly finicky about correctly representing background colors.
When in doubt, test.

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

166 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 10-11: Use the background-color CSS property to control table
element backgrounds.

Spanning Columns and Rows
It is possible to span data cells across multiple columns and rows using the colspan
and rowspan attributes. Usually such spanning is used to provide column or row
headings for groups of columns. For example, consider the following table code and
the resulting output shown in Figure 10-12.

<table border=“1” cellpadding=“5”>
<caption>Respondent Summary to Questions 1-4</caption>
<tr align=“center”>

<th>Category</th>
<th>Age</th><th>#1</th><th>#2</th><th>#3</th><th>#4</th>

</tr>
<tr>

<td rowspan=“3”>Male
Respondents</td>
<!-- Above cell spans 3 rows -->
<td>23</td><td>A</td><td>C</td><td>F</td><td>B</td>

</tr>

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

167Chapter 10 ✦ Tables

Figure 10-12: You can span cells across both columns and rows.

<tr>
<!-- First cell is the span cell -->
<td>29</td><td>B</td><td>F</td><td>A</td><td>A</td>

</tr>
<tr>

<!-- First cell is the span cell -->
<td>25</td><td>C</td><td>C</td><td>C</td><td>C</td>

</tr>
<!-- End of first span -->
<tr>

<td rowspan=“3”>Female
Respondents</td>
<!-- Above cell spans 3 rows -->
<td>28</td><td>F</td><td>E</td><td>B</td><td>B</td>

</tr>
<tr>

<!-- First cell is the span cell -->
<td>21</td><td>B</td><td>B</td><td>B</td><td>A</td>

</tr>

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

168 Part II ✦ HTML/XHTML Authoring Fundamentals

<tr>
<!-- First cell is the span cell -->
<td>23</td><td>F</td><td>F</td><td>C</td><td>C</td>

</tr>
</table>

Note that the rows that include a previously spanned cell omit the declaration of
their first cell.

You can span columns using the colspan attribute in a similar fashion, as shown in
the following code and resulting output in Figure 10-13.

Figure 10-13: Spanning columns with the colspan attribute.

<table border=“1” cellpadding=“5”>
<caption>Respondent Summary by Answer</caption>
<tr align=“center”>

<!-- Spanning group headers -->
<th> </th>
<th colspan=“2” width=“150”>Aggressive</th>
<th colspan=“2” width=“150”>Passive</th>

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

169Chapter 10 ✦ Tables

<th colspan=“2” width=“150”>Passive/Aggressive</th>
</tr>
<tr align=“center”>

<!-- Individual column headers -->
<th>Respondent</th><th>A</th><th>B</th>
<th>C</th><th>D</th><th>E</th><th>F</th>

</tr>
<!-- Table data -->
<tr>

<td>Mike</td>
<td>0</td><td>3</td><td>4</td>
<td>0</td><td>5</td><td>2</td>

</tr>
<td>Terri</td>
<td>0</td><td>0</td><td>4</td>
<td>6</td><td>2</td><td>2</td>

</tr>
<td>Amy</td>
<td>7</td><td>7</td><td>0</td>
<td>0</td><td>0</td><td>0</td>

</tr>
<td>Ted</td>
<td>2</td><td>2</td><td>4</td>
<td>2</td><td>2</td><td>2</td>

</tr>
<td>Thomas</td>
<td>7</td><td>3</td><td>4</td>
<td>0</td><td>0</td><td>0</td>

</tr>
<td>Corinna</td>
<td>0</td><td>0</td><td>4</td>
<td>10</td><td>0</td><td>0</td>

</table>

You can also span columns and rows within the same table by using appropriate
colspan and rowspan attributes. However, such use is not recommended without a
GUI HTML editor, because the code becomes exponentially complex the more
customizations you make to a table.

Cross-
Reference

For more information on GUI HTML editors, see Chapter 35.

Grouping Columns
HTML 4.01 has added a few extra tags to make defining and formatting groups of
columns easier. The two tags, <colgroup> and <col>, are used together to define
and optionally format column groups and individual columns.

The <colgroup> tag is used to define and optionally format groups of columns. The
tag supports the same formatting attributes as the <tr> and <td>/<th> tags

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

170 Part II ✦ HTML/XHTML Authoring Fundamentals

(align, valign, width, and so on). Any columns defined by the <colgroup> will
inherit the formatting contained in the <colgroup> tag.

To define columns in a group, use the span attribute with the <colgroup> tag to
indicate how many columns are in the group. For example, the following HTML table
code places the first three columns in a group:

<table>
<colgroup span=“3”>
</colgroup>
...

Note that additional <colgroup> tags can be used to create additional column
groups. You must use additional column groups if the columns you are grouping are
not contiguous or do not start with the first column. For example, the following
HTML table code creates three column groups:

✦ Columns 1 and 2, formatted with centered alignment

✦ Columns 3–5, formatted with decimal alignment

✦ Columns 6–10, formatted with right alignment and bold text

<table>
<colgroup span=“2” align=“center”>
<!-- This group contains columns 1 & 2 -->
</colgroup>
<colgroup span=“3” align=“char” char=“.”>
<!-- This group contains columns 3 - 5 -->
</colgroup>
<colgroup span=“5” align=“right” style=“font-weight: bold;” >
<!-- This group contains columns 6 - 10 -->
</colgroup>
...

Note Column groups that do not have explicit formatting attributes defined in their
respective <colgroup> tags inherit the standard formatting of columns within
the table. However, the group is still defined as a group and will respond ac-
cordingly to table attributes that affect groups (rules=“groups”, and so on).

What if you don’t want all the columns within the group formatted identically? For
example, in a group of three columns, suppose you wanted the center column
(column number 2 in the group) to be formatted with bold text? That’s where the
<col> tag comes into play, defining individual columns within the group. For
example, to format a group using the preceding example (middle column bold), you
could use code similar to the following:

<table>
<colgroup span=“3”>
<!-- This group contains columns 1 & 3 -->
<col></col>
<col style=“font-weight: bold;”></col>

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

171Chapter 10 ✦ Tables

<col></col>
</colgroup>
...

The <col> tag follows similar rules to that of the <colgroup> tag, namely the
following:

✦ Empty tags (those without explicit formatting) are simply placeholders.

✦ You must define columns in order, and in a contiguous group, using blank
<col> tags where necessary.

✦ Missing or empty <col> tags result in the corresponding columns inheriting
the standard formatting for columns in the table.

Note that in standard HTML the <col> tag has no closing tag. However, in XHMTL
the <col> tag must be closed by a corresponding </col> tag.

Tip Column definitions via the <colgroup> or <col> tags do not eliminate or
change the necessity of <td> tags (which actually form the columns). You
must still take care in placing your <td> tags to ensure proper data positioning
within columns.

Summary
This chapter covered the basics of HTML tables. You learned how to define a table,
what the various pieces of a table were and what each is used for, and how to format
the various elements of a table.

Because of their diversity, it is impossible to cover all uses of tables. However, given
enough time and imagination, each Web designer will find several uses for
tables—including page design, as covered in the next chapter.

✦ ✦ ✦

P1: JYS

WY022-10 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:47

172

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

1111C H A P T E R

Page Layout
with Tables ✦ ✦ ✦ ✦

In This Chapter

Rudimentary Formatting
with Tables

Real-World Examples

Floating Page

Odd Graphic and Text
Combinations

Navigational Menus and
Blocks

Multiple Columns

✦ ✦ ✦ ✦

Tables are one of the most flexible elements in HTML.
As such, they can be used for much more than displaying

tabular data. In fact, they have become one of the mainstays of
document formatting and page layout for the Web.

This chapter covers how to use tables to achieve simple and
complex formatting and layout results.

Rudimentary Formatting
with Tables

It’s not hard to see how tables can help with formatting
elements on a local level. For example, consider the following
code and the output shown in Figure 11-1.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Simple Form</title>
</head>
<body>
<form>
<p>Name: <input type=“text” size=“40”></p>
<p>Age:
<input type=“radio” name=“20to30” value=“20to30”>
 20-30
<input type=“radio” name=“31to40” value=“31to40”>
 31-40
<input type=“radio” name=“41to50” value=“41to50”>
 41-50
</p>
</form>
</body>
</html>

173

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

174 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 11-1: A rudimentary form using spaces for layout purposes.

A simple table can help better align the elements in this form, as shown in the
following code and Figure 11-2.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Rudimentary Form Alignment</title>
</head>
<body>
<form>
<table width=“50%” border=“1”>
<tr>
<td width=“25%”><p>Name:</p></td>
<td><p><input type=“text” size=“40”></p></td>
</tr>
<tr>
<td><p>Age:</p></td>
<td><p>
<input type=“radio” name=“20to30” value=“20to30”>
 20-30
<input type=“radio” name=“31to40” value=“31to40”>
 31-40
<input type=“radio” name=“41to50” value=“41to50”>
 41-50
</p></td>

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

175Chapter 11 ✦ Page Layout with Tables

</table>
</form>
</body>
</html>

Figure 11-2: Aligning the labels and fields in a form using a simple table.

However, this serves only to line up the labels and fields in two columns. This is
better than no alignment, but if you add a nested table, you can add more order to
the radio buttons, as shown in the following code and Figure 11-3.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Formatting with Nested Tables</title>
</head>
<body>
<form>
<table width=“50%” border=“1”>
<tr>
<td width=“25%”><p>Name:</p></td>
<td><p><input type=“text” size=“40”></p></td>
</tr>
<tr>
<td><p>Age:</p></td>
<td>

<table width=“100%” border=“1”>
<tr>

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

176 Part II ✦ HTML/XHTML Authoring Fundamentals

<td><p><input type=“radio” name=“20to30”
value=“20to30”></p></td>
<td><p><input type=“radio” name=“31to40”
value=“31to40”></p></td>
<td><p><input type=“radio” name=“41to50”
value=“41to50”></p></td>
</tr>
<tr>
<td><p>20-30</p></td>
<td><p>31-40</p></td>
<td><p>41-50</p></td>
</tr>
</table>

</td>
</table>
</form>
</body>
</html>

Figure 11-3: Nested tables allow for even more alignment and formatting control.

Note Of course, in real life the tables in the examples would have even more format-
ting attributes to fine-tune the alignment, and the borders would be off or set
to accent the formatting.

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

177Chapter 11 ✦ Page Layout with Tables

Even though these examples are fairly small in scope, it should be easy to see
the power and flexibility tables can lend to alignment, formatting, and even page
layout.

Real-World Examples
You might be surprised at how many tables are hiding under the veneer of the Web
pages you frequent. For example, take a look at Figure 11-4, which shows a corporate
Web site.

Figure 11-4: A corporate Web site that doesn’t visibly use tables.

Figure 11-5 shows the same Web site with the table borders on. Note the multitude of
nested tables used to achieve the layout.

Figure 11-6 shows another popular layout format, a floating page and two columns of
content. Again, note that the use of tables (visible in Figure 11-7) isn’t readily
apparent.

The rest of this chapter shows you how to achieve some of these effects.

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

178 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 11-5: A corporate Web site with the tables made visible.

Figure 11-6: Another popular layout, floating page and multiple columns of content.

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

179Chapter 11 ✦ Page Layout with Tables

Figure 11-7: The floating page and two-column layout with visible tables.

Floating Page
The floating page layout (as shown in Figures 11-6 and 11-7) has become quite
popular and is used in pages of all kinds, from corporate sites to personal Web logs.
The effect is fairly easy to create using a few nested tables, as shown in the following
code, the output of which is shown in Figure 11-8.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Floating Table Format</title>
<style type=“text/css”>

<!-- Sets “desktop” color (behind page) -->
body { background-color: #B0C4DE; }

</style>
</head>
<body>

<!-- /Body container -->
<!-- (background = border, padding = border width

margin = centered table) -->
<table border=“0” cellpadding=“4px” cellspacing=“0”

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

180 Part II ✦ HTML/XHTML Authoring Fundamentals

style=“background-color: black;
margin: 0 auto;”>

<tr>
<td>

<!-- Floating page -->
<!-- (padding = page margin) -->

<table border=“0” cellpadding=“5px” cellspacing=“0”
width=“732px” height=“900px”
style=“background-color: #FFFFFF;”>
<tr align=“left” valign=“top”>

<td>

<!-- Page content -->
<p>Content goes here.<p>
<!-- Page content -->

</td>
</tr>
</table>
<!-- /Floating page -->

</td>
</tr>
</table>
<!-- /Body container -->

</body>
</html>

Figure 11-8: A floating page can add a bit of simple design to your documents.

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

181Chapter 11 ✦ Page Layout with Tables

Tip Note the comments in the code delimiting the individual tables and content
areas. It is a good practice to follow standard code formatting (indentation,
liberal white space, and so on) and add sufficient comments to easily keep
track of all your tables, how they are formatted, and what they accomplish.

If you want more of a drop shadow effect, you can play with the borders of the
floating page, setting two adjacent borders to a nonzero value, as shown in the
following code:

<!-- Floating page -->
<!-- (padding = page margin) -->

<table border=“0” cellpadding=“5px” cellspacing=“0”
width=“732px” height=“900px”
style=“background-color: #FFFFFF;
border-right: 4px solid black;
border-bottom: 4px solid black;”>

This code will visually increase the width of the right and bottom borders, giving the
page a more realistic, three-dimensional drop shadow effect.

Tip As you read through this chapter, keep in mind that you can combine the
techniques within the same document. For example, you can put a two-column
layout on a floating page by nesting a two-column table in the content area
of the floating page table. Then, within one of the columns, you can evenly
space out a handful of graphics by nesting another table in the column. The
possibilities are endless.

Table Layout versus CSS Layout

As you’ll see in Part II of this book, CSS provides plenty of controls for positioning elements
in a document. Since CSS is “the wave of the future,” why not learn and use CSS instead of
tables for page layout purposes?

✦ Most user agents support tables, while CSS support is being slowly adopted.

✦ Tables are more forgiving when the browser window size changes—morphing their
content and wrapping to accommodate the changes accordingly. CSS positioning tends
to be exact and fairly inflexible.

✦ Tables are much easier to learn and manipulate than CSS rules.

Of course, each of those arguments can be reversed:

✦ CSS is pivotal to the future of Web documents and will be supported by most user
agents. Using it now helps guarantee future compliance. (A lot of table attributes are
being deprecated for CSS, for example.)

Continued

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

182 Part II ✦ HTML/XHTML Authoring Fundamentals

Continued

✦ CSS is more exact than tables, allowing your document to be viewed as you intended,
regardless of the browser window.

✦ Keeping track of nested tables can be a real pain—CSS rules tend to be well organized,
easily read, and easily changed.

In short, arguments can be made for both technologies and the debate can get very heated
(try searching for “html table layout versus CSS layout” at www.google.com). My advice is
to use whichever technology makes sense to you—use what you know or what presents your
documents in the best light.

Odd Graphic and Text Combinations
You can also use tables to combine text and graphics in nonstandard layouts. For
example, look at the header in Figure 11-9. The header graphic is actually several
pieces, as shown in Figure 11-10.

Note The buttons in the page’s upper-right are contained in separate table cells for
a variety of reasons—the most notable is to provide navigation using separate
elements while still providing a cohesive graphic.

Figure 11-9: Presenting graphics and text in a nonstandard format.

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

183Chapter 11 ✦ Page Layout with Tables

Figure 11-10: The various pieces of the header graphic.

A table with no padding and no spacing is used to put the pieces back together into a
complete image while allowing text to flow to the right of the face portion. You can
see the various pieces and the text in the table layout shown in Figure 11-11.

Code for this completed header is shown here:

<!-- Heading container -->
<table border=“0” cellpadding=“0” cellspacing=“0”>

<tr>
<td valign=“top”>

<img border=“0” src=“images/home_top.gif”
width=“240” height=“118”>

</td>
<td>

<!-- Nav and main graphic -->
<table border=“0” cellpadding=“0” cellspacing=“0”>

<tr>
<td width=“100%”>
<!-- Nav bar -->
<table border=“0” cellpadding=“0” cellspacing=“0”
width=“100%”>
<tr>

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

184 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 11-11: The completed layout in the table.

<td width=“25%”>
<a href=“archive/index.html” onfocus=“this.blur()”
onMouseOver=“archive.src=’images/archive_punch_on.gif’”
onMouseOut=“archive.src=’images/archive_punch_off.gif’”
>
<img name=“archive” border=“0”
src=“images/archive_punch_off.gif”
width=“132” height=“38”>
</td>
<td width=“25%”>
<a href=“guest/index.html” onfocus=“this.blur()”
onMouseOver=“guest.src=’images/g_punch_on.gif’”
onMouseOut=“guest.src=’images/g_punch_off.gif’”
>
<img name=“guest” border=“0”
src=“images/g_punch_off.gif” width=“116”
height=“38”>
</td>
<td width=“25%”>
<a href=“mailto:email@example.com”
onfocus=“this.blur()”
onMouseOver=“email.src=’images/e_punch_on.gif’”
onMouseOut=“email.src=’images/e_punch_off.gif’”
>
<img name=“email” border=“0”
src=“images/e_punch_off.gif” width=“113”
height=“38”>
</td>
<td width=“25%”>

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

185Chapter 11 ✦ Page Layout with Tables

<a href=“about/index.html” onfocus=“this.blur()”
onMouseOver=“about.src=’images/a_punch_on.gif’”
onMouseOut=“about.src=’images/a_punch_off.gif’”
>
<img name=“about” border=“0”
src=“images/a_punch_off.gif” width=“131”
height=“38”>
</td>
</tr>

</table>
<!-- /Nav bar -->
</td>
</tr>

<tr>
<td width=“100%”><img border=“0”
src=“images/home_flag.gif” height=“80”>
</td>
</tr>

</table>
<!-- /Nav and main graphic -->
</td>
</tr>
<tr>

<td height=“158” valign=“top”><img border=“0”
src=“images/home_left.gif” width=“239”
height=“156”>
<p>SECONDARY CONTENT HERE</p>

</td>
<td valign=“top”>

<p>MAIN CONTENT HERE</p>
</td>

</tr>
</table>
<!-- /Heading container -->

Using this technique you can wrap text and graphics around each other in a variety
of ways. For example, if the graphic used in the preceding example descended on the
right as well, you could use three columns—pieces of the graphic in the first and
third, text in the middle.

Navigational Menus and Blocks
The completed page header shown in Figure 11-11 has its navigational elements in a
row at the top of the page. You can construct similar, vertical layouts for your
navigational elements using rowspan attributes in your tables. For example,
consider the following code and the output in Figure 11-12.

<table border=“1” width=“100%”>
<tr>

<td rowspan=“4” width=“65%”>
<p>Header graphic</p>

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

186 Part II ✦ HTML/XHTML Authoring Fundamentals

</td>
<td>

<p>Nav_1</p>
</td>

</tr>
<tr>

<td>
<p>Nav_2</p>

</td>
</tr>
<tr>

<td>
<p>Nav_3</p>

</td>
</tr>
<tr>

<td>
<p>Nav_4</p>

</td>
</tr>

</table>

Figure 11-12: Using rowspan, you can create vertically stacked elements.

Note As you have no doubt realized, there are multiple ways to accomplish many of
the designs shown in this chapter. For example, you could have just as easily
nested a one-column table in a cell instead of using rowspan in the example
code shown for Figure 11-12. The point is that tables are very flexible and can
be used in a variety of ways to accomplish the desired layout.

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

187Chapter 11 ✦ Page Layout with Tables

Multiple Columns
As covered in Chapter 10, you can use tables to position elements in columns. This
technique can be used for a variety of layout purposes:

✦ Providing navigation bars to the right or left of text (see Figures 11-4 and 11-6)

✦ Putting text into columns (see Figure 11-4)

✦ More precise positioning controls, putting text next to graphics, and so on

Columnar formatting is simple to accomplish, as shown in the following code:

<table border=“1” cellspacing=“0” cellpadding=“5px”
width=“100%”>
<colgroup>

<col width=“50%”>
<col width=“50%”>

</colgroup>

<tr>
<td colspan=“2”>Header graphic or navigation can go here</td>

</tr>
<tr>

<td>First column content...</td>
<td>Second column content...</td>

</tr>
</table>

The output of this code is shown in Figure 11-13.

Figure 11-13: A simple two-column format.

P1: JYS

WY022-11 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:1

188 Part II ✦ HTML/XHTML Authoring Fundamentals

Note One caveat to creating columns with tables is that the content doesn’t auto-
matically wrap from one column to the next (like in a newspaper). You must
split the text between the columns manually.

Of course, the columns do not have to be the same size nor proportional to each
other. You can define the columns in any size you need by using the appropriate
formatting attributes. For example, if you wanted a navigation column to the left that
is 200 pixels wide and a text column to the right that is 400 pixels wide, you could
use this column definition:

<colgroup>
<col width=“200px”>
<col width=“400px”>

</colgroup>

Summary
This chapter showed you how to use tables to create various page layouts. You
learned that tables, employing techniques from rudimentary formatting to graphic
and text combinations, multiple columns, and navigational tools, can be used as a
powerful and flexible layout tool. You will learn about more ways to format
documents—using CSS—in Part II.

✦ ✦ ✦

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

1212C H A P T E R

Frames
✦ ✦ ✦ ✦

In This Chapter

Frames Overview

Framesets and Frame
Documents

Targeting Links to Frames

Nested Framesets

Inline Frames

✦ ✦ ✦ ✦

Several years ago, almost every document on the Web
contained frames. The frameset structure provided an

easy way to create multiple, separate scrolling areas in a user
agent window and a flexible mechanism to modify the content
of frames.

However, frames have turned out to be more of a fad. You can
have many of the benefits realized by using frames by using
the infinitely more flexible and powerful CSS formatting
methods.

That said, frames still have their uses and have even spawned
their own official Document Type Definitions (DTDs) to handle
their special tags and needs. This chapter introduces the
concept of frames and shows you how to add them to your
documents.

Frames Overview
At their simplest level, frames provide multiple separately
scrollable areas within one user window. Many non-Web
applications use the concept of separate panes to help their
organization and controls. For example, Figure 12-1 shows the
Windows Explorer, using a left pane to display folders and the
right pane to display files within the selected folder.

As you have no doubt noticed, the different panes in
applications such as Windows Explorer can be manipulated
separately from other panes. The same is true for documents
utilizing frames.

For example, take a look at Figures 12-2 and 12-3. They show
the same document except that the window in Figure 12-3 has
been scrolled to view the bottom of the text in the document.
This has caused the navigation bar to scroll as well, in this
case almost off the screen, where it can no longer be
immediately accessed.

189

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

Figure 12-1: Applications such as Windows Explorer use multiple panes to display a variety
of information and controls.

Figure 12-2: A long document uses scroll bars to allow the user to see the entire document.

190

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

191Chapter 12 ✦ Frames

Figure 12-3: When the document is scrolled, the entire view—including the navigation bar
on the left—is moved.

Now take a look at Figure 12-4. Each element—the top banner, the navigation bar, and
the main content—has been placed in a separate frame. When the main content is
scrolled, the banner and the navigation menu remain static within their own regions.

Framesets and Frame Documents
Frames are a bit complex to implement, as they require a separate document to
define the frame layout as well as individual documents to actually occupy the
frames. This section takes you through the pieces of the defining document, the
frameset, and shows you how to create a frame-based layout.

Creating a frameset
A frameset is created like any other HTML document except that its content is
limited to frame-related tags. The following skeletal document is an example of a
frameset document:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”
“http://www.w3.org/TR/html4/frameset.dtd”>

<html>
<head>

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

192 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 12-4: Frames allow one region to scroll while others remain static.

...
</head>

<frameset attributes>
<frame attributes></frame>
<frame attributes></frame>
...

</frameset>
</html>

Note the following about this code:

✦ The document uses the frameset DTD. The frameset DTD is essentially the
same as the transitional DTD except for the addition of the frame-specific tags
(and replacement of the <body> tag, covered shortly).

✦ There is no <body> element. Instead, the <frameset> tag provides the next
level container under <html>.

✦ The <frame> tags, nestled inside the <frameset> tag, define the content for
the frames and various properties of the frame itself.

✦ Other than the <frameset> and <head> sections, there is no other content in
the document.

The basics of the <frameset> and <frame> tags are covered in the next two
sections.

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

193Chapter 12 ✦ Frames

The <frameset> tag
The <frameset> tag defines the layout of the frames in the document. It does so by
specifying whether the frames should be laid out in columns or rows and what each
column’s width should be.

The <frameset> tag has the following format:

<frameset cols|rows = “column_or_row_size(s)”>

The column or row sizes can be specified as percentages of the user agent window,
pixels, or an asterisk (*), which allows the user agent to assign the size. In the last
case, the user agent will typically split the remaining space across the columns or
rows that specify * as their width. In any case, the resulting frameset will occupy the
entire user agent window. The number of entries of the cols or rows attribute also
define how many frames will be used—each entry needs a corresponding <frame>
tag within the <frameset>.

For example, consider these definitions:

<!-- Two columns, 25% of the window, the other
75% of the window -->

<frameset cols = “25%, 75%”>

<!-- Two columns, 25% of the window, the other
75% of the window -->

<frameset cols = “25%, *”>

<!-- Three rows, the first 50% of the window, the other
two 25% of the window each -->

<frameset rows = “50%, *, *”>

<!-- Two rows, the first 100 pixels high, the second is the
size of the remaining window space -->

<frameset rows = “100px, 200px”>

Note In the last <frameset> example, the second row is defined at 200px. However,
if the user agent’s window is larger than 300 pixels high (the total of the rows
defined), the second row will be expanded to fill the space.

The <frame> tag
While the <frameset> tag is responsible for defining the layout of the entire page
(in terms of number of frames and their size), the <frame> tag is responsible for
defining properties of each frame.

The <frame> tag has the following, minimal syntax:

<frame name=“name_of_frame” src=“url_of_content”></frame>

The name attribute gives the frame a unique name that can be referenced by URLs,
scripts, and so on to control the frame’s contents. The src attribute is used to
specify the URL of the content that the frame should display.

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

194 Part II ✦ HTML/XHTML Authoring Fundamentals

Using only these two attributes results in a frame with minimal margins, no borders,
and automatic scroll bars. More information on controlling these attributes of the
frame is covered in the next few sections.

Frame margins, borders, and scroll bars
The <frame> tag supports the additional attributes shown in Table 12-1.

Table 12-1
The <frame> Tag’s Attributes

Attribute Value(s) Use

frameborder 0 = no border
(default)
1 = border

Whether the frame has a border or not

longdesc url A URL of a document to use as a long
description for the frame. (Note that this
is largely unsupported by user agents)

marginheight pixels Sets the top and bottom margins for the
frame—the distance the frame’s content
is from its border

marginwidth pixels Sets the left and right margins for the
frame—the distance the frame’s content
is from its border

scrolling yes no auto
(default)

Controls whether the frame displays
scroll bars to help scroll the content
displayed in the frame

As mentioned in Table 12-1, the longdesc attribute is not fully supported by most
user agents. Use it if you need to specify a long description, but don’t count on its
functionality.

The margin attributes, marginheight and marginwidth, are self-explanatory,
controlling the inside margin of the frame. They should be used to provide enough
white space around the frame’s content to help make the content clear.

Tip When using images in a frame, consider setting the margins to zero so the
graphic fills the frame entirely without superfluous white space.

The frameborder attribute controls whether the bounding border of the frame is
visible or not. Figure 12-5 shows a frameset without borders, and Figure 12-6 shows
the same frameset with borders.

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

Figure 12-5: Without borders, the frame divisions are hard to distinguish, which may lend
well to a seamless page design.

Figure 12-6: Frame borders can help your users understand the layout of your document
and where the frame borders are so they can better manipulate them.

195

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

196 Part II ✦ HTML/XHTML Authoring Fundamentals

The scrolling attribute controls whether the frame will display scroll bars or not.
The default setting, auto, allows the user agent to decide—if the frame contains too
much content to be displayed, the user agent will add scroll bars. If the content fits
within the frame, the user agent will not display scroll bars. Use the scrolling
attribute accordingly—if you want scrollbars all the time, or don’t want scrollbars no
matter how the frame’s content displays.

Permitting or prohibiting user modifications
The <frame> tag also has a noresize attribute that, when set, will not allow a user
to modify the size of the frame. The default is to allow the user to resize the frame.

To resize a frame, the user positions the pointer over the frame division and drags
the border. Figures 12-7 and 12-8 show the left frame being enlarged—as a
consequence, the right frame shrinks to compensate.

Double-headed
arrow

Figure 12-7: To resize a frame, the user positions the pointer over the frame border
until a double arrow cursor appears.

Targeting Links to Frames
To change a frame’s content, you must be able to target a frame. To do so, you must
use the name attribute to uniquely identify your frames. You can then use those
names in scripts and anchor tags to direct new content to the frame.

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

197Chapter 12 ✦ Frames

Drag border to new position

Figure 12-8: Dragging the curser resizes the frames accordingly.

Scripting languages can use the document’s frame collection to target a frame. For
example, JavaScript can reference the content of a frame named news by changing
the value of the following property:

parent.news.location.href

You can use similar methods and properties to otherwise manipulate the frame
content and properties.

Cross-
Reference

For more information on JavaScript and how it can be used to affect the prop-
erties of a document, see Chapters 25 through 27.

When you use the frameset DTD, the anchor tag (<a>) supports the target
attribute, which can be used to target a frame for content. The target attribute
supports the various values shown in Table 12-2.

Note To understand the difference between the _parent and _top values of the
target attribute, you need to understand nested frames. Nested frames are
covered in the next section.

The easiest way to direct content to a frame is to use the frame’s name in the
target attribute of an anchor. This technique is often used to control one frame
independently from another, especially where one frame has a navigation control

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

198 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 12-2
Possible Values for the Target Attribute

Value Use

frame name Displays the content in the frame specified by frame_name

_blank Open a new window to display the content

_parent Displays the content in the parent frameset of the current frame

_self Displays the content in the current frame

_top Displays the content in the current window, without frames

and the other displays variable content. For example, the following code provides a
handful of navigation links in the left (nav) frame, and the content is displayed in the
right (content) frame. Figure 12-9 shows what this code looks like in a browser.
(Only home.html is shown in the following code—other content pages would look
similar.)

Figure 12-9: A simple frame-based navigation scheme. When the user clicks a link in
the left frame, the content changes in the right frame.

frameset.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”

“http://www.w3.org/TR/html4/frameset.dtd”>

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

199Chapter 12 ✦ Frames

<html>
<head>

<title>Simple Frame Navigation</title>
</head>

<frameset cols = “20%,*”>
<frame name=“nav” src=“navigation.html”></frame>
<frame name=“content” src=“home.html”></frame>

</frameset>
</html>

navigation.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”

“http://www.w3.org/TR/html4/frameset.dtd”>
<html>
<head>

<title>Navigation Menu</title>
</head>
<body>

<p>
Home

Products

Contact

About

</p>
</body>
</html>

home.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”

“http://www.w3.org/TR/html4/frameset.dtd”>
<html>
<head>

<title>Home Page Content</title>
</head>
<body>

<h1>Acme Home Page</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy

nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in
hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit
praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.</p>

<p>Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum
iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum
dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio
dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te
feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat.</p>

<p>Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse
molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros
et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

200 Part II ✦ HTML/XHTML Authoring Fundamentals

augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud
exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat.</p>
</body>
</html>

Nested Framesets
You have seen how to create rows and columns using framesets. However, what if
you want a little of both? For example, consider the layout shown in Figure 12-10.

Figure 12-10: A frameset with a combination of rows and columns.

In such cases, you need to nest one frameset inside of another. For example, the
following frameset code results in the layout shown in Figure 12-10:

<frameset rows = “20%,*”>
<frame name=“banner” src=“banner.html”></frame>

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

201Chapter 12 ✦ Frames

<frameset cols = “30%,*”>
<frame name=“nav” src=“navigation.html”></frame>
<frame name=“content” src=“home.html”></frame>

</frameset>
</frameset>

To achieve the layout, a column-based frameset is nested inside the second row of
the row-based frameset. In essence, the second row of the top frameset becomes its
own frameset. You could conceivably nest other framesets within this layout, but
using more than two or three frames tends to clutter the document and confuse the
user.

Note The _parent and _top values of the anchor tag’s target attribute were men-
tioned earlier in this chapter. Looking at the example in this section, you can
see how those two values would each affect the target.

The _parent value causes the content to load within the frameset, that is the
immediate parent of the current frame. For example, using _parent in a link
within the content frame would cause the specified content to load in the
area defined for the column-based frameset.

The _top value causes the content to load within the top-most frameset. For
example, using _top in a link within the content frame would cause the spec-
ified content to load in the area defined for the row-based frameset, effectively
taking up the entire user agent window.

Inline Frames
Inline frames were conceived as a better method to allow smaller pieces of content
to be incorporated in scrollable containers within a larger document. Although you
can use regular framesets to create individually scrolling regions, the layout is
somewhat hampered by the stringent row and column layout design inherent in
framesets.

Figure 12-11 shows a sample inline frame placed in a document. Note that the frame
is truly “inline”—that is, completely enveloped by the document around it.

Note Inline frames are not fully supported by all user agents. Inline frames are only
safe to use if you are relatively certain that your entire audience will be using
an <iframe> compatible browser to view your documents. If this is not the
case, you should stay away from inline frames, or code your documents to offer
incompatible browsers an alternative. See Chapter 25 for more information
about making your documents cross-browser compatible.

If you do decide to utilize inline frames, keep in mind that, like other frame
constructs, your documents will only validate against frameset DTDs.

Inline frames are accomplished with the <iframe> tag. This tag has the following,
minimal format:

<iframe src=“url_of_content”></iframe>

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

202 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 12-11: Inline frames define separate scrollable regions truly inline within the
document.

The <iframe> tag has a handful of additional attributes. These are listed in
Table 12-3.

Table 12-3
The <iframe> Tag Attributes

Attribute Value(s) Use

align left Alignment of the frame to
right surrounding text
top
middle
bottom

frameborder 0 = no border Whether the frame should
1 = border (default) have a visible border

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

203Chapter 12 ✦ Frames

Attribute Value(s) Use

height pixels % The height of the frame

longdesc url A URL to a document containing the
long description of the frame

marginheight pixels The size of the internal top and
bottom margins of the frame

marginwidth pixels The size of the internal left and right
margins of the frame

name name_of_frame The name of the frame (for use in
scripting and otherwise referencing
the frame and its properties)

scrolling yes Whether the frame should
no have scrollbars or not
auto (default)

src url The URL of the content to display in
the frame

width pixels % The width of the frame

These attributes function exactly like their frame-based kin. It is recommended that
you use as many attributes as possible to more closely specify how your <iframe>
layout will be rendered.

The following code was used for the document displayed in Figure 12-11.

frameset.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”

“http://www.w3.org/TR/html4/frameset.dtd”>
<html>
<head>

<title>Home Page Content</title>
</head>
<body>

<h1>Acme Home Page</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy

nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in
hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit
praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.</p>

<iframe name=“productframe” src=“products.html”
height=“100px” width=“250px”
align=“right” frameborder=“1” marginheight=“5px”
marginwidth=“5px” scrolling=“auto”>

</iframe>

P1: KOA

WY022-12 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:2

204 Part II ✦ HTML/XHTML Authoring Fundamentals

<p>Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel
eum iriure dolor in hendrerit in vulputate velit esse molestie consequat,
vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et
iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis
dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore
magna aliquam erat volutpat.</p>

<p>Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse
molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero
eros et accumsan et iusto odio dignissim qui blandit praesent luptatum
zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad
minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl
ut aliquip ex ea commodo consequat.</p>
</body>
</html>

products.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”

“http://www.w3.org/TR/html4/frameset.dtd”>
<html>
<head>

<title>Product Page Content</title>
</head>
<body>

<h3>Products</h3>
<p>Lorem ipsum dolor sit amet, consectetuer adipisc-

ing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in
hendrerit in vulputate velit esse molestie consequat, vel illum
dolore eu feugiat
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit
praesent luptatum zzril delenit augue duis dolore te feugait nulla facil-
isi.</p>
</body>
</html>

Summary
This chapter introduced the concept of frames, including the relatively new inline
frame construct. Using frames or inline frames, you can insert separately scrollable
and formatted regions inside a larger document. As with most older HTML
technologies, you should take care when choosing to use frames—in many
instances, you would be better off learning and using CSS instead.

✦ ✦ ✦

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

1313C H A P T E R

Forms
✦ ✦ ✦ ✦

In This Chapter

Understanding Forms

Inserting a Form

Form Field Types

Tab Order and Keyboard
Shortcuts

Preventing Changes

Fieldsets and Legends

Form Scripts and Script
Services

✦ ✦ ✦ ✦

HTML’s somewhat humble beginnings were receive-only;
that is, the user could receive data, but was not

expected to be able to send data. However, that was quickly
realized as a deficiency of HTML—with the user agents being
run in graphical environments with rich user interfaces,
creating a similar interface for which to allow users to submit
data seemed a natural extension.

Today, forms comprise a complex yet flexible framework to
allow users basic controls. These controls can be used to
provide input back to scripts or to submit data. This chapter
delves into the particulars of HTML forms.

Understanding Forms
HTML forms simply place a handful of GUI controls on the user
agent to allow the user to enter data. The controls can allow
text input, allow selection of predefined choices from a list,
radio or check boxes, or other standard GUI controls.

After the data is entered into the fields, a special control is
used to pass the entered data on to a program that can do
something useful with the data. Such programs are typically
referred to as form handlers because they “handle” the form
data.

The following code shows a basic HTML form whose output is
shown in Figure 13-1.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>A Simple Form</title>
</head>
<body>
<form action=“formhandler.php” method=“post”>

<table cellspacing=“20”>
<tr><td>

<!-- Text boxes -->
<p><label for=“fname”>First Name: </label>

205

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

206 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 13-1: A simple HTML form.

<input type=“text” name=“fname” id=“fname”
size=“20”>

<label for=“lname”>Last Name: </label>
<input type=“text” name=“lname” id=“lname” size=“20”>

</p>

<!-- Text area -->
<p><label for=“address”>Address:</label>

<textarea name=“address” id=“address”
cols=20 rows=4></textarea>

</p>

<!-- Password -->
<p><label for=“password”>Password: </label>

<input type=“password” name=“password” id=“password”
size=“20”>

</p>

</td>
<td>
<!-- Select list -->
<p><label for=“products”>What product(s) are you

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

207Chapter 13 ✦ Forms

interested in? </label>

<select name=“prod[]” id=“products” multiple=“multiple”

size=“4”>
<option id=“MB”>Motherboards
<option id=“CPU”>Processors
<option id=“Case”>Cases
<option id=“Power”>Power Supplies
<option id=“Mem”>Memory
<option id=“HD”>Hard Drives
<option id=“Periph”>Peripherals

</select>
</p>

<!-- Check boxes -->
<fieldset>

<legend>Contact me via: </legend>
<p><input type=“checkbox” name=“email” id=“email”

checked>
<label for=“email”>Email</label>

<input type=“checkbox” name=“postal” id=“postal”>
<label for=“postal”>Postal Mail</label></p>

</fieldset>

</td>
</tr>
<tr>
<td>
<!-- Radio buttons -->
<p>How soon will you be buying hardware?</p>
<fieldset>
<legend></legend>
<p><input type=“radio” name=“buy” value=“ASAP”

id=“buyASAP”>
<label for=“buyASAP”>ASAP</label>

<input type=“radio” name=“buy” value=“10” id=“buy10”>
<label for=“buy10”>Within 10 business days</label>

<input type=“radio” name=“buy” value=“30” id=“buy30”>
<label for=“buy30”>Within the month</label>

<input type=“radio” name=“buy” value=“Never”
id=“buyNever”>
<label for=“buyNever”>Never!</label></p>

</fieldset>
</td>

<td>
<!-- Submit and Reset buttons -->
<p>
<input type=“submit”>
<input type=“reset”>
</p>

<!-- Button -->
<p>
<input type=“button” name=“Leave” value=“Leave site!”>
</p>

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

208 Part II ✦ HTML/XHTML Authoring Fundamentals

<!-- Image -->
<input type=“image” name=“Coupon” src=“coupon.jpg”>

<!-- Hidden field -->
<input type=“hidden” name=“referredby” value=“Google”>

</td>
</tr>
</table>

</form>
</body>
</html>

Note Many form tags do not have closing tags. However, XML and its variants require
that all elements be closed. If you are coding for XML or one of its variants (such
as XHTML), be sure to close your tags by including the closing slash (/) at the
end of tags that lack a formal closing tag.

Inserting a Form
You insert a form into your document by placing form fields within <form> tags. The
entire form or any of the tags can be formatted like any other element in your
document, and can be placed within any element capable of holding other elements
(paragraphs, tables, and so on).

The tag has the following, minimum format:

<form action=“url_to_send_data” method=“get|post”>

The action attribute defines a URL where the data from the form should be sent to be
“handled.” Although you can use just about any URL, the destination should be a
script or other construct capable of correctly interpreting and doing something
useful with the data.

Note Form actions and form data handlers are covered in the section, Form scripts
and script services, later in this chapter.

The second attribute, method, controls how the data is sent to the handler. The two
valid values are get and post. Each value corresponds to the HTTP protocol of the
same name.

HTTP GET
The HTTP GET protocol attaches data to the actual URL text to pass the data to the
target. You have probably noticed URLs that resemble the following:

http://www.example.com/forms.cgi?id=45677&data=Taarna

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

209Chapter 13 ✦ Forms

The data appears after the question mark and is in name/value pairs. For example,
the name id has the value of 45677, and the name data has the value of
Taarna.

Note In most cases, the name corresponds to field names from the form and may
relate to variables in the data handler.

However, because the data is passed in the text of the URL, it is easy to
implement—you can pass data by simply adding appropriate text to the URL used to
call the data handler. However, GET is also inherently insecure. Never use GET to
send confidential data to a handler, because the data is clearly visible in most user
agents and can be easily sniffed by hackers.

HTTP POST
The HTTP POST method passes data encoded in the HTTP data stream. As such, it is
not typically visible to a user and is a more secure method to pass data, but can be
harder to implement. Thankfully, HTML forms and most other Web technologies
make passing data via POST a trivial task.

Additional <form> attributes
The <form> tag has many additional attributes. These attributes are listed in
Table 13-1.

Table 13-1
<form> Tag Attributes

Attribute Values

Accept A comma-separated list of content types that the handler’s server
will accept

accept-charset A comma-separated list of character sets the form data may be in

Enctype The content type the form data is in

Name The name of the form (deprecated, use the id attribute instead)

Target Where to open the handler URL (deprecated)

Although you may not need these attributes in simple forms, these attributes can be
very useful. The accept, accept-charset, and enctype attributes are invaluable
for processing nontextual and International data. The id attribute (formerly the
name attribute) should be used to uniquely identify a form in your document,
especially if you use more than one form in the same document.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

210 Part II ✦ HTML/XHTML Authoring Fundamentals

Field Labels
The <label> tag defines textual labels for form fields. The <label> tag has the
following format:

<label for=“id_of_related_tag”>text_label</label>

For example, the following code defines a label for a text box:

<p><label for=“FirstName”>First Name: </label>
<input type=“text” id=“FirstName” name=“FirstName” value=“”
size=“30” maxlength=“40”></p>

The role of the <label> tag is accessibility-related. Most users can rely upon the
layout of your forms to determine what labels go with what fields. However, if the
user agent does not have a visual component, or if the user is visually impaired, the
visual layout of the form cannot be relied upon to match labels and fields. The
<label> tag’s for attribute ensures that the user agent can adequately match
labels with fields.

Text Input Boxes
One of the most used fields of HTML forms is the simple text field. This field allows
for the input of small pieces of text—names, addresses, search terms, and so on.

The text input field tag has the following format:

<input type=“text” name=“field_name” value=“initial_value”
size=“size_of_field” maxlength=“max_characters_allowed”>

Although all the attributes previously listed are not required, they represent the
minimum attributes that you should always use with your text boxes. The following
sample text box is designed to accept a name, appears 30 characters long, accepts a
maximum of 40 characters, and has no initial value:

<p>Name: <input type=“text” name=“username” value=“”
size=“30” maxlength=“40”></p>

The following code example defines a text box to accept an e-mail address. It
appears 40 characters wide, only accepts 40 characters, and has an initial value of
“email@example.com”:

<p>Email: <input type=“text” name=“email”
value=“email@example.com” size=“40” maxlength=“40”></p>

Password Input Boxes
The password input box is similar to the text box, but visually obscures data
entered into the box by displaying asterisks instead of the actual data entered into
the field. The following example displays a password field that accepts 20 characters.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

211Chapter 13 ✦ Forms

<p>Password: <input type=“password” name=“password” value=“”
size=“20” maxlength=“20”></p>

Caution The password field only visibly obscures the data to help stop casual snoops
from seeing what a user inputs into a field. It does not encode or in any way
obscure the information at the data level. As such, be careful how you use this
field.

Radio Buttons
Radio buttons are groups of small, round buttons that allow a user to choose one
option in a group. The name “radio” button comes from how old-fashioned radios
used to be tuned—you pushed one of many buttons to tune to a preset station.
When one button was pushed, the rest were reset to the out position. Like those
buttons, form radio buttons are mutually exclusive—only one of the group can be
set. When one is selected, the others in the group are deselected.

The radio button field has the following format:

<input type=“radio” name=“group_name” [checked=“checked”]
value=“value_if_selected”>

Note that the value attribute defines what value is returned to the handler if the
button is selected. This attribute should be unique between buttons in the same
group.

The following example code defines a group of radio buttons that allows a user to
select their gender:

<p>Gender:
<input type=“radio” name=“gender” value=“male”> Male
<input type=“radio” name=“gender” value=“female”> Female</p>

If you want a button selected by default, add the checked attribute to the
appropriate button’s tag.

Tip XML and its variants do not allow attributes without values. HTML will allow
the checked attribute to be used with or without a value. To ensure your code
remains as compliant as possible, it is suggested that you specify a checked box
with the checked attribute as checked=“checked” instead of just checked.

Check Boxes
Check boxes are small, square boxes that are used to select non–mutually exclusive
choices. They are so named because, when selected, they display a checkmark (or
more commonly an “X”) in the box like the check boxes in paper lists.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

212 Part II ✦ HTML/XHTML Authoring Fundamentals

The checkbox field has the following format:

<input type=“checkbox” name=“field_name” [checked=“checked”]
value=“value_if_selected”>

As you can see, other than the mutually exclusive issue, check boxes are very similar
in definition to radio buttons. The following example displays a check box allowing
the user to select whether they receive solicitous e-mails:

<p><input type=“checkbox” name=“spam_me” checked=“checked”
value=“spam_me”> Add me to your email list</p>

Note that the checked attribute can be used to preselect check boxes in your forms.
Also, just like radio buttons, the value attribute is used as the value of the check box
if it is selected. If no value is given, selected check boxes are given the value of “on.”

List Boxes
List boxes are used to allow a user to pick one or more textual items from a list. The
list can be presented in its entirety, with each element visible or as a pull-down list
where the user can scroll to their choices.

List boxes are implemented using <select> and <option> tags, and optionally the
<optgroup> tag.

The <select> tag provides the container for the list and has the following format:

<select name=“name_of_field” size=“items_to_show”
[multiple=“multiple”]>

The <option> tag defines the items for the list. Each item is given its own
<option> tag. This tag has the optional attributes shown in Table 13-2.

Table 13-2
<option> Tag Attributes

Attribute Values

Label A shorter label for the item that the user agent can use

Selected Indicates that the item should be initially selected

Value The value that should be sent to the handler if the item is selected; if omitted, the
text of the item is sent item is selected; if omitted, the text of the item is sent

An example of a minimum of <option> tags follows:

<option>Sunday
<option>Monday
<option>Tuesday
<option>Wednesday

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

213Chapter 13 ✦ Forms

<option>Thursday
<option>Friday
<option>Saturday

Occasionally, you might want to group options of a list together for clarity. For this
you use <optgroup> tags. The <optgroup> tag encapsulates items that should be
in that group. For example, the following code defines two groups for the preceding
list of options, weekend and weekday:

<optgroup label=“Weekend”>
<option>Sunday
<option>Saturday

</optgroup>
<optgroup label=“Weekday”

<option>Monday
<option>Tuesday
<option>Wednesday
<option>Thursday
<option>Friday

</optgroup>

Different user agents display option groups differently, but the default behavior is to
display the option group labels above the options to which they apply, as shown in
Figure 13-2.

Figure 13-2: Option groups are displayed in the list as nonselectable items.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

214 Part II ✦ HTML/XHTML Authoring Fundamentals

Combining all three tags to create a list would resemble the following code:

<p>Select the days you are available:
<select name=“AvailDays” size=“5” multiple=“multiple”>

<optgroup label=“Weekend”>
<option>Sunday
<option>Saturday

</optgroup>
<optgroup label=“Weekday”

<option>Monday
<option>Tuesday
<option>Wednesday
<option>Thursday
<option>Friday

</optgroup>
</select>
</p>

Large Text Areas
For large pieces of text, you can use the <textarea> tag. This tag can accept textual
input of up to 1,024 characters and uses a multiline text box for input.

The <textarea> tag has the following format:

<textarea name=“name_of_field” cols=“number_of_columns”
rows=“number_of_rows”></textarea>

Note that the <textarea> tag is one of the few form tags that has an open and a
close tag. If you want the field to have default content, the content should be placed
between the tags. For example, the following code results in the initial form shown in
Figure 13-3:

<textarea cols=“50” rows=“6”>
John Doe
123 Main Street
Anywhere, USA
</textarea>

Tip Whatever is placed between the <textarea> tags appears verbatim in the
text box when the form is first displayed. Therefore, it is important to carefully
watch the formatting of your HTML code. For example, if you want the field to
be initially blank, you cannot place the open and close tags on separate lines
in the code:

<textarea>
</textarea>

This would result in the field containing a newline character—it would not be
blank.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

215Chapter 13 ✦ Forms

Figure 13-3: You can set a default value for the <textarea> tag by placing content
between the open and close tags.

Note that the text entered into the <textarea> field wraps within the width of the
box, but the text is sent verbatim to the handler. That is, where the user enters line
breaks, those breaks are also sent to the handler. However, the wrapped text
(without hard line breaks) is sent without breaks.

Note Previous versions of HTML supported a wrap attribute for the <textarea>
tag. This attribute could be used to control how text wrapped in the text box
as well as how it was sent to the handler. Unfortunately, user agent support for
this attribute was inconsistent—you could not rely on a browser to follow the
intent of the attribute. As such, the attribute has been deprecated and should
not be used.

Hidden Fields
Hidden fields are used to add data to the form without displaying it to the user. The
hidden field has the following format:

<input type=“hidden” name=“name_of_field”
value=“value_of_field”>

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

216 Part II ✦ HTML/XHTML Authoring Fundamentals

Other than not being visibly displayed, hidden fields are like any other field. Hidden
fields are used mostly for tracking data. For example, in a multipage form, a userid
field can be hidden in the form to ensure that subsequent forms, when submitted,
are tied to the same user data.

Keep in mind that hidden fields do not display on the user agent but are still visible
in the code of the document. As such, hidden fields should never be used for
sensitive data.

Buttons
Occasionally, you might have need for additional, custom buttons on your form. For
those cases, you can use the button field. This field has the following format:

<input type=“button” name=“name_of_field”
value=“text_for_button”>

This tag results in a standard graphical button being displayed on the form. The
following code example results in the button shown in Figure 13-4:

Figure 13-4: You can use the button field to add custom buttons to your form.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

217Chapter 13 ✦ Forms

<input type=“button” name=“BuyNow”
value=“Buy Now!”>

Buttons by themselves, however, are useless on a form. To have the button actually
do something, you will need to link it to a script via the onclick or other attribute.
For example, the following code results in a button that, when clicked, runs the
script “buynow”:

<input type=“button” name=“BuyNow”
value=“Buy Now!” onclick=“JavaScript:buynow()”>

Images
Images provide a graphical means to convey a message. Using the image type of the
<input> tag you can add images to your form, an image that can be used along with
other form elements to gather data. The image field has the following format:

<input type=“image” name=“name_of_field”
src=“url_to_image_file”>

However, like the button field, image fields by themselves do not provide any actual
form controls. To use the image for input purposes, it must be linked to a script. The
following example causes the image buynow.jpg to be displayed on a form. When
the image is clicked, the script buynow is run:

<input type=“image” name=“buynow” src=“buynow.jpg”
onclick=“JavaScript:buynow()”>

File Fields
File fields allow a user to browse for a local file and send it as an attachment to the
form data. The file field has the following format:

<input type=“file” name=“name_of_field”
size=“display_size_of_field”>

The file field results in a text box with a button that enables the user to browse for a
file using their platform’s file browser. Alternately, the user can simply type the path
and name of the file in the text box. Figure 13-5 shows an example of a file field in
Internet Explorer.

However, in order to use this control in your forms you must do the following:

✦ Specify your form as multipart, which allows the file to be attached to the rest
of the data.

✦ Use the POST, not the GET, method of form delivery.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

218 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 13-5: The file field allows a user to send a local file.

This means your <form> tag should resemble the following:

<form action=“form_handler” method=“post”
enctype=“form/multipart”>

Submit and Reset Buttons
Submit and reset buttons provide control mechanisms for users to submit the data
entered to a handler and reset the form to its default state. These buttons have the
following format:

Submit button
<input type=“submit” [value=“text_for_button”] >

Reset button
<input type=“reset” [value=“text_for_button”] >

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

219Chapter 13 ✦ Forms

The value attribute for both tags is optional—if this attribute is omitted, the
buttons will display default text (usually “Submit” and “Reset,” but is ultimately
determined by the user agent).

The submit button, when clicked, causes the form to be submitted to the handler
specified in the <form> tag’s action attribute. Alternately, you can use the
onclick attribute to call a script to preprocessing the form data.

The reset button, when clicked, causes the form to be reloaded and its fields reset to
their default values. You can also use the onclick attribute to change the button’s
behavior, calling a script instead of reloading the form.

Tip Use of onclick to change the reset button’s behavior is not recommended.
Using onclick to cause the submit button to run a script for preprocessing is
an expected process, but the reset button should always simply reset the form.
If you need a button to perform some other function, use a custom button field
that is appropriately labeled.

Tab Order and Keyboard Shortcuts
Two additional attributes, tabindex and accesskey, should be used with your
form fields to increase their accessibility.

The tabindex attribute defines what order the fields are selected in when the user
presses the Tab key. This attribute takes a numeric argument that specifies the field’s
order on the form.

The accesskey attribute defines a key that the user can press to directly access the
field. This attribute takes a single letter as an argument—that letter becomes the key
the user can press to directly access the field.

Note Keys specified in accesskey attributes usually require an additional key to be
pressed with the key. For example, user agents running on Windows require
the Alt key to be pressed along with the letter specified by accesskey. Other
platforms require similar keys—such keys typically follow the GUI interface con-
ventions of the platform.

The following example defines a text box that can be accessed by pressing Alt+F (on
Windows platforms), and is third in the tab order:

<p><label for=“FirstName”><u>F</u>irst Name: </label>
<input type=“text” id=“FirstName” name=“FirstName” value=“”
tabindex=“3” accesskey=“F” size=“30” maxlength=“40”></p>

Preventing Changes
There are two ways to display information in common form fields but not allow a
user to change the data—by setting the field to read-only or disabled.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

220 Part II ✦ HTML/XHTML Authoring Fundamentals

You can add the readonly attribute to text fields to keep the user from being able to
edit the data contained therein.

The disabled attribute effectively disables a control (usually graying out the
control, consistent with the user agent’s platform method of showing disabled
controls) so the user cannot use the control.

The following code shows examples of both a read-only and a disabled control. The
output of this code is shown in Figure 13-6.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>A Textarea</title>
</head>
<body>

Figure 13-6: Disabled and read-only fields can be used to show data without the
data being edited.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

221Chapter 13 ✦ Forms

<form action=“formhandler.php” method=“post”>
<table cellspacing=“10” width=“600”>
<tr><td width=“25%”>
<p>Customer Code (readonly):</p>
</td><td>
<input type=“text” size=“12” value=“X234GG”

readonly=“readonly”>
</td></tr>
</table>
<tr><td>
<p>Zip Code (disabled):</p>
</td><td>
<input type=“text” size=“10” value=“”

disabled=“disabled”>
</td></tr>
</table>

</form>
</body>
</html>

Although the two attributes make the fields look similar on screen, the readonly
field can be selected, just not edited. The disabled field cannot be selected at
all.

Tip Disabling a control that is not applicable in certain instances is common practice.
For example, international addresses do not have a U.S. ZIP code. If a user
indicates that they have an international address, you might decide to disable
the ZIP code field so they do not enter data in that field.

You can use client-side scripts to dynamically disable controls. Use onblur or
onchange attributes to call a script from fields that could change the enabled
status of other fields—those scripts check the data entered and enable or dis-
able other fields by changing the value of that field’s disabled attribute. More
information on such techniques can be found in Chapters 25 and 26.

Fieldsets and Legends
Sometimes, it is advantageous to visually group certain controls on your form. This
is a standard practice for graphical user agents, as shown in Figure 13-7.

The <fieldset> tag is used as a container for form elements and results in a thin
border being displayed around the elements it surrounds. For example, the following
code results in the output shown in Figure 13-8.

<fieldset>
<p>Gender:

<input type=“radio” name=“gender” value=“male”> Male

<input type=“radio” name=“gender” value=“female”> Female</p>
</fieldset>

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

222 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 13-7: Grouping controls allows a user to
better understand a form’s organization. This is
standard in GUI interfaces, as demonstrated in this
Windows Internet Explorer dialog box.

The <legend> tag allows the surrounding <fieldset> box to be captioned. For
example, the following code adds a caption to the previous example. The output of
this change is shown in Figure 13-9.

<fieldset>
<p><legend>Gender </legend>
<input type=“radio” name=“gender” value=“male”> Male

<input type=“radio” name=“gender” value=“female”> Female</p>
</fieldset>

Form Scripts and Script Services
As previously mentioned in the Understanding Forms section in this chapter, form
data is typically passed to a data handler, a script or program that does something
useful with the data.

Form handlers typically do one or more of the following actions with the form data:

✦ Manipulate or verify the data

✦ E-mail the data

✦ Store the data in a file or database

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

223Chapter 13 ✦ Forms

Figure 13-8: The <fieldset> tag can help add organization to your forms.

There are many ways to construct a form handler, but the usual method is by using a
server-side programming language to create a script that does what you need to the
data. Common form handlers are created in Perl, Python, PHP, or other server-side
programming language.

Security is an issue that should be considered when creating form handlers.
One of the earliest, most popular form handlers, formmail.cgi, was found to have
a vulnerability that allowed anyone to send data to the script and have it e-mail the
data to whomever the sender wanted. This functionality was an instant hit with e-mail
spammers who still use unsecured formmail scripts to send anonymous spam.

Because form-handling scripts can be so diverse (performing different functions,
written in different languages), it is hard to give tangible examples here. You should
use a language you are comfortable with to create a form handler that does exactly
what you want.

If you want a generic form handler to simply store or e-mail the data, you can choose
from a few routes.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

224 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 13-9: The <legend> tag can add captions to your fieldsets.

Download a handler
Several sites on the Internet have generic form handlers available. One of my
favorites is the CGI Resource Index, http://cgi.resourceindex.com/. This
site has several dozen scripts that you can download and use for your form
handling.

Use a script service
Several services are also available that allow you to process your form data through
their server and scripts. You may need such a service if you cannot run scripts on
your server or want a generic, no-hassle solution.

A partial list of script services is available at the CGI Resource Index,
http://cgi.resourceindex.com/. From the main page, select Remotely Hosted
and browse for a service that meets your needs.

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

225Chapter 13 ✦ Forms

Summary
This chapter showed you the particulars of HTML forms. It demonstrated how to
include them in your documents and what each form tag can accomplish. The next
two chapters introduce multimedia content and scripting—showing you how to
include both in your documents. The next part of this book (Part III) dives into the
deep subject of Cascading Style Sheets (CSS).

✦ ✦ ✦

P1: JYS

WY022-13 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

226

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

1414C H A P T E R

Multimedia
✦ ✦ ✦ ✦

In This Chapter

Introducing Multimedia
Objects

Multimedia Plug-ins and
Players

Animations

Video Clips

Sounds

Slide Shows

✦ ✦ ✦ ✦

Multimedia on the Web has grown up. You can see
full-length movies on the Web, watch baseball games

in real time on MLB.com, watch video news bulletins on CNN,
and play games with other users.

Generally, the best user experiences exist within the realm of
broadband access, such as DSL and cable. Getting streaming
video to work over a dialup connection is nearly impossible,
but that doesn’t completely rule out multimedia. However,
most developers who are reaching for lofty goals in the
multimedia world now target folks with fast
connections—since a sufficient base of broadband
connections have been installed.

This chapter examines some of the multimedia platforms most
frequently used on today’s Web. Many, of course, have
crowned Flash as the unofficial king of multimedia, but don’t
discount other technologies, especially if you’re developing
slideshows and video presentations.

Introducing Multimedia Objects
Depending on the browser with which your users view your
Web pages, multimedia can offer either a very rewarding or a
very frustrating experience for your users.

For example, if your users are using Netscape 3 to view a
multimedia page, chances are they’ll be taking a long journey
that they’ll ultimately cancel. This journey will consist of
numerous dialog boxes and visits to Web pages for
downloading plug-ins, which are small extensions to browsers
used to extend a browser’s capabilities. These downloads are
necessary when a browser first encounters a multimedia
object, because browsers don’t have native support for such
multimedia as Flash, RealAudio (now known as RealOne), and
so on.

In fact, you might be surprised to find out that browsers on
today’s market generally don’t provide native support for the
near ubiquitous Flash plug-in (Opera is the lone exception,

227

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

228 Part II ✦ HTML/XHTML Authoring Fundamentals

but it’s usually a version or so behind the latest Flash players). Instead, the plug-in
for Flash needs to be installed. However, Macromedia, the developer of Flash, has
made the installation process so painless that Macromedia claims that Flash is now
in more than 97% of all browsers. Those figures may be inflated by Macromedia’s PR
machine, but there is little question that the installed base is huge. You can be
assured, however, that of those who don’t have the plug-ins installed, many of them
have older browsers such as Netscape 3. The reason for the difference is that
modern browsers make plug-in installation a snap, whereas older versions required
multiple visits to different sites and often numerous forms.

Frankly, the best way to handle users with antiquated browsers is to simply bypass
their multimedia options altogether, because their use of such an ancient browser is
an indication that they don’t care very much about the newest technology anyway.
This can be done using browser-sniffing scripts.

Cross-
Reference

Browser sniffing, or browser detection, is a JavaScript-based process for detect-
ing what kind of browser a user is using to view Web pages and displaying
content based on the results of these findings. Chapter 26 explains how to
develop these scripts.

You can use a browser-sniffing script to send users with older browsers to
HTML-only pages or write messages to their browser windows telling them they have
crummy browsers (in a nice way, of course).

Keep in mind that professional-looking multimedia requires a substantial investment
in either your time or money (which you’ll spend to get a professional to put it
together for you). A long time ago, HTML purists cringed when they saw the
notorious <blink> tag. Today, many Web site visitors’ first reaction upon seeing
Flash intros is to hunt for the “Skip Intro” button on these presentations. When
making a decision about whether to use a multimedia object, ask yourself the
following questions:

✦ Does the multimedia object actually offer something I can’t otherwise
accomplish with HTML?

✦ Does it truly enhance my Web site?

✦ Will my users’ browsers support the multimedia object I’m using?

✦ Do I have the resources to make a genuinely professional multimedia
presentation?

If you can answer these questions in the affirmative, you’re ready to go.

Your multimedia options
There are four general categories of multimedia objects:

✦ Video clips—are supported by such applications as RealOne Player, the
Windows Media Player, or Apple’s QuickTime. Generally, when a file relying on
one of these programs is accessed, the multimedia doesn’t appear within the

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

229Chapter 14 ✦ Multimedia

browser window (although it can). Instead, it spawns a window of the player
application that plays the media.

✦ Animations—can be generated by bit-map-based (paint) applications, such as
Fireworks and Photoshop. These kinds of programs create GIF files consisting
of several frames to produce an animation. Maybe you remember seeing a
stack of papers in elementary school with a series of pictures, and as you flip
through the stack, the image changed ever so slightly, creating an animated
effect. The process is similar with animated GIFs. You see them everywhere
these days, especially in banner ads. Most people consider them annoying, so
use them with care and caution.

✦ Sounds—can come in many formats, but again, you want to use them
judiciously, because you can turn off your Web site visitors with them and even
get them into trouble if they’re visiting your Web page from the work place.

✦ Slide shows—are surprisingly useful for Web sites and can be created quite
easily using PowerPoint or a free slide creation tool such as the presentation
creation tool in OpenOffice.org’s office suite.

What about Java applets?

Java applets, although not as common as they once were, are still used occasionally
by some developers. The problem with Java applets is that they rely on a Java
Virtual Machine installation that has proven to result in terrible inconsistencies
across platforms. The only way around this is to hire an army of programmers to
produce rock solid browser-sniffing scripts. One example of a reasonably successful
deployment of Java-based applets was ESPN’s GameCast, but even that has moved
over to Flash.

Including multimedia in your Web pages
One kind of multimedia requires no plug-ins at all and can be written directly in your
HTML. This is the animated GIF, which can simply be included in an img element, like
so:

As long as the animated GIF actually animates, you’re in business.

Most other multimedia requires the use of a plug-in, although you could consider
some Dynamic HTML and CSS to be multimedia; and certainly, especially with some
of the transition effects available in Internet Explorer through the use of both
scripting and Microsoft’s proprietary extensions to CSS, multimedia effects can be
accomplished this way.

Cross-
Reference

Dynamic HTML and CSS effects are covered in detail in Chapter 27.

The standard way of embedding a multimedia object using HTML 4.0 is through the
use of the object element. The attributes available for the element are shown in
Table 14-1.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

230 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 14-1
Attributes of the Object Element

Attribute Name HTML Standard and Description

archive (optional) (HTML 4.0) A space-separated list of URIs for archives
of classes and resources to be preloaded. Using this
attribute can significantly improve the speed of an
object

classid (optional) (HTML 4.0) Specifies the location of the object’s
implementation by URI. Depending upon the type of
object involved, it can be used with or as an
alternative to the data attribute

codebase (optional) (HTML 4.0) Indicates the base URI for the path to the
object file. The default is the same base URI as the
document

codetype (recommended) (HTML 4.0) Specifies the content type of data
expected. If this is omitted, the default is the same as
the type attribute

data (optional) (HTML 4.0) Specifies the location of the object’s data.
If given as a relative URI, it is relative to the
code-based URI

height (optional) (HTML 4.0) Specifies the initial height in pixels or
percentages of the element

hspace (optional) (HTML 4.0) Defines the number of pixels on the
horizontal sides of the element

id (optional) (HTML 4.0) (CSS enabled) Formats the contents of
the tag according to the style id. Note: IDs must be
unique within a document

name (optional) (HTML 4.0) The name attribute assigns the control
name to the element

standby (optional) (HTML 4.0) This specifies a message that is shown to
a user while the object is loading

style (optional) (HTML 4.0) (CSS enabled) Formats the contents of
the element according to the listed style

type (optional) (HTML 4.0) Indicates the content type at the link
target. Specify the type as a MIME-type. This attribute
is case-insensitive

vspace (optional) (HTML 4.0) Defines the number of pixels on the
vertical sides of the element

width (optional) (HTML 4.0) Specifies the initial width in pixels or
percentages of the element.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

231Chapter 14 ✦ Multimedia

You can also use child param elements within an object element to pass
parameters to the multimedia object. These parameters are generally like little bits
of helpful information that help fine-tune exactly how you want the object to behave.
You can use Table 14-2 to review the param element’s attributes.

Table 14-2
Attributes of the param Element

Attribute Name HTML Standard and Description

Name Specifies the name of the parameter being passed to the object

type (optional) Specifies the MIME type of the data

value (optional) Specifies the value of the parameter being passed to the object

Valuetype Specifies the type of value being passed

The following example shows a Flash file embedded in an HTML document:

<object classid=“clsid:d27cdb6e-ae6d-11cf-96b8-444553540000”
codebase=“http://download.macromedia.com/pub/shockwave/cabs/f
lash/swflash.cab#version=5,0,0,0” width=“120” height=“600”
id=“marrow” align=“middle”>
<param name=“allowScriptAccess” value=“sameDomain” />
<param name=“movie” value=“marrow.swf” />
<param name=“loop” value=“false” />
<param name=“quality” value=“high” />
<param name=“bgcolor” value=“#ffffff” />
<embed src=“marrow.swf” loop=“false” quality=“high”
bgcolor=“#ffffff” width=“120” height=“600” name=“marrow”
align=“middle” allowScriptAccess=“sameDomain”
type=“application/x-shockwave-flash”
pluginspage=“http://www.macromedia.com/go/getflashplayer” />
</object>

The key to using the param elements is that the multimedia object must understand
what the parameters mean. So, you need to either have access to some
documentation about how the multimedia object works and what kind of parameters
it expects, or you need to get your hands on a tool that generates the HTML for you.
In the case of Flash, its movie exporting facilities take care of this for you. Listing 14-1
provides an example.

Listing 14-1: Embedding a Flash File Using an Object Element

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/
xhtm1-transitional.dtd”>

Continued

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

232 Part II ✦ HTML/XHTML Authoring Fundamentals

Listing 14-1: (continued)

<html xmlns=“http://www.w3.org/1999/xhtml” xml:lang=“en”
lang=“en”>
<head>
<meta http-equiv=“Content-Type” content=“text/html;
charset=iso-8859-1” />
<title>marrow</title>
</head>
<body bgcolor=“#ffffff”>
<object classid=“clsid:d27cdb6e-ae6d-11cf-96b8-444553540000”
codebase=“http://download.macromedia.com/pub/shockwave/cabs/
flash/swflash.cab#version=5,0,0,0” width=“120” height=“600”
id=“marrow” align=“middle”>
<param name=“allowScriptAccess” value=“sameDomain” />
<param name=“movie” value=“marrow.swf” />
<param name=“loop” value=“false” />
<param name=“quality” value=“high” />
<param name=“bgcolor” value=“#ffffff” />
<embed src=“marrow.swf” loop=“false” quality=“high”
bgcolor=“#ffffff” width=“120” height=“600” name=“marrow”
align=“middle” allowScriptAccess=“sameDomain”
type=“application/x-shockwave-flash”
pluginspage=“http://www.macromedia.com/go/getflashplayer” />
</object>
</body>
</html>

Note the use of the deprecated embed element as a child element of the object
element. The embed element is still needed for Netscape 4 and some other browsers,
however, so use it if you’re looking for cross-browser functionality. Keep in mind the
following about the embed element:

Do not include a name attribute with the object element when using the embed
element, especially if it is the same name value as that of the embed element because
it could cause confusion when scripting.

Parameters are handled through the use of custom attributes, such as those shown
in Listing 14-1. Notice, for example, the allowScriptAccess=“sameDomain”
attribute/value pair. The allowScriptAccess attribute is not actually part of the
embed element. Instead, it’s a special attribute that Flash understands. These
custom attributes have the same functionality as the object element’s param
element children. Different plug-in vendors may require different configuration
parameters.

The pluginspage attribute is an attribute of the embed element. It manages the
way in which a plug-in is obtained if it isn’t installed in the browser. This
attribute points to a page to get the plug-in if the plug-in is not detected by the
browser.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

233Chapter 14 ✦ Multimedia

How the Eolas Lawsuit Will Affect You

As this book was being written, Microsoft was trying to deal with losing a $521 million patent
infringement lawsuit filed by Eolas, a company founded by Michael Doyle, former director of
the University of California academic computing center. The patent governs the use of any
object included in a Web page using the embed, object, or applet elements. Although
Microsoft has appealed the decision, future versions of Internet Explorer (beyond version 6)
will present a pop-up window asking users if they wish to view an embedded application or
media file.

This does not affect objects that use no param elements.

There are some workarounds. One, obviously, is to not include any param elements. That
pretty much wipes out any hope of using Flash. Another is to embed the applications using
script.

The following example shows how to create a Web page that uses DHTML to load a Microsoft
Windows Media R© Player control.

<HTML>
<HEAD>

<SCRIPT SRC=“sample.js”></SCRIPT>
</HEAD>
<BODY>

<SCRIPT>
ReplaceContent();
</SCRIPT>

</BODY>
</HTML>

An ActiveX control can be inserted into a Web page by setting the innerHTML or outer-
HTML property of an existing element, or by calling document.write (which is the health-
ier, cross-browser method). The following script creates the Windows Media Player using
document.write:

function ReplaceContent(){
document.write(‘<OBJECT CLASSID=“CLSID:6BF52A52-394A-11d3-

B153-00C04F79FAA6”>’);
document.write(’<PARAM NAME=“URL”

VALUE=“http://msdn.microsoft.com/workshop/’);
document.write(‘samples/author/dhtml/media/drums.wav”/></OBJECT>’);
}

Multimedia Plug-Ins and Players
There are several kinds of popular multimedia plug-ins and players. The following
are the most popular:

✦ Flash

✦ RealOne

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

234 Part II ✦ HTML/XHTML Authoring Fundamentals

✦ Windows Media Player

✦ Adobe Acrobat Reader

Flash
Flash, which has become arguably the most prevalent multimedia format, began life
as a plug-in for something called FuturePlayer. FuturePlayer was purchased by
Macromedia, which has made significant refinements to the original product.
Macromedia had enjoyed reasonable success with its own Shockwave format, which
was quite similar to Flash files but generated by Macromedia Director. Macromedia
did a good job of commingling the two formats and, eventually, Shockwave pretty
much disappeared in favor of Flash. Today’s Flash can display MP3-based video and
sound, along with vector graphics, and can harness data sources from relational
databases and XML.

In fact, Flash has become a serious application platform in its own right, enabling
developers to display changing data in real time.

RealOne
RealOne is a media player that reads video and audio files. Real, Inc., the developer
of RealOne, was one of the first companies to introduce the concept of streaming
audio to desktops. Streaming media (audio and video) is sent in real time through
special servers. If you’re doing professional-level streaming media, you’ll want to see
if your host provider (if you’re using one) offers access to a Real Audio server.

If you’re planning on developing for RealOne, you can find comprehensive Software
Development Kits (SDKs) and tutorials at this site: http://www.realnetworks
.com/resources/sdk/.

You can create standards-based files that RealOne can understand by using the
Synchronized Multimedia Language (SMIL), described near the end of this chapter.
Figure 14-1 shows an instance of a RealOne player.

Windows Media Player
Windows Media Player has a huge installed base because it comes as part of the
Windows operating system. Its functionality is virtually identical to RealOne, offering
video and music playing capabilities. To properly display Windows Media Player
files, you should use the ASX markup language, which is an XML-based proprietary
language developed by Microsoft.

When a user clicks an ASX link, the browser spawns an instance of the Windows
Media Player. For example, refer to the following link:

Link to
Streaming Content

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

235Chapter 14 ✦ Multimedia

Figure 14-1: A RealOne player accessing the main Real portal.

This links to the following file and opens up a Media Player:

<ASX version = “3.0”>
<TITLE> ASX Demo</TITLE>

<ENTRY>
<TITLE>A New Song</TITLE>
<AUTHOR>Chuck White</AUTHOR>
<COPYRIGHT>(c)2003 Chuck White</COPYRIGHT>
<!-- This is a comment. Change the following path to

point to your ASF -->
<REF HREF =

“mms://windowsmediaserver/path/mysong.asf” />
</ENTRY>

</ASX>

For the specifics of what the various elements mean in an ASX file, go to
http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.
asp?contentid=28000411.

QuickTime
QuickTime has distinguished itself by consistently raising the bar on video quality.
QuickTime has long been a staple in the Apple world, but its quality is so good it has
made inroads into the Wintel world, as well.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

236 Part II ✦ HTML/XHTML Authoring Fundamentals

The feature set is similar to RealOne and Windows Media Player. Like RealOne, you
can create media shows for QuickTime using SMIL, as shown at the end of this chapter.

Animations
There are three main categories of animations. The simplest is an animated GIF file,
but even those can be time consuming, because to make a nice animation requires
that you create a new image for each frame of an animation. Another category
of animation is a Java-based or ActiveX animation. Java is a machine-independent
language that requires that the target user have a Java Virtual Machine (JVM) installed
on his or her computer. Inconsistencies in JVMs have forced most Web animation
aficionados to abandon Java as an animation platform. Active X animations are even
more rare, because they’re limited to Windows-based Internet Explorer browsers.

This helps explain why the third category, Flash, has become so popular—along with
the fact that Macromedia has created what can only be described as a genuine
application environment within the Flash framework.

Creating animated GIFs
Including an animated GIF file is the easiest of all the multimedia tasks. You simply
create one in a paint program that supports them, or find an inexpensive or free
program that specializes in helping you create them.

All Animated GIF creation programs are different, but their essence is the same.
You start off with one frame, and when you want your image to change, you create
another frame to represent that change. The frames can be on a complicated timeline,
or as simple as the interface shown in Figures 14-2 and 14-3, which demonstrate
an animated advertising banner being created using Macromedia’s Fireworks.

The animation creation software then generates an animated GIF file consisting of as
many frames as you indicate. You can also set the amount of time between the frame
changes, as shown in Figure 14-4.

Figures 14-5 and 14-6 show the transition between one frame of a completed
animated advertising banner and another.

Keeping files sizes small
Generally, you want to keep your file sizes small, and if you’re creating advertising
banners, the Web sites that run your ad will probably require you to keep them
small. To keep your files small, keep in mind the following tips:

✦ Use as few frames as possible.

✦ Use as few colors as you can. This is where a higher-end animation program
such as Fireworks (www.macromedia.com) or DeBabelizer
(www.equilibrium.com) comes in handy. They help reduce the number of
colors in your animation without degrading quality.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

Figure 14-2: The first frame of an animation built in Fireworks.

Figure 14-3: To build the second frame, you simply add the frame using the Frames and
History palette.

237

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

238 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 14-4: Changing the time interval between frame changes.

Figure 14-5: Transitioning between one frame of a completed animated advertising
banner and another, part one.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

239Chapter 14 ✦ Multimedia

Figure 14-6: Transitioning between one frame of a completed animated advertising banner
and another, part two.

Creating a Flash file
Creating a Flash file is not so easy. Flash is enormously popular because it’s a very
powerful tool, but in the wrong hands it can spell disaster. The Flash file format
(with a .fla extension) is the starting point of a Flash presentation on the Web.
Figure 14-7 shows two instances of the same Flash file side by side, each in a
different stage of the animation. This kind of animation is much more sophisticated
than an animated GIF, because it runs programmatically based on a scripting
language similar to JavaScript named ActionScript. In the case of the animation
shown in Figure 14-7 (downloadable as marrow.swf and marrow.fla), the text falls
quickly into the pane to mimic someone quickly typing code. This is done through
the use of an external XML file, which is simply looped through over and over
again.

Done correctly, Flash is a marvelous tool, but it isn’t the most intuitive program on
earth, so be prepared for a bit of a learning curve if you want your Flash
presentations to look professional. You’ve already seen how to include a Flash
presentation in your HTML page in a previous explanation of how to use the object
element.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

240 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 14-7: A Flash animation in action.

Video Clips
There are three major types of video:

✦ MPEG (short for Motion Picture Experts Group), which includes video versions
of MP3

✦ AVI, used primarily on Windows

✦ QuickTime, originally an Apple-only format but now widely available on
Windows and Apple machines

You can either link to video files or embed them directly into your Web page.
Generally, it’s best to give people fair warning that your Web page contains a video,

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

241Chapter 14 ✦ Multimedia

so you should at a minimum link to the page that contains the embedded video, and
then embed the video into that linked page. You can also embed video in
presentations made with Flash MX and above (Flash MX 2004). In fact, Flash MX
handles video so well that many people are turning to that as their presentation
environment for video. Flash itself is not video (unless you consider the animations
it creates video), but is instead a presentation platform that can include video,
music, and pictures as part of the finished presentation.

To link to a video file, simply include it in an a element, as in the following example:

This is a movie link.

When a user clicks the link and has the supporting software, the video will play in
the user’s default media player.

You can also use the object element (and the embed element if you’re targeting
Netscape users), but keep in mind that there are some preferred ways of including
multimedia that have already been discussed. In other words, you can embed a
video, such as an mpg file, directly in your Web page, but you’ll be at the mercy of
whatever system setup your user has. It’s better to target a specific or group of
specific media players by including your video in a SMIL or ASX file (discussed later
in this chapter), or each of them, then giving your users a choice of which they’d like
to view. For example, you could provide a link that says, “Window Media Player
Users Click Here” for ASX files, and then target QuickTime and RealOne users with
SMIL documents.

Sounds
Most of us are aware of the copyright infringement issues that can accompany
copying and/or distributing MP3 files. You can include sound the same way you
include video, but do be careful of copyright infringement. It may not seem obvious
that copying music is copyright infringement, but there is absolutely no legal haze
regarding copying and distributing content. You can’t do it without permission
without expecting a lawsuit. In addition to MP3, there are four additional fairly
common sound formats:

✦ Musical instrument digital interface (MIDI, pronounced “middy”) is basically
synthesized music. If you’ve ever seen those electric pianos in the store, or,
better yet, you have one, you have seen a device that can generate a MIDI file.
The advantage is that the files are small. The disadvantage is that if the
individual making the music isn’t skilled, the result will be poor.

✦ AU is a fairly low-quality but small file size sound format most often found in
Java applets.

✦ Audio Interchange File Format (AIFF) is a Macintosh-based format that is now
found on other platforms as well.

✦ WAV is a Windows-based sound format of reasonably high quality.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

242 Part II ✦ HTML/XHTML Authoring Fundamentals

Needless to say, MP3 has surpassed these other formats by a wide margin in
popularity.

You can also include background sound to an Internet Explorer page using the
bgsound element:

<bgsound src=“bigsounds.wav”>

Or, in Netscape, you can use the embed element:

<embed src=“bigsounds.wav” autostart=“true”>

Note Just keep in mind that startling someone with background music when they’re
visiting your page is a cruel act and isn’t likely to be forgiven, or rewarded
with a return visit to your Web site, unless your site happens to be so heavily
music-oriented that your visitors expect it.

Slide Shows
Slide shows are a nice way to distribute presentations you may have given to groups
of people who might want to see the slide show you used during the presentation
again. You can basically take a slide show you created for such an event and port it
directly to the Web. You can create presentations from PowerPoint, which is a widely
distributed slideshow presentation software tool. However, if you don’t have
Powerpoint and/or don’t want to shell out the money for a PowerPoint license, you
can use freeware such as OpenOffice. The following sections look at how to export
presentations from both of these programs.

Exporting PowerPoint presentations to the Web
To create PowerPoint Presentations for the Web, you need to be certain your
settings are correct. This seems like a simple enough requirement, but access to the
correct settings is hidden away somewhat. In PowerPoint 2002 and PowerPoint 2003,
you’ll find the Web settings in two places.

You can choose your Web settings by going to Tools ➪ Options. Choose the General
tab (shown in Figure 14-8). From there, choose the Web Options . . . tab.

Or, you can export your document as a Web page by going to File ➪ Save As Web
Page . . . You’ll see a dialog box like that shown in Figure 14-9. Instead of clicking Save,
click the Publish button just under the file list in the dialog box. After clicking
Publish, you’ll see a dialog box like that shown in Figure 14-10. Click the Web Options
button for additional options, such as which browser(s) to target, the size of your
images, and so on. When you click OK, you’ll return to the Publish as Web Page
dialog box, which also has a browser support option (a better one, in fact, because it
lets you choose all browsers). Choose the directory you want to save the files to. If
you’re a novice, it’s best to create a new directory, and then simply upload that new

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

243Chapter 14 ✦ Multimedia

Figure 14-8: The General Options tab in PowerPoint’s Options
dialog box.

directory in its entirety to your server so you don’t have to worry about managing
files. When you’re done, click Publish, and then upload the directory you saved your
files to onto your server.

Following either of the two preceding methods, you should now see the Web Options
dialog box, as shown in Figure 14-11.

This dialog box is your control panel for managing the way a PowerPoint
presentation looks when it is delivered to the Web. It manages such settings as
browser compatibility, screen size and resolution, and what format your graphics
should be in.

The controls are managed through the following group of tabs, named, successively,
from left to right (top bullet being left and bottom being right):

✦ General

✦ Browsers

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

244 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 14-9: PowerPoint’s Save As Web Page . . . dialog box.

Figure 14-10: PowerPoint’s Publish As Web Page dialog box.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

245Chapter 14 ✦ Multimedia

Figure 14-11: The Web Options dialog box.

✦ Files

✦ Pictures

✦ Encodings

✦ Fonts

Each of these options is briefly explained in the following sections.

Note These specific instructions pertain to the latest edition of Microsoft Office, which
as this book went to press was Office 2003. The tabs in PowerPoint 2002 (part
of Office 2002) are slightly different, but you can still find most of the settings
described on the Web Options interface or the Publish dialog box. For example,
the browser settings in PowerPoint 2002 are found on the Publish dialog box
because there is no Browser tab.

Choosing options in the General tab
The General tab lets you decide on your presentation’s core settings (seen
previously in Figure 14-11).

If you choose to enable slide navigation controls, PowerPoint will insert the
navigation controls into a small thin frame in a frame-based output. You can also
enable PowerPoint animations, but you’ll need to be sure your viewers can see them,
and if they’re running Netscape, Opera, or Safari, they probably won’t. Generally, it’s

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

246 Part II ✦ HTML/XHTML Authoring Fundamentals

best to leave this unchecked unless you’re on a corporate intranet that relies on MS
products.

You should also be sure to choose the option for resizing graphics to fit a browser
window; otherwise, the graphics may stretch the Web page beyond the browser
window’s boundaries, forcing users to scroll left, which most people hate to do.

Using the Browser tab
The Browser tab (shown in Figure 14-12) lets you configure how to adjust the
presentation for viewing in the various Web browsers. For full downward
compatibility, you’ll want to choose Microsoft Internet Explorer 3.0, Netscape
Navigator 3.0, or later.

Figure 14-12: Using PowerPoint’s browser tab in the Web Options dialog
box.

You’re also presented with options for saving graphics in Portable Network Graphics
(PNG) format, and saving line art as Vector Markup Language (VML). Again, these
should only be checked if you know your target audience’s browsers support these
formats. You can be sure that older versions of Netscape don’t support PNG, and
that the only browser that supports VML is Internet Explorer. PNG is a bitmap
graphics format similar to GIF but capable of a much deeper range of colors. VML is
an XML-based markup language for vector graphics, which are geometry-based
graphics based on a Cartesian-like grid system similar to what you’ll find in CAD
programs and applications such as Adobe Illustrator or Macromedia Freehand. A

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

247Chapter 14 ✦ Multimedia

long time ago, VML competed with Scalable Vector Graphics Language (SVG) as a
standard, but the W3C chose SVG, which is also covered briefly in this chapter.

This tab has two additional options that are pretty self explanatory: Save an
additional version of this presentation for older browsers and Save new Web pages
as Single File Web Pages.

Changing settings in the Files tab
In the Files tab (shown in Figure 14-13) you can organize supporting files in a folder
or store them within the presentation folder itself. The reference to long file names
dates back to the old 8.3 DOS conventions, when file names were limited to eight
characters and didn’t allow for spaces.

Figure 14-13: Changing settings in the Files tab.

If you choose the option Check if Office is the default editor for Web pages created in
Office, you can edit the PowerPoint HTML presentation in PowerPoint itself rather
than your system’s default Web editor. This just means that PowerPoint will treat the
file like any other PowerPoint presentation, providing you with all of PowerPoint’s
tools within its user interface. In other words, it’s like opening up a PowerPoint
presentation.

Choosing screen resolution in the Pictures tab
This one is pretty self-explanatory. The Pictures tab has one option, which allows
you to choose the screen resolution. The most common screen resolution for most

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

248 Part II ✦ HTML/XHTML Authoring Fundamentals

Web interfaces is 800 × 600 (pixels), so that’s a good one to choose if you’re
targeting a large cross-browser audience.

Choosing an encoding in the Encoding tab
The default on the Encoding tab (shown in Figure 14-14) is a Windows encoding, not
necessarily what you want. Encodings are tricky, but simple at their core. Each letter
in an alphabet, be it an English, Japanese, or Russian alphabet, is mapped to a
special numeric value (after all, computers can’t read—they deal with binary sets of
numbers only at their core level). The problem is not all such mappings, called
encodings, are the same. If you choose a Windows encoding, which was created
before more standardized encodings were approved by international bodies, the
potential exists that visitors to your Web site will get some funny characters. To
eliminate this potential, change the default setting to Western European, as shown in
Figure 14-14.

Figure 14-14: You should change the default encoding to a more Web-
standardized one.

Using the Fonts tab to choose fonts
The Fonts tab allows you to use the default font character set, as well as a default
proportional and fixed-width typestyle along with their point sizes. After clicking OK,
you then click Publish to save your document.

Listing 14-2 shows how an HTML page generated by PowerPoint looks. Note the use
of the many namespaces as represented by the xmlns namespace declarations (they

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

249Chapter 14 ✦ Multimedia

look like attributes, but they’re actually namespace declarations that bind elements
to a specific type of application, in this case, MS Office).

Listing 14-2: Under the Hood of a PowerPoint Web
Page Export

<html xmlns:v=“urn:schemas-microsoft-com:vml”
xmlns:o=“urn:schemas-microsoft-com:office:office”
xmlns:p=“urn:schemas-microsoft-com:office:powerpoint”
xmlns:oa=“urn:schemas-microsoft-com:office:activation”
xmlns=“http://www.w3.org/TR/REC-html40”>

<head>
<meta http-equiv=Content-Type content=“text/html; charset=iso-8859-1”>
<meta name=ProgId content=PowerPoint.Slide>
<meta name=Generator content=“Microsoft PowerPoint 11”>
<link rel=File-List
href=“The%20Miraculous%20Slideshow—files/filelist.xml”>
<link rel=Preview
href=“The%20Miraculous%20Slideshow—files/preview.wmf”>
<link rel=Edit-Time-Data
href=“The%20Miraculous%20Slideshow—files/editdata.mso”>
<title>The Miraculous Slideshow</title>
<!--[if gte mso 9]><xml>
<o:DocumentProperties>
<o:Author>Chuck White</o:Author>
<o:Template>OCEAN</o:Template>
<o:LastAuthor>Chuck White</o:LastAuthor>
<o:Revision>3</o:Revision>
<o:TotalTime>18</o:TotalTime>
<o:Created>2003-11-02T03:43:46Z</o:Created>
<o:LastSaved>2003-11-02T04:02:44Z</o:LastSaved>
<o:Words>24</o:Words>
<o:PresentationFormat>On-screen Show</o:PresentationFormat>
<o:Company>The Tumeric Partnership</o:Company>
<o:Bytes>62053</o:Bytes>
<o:Paragraphs>6</o:Paragraphs>
<o:Slides>2</o:Slides>
<o:Version>11.4920</o:Version>
</o:DocumentProperties>
<o:OfficeDocumentSettings>
<o:PixelsPerInch>80</o:PixelsPerInch>
</o:OfficeDocumentSettings>

</xml><![endif]-->
<link rel=Presentation-XML
href=“The%20Miraculous%20Slideshow—files/pres.xml”>
<meta name=Description content=“11/1/2003: The Miraculous
Slideshow”>
<meta http-equiv=expires content=0>
<![if !ppt]><script>
<!--

Continued

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

250 Part II ✦ HTML/XHTML Authoring Fundamentals

Listing 14-2: (continued)

var ver = 0, appVer = navigator.appVersion, msie =
appVer.indexOf(“MSIE ”)

var msieWin31 = (appVer.indexOf(“Windows 3.1”) >= 0),
isMac = (appVer.indexOf(“Macintosh”) >= 0)

if(msie >= 0)
ver = parseFloat(appVer.substring(msie+5,

appVer.indexOf (“;”, msie)))
else

ver = parseInt(appVer)

if(!isMac && ver >= 4 && msie >= 0)
window.location.replace(

“The%20Miraculous%20Slideshow—files/frame.htm”+document.locat
ion.hash)

else if(ver >= 3) {
var path =

“The%20Miraculous%20Slideshow—files/v3—document.htm”
if (!msieWin31 && ((msie >= 0 && ver >= 3.02)

|| (msie < 0 && ver >= 3)))
window.location.replace(path)

else
window.location.href = path

}
//-->
</script><![endif]>
</head>

</html>

Exporting OpenOffice.org presentations
OpenOffice (www.openoffice.org) is a free office suite that can read and write MS
Office documents such as Word and PowerPoint. So, if you don’t want to spend
money for PowerPoint, you don’t have to. OpenOffice is almost as good, and it’s free.

The first step to exporting an OpenOffice presentation to the Web is to select File ➪
Export from the main menu. You’ll then be presented with a wizard, as shown in
Figure 14-15.

You can choose an existing design or create a new one. This can be somewhat
confusing because the natural assumption is that you’ve already created your design
in the slide presentation program, so why is OpenOffice asking you to create a new
one? When you click Next, you find out what the application is referring to. What you
are doing is deciding how you want the HTML to work. Do you want frames? Or, do
you prefer to avoid frames? Those options are the first two listed in the wizard’s
radio buttons under the label “Publication type.” You can then choose whether or
not to create a title page or notes for the online version of your presentation.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

251Chapter 14 ✦ Multimedia

Figure 14-15: The OpenOffice HTML Export wizard.

The next two “Publication type” options are Automatic and Webcast. If you choose
Automatic, the wizard changes its appearance, as shown in Figure 14-16.

The wizard changes labels from Options to Advance slide. You can allow the user to
advance the slide herself by choosing the As stated in document radio button, or
create an automated page that moves to the next slide automatically at a named
interval by choosing the Automatic radio button.

If you choose the Webcast publication type, the wizard changes again, to a screen
that looks like that shown in Figure 14-17.

You’re then presented with the option of generating server-side script for Active
Server Pages or by using Perl. When you choose this option, OpenOffice generates a
series of Perl scripts for managing the slideshow.

The rest of the options in the HTML Export wizard are pretty self-explanatory. They
allow you to choose what kind of buttons you want to include (if you’ve chosen to
generate static HTML instead of a Webcast or server-side script), what resolution
you want OpenOffice to process images, and so on.

SMIL
The Synchronized Multimedia Language (SMIL, pronounced like the word smile) is
an XML-based language for presenting multimedia programs over the Web. You can

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

252 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 14-16: The HTML Export wizard changes its appearance depending on the
Publication type you choose.

Figure 14-17: The HTML Export Wizard displays server-side scripting options when you
choose Webcast.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

253Chapter 14 ✦ Multimedia

use it to create slide shows, or as a presentation layer for media players such as
RealOne or QuickTime (but not for Windows Media Player). You can hand code a
SMIL document, keeping in mind XML syntax rules (closing all elements, nesting tags
within one root element, quoting all attribute values, and so on). To create a SMIL
presentation, follow these basic steps.

1. A source begins and ends with the smil element. SMIL is a case-sensitive
language and always uses lowercase:

<smil>
[...]
</smil>

2. SMIL documents consist of two parts, a head and body, both of which must live
within the smil element, which is a parent element of the head and body
elements.

<smil>
<head>
[...]
</head>
<body>
[...]
</body>

</smil>

3. You can also include meta tags in the head element, but you need to remember
that because SMIL is based on XML, the element must include its closing
tag:

<meta name=“description” content=“A great show!” />

4. Next, you need to include some layout elements, within which will go the most
important pieces of your multimedia show. The following code shows where to
put the layout elements (in bold).

<smil>
<head>
<meta name=“description” content=“A great show!” />
<layout>
<!-- layout tags -->
</layout>
</head>
<body>
<!-- media and synchronization tags -->
</body>
</smil>

5. You’ll need to determine the screen size of your presentation. You do this with
the root-layout element, which includes width and height attributes to
determine the width and height that the media player, such as QuickTime or
RealOne, should allot to its window size:

<root-layout width=“300” height=“200”
background-color=“white” />

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

254 Part II ✦ HTML/XHTML Authoring Fundamentals

6. You can also use absolute positioning to position elements within the media
player’s screen. Absolute positioning in SMIL uses the same concepts as
absolute positioning in Cascading Style Sheets, with a grid whose point of
origin is the upper-left corner, which is 0 pixels. The following code fragment
creates a region, which is simply a container for holding elements similar to
HTML’s div element. The region begins 20 pixels from the left-most portion of
the media player’s window, and 20 pixels from the top.

<head>
<layout>
<root-layout width=“300” height=“200”

background-color=“white” />
<region id=“region1” left=“20” top=“20”

width=“100” height=“200” />
</layout>

</head>

Note that the region has also been given a width and a height. Now you are able
to create elements and include them within this region.

Cross-
Reference

See Chapter 23 for details on how absolute positioning works.

7. The first element we’ll drop into our new region is a logo, which was created in
Adobe Illustrator and exported as SVG. Note that you can create an SVG image
in OpenOffice.org’s drawing module if you don’t want to pay the licensing
fees for Adobe Illustrator. Including the SVG in the document is as easy as
writing an HTML img element:

<body>
<img src=“logo.svg” alt=“Javertising!”

region=“logo” />
</body>

Note that you must identify in which region to place the logo. The following
code creates a new region named logo for holding the logo.

<smil>
<head>
<layout>
<root-layout width=“300” height=“200”

background-color=“white” />
<region id=“logo” left=“20” top=“20”

width=“100” height=“100” background-color=“white”
/>

</layout>
</head>
<body>
<img src=“logo.svg” alt=“Javertising!”

region=“logo” />
</body>

</smil>

8. Next, save the file with a .smil file extension, then open it in an
SMIL-compliant media player such as RealOne or QuickTime.

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

255Chapter 14 ✦ Multimedia

9. The resulting presentation is shown in Figure 14-18. You can put any number of
media objects in place of that SVG file, such as videos and even text.

Figure 14-18: A simple SMIL-based presentation shown in RealOne.

Naturally, you’re not limited to SVG; in fact, that particular graphics format has not
yet really taken hold, although it still holds great promise. It’s more likely you’ll use a
JPEG or GIF graphic, along with some video and/or audio. Table 14-3 shows the kinds
of media you can use in a SMIL document and the support from the major SMIL
media players. You may not have heard of GRiNS. GRiNS is a media player from
Oratrix that you can find at http://www.oratrix.com/Products/G2P.

Table 14-3
Multimedia Player Support for Media Content Using SMIL

Media Tag RealOne QuickTime GriNS

GIF img Yes Yes Yes

JPEG img Yes Yes Yes

SVG img Yes No No

Continued

P1: JYS

WY022-14 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:48

256 Part II ✦ HTML/XHTML Authoring Fundamentals

Table 14-3 (continued)

Media Tag RealOne QuickTime GriNS

Microsoft Wav audio Yes Yes Yes

Sun Audio audio Yes Yes Yes

Sun Audio Zipped audio No Yes No

MP3 audio Yes Yes No

Plain text Yes Yes Yes

Real text textstream Yes No No

Real movie video Yes No No

AVI video Yes No Yes

MPEG video Yes No Yes

MOV video Yes No No

You’ve seen how to construct a basic SMIL document, and how anyone with a simple
text editor can create a presentation or show. There’s much more to SMIL than this,
including more advanced functionality, such as media sound and video
synchronization. To read more about how you can create lavish rich media using
SMIL, visit the W3C SMIL Web site at: http://www.w3.org/AudioVideo/. Or, visit
a SMIL tutorial at http://www.w3schools.com/smil/smil—reference.asp.

Summary
In this chapter, you learned about the following multimedia topics:

✦ Introducing multimedia objects

✦ Multimedia plug-ins and players

✦ Animations

✦ Video clips

✦ Sounds

✦ Slide shows

You were also warned that you should use multimedia with care. The most practical
use for multimedia is often the simple slide show, because the demands for
professionalism won’t be quite as stringent. But if you dabble in such multimedia
formats as Flash and video, be sure to keep a close eye on quality, because a poorly
developed multimedia presentation is worse than none at all.

✦ ✦ ✦

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

1515C H A P T E R

Scripts
✦ ✦ ✦ ✦

In This Chapter

Client-Side versus
Server-Side Scripting

Setting the Default Scripting
Language

Including a Script

Calling an External Script

Triggering Scripts with
Events

Hiding Scripts from Older
Browsers

✦ ✦ ✦ ✦

Standard HTML was designed to provide static, text-only
documents. No innate intelligence is built into plain

HTML, but it is desired, especially in more complex documents
or documents designed to be interactive. Enter scripts—svelte
programming languages designed to accomplish simple tasks
while adhering to the basic premise of the Web; easily
deployable content that can play nicely with plain-text HTML.

This chapter covers the basics of scripting and goes into the
details of how to use client-side scripting in your documents.

Client-Side versus Server-Side
Scripting

There are two basic varieties of scripting, client-side and
server-side. As their names imply, the main difference is where
the scripts are actually executed.

Client-side scripting
Client-side scripts are run by the client software—that is, the
user agent. As such, they impose no additional load on the
server, but the client must support the scripting language
being used.

JavaScript is the most popular client-side scripting language,
but Jscript and VBScript are also widely used. Client-side
scripts are typically embedded in HTML documents and
deployed to the client. As such, the client user can usually
easily view the scripts.

For security reasons, client-side scripts generally cannot read
or write to the server or client file system.

Server-side scripting
Server-side scripts are run by the Web server. Typically, these
scripts are referred to as CGI scripts, CGI being an acronym for

257

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

258 Part II ✦ HTML/XHTML Authoring Fundamentals

Common Gateway Interface, the first interface for server-side Web scripting.
Server-side scripts impose more load on the server, but generally don’t influence the
client—even output to the client is optional; the client may have no idea that the
server is running a script.

Perl, Python, PHP, and Java are all examples of server-side scripting languages. The
script typically resides only on the server, but is called by code in the HTML
document.

Although server-side scripts cannot read or write to the client’s file system, they
usually have some access to the server’s file system. As such, it is important that the
system administrator take appropriate measures to secure server-side scripts and
limit their access.

Note Unless you are a system administrator on the Web server you use to deploy
your content, your ability to use server-side scripts is probably limited. Your ISP
or system administrator has policies that allow or disallow server-side scripting
in various languages and performing various tasks.

If you intend to use server-side scripts, you should check with your ISP or system
administrator to determine what resources are available to you.

This chapter deals with client-side scripting.

Cross-
Reference

For more information on server-side scripting, see Chapter 28.

Setting the Default Scripting Language
To embed a client-side script in your document you use the <script> tag. This tag
has the following, minimal format:

<script type=“script_type”>

The value of script_type depends on the scripting language you are using. The
following are generally used script types:

✦ text/ecmascript

✦ text/javascript

✦ text/jscript

✦ text/vbscript

✦ text/vbs

✦ text/xml

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

259Chapter 15 ✦ Scripts

For example, if you are using JavaScript, your script tag would resemble the
following:

<script type=“text/javascript”>

Note The W3C recommends that you specify the default script type using an appro-
priate META tag in your document. Such a tag resembles the following:

<META http-equiv=“Content-Script-Type”
content=“text/javascript”>

Note that this does not alleviate the need for the type attribute in each
<script> tag. You must still specify each <script> tag’s type in order for
your documents to validate against HTML 4.01.

If your script is encoded in another character set than the rest of the document, you
should also use the charset attribute to specify the script’s encoding. This
attribute has the same format as the charset attribute for other tags:

charset=“character_encoding_type”

Including a Script
To include a script in your document, you place the script’s code within <script>
tags. For example, consider the following script:

<script type=“text/javascript”>
function NewWindow(url){

fin=window.open(url,“”,“width=800,height=600,
scrollbars=yes,resizable=yes”);

}
</script>

You can include as much scripting code between the tags as needed, providing that
the script is syntactically sound. Scripts can be included within the <head> or
<body> sections of a document, and you can include as many <script> sections as
you like. Note, however, that nested <script> tags are not valid HTML.

Generally, you will want to place your scripts in the <head> section of your
document so the scripts are available as the rest of the page loads. However, you
may occasionally want to embed a script in a particular location in the document—in
those cases, place an appropriate <script> tag in the <body> of the document.

Calling an External Script
If you have some scripts that you want to use in multiple documents, consider
placing the scripts in an external file. You can then use the src attribute of the

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

260 Part II ✦ HTML/XHTML Authoring Fundamentals

<script> tag to specify that the script content can be found in that file. For
example, suppose you want to include the following script in multiple documents:

function NewWindow(url){
fin=window.open(url,“”,“width=800,height=600,
scrollbars=yes,resizable=yes”);

}

You can place the script in a text file on the server and specify the file’s URL in the
appropriate <script> tags’ src attribute. For example, suppose the preceding file
was stored in the file scripts.js on the server. Your script tag would then
resemble the following:

<script type=“text/javascript” src=“scripts.js”></script>

One major advantage to external script files is that if you need to edit the script, you
can edit it in one place—the external file—and the change is effected in all the files
that include it.

Triggering Scripts with Events
Most HTML tags include several event attributes that can be used to trigger scripts.
Table 15-1 lists these attributes and their use for triggering scripts.

Cross-
Reference

See Appendix A for a comprehensive list of what tags support event attributes.

Table 15-1
Event Attributes

Attribute Trigger Use

Onclick When item(s) enclosed in tag is clicked

Ondblclick When item(s) enclosed in tag is double-clicked

Onmousedown When mouse button is pressed while mouse pointer is over item(s)
enclosed in tag

Onmouseup When mouse button is released while mouse pointer is over item(s)
enclosed in tag

Onmouseover When mouse pointer is placed over the item(s) enclosed in tag

Onmousemove When mouse is moved within the item(s) enclosed in tag

Onmouseout When mouse is moved outside of the item(s) enclosed in tag

Onblur When item(s) enclosed in tag have focus removed

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

261Chapter 15 ✦ Scripts

Attribute Trigger Use

Onfocus When item(s) enclosed in tag receive focus

Onload When the document finishes loading (valid only in <body> tag)

Onunload When the document is unloaded—when the user navigates to another
document (valid only in <body> tag). This event is often used to create
pop-ups when a user leaves a site

Onsubmit When a form has its submit button pressed (valid only in <form> tags)

Onreset When a form has its reset button pressed (valid only in <form> tags)

Onkeypress When a key is pressed while the mouse pointer is over the item(s)
enclosed in the tag

Onkeydown When a key is pressed down while the mouse pointer is over the item(s)
enclosed in the tag

Onkeyup When a key is released while the mouse pointer is over the item(s)
enclosed in the tag

Note Many of the event attribute triggers are dependent on the element(s) to which
they apply being “in focus” at the time of the trigger. For example, in an HTML
form an onmouseout event attached to one field will not trigger unless the
same field has the focus.

Event triggers have a variety of uses, including the following:

✦ Form data verification

Using onfocus and onblur attributes, each field can be verified as it is edited.
Using onsubmit and onreset, an entire form can be verified or reset when the
appropriate button is clicked

✦ Image animation

Using onmouseover and onmouseout attributes, an image can be animated
when the mouse pointer passes over it

✦ Mouse navigation

Using onclick and ondblclick attributes, you can trigger user agent
navigation when a user clicks or double-clicks an element

For example, you can create images to use as buttons on your page. Figure 15-1
shows two images for use on a button. The image on the left is used for general
display, while the image on the right is used when the mouse is over the button.

Tip Users appreciate visible feedback from elements on your page. As such, it is im-
portant to always provide visible changes to navigation elements—links should
have a visibly different style when moused over, as should navigation buttons.

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

262 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 15-1: Two images for use as a button.

Combining onmouseover, onmouseout, and onclick events, you can easily create
a button that reacts when the mouse is over it and navigate to a new page when
clicked. Consider the following document that uses a few JavaScript scripts and
events to create a navigation button.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<META http-equiv=“Content-Script-Type”
content=“text/javascript”>
<title>Event Buttons</title>

<script type=“text/javascript”>
// Activate the specified button
function activate(bname) {

imageid = bname + “button”;
aname = bname + “-on.jpg”;
document.images(imageid).src =

aname;
}
// Deactivate the specified button
function deactivate(bname) {

imageid = bname + “button”;
dname = bname + “-off.jpg”;

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

263Chapter 15 ✦ Scripts

document.images(imageid).src =
dname;

}
</script>

</head>
<body>
<p>
<img alt=“Home page” id=“homebutton”

src=“home-off.jpg”
onmouseover=“activate(‘home’)”
onmouseout=“deactivate(‘home’)”
onclick=“document.location=‘home.html’”

>
</p>
</form>
</body>
</html>

When the document loads, the button is displayed in its inactive (off) state, as
shown in Figure 15-2. When the mouse is placed over the button, the onmouseover
event launches the JavaScript activate function and the button is displayed as
active (on), as shown in Figure 15-3.

Figure 15-2: The button is initially displayed in its
inactive (off) state.

When the mouse leaves the button, the onmouseout event launches the
deactivate function, returning the button display to its inactive state. When the
button is clicked, the onclick event changes the location property of the user
agent, effectively navigating to a new page (in this case home.html). Note that the

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

264 Part II ✦ HTML/XHTML Authoring Fundamentals

Figure 15-3: The button is changed to active (on)
when the mouse is over it.

JavaScript code for the onclick attribute is contained directly in the value of the
attribute—because the code is only one line a separate function is not necessary.

Cross-
Reference

JavaScript is covered in more detail in Chapter 25.

Hiding Scripts from Older Browsers
Not all browsers support JavaScript. Many of the older browsers are not JavaScript
enabled, and some of the latest browsers may not support the scripting language
you are using.

Most modern browsers will ignore scripts of types they do not recognize.Note

If you are concerned about older browsers not recognizing your scripts, you will
need to hide your scripts so that older browsers will ignore them (instead of trying
to render them).

To hide your scripts, simply place them within a special set of comment tags. The
only difference between normal comment tags and script-hiding tags is that the
closing tag contains two slashes (//). Those two slashes enable browsers that
support scripting to find the script.

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

265Chapter 15 ✦ Scripts

For example, the following structure will effectively hide the scripts within the
<script> tag:

<script type=“text/javascript”>
<!-- hide scripts from older browsers
--- Script content ---
// stop hiding scripts -->

</script>

Summary
This chapter introduced how to add basic intelligence and dynamic content to your
site view client-side scripting. You learned how to embed scripts in your documents
and how to utilize external script files. You also learned how to use event attributes
to trigger scripts from user actions.

Chapters 25 through 28 provide additional scripting content.

✦ ✦ ✦

P1: JYS

WY022-15 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 13:21

266

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

P A R T

IIIIIIControlling
Presentation
with CSS ✦ ✦ ✦ ✦

In This Part

Chapter 16
Introducing
Cascading Style
Sheets

Chapter 17
Creating Style
Rules

Chapter 18
Fonts

Chapter 19
Text Formatting

Chapter 20
Padding,
Margins, and
Borders

Chapter 21
Colors and
Backgrounds

Chapter 22
Tables

Chapter 23
Element
Positioning

Chapter 24
Defining Pages
for Printing

✦ ✦ ✦ ✦

267

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

268

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

1616C H A P T E R

Introducing
Cascading
Style Sheets

✦ ✦ ✦ ✦

In This Chapter

CSS Overview

Style Rules

Style Rule Locations

Understanding the Style
Sheet Cascade

The CSS Box Formatting
Model

CSS Levels 1, 2, and 3

✦ ✦ ✦ ✦

The first part of this book emphasized the importance of
Cascading Style Sheets (CSS) and the standards migration

away from hardcoded HTML and toward using styles. This
part of the book, starting with Chapter 16, delves deeply into
the subject of CSS.

This chapter provides an overview of what CSS is, and the next
few chapters cover details about various formatting property
groups and how to best use them.

CSS Overview
Cascading Style Sheets were created to provide a powerful, yet
flexible means for formatting HTML content. CSS works much
like style sheets in a word processing program—you define a
“style” that contains formatting options that can be applied to
document elements.

For example, consider the following code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>A Sample Style</title>
<style type=“text/css”>

h1 { color: Red; }
</style>

</head>
<body>
...

Note the <style> element inside of the <head> element. It
defines one style, setting the font color of all <h1> elements

269

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

270 Part III ✦ Controlling Presentation with CSS

to red. This is the same as using the following code throughout the document,
wherever <h1> elements are used:

<h1>Heading Text</h1>

Using the preceding method (tags), you would need to change every
instance in the document if you later changed your mind about the formatting. Using
CSS requires that you change only the style definition at the top of the document to
affect all <h1> elements.

Note CSS can be a complicated beast, especially once you get into the different
selector methods, inheritance, and the complete cascade picture. However, at
its core it is a very simple concept: Assign formatting attributes in one place that
can be easily modified later. As you read through the chapters in Part II, keep
this concept in mind and resist getting bogged down in the CSS concepts that
you may not need.

Style Rules
All style rules follow the same basic format:

selector { property1: value1; property2: value2; ...
propertyN: valueN; }

Note that the formatting of CSS rules is very exact and follows these guidelines:

✦ The selector is followed by the formatting property definitions, which are
enclosed in braces ({ }).

✦ A colon separates each property/value pair. Note that values that include
spaces should be enclosed in double quotes, as in the following example:

font-family: “Times New Roman”;

✦ Each property/value pair ends with a semicolon.

Tip Technically, the last property/value pair of a style definition need not end in
a semicolon. However, it is good practice to end all your property/value pairs
with a semicolon.

The selector is the elements that the style should be used on. The properties are all
formatting properties of the selected elements that should be set to the associated
values. A very simple example of a style rule follows:

h1 { color: Red; }

The selector (h1) causes this rule to be applied to all <h1> elements. The color
property affects the font color of matching elements—in this case, the font color is
set to red.

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

271Chapter 16 ✦ Introducing Cascading Style Sheets

You can specify multiple selectors to apply to the same style definition—you
separate the selectors with commas. For example, if you wanted all heading tags
(1 through 6) to render as red text, you could use the following definition:

h1, h2, h3, h4, h5, h6 { color: red; }

Cross-
Reference

Selectors are covered in detail in Chapter 17.

Style Rule Locations
Styles can be defined within your HTML documents or in a separate, external style
sheet. You can also use both methods within the same document. The following
sections cover the various methods of defining styles.

Using the <style> element
The <style> element behaves like other HTML elements. It has a beginning and
ending tag and everything in between is treated as a style definition. As such,
everything between the <style> tags needs to follow style definition guidelines. A
document’s <style> section must appear inside the document’s <head> section,
although multiple <style> sections are permissible.

The <style> tag has the following, minimal format:

<style type=“text/css”>
... style definitions ...
</style>

External style sheets
You can also place your style definitions in a separate file and reference that file
within the documents where you need it. When creating a separate style sheet file,
you do not need to include the <style> tags, only the definitions. For example, the
following is an example style sheet file named mystyles.css:

/* mystyles.css - Styles for the main site */
h1, h2, h3, h4 { color: blue; }
h1 { font-size: 18pt; }
h2 { font-size: 16pt; }
h3 { font-size: 14pt; }
h4 { font-size: 12pt; }
p { font-size: 10pt; }

Tip You can include comments in your styles to further annotate your definitions.
Style comments begin with a /* and end with a */. Comments can span several
lines, if necessary.

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

272 Part III ✦ Controlling Presentation with CSS

To link an external style sheet with a document, use the <link> tag in the <head> of
the document to which you want the styles applied. The <link> tag has the
following format when used to link a style sheet:

<link rel=“stylesheet” type=“text/css”
href=“url_to_style_sheet” />

Continuing with the mystyles.css style sheet example, the following <link> tag
would link the style sheet to the document:

<head>
<link rel=“stylesheet” type=“text/css”
href=“mystyles.css” />

</head>

Tip Although external style sheets can have any valid filename, it is advisable to
name your style sheets with an extension such as .css to easily identify what
the file contains.

You can use the <link> tag to link any style sheet that is accessible to the user via
HTTP. If your style sheet was on another server, for example, you would simply
include a full form URL to the sheet:

<link rel=“stylesheet” type=“text/css”
href=“http://www.example.com/styles/sales.css” />

Several style sheets can be linked to the same document. When that is the case they
follow the cascading guidelines as covered in the section Understanding the style
sheet cascade later in this chapter.

Style definitions within individual tags
Most HTML tags include a style attribute that allows you to specify styles that
should directly impact the tag in which they appear. For example, if you wanted a
particular <h1> tag to render its text in red, you could use the following code:

<h1 style=“color: red;”>Red Headline</h1>

The only advantage to using styles in this manner is to remain HTML 4.01 compliant.
It is a much better practice to put your styles in a <style> tag or external style
sheet than to code individual tags. However, sometimes you might find that nudging
a particular tag individually is advantageous.

Understanding the Style Sheet Cascade
The concept behind Cascading Style Sheets is essentially that multiple style
definitions can trickle, or cascade, down through several layers to affect a document.

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

273Chapter 16 ✦ Introducing Cascading Style Sheets

Several layers of style definitions can apply to any document. Those layers are
applied in the following order:

1. The user agent settings (typically, the user is able to modify some of these
settings)

2. Any linked style sheets

3. Any styles present in a <style> element

4. Styles specified within a tag’s style attribute

Each level of styles overrides the previous level where there are duplicate properties
being defined. For example, consider the following two files:

mystyles.css
/* mystyles.css - Styles for the main site */
h1, h2, h3, h4 { color: blue; }
h1 { font-size: 18pt; }
h2 { font-size: 16pt; }
h3 { font-size: 14pt; }
h4 { font-size: 12pt; }
p { font-size: 10pt; }

index.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>

<link rel=“stylesheet” type=“text/css”
href=“mystyles.css” />

<style type=“text/css”>
h1 { color: Red; }

</style>
</head>
<body>

<h1>A Sample Heading</h1>
...

What color will the <h1> heading in index.html be? The external style specifies
blue, but the style element specifies red. In this case, the internal style takes
precedence and the <h1> text will appear in red.

Note One advantage to cascading is that documents at different levels or from dif-
ferent departments can be similar, but have a slightly different look or feel
to match their origin. For example, you could have a company.css style
sheet that is linked to all corporate documents. You could also have an hr-
department.css style sheet that adds additional definitions or replaces some
of the standard corporate definitions to give HR documents a slightly different
look and feel.

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

274 Part III ✦ Controlling Presentation with CSS

In addition, a document may have multiple instances of linked style sheets or
<style> elements. In such cases, the sheets are applied in order, with subsequent
definitions overriding any previous definitions.

Note that properties are only overridden when they appear multiple times.
Otherwise, the styles are additive. For example, the text in the <h1> tag would still
be rendered in 18pt type (from the external definition); only the color would
change.

The CSS Box Formatting Model
CSS uses a clever metaphor for helping you specify containers (block-level elements)
on your page: the box. When you define formatting for your block-level
elements—whether they be paragraphs, blockquotes, lists, images, or whatever—for
purposes of CSS, you are defining formatting for a box. CSS doesn’t care what is in
the box; it just wants to format the box.

Box dimensions
The first thing the browser does is render the block-level element to determine what
the physical dimensions of the element are, given the font selected for the element,
the contents of the element, and any other internal formatting instructions supplied
by the style sheet. Then the browser looks at the element’s padding, the border, and
the margins to determine the space it actually requires on the page. Figure 16-1
shows a representation of how these measures relate to one another.

Figure 16-1: A visual representation of
how margins, borders, and padding relate
to each other and the element they affect.

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

275Chapter 16 ✦ Introducing Cascading Style Sheets

Padding is the distance between the outside edges of the element and the border.
The border is a line or ridge. The margin is the distance between the border and the
outer box of the next container. How you define the padding, border, and margin is
described in detail in the following sections.

Padding
You don’t need to define any padding, but if you are going to define a border, then
you probably want to define padding so your element doesn’t look too crowded. The
default for an element is no padding. Figure 26-2 shows the same table with and
without padding. You can see that the one without padding looks crowded.

Figure 16-2: Tables with (bottom) and without padding (top).

Five properties are associated with padding. They are as follows:

1. padding, which gives the same padding on all sides

2. padding-top

3. padding-right

4. padding-bottom

5. padding-left

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

276 Part III ✦ Controlling Presentation with CSS

Get used to seeing the -top, -right, -bottom, and -left additions to property
names. This is how all box-related properties are specified.

Suppose you want to define your paragraphs to have padding on the top, the left,
and the right; you could use the following style sheet:

p {
padding-top: 10px;
padding-right: 10px;
padding-left: 10px;

}

Tip Notice the liberal formatting of the style definitions in this section. As with other
HTML coding, you will find it helpful to format your style definitions with liberal
white space, namely line breaks and indents.

Or, you could use shorthand to write out the padding properties, as follows:

p {
padding: 10px 10px 0px 10px;

}

You can always string the top, right, bottom, and left properties together in that
order. The same shorthand works for margins and borders. Notice that no commas
are used between the items in the list.

Border
The default is to have no border on elements. You can define a border in two
different ways. Either you can define the width, color, and style of the border by side,
or you can define the width, color, and style for the box individually. Two examples
follow:

blockquote {
border-width: 1pt 1pt 0pt 1pt;
border-color: black;
border-style: solid;

}

The previous example creates a black, solid border for the top, right, and left sides of
the list.

blockquote {
border-top: 1pt solid black;
border-right: 1pt solid black;
border-left: 1pt solid black;

}

Both these examples create the same border. The border is inserted between the
padding, if there is any, and the margin, if there is any. Valid values for border style

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

277Chapter 16 ✦ Introducing Cascading Style Sheets

are as follows:

✦ none

✦ dotted

✦ dashed

✦ solid

✦ double

✦ groove

✦ ridge

✦ inset

✦ outset

Or, if you want to create a border that is the same on all four sides, you can use the
border property:

blockquote {
border: 1pt solid black;

}

Margins
Margins create white space outside of the border. Notice in Figure 26-2 that the two
tables are immediately adjacent to each other. This is because neither one has
margins. Margins are created with the margin, margin-top, margin-right,
margin-bottom, and margin-left properties. They work exactly the same as the
padding property described in the previous section.

CSS Levels 1, 2, and 3
There are three levels of CSS—two actual specifications and a third level in
recommendation status. Notable differences exist between the two standards and the
third recommendation. The main differences between the three levels are as follows:

✦ CSS1 defines basic style functionality, with limited font and limited positioning
support.

✦ CSS2 adds aural properties, paged media, better font and positioning support.
Many other properties have been refined as well.

✦ CSS3 adds presentation-style properties, allowing you to effectively build
presentations (think Microsoft PowerPoint) from Web documents.

Keep in mind that you don’t have to specify the level of CSS you are using for your
documents, but you do have to be conscientious about what user agents will be
accessing your site. Although most browsers support CSS, the level of support varies

P1: FRU

WY022-16 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 19:27

278 Part III ✦ Controlling Presentation with CSS

dramatically. It’s always best to test your implementation on target user agents
before widely deploying your documents.

Summary
This chapter introduced you to the subject of CSS. You learned what CSS is and the
various methods to implement it with your documents. Lastly, you learned the major
differences between the various CSS levels. The next few chapters break down the
CSS properties into various sections and cover them individually.

✦ ✦ ✦

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

1717C H A P T E R

Creating Style
Rules ✦ ✦ ✦ ✦

In This Chapter

Understanding Selectors

Understanding Inheritance

Pseudo-Classes

Pseudo-Elements

Shorthand Expressions

Property Value Metrics

✦ ✦ ✦ ✦

The first step to understanding Cascading Style Sheets
(CSS) is to understand how to correctly write style rules.

There are two pieces to each rule: the selector, which tells the
rule what elements it should apply to, and the rule itself,
which does all the formatting. This chapter delves into the
many levels and types of selectors and the different metrics
you can use when setting style properties.

Note Half the battle with styles is remembering the syn-
tax, selector methods, and all the property names. If
you find yourself constantly working with CSS and writ-
ing definitions, you might want to invest in an editor
that can do most of the work for you. An example
of a program that gets the job done without unnec-
essary features is Macromedia Homesite (http://www
.macromedia.com). Homesite is a basic editor that can
take the tedium out of mundane tasks like style writing.
Other, more full-featured programs also have helpful CSS
tools. See Chapter 34 for examples of Web publishing
software.

Understanding Selectors
CSS styles work by taking a definition of attributes and
applying them to any tags that match the selector associated
with the definition.

As a review, CSS style definitions follow this format:

selector { property1: value1; property2: value2; ...
propertyN: valueN; }

The selector is what browsers use to match tags in a
document to apply the definition. The selector can take
several different forms, offering a lot of flexibility to match
almost any use of tags in a document.

279

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

280 Part III ✦ Controlling Presentation with CSS

Matching elements by name
The easiest selector to understand is the plain element selector, as in the following
example:

h1 { color: red; }

Using the actual element name (h1) as the selector causes all those tags to be
formatted with the attributes of the definition (color: red). You can also attach
multiple selectors to the same definition by listing them all in the selector area,
separated by commas. For example, this definition will affect all heading tags in the
document:

h1, h2, h3, 4h, h5, h6 { color: red; }

Using the universal selector
The universal selector can be used to match any element in the document. The
universal selector is an asterisk (*). As an extreme example, you can use the
universal selector to match every tag in a document:

* { color: red; }

Every tag will have the color: red attribute applied to it. Of course, you would
rarely want a definition to apply to all elements of a document. You can also use the
universal selector to match other elements of the selector. For example, using the
child/descendent matching method of selectors, you can use the universal selector
to select everything between the parent and the descendent. The following selector
matches any tag that is a descendent of a <td> tag, which is a descendent of a
<tr> tag:

tr td ol { color: red; }

Note You’ll find more information on child/descendent selectors in the Matching
child, descendent, and adjacent sibling elements section later in this chapter.

However, this selector rule is very strict, requiring all three elements. If you also
wanted to include descendent elements of <td> elements, you would need to
specify a separate selector, or use the universal selector to match all elements
between <tr> and , as in the following example:

tr * ol { color: red; }

You can use this technique with any of the selector forms discussed in this chapter.

Matching elements by class
You can also use selectors to match elements by class. Why would you want to do
this? Suppose that you had two areas on your page with different backgrounds, one
light and one dark. You would want the light background area to have dark text and

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

281Chapter 17 ✦ Creating Style Rules

the dark background area to have light text. You could then use the class attribute in
select elements within those areas to ensure that the appropriate styles were
applied.

To specify a class to match with a selector you append a period and the class name
to the selector. For example, this style will match any paragraph tag with a class of
darkarea:

p.darkarea { color: white; }

For example, suppose that this paragraph was in the area of the document with the
dark background:

<p class=“darkarea”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut
laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad
minim veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

The specification of the darkarea class with the paragraph tag will cause the
paragraph’s text to be rendered in white.

Tip The universal selector can be used to indicate that all tags with a given class
should have the style applied. For example, this style definition will apply to all
tags with the darkarea class:

*.darkarea { color: white; }

However, you can also omit the universal selector, specifying only the class for
the same effect:

.darkarea { color: white; }

Matching elements by identifier
Just as you can match classes, you can also match element identifiers (the id
attribute). To match identifiers, you use the pound sign (#) in the selector. For
example, the following style will match any tag that has an id attribute of comment:

#comment { background-color: green; }

Matching elements that contain
a specified attribute
Besides class and id, you can match any attribute. To do so, specify the attribute and
the value(s) you want to match in the selector. This form of the selector has the
following format:

element[attribute=“value”]

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

282 Part III ✦ Controlling Presentation with CSS

For example, if you want to match any table with a border attribute set to 3, you
could use this definition:

table[border=“3”]

You can also match elements that contain the attribute, no matter what the value of
the attribute is set to. For example, to match any table with a border attribute, you
could use this definition:

table[border]

Tip You can combine the various selector formats for even more specificity. For
example, the following selector will match table tags with a class attribute of
datalist, and a border attribute of 3:

table.datalist[border=“3”]

You can stack multiple attribute definitions for more specificity. Each attribute is
specified in its own bracketed expression. For example, if you wanted to match
tables with a border attribute of 3 and a width attribute of 100%, you could use
this selector:

table[border=“3”][width=“100%”]

Note Two other attribute-matching methods can be used to match a value in a space
or hyphen-separated list in an attribute’s value. To match a value in a space-
separated list, you use ∼= instead of the usual equal sign (=). To match a value
in a hyphen-separated list, you use |= instead of the usual equal sign (=). For
example, the following definition would match “us” in a space-separated value
in the language attribute:

[language∼=“us”]

Matching child, descendent, and adjacent
sibling elements
One of the most powerful selector methods you can use for matching elements is
defining selectors that use the relationships between elements. For example, you can
specify a style for italic text only when in a heading, or list items in ordered lists.

Understanding document hierarchy
All elements in a document are related to other elements. The hierarchy follows the
same nomenclature as family trees—ancestors, parents, children, descendents, and
siblings. For example, consider the following code and Figure 17-1, which shows a
typical HTML document and its hierarchy.

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

283Chapter 17 ✦ Creating Style Rules

<html>
<body>
<div class=“div1”>

<h1>Heading 1</h1>
<table>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class=“div2”>

<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
An ordered list

First element
Second element
Third element

</div>
</body>
</html>

div1

tableh1 p

tr

td td

td td

tr

h1 p ol

li

li

li

div2

body

Figure 17-1: A graphical representation of the document’s
hierarchy.

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

284 Part III ✦ Controlling Presentation with CSS

Ancestors and descendents
Ancestors and descendents are elements that are linked by lineage, no matter the
distance. For example, in Figure 17-1 the list elements under div2 are descendents of
the body element, and the body element is their ancestor.

Parents and children
Parents and children are elements that are directly connected in lineage. For
example, in Figure 17-1 the table rows under div1 are children of the table element,
which is their parent.

Siblings
Siblings are children that share the same, direct parent. In Figure 17-1, the list
elements under div2 are siblings of each other. The header, paragraph, and table
elements are also siblings because they share the same, direct parent (div1).

Selector mechanisms for hierarchies
There are several selector mechanisms to use in defining rules, specifying matched
elements by their relationships to other elements.

To specify ancestor and descendent relationships, you list all involved elements
separated by spaces. For example, the following selector matches the list elements
in Figure 17-1:

div.div2 li

To specify parent and child relationships, you list all involved elements separated by
a right angle bracket (>). For example, the following selector matches the table
element in Figure 17-1:

div.div1 table

To specify sibling relationships, you list all involved elements separated by plus
signs (+). For example, the following selector matches the paragraph element
under div1 in Figure 17-1:

table + p

Understanding Inheritance
Inheritance is the act of picking up attributes from one’s ancestors. In CSS, all
foreground properties are passed down (inherited) to descendent elements. For
example, this definition would result in all elements being rendered in blue, because
every tag in the document is a descendent of the body tag:

body { color: blue; }

Note that this is only true for foreground properties. Background properties
(background color, image, and so on) are not inherited.

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

285Chapter 17 ✦ Creating Style Rules

Inheritance is the default action unless an element has the same attribute defined
differently. For example, the following definitions result in all elements, except for
paragraphs with a notblue class, being rendered in blue:

body { color: blue; }
p.notblue { color: red; }

Instead of blue, the notblue paragraphs are rendered in red.

Attributes that are not in conflict are cumulative on descendent elements. For
example, the following rules result in paragraphs with an emphasis class being
rendered in bold, blue text:

body { color: blue; }
p.emphasis { font-weight: bold; }

Pseudo-classes
CSS has a handful of pseudo-classes that you can use to modify attributes of
elements in your document. Pseudo-classes are identifiers that are understood by
browsers to apply to a subset of elements, without the element needing to be
explicitly tagged with the style. Such classes are typically dynamic and tracked by
other means than the actual class attribute.

For example, there are two pseudo-classes that can be used to modify the attributes
of visited and unvisited links in the document (explained in the next section). If you
use the pseudo-classes, you don’t have to actually specify the classes in individual
links—the browser determines which links fit into which class (visited or not) and
applies the style(s) appropriately.

The following sections discuss the various pseudo-classes available in CSS.

Defining link styles
A handful of pseudo-classes can be used with links (usually <a> tags). The link
pseudo-classes are listed in Table 17-1.

Table 17-1
Link Pseudo-classes

Pseudo-class Matches

:link Unvisited links

:visited Visited links

:active Active links

:hover The link that the browser pointer is hovering over

:focus The link that currently has the user interface focus

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

286 Part III ✦ Controlling Presentation with CSS

For example, the following definition will cause all unvisited links in the document to
be rendered in blue, visited links in red, and when hovered over, green:

:link { color: blue; }
:visited { color: red; }
:hover {color: green; }

Note the order of the definitions; it is important. Because the link participation in
the classes is dynamic, :hover must be the last definition. If the order of :visited
and :hover were reversed, visited links would not turn green when hovered over
because the :visited color attribute would override the :hover color attribute.
The same ordering is important when using the :focus pseudo-class—place it last
in the list of definitions affecting similar elements.

You can combine pseudo-classes with other selector methods, as needed. For
example, if you wanted all links with a class attribute of important to be rendered
in a bold font, you could use the following code:

:link.important { font-weight: bold; }
...
<a href=“http://something.example.com/important.html”

class=“important”>An important message

The :first-child pseudo-class
The :first-child pseudo-class applies the designated style(s) to the first child
element of a specified element. You can use this class to add additional space or
otherwise change the formatting of the first child element. For example, to indent
the first paragraph of all <div> elements, you could use this definition:

div > p:first-child { text-indent: 25px; }

The :lang pseudo-class
The language pseudo-class (:lang) allows constructing selectors based on the
language setting for specific tags. This is useful in documents that must appeal to
multiple languages that have different conventions for certain language constructs.
For example, the French language typically uses angle brackets (< and >) for quoting
purposes, while the English language uses quote marks (‘ and ’).

In a document that needs to address this difference, you can use the :lang
pseudo-class to change the quote marks appropriately. The following code changes
the <blockquote> tag appropriately for the language being used:

/* Two levels of quotes for two languages */
:lang(en) { quotes: ‘“’ ‘“’ “’” “’”; }
:lang(fr) { quotes: “<<” “>>” “<” “>”; }

/* Add quotes (before and after) to blockquote */
blockquote:before { content: open-quote; }
blockquote:after { content: close-quote; }

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

287Chapter 17 ✦ Creating Style Rules

Note The pseudo-elements :before and :after are covered later in this chapter
in the Pseudo-elements section.

The :lang selectors will apply to all elements in the document. However, not all
elements make use of the quotes property, so the effect will be transparent for most
elements. The second two definitions in the preceding example add quotes to the
blockquote element, which typically does not include quotes.

Pseudo-elements
Pseudo-elements are another virtual construct to help you apply styles dynamically
to elements in your documents. For example, the :first-line pseudo-element
applies a style to the first line of an element dynamically—that is, as the first line
grows or shrinks the browser adjusts the style coverage accordingly.

The various pseudo-elements are covered in the following sections.

Applying styles to the first line of an element
The :first-line pseudo-element allows you to specify a different definition for the
first line of elements in the document. This is shown in the following code and
Figure 17-2:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>First-line formatting</title>
<style type=“text/css”>

p:first-line { text-decoration: underline; }
p.noline:first-line { text-decoration: none; }

</style>
</head>
<body>
<h1>IN CONGRESS, July 4, 1776.</h1>
<p class=“noline”>The unanimous Declaration of the thirteen
United States of America,</p>

<p>When in the Course of human events, it becomes necessary
for one people to dissolve the political bands which have
connected them with another, and to assume among the powers
of the earth, the separate and equal station to which
the Laws of Nature and of Nature’s God entitle them, a decent
respect to the opinions of mankind requires that they should
declare the causes which impel them to the separation.</p>

</body>
</html>

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

288 Part III ✦ Controlling Presentation with CSS

Figure 17-2: :first-line pseudo-element can be used to affect only the
first line of elements.

Note Use of the :first-line pseudo-element is somewhat hindered due to the
limited range of properties it can affect. Only properties in the following groups
can be applied using :first-line: font properties, color properties, back-
ground properties, word-spacing, letter-spacing, text-decoration,
vertical-align, text-transform, line-height, text-shadow, and
clear.

Note that the preceding code example uses classes to manage elements by
exception. Since we want most paragraphs to have their first line underlined, a
universal selector is defined to apply to all paragraph tags. A second selector, using a
class (noline), is defined to apply to elements that have their class set to noline.
This helps simplify our document—we only have to add class attributes to the
exceptions instead of the rule.

Applying styles to the first letter of an element
Just as the :first-line pseudo-element can be used to affect the properties of the
first line of an element, the :first-letter pseudo-element can be used to affect the
first letter of an element. You can use this to achieve typographic effects such as
dropcaps, as shown in the following code and Figure 17-3:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

289Chapter 17 ✦ Creating Style Rules

<title>Drop cap formatting</title>
<style type=“text/css”>

p.dropcap:first-letter { font-size: 3em;
font-weight: bold; float: left;
border: solid 1px black; padding: .1em;
margin: .2em .2em 0 0; }

</style>
</head>
<body>
<h1>IN CONGRESS, July 4, 1776.</h1>
<p>The unanimous Declaration of the
thirteen united States of America,</p>
<p class=“dropcap”>When in the Course of human events,
it becomes necessary for one people to dissolve the political
bands which have connected them with another, and to assume
among the powers of the earth, the separate and equal station
to which the Laws of Nature and of Nature’s God entitle them,
a decent respect to the opinions of mankind requires that
they should declare the causes which impel them to the
separation.</p>
</body>
</html>

Figure 17-3: The :first-letter pseudo-element can be used to achieve effects
such as drop caps.

Specifying before and after text
You can use the :before and :after pseudo-elements to autogenerate content
before and after specific elements. These pseudo-elements were used in the section,

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

290 Part III ✦ Controlling Presentation with CSS

The :lang pseudo-class, to add quote marks to the beginning and ending of
<blockquote> elements:

blockquote:before { content: ‘“’; }
blockquote:after { content: ‘“’; }

Note the use of the content property. This property can assign specific content to
content-generating selectors. In this case, quote marks are assigned to the before
and after properties so that <blockquote> elements will begin and end with
quotes, as shown in Figure 17-4.

Figure 17-4: Opera supports generated content, as demonstrated by the
generated quotes around the <blockquote> paragraph.

Note Many browsers do not support CSS-generated content. See Appendix B for
more information on what properties are supported by which browsers.

Generated content breaks the division of content and presentation, of which CSS is
supposed to stick to presentation. However, additional content is sometimes
necessary to enhance the presentation. Besides adding elements such as quote
marks, you can also create counters for custom numbered lists and other more
powerful features.

Cross-
Reference

More information on CSS content generation can be found in Chapter 19.

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

291Chapter 17 ✦ Creating Style Rules

Shorthand Expressions
CSS supports many properties for fine control over elements. For example, the
following properties all apply to borders:

✦ border

✦ border-collapse

✦ border-spacing

✦ border-top

✦ border-right

✦ border-bottom

✦ border-left

✦ border-color

✦ border-top-color

✦ border-right-color

✦ border-bottom-color

✦ border-left-color

✦ border-style

✦ border-top-style

✦ border-right-style

✦ border-bottom-style

✦ border-left-style

✦ border-width

✦ border-top-width

✦ border-right-width

✦ border-bottom-width

✦ border-left-width

Several of these properties are shorthand properties, which enable you to set
multiple properties at a time. For example, to set an element’s border as shown in
Figure 17-5, you could use the following definition:

p.bordered {
border-top-width: 1px;
border-top-style: solid;
border-top-color: black;

border-right-width: 2px;
border-right-style: dashed;
border-right-color: red;

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

292 Part III ✦ Controlling Presentation with CSS

border-bottom-width: 1px;
border-bottom-style: solid;
border-bottom-color: black;

border-left-width: 2px;
border-left-style: dashed;
border-left-color: red;

}

Figure 17-5: A paragraph using different borders requires multiple
properties to be set.

However, you can use the border-side properties to shorten the definition,
defining the border width, style, and color with one property:

p.bordered {
border-top: 1px solid black;
border-right: 2px dashed red;
border-bottom: 1px solid black;
border-left: 2px dashed red;

}

You could further simplify this style by using the border property, which allows you
to set all the sides to the same property and then list the exceptions:

p.bordered {
border: 1px solid black;

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

293Chapter 17 ✦ Creating Style Rules

border-right: 2px dashed red;
border-left: 2px dashed red;

}

The preceding definition first sets all the sides to the same width, style, and color.
Then the left and right are set to their proper properties, overriding the border
property’s left and right side settings.

Cross-
Reference

See Appendix B for more information on the various shortcuts in CSS.

Tip Avoid overusing shortcut properties or being too ingenious in setting styles with
minimal properties. Although you may save in typing, you will also decrease the
legibility of your code. Take a look at the example definitions in this section—
although the first example is lengthy, it leaves little to the imagination of how
the border is being formatted.

Property Value Metrics
Now that you know how to apply values to properties, let’s talk about the values
themselves. You can specify your values using several different metrics, depending
upon your needs and use.

CSS styles support the following metrics:

✦ CSS keywords and other properties, such as thin, thick, transparent, ridge, and
so forth

✦ Real-world measures

• inches (in)

• centimeters (cm)

• millimeters (mm)

• points (pt)—the points used by CSS2 are equal to 1/72th of an inch

• picas (pc)—1 pica is equal to 12 points

✦ Screen measures in pixels (px)

✦ Relational to font size (font size (em) or x-height size (ex)

✦ Percentages (%)

✦ Color codes (#rrggbb or rgb(r,g,b))

✦ Angles

• degrees (deg)

• grads (grad)

• radians (rad)

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

294 Part III ✦ Controlling Presentation with CSS

✦ Time values (seconds (s) and milliseconds (ms))—used with aural style sheets

✦ Frequencies (Hertz (Hz) and kilo Hertz (kHz))—used with aural style sheets

✦ Textual strings

Which units you use depends on which properties you are setting and what the
application of the document is. For example, it doesn’t make any sense to set the
document’s property values to inches or centimeters unless the user agent’s display
is calibrated in real-world measures or your document is meant to be printed.

Cross-
Reference

See Chapter 24 for more information about formatting documents for printing.
See the relevant chapters in Part III for examples of how to use the various
metric values in properties. See Appendix B for a list of what properties support
which metrics.

In the case of relational values (percentages, em, and so on), the actual value is
calculated on the element’s parent settings. For example, consider the following two
definitions for the <i> element. Both of definitions will set the font size of all italic
elements to 11pts, by specifying 1.1 times the parent’s font size, or 110% of the
parent’s font size. The output of this code is shown in Figure 17-6.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Border formatting</title>
<style type=“text/css”>

/* Set paragraph font to 10pt */
p { font-size: 10pt; }
/* Set font to 1.1 * parent */
i.def1 { font-size: 1.1em; }
/* Set font to 110% parent */
i.def2 { font-size: 110%; }

</style>
</head>
<body>

<p>Lorem ipsum dolor sit amet, <i class=“def1”>consectetuer
adipiscing</i> elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna <i class=“def2”>aliquam
erat volutpat</i>. Ut wisi enim ad minim veniam, quis
nostrud exerci tation ullamcorper suscipit obortis nisl ut
aliquip ex ea commodo consequat.</p>

</body>
</html>

Note The em unit can be quite powerful because it allows you to specify a value
that changes as the element sizes change around it. However, using the em
unit can have unpredictable results. As such, em is best used when you need
a relational, not absolute, value.

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

295Chapter 17 ✦ Creating Style Rules

Figure 17-6: Using the em and percentage metrics, you can define
elements to be a relative size, driven by the elements around them.

Summary
This chapter rounded out the basics of CSS. You learned how to construct valid CSS
rules using simple and complex selectors, the role inheritance plays throughout
document styles, and the different metrics you can use to specify properties.

✦ ✦ ✦

P1: JYS

WY022-17 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:18

296

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

1818C H A P T E R

Fonts
✦ ✦ ✦ ✦

In This Chapter

Web Typography Basics

Working with Font Styling
Attributes

Downloading Fonts
Automatically

✦ ✦ ✦ ✦

I remember working with an award-winning print designer
in Chicago who was so resistant to computers and desktop

graphic software that he eventually disappeared from the
industry. Good print designers have strong feelings about
typography as an art form, and many of them resisted early
desktop publishing tools, not so much because these tools
couldn’t perform, but because they ended up in the hands of a
new generation of designers who, in the mind of the old
school, didn’t truly appreciate typography.

When print designers began to encounter Web design projects,
they were aghast. Most designers don’t like to compromise
when it comes to the quality of their designs, and the Web is
all about compromise. Discovering that the font they so
carefully chose would likely not appear as they hoped but,
worse, would more than likely be replaced with another font,
was a traumatic experience for many traditionalists.

Today, the Web is still all about compromise. Flash hasn’t
changed that. Scalable Vector Graphics (SVG) haven’t changed
it (though they both could yet), and today’s browsers certainly
haven’t changed it. However, there is considerably more you
can do with fonts than you were able to do at one time, and
some careful planning and a little extra work can give you
considerable control over the way your Web pages render
fonts. This chapter explores fonts, why you need to
understand them, and how you can have your pages render at
least close to something like you had in mind when you
originally conceived your design.

Web Typography Basics
Fonts basically consist of glyphs, which are the actual
machine-based descriptions of individual members of a font
family. These descriptions are based on either a vector-based
outline or a pixel-based bitmap. Each font exists on an
invisible grid called an em square, which forms the boundaries
that a font description relies on. See Figure 18-1 for a
description of a glyph’s properties.

297

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

298 Part III ✦ Controlling Presentation with CSS

em
square

baseline
descent

(Maximum unaccented depth)

Height of Uppercase GlyphHeight of Lowercase Glyph

em square grid:
TrueType, OpenType: 2048 divisions
Type 1 PostScript: 1000 divisions

A glyph?
Figure 18-1: Glyph attributes.

As you can see in Figure 18-1, the em square determines the height boundaries that a
font can meet on the grid. Print-based typefaces, such as PostScript, determine exact
widths and heights by breaking the em square up into smaller pieces (1,000 pieces
for PostScript, 2,048 for TrueType). OpenType, which is found on both Web-based
fonts (see the section towards the end of this chapter on downloadable Web fonts),
also breaks an em square up into 2,400 parcels. Machines then use these parcels as
ways to exactly measure distance within an em square and the existence of different
parts of a font glyph. For example, say the bottom of a g is measured within the
scope of those divisions. The positioning based on those divisions is what gives each
font its unique characteristics.

The wrong way to describe fonts
It may seem a little heavy-handed to say that just because the W3C has deprecated
an element (meaning that the element is discontinued and is no longer part of any
formal specification) you shouldn’t use it. But when you realize that its use leads to
extremely tedious maintenance issues, the argument suddenly seems a bit less
heavy-handed. These maintenance issues arise because of the very nature of how a
font element works.

You can use the font element to render font attributes. The font element has been
deprecated, and you won’t even find it in the XHTML 1.1 specification. The theory
behind its use was that it would control the way a font looked. In practice, ghastly
things happened. For example, users might set a font size to 1 that on some screens
is so tiny as to be unreadable, or a font size at 3, which on a screen whose user has
poor vision takes up the entire screen for a couple of words because the user’s
browser preferences are set with large font sizes. Still, you might work for a large site
that continues to insist on using this dinosaur, so here are this element’s attributes:

✦ SIZE=CDATA (font size adjustment)

✦ COLOR=Color (font color adjustment)

✦ FACE=CDATA (font face adjustment)

✦ HTML 4.0 core attributes

✦ HTML 4.0 internationalization attributes

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

299Chapter 18 ✦ Fonts

You can see these attributes at work in the following example:

<font size=“1” face=“Helvetica, Arial, Verdana, sans-serif”
color=“blue” lang=“en-US” class=“.small” style=“font-family:
Times, serif;” id=“confusingElement”>This is an HTML
deprecated element!

Load the code from Listing 18-1 into your browser and you’ll see something similar
to that shown in Figure 18-2.

Listing 18-1: Using the Font Element to Name a Font Family

<body>
<font size=“1” face=“Helvetica, Arial, Verdana, sans-

serif” color=“blue” lang=“en-US” class=“.small” style=“font-
family: Times, serif;” id=“ConfusingElement”>This is an HTML
deprecated <span style=“font-
size:28px;”>element!

</body>

Figure 18-2: The attempt to style a string of characters using the font element fails.

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

300 Part III ✦ Controlling Presentation with CSS

You’ll notice several things about Listing 18-1 and Figure 18-2. First, no matter what
fonts you have installed on your system, if you’re testing in a modern browser, you
won’t see sans-serif fonts rendered even though you call for them in the font
element. This is because you’re using a stylesheet, which overrules font element
attribute information in CSS-compliant browsers. To make the font element’s
attributes work, you must be certain that no style sheet rules are in conflict with
your intentions. So delete the style sheet information and the class attribute so
that the font element looks like this:

<font size=“1” face=“Helvetica, Arial, Verdana, sans-serif”
color=“blue” id=“LessConfusingElement”>This is an HTML
deprecated <span style=“font-
size:28px;”>element!

Your browser window will now display, as shown in Figure 18-3.

Figure 18-3: A string of characters successfully styled by using the font element.

If you name a font family with spaces between characters, you need to enclose the
name in single quotes, as shown in bold in the following:

<font size=“1” face=“ ‘Helvetica Narrow’, Arial, Verdana,
sans-serif”>This is an HTML deprecated <span style=“font-
size:28px;”>element!

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

301Chapter 18 ✦ Fonts

The right way to describe fonts
If you examine Figure 18-4 and Listing 18-2, which creates the screen rendered in that
figure, you’ll immediately see the benefits of working with the right way of managing
fonts, which is CSS.

Figure 18-4: A table of different font sizes shows a lack of consistency without CSS.

Listing 18-2: Creating Font Sizes with CSS and the Font
Element’s Size Attribute

<html>
<head>
<title>Font sizes</title>
<meta http-equiv=“Content-Type” content=“text/html;
charset=iso-8859-1”>
<style type=“text/css”>
<!--
.12pixels {font-size: 12px;}
.13pixels {font-size: 13px;}
.14pixels {font-size: 14px;}
.15pixels {font-size: 15px;}

Continued

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

302 Part III ✦ Controlling Presentation with CSS

Listing 18-2: (continued)

.16pixels {font-size: 16px;}

.17pixels {font-size: 17px;}

.18pixels {font-size: 18px;}

.sans-serif {font-family: Frutiger, Arial, Helvetica, sans-
serif;}
.sans-serif-b {font-family: Frutiger, Arial, Helvetica, sans-
serif;font-weight: 900;}
-->
</style>
</head>
<body>
<table width=“100%” border=“0” cellspacing=“0”
cellpadding=“5” style=“border: #cccccc thin solid”>

<tr align=“left” valign=“top” bgcolor=“#D5D5D5” >
<td width=“26%” valign=“bottom” class=“sans-serif-b”>Font

Size</td>
<td width=“29%” valign=“bottom” class=“sans-serif-

b”>Font Size +</td>
<td width=“17%” valign=“bottom” class=“sans-serif-

b”>Font Size -</td>
<td width=“28%” valign=“bottom” class=“sans-serif-

b”>CSS</td>
</tr>
<tr align=“left” valign=“top”>

<td><p>Font Size = 1 </p></td>
<td>Font Size = +1 </td>
<td>Font Size = −1</td>
<td class=“12pixels”>font-size: 12px</td>

</tr>
<!-- Additional rows of all the font-sizes here - download

actual code to view all rows -->
</table>
<p> </p>
</body>
</html>

Notice the consistency of the sizes in the fourth column. If you open the file in your
browser and change your browser’s text size settings, you’ll see that the fonts in the
fourth column remain the same size, whereas the sizes in the first three columns,
which don’t use CSS for style formatting, all vary wildly.

Hopefully, you’re now convinced of the need to use CSS for styling your fonts. It’s
time to examine just how to do that. You can style several aspects of a font to make it
bolder, italicized, add space between each character in a word, make it larger or
smaller, make a font fatter or thinner, and add space between lines of text. For the
syntactic details on how to use these styling capabilities, refer to Appendix B, CSS
Levels 1 and 2 Quick Reference.

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

303Chapter 18 ✦ Fonts

Working with Font Styling Attributes
There are several styling attributes to control such characteristics as font families,
sizes, bolding, and spacing.

Naming font families using CSS
As I’ve shown, CSS provides a mechanism for rendering font families in a browser if
those fonts are installed on a user’s system. This is accomplished by creating either
an inline style on an element such as a td or span element, or by creating a class
rule selector within the style element. Either way, the syntax is the same, with a list
of font family names, each separated by a comma, contained within a set of braces:

font-family {Arial, Helvetica, sans-serif;}

The browser will look first for the Arial font in the preceding example, then the
Helvetica font, then the “default” sans-serif font, which is whatever sans-serif font
the user’s operating system defaults to.

If you name a font family with spaces between characters, you need to enclose the
name in quotes, as shown in bold in the following:

.myFontClass {font-family: ‘Helvetica Narrow’, sans-serif}

In practice, it may be a good idea to use quotes even when there are no spaces
between characters, because some versions of Netscape 4 have trouble recognizing
font names otherwise.

Listing 18-3 shows a brief example of creating both an inline style and calling a class
selector to name a font family.

Listing 18-3: Using Class Selector and Inline Style to
Name a Font Family

<html>
<head>
<title>Font sizes</title>
<meta http-equiv=“Content-Type” content=“text/html;
charset=iso-8859-1”>
<style type=“text/css”>
<!--
.myFontClass {font-family: “Helvetica Narrow”, sans-serif}
-->
</style>
</head>
<body>
<p>This is an <span style=“font-family: ‘Helvetica Narrow’,
sans-serif”>inline style.</p>

Continued

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

304 Part III ✦ Controlling Presentation with CSS

Listing 18-3: (continued)

<p>This uses a class
selector</p>
</body>
</html>

The first bolded line shows a class selector named myFontClass, which is called by
a span element’s class attribute (the last bolded code fragment). Figure 18-5 shows
the results from rendering Listing 18-3 in the browser.

Figure 18-5: Rendering inline and class selector styles in the browser.

Understanding font families
When choosing font families for style sheets, it helps to understand some basic facts
about fonts. For example, Arial and Helvetica are virtually identical. Arial is more
commonly seen on Windows systems, and Helvetica on Macs and UNIX. It’s best to
call them both in a style sheet so that one of them will appear on a user’s machine no
matter what environment they’re in. If you use the generic “sans-serif,” you’ll get the
default sans-serif font on the user’s system. So your best, lowest common
denominator CSS font selector looks like this:

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

305Chapter 18 ✦ Fonts

myFontClass {font-family: Arial, Helvetica, sans-serif}

Using this font will render a sans-serif font on the vast majority of modern browsers.

To understand what a font family is, consider what a font family is not. Helvetica and
Helvetica Narrow do not constitute a font family, even though it’s reasonable to
suspect they would belong to the same family. Helvetica Narrow, by itself, is a font
family. So is Helvetica, which actually refers to a basic kind of Helvetica font.
Helvetica Condensed and other variations also exist.

Understanding fonts and font availability
The first thing to understand about font availability is that they probably aren’t. In
other words, all your best-laid plans when it comes to your design are likely to end
up in complete disappointment. The reason? The fonts you name in a CSS file may, or
may not, be on your users’ computer systems.

There are a few ways to ensure, for example, that Arial or Helvetica will appear as
expected on your Web page for most of your audience. However, other than those
two fonts, it’s either a crapshoot or a lot of jumping through font hoops to get your
fonts to render. The reason is simple. You can ask your user’s browser to display the
Frutiger font, for example, but if their system doesn’t have it installed, the browser
will simply display the next closest thing. How the browser decides that issue is an
algorithmic process based on something called the Panose system (see sidebar), but
the bottom line is that your HTML/CSS does not embed any actual font information
or fonts; it merely requests that the browser display a font if that font happens to be
on the user’s system.

How the Panose System Works

Panose is a system of font substitution that uses a combination of mapping software (as in
software that makes calculated comparisons), a ten-digit numbering system, and a classifi-
cation method to help the browser match font property values. If that fails, the browser tries
to find the closest match. For example, if you name Futura Extra Bold as the only font when
you name a font family using either CSS or the font element’s face attribute, and the user’s
system doesn’t have Futura Extra Bold installed, the browser will probably use something
like Arial Black because both fonts are heavy, wide sans-serif fonts.

Working with font styles
In traditional HTML, you can choose whether you want your font to appear in Roman
style (non-italic) font or italics by using or not using the em or i elements:

Emphasizing a point with the em element or the <i>i
element</i>.

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

306 Part III ✦ Controlling Presentation with CSS

The preceding code fragment results in the following in a browser:

Emphasizing a point with the em element or the i element.

If you want to really be sure even the earliest of browsers recognize your italics, em is
the way to go. More importantly, it’s a better choice because aural browsers should
emphasize the contents of this element to sight-impaired users of your Web site.

For this reason, this is one of the rare exceptions to the rule of using CSS for styling
over HTML elements. However, there’s nothing wrong with using both. To use italics
in CSS, simply include the following either inline or in a rule selector:

font-style: italic

Note Be sure to call it “italic,” not “italics” with an s. You can also use font-style:
oblique, but older versions of Netscape will not recognize it.

Establishing font sizes
Managing font size can be tricky even with CSS, but most developers seem to agree
that the most reliable unit of measurement in CSS is the pixel. Managing font sizes in
straight HTML, as noted earlier in the chapter, is about as inexact a science as there
is, but the general rule is that it’s supposed to work like that shown in Listing 18-2,
provided earlier in this chapter, which shows all the available attribute values for the
font element’s size attribute. The way it’s supposed to work, but often doesn’t, is
that using the plus sign (+) before a number (for example, +1 or +2) makes the font
bigger relative to the default font size on the page. In production environments, this
is not a reliable process. If you must use the font element’s size attribute in your
HTML (believe it or not, some large sites actually still make this a requirement), be
aware that relative sizing using the plus sign before a number has inconsistent
browser support, so your results will vary.

To establish size using CSS, you simply name the property in your selector or inline
style rule:

.twelve {font-size: 12px}
H1 {font-size: xx-large}
.xsmall {font-size: 25%}

In the preceding code fragment, three style rules are created, each with its own font
size. The first creates a relative size using pixels as the unit of measure. Never spell
out the word pixels in your style definition. Always use the form px.

px is the most reliable unit of measure because it is based on the user’s screen size,
and the pixel resolution of his or her monitor. It also has virtually bug-free support
across all browsers that support CSS.

Other relative sizes include the following:

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

307Chapter 18 ✦ Fonts

✦ em, for ems, is based on the em square of the base font size, so that 2em will
render a font twice as large as your document’s base font size. Support in
Netscape 4 and IE3 is awful.

✦ ex is based on the X height of the base font size, so that 2ex will render a font
whose X character is twice as tall as the X character at the default, or base,
font size. This is a meaningless unit in the real world, because support is either
nonexistent or so poor as to make it worthless.

The next line in the preceding code fragment sets an absolute size called xx-large,
although it isn’t absolute among browsers, only the one browser your user is using
to render the page. xx-large is part of a larger collection that includes the
following possible values:

xx-small, x-small, small, medium, large, x-large, xx-large

Other absolute sizes include the following:

✦ pt for points. This is appropriate for pages that are used for printing, but is not
a particularly reliable measure for managing screen-based fonts.

✦ in (inches), cm (centimeters), mm (millimeters), and pc (picas) are all rarely
used on the Web, because they’re designed with print production in mind.

Finally, you can create a font size using a percentage by simply adding the %
character next to the actual size. This will render the font x% of the base size.

You can experiment with font sizes by modifying Listing 18-2.

Using (or not using) font variants
In theory, the CSS font-variant property lets you create fonts in uppercase that are
smaller sizes in relative terms to their base size. In practice, it doesn’t work very well
in most browsers, and isn’t worth your trouble. See the CSS reference in Appendix B
for syntactical details.

Bolding fonts by changing font weight
Font weight refers to the stroke width of a font. If a font has a very thin, or light,
stroke width, it will have a weight of 100. If it has a thick, or heavy, stroke width, it
will be 900. Everything else is inbetween. To denote font width, you use a numeric
set of values from 100 to 900 in increments of 100: 100, 200, 300, 400, and so on. Or,
you can use the keywords bold, normal, bolder or lighter to set a value, which
will be relative to the font weight of the element containing the font.

The keyword bold is equal to the numeric value 700. An example of using
font-weight in style rules written for a style element might be as follows:

p {font-weight: normal}
p.bold {font-weight: 900}

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

308 Part III ✦ Controlling Presentation with CSS

Making font wider or thinner using font stretch
This font property is supposed to allow you to make a font look fatter or thinner.
Support is nonexistent, however. The curious among you can see the CSS reference
in Appendix B for syntactical details.

Line height and leading
The CSS line-height property is another one of those nice-in-theory properties
that just doesn’t pan out in the real world. The syntax is supposed to let you set the
space between lines in a process that in the print world is called leading. It works
fairly well in Internet Explorer, but is a mess in Netscape 4. The syntax is easy enough:

line-height: normal
line-height: 1.1
line-height: 110%

The first example in the preceding series of rules makes the line height the same as
the base line height of the document. The next line makes the line height 1.1 times
greater than the base line height, as does the third, except the third uses
percentages as a unit of measure.

Tip A good resource for CSS browser compatibility can be found at:
http://www.richinstyle.com/bugs/table.html. The site doesn’t in-
clude IE6, but it has a good survey of all the other browsers’ support for various
CSS properties, and you really want to know how things look in older browsers
anyway.

Downloading Fonts Automatically
When you write HTML, you’re probably well aware that when you set up an img
element in a Web document, the image downloads into the client machine’s cache,
enabling the browser to display the image. This process needs to take place if the
image is to be viewed. An embedded font file works the same way. An embedded font
file is a font object that you create and embed into the page using a font creation tool
such as Microsoft’s WEFT, which creates embedded fonts optimized for IE5, or
HexMac by HexMac, which creates embedded fonts optimized for Netscape (but
downloadable to IE5 with the use of an ActiveX Control).

Dynamic font standards and options
Basically, there are two font-embedding platforms: OpenType and TrueDoc. The two
font platforms differ in some ways, the most obvious being that since they both use
different file types, you have to jump through some hoops to develop any kind of
font compatibility across browser platforms.

The two formats also differ in how they appear on the screen. TrueDoc looks more
like an image file, whereas OpenType looks more like a typeface.

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

309Chapter 18 ✦ Fonts

OpenType
OpenType is a font distribution standard developed by Microsoft and Adobe
Systems, the purpose of which is to establish a means of providing some semblance
of typography to the Web using the same kind of principles involved in font metrics
that can be found in such type formats as PostScript and TrueType. Font metrics
describe the metrics, or measurement, of a type character’s shape using an em
square as the basis. The em square, as mentioned earlier, is the grid upon which a
font exists and from which its width and height are calculated.

The technology is centered around the creation of a font object file, with an .eot
extension, which is generated by a font creation tool either designed specifically for
that purpose, or as an engine residing in a broader-based Web authoring program.

One such tool, WEFT, is both a standalone application and a shared component that
can be licensed from its developer, Microsoft, by application developers who are
building Web-authoring software. The standalone program is free and can be found
at http://www.microsoft.com/typography/web/embedding/weft/.

Currently, only Internet Explorer (versions 4 and higher) supports OpenType.

TrueDoc
BitStream, a typeface manufacturer, makes the competing standard TrueDoc.
Netscape 4.0 and higher are the only browsers that directly support TrueDoc,
although BitStream makes an ActiveX control that can be used in IE5. You can find
more information on TrueDoc at http://www.truedoc.com/.

Licensing issues
The reason font embedding has not spread more quickly across Web deployment lies
not so much in the reluctance of Web authors to embrace the technology (although
that’s part of it), nor in the technology itself; but rather, licensing issues have slowed
the pace of development, because font vendors are reluctant to invest in the
development of a font only to see it distributed on Web sites without compensation.

Should you use font embedding or style sheets?
Many developers, in noticing the various squabbles in the realm of font embedding,
have simply barricaded themselves from the entire affair by avoiding both platforms
completely. As difficult as it might be to develop compatible pages using the two font
platforms, however, you can’t do any damage using them, because they rely on style
sheets and font elements to do their work. And when they fail, they fail gracefully.

The question of deployment then becomes a question of resources, and whether or
not your organization has enough of them to utilize embedded fonts as part of the
production process.

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

310 Part III ✦ Controlling Presentation with CSS

How to add downloadable fonts to a Web page
The two methods of font embedding have some similarities, in that both require a
tool to create the font objects that get embedded into the Web page. The obvious
tool of choice for IE5 developers would be WEFT, or any other tool that generates
OpenType font files. Similarly, there are tools for TrueDoc font files that create font
objects with a .pfr extension, which is the file extension for TrueDoc files.

Syntax
When you are developing OpenType files for IE5, you use an at-rule style sheet to
establish their links:

@font-face {
font-family: Garamond;
font-style: normal;
font-weight: 700;
src:

url(http://www.myDomain.com/myFontDirectory/GARAMON3.eot);

TrueDoc files are used with the link tag and the fontdef attribute:

<LINK REL= “fontdef”
SRC=“http://www.myDomain.com/myFontDirectory/Garamond.pfr”>

If you don’t want to develop TrueDoc (PFR) files, you can work from a list of font PFR
that are publicly available on the TrueDoc site. These and their full URLs are listed at
the following URL: http://www.truedoc.com/webpages/availpfrs/avail_
pfrs.htm.

If you’re developing for Netscape Navigator, all you need is the link element’s src
attribute. If you’re developing pages for IE5, you’ll need to include the ActiveX
Control. The ActiveX control is embedded in your page with a JavaScript file located
on the TrueDoc site:

<SCRIPT LANGUAGE=“JavaScript”
SRC=“http://www.truedoc.com/activex/tdserver.js”>

</SCRIPT>

Put the preceding code in the head element of your HTML.

Summary
Here’s one final argument for using CSS over the font element to style text. Even if
you work with the largest Web site in the world, and even if stakeholders have it
written in stone that your Web pages MUST work to the lowest common
denominator browser, they will if you use CSS instead of the font element, and they
won’t if you use the font element over CSS.

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

311Chapter 18 ✦ Fonts

This is because you can write basic HTML using HTML in its earliest purest form,
and if you avoid using some of the earlier proprietary elements that began to surface
after Netscape’s popularity was at its peak, every browser in the world should be
able to read your Web page, including text-based browsers such as Lynx.

This chapter, aside from taking a rather strong stand on using CSS over the font
element, covered the following:

✦ Web typography basics

✦ Working with font styling attributes

✦ Downloading fonts automatically

The next chapter looks at text formatting, including indenting and aligning text,
controlling letter and word spacing, and using text decoration such as underlines
and blinking.

✦ ✦ ✦

P1: JYS

WY022-18 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 14:58

312

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

1919C H A P T E R

Text Formatting
✦ ✦ ✦ ✦

In This Chapter

Aligning Text

Indenting Text

Controlling White Space
within Text

Controlling Letter and
Word Spacing

Specifying Capitalization

Using Text Decorations

Formatting Lists

Auto-Generated Text

✦ ✦ ✦ ✦

Since the Web was initially text-based and the recent push
is to make Web documents more like printed matter, it is

no surprise that there are many styles to control text
formatting. From simple justification to autogenerated text,
one of CSS’s major strengths is dealing with the printed word.
This chapter covers the basics of text formatting.

Aligning Text
Multiple properties in CSS control the formatting of text.
Several properties allow you to align text horizontally and
vertically—aligning with other pieces of text or other elements
around them.

Controlling horizontal alignment
You can use the text-align property to align blocks of text
in four basic ways: left, right, center, or full. The following code
and the output in Figure 19-1 show the effect of the
justification settings:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Text Justification</title>
<style type=“text/css”>

p:left { text-align: left; }
p.right { text-align: right; }
p.center { text-align: center; }
p.full { text-align: justify; }

</style>
</head>
<body>
<div style=“margin: 50px”>
<h3>Left Justified (default)</h3>
<p class=“left”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi

313

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

314 Part III ✦ Controlling Presentation with CSS

Figure 19-1: The four basic types of text justification.

enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit obortis nisl ut aliquip ex ea commodo consequat.</p>

<h3>Right Justified</h3>
<p class=“right”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit obortis nisl ut aliquip ex ea commodo consequat.</p>

<h3>Center Justified</h3>
<p class=“center”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit obortis nisl ut aliquip ex ea commodo consequat.</p>

<h3>Fully Justified</h3>
<p class=“full”>Lorem ipsum dolor sit amet, consectetuer

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

315Chapter 19 ✦ Text Formatting

adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit obortis nisl ut aliquip ex ea commodo consequat.</p>
</div>
</body>
</html>

Note that the default justification is left; that is, the lines in the block of text are
aligned against the left margin and the lines wrap where convenient on the right,
leaving a jagged right margin.

In addition to the four standard alignment options, you can also use text-align to
align columnar data in tables to a specific character. For example, the following
code results in the data in the Amount Due column being aligned on the decimal
place:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Table Column Justification</title>
<style type=“text/css”>

td.dec { text-align: “.”; }
</style>

</head>
<body>

<table border=“1”>
<tr>

<th>Customer</th>
<th>Amount Due</th>

</tr>
<tr>

<td>Acme Industries</td>
<td class=“dec”>$50.95</td>

</tr>
<tr>

<td>RHI LLC</td>
<td class=“dec”>$2084.56</td>

</tr>
<tr>

<td>EMrUs</td>
<td class=“dec”>$0.55</td>

</tr>
</table>

</body>
</html>

Note Columnar alignment using the text-align property is not well supported in
today’s user agents. You should test your target agents to ensure compliance
before using text-align this way.

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

316 Part III ✦ Controlling Presentation with CSS

Controlling vertical alignment
In addition to aligning text horizontally, CSS enables you to align text to objects
around it via the vertical-align property. The vertical-align property
supports the following values:

✦ baseline—This is the default vertical alignment; text uses its baseline to align
to other objects around it.

✦ sub—This value causes the text to descend to the level appropriate for
subscripted text, based on its parent’s font size and line height. (This value has
no effect on the size of the text, only its position.)

✦ super—This value causes the text to ascend to the level appropriate for
superscripted text, based on its parent’s font size and line height. (This value
has no effect on the size of the text, only its position.)

✦ top—This value causes the top of the element’s bounding box to be aligned
with the top of the element’s parent bounding box.

✦ text-top—This value causes the top of the element’s bounding box to be
aligned with the top of the element’s parent text.

✦ middle—This value causes the text to be aligned using the middle of the text
and the mid-line of objects around it.

✦ bottom—This value causes the bottom of the element’s bounding box to be
aligned with the bottom of the element’s parent bounding box.

✦ text-bottom—This value causes the bottom of the element’s bounding box to
be aligned with the bottom of the element’s parent text.

✦ length—This value causes the element to ascend (positive value) or descend
(negative value) by the value specified.

✦ percentage—This value causes the element to ascend (positive value) or
descend (negative value) by the percentage specified. The percentage is
applied to the line height of the element.

The following code and the output in Figure 19-2 shows the effect of each value:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Vertical Text Alignment</title>
<style type=“text/css”>

.baseline { vertical-align: baseline; }

.sub { vertical-align: sub; }

.super { vertical-align: super; }

.top { vertical-align: top; }

.text-top { vertical-align: text-top; }

.middle { vertical-align: middle; }

.bottom { vertical-align: bottom; }

.text-bottom { vertical-align: text-bottom; }

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

317Chapter 19 ✦ Text Formatting

Figure 19-2: The effect of various vertical-align settings. Borders were added to
the text to help contrast the alignment.

.length { vertical-align: .5em; }

.percentage { vertical-align: -50%; }
/* All elements get a border */
body * { border: 1px solid black; }
/* Reduce the spans’ font by 50% */
p * { font-size: 50%; }

</style>
</head>
<body>

<p>Baseline: Parent
aligned text text</p>

<p>Sub: Parent
aligned text text</p>

<p>Super: Parent
aligned text text</p>

<p>Top: Parent
aligned text text</p>

<p>Text-top Parent
aligned text text</p>

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

318 Part III ✦ Controlling Presentation with CSS

<p>Middle: Parent
aligned text text</p>

<p>Bottom: Parent
aligned text text</p>

<p>Text-bottom: Parent
aligned text text</p>

<p>Length: Parent
aligned text text</p>

<p>Percentage: Parent
aligned text text</p>

</body>
</html>

Of course, text isn’t the only element affected by an element’s vertical-align
setting—all elements that border the affected element will be aligned appropriately.
Figure 19-3 shows an image next to text. The image has the vertical-align
property set to middle. Note how the midpoint of both elements is aligned.

Figure 19-3: The vertical-align property can be used to vertically
align most elements.

Indenting Text
You can use the text-indent property to indent the first line of an element. For
example, to indent the first line of a paragraph of text by 25 pixels, you could use
code similar to the following:

<p style=“text-indent: 25px;”> Lorem ipsum dolor sit amet,
Consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut
wisi enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit obortis nisl ut aliquip ex ea commodo
consequat.</p>

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

319Chapter 19 ✦ Text Formatting

Note that the text-indent property only indents the first line of the element. If you
want to indent the entire element, use the margin properties instead.

Cross-
Reference

See Chapter 20 for more information about the margin properties.

You can specify the indent as a specific value (1in,25px, and so on), or as a percentage
of the containing block width. Note that when specifying the indent as a percentage,
the width of the user agent’s display will play a prominent role in the actual size
of the indentation. Therefore, when you want a uniform indent, use a specific value.

Controlling White Space within Text
White space is typically not a concern in HTML documents. However, at times you’ll
want better control over how white space is interpreted and how certain elements
line up to their siblings.

Clearing floating objects
The float property can cause elements to ignore the normal flow of the document
and “float” against a particular margin. For example, consider the following code and
resulting output shown in Figure 19-4:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Floating Image</title>
</head>
<body>

<p>Floating Image

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit obortis nisl ut aliquip ex ea commodo
consequat.</p>

<p>Non-Floating Image

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit obortis nisl ut aliquip ex ea commodo
consequat.</p>

</body>
</html>

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

320 Part III ✦ Controlling Presentation with CSS

Figure 19-4: Floating images can add a dynamic feel to your documents.

Although floating images can add an attractive, dynamic air to your documents, their
placement is not always predictable. As such, it’s helpful to be able to tell certain
elements not to allow floating elements next to them. One good example of when you
would want to disallow floating elements is next to headings. For example, consider
the document shown in Figure 19-5.

Using the clear property you can ensure that one side or both sides of an element
remain free of floating elements. For example, adding the following style to the
document in Figure 19-5 ensures that both sides of all heading levels are clear of
floating elements—this results in the display shown in Figure 19-6.

h1,h2,h3,h4,h5,h6 { clear: both; }

You can specify left, right, both, or none (the default) for values of the clear
property. Note that the clear property doesn’t affect the floating element. Instead,
it forces the element containing the clear property to avoid the floating
element(s).

The white-space property
User agents typically ignore extraneous white space in documents. However, at
times you want the white space to be interpreted literally, without having to result to
using a <pre> tag to do so. Enter the white-space property.

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

321Chapter 19 ✦ Text Formatting

Figure 19-5: Floating images can sometimes get in the way of other
elements, as in the case of this heading.

Figure 19-6: Using the clear property forces an element to start past
the floating element’s bounding box (and before any additional floating
elements begin).

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

322 Part III ✦ Controlling Presentation with CSS

The white-space property can be set to the following values:

✦ normal

✦ pre

✦ nowrap

The default setting is normal, that is, ignore extraneous white space.

If the property is set to pre, text will be rendered as though it were enclosed in a
<pre> tag. Note that using pre does not affect the font or other formatting of the
element—it only causes white space to be rendered verbatim. For example, the
following text will be spaced exactly as shown in the following code:

<p style=“white-space: pre;”>This paragraph’s words
are
irregularly spaced, but will be rendered as

such
by the user agent.</p>

Setting the white-space property to nowrap causes the element not to wrap at the
right margin of the user agent. Instead, it continues to the right until the next explicit
line break. User agents should add horizontal scroll bars to enable the user to fully
view the content.

Controlling Letter and Word Spacing
The letter-spacing and word-spacing properties can be used to control the
letter and word spacing in an element. Both elements take an explicit or relative
value to adjust the spacing—positive values add more space, and negative values
remove space. For example, consider the following code and output in Figure 19-7:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Letter Spacing</title>
<style type=“text/css”>

.normal { letter-spacing: normal; }

.tight { letter-spacing: -.2em; }

.loose { letter-spacing: .2em; }
</style>

</head>
<body>

<h3>Normal</h3>
<p class=“normal”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit obortis nisl ut aliquip ex ea commodo
consequat.</p>
<h3>Tight</h3>

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

323Chapter 19 ✦ Text Formatting

<p class=“tight”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit obortis nisl ut aliquip ex ea commodo
consequat.</p>
<h3>Loose</h3>
<p class=“loose”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit obortis nisl ut aliquip ex ea commodo
consequat.</p>

</body>
</html>

Figure 19-7: The letter-spacing property does exactly as its name
indicates, adjusts the spacing between letters.

Note that the user agent can govern the minimum amount of letter spacing allowed—
setting the letter spacing to too small a value can have unpredictable results.

The word-spacing property behaves exactly like the letter-spacing property,
except that it controls the spacing between words instead of letters. Like
letter-spacing, using a positive value with word-spacing results in more
spacing between words, and using a negative value results in less spacing.

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

324 Part III ✦ Controlling Presentation with CSS

Specifying Capitalization
Styles can also be used to control the capitalization of text. The text-transform
property can be set to four different values, as shown in the following code and
Figure 19-8:

Figure 19-8: The text-transform property allows you to influence the
capitalization of elements.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Letter Spacing</title>
<style type=“text/css”>

.normal { text-transform: none; }

.initcaps { text-transform: capitalize; }

.upper { text-transform: uppercase; }

.lower { text-transform: lowercase; }
</style>

</head>
<body>

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

325Chapter 19 ✦ Text Formatting

<h3>Normal</h3>
<p class=“normal”>Lorem ipsum DOLOR sit amet, consectetuer
adipiscing elit, SED diam nonummy nibh euismod tincidunt
ut laoreet doLore magna ALIQUAM erat volutpat.</p>
<h3>Initial Caps</h3>
<p class=“initcaps”>Lorem ipsum DOLOR sit amet,
consectetuer adipiscing elit, SED diam nonummy nibh euismod
tincidunt ut laoreet doLore magna ALIQUAM erat
volutpat.</p>
<h3>Uppercase</h3>
<p class=“upper”>Lorem ipsum DOLOR sit amet, consectetuer
adipiscing elit, SED diam nonummy nibh euismod tincidunt
ut laoreet doLore magna ALIQUAM erat volutpat.</p>
<h3>Lowercase</h3>
<p class=“lower”>Lorem ipsum DOLOR sit amet, consectetuer
adipiscing elit, SED diam nonummy nibh euismod tincidunt
ut laoreet doLore magna ALIQUAM erat volutpat.</p>

</body>
</html>

Note that there are some rules as to what text-transform will and won’t affect.
For example, the capitalize value ensures that each word starts with a capital
letter, but it doesn’t change the capitalization of the rest of the word. Setting the
property to normal will not affect the capitalization of the element.

Using Text Decorations
You can add several different effects to text through CSS. Most are accomplished via
the text-decoration and text-shadow properties.

The text-decoration property allows you to add the following attributes to text:

✦ underline

✦ overline (line above text)

✦ line-through

✦ blink

As with most properties, the values are straightforward:

<p style=“text-decoration: none;”>No Decoration</p>
<p style=“text-decoration: underline;”>Underlined</p>
<p style=“text-decoration: overline;”>Overlined</p>
<p style=“text-decoration: line-through;”>Line Through</p>
<p style=“text-decoration: blink;”>Blink</p>

The text-shadow property is a bit more complex, but can add stunning drop
shadow effects to text. The text-shadow property has the following format:

text-shadow: “[color] horizontal-distance
vertical-distance [blur]”

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

326 Part III ✦ Controlling Presentation with CSS

The property takes two values to offset the shadow, one horizontal, the other
vertical. Positive values set the shadow down and to the right. Negative values set
the shadow up and to the left. Using combinations of negative and positive settings,
you can move the shadow to any location relative to the text it affects.

The optional color value sets the color of the shadow. The blur value specifies the
blur radius—or the width of the effect—for the shadow. Note that the exact
algorithm for computing the blur radius is not specified by the CSS specification—as
such your experience may vary with this value.

The text-shadow property allows multiple shadow definitions, for multiple shadows.
Simply separate the definitions with commas.

The following code creates a drop shadow on all <h1> headlines. The shadow is set
to display above and to the right of the text, in a gray color.

h1 { text-shadow: #666666 2em -2em; }

The following definition provides the same shadow as the previous example, but
adds another, lighter gray shadow directly below the text:

h1 { text-shadow: #666666 2em -2em, #AAAAAA 0em 2em; }

Unfortunately, not many user agents support text-shadow. If you want such an
effect, you might be better off creating it with a graphic instead of text.

Formatting Lists
Several CSS properties modify lists. You can change the list type, the position of the
elements, and specify images to use instead of bullets. The list-related properties are
covered in the following sections.

An overview of lists
There are two types of lists in standard HTML, ordered and unordered. Ordered lists
have each of their elements numbered and are generally used for steps that must
followed a specific order. Unordered lists are typically a list of related items that do
not need to be in a particular order (commonly formatted as bulleted lists).

Cross-
Reference

Lists are covered in more detail in Chapter 5.

Ordered lists are enclosed in the ordered list or tag. Unordered lists are
enclosed in the unordered list or tag. A list item tag () precedes each item
in either list. The following code shows short examples of each type of list.
Figure 19-9 shows the output of this code.

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

327Chapter 19 ✦ Text Formatting

An ordered list
Step 1
Step 2
Step 3

An unordered list

Item 1
Item 2
Item 3

Figure 19-9: An example of an ordered and unordered list.

CSS lists—any element will do
An important distinction with CSS lists is that you don’t need to use the standard list
tags. CSS supports the list-item value of the display property, which, in effect,
makes any element a list item. The tag is a list item by default.

Note There is a list style shortcut property that you can use to set list properties with
one property assignment. You can use the list-style property to define the other
list properties, as follows:

list-style: <list-style-type> <list-style-position>
<list-style-image>

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

328 Part III ✦ Controlling Presentation with CSS

For example, to create a new list item you can define a class as a list item using the
display property:

.item { display: list-item; }

Thereafter, you can use that class to declare elements as list items:

<p class=“item”>This is now a list item</p>

As you read through the rest of this section, keep in mind that the list properties can
apply to any element defined as a list-item.

Note Both bullets and numbers preceding list items are known as markers. Markers
have additional value with CSS, as shown in the Generated content section later
in this chapter.

List style type
The list-style-type property is used to set the type of the list and, therefore,
what identifier is used with each item—bullet, number, roman numeral, and so on.

The list-style-type property has the following valid values:

✦ disc

✦ circle

✦ square

✦ decimal

✦ decimal-leading-zero

✦ lower-roman

✦ upper-roman

✦ lower-greek

✦ lower-alpha

✦ lower-latin

✦ upper-alpha

✦ upper-latin

✦ hebrew

✦ armenian

✦ georgian

✦ cjk-ideographic

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

329Chapter 19 ✦ Text Formatting

✦ hiragana

✦ katakana

✦ hiragana-iroha

✦ katakana-iroha

✦ none

The values are all fairly mnemonic; setting the style provides a list with appropriate
item identifiers. For example, consider this code and the output shown immediately
after:

HTML Code:
<ol style=“list-style-type:lower-roman;”>

A Roman Numeral List
Step 1
Step 2
Step 3

Output:
A Roman Numeral List

i. Step 1
ii. Step 2
iii. Step 3

You can use the none value to suppress bullets or numbers for individual items.
However, this does not change the number generation, the numbers are just not
displayed. For example, consider the following revised code and output:

HTML Code:
<ol style=“list-style-type:lower-roman;”>

A Roman Numeral List
Step 1
<li style=“list-style-type:none;”>Step 2
Step 3

Output:
A Roman Numeral List

i. Step 1
Step 2

iii. Step 3

Note that the third item is still number 3, despite suppressing the number on
item 2.

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

330 Part III ✦ Controlling Presentation with CSS

Positioning of markers
The list-style-position property can change the position of the marker in
relation to the list item. The valid values for this property are inside or outside.
The outside value provides the more typical list style, where the marker is offset
from the list item and the entire text of the item is indented. The inside value sets
the list to a more compact style, where the marker is indented with the first line of
the item. Figure 19-10 shows an example of both list types:

Figure 19-10: The difference between inside and outside positioned lists.

Images as list markers
You can also specify an image to use as a marker using the list-style-image
property. This property is used instead of the list-style-type property,
providing a bullet-like marker. You specify the image to use with the url construct.
For example, the following code references sphere.jpg and cone.jpg as images to
use in the list. The output is shown in Figure 19-11.

<li style=“list-style-image: url(sphere.jpg)”>
Lorem ipsum dolor sit amet, consectetuer

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

331Chapter 19 ✦ Text Formatting

adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat.
<li style=“list-style-image: url(cone.jpg)”>
Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat.

Figure 19-11: You can use images as list markers, such as the sphere and cone
shown here.

Note that you can use any URL-accessible image with the list-style-image.
However, it is important to use images sized appropriately for your lists.

Auto-generated Text
CSS has a few mechanisms for autogenerating text. Although this doesn’t fit in well
with the presentation-only function of CSS, it can be useful to have some constructs
to automatically generate text for your documents.

Note You can do much more with autogenerated content than is shown here. Feel
free to experiment with combining pseudo-elements (covered in Chapter 17)
and other autogenerated text constructs (listed with other CSS elements in
Appendix B).

Specifying quotation marks
You can use the autogeneration features of CSS to define and display quotation
marks. First, you need to define the quotes, and then you can add them to elements.

The quotes property takes a list of arguments in string format to use for the open
and close quotes at multiple levels. This property has the following form:

quotes: <open_first_level> <close_first_level>
<open_second_level> <close_second_level> ... ;

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

332 Part III ✦ Controlling Presentation with CSS

The standard definition for most English uses is as follows:

quotes: ‘“’ ‘”’ “‘” “’”;

This specifies a double-quote for the first level (open and closing) and a single-quote
for the second level (open and closing). Note the use of the opposite quote type
(single enclosing double and vice versa).

Note Many browsers do not support autogenerated content.

Once you define the quotes, you can use them along with the :before and :after
pseudo-elements, as in the following example:

blockquote:before { content: open-quote; }
blockquote:after { content: close-quote; }

The open-quote and close-quote words are shortcuts for the values stored in
the quotes property. Technically, you can place just about anything in the content
property because it also accepts string values. The next section shows you how you
can use the content property to create automatic counters.

Note When using string values with the content property, be sure to enclose the string
in quotes. If you need to include newlines, use the \A placeholder.

Numbering elements automatically
One of the nicest features of using the content property with counters is the ability
to automatically number elements. The advantage of using counters over standard
lists is that counters are more flexible, enabling you to start at an arbitrary number,
combine numbers (for example, 1.1), and so on.

Note Many user agents do not support counters. Check the listings in Appendix B for
more information on what user agents support what CSS features.

The counter object
A special object can be used to track a value and can be incremented and reset by
other style operations. The counter object has this form when used with the
content property, as in the following:

content: counter(counter_name);

This has the effect of placing the current value of the counter in the content object.
For example, the following style definition will display “Chapter” and the current
value of the “chapter” counter at the beginning of each <h1> element:

h1:before { content: “Chapter ” counter(chapter) “ ”; }

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

333Chapter 19 ✦ Text Formatting

Of course, it’s of no use to always assign the same number to the :before
pseudo-element. That’s where the counter-increment and counter-reset
objects come in.

Changing the counter value
The counter-increment property takes a counter as an argument and increments
its value by one. You can also increment the counter by other values by specifying
the value to add to the counter after the counter name. For example, to increment
the chapter counter by 2, you would use this definition:

counter-increment: chapter 2;

Tip You can increment several counters with the same property statement by spec-
ifying the additional counters after the first, separated by spaces. For example,
the following definition will increment the chapter and section counters each
by 2:

counter-increment: chapter 2 section 2;

You can also specify negative numbers to decrement the counter(s). For example, to
decrement the chapter counter by 1, you could use the following:

counter-increment: chapter -1;

The other method for changing a counter’s value is by using the counter-reset
property. This property resets the counter to zero or, optionally, an arbitrary number
specified with the property. The counter-reset property has the following format:

counter-reset: counter_name [value];

For example, to reset the chapter counter to 1, you could use this definition:

counter-reset: chapter 1;

Tip You can reset multiple counters with the same property by specifying all the
counters on the same line, separated by spaces.

Note that if a counter is used and incremented or reset in the same context (in the
same definition), the counter is first incremented or reset before being assigned to a
property or otherwise used.

Chapter and section numbers
Using counters, you can easily implement an auto-numbering scheme for chapters
and sections. To implement this auto-numbering, use <h1> elements for chapter
titles and <h2> elements for sections. We will use two counters, chapter and section,
respectively.

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

334 Part III ✦ Controlling Presentation with CSS

First, you need to set up your chapter heading definition, as follows:

h1:before {content: “Chapter ” counter(chapter) “: ”;
counter-increment: chapter;
counter-reset: section; }

This definition will display “Chapter chapter num:” before the text in each <h1>
element. The chapter counter is incremented and the section counter is
reset—both of these actions take place prior to the counter and text being assigned
to the content property. So, the following text would then result in the output
shown in Figure 19-12:

<h1>First Chapter</h1>
<h1>Second Chapter</h1>
<h1>Third Chapter</h1>

Figure 19-12: Auto-numbering <h1> elements.

The next step is to set up the section numbering, which is similar to the chapter
numbering:

h2:before {content: “Section ” counter(chapter) “.”
counter(section) “: ”;
counter-increment: section;

Now the styles are complete. The final following code results in the display shown in
Figure 19-13:

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

335Chapter 19 ✦ Text Formatting

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Chapter Auto-Number</title>
<style type=“text/css”>

h1:before {content: “Chapter ” counter(chapter) “: ”;
counter-increment: chapter;
counter-reset: section; }

h2:before {content: “Section ” counter(chapter) “.”
counter(section) “: ”;
counter-increment: section; }

</style>
</head>
<body>

<h1>First Chapter</h1>
<h2>Section Name</h2>
<h2>Section Name</h2>

<h1>Second Chapter</h1>
<h2>Section Name</h2>

<h1>Third Chapter</h1>
</body>
</html>

Figure 19-13: The completed auto-numbering system does both chapters
and sections.

Tip The counters should automatically start with a value of 0. In this example, that
is ideal. However, if you need to start the counters at another value, you can
attach resets to a higher tag (such as <body>), as in the following example:

body:before {counter-reset: chapter 12 section 10;}

P1: JYS

WY022-19 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:49

336 Part III ✦ Controlling Presentation with CSS

Custom list numbers
You can use a similar construct for custom list numbering. For example, consider the
following code, which starts numbering the list at 20:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>List Auto-Number</title>
<style type=“text/css”>

li:before {content: counter(list) “: ”;
counter-increment: list; }

</style>
</head>
<body>

<ol style=“counter-reset: list 19;
list-style-type:none;”>

First item
Second item
Third item

</body>
</html>

Note that the tag resets the counter to 19 due to the way the counter-
increment works (it causes the counter to increment before it is used). So you must
set the counter one lower than the first occurrence.

Tip You can have multiple instances of the same counter in your documents, and
they can all operate independently. The key is to limit each counter’s scope: A
counter’s effective scope is within the element that initialized the counter with
the first reset. In the example of lists, it is the tag. If you nested another
 tag within the first, it could have its own instance of the list counter,
and they could operate independently of each other.

Summary
This chapter covered basic text formatting with CSS. You learned how to justify and
align text, as well as control most other aspects of text layout. As you continue to
learn CSS, you will see that the considerable information presented here barely
scratches the surface of the capabilities of CSS. The next few chapters deal with
particular elements and specific uses of CSS—however, it is when you use all of the
capabilities together that CSS really shines.

✦ ✦ ✦

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

2020C H A P T E R

Padding,
Margins, and
Borders

✦ ✦ ✦ ✦

In This Chapter

Understanding the Box
Formatting Model

Defining Element Margins

Adding Padding Within
an Element

Adding Borders

Using Dynamic Outlines

✦ ✦ ✦ ✦

The CSS formatting model places every element within
a layer of boxes, each layer customizable by styles. This

chapter introduces the box formatting model and its individual
pieces—padding, borders, and margins. You learn how each is
defined and manipulated by CSS.

Understanding the Box
Formatting Model

CSS uses the box formatting model for all elements. The box
formatting model places all elements within boxes—rectangles
or squares—that are layered with multiple, configurable
attributes.

Note Box layout and formatting models have been used in
traditional publishing for ages. Open any magazine or
newspaper and you will see box layout in action—the
headline within one box, columns of text in their own
boxes, ads in boxes, and so on.

Figure 20-1 shows a typical Web page. Although the design
doesn’t seem too boxy, if you turn on borders for all elements
you can see how each element is contained in a rectangle or
square box. Figure 20-2 shows the same Web page with
borders around each element.

Within each CSS box you have control over three different,
layered properties:

✦ Margins—Represent the space outside of the element, the
space that separates elements from one another.

337

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

Figure 20-1: A typical Web page that isn’t overtly boxy in design.

Figure 20-2: The same Web page with borders around all elements, clearly showing the
box formatting model.

338

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

339Chapter 20 ✦ Padding, Margins, and Borders

✦ Borders—Configurable lines inside the elements margins, but outside of the
element’s padding (defined next).

✦ Padding—The space between the element and the element’s border.

Figure 20-3 shows a visual representation of how these properties relate.

Element

Border

Padding

Margin

Figure 20-3: How the margin, border, padding, and actual
element relate to each other spatially.

Each of these properties can be separately configured, but can also work well
together to uniquely present an element.

Defining Element Margins
Margins are an important issue to consider when designing documents. Some
elements have built-in margins to separate themselves from adjoining elements.
However, sometimes you will find that you need to increase (or decrease) the
standard margins.

For example, when using images, you may find the margin between the image and the
surrounding elements too slim. An image next to text is shown in Figure 20-4. Notice
that the “T” is all but touching the image.

Note that the following code was used to separate the two elements:

<p>Text next to an image</p>

You can use the margin properties to adjust the space around an element. There are
properties to adjust each margin individually, as well as a shortcut property to
adjust all the margins with one property.

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

340 Part III ✦ Controlling Presentation with CSS

Figure 20-4: The margins on some elements are
too tight, as shown by how close the text is to the
image.

The margin-top, margin-right, margin-bottom, and margin-left properties
adjust the margins on individual sides of an element. The margin property can
adjust one side or all sides of an element. The margin properties all have a simple
format:

margin-right: width;

The margin shortcut property allows you to specify one, two, three, or four widths:

margin: top right bottom left;

For example, suppose you want to set the margins as follows:

✦ Top: 2px

✦ Right: 4px

✦ Bottom: 10px

✦ Left: 4px

You could use this code:

margin: 2px 4px 10px 4px;

Tip You don’t have to specify all four margins in the margin property if some of
the margins are to be set the same. If you only specify one value, it applies to
all sides. If you specify two values, the first value is used for the top and bottom,
and the second value is used for the right and left sides. If three values are given,
the top is set to the first, the sides to the second, and the bottom to the third.

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

341Chapter 20 ✦ Padding, Margins, and Borders

So let’s return to the example in Figure 20-4, where the text is too close to the image.
You can separate the two elements by increasing the right margin of the image, or
the left margin of the text. However, you probably would not want to increase any of
the other margins.

Tip There are no real guidelines when it comes to which margins to adjust on what
elements. However, it’s usually best to choose to modify the least number of
margins or to be consistent with which margins you do change.

Adding Padding within an Element
Padding is the space between the element and its border. The configuration of the
padding is similar to configuring margins—there are properties for the padding on
each side of the element and a shortcut property for configuring several sides with
one property.

The properties for configuring padding are: padding-top, padding-right,
padding-left, padding-bottom, and bottom.

Note that you can use padding like a margin; increasing the padding increases the
space between elements. However, you should use margins for increasing spacing
between elements, and only use padding to help the legibility of the document by
separating the element from its border.

Tip An element’s background color extends to the edge of the element’s padding.
Therefore, increasing an element’s padding can extend the background away
from an element. This is one reason to use padding instead of margins to
increase space around an element. For more information on backgrounds, see
Chapter 21.

Adding Borders
Unlike margins and padding, borders have many more attributes that can be
configured using CSS. You can specify the look of the border, its color, its type, and
various other properties. Each of the groups of properties is discussed in the
following sections.

Border style
There are 10 different types of predefined border styles. These types are shown in
Figure 20-5.

Note The border type hidden is identical to the border type none, except that the
border type hidden is treated like a border for border conflict resolutions. Bor-
der conflicts happen when adjacent elements share a common border (when
there is no spacing between the elements). In most cases, the most eye-catching
border is used. However, if either conflicting element has the conflicting border
set to hidden, the border between the elements is unconditionally hidden.

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

342 Part III ✦ Controlling Presentation with CSS

Figure 20-5: The 10 different border types.

The border-style properties include properties for each side (border-top-style,
border-right-style, border-bottom-style, border-left-style) and a
shortcut property for multiple sides (border-style). The individual side
properties accept one border style value and sets the border on that side of the
element to the type specified by that value. The following example sets all of the side
borders of an element to dotted:

border-style: dotted;

The border-style shortcut property can set the border style for one or multiple
sides of the element. Like most other shortcut properties covered in this chapter,
values for this property follows these rules:

✦ If you only specify one value, it applies to all sides.

✦ If you specify two values, the first value is used for the top and bottom, while
the second value is used for the right and left sides.

✦ If three values are given, the top is set to the first, the sides to the second, and
the bottom to the third value.

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

343Chapter 20 ✦ Padding, Margins, and Borders

Border color
The border color properties allow you to specify the color used for an element’s
borders. Like most other border properties, there are color properties for each side
as well as a shortcut property that can affect multiple borders with one property.

The border color properties are: border-top-color, border-right-color,
border-bottom-color, bottom-left-color, and border-color. The
individual side properties take a single color value, while the shortcut border-color
takes up to four values. Like the border-style property, how many values you
enter determines what sides are affected by what values. (See the previous section
for the rules used to apply multiple values.)

The border color properties take color values in three different forms:

✦ Color keywords—Black, white, maroon, and so on. See Appendix C for a list of
color keywords.

✦ Color hexadecimal values—This value is specified in the form: #rrggbb, where
rrggbb is two digits (in hexadecimal notation) for each of the colors red,
green, and blue. See Appendix C for a list of color hexadecimal values.

✦ Color decimal or percentage values—This value is specified using the rgb()
property. This property takes three values, one each for red, green, and blue.
The value can be an integer between 0 and 255 or a percentage. For example,
the following specifies the color purple (all red and all blue, no green) in
integer form:

rgb(255, 0, 255)

✦ And the following specifies the color purple in percentages:

rgb(100%, 0, 100%)

Tip Most graphic editing programs supply RGB values in several different forms in
their color palette dialog boxes. For example, take a look at the dialog box in
Figure 20-6.

Border width
The actual width of the border can be specified using the border width properties.
As with the other border properties, there are individual properties for each side of
the element, as well as a shortcut property. These properties are: border-top-
width, border-right-width, border-bottom-width, border-left-width,
and border-width.

Note The border-width shortcut property accepts one to four values. The way
the values are mapped to the individual sides depends on the number of val-
ues specified. The rules for this behavior are the same as those used for the
border-style property. See the Border style section earlier in this chapter for
the specific rules.

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

344 Part III ✦ Controlling Presentation with CSS

Figure 20-6: Many graphic editing
programs specify colors using multiple
RGB value formulas that you can cut and
paste into your Web documents.

You can use the keywords thin, medium, or thick to roughly specify a border’s
width—the actual width used depends on the user agent. You can also specify an
exact size using em, px, or other width/length values. For example, to set all the
borders of an element to 2 pixels wide, you could use the following definition:

border-width: 2px;

The ultimate shortcut: The border property
You can use the border property to set the width, style, and color of an element’s
border. The border property has the following form:

border: border-width border-style border-color;

For example, to set an element’s border to thick, double, and red, you would use the
following definition:

border: thick double red;

Additional border properties
Two additional border properties are used primarily with tables:

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

345Chapter 20 ✦ Padding, Margins, and Borders

✦ border-spacing—This property controls how the user agent renders the
space between the borders of the cells in a table.

✦ border-collapse—This property selects the “collapsed” model of table
borders.

Cross-
Reference

These two border properties are covered in more depth with other table prop-
erties in Chapter 22.

Using Dynamic Outlines
Outlines provide another layer around the element to allow the user agent to
highlight elements. For example, Figure 20-7 shows the default outline provided by
Internet Explorer when a check box label is in focus.

Figure 20-7: The default outline provided by
Internet Explorer—shown around the Friend label.

Note Outlines are positioned directly outside the border of elements. The position
of the outline cannot be moved directly, but can be influenced by the position
of the border. Note that the outline does not occupy any space, and adding or
suppressing outlines does not cause the content to be reflowed.

Using CSS you can modify the look of these outlines. Unlike the other properties
covered in this chapter, all sides of the elements outline must be the same; you
cannot control the sides individually.

P1: KTX

WY022-20 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 8, 2004 15:21

346 Part III ✦ Controlling Presentation with CSS

The outline properties are outline-color, outline-style, outline-width,
and the shorthand property outline. These properties work exactly like the other
properties in this chapter, allowing the same values and having the same effects.
Note that the format of the outline shortcut property is as follows:

outline: outline-color outline-style outline-width;

To use the outline properties dynamically, use the :focus and :active pseudo-
elements. These two pseudo-elements allow you to specify that an element’s outline
is visible only when the element has the focus or is active. For example, the following
definitions specify a thick red border when form elements have focus and a thin
green border when they are active:

form *:focus { outline-width: thick; outline-color: red; }
form *:active { outline-width: thin; outline-color: green; }

Note At the time of this writing, none of the popular Web browsers (Internet Explorer,
Opera, Mozilla, and so on) handle outlines consistently or correctly. Some do
not allow the outline to be modified, and some do not properly track focus or
active elements. Therefore, when using outlines, it is best to extensively test
your code on all platforms you will support.

Summary
The box formatting model and the elements that make up each HTML element’s box
is quite powerful. As you saw in this chapter, you can use the various, layered
properties that make up the box in several ways within a document—from simple
ornamentation purposes to advanced formatting. The next chapter covers colors
and backgrounds, two additional pieces of the box model.

✦ ✦ ✦

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

2121C H A P T E R

Colors and
Backgrounds ✦ ✦ ✦ ✦

In This Chapter

Foreground Color

Background Color

Sizing an Element’s
Background

Background Images

Repeating and Scrolling
Background Images

Positioning Background
Images

✦ ✦ ✦ ✦

The previous chapter introduced you to the CSS box
formatting model and the concept of padding, borders,

and margins. This chapter extends that discussion into colors
and backgrounds, two additional components of the box
formatting model.

Foreground Color
The foreground color of an element is the color that actually
comprises the visible part of the element—in most cases, it is
the color of the font.

You can control the foreground color using the color
property. This property has the following format:

color: color—value;

The color—value can be specified in any of the usual means
for specifying a color:

✦ Color keywords—Black, white, maroon, and so on.

✦ Color hexadecimal values—This value is specified in the form:
#rrggbb, where rrggbb is two digits (in hexadecimal
notation) for each of the colors red, green, and blue.

✦ Color decimal or percentage values—This value is specified
using the rgb() property. This property takes three values,
one each for red, green, and blue. The value can be an integer
between 0 and 255 or a percentage. For example, the following
specifies the color purple (all red and all blue, no green) in
integer form:

rgb(255, 0, 255)

✦ And the following specifies the color purple in percentages:

rgb(100%, 0, 100%)

347

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

348 Part III ✦ Controlling Presentation with CSS

Tip Most graphic editing programs supply RGB values in several different forms in
their color palette dialog boxes.

For example, to set the font color to red for paragraph elements in the redtext
class, you could use this definition:

p.redtext { color: red; }

When specifying foreground colors, keep in mind what background colors will be
used in the document. It’s ineffective to use red text on a red background, or white
text on a white background, for example. If you have multiple background colors in
your document, consider using classes and the CSS cascade to ensure that the right
foreground colors are used.

Keep in mind that the user settings can affect the color of text as well—if you don’t
explicitly define the foreground color, the user agent will use its default colors.

Background Color
The background color of an element is the color of the virtual page that the element
is rendered upon. For example, Figure 21-1 shows two paragraphs—the first has a
default white background, and the second has a light gray background.

Note Saying that the document has a default color of white is incorrect. Technically,
the document will have the color specified in the rendering user agent’s settings.
In typical Internet Explorer installations (as shown in Figure 21-1), the color is
indeed white.

To specify a background color, you use the background-color property. This
property has a format similar to other color setting properties:

background-color: color—value;

For example, to set the background of a particular paragraph to blue, you could use
the following definition:

<p style=“background-color: blue; color: white”>This
paragraph will render as white text on a blue background.</p>

Note that the definition also sets the color property so the text can be seen on the
darker background. The result is shown in Figure 21-2.

Sizing an Element’s Background
An element’s background is rendered within the element’s padding space—that is,
inside the border of the element. For a visual example, take a look at Figure 21-3.
Each paragraph specifies a slightly larger padding value (thick borders have been
added to each paragraph for clarity).

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

349Chapter 21 ✦ Colors and Backgrounds

Figure 21-1: Background colors can be used to affect the color of the virtual
page elements are rendered on.

Background Images
Besides using solid colors for backgrounds you can also use images. For example,
the paragraph in Figure 21-4 uses a gradient image for the first paragraph (the image
is shown by itself after the paragraph for comparison).

To add an image as a background, you use the background-image property. This
property has the following format:

background-image: url(“url—to—image”);

For example, the paragraph in Figure 21-4 uses the following code, which specifies
gradient.gif as the background image:

p { background-image: url(“gradient.gif”);
height: 100px; width: 500px;
border: thin solid black; }

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

350 Part III ✦ Controlling Presentation with CSS

Figure 21-2: When using a dark background color, you should usually use a
light foreground color.

Note The example shown in Figure 21-4 has a few additional properties defined to
help make the example. A border was added to the paragraph and image to
help show the edges of the image. The height and width of the paragraph were
constrained to the size of the image to prevent the image from repeating. For
more on repeating and scrolling background images, see the next section.

The background image can be used for some interesting effects, as shown in
Figure 21-5, where a frame image is used as text ornamentation. (Again, the image is
repeated alone, with border, for clarification of what the image is.)

The following CSS definition is used for the paragraph in Figure 21-5:

p.catborder { height: 135px; width: 336px;
background-image: url(“cat.gif”);
padding: 80px 135px 18px 18px; }

This code uses several additional properties to position the text within the border
frame:

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

351Chapter 21 ✦ Colors and Backgrounds

Figure 21-3: An element’s background extends to the edge of its
padding—sizing the padding can size the background.

✦ Explicit width and height properties specify the size of the full image.

✦ Explicit padding values ensure that the text stays within the box.

Repeating and Scrolling Background Images
Element background images act similarly to document background images—by
default, they tile to fill the given space. For example, consider the paragraph in
Figure 21-6, where the smiley image is tiled to fill the entire paragraph box.

Notice, also, how the right and bottom of the background are filled with incomplete
copies of the image because the paragraph size is not an even multiple of the
background graphic size.

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

352 Part III ✦ Controlling Presentation with CSS

Figure 21-4: You can also use images for element backgrounds.

You can specify the repeating nature and the actual position of the background
image using the background-repeat and background-attachment properties.
The background-repeat property has the following format:

background-repeat: repeat | repeat-x | repeat-y | no-repeat;

The background-attachment property has the following format:

background-attachment: scroll | fixed;

The background-repeat property is straightforward—its values specify how the
image repeats. For example, to repeat our smiley face across the top of the paragraph,
specify repeat-x, as shown in the following definition code and Figure 21-7:

p.smiley { background-image: url(“smiley.gif”);
background-repeat: repeat-x;
/* Border for clarity only */
border: thin solid black; }

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

353Chapter 21 ✦ Colors and Backgrounds

Figure 21-5: Background images can be used as textual ornamentation.

The background-attachment property controls how the background is attached
to the element. The default value, scroll, allows the background to scroll as the
element is scrolled. The fixed value doesn’t allow the background to scroll; instead,
the contents of the element scroll over the background.

The scroll behavior can be seen in Figure 21-8 where two identical elements are
shown. The bottom paragraph has been scrolled a bit, and the background scrolls
with the element’s content.

The following code is used for the paragraphs in Figure 21-8:

p.smileyscroll { height: 220px; width: 520px;
overflow: scroll;

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

354 Part III ✦ Controlling Presentation with CSS

Figure 21-6: By default, background images will tile to fill the available space.

background-image: url(“smiley.gif”);
background-attachment: scroll;
border: thin solid black; }

Note Notice the use of the overflow property in the code for Figure 21-8. This prop-
erty controls what happens when an element’s content is larger than the ele-
ment’s defined box. The scroll value enables scroll bars on the element so
the user can scroll to see the rest of the content. The overflow property also
supports the values visible (which causes the element to be displayed in its
entirety, despite box size constraints) and hidden (which causes the part of
the element that overflows to be clipped and inaccessible).

If you change the background-attachment value to fixed, the background image
remains stationary, as shown in Figure 21-9.

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

355Chapter 21 ✦ Colors and Backgrounds

Figure 21-7: Repeating a background image horizontally with the repeat-x value of the
background-repeat property

Tip Non-scrolling backgrounds make great watermarks. Watermarks-—named for
the process of creating them on paper-—are slight images placed in the back-
ground of documents to distinguish them. Some companies place watermarks
of their logo on their letterhead.

Positioning Background Images
The background-position property allows you to position an element’s
background image. This property’s use isn’t as straightforward as some of the other
properties. The basic forms of the values for this property fall into three categories:

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

356 Part III ✦ Controlling Presentation with CSS

✦ Two percentages that specify where the upper-left corner of the image should
be placed in relation to the element’s padding area

✦ Two lengths (in inches, centimeters, pixels, em, and so on) that specify where
the upper-left corner of the image should be placed in relation to the element’s
padding area

✦ Keywords that specify absolute measures of the element’s padding area

No matter what format you use for the background-position values, the format is as
follows:

background-position: horizontal—value vertical—value;

Figure 21-8: Backgrounds scroll by default, as shown by the second paragraph.

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

357Chapter 21 ✦ Colors and Backgrounds

Figure 21-9: You can specify that a background image remain fixed under the element
with the background-attachment property.

If only one value is given, it is used for the horizontal placement—the image is
centered vertically. You can mix the first two formats (for example, 10px 25%), but
keywords cannot be mixed with other values (for example, center 50% is invalid).

The first two forms are much like the value formats used in other properties. For
example, the following definition positions the upper-left corner of the background
in the middle of the element’s padding area:

background-position: 50% 50%;

The next definition places the upper-left corner of the background 25 pixels from the
top and left sides of the element’s padding area:

background-position: 25px 25px;

P1: KTX

WY022-21 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

358 Part III ✦ Controlling Presentation with CSS

Several keywords can be used for the third format of the background-position
property. They include top, left, right, bottom, and center.

For example, you can position the background image in the top, center of the
element’s padding using the following:

background-position: top center;

Or, you can position the background image directly in the center of the element’s
padding with the following:

background-position: center center;

Tip Combining the background attributes can achieve more diverse effects. For
example, you can use background-position to set an image in the center
of the element’s padding, and specify background-attachment: fixed to
keep it there. Furthermore, you could use background-repeat to repeat
the same image horizontally or vertically, creating dynamic striping behind the
element.

Summary
This chapter completes the concept of a box formatting model and how it is used
and manipulated by CSS. You learned about foreground colors, background colors,
and background images. You learned how these components can be manipulated
separately or combined for maximum formatting effect. The next chapter covers
another powerful formatting tool—tables. Chapter 23 rounds out the CSS element
formatting subject by showing you how to position elements using CSS.

✦ ✦ ✦

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

2222C H A P T E R

Tables
✦ ✦ ✦ ✦

In This Chapter

Defining Table Styles

Controlling Table Attributes

Table Layout

Aligning and Positioning
Captions

✦ ✦ ✦ ✦

Earlier in this book, you learned how to use tables to
format documents. This chapter explains how CSS can

make a great formatting tool even better. Although many table
tag attributes still exist in the strict HTML standards, CSS
offers many advantages when formatting tables.

Defining Table Styles
Because the <table> tag attributes, such as border, rules,
cellpadding, and cellspacing, have not been deprecated, you
might be tempted to use them instead of styles when defining
your tables. Resist that temptation.

Using styles for tables has the same advantages as using styles
for any other elements—consistency, flexibility, and the ability
to easily change the format later.

For example, consider the following table tag:

<table border=“1” width=“200px” cellpadding=“3px”
cellspacing=“5px”>

Now suppose you had four tables using this definition in your
document, and you had four documents just like it. What if you
decided to decrease the width and increase the padding in the
tables? You would have to edit each table, potentially 16
individual tables.

If the table formatting were contained in styles at the top of the
documents, you would have to make four changes. Better yet,
if the formatting were contained in a separate, external style
sheet, you would only have to make one change.

The border properties can be used to control table borders,
and the padding and margin properties can affect the spacing
of cells and their contents.

359

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

360 Part III ✦ Controlling Presentation with CSS

Controlling Table Attributes
You can use CSS properties to control the formatting of tables. One issue with using
CSS is that some of the properties do not match up name-wise with the tag attributes.
For example, there are no cellspacing or cellpadding CSS properties. The
border-spacing and padding CSS properties fill those roles, respectively.

Table 22-1 shows how CSS properties match table tag attributes.

Table 22-1
CSS Properties for Table Attributes

Purpose Table Attribute CSS Property(ies)

Borders border border properties

Spacing inside cell cellpadding padding

Spacing between cells cellspacing border-spacing

Width of table width width and table-layout
properties

Table framing frame border properties

Alignment align, valign text-align, vertical-
alignment properties

Table borders
You can use the border properties to control the border of a table and its
subelements just like any other element. For example, the following definition
causes all tables and their elements to have single, solid, 1pt borders around them
(as shown in Figure 22-1):

table, table * { border: 1pt solid black; }

Note that we specified all tables and all table descendents (table, table *) to
ensure that each cell, as well as the entire table, has a border. If you wanted only the
cells or only the table to have borders, you could use the following definitions:

/* Only table cells have borders */
table * { border: 1pt solid black; }

or

/* Only table body has borders */
table { border: 1pt solid black; }

The results of these two definitions are shown in Figure 22-2.

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

361Chapter 22 ✦ Tables

Figure 22-1: A table using CSS formatting.

Figure 22-2: A table using selective
bordering.

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

362 Part III ✦ Controlling Presentation with CSS

You can also combine border styles. For example, the following definitions create a
table with borders similar to using the border attribute. The result of this definition
is shown in Figure 22-3.

table { border: outset 5pt; }
td { border: inset 5pt; }

Figure 22-3: You can combine border styles
to create custom table formats.

Table border spacing
To increase the space around table borders, you use the border-spacing and
padding CSS properties. The border-spacing property adjusts the space between
table cells much like the <table> tag’s cellspacing attribute. The padding
property adjusts the space between a table cell’s contents and the cell’s border.

The border-spacing property has the following format:

border-spacing: horizontal_spacing vertical_spacing;

Note that you can choose to include only one value, in which case the spacing is
applied to both the horizontal and vertical border spacing.

For example, Figure 22-4 shows the same table as in Figure 22-1, but with the
following border-spacing definition:

border-spacing: 5px 15px;

Note Some user agents, such as Internet Explorer, disregard the border-spacing
property. See Appendix B for a full list of what browsers support what properties.

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

363Chapter 22 ✦ Tables

Figure 22-4: Different horizontal and vertical
border-spacing can help distinguish data
in columns or rows.

Collapsing borders
Sometimes you will want to remove the spacing between borders in a table, creating
gridlines instead of cell borders. To do so, you use the border-collapse property.
This property takes either the value of separate (default) or collapse. If you
specify collapse, the cells merge their borders with neighboring cells (or the table)
into one line. Whichever cell has the most visually distinctive border determines the
collapsed border’s look.

For example, consider the two tables in Figure 22-5, shown with their table
definitions directly above them.

Notice how the borders between the table headers and normal cells inherited the
inset border while the rest of the borders remained solid. This is because the border
around the table headers was more visually distinctive and won the conflict between
the borders styles being collapsed.

Borders on empty cells
Typically, the user agent does not render empty cells. However, you can use the
empty-cells CSS property to control whether the agent should or should not show
empty cells. The empty-cells property takes one of two values: show or hide
(default).

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

364 Part III ✦ Controlling Presentation with CSS

Figure 22-5: Collapsing table borders turns individual
borders into gridlines between cells.

Figure 22-6 shows the following table with various settings of the empty-cells
property.

<table>
<tr><th>Heading</th><th>Heading</th><th>Heading</th></tr>
<tr><td>X</td><td></td><td>X</td></tr>
<tr><td></td><td>X</td><td></td></tr>
<tr><td>X</td><td>X</td><td>X</td></tr>

</table>

Note Some user agents, such as Internet Explorer, disregard the empty-cells prop-
erty. See Appendix B for a full list of what browsers support what properties.

Table Layout
The table-layout property determines how a user agent sizes a table. This
property takes one of two values, auto or fixed. If this property is set to auto, the
user agent automatically determines the table’s width primarily from the contents of
the table’s cells. If this property is set to fixed, the user agent determines the table’s
width primarily from the width values defined in the tags and styles.

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

365Chapter 22 ✦ Tables

Figure 22-6: The empty-cells property controls whether the
user agent displays empty cells or not.

Aligning and Positioning Captions
CSS can also help control the positioning of table caption elements. The positioning
of the caption is controlled by the caption-side property. This property has the
following format:

caption-side: top | bottom | left | right;

The value of the property determines where the caption is positioned in relationship
to the table. To align the caption in its position, you can use typical text alignment
properties such as text-align and vertical-align.

For example, the following code places the table’s caption to the right of the table,
centered vertically and horizontally, as shown in Figure 22-7.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

366 Part III ✦ Controlling Presentation with CSS

<html>
<head>

<title>Table Caption Positioning</title>
<style type=“text/css”>

table { margin-right: 200px; }
table, table * { border: 1pt solid black;

caption-side: right; }
caption { margin-left: 10px;

vertical-align: middle;
text-align: center; }

</style>
</head>
<body>
<p>
<table>

<tr><th>Employee</th><th>Start Date</th>
<th>Next Review</th></tr>

<tr><td>Branden R.</td><td>2/15/00</td>
<td>2/28/04</td></tr>

<tr><td>Theresa M.</td><td>11/15/03</td>
<td>3/31/04</td></tr>

<tr><td>Tamara D.</td><td>8/25/02</td>
<td>2/28/04</td></tr>

<tr><td>Steve H.</td><td>11/02/00</td>
<td>3/31/04</td></tr>

<tr><td>Ian M.</td><td>4/2/99</td>
<td>n/a</td></tr>

<caption>Tech Employee Review Schedule</caption>
</table>
</p>
</body>
</html>

Figure 22-7: Positioning a caption to the right of a table.

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

367Chapter 22 ✦ Tables

Note that the table’s caption is positioned inside the table’s margin. By increasing
the margin of the table, you allow more text per line of the caption. You can also
explicitly set the width of the caption using the width property, which increases the
margins of the table accordingly.

Summary
As you saw in this chapter, combining tables and CSS makes for a great, dynamic
formatting tool for Web documents.

✦ ✦ ✦

P1: KTX

WY022-22 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:0

368

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

2323C H A P T E R

Element
Positioning ✦ ✦ ✦ ✦

In This Chapter

Understanding Element
Positioning

Specifying Element Position

Floating Elements to the Left
or Right

Defining an Element’s
Width and Height

Stacking Elements in Layers

Controlling Element
Visibility

✦ ✦ ✦ ✦

In the various chapters within this section, you have seen
how dynamic documents can be when formatted with CSS.

This chapter shows you how you can position elements using
CSS properties.

Understanding Element
Positioning

There are several ways to position elements using CSS. The
method you use depends on what you want the position of the
element to be in reference to and how you want the element to
affect other elements around it. The following sections cover
the three main positioning models.

Static positioning
Static positioning is the normal positioning model—elements
are rendered inline or within their respective blocks.
Figure 23-1 shows three paragraphs; the middle paragraph
has the following styles applied to it:

width: 350px; height: 150px;
border: 1pt solid black;
background-color: white;
padding: .5em;
position: static;

Note Several styles have been inserted for consistency
throughout the examples in this section. A border and
background have been added to the element to enhance
the visibility of the element’s scope and position. The el-
ement also has two positioning properties (top and left),
although they do not affect the static positioning model.

369

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

370 Part III ✦ Controlling Presentation with CSS

Figure 23-1: Static positioning is the normal positioning model, rendering elements
where they should naturally be.

Relative positioning
Relative positioning is used to move an element from its normal position—where it
would normally be rendered—to a new position. The new position is relative to the
normal position of the element.

Figure 23-2 shows the second paragraph positioned using the relative positional
model. The paragraph is positioned using the following styles (pay particular
attention to the last two, position and top):

width: 350px; height: 150px;
border: 1pt solid black;
background-color: white;
padding: .5em;
position: relative;
top: 100px; left: 100px;

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

371Chapter 23 ✦ Element Positioning

Figure 23-2: Relative positioned elements are positioned relative to the position they
would otherwise occupy.

With relative positioning, you can use the side positioning properties (top, left,
and so on) to position the element. Note the one major side effect of using relative
positioning—the space where the element would normally be positioned is left open,
as though the element were positioned there.

Note The size of the element is determined by the sizing properties (width or
height), the positioning of the element’s corners (via top, left, and so on),
or by a combination of properties.

Absolute positioning
Elements using absolute positioning are positioned relative to the view port instead
of their normal position in the document. For example, the following styles are used

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

372 Part III ✦ Controlling Presentation with CSS

to position the second paragraph in Figure 23-3:

width: 350px; height: 150px;
border: 1pt solid black;
background-color: white;
padding: .5em;
position: absolute;
top: 100px; left: 100px;

Figure 23-3: The absolute positioning model uses the user agent’s view port for
positioning reference.

Note that the positioning properties are referenced against the view port when using
the absolute positioning model—the element in this example is positioned 100px
from the top and 100px from the left of the view port edges.

Unlike the relative positioning model, absolute positioning does not leave space
where the element would have otherwise been positioned. Neighboring elements
position themselves as though the element were not present in the rendering
stream.

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

373Chapter 23 ✦ Element Positioning

Fixed positioning
Fixed positioning is similar to relative positioning in that the element is positioned
relative to the view port. However, fixed positioning causes the element to be fixed in
the view port—it will not scroll when the document is scrolled; it maintains its
position. The following code is used to position the second paragraph shown in
Figures 23-4 and 23-5.

width: 350px; height: 150px;
border: 1pt solid black;
background-color: white;
padding: .5em;
position: fixed;
top: 100px; left: 100px;

Note that when the document scrolls (Figure 23-5) the fixed element stays put.

Figure 23-4: Elements using the fixed positioning model are positioned relative to the view
port, much like absolute positioning.

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

374 Part III ✦ Controlling Presentation with CSS

Figure 23-5: Elements using the fixed positioning model do not scroll in the view port, as
shown when this document scrolls.

Note Not all user agents support all the positioning models. Before relying upon
a particular model in your documents, you should test the documents in your
target user agents. The properties supported by various user agents are covered
in Appendix B.

Specifying Element Position
Element positioning can be controlled by four positioning properties: top, right,
bottom, and right. The effect of these properties on the element’s position is
largely driven by the type of positioning being used on the element.

The positioning properties have the following format:

side: length | percentage ;

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

375Chapter 23 ✦ Element Positioning

The specified side of the element is positioned according to the value specified. If the
value is a length, the value is applied to the reference point for the positioning model
being used—the element’s normal position if the relative model is used, the view
port if the absolute or fixed model is used. For example, consider the following code:

position: relative;
right: 50%;

These settings result in the element being shifted to the left by 50% of its width, as
shown in Figure 23-6. This is because the user agent is told to position the right side
of the element 50% of where it should be.

Figure 23-6: A relative, 50% right value results in an element being shifted to the
left by 50% of its width.

However, if the following settings are used, the element is positioned with its right
side in the middle of the view port, as shown in Figure 23-7:

position: absolute;
left: 50%;

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

376 Part III ✦ Controlling Presentation with CSS

Figure 23-7: An absolute, 50% left value results in an element being shifted so
its left side is in the middle of the view port.

Here, the user agent references the positioning against the view port, so the
element’s right side is positioned at the horizontal 50% mark of the view port.

Note Positioning alone can drive the element’s size. For example, the following code
will result in the element being scaled horizontally to 25% of the view port,
the left side positioned at the 25% horizontal mark, and the right at the 50%
horizontal mark.

position: absolute;
left: 25%; right: 50%;

However, whichever property appears last in the definition drives the final size
of the element. For example, the following definition will result in an element
that has its left side positioned at the view port’s horizontal 25% mark, but is
300 pixels wide (despite the size of the view port):

position: absolute;
left: 25%; right: 50%;
width: 300px;

The width overrides the right setting due to the cascade effect of CSS.

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

377Chapter 23 ✦ Element Positioning

Floating Elements to the Left or Right
The other way to position elements is to float them outside of the normal flow of
elements. When elements are floated, they remove themselves from their normal
position and float to the specified margin.

The float property is used to float elements. This property has the following format:

float: right | left | none;

If the property is set to right, the element is floated to the right margin. If the
property is set to left, the element is floated to the left margin. If the property is set
to none, the element maintains its normal position as per the rest of its formatting
properties. If the element is floated to a margin, the other elements will wrap around
the opposite side of the element. For example, if an element is floated to the right
margin, the other elements wrap on the left side of the element.

For example, the image in Figure 23-8 is not floated and appears in the normal flow of
elements. The same image is floated to the right margin (via the style float: right)
in Figure 23-9.

Figure 23-8: A nonfloated image is rendered where its tag appears.

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

378 Part III ✦ Controlling Presentation with CSS

Figure 23-9: An image that is floated is removed from the normal flow and is
moved to the specified margin (in this case, the right margin), and the other
elements wrap on the exposed side of the element.

Cross-
Reference

If you don’t want elements to wrap around a floated element, you can use
the clear property to keep the element away from floaters. See the Clear-
ing floating objects section in Chapter 19 for more information on the clear
property.

Defining an Element’s Width and Height
There are multiple ways to affect an element’s size. You have seen how other
formatting can change an element’s size—in the absence of explicit sizing instructions
the user agent does its best to make everything fit. However, if you want to intervene
and explicitly size an element, you can. The following sections show you how.

Specifying exact sizes
You can use the width and height properties to set the size of the element. For
example, if you want a particular section of the document to be exactly 200 pixels

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

379Chapter 23 ✦ Element Positioning

wide, you can enclose the section in the following <div> tag:

<div style=“width: 200px;”> ... </div>

Likewise, if you want a particular element to be a certain height, you can specify the
height using the height property.

Note Keep in mind that you can set size constraints-—minimum and maximum
sizes-—as well as explicit sizes. See the next section for details on minimum
and maximum sizes.

Specifying maximum and minimum sizes
There are properties to set maximum and minimum sizes for elements as well as
explicit sizes. At times, you will want the user agent to be free to size elements by
using the formatting surrounding the element, but still want to constrain the size,
allowing an element to be displayed in its entirety instead of being clipped or
displayed in a sea of white space.

You can use the following properties to constrain an element’s size:

✦ min-width

✦ max-width

✦ min-height

✦ max-height

Each property takes a length or percentage value to limit the element’s size. For
example, to limit the element from shrinking to less than 200 pixels in height, you
could use the following:

min-height: 200px;

Controlling element overflow
Whenever an element is sized independently of its content, there is a risk of it
becoming too small for its content. For example, consider the paragraphs in
Figure 23-10—the paragraphs are the same except that the second paragraph has
had its containing box specified too small, and the contents fall outside of the border.

In this example the user agent (Opera) chose to display the rest of the element
outside its bounding box. Other user agents may crop the element or refuse to
display it at all.

If you want to control how the user agent handles mismatched elements and content
sizes, use the overflow property. This property has the following format:

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

380 Part III ✦ Controlling Presentation with CSS

Figure 23-10: An element that is mis-sized doesn’t always handle its content properly.

overflow: visible | hidden | scroll | auto;

The values have the following effect:

✦ visible—The content is not clipped, and is displayed outside of its bounding
box, if necessary (as in Figure 23-10).

✦ hidden—If the content is larger than its container, the content will be clipped.
The clipped portion will not be visible, and the user will have no way to access it.

✦ scroll—If the content is larger than its container, the user agent should
contain the content within the container, but supply a mechanism for the
user to access the rest of the content (usually through scroll bars). Figure 23-11
shows the same paragraph as in Figure 23-10, but with its overflow property set
to scroll.

✦ auto—The handling of element contents is left up to the user agent. Overflows,
if they happen, are handled by the user agent’s default overflow method.

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

381Chapter 23 ✦ Element Positioning

Figure 23-11: The overflow property set to scroll instructs the user agent to supply a
mechanism to view the entire content (usually scrollbars).

Stacking Elements in Layers
Using CSS positioning can often lead to elements stacked on top of one another.
Usually, you can anticipate how the elements will stack and leave the user agent up
to its own devices regarding the display of stacked elements. At times, however, you
will want to explicitly specify how overlapping elements stack. To control the
stacking of elements, you use the z-index property.

The z-index property has this format:

z-index: value;

The property controls the third dimension of the otherwise flat HTML media.
Because the third dimension is typically referred to along a Z axis, this property is

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

382 Part III ✦ Controlling Presentation with CSS

named accordingly (with a Z). You can think of the z-stack as papers stackedon a
desktop, overlapping each other—some of the papers are covered by other pieces.

The value controls where on the stack the element should be placed. The beginning
reference (the document) is typically at index 0 (zero). Higher numbers place the
element higher in the stack, as shown in the diagram in Figure 23-12.

Document
(Index: 0)

Index: 1

Index: 2

Index: 3

Figure 23-12: The effect of the z-index property.

A practical example of z-index stacking can be seen in Figure 23-13. Each element is
assigned a z-index, as shown in the following code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Z-index Stacking</title>
<style type=“text/css”>

.box1 { position: absolute;
top: 25%; left: 25%;

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

383Chapter 23 ✦ Element Positioning

width: 200px; height: 200px;
background-color: red;
color: white;
z-index: 200; }

.box2 { width: 400px; height: 400px;
background-color: yellow;
z-index: 100; }

.box3 { width: 400px; height: 100px;
background-color: green;
position: absolute;
top: 20%; left: 10%; color: white;
z-index: 150; }

</style>
</head>
<body>
<div class=“box2”>
<p>Box 2: Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut
laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad
minim veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat. Duis autem
vel eum iriure dolor in hendrerit in vulputate velit esse
molestie consequat, vel illum dolore eu feugiat nulla
facilisis at vero eros et accumsan et iusto odio dignissim
qui blandit praesent luptatum zzril delenit augue duis
dolore te feugait nulla facilisi.</p>

<p class=“box1”>Box 1: This is text</p>

<p>Ut wisi enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure dolor in hendrerit in
vulputate velit esse molestie consequat, vel illum dolore eu
feugiat nulla facilisis at vero eros et accumsan et iusto
odio dignissim qui blandit praesent luptatum zzril delenit
augue duis dolore te feugait nulla facilisi. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat.</p>
</div>
<div class=“box3”>

<p>Box 3: This is text.</p>
</div>
</body>
</html>

The code uses a mix of <div> and <p> elements for diversity. Since box1’s index is
the highest (200), it is rendered on the top of the stack. Box3’s index is the next
highest (150), so it is rendered second to the top. Box2’s index is the lowest (100), so
it is rendered near the bottom. The document itself is recognized as being at 0, so it
is rendered at the bottom of the stack.

If you change the z-index of box1 to 125, it will render under box3, as shown in
Figure 23-14.

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

384 Part III ✦ Controlling Presentation with CSS

Figure 23-13: A sample of z-index stacking.

Tip You can use many of the properties in this chapter for animation purposes.
Using JavaScript, you can dynamically change an element’s size, position, and/or
z-index to animate it. For more information, see Chapters 25 and 26.

Controlling Element Visibility
You can use the visibility property to control whether an element is visible or
not. The visibility property has the following format:

visibility: visible | hidden | collapse;

The visible and hidden values are fairly self-explanatory—set to visible
(default), an element is rendered; set to hidden, the element is not rendered.

Note Even though an element is hidden with visibility, set to hidden it will
still affect the layout—space for the element is still reserved in the layout.

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

385Chapter 23 ✦ Element Positioning

Figure 23-14: Changing an element’s z-index changes its position in the stack.

The collapse value causes an element with rows or columns to collapse its borders.
If the element does not have rows or columns, this value is treated the same ashidden.

Cross-
Reference

For more information on collapsing borders, see Chapter 22.

Summary
HTML documents formatted with CSS can produce dramatic results. Previous
chapters showed you how to format individual elements, and this chapter showed
you how to position elements in all three dimensions. Chapter 24 shows you how to
format your documents for printing, truly bridging online and print media.

✦ ✦ ✦

P1: JYS

WY022-23 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:52

386

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

2424C H A P T E R

Defining Pages
for Printing ✦ ✦ ✦ ✦

In This Chapter

The Page Box Formatting
Model

Defining the Page Size

Setting Margins

Controlling Page Breaks

Handling Widows and
Orphans

Preparing Documents for
Double-Sided Printing

✦ ✦ ✦ ✦

Have you ever printed a Web page and been amazed
at just how badly the page printed? All kinds of nasty

things can happen. The most annoying is probably when the
text runs off the left side of the page, but there are other
annoyances, as well. The Web, after all, was originally intended
as a browsing medium. And although researchers who use the
Web and write simple HTML pages can always be counted on
to format their HTML in a way that makes their pages suitable
for printing (largely because they simply eschew bells and
whistles), those of us with an eye for design tend to run into
some problems.

This problem is less common on today’s modern Web, partly
because CSS allows Web authors to control the way a page
looks in print. You might not even notice that a Web page
contains very specific formatting instructions when simply
viewing it in a browser, because many of the properties
associated with print-based formatting are not designed to
appear in the browser, but instead provide instructions as to
how the printer should manage the flow of a page.

This chapter takes a look at how to use CSS to pass
instructions to the printer to make your Web pages look more
readable. CSS support for printed media is not particularly
strong yet, but it gains with each new browser version, so it’s
worth taking a look at (even those CSS properties that don’t
yet have full browser support).

The Page Box Formatting Model
If you’ve ever worked with a desktop publishing platform using
software such as Quark XPress, InDesign, or PageMaker, you’re
probably familiar with the concept of a page box, within which
fits everything that must go on a page. Even if you haven’t
worked with desktop publishing software, you’ve probably

387

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

388 Part III ✦ Controlling Presentation with CSS

seen precursors to the Web’s page box formatting model in word processing
packages you’ve used.

When you work in a word processing or desktop publishing environment, you work
with finite page sizes and page margins. The CSS page box formatting model is an
attempt to replicate this for browser-based media. The page box model is based on
the CSS box model (introduced in Chapter 16), as shown in Figure 24-1.

Top

Bottom

Left Right

m
ar

gi
n-

le
ft

m
ar

gi
n-

rig
ht

bo
rd

er
-le

ft

bo
rd

er
-r

ig
ht

pa
dd

in
g-

le
ft

pa
dd

in
g-

rig
ht

margin-top

Content

margin-bottom

border-top

border-bottom

BorderBorder

paddingpadding-top

padding-bottom

page edge

= margin edge

= border edge

= padding edge

= content

Figure 24-1: The CSS box model.

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

389Chapter 24 ✦ Defining Pages for Printing

Figure 24-1 simply extends the box model to reveal two major areas:

✦ The page area, which contains all of a page’s elements.

✦ The margin area, which surrounds the page area. When a page area size is
specified, the margins, if any, are subtracted.

On top of the page box, the model is expanded still further to account for the
difference between continuous media, as represented by a browser, and paged media,
which consists of discrete and specific page entities. This expansion is represented
by the visual formatting model, which allows transfer of the continuous media as
seen in a Web browser to an actual sheet of paper or transparency (or even film).

Defining the Page Size with the @page Rule
In word processing and desktop publishing environments, you define a page size by
using a dialog box within a set-up option of some kind. In CSS, you define the size of a
page using the @page rule. The @page rule defines which pages should be bound to
the definitions within the rule. You then use a page property within a style element
or attribute to indicate which page a specific element belongs to.

Unfortunately, browser support has still not caught up to this particular CSS rule,
and support is pretty nonexistent at this point. Microsoft actually does provide
support for this rule, but only through the MSHTML component, which application
developers use as a browser widget within their applications. Internet Explorer itself
does not include support for this rule in its printing templates, which are used for
print previewing and printing Web documents from the browser. If you’re a
programmer, you can find more information on how you can override this behavior
at this address: http://msdn.microsoft.com/workshop/browser/hosting/
hosting.asp.

Listing 24-1 demonstrates how the @page rule works.

Listing 24-1: Using an @page Rule to Set up Page Size

<style type=“text/css”>
<!--
@page printed{
size: 3in 3in;
margin: .5in;
page-break-after: left;
{
body, p {

page: printed
width: 600px;
widows: 1;
page-break-after: right;

}

-->
</style>

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

390 Part III ✦ Controlling Presentation with CSS

In Listing 24-1, a page named “printed” is defined. Then, HTML elements that are
defined in the stylesheet using printed within the page property should emerge
from the printer according to the specifications outlined in the @page rule:

body, p {
page: printed
width: 600px;
widows: 1;
page-break-after: right;

}

In CSS2, page selectors can be used to name the first page, all left pages, all right
pages, or a page with a specific name that the rules apply to. In the case of Listing
24-1, a named page called printed was used.

Setting up the page size with the size property
The actual dimensions of the page are defined using the size property, also shown
in Listing 24-1. The size property consists of two absolute values, one for the width
and the other for the height. So the following translates into an 81/2 ×11 size page:

@page {
size: 8.5in 11in;
{

You can also use the following relative size values:

✦ auto is the default value and is whatever the target paper size is in your
printer’s settings.

✦ landscape flip flops the dimensions named in the size property so that in
the previous example, the printed sheet would print out at 11 inches wide by
8 inches deep.

✦ portrait overrides the targeted media’s default settings to correspond with
the dimensions you set in the size property.

Setting margins with the margin property
In general, you need to be careful when using margins because they are the
outermost layer of a page. If you set the margins of a body element to three inches
on either side, for example, be sure to set the width of that same body element as
well, or your page will look like that shown in Figure 24-2.

However, in theory, you should be able to set margins for the printed page without
worrying about the body text running off to one side of the browser when you
neglect to set the width of the page’s other elements.

This is because margins can be set using the margin property in CSS within an @page
rule. Margins were covered in Chapter 20, Padding, Margins, and Borders. You can set

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

391Chapter 24 ✦ Defining Pages for Printing

Figure 24-2: Bad margins.

the page margins, as shown in Listing 24-1, by simply using the margin property in
the same manner as you use it anywhere else, as shown here:

@page {
size: 3in 3in;
margin: .5in;
page-break-after: left;
{

The margin settings should be ignored when being viewed on the Web when they’re
set in an @page rule. However, once again, at the time of this writing, browser
support for this feature is weak.

Controlling Page Breaks
Another way to control the flow of a printed page is to force page breaks before or
after named elements. There’s good news here. Browser support is actually pretty
decent (see Table 24-1).

You can set the page-break-before or page-break-after property in a p
element, for example, to force a page break before or after all p elements. You
probably wouldn’t want to actually do that unless you have awfully long paragraphs,

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

392 Part III ✦ Controlling Presentation with CSS

but you can create a class selector rule and apply the rule to the first or last
paragraph of a page, depending on your needs, like this:

pagebreak
{
page-break-before: always;
}

In this case, then, you simply apply it to a head element of a page:

<h2 class=“pagebreak”>How the Panose System Works</h2>

Note that you can’t use page breaks within positioned elements. This means that if
you have an absolutely positioned div element with a child p element and the p
element has a page break assigned to it via a CSS rule, it won’t work.

Using the Page-Break Properties
When your users wish to print your pages, you may want to avoid starting pages
with a few lines from a paragraph that started on a previous page. The way to
accomplish this is with a CSS page-break property. There are three of them:

✦ The page-break-before property specifies how a page should break after a
specific element, and on what side of the page the flow should resume.

✦ The page-break-after property specifies how a page should break before a
specific element, and on what side of the page the flow should resume.

✦ The page-break-inside property tells the browser how to break a page from
within a box element. Actual support for this property is limited to Opera 3.5.
Neither Internet Explorer nor Netscape browsers support this property.

If you don’t have a lot of headings, you can set up a style rule and call a page-break
property using an element’s class attribute. Browser support is strongest in
Opera 3.5 and above.

Using the page-break-before and
page-break-after properties
The page-break-before and page-break-after properties specify how a page
should break before or after a specific element, depending on which of the two
properties you use, and on what side of the page the flow should resume. The CSS2
documentation provides these general guidelines:

✦ Page breaking should be avoided inside table elements, floating elements, and
block elements with borders.

✦ Page breaking should occur as few times as possible. In other words, it’s not a
good idea to break a page with every paragraph.

✦ Pages that don’t have explicit breaks should be approximately the same height.

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

393Chapter 24 ✦ Defining Pages for Printing

Once again, the best support for this property is in the Opera browser.

Internet Explorer also supports page-break properties, particularly the always
value. In fact, in Internet Explorer, the left and right values are treated as if they
are always. In addition, Internet Explorer ignores this property when used with hr
and br elements. Table 24-1 lists the values that can be used with either the
page-break-before or page-break-after property.

Caution Even though Opera is designed to support the inherit property value, some
bugs have been reported on this feature indicating that Opera will often crash
on pages using this value.

In Table 24-1, the browser support can be assumed to be true for versions following
the one named for each specific browser, unless an inconsistency or bug is noted in
the description.

Table 24-1
Page-Break-Before/After Property Values

Value CSS Version Description Browsers

inherit 2 Specifies that the value should be
inherited from the parent

None

auto 2 Allows the user agent (browser) to insert
page breaks on an as-needed basis

IE4, Netscape 7,
Opera 3.5

avoid 2 Tells the user agent to avoid inserting
page breaks before or after the current
element

Opera 3.5

left 2 Forces one or two page breaks to create
a blank left page

IE4, Opera 3.5

right 2 Forces one or two page breaks to create
a blank right page

IE4, Opera 3.5

always 2 Tells the browser or user agent to always
force a page break before or after the
current element

IE3, Netscape 7,
Opera 3.5

”” NA This is not a value found in the spec but
is actually a value that can be used in
Internet Explorer; it explicitly specifies
that no property value should be used,
and therefore, no page break should be
inserted before the current element

IE5

Listing 24-2 shows how the page-break-before property is used in a head element
(H2) to help ensure that a page starts with a head element instead of a few lines of

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

394 Part III ✦ Controlling Presentation with CSS

dangling paragraph text. Figures 24-3 and 24-4 show how the effect appears in a Print
Preview screen in Internet Explorer. Note that the figures represent the rendered
page as it would look with all the source code intact (Listing 24-2 was snipped to
save space).

Listing 24-2: Using the Page-Break-Before CSS Property

<html>
<head>
<title>Printing with CSS</title>
<meta http-equiv=“Content-Type” content=“text/html;
charset=iso-8859-1”>
<style type=“text/css”>
<!--
p.code {

font-family: “Courier New”, Courier, mono;
font-size: 11px;
background-color: #CCCCCC;
padding: 3px;

}
.pagebreak {

page-break-before: always;
}
.inlinecode {

font-family: “Courier New”, Courier, mono;
}
-->
</style>
</head>
<body>
<h1>Understanding Font families</h1>
<p>When choosing font families for style sheets it helps to
understand some basic facts about fonts. For example, Arial
and Helvetica are virtually identical.
<!-- Code snipped to save trees -->
</p>
<h2 class=“pagebreak”>How the Panose System Works</h2>
<p>Panose is a system of font substitution that uses...
<!-- Code snipped to save trees -->
</p>
<h2>Working with Font styles</h2>
<p>In traditional HTML you can choose whether you want your
font to appear in Roman style (non-italic) font or italics by
using or not using the em

or i elements:</p>
<!-- Code snipped to save trees -->
<!-- More paragraphs here -->
</body>
</html>

Figures 24-3 and 24-4 show how the Print Preview looks before applying the page
break using the class attribute. Note the last heading on the first page in

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

395Chapter 24 ✦ Defining Pages for Printing

Figure 24-3: You can use your browser’s Print Preview to view how the page will
look in print (Page 1).

Figure 24-4: Page two of the print preview using page-break-before shows
the break occurring on the H2 element.

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

396 Part III ✦ Controlling Presentation with CSS

Figure 24-3, which is at the end of the page and has no text under. This is because the
page broke at a bad spot. Figures 24-5 and 24-6 show how the print previews look
after the CSS has been fixed.

Figure 24-5: This page improves upon the page breaking in Figures 24-3 and 24-4 (Page 1).

The page break in Listing 24-2 is handled through a class selector shown in bold,
which is applied to an H1 element, also in bold.

Using the page-break-inside property
You can also use a page-break-inside property to handle page breaks within
elements (for example, if you have a very long div element). However, in practice,
the only current browser support is in Opera 3.5 and higher.

Handling Widows and Orphans
Widows and orphans are normally tragic subjects, but CSS has provided developers
an opportunity to reduce their impact. A widow is the number of lines at the top
of a page. It can be unsightly if there is, for example, just one sentence at the top of
a page before a section break. An orphan is similar, except it occurs at the end of a
page. Again, it can be unsightly if a section or paragraph starts at the very end of

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

397Chapter 24 ✦ Defining Pages for Printing

Figure 24-6: This page improves upon the page breaking in Figures 24-3 and 24-4 (Page 2).

a page and the page break results in only a line or two of text at the very end of the
page.

One way to help control widows and orphans is through page-breaks. This is
especially true since the two CSS properties that are relevant to widows and
orphans, respectively named, conveniently enough, widow and orphan, have
virtually no browser support beyond Opera.

Both of these properties have similar syntax:

widow: 4;
orphan: 3;

You name the property, then supply the value, which can either be an integer or the
explicit value inherit, the latter of which means the element named in the style
rule inherits the properties of its parent. The following sets a p element’s widow to a
minimum of three lines. This means that the bottom of the page must have a
minimum of three lines when printing:

<p STYLE=“orphans: 3”>This paragraph must not be on the top of a page by
itself if it doesn’t consist of at least three
lines.</p>

If it doesn’t, the entire block must be moved to the next page.

P1: KTX

WY022-24 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:53

398 Part III ✦ Controlling Presentation with CSS

Preparing Documents for
Double-Sided Printing

To set up pages for printing, you need to account for margin differences on each side
of a double-sided, printed page. One way to handle that would be to set the margins
differently for elements you expect to appear on different pages, but that would be
ugly and almost impossible to do. The only other way is to use CSS @page
pseudo-classes named :left and :right, and to set the margins of each differently.
But, once again, the catch is that browser support is not yet there.

For the curious among you, these pseudo-classes, working in tandem, look like this:

@page :left {
margin-left: .5in;
margin-right: .25in;

}
@page :right {

margin-left: .25in;
margin-right: .5in;

}

You can also specify style for the first page of a document with the :first
pseudo-class:

@page { margin: 1in }
@page :first {

margin-top: 3in
}

The preceding code sets all the margins at one inch, but the top margin of the first
page at three inches, thus overriding the overall page margins established by the
first @page rule.

Summary
As you can see, printed page management within the CSS realm still has a way to go
in terms of browser support, which is why we focused most of our attention on the
one area that has a comparatively high degree of support, that of page breaks. You
can use page breaks to great effect, and if you expect your users to print your Web
documents, there’s really no reason not to use them.

The next chapter takes a look at some of the Web development tools available. You’ll
learn about text editing tools as well as WYSIWYG tools. You’ll also see how
graphic-editing programs can influence your design decisions and improve your
productivity.

✦ ✦ ✦

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

P A R T

IVIVAdvanced Web
Authoring

✦ ✦ ✦ ✦

In This Part

Chapter 25
JavaScript

Chapter 26
Dynamic HTML

Chapter 27
Dynamic HTML
with CSS

Chapter 28
Introduction to
Server-Side
Scripting

Chapter 29
Introduction to
Database-Driven
Web Publishing

Chapter 30
Creating a
Weblog

Chapter 31
Introduction to
XML

Chapter 32
XML Processing
and
Implementations

✦ ✦ ✦ ✦

399

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

400

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

2525C H A P T E R

JavaScript
✦ ✦ ✦ ✦

In This Chapter

JavaScript Background

Writing JavaScript Code

Using JavaScript in HTML
Documents

Practical Examples

✦ ✦ ✦ ✦

Up to this point, you have learned how to create static
documents on the Web with HTML. However, as the Web

matured from its meager beginnings, it was clear that static
documents provided limitations—limitations that could be
circumvented with a small level of automation. Enter scripting.
Scripting is a simple form of programming usually used to refer
to application macro languages, or in this case, to create small
programs to help automate Web pages. This chapter begins
the discussion of scripting by introducing the most popular
scripting language on the Web, JavaScript.

JavaScript Background
JavaScript is the language of choice for the vast majority of
scripting on the Web. It is supported by the two major
browsers (Internet Explorer and Navigator), along with other
varieties including StarOffice (www.staroffice.com) and
Opera (www.opera.com). JavaScript is a relatively simple and
powerful language, and is in broad enough use to make it the
de facto standard for Web scripting languages.

Note VBScript is an extension of Visual Basic created by
Microsoft as a competitor to JavaScript. However,
Microsoft’s efforts were not as widely accepted, because
JavaScript was introduced to the Web developer world
first. As a result, Microsoft has added complete support
for JavaScript (calling it Jscript) to Internet Explorer, in
addition to VBScript.

However, using JavaScript does have a drawback. As long as
there is more than one browser, there will be more than one
way of doing things. Different developers keep up with
industry standards and recommendations at different rates.
The result is a mess for the lowly Web author who wants to do
fun and exciting things with a Web page, but doesn’t want to
limit their site to only those with the latest and greatest
browser.

JavaScript is an object-oriented scripting language. With
JavaScript, you can manipulate many variables and objects on

401

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

402 Part IV ✦ Advanced Web Authoring

your page. With JavaScript and the Document Object Model (DOM), you can change
the value of all the properties of all the objects on your page. Because the DOM
requires browsers to redraw pages in response to events, JavaScript becomes far
more powerful with the DOM.

Note It’s easy to confuse Java and JavaScript—after all, they appear to be closely
related. Although JavaScript bases its syntax and structure on Java, the two
languages are quite independent of each other and serve completely differ-
ent purposes. Java is the product of Sun Microsystems, which created it as a
cross-platform, object-oriented programming language. JavaScript is a product
of Netscape, which developed it to enable Web developers to add programming
functionality to Web pages.

JavaScript is the most widely used scripting language on the Web. Originally
developed by Netscape, JavaScript has now grown beyond the realm of anything
Netscape can control and is supported natively by all the major browsers. In
conjunction with the DOM, you can use JavaScript to animate, display, or hide any
part of your page, validate forms, and interact in other ways with the end user.

Note A standardized version of JavaScript is defined by the European Computer Man-
ufacturers Association (ECMA, at www.ecma.ch), which calls their language
ECMAScript. Netscape turned JavaScript over to ECMA in an attempt to stabi-
lize the language and make it more widely accessible to other developers. This
has not prevented Netscape or Microsoft from continuing to make their own
innovations and changes outside the standards created by the ECMA.

When combined with the DOM, you can do many things with JavaScript on a Web
page, including the following:

✦ Create a dynamic form displaying relevant fields, based on information already
provided. For example, if a visitor answers yes to an insurance form question
about whether any family members have died before age 55, a set of questions
about which relatives and how they died would appear. If the answer is a no,
the next question to appear might ask whether the visitor uses tobacco or
illegal drugs. This helps to avoid such techniques as “If no, skip to question 13.”

✦ Reward certain screen interactions, such as answering a series of trivia questions
correctly, by providing a congratulatory animation. The JavaScript can both
evaluate the results of the quiz and animate a still image (or a series of images)
without reloading the page and without requiring additional actions by the
visitor, such as clicking a “see results” button.

✦ Sort the results of a database table based on the sort order requested by the visitor
without additional server requests. Once receiving the information from the
server, the client can sort the data in useful ways utilizing JavaScript and the
DOM.

Note This chapter is a very brief introduction to JavaScript. For the full story, plus lots
of examples and expert advice, check out Danny Goodman’s JavaScript Bible
(Wiley Publishing, Inc). The DOM is also covered in Chapter 26.

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

403Chapter 25 ✦ JavaScript

Even with all JavaScript can do, it has limitations. JavaScript is limited to its own
sandbox within the browser. JavaScript cannot manipulate files on the client
computer, including creating, writing, or deleting any system files. JavaScript also
cannot execute any operations outside of the browser, including launching an
installer or initiating a download.

These limitations may seem like a handicap for developers, but they help to
safeguard site visitors. Right now, few Web citizens fear JavaScript; because of its
built-in limitations it is not perceived as a security threat. This is unlike Java and
ActiveX. Many visitors have disabled the capability for their browsers to accept
any of those technologies for fear of rogue programs. JavaScript would do well to
avoid any similar security scare, so some modest limitations are an acceptable
price.

Writing JavaScript Code
JavaScript follows a fairly basic syntax that can be outlined with a few simple rules:

✦ With few exceptions, code lines should end with a semicolon (;). Notable
exceptions to the semicolon rule are lines that end in a block delimiter
({ or }).

✦ Blocks of code (usually under controls structures such as functions, if
statements, and so on) should be enclosed in braces ({ and }).

✦ Although not necessary, explicit declaration of variables is a good idea.

✦ The use of functions to delimit code fragments is highly advised and increases
the ability to execute those fragments independently from one another.

Data types and variables
Variables are storage containers where you can temporarily store values for later
use. JavaScript, like most scripting languages, supports a wide range of variable
types (integer, float, string, and so on) but incorporates very loose variable type
checking. That means that JavaScript doesn’t care too much about what you store in
a variable or how you use the variable’s value later in the script.

JavaScript variable names are case-sensitive but can contain alphabetic or numeric
characters. The following are all valid JavaScript variable names:

Rose
rose99
total
99_password

Although JavaScript doesn’t require that you declare variables before their use,
declaring variables is a good programming habit to develop. To declare a variable in

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

404 Part IV ✦ Advanced Web Authoring

JavaScript, you use the var keyword. For example, each of the following lines
declares a variable:

var name = “Hammond”;
var total;
var tax_rate = .065;

Variables are referenced in the script by their names—JavaScript doesn’t require any
characters to prefix the variable names. For example, you can reference the variable
named total by simply using the following:

total

Calculations and operators
JavaScript supports the usual range of operators for both arithmetic and string
values. Tables 25-1 through 25-4 list the various operators supported by JavaScript.

Table 25-1
JavaScript Arithmetic Operators

Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (division remainder)

++ Increment

– Decrement

Table 25-2
JavaScript Assignment Operators

Operator Use

= Assignment

+= Increment assignment

-= Decrement assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

405Chapter 25 ✦ JavaScript

Table 25-3
JavaScript Comparison Operators

Operator Use

== Is equal to

!= Is not equal to

> Is greater than

< Is less than

>= Is greater than or equal to

<= Is less than or equal to

Table 25-4
Logical Operators

Operator Use

&& And

|| Or

! Not

Handling strings
Strings are assigned using the standard assignment operator (=). You can
concatenate two strings together using the concatenate operator (+). For example, at
the end of this code, the full_name variable will contain “Terri Moore”:

first_name = “Terri”;
last_name = “Moore”;
full_name = first_name + “ ” + last_name;

Control structures
JavaScript supports the following control structures:

✦ if-else

✦ while

✦ for

The if-else structure
The if-else structure is used to conditionally execute lines of code, depending on
a condition that is usually a comparison of values.

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

406 Part IV ✦ Advanced Web Authoring

The if-else structure has the following syntax:

if (condition) {
...statements to execute if condition is true...

} else {
...statements to execute if condition is false...

}

Note The else portion of the if-else structure is optional and can be omitted if
you do not need to execute statements if the condition is false.

For example, consider the following code:

if (state == “CO”) {
flower = “Columbine”;

}

This code sets the flower variable to “Columbine” if the state variable is “CO”. (The
State flower of Colorado is the Columbine.)

The while structure
The while structure is used to execute lines of code over and over again while a
certain condition is true.

The while structure has the following syntax:

while (condition) {
...lines to execute while condition is true...
}

For example, consider the following code:

while (address.length < 20) {
address = address + “ ”;

}

This structure will spacefill (add spaces to the end of) the address variable until it is
20 characters in length. If it is already longer than 20 characters, the structure’s
statements will be skipped altogether.

Tip Always ensure that your while structures include a means to change the struc-
ture’s condition to false. Otherwise, you run the risk of creating an endless loop,
where the while structure’s statements continuously repeat without end.

The for structure
The for structure is used to execute a block of code much like the while structure.
The difference is that the for structure is tailored specifically for numerical loops,
usually counting a specific number of loops.

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

407Chapter 25 ✦ JavaScript

The for structure has the following syntax:

for (assignment; condition; change;) {
...statements to execute while condition is false...
}

The assignment, condition, and change blocks of the for structure work together to
control the number of times the statements are executed.

✦ The assignment block’s code is executed at the beginning of the loop and is
executed only once.

✦ The condition block provides a conditional statement. While this statement
evaluates as true the loop continues to execute.

✦ The change block’s code is executed at the end of each loop.

Typically, the blocks reference the same variable, similar to this example:

for (x = 1; x <= 10; x++;) {

In this case, the loop’s execution is as follows:

✦ The variable x is set to 1 at the beginning of the loop.

✦ The value of variable x is checked—if it is less than or equal to 10, the loop’s
statements are executed.

✦ At the end of each loop the variable x is incremented by one, and the loop is
repeated.

In short, this structure would execute 10 times.

Note The description provided here for the for structure is somewhat simplistic. The
various blocks (referenced herein as assignment, condition, and change) can be
quite complex and take various forms. The simplistic explanation here shows
the most common use as a numeric counter and loop handler.

Break and continue
Two additional loop-related commands come in handy when using loops in
JavaScript: break and continue.

The break command ends the loop, and code execution continues after the loop
structure.

The continue command ends the current iteration of the loop, and execution
continues with the next iteration of the loop.

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

408 Part IV ✦ Advanced Web Authoring

Functions
Functions are a means of grouping code fragments together into cohesive pieces.
Typically, those pieces perform very specific tasks—receiving values to execute
upon and returning values to indicate their success, failure, or result.

There are essentially two types of functions, built-in JavaScript functions and
user-defined functions.

Built-in functions
JavaScript has quite a few built-in functions to perform a variety of tasks.
Augmenting the functions are a bunch of properties and methods that can be used
with just about any object, from browser function to variable.

The scope of built-in JavaScript functions, methods, and properties is too vast to
adequately convey here. However, comprehensive references can be found on the
Internet, including the following:

✦ Netscape Devedge JavaScript 1.5 Guide
(http://devedge.netscape.com/library/manuals/2000/
javascript/1.5/guide/)

✦ DevGuru JavaScript Quick Reference
(http://www.devguru.com/Technologies/ecmascript/quickref/
javascript_intro.html)

User-defined functions
Like any other robust programming language, JavaScript allows for user-defined
functions. User-defined functions allow you to better organize your code into
discrete, reusable chunks.

User-defined functions have the following syntax:

function function_name (arguments) {
...code of function...
return value_to_return;

}

For example, the following function will spacefill any string passed to it to 25
characters and return the new string:

function spacefill (text) {
while (text.length < 25) {

text = text + “ ”;
}
return text;

}

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

409Chapter 25 ✦ JavaScript

Elsewhere in your code you can call a function similar to the following:

address = spacefill(address);

This would cause the variable address to be spacefilled to 25 characters:

✦ The spacefill function is called with the current value of address.

✦ The spacefill function takes the value and assigns it to the local variable
text.

✦ The local variable text is spacefilled to 25 characters.

✦ The local variable text (now spacefilled) is returned from the function.

✦ The original calling assignment statement assigns the returned value to the
address variable.

Note The arguments passed to a function can be of any type. If multiple arguments
are passed to the function, separate them with commas in both the calling
statement and function definition, as shown in the following examples:

Calling statement:

spacefill(address, 25)

Function statement:

function spacefill (text, spaces)

Note that the number of arguments in the calling statement and in the function
definition should match.

The variables used by the function for the arguments and any other variables
declared and used by the function are considered local variables—they are in-
accessible to code outside the function and exist only while the function is
executing.

Using objects
One of the most powerful uses of JavaScript is in accessing document objects. You
can use this ability to check document attributes, change document contents, and
more.

Cross-
Reference

This chapter gives only a basic introduction to objects and the document object
model. For more information on objects, the DOM, and how JavaScript relates
to both, see Chapters 26 and 27.

Most objects are accessed through the document’s object collection. The collection
is referenced through a structure of tiered objects whose structure is similar to the
following:

document.element_in_document.sub-element_of_element

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

410 Part IV ✦ Advanced Web Authoring

For example, the following statement references the address form field in the info
form:

document.info.address

In order for this to work, the elements and subelements must be appropriately
named in the document. For example, the form referenced in the preceding code
would need name attributes for its elements:

<form name=“info” action=“handler.cgi” method=“post”>
<input type=“text” name=“address”>

To make use of objects, you also have to understand and use properties. Properties
are attributes that an object has. In real life these would be attributes such as size,
color, smell, and so on. In the DOM they are attributes such as value, length, and so
on.

You reference an object’s properties by appending the property keyword to the
object reference. For example, to reference the length of the address field, you would
use the following:

document.info.address.length

Event Handling in JavaScript
You have seen the word events thrown around a lot in this part of the book so far.
You’ll remember that an event is any action taken by the visitor sitting at the
browser. An event can also be caused by the browser, such as when the page finishes
loading. Every mouse movement, every click of the mouse, every keystroke can
generate an event. As a developer, you must decide what kinds of actions you want
to take based on events. Acting on events requires event handlers, which are
discussed later in this chapter.

Table 25-5 shows the major scriptable events.

Table 25-5
Scriptable Events

Event Trigger

Load This event is triggered when the page is loaded

Unload This event is triggered when the page is unloaded (usually when another
page is called)

MouseOver This event is triggered when the mouse goes over an object on the page

MouseOut This event is triggered when the mouse is no longer over an object it was
formerly over

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

411Chapter 25 ✦ JavaScript

Event Trigger

MouseDown This event is triggered when a visitor clicks (only the downstroke
of the mouse button) on an object

MouseUp This event is triggered when visitors release the mouse button
they have depressed. Most systems handle only the mouseUp
event, rather than both mouseDown and mouseUp, or only
mouseDown. If visitors start to click (triggering a mouseDown),
and then move the mouse off of the object (triggering a
mouseOut), and then release the button (triggering a mouseUp),
normally visitors don’t want any action taken

Click This event is triggered when visitors both click and release an
object

DblClick This event is rarely used in Web pages because Web pages rely on
single clicks, but you can capture and act on a double-click, as well

keyPress This event is triggered when a keyboard key is depressed and
released

keyDown This event is triggered when a keyboard key is depressed

keyUp This event is triggered when a keyboard key is released

Focus This event is triggered only in forms, when the cursor moves to
highlight a field (either by tabbing to that field, by using a mouse
to place the cursor at that field, or by using an access key to bring
the focus to that field)

Blur This event is triggered only in forms when the cursor is moved
away from a field that was formerly in focus

Submit This event is only triggered in forms when the object clicked is a
BUTTON element with a type of “submit” or an INPUT element
with a type of “submit”

Reset This event is only triggered in forms when the object clicked is a
BUTTON element with a type of “reset” or an input element with
a type of “reset”

Change This event is only triggered in forms when the contents of the
object in focus are changed and then the focus leaves this object.
In other words, if an input field has today’s date in it and the
visitor changes the date and tabs to another field or clicks
another field, the change event is triggered

For example, if you wanted a particular JavaScript function to execute after a page is
loaded, you could use a <body> tag similar to the following:

<body onload=“javascript:runthis();”>

This would execute the function runthis after the document loads.

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

412 Part IV ✦ Advanced Web Authoring

Using JavaScript in HTML Documents
Incorporating JavaScript into your HTML documents is straightforward, and as
you’d expect, handled through the use of the <script> element. This section
details the various methods of including JavaScript in your documents.

Adding scripts with the script element
Now that you have an idea what JavaScript can do, you must understand how to
insert your JavaScript into your page. HTML offers the script element. If you want
the script to be event-driven, include the script element in the head. If you want
the script to execute when the page first loads, include the script in the body
element. You can have both types of scripts.

The basic syntax is the same as any other HTML:

<script language=“javascript”>
/* script goes here */
</script>

Most scripts tend to be placed directly in the Web page, but you have one other
option. If your script is long or it uses functions you want other scripts to use, you
can put your script into an external text file and link to it with the script element’s
src attribute, as shown in the following code. For JavaScript scripts, the file
extension is usually JS.

<script language=“javascript” src=“/javascript/lib_date.js”>
/* Perhaps a comment what the external script is for */
</script>

Although the most popular browsers (Navigator, Internet Explorer, Opera, and
StarOffice) are JavaScript-capable, other browsers still do not support it for a variety
of reasons. As a responsible developer, you should hide your scripts from
non-JavaScript browsers by commenting out the contents of your script. A browser
ignores any tags it doesn’t recognize, so the JavaScript-challenged browser will see
the <script> tag and ignore it; and then it will see a big, long comment (that
actually contains your script) that it will ignore; and, finally, it will come to the
</script> tag and ignore that.

<script language=“javascript”>
<!-- Hide script from incompatible browsers
...script here...
// finish hiding script -->
</script>

The JavaScript-capable browser, on the other hand, won’t be fazed by HTML
comments. It will ignore the opening HTML comment tag by accepted language
convention and then process the rest of the contents as JavaScript. When it gets to

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

413Chapter 25 ✦ JavaScript

the bottom, it sees a JavaScript comment marker (//) and ignores that line, which
includes the closing half of the HTML comment tag.

JavaScript execution
When does JavaScript script execute? That depends on where the script is and how
it’s written. If a script has some effect on the initial display of the page, it should run
before the page is loaded. If a script needs to be ready to run when a certain
condition is met on the page, it needs to appear before the place on the page that
will encounter the event. If a script needs to run in the course of loading the page, it
needs to be included in the page itself.

For example, consider the following code:

<head>
<script language=“javascript”>
function currentTime() {

var timeStr = “”; //declare an empty string
now = Time();
timeStr = now.getHours() + “:”;
timeStr = now.getMinutes();
return timeStr;

}
</script>
<title>My Home Page</title>
</head>
<body>
<!-- rest of document here -->
</body>
</html>

This snippet declares a function called currentTime in the document’s head, but it
doesn’t execute yet. But, once the page is loaded, any hyperlink, form or other page
feature that wants to use currentTime can, because it was declared before the page
was loaded. If the script was placed at the bottom of the document, the entire page
would have to load before the function became available, which could create
problems if the user or page tries to invoke the function before it’s ready.

Tip JavaScript is an interpreted language, which means it is evaluated and executed
line by line. Because the JavaScript interpreter is moving through the scripts se-
quentially, you need to make sure that functions and other routines are declared
before they’re needed.

The choice of when the script executes is yours. If you want the script to execute
when the page is finished loading, you can place it last on the page, or put it in the
document’s head with a reference to it in the <body> tag, as follows:

<BODY onload=“JavaScript:currentTime()”>

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

414 Part IV ✦ Advanced Web Authoring

Your document can include as many scripts as you want or need in the head and
body of the document, depending only on the patience of the end user to wait for the
download.

Practical Examples
The uses for JavaScript are potentially unlimited. The following sections highlight a
few of the more popular uses.

Browser identification and conformance
Using JavaScript you can determine what browser is being used to access your
content and adjust the features of your documents accordingly. For example, you
wouldn’t want to use a JavaScript feature, such as window.focus(), with a browser
that doesn’t support the function. If you are using DHTML and the Document Object
Model (DOM), it helps to know what browser is being used so you can determine the
correct DOM model to utilize.

Cross-
Reference

You can find more information on DHTML and the DOM in Chapters 26 and 27.

Typically, you can find the details of the browser in the navigator.userAgent
variable. For example, if someone is using Microsoft Internet Explorer version 6, this
variable would contain something similar to the following:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
.NET CLR 1.0.3705; .NET CLR 1.1.4322)

From the content of the variable, you can determine that the browser is Mozilla 4.0
compatible and, specifically, is MSIE 6.0. This variable contains a lot of information,
much of it superfluous to our intent—just knowing the browser. Additional variables
exist to help ferret out the information without having to parse the navigator
.userAgent value. Some of these variables are listed in Table 25-6.

Table 25-6
Useful Browser Window Properties and Methods

Variable Content

navigator.appName The formal name of the application (Microsoft Internet
Explorer, for example)

navigator.appVersion The version number of the browser

navigator.platform The operating system the browser is running on (Linux,
win32, etc)

navigator.userLanguage The language the browser is using (en-us, for example)

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

415Chapter 25 ✦ JavaScript

Using if/then statements, you can provide the appropriate code for various
browsers, similar to the following:

browser=navigator.appName
if (browser.indexOf(“Microsoft”)!=-1)

{
// Browser is MSIE, insert browser
// browser specific code here

}
if (browser.indexOf(“Netscape”)!=-1)

{
// Browser is vintage Netscape, insert
// browser specific code here

}
if (browser.indexOf(“Mozilla”)!=-1)

{
// Browser is Mozilla, insert
// browser specific code here

}

However, this method is far from fool proof because the browser itself supplies this
information—many browsers masquerade as other browsers and don’t report their
full details. A better way to write code is to detect actual features instead of relying
on the browser name to ascertain which features it supports.

You can tell if a function, method, or property exists by using an if statement. For
example, to determine that window.focus is supported by the user’s browser you
could use a construct similar to the following:

if (window.focus)
{

// window.focus() is supported, use it
}

else
{

// window.focus() is not supported,
// use alternate method

}

If you are using DHTML or otherwise making use of the DOM, you have probably
noticed that different browsers implement the DOM differently. You can use the
preceding method with document objects to determine the appropriate DOM model
to use with code similar to the following:

if (document.getElementById) {
// access DOM via getElementById

}
else if (document.all) {

// access DOM via document.all
}

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

416 Part IV ✦ Advanced Web Authoring

else if (document.layers) {
// access DOM via document.layers

}

Note that you can determine if a browser supports DHTML at all by checking for any
of the DOM models:

if (document.getElementById || document.all
|| document.layers)

{
// browser can do DHTML

}

Tip The Quirksmode Web site (www.quirksmode.org) is an excellent source of
browser compliance, quirks, and solutions.

Last modification date
Using the lastModified property of the document object, you can place the
timestamp of the current document file in your document’s text. For example, the
following code will insert the date (in the default format: MM/DD/YYYY HH:MM:SS)
wherever the code is placed in the document:

<script>
document.write(document.lastModified);

</script>

Caution The lastModified property is problematic when used with some browsers.
Always test your code on target browsers before fully deploying it.

Rollover images
Using the DOM, JavaScript can dynamically change images in the current document.
This technique is commonly used with graphical buttons—you create buttons that
have a different look when the mouse passes over them and use the onMouseOver
event to trigger a script to change the button accordingly.

For example, suppose you created the two buttons shown in Figure 25-1. The button
on the left is to be displayed when the mouse is not over the button, and the one on
the right displays when the mouse is over the button.

The document code to handle the rollover change is shown in the following
listing:

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

417Chapter 25 ✦ JavaScript

Figure 25-1: Two buttons for rollover purposes-—
btnHomeNrm.jpg (left image) is the normal button, and
btnHomeHgh.jpg (right image) is the highlighted button.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Rollover Sample</title>
<script type=“text/JavaScript”>

function btnHigh(btnName, hgh) {
// Display correct button - hgh = 0 = normal button
// hgh = 1 = highlight button

var obtn = document.getElementById(btnName);
if (hgh) {

obtn.src = btnName + “Hgh.jpg”;
} else {

obtn.src = btnName + “Nrm.jpg”;
}

}
</script>

</head>
<body>
<img id=“btnHome” src=“btnHomeNrm.jpg”

border=“0”
onMouseOver=“JavaScript:btnHigh(‘btnHome’,1);”
onMouseOut=“JavaScript:btnHigh(‘btnHome’,0);”>

</body>
</html>

This code works by using one function called by the OnMouseOver and onMouseOut
events of the element. When a user puts the mouse over the image, the
function is called with the root name of the button (btnHome) and the highlight
variable (hgh) set to 1 (highlight). The function gets the button’s id via the name
(note how the element’s id is the same as the root name of the images) and
sets the element’s src property to the highlighted image. This process is repeated
when the user removes the mouse from the element, but the highlight variable (hgh)
is set to 0 (do not highlight), and the function sets the element to the normal image.

You can use the same function for an unlimited number of buttons as long as each
uses a unique id and the same image file-naming conventions.

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

418 Part IV ✦ Advanced Web Authoring

Tip To actually make the button do something, add an onClick event to the
 tag to call another function, or directly manipulate the document
.location.href property, as in the following examples:

onClick=“JavaScript:dosomethingelse()”

and

onClick=“document.location.href=‘home.html’”

Caching images
When animating images on a page, it helps to have the images (and all their variants)
already cached by the browser. This eliminates the lag caused by the server sending
the image(s) to the browser and the resulting delay in the image being displayed.

To cache images, you can use a function similar to the following JavaScript function:

function preloadimages() {

var pictures = new Array
// List all the images to preload here
(
“images/rdm1.gif”

,“images/rdm2.gif”
,“images/rdm3.gif”
,“images/rdm4.gif”
,“images/rdm5.gif”
,“images/rdm6.gif”
,“images/rdm7.gif”
,“images/rdm8.gif”
,“images/rdm9.gif”
);

// Load each image in array
for (i=0;i<preloadimages.arguments.length;i++) {

myimages[i]=new Image();
myimages[i].src=preloadimages.arguments[i];

}
}

This function creates a new image object for each entry in the pictures array,
causing the browser to request the image from the server and cache it locally.
Thereafter, any request for the image will be served from the browser’s cache
instead of the server, eliminating display lag.

To use this function, replace the images/rdm... entries with the correct URLs of
the images you want to preload, and call the function from an onLoad event within
the document, as shown in the following example:

<body onLoad=“JavaScript:preloadimages();”>

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

419Chapter 25 ✦ JavaScript

Note that preloading images takes just about as long as displaying the images
normally. As such, little can be gained by preloading static images in the current
document. However, images on subsequent pages, images used in animations, or
dynamic buttons (see the previous section) are all good candidates for preloading.

Form validation
Form validation is one of the purposes most used by JavaScript. Consider the simple
form shown in Figure 25-2.

Figure 25-2: A simple form to request a quote for shipping products.

Although the form is simple, a few pieces of information should be verified before
the data is accepted:

✦ The quantity should be a number and be at least three.

✦ The ZIP code should be a five-digit number.

✦ The e-mail address should resemble a valid e-mail address (include an @ and a
period).

Performing complex checks on the data—such as validating that the ZIP code is
authentic, not just five random numbers—isn’t feasible using JavaScript. But the
following document provides enough validity to weed out totally bogus data:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

420 Part IV ✦ Advanced Web Authoring

<html>
<head>

<title></title>
<script type=“text/JavaScript”>

function req(myField, myLabel) {
// Check for non-blank field

var result = true;
if (myField.value == “”) {

alert(‘Please enter a value for the “’
+ myLabel +‘” field.’);

myField.focus();
result = false;

}
return result;

}

function grThan (myField, myLabel, num) {
// Check if field value > num

var result = true;
if (myField.value <= num) {

alert(‘Please enter a value for the “’
+ myLabel +‘” field, greater than ’
+ val + ‘.’);

myField.focus();
result = false;
}
return result;

}

function isInt (myField, myLabel) {
// Check if field is an integer

var result = true;
if (!req(myField, myLabel))

result = false;
if (result) {

var num = parseInt(myField.value,10);
if (isNaN(num)) {

alert(‘Please enter valid number in the “’
+ myLabel +‘” field.’);

myField.focus();
result = false;

}
}
return result;
}

function validEmail(myField, myLabel) {
// Check for “valid” email (not empty, has
// “@” sign and “.”)

var result = false;
if (req(myField, myLabel))

result = true;
if (result) {

var tempstr = new String(myField.value);

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

421Chapter 25 ✦ JavaScript

var aindex = tempstr.indexOf(“@”);
if (aindex > 0) {

var pindex = tempstr.indexOf(“.”,aindex);
if ((pindex > aindex+1) &&
(tempstr.length > pindex+1)) {

result = true;
} else {

result = false;
}

}
}
if (!result) {

alert(“Please enter a valid email address ”
+ “in the form: yourname@yourdomain.com”);

myField.focus();
}
return result;

}

function valform (myform) {
// Validate form fields as specified below

// Quantity > 2 (and integer)
if (!grThan(myform.qty,“Quantity”,2) ||

!isInt(myform.qty,“Quantity”)) {
return false;

}
// Valid Zipcode
if (!isInt(myform.zip,“Zipcode”)) {

return false;
}
// Valid email
if (!validEmail(myform.email,“Email”)) {

return false;
}
return true;

}
</script>
</head>
<body>
<h1>Order Request</h1>
<p>Please enter details below. We will reply to
your request within two business days.</p>
<form name=“orderform”

action=“http://www.synergy-ent.com/projects/pi.php”
method=“POST”
onSubmit=“return valform(document.orderform);”>

<p>
<table border=“0” cellpadding=“5”>
<tr><td>

Quantity desired:

(minimum 3)

</td><td>
<input type=“text” name=“qty” value=“3”

size=“4”>
</td></tr>

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

422 Part IV ✦ Advanced Web Authoring

<tr><td>
Zipcode for estimating

shipping cost:

</td><td>
<input type=“text” name=“zip” value=“”

size=“5” maxlength=“5”>
</td></tr>
<tr><td>

Email address:
</td><td>

<input type=“text” name=“email” value=“”
size=“20” maxlength=“30”>

</td></tr>
<tr><td>

</td><td>
<input type=“submit” value=“Submit”>
</td></tr>
</table>
</p>

</form>

</body>
</html>

This code works by using the onSubmit event with the <form> element. When the
user clicks the Submit button, the event handler calls the specified function
(valform) before actually submitting the form data to the specified handler. If the
function returns true, the form data is submitted. If the function returns false, the
form data is not submitted and the user is returned to the document.

The valform function steps through a handful of smaller functions to validate parts
of the form. The various functions return true if the data is valid, false if the data
is invalid. If all functions return true, the main function returns true as well,
allowing submission of the data. If any function returns false, the main function
also returns false, and the data is not submitted.

Each validation function also displays an error message if invalid data is
encountered, placing the user agent focus on the offending field.

Note The functions used here are typical of functions used to validate most form data.
However, each form is different and will probably require custom functions to
validate its content—although you can use this example as a template, you
should create tests specifically for your data.

A comprehensive collection of form validation scripts can be found in the
archives of Netscape’s DevEdge site:

http://developer.netscape.com/docs/examples/javascript/
formval/overview.html

Although the code was written in 1997, it still contains a wealth of useful func-
tions for form validation.

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

423Chapter 25 ✦ JavaScript

Specifying window size and location
By accessing the user agent’s properties you can manipulate some aspects of the
user’s browser window. Table 25-7 lists a handful of the useful properties available.

Table 25-7
Useful Browser Window Properties and Methods

Property/Method Use

window.moveTo(x,y) Move the upper-left corner of the browser window to
position x,y on the user’s screen

window.resizeTo(x,y) Resize the browser window to x pixels wide by y pixels tall

window.resizeBy(x,y) Resize the browser window, adding x pixels to the width
and y pixels to the height (negative values shrink the
window)

document.body.clientWidth Returns the current width of the browser window (in pixels)

document.body.clientHeight Returns the current height of the browser window (in
pixels)

document.body.scrollTop Returns the number of pixels the user has scrolled down
from the top of the document. Returns 0 if the vertical
scrollbar is inactive (Internet Explorer and compatible
browsers)

window.pageYOffset Returns the number of pixels the user has scrolled down
from the top of the document. Returns 0 if the vertical
scrollbar is inactive (Netscape and compatible browsers)

document.body.scrollLeft Returns the number of pixels the user has scrolled right,
from the left edge of the document. Returns 0 if the
horizontal scrollbar is inactive (Internet Explorer and
compatible browsers)

window.pageXOffset Returns the number of pixels the user has scrolled right,
from the left edge of the document. Returns 0 if the
horizontal scrollbar is inactive (Netscape and compatible
browsers)

Note The resize methods resize the entire window of the user agent, which includes
toolbars, status bars, and so on—not just the content. Several other methods
and properties can be used to return information about the browser and set
certain attributes, but most of them are hit or miss as far as browser compliance
is concerned. You can find more information on the properties and methods at
DevGuru:

www.devguru.com/Technologies/ecmascript/quickref/
javascript_index.html

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

424 Part IV ✦ Advanced Web Authoring

You can use the code in the following example to play with some of the browser
window properties and methods:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

<!-- Note the use of the transitional DTD above! -->
<html>
<head>

<title>Window Functions</title>
<script type=“text/JavaScript”>
function resetwindow() {
// Reset window to upper left of screen
// at a size of 500 x 400 pixels

window.resizeTo(500,400);
window.moveTo(0,0);

}

function sizeBy(x,y,smaller) {
// Increase or decrease (if smaller)
// size of window by x and y pixels

if (smaller) {
x *= -1;
y *= -1;

}
window.resizeBy(x,y);

}

function scrollreport() {
// Report position of both scrollbars

var hpos, vpos;
var hmsg, vmsg;
if (navigator.appName ==

“Microsoft Internet Explorer”) {
hpos = document.body.scrollLeft;
vpos = document.body.scrollTop;

} else {
hpos = window.pageXOffset;
vpos = window.pageYOffset;

}
hmsg = “Horz Scroll: ” + hpos;
vmsg = “Vert Scroll: ” + vpos;
alert(hmsg + “\n” + vmsg);

}
</script>

</head>
<body onLoad=“resetwindow();”>
<div style=“width: 600px; height: 600px;”>

<form>
<p><input type=“button” value=“Reset”

accesskey=“R”
onClick=“resetwindow();”></p>

<p><input type=“button” value=“Larger”
accesskey=“L”
onClick=“sizeBy(50,50,0);”>

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

425Chapter 25 ✦ JavaScript

<input type=“button” value=“Smaller”
accesskey=“S”
onClick=“sizeBy(50,50,1);”></p>

<p><input type=“button” value=“ScrollBar Report”
accesskey=“B”
onClick=“scrollreport();”></p>

<p><input type=“button” value=“Close Me”
accesskey=“C”
onClick=“self.close();”></p>

</div>
</body>
</html>

Note The <div> sets a specified size for the elements in the document body to
help ensure that scrollbars will appear at smaller window sizes. Note that the
accesskey attributes for the buttons allow you to access the buttons even if
you can’t see them in the document window.

Frames and frameset control
You can also use JavaScript to help direct content to specific frames, if your
document uses frames.

The window.frames property can be used to access the frames currently active in
the user agent window. You can access the frame properties using two methods, by
name or by position in the frameset:

<!-- A frameset -->
<frameset rows=“25%,50%,25%”>

<frame name=“frame1” src=“banner.html” />
<frame name=“frame2” src=“content.html” />
<frame name=“frame3” src=“footer.html” />

</frameset>
// Access a frame (frame2) by name
window.frames[“frame2”].location=“home.html”
// Access a frame by position in frameset
// (first frame is 0, second frame is 1)
window.frames[1].location=“home.html”

Either of the two preceding JavaScript examples will replace the content of frame2
with that of the home.html document.

Tip You can use the window.frames.length property to determine how many
child frames are currently displayed in the active user agent window.

Using cookies
The Web is largely a stateless environment. The user agent requests a page and
receives a response from the server. Typically, neither entity tracks the user’s state

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

426 Part IV ✦ Advanced Web Authoring

(beyond the client’s concept of Back and Forward through the cache). Enter cookies,
a way to save information on the user’s machine that the user agent can later
retrieve and use.

Note Over the years, cookies have gotten a bad reputation. The technology is not at
fault, but the use of it is. Several individuals and companies have used cookies
to track user behavior and report the data for demographic, shopping, or simply
spying purposes. The heart of the cookie technology is fairly benign and can be
used for very useful purposes, such as remembering what messages you have
read in a forum, favorite settings for sites, and so on.

You can use the JavaScript document.cookie property to set and retrieve cookies.
The following code shows examples of functions to set, retrieve, and delete cookies:

// setCookie
// Sets cookie specified by ‘name’ (and optionally
// ‘path’ and ‘domain’) to ‘value’.
// Cookie defaults to expire at end of session,
// but can be specified to expire ‘expires’
// number of milliseconds from now.
function setCookie(name, value, expires, path, domain) {

if (expires) {
if (expires != 0) {

var curDate = new Date();
var expDate = new Date(curDate.getTime() + expires);

}
}
var curCookie = name + “=” + escape(value) +

((expires) ? “; expires=” + expDate : “”) +
((path) ? “; path=” + path : “”) +
((domain) ? “; domain=” + domain : “”);

document.cookie = curCookie;
}

// getCookie
// Retrieves cookie value specified by ‘name’ (and
// optionally ‘path’ and ‘domain’).
// Returns cookie value or null if cookie is not found.
function getCookie(name) {

var dc = document.cookie;
var prefix = name + “=”;
var begin = dc.indexOf(“; ” + prefix);
if (begin == -1) {

begin = dc.indexOf(prefix);
if (begin != 0) return null;

} else {
begin += 2;

}
var end = document.cookie.indexOf(“;”, begin);
if (end == -1) end = dc.length;
return unescape(dc.substring(begin + prefix.length, end));

}

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

427Chapter 25 ✦ JavaScript

// delCookie
// Deletes cookie specified by ‘name’ (and
// optionally ‘path’ and ‘domain’) by setting
// expire to previous date.
function delCookie(name, path, domain) {

if (getCookie(name)) {
document.cookie = name + “=” +
((path) ? “; path=” + path : “”) +
((domain) ? “; domain=” + domain : “”) +
“; expires=Thu, 01-Jan-70 00:00:01 GMT”;

}
}

Summary
This chapter introduced you to JavaScript, a simple yet effective scripting language
that can automate certain aspects of your documents. You learned what JavaScript
is, the language’s programming conventions, how to incorporate it into HTML, and
were presented with several typical examples of its use. The next few chapters
extend this knowledge, showing you the magic of Dynamic HTML.

✦ ✦ ✦

P1: KTX

WY022-25 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:56

428

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

2626C H A P T E R

Dynamic HTML
✦ ✦ ✦ ✦

In This Chapter

The Need for DHTML

How DHTML Works

Document Object Model

Cross-Browser
Compatibility Issues

Browser Detection

DHTML Examples

Breadcrumbs (Page
Location Indicator)
Rollovers

Collapsible Menus

✦ ✦ ✦ ✦

Dynamic HTML (DHTML) is a combination of standard
HTML and CSS, and often JavaScript, used to create

dynamic Web page effects. These can be animations, dynamic
menus, text effects such as drop shadows, text that appears
when a user rolls over an item, and other similar effects.

This chapter introduces DHTML by reviewing some JavaScript
basics and providing a look at the Document Object Model,
which allows you access to HTML elements so that you can
change their properties and/or content. Examples of common
DHTML techniques are provided.

The Need for DHTML
DHTML, when used correctly, can significantly enhance the
user experience. DHTML was originally best known for its
flashy effects, and these still exist, but their importance is
questionable, and when used improperly they can be annoying
for your users. Fancy text animations and bouncing balls
might be fun to write, but they’re not so much fun for the user.
This chapter focuses on the more practical aspects of DHTML.
Most of these have to do with navigation. After all, your Web
site is all about the user experience. Whenever you create an
enhancement to your Web site, you should always ask, “Does
this improve the user experience? Can they navigate my site
more easily? Read my Web page more easily?”

How DHTML Works
DHTML can work either by applying certain CSS properties, or
by using JavaScript to manipulate HTML elements. When using
JavaScript, DHTML takes advantage of a browser’s object
model, which is a tree of objects based on the element set of
HTML and on the property set of CSS. When you code against
that object model, you can change an element’s properties,
which are associated with an element’s attributes. An
element’s attributes, in fact, are referred to as properties in a

429

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

430 Part IV ✦ Advanced Web Authoring

JavaScript environment. How these properties are referred to, and what actions
(methods) you can take on them, is determined by the Document Object Model
(DOM).

DHTML and the Document Object Model
The DOM is a standardized process for accessing the parts of a Web page through a
common application programming interface (API). What this means in practical
terms is that each element in a document is accessible via script, usually JavaScript.
We say “usually” JavaScript because no rule states that a language that accesses the
DOM needs to be JavaScript. It can be any language, from Java (which is different
than JavaScript) to C# or Visual Basic. As it turns out, though, most DOM-related
activity vis-a-vis the browser is powered by JavaScript.

The standardized form of JavaScript is called ECMAScript. This is a relevant fact
because usually if you confine your scripting to a combination of the W3C’s Level
One Core DOM and ECMAScript, you’ll be pretty successful at achieving
cross-browser scripting compatibility.

You can find the specification for ECMAScript at www.ecma-international.org/
publications/standards/Ecma-262.htm.

The W3C’s Level One Core DOM is basically a set of properties and methods that can
be accessed from a given element. For example, one of the most ubiquitous (and
dastardly, in many people’s opinion) methods is the window.open() method, which
makes it possible for advertising pop-ups to appear. The open() method acts upon
the window object, which, although not an element (the DOM isn’t restricted to
elements), is still an object that can be manipulated by script.

Using event handlers
Notice the onclick attribute in the following code fragment:

onclick=“this.style.fontSize=‘60px’; this.style.color=‘red’”>

This tells the browser that when the user clicks the div element, something should
happen. In this case, that something is that the following two attributes of the style
element will change:

✦ style.fontSize=‘60px’ tells the browser to change the font size to
60 pixels.

✦ style.color=‘red’” tells the browser to change the color to red.

The onclick attribute is actually an event handler. An event is something that
happens, as you probably already know. A party, for example, is an event. When a
human triggers the onparty event, sometimes that human falls down drunk. When a

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

431Chapter 26 ✦ Dynamic HTML

human triggers an onclick event in a browser, more benign things take place, such
as text color changes, menu changes, and so on. Table 26-1 shows the common event
handlers associated with JavaScript.

Table 26-1
JavaScript Event Handlers

Event Handler Usage

onAbort Occurs when a user stops an image from loading

onBlur Occurs when a user’s mouse loses focus on an object. Focus is when
the cursor is active on an object, such as a form input field. When a
cursor is clicked within the field, it has focus, and when the mouse is
taken out of the field, it loses focus, causing an onBlur event

onChange Occurs when a change takes place in the state of an object, when, for
example, a form field loses focus after a user changes some text
within the field

onClick Occurs when a user clicks an object

onError Occurs when an error occurs in the JavaScript

onFocus Occurs when a user’s mouse enters a field with a mouse click

onLoad Occurs when an object, such as a page (as represented by the body
element) is loaded into the browser

onMouseOut Occurs when a mouse no longer hovers over an object

onMouseOver Occurs when a mouse begins to hover over an object

onSelect Occurs when a user selects text

onSubmit Occurs when a form is submitted

onUnload Occurs when an object is unloaded

When one of these events takes place, code is executed. Many browsers have their
own, custom event handlers, but if you stick with those found in Table 26-1, you’ll
find cross-compatibility issues much easier to solve.

It’s all about objects
The other thing you should have noticed about the JavaScript code fragment you saw
at the beginning of this chapter is that there is some interesting dot syntax going on:

style.fontSize=‘60px’

This is the key to all DHTML and working with the DOM. When script accesses an
object, it does the same thing you need to do when finding objects on your

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

432 Part IV ✦ Advanced Web Authoring

computer. When you look for a file on your hard drive, you drill down a group of
nested folders to find something. So the final path might look something like this:

C:\Documents and Settings\Chuck\Books\goodbook.doc

On the World Wide Web, the same thing happens:

http://www.mywebsite.com/2003/WORLD/index.html

Here, the Web server drills down a specific path that finds the document in bold.
When you use JavaScript and the DOM you do the same basic thing. You begin with a
top-level object, which is always the window object. Normally, you don’t need to
name that, because it’s understood to just always be there. Then, you drill down to
the next level. The previous code which demonstrated how to use an onclick event
(onclick=“this.style.fontSize=‘60px’;) was able to circumvent this
because the same object that called the event had changes (it changed itself), so we
could use the this keyword. However, had another object been changed, you would
have had to name that object’s position within the hierarchy of document objects.
The easiest way to do that is to be sure you use the id attribute (which means the
HTML object must contain an id attribute containing a unique value), and then drill
down to the object in your code. As shown in Figure 26-1, you can access most of the
objects associated with a browser window using JavaScript and the DOM.

Cross-Browser Compatibility Issues
The most important caveat to exploring DHTML is that there are tons of
compatibility issues. The newest iterations of Mozilla/Netscape and Internet
Explorer have actually begun to come closer together, but developers working with
DHTML during the height of the browser wars quickly learned that developing
cross-browser DHTML was a very difficult proposition. As a result, most large
professional sites eschew complex DHTML in favor of simpler cross-browser
routines to improve navigation and other facets of the user experience, rather than
excessive visual effects.

Browser detection
You can detect what kind of a browser a user is running by running a browser-
detection script. This kind of script, along with some more finely tuned type of
object detection described in the next section, is sometimes referred to as browser
sniffing. At its simplest, a typical browser-detection script looks like this:

<SCRIPT LANGUAGE=“JavaScript”>
<!--

var bName =navigator.appName;
var bVer = parseFloat(navigator.appVersion);
if (bName == “Netscape”)

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

433Chapter 26 ✦ Dynamic HTML

alinkColor
anchors()
byColor
cookie
fgColor
lastModified
linkColor
links[i]
lastModified
linkColor
location
referrer
title
vlinkColor
clear()
close()
open()
write()
writeIn()

border
complete
height
hspscc
lowarc
name
src
vspecs
width
onAbort event
onError event
onLoad event

defaultValue
form

name
value
blur()
focus

select()
onReset event

onSubmit event

name
defaultSelected

Index
length

selected
selectedIndex

text
value

length
name

selectedIndex
value
type

action
encoding

length
method

target
submit()

reset()
onSubmit event
onReset event

hash
host

hostname
href

pathname
port

protocol
search

onClick event
onMouseOver event

hash
host

hostname
href

pathname
port

protocol
search

defaultStatus
document

frames[i]
history

location
name

parent
self

status
top

window
clearTime out()

close()
confirm()

open()
prompt()

onload event()
download

event()

length
back()

forward()
go()

Window Object Document Object

history

navigator

location
IMAGE

LINK

FORM

select
text, text
area, password, hidden

options

Figure 26-1: The Core Document Object Model used by ECMAScript (JavaScript).

var browser = “Netscape Navigator”
else

var browser = bName;
document.write(“You are currently using ”, browser, “ ”,
bVer, “.”);

// -->
</SCRIPT>

Note When using simple browser-sniffing scripts, you can replace the code in bold
in the preceding example with more complex tasks. In the next chapter, you’ll
see how to work with different CSS properties based on which browser a user
is using.

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

434 Part IV ✦ Advanced Web Authoring

Object detection
Object detection is a more precise way of browser sniffing. It examines a browser’s
support for various aspects of the object model. This avoids the potential for
successfully checking a browser version but not checking to see if a browser actually
supports a specific object property or method. For this reason, object detection is
the preferred method for browser sniffing and is considered best practice. In
addition, unless you’ve got the object model of all the different browsers memorized,
it’s pretty hard to know which browser supports which object. It’s easier to just
check and see if a browser supports a specific object’s properties or methods.

The principles used in object detection are quite similar to those used in browser
detection. You make use of JavaScript if statements to check a browser’s support
for a named object’s properties or methods. If it does support the object, you
execute some given code. For example, using regular expressions can be very handy
in JavaScript, but not if your users’ browsers don’t support them. So you create a
simple detection script to see if they do:

if (window.RegExp) {
// execute some regular expressions

} else {
// provide an alternative to regular expressions

}

DHTML Examples
This section offers a few practical examples of DHTML. The scripts you’ll see are
necessarily simple to get you started. There are tons of resources on the Internet for
additional help, including a vast array of freely available scripts that you can
customize for your own use. We’ll take a look at a few of the most popular DHTML
routines.

Breadcrumbs (page location indicator)
If you’ve ever seen a series of links at the top of a browser window with the current
page’s link deactivated, you’ve seen breadcrumbs. Breadcrumbs derive their name
from the concept of a navigation trail, designed to help users know where they are
relative to the page they are in. Many user interface experts consider breadcrumbs
an absolute necessity. Generally, you’ll find breadcrumbs most easily managed
through server-side scripting, but if you don’t want to deal with server-side
scripting, or, if you simply don’t have access to a server-side scripting engine
(maybe you are simply creating some pages on your home page offered by your ISP),
you can create them using JavaScript.

Writing out the code in pseudo-code
Generally, the best way to develop any code is to spell it out in pseudo-code. In other
words, think about what you’re trying to do in English or whatever your spoken

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

435Chapter 26 ✦ Dynamic HTML

language is. In this case, our pseudo-code looks like this:

Split the current URL into each folder.
For each folder

Create a link string-based object.
Next Folder,
Combine all result string objects together using a separator
or delimiter to form a single string.
Print the string out to the browser window.

Using the window object to manage URLs
As I mentioned, most action using JavaScript takes place by way of the DOM, which
you’ll see in action in the upcoming JavaScript breadcrumb example. In this case,
you’ll use the window location property to handle the first part of your
pseudo-code. The location property contains the current window’s URL. You’ll
need this URL because in order to develop breadcrumbs according to the
pseudo-code, you’ll need to break apart the URL string and rip out each directory
from it. You do this by separating each chunk of string that is delimited by a forward
slash.

Therefore, the first step in creating breadcrumbs is to initialize a JavaScript variable
to store the URL, as in the following example:

var sURL = window.location.toString();

Building string arrays with the split() method
Once you’ve got your URL string, you can use the JavaScript split() method to
store an array of substrings from the URL string you stored in the sURL variable. The
split() method splits a string according to a delimiter you name as the method’s
argument. It stores each substring as part of an array, indexed in character
sequence. This means you don’t need to initialize an array with something like this:

var sDir = new Array();

Instead, you can initialize the array by using the split() method:

var sDir=sURL.split(“/”);

Remembering that array indexes are counted beginning with 0, not 1, if your URL is
http://www.mydomain.com/mydirectory/here, the split() method used in
the preceding code fragment will create an array that looks like this:

sDir[0] = http:
sDir[1] = www.mydomain.com
sDir[2] = mydirectory
sDir[3] = here

Next, initialize a variable to store your output string:

var sOutput=“”;

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

436 Part IV ✦ Advanced Web Authoring

Then, create a JavaScript for loop to loop through the array. Note that the loop
looks a little different than some loops you may have seen:

for (y=2;y<(sDir.length-1);y++)

What’s different about this loop? Usually, you start such a loop with y=0 (or,
more often, i=0, but i is simply the name of the new loop variable and we already are
using that in another part of the code, as shown in Listing 26-1). Of course, in many
instances you won’t start a loop at an array’s zero index value, and this is one of them,
because you happen to know that the first two “splits” contain parts of the string
related to the protocol (http:), and we don’t want that or the first / of http://, either.

Listing 26-1: Building a Simple Breadcrumbs Header

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
<head>
<script language=“javascript”>
function Nest(x)
{

var x=x-3;
var sNesting=“”;
for (i=0;i<x;i++)
{

sNesting=sNesting + “../”;
}
return sNesting;

}
function breadcrumbs()
{

var sDir = new Array();
var sURL = window.location.toString();
sDir=sURL.split(“/”);
var sOutput=“”;
for (y=2;y<(sDir.length-1);y++)
{

sOutput=sOutput + “ :: <a href=’” +
Nest((sDir.length-y)+1) + “index.html’>” + sDir[y] + “”;

}
document.write(sOutput);

}
</script>
<style type=“text/css”>
<!--
body {

font-family: Frutiger, Verdana, Arial, Helvetica, sans-
serif;
}
.breadcrumbs {

font-size: 10px;
}

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

437Chapter 26 ✦ Dynamic HTML

-->
</style>
<title>Breadcrumbs</title>
<meta http-equiv=“Content-Type” content=“text/html;
charset=iso-8859-1”>
</head>
<body>
<div id=“breadcrumbs” class=“breadcrumbs”>
<script language=“javascript”>
breadcrumbs();
</script>
</div>
<div style=“border: navy 1px solid; padding: 12px; width:
440px; text-align:center; margin-top:12px;”>
Here is some content.
</div>
</body>
</html>

Listing 26-1 shows the breadcrumb code in its entirety. Note that it appends an
index.html to each directory (shown in bold in the listing), so you might have to
change that to your directory’s homepage. The final result is shown in Figure 26-2.

Figure 26-2: Breadcrumbs rendered in a browser using code from Listing 26-1.

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

438 Part IV ✦ Advanced Web Authoring

If you look at Figure 26-2, you can see there is one thing about the results you might
not like. It would be better to have a “dry” breadcrumb containing a nonactive link
for the page the user is currently on. Accomplishing that takes some JavaScript
sleight of hand, but luckily, resources are already available for you to work with, as
you’ll see in the next section.

Fine-tuning your breadcrumbs
One example of an Internet-based resource you can rely on for creating breadcrumbs
is a GNU-based JavaScript file that is freely downloadable over the Internet, including
through this book’s Web site. This is a much more finely tuned example of a
breadcrumb script that accounts for a large number of variables.

Note GNU is an open source licensing model that allows you to freely distribute and
modify software, with some minor legal constraints, such as giving credit to the
author of the software. You can view GNU licensing terms at www.gnu.org/
copyleft/gpl.html.

The file was written by Henning Poerschke of WebMediaConception.com. The
downloadable file is called js_paths.js. The JavaScript is well documented, but
you can find more information about it at http://webmediaconception.com/de/
development/artikel/JS_breadcrumbs.en.html.

You’ll need to make one change in the JS file you download. You will want to wrap the
entire script in a function named breadcrumbs, like this:

function breadcrumbs() {
//this is where the downloaded

script should go
}

In other words, you need to add the following line to the top of the script and a
closing brace (}) to the end of the script:

function breadcrumbs() {

This turns the script into a function, which can then be called in the part of the page
requiring the breadcrumbs. Listing 26-2 shows how to use it in your HTML.

Listing 26-2: Using a Breadcrumbs JavaScript File

<html>
<head>
<script language=“JavaScript” type=“text/javascript” src=“ js_paths.js”>
</script>
<title>Breadcrumbs</title>
<meta http-equiv=“Content-Type” content=“text/html; charset=iso-8859-1”>
<style type=“text/css”>

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

439Chapter 26 ✦ Dynamic HTML

<!--
body {

font-family: Frutiger, Verdana, Arial, Helvetica, sans-serif;
}
.breadcrumbs {

font-size: 10px;
}
-->
</style>
</head>

<body>
<div id=“breadcrumbs” class=“breadcrumbs”>
<script>breadcrumbs()</script>
</div>
<div style=“border: navy 1px solid; padding: 12px; width: 440px;
text-align:center; margin-top:12px;”>
Here is some content.
</div>
</body>
</html>

As you can see in Listing 26-2, using the JavaScript is as simple as inserting a link to it
in the head element of your HTML and calling it on the part of the page you need the
breadcrumbs to display.

If you want to skip the step of giving the script a function name, you can simply
import the script in the part of the page where you need the breadcrumbs to appear.
Replace the bold script element in Listing 26-2 with this:

<script type=“text/javascript” src=“/js_paths.js”></script>

If you choose this method, don’t import the JS file in the head element.

You might be wondering why to bother creating the breadcrumbs() function at all.
It appears to be more work. If your Web page uses a lot of JavaScript, it’s a good idea
to import all your JavaScript in the page header and call functions as needed,
because it gives you a more modular design. This is truer when working with a lot of
JavaScript code. If you aren’t using much JavaScript, you should simply use
whichever method is most comfortable to you.

Rollovers
You’ve probably seen image rollovers and may know how to code them. This section
shows you how to create rollovers using CSS. First, you’ll see how easy rollovers can
be with CSS that requires no scripting using the a:hover pseudo-class. Then, you’ll
see how to manipulate CSS properties in rollovers using JavaScript.

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

440 Part IV ✦ Advanced Web Authoring

Creating rollovers using the a:hover pseudo-class
The easiest kind of rollover is to simply use CSS. You don’t even need to use JavaScript.
Instead, you can use the CSS a:hover pseudo-class to change the color or text size
of an object. You can also change the background color or any other CSS property.
This is all as simple as defining the a:hover pseudo-class within a stylesheet:

<style type=“text/css”>
<!--
.button {

font-family: Verdana, Arial, Helvetica, sans-serif;
background-color: #CCCCCC;
padding: 3px;
border: 1px solid;

}
a:hover {

background-color: #FF0000;
}
-->
</style>

In the preceding code fragment, a button is defined in the .button class, and then a
background-color property is defined for the a:hover pseudo-class. Whenever
the a:hover pseudo-class is used, the properties of its target take on whatever you
defined for it as soon as the user’s mouse “hovers” over the object. However, you’re
not quite finished. Can you figure out why that CSS alone will not create the rollover
on the following HTML?

<div>Rollover1Rollover2Rollover3</div>

The a:hover pseudo-class works only on links, so you need to create a link for the
desired effect to work. Listing 26-3 shows how to create the appropriate CSS and
HTML to make the rollover effect work.

Listing 26-3: Creating a Rollover Effect Using CSS

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN”>
<html>
<head>
<title>Using the a:hover pseudo-class</title>
<meta http-equiv=“Content-Type” content=“text/html;
charset=iso-8859-1”>
<style type=“text/css”>
<!--
.button {

font-family: Verdana, Arial, Helvetica, sans-serif;
background-color: #CCCCCC;
padding: 3px;
border: 1px solid;
cursor:hand;

}

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

441Chapter 26 ✦ Dynamic HTML

a:hover {
background-color: #FF0000;
text-decoration: none;

}
a {
text-decoration:none;

}
-->
</style>
</head>

<body>
<div>Rollover1<span class=“button” title=“Go
to Rollover Land”>Rollover2Rollover3</div>
</body>
</html>

Note the link that is created for each button. Here, you simply assign a # identifier in
lieu of a full link (but normally, of course, you’d insert a real URL). Note also that a
text-decoration property is assigned to both the a element and the a-hover
pseudo-class. This is done to avoid an underline being shown in the button. Finally,
notice one additional bit of easy code that can make your links more dynamic. The
title attribute is an underused HTML attribute that you can use on all HTML
elements to add meaning to them. It’s particularly useful on a elements. On browsers
that support the title attribute, links are just that much more dynamic because
when the mouse hovers over elements with title attribute values, a small “help”
window, known as a ToolTip, appears, as shown in Figure 26-3.

Using display properties with a:hover to create rollovers
You can push the aforementioned concepts further by combining the a:hover with
display properties to create genuine rollover effects. There is no JavaScript involved.
They work because you can give an element a unique identifier through the id
attribute and take advantage of the different kinds of styling mechanisms available to
anchor tags. First, you define a div element to wrap around the a elements that
serve as linked menu items, making sure to give the div element a unique identifier:

<div id=“links”>
Home The Tumeric
Partnership
XSL
The Transformation Station is your one-stop source for gnarly
XSL Transformations.
</div>

The first part of each link is displayed as a button. The second part of each link,
contained in a span element, is the part that will appear below the menu item

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

442 Part IV ✦ Advanced Web Authoring

Figure 26-3: A ToolTip as rendered in a browser when the title attribute is used on a link.

dynamically when a user’s mouse rolls over the button. This acts as a description of
the link, and provides more information to the user. This is possible by declaring the
following CSS rule for div elements with link id attribute values:

div#links a span {display: none;}

This tells the browser that no span elements contained within links that are
themselves contained in div elements with item id attributes should be displayed.
The a:hover pseudo-class can then be used to display that same span element’s
content when a user’s mouse is “hovering” over the link:

div#links a:hover span {display: block;
position: absolute; top: 80px; left: 0; width: 125px;
padding: 5px; margin: 10px; z-index: 100;
color: #AAAAAA; background: black;
font: 10px Verdana, sans-serif; text-align: center;}

Change the value in bold in the preceding code to place exactly where you want your
menu description to appear. You can download a running example of this from the
downloadable code for this book. The file name is cssrollover.htm. Eric Meyer
developed this and other similar CSS techniques, and a similar file and many more
can be found on his Web site at www.meyerweb.com/eric/css/edge/popups/
demo.html.

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

443Chapter 26 ✦ Dynamic HTML

Creating rollovers using JavaScript
Creating rollovers using JavaScript can be as simple or as tedious as you wish it to
be. Best practice would suggest that you should create rollovers, like any other
JavaScript-based functionality, in a way that creates the least problems for the most
users.

Cross-
Reference

To learn how to create good old-fashioned, image-based rollovers, see
Chapter 25.

You can take advantage of the narrowing gap in differences among browsers by
relying on the event models of IE5/6 and Mozilla (and by extension Netscape 7). For
example, the following bit of code creates a rollover of sorts that results in a
JavaScript alert box display when a user mouses over a portion of text:

To use this rollover, <span style=“color:red; cursor:hand;”
onMouseOver=“alert(‘AMAZING!!!’)”>
mouse over these words.

The result of this simple bit of code is shown in Figure 26-4.

Figure 26-4: When a user mouses over a portion of text, an alert box is displayed.

Mozilla/Netscape 7 and IE5/6 allow all elements to use event handlers such as
onmouseover. But because it’s an attribute, browsers that don’t support event

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

444 Part IV ✦ Advanced Web Authoring

handlers in all their elements will simply ignore the call to the JavaScript because
they simply ignore the attribute itself. Keep this concept in mind when you’re
working with DHTML. In other words, try to limit the damage. The beauty of CSS is if
you use it right, browsers that don’t support CSS will simply ignore your styling, and
the same is true for the use of event handlers in HTML. The same principle holds for
CSS-based changes, even if you’re using deprecated elements such as the font
element (see Figure 26-5):

<a HREF=“http://www.tumeric.net/” style=“text-
decoration:none;”>
<font color=“#0000ff”

onMouseOver=“this.style.backgroundColor = ‘#cccccc’”
onMouseOut=“this.style.backgroundColor = ‘#ffffff’”
title=“Click Here!”>The Tumeric Partnership

Figure 26-5: When a user mouses over a portion of text, the background color is changed.

In the old days of browser wars and incompatibilities, these examples would only
work in Internet Explorer, but now they’ll work in Mozilla-based browsers, too.

Note Saying that something works in Mozilla-based browsers means browsers based
on the new open source Mozilla 1.0 codebase governed by the Mozilla Pub-
lic License and Netscape Public License. Mozilla versioning can be confusing,

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

445Chapter 26 ✦ Dynamic HTML

because JavaScript tests for user agents will reveal (on a Windows machine)
something like this: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.5)
for browsers implementing the Mozilla 1.0 codebase. This is because the Mozilla
codebase was completely rewritten from scratch, and the old Navigator code-
base was tossed into the ash heap forever.

Collapsible menus
Collapsible menus have become a staple in Web development, and you can generally
avoid the hassle of creating your own from scratch by simply searching the Internet
for something that is close to what you want; then make any adaptations necessary
to reflect your own site’s needs. Collapsible menus generally come in two styles:

✦ Vertical menus that expand and collapse on the left side of a Web page and within
a reasonably small space. When a user clicks his or her mouse on an item, a
group of one or more subitems is displayed, and, generally, remains displayed
until the user clicks the main item again, which then collapses the tree.

✦ Horizontal menus that live at the top of a page. When a user rolls his or her
mouse over an item, a group of one or more subitems is displayed, and,
generally, disappears when the mouse loses focus on the item.

How they work
Generally, most collapsible menus rely on either the CSS display property or the
CSS visibility property. The JavaScript used to manage these menus turns the
visibility on or off depending on where a user’s mouse is, or turns the display on or
off to collapse or expand a menu. The difference between the visibility property
and the display property is that when you hide an element’s visibility, the element
still takes up visible space in the browser document. When you turn the display
property off by giving it a none value (display=“none”), the space where the
affected element lives collapses.

The other component to a DHTML menu is usually a JavaScript array containing all
the menu items. For example, the JavaScript might contain a function for defining the
menu’s parameters:

function item(parent, text, depth) {
this.parent = parent
this.text = text
this.depth = depth

}

When using a prewritten menu you acquire from the Internet, you’ll generally want to
look for a JavaScript array containing all the menu item parameters. In this case, the
array would contain arguments for the previously defined function:

outline = new makeArray(6)

outline[0] = new item(true, ‘SimplytheBest.net’, 0)
outline[1] = new item(false, ‘Shareware &

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

446 Part IV ✦ Advanced Web Authoring

Freeware’, 1)
outline[2] = new item(true, ‘Scripts’, 1)
outline[3] = new item(false, ‘DHTML
Scripts’, 2)
outline[4] = new item(false, ‘CGI
Scripts’, 2)
outline[5] = new item(false, ‘Information
library’, 1)

To edit the menu for your own purposes, you simply change the links in the array
(shown in bold in the preceding code). Most menus are built using an array that’s at
least somewhat similar to the preceding one. Note the correlation between the first
argument in the item function (parent) and the actual values used in the array.
When an item’s parent argument is true, instead of a link, the category of links is
named and no actual link is generated. When the parent argument is false, a link is
generated. Each menu you find on the Web might have a somewhat different
implementation, but the general construction will be the same.

Finding collapsible menus on the Internet
As mentioned, you generally don’t need to write your own menu from scratch,
because so many developers have made them freely available. Instead, you can
download someone else’s menu and change the CSS and some of the other specifics,
such as where the links go.

One common style used with vertical menus is a Windows Explorer-like menu tree. A
very good example of this kind of menu can be found at www.webreference.com/
programming/javascript/trees/Example/example.htm.

You’ll find an explanation of how the developer created these menus at www/
.webreference.comprogramming/javascript/trees/.

A good resource for a wide variety of DHTML menus can be found at http://
simplythebest.net/info/dhtml_menu_scripts.html.

The scripts on this site contain detailed instructions on how to use the menus on
your own site. You can enter “DHTML menus” into Google to find additional menus.

Summary
DHTML can be very complex, and some very long tomes have been written on the
subject. This chapter introduced the following topics:

✦ The Document Object Model (DOM)

✦ Cross-browser compatibility issues and browser detection

✦ DHTML examples such as breadcrumbs, rollovers, and collapsible menus

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

447Chapter 26 ✦ Dynamic HTML

If you’re not comfortable with scripting, you can find a wide variety of resources on
the Internet for free scripts that you can adapt to your own needs with little
JavaScript background. You also saw how you can avoid JavaScript altogether with
some clever CSS manipulation. However, if you enjoy scripting or are already
comfortable with it, you’ll find that coding increasingly complex code against the
Document Object Model will demonstrate that browsers can be software
environments, and Web pages containers for very robust software applications.

In the next chapter, you’ll see how DHTML can work more specifically with CSS. You
learn more about how the DOM is used to access CSS properties, and how to display
effects with no scripting.

✦ ✦ ✦

P1: KTX

WY022-26 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 23:55

448

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

2727C H A P T E R

Dynamic HTML
with CSS ✦ ✦ ✦ ✦

In This Chapter

Dynamic HTML and the
Document Object Model

DHTML and CSS Properties

Internet Explorer Filters

✦ ✦ ✦ ✦

CSS can be a powerful tool for creating dynamic pages
with special effects. In this chapter, you’ll see how you

can change a CSS property dynamically in various browsers.
You’ll be introduced to Dynamic HTML, albeit briefly, as the
next chapter serves as the real introduction to that concept.
Here, you’ll see how to access CSS properties and script them
to perform tasks, such as change text colors. You’ll see that
every CSS property can be changed.

You’ll also find that some browsers, most notably Internet
Explorer, feature CSS-like syntax for creating dynamic filtered
effects such as drop shadows and blurs.

Chapter 26 talked a lot about the Document Object Model
(DOM) and objects, which can seem pretty daunting at first,
so let’s break it down to the simplest scale, that of CSS. Say you
have a div element with a blue font inside it. To make the div
(and its contents) accessible by script, you need to identify it
somehow. You can do this using the id attribute of the
<div> tag. The id attribute is available to every HTML
element for this very reason. So you can write a div element
like so:

<div id=“myID” style=“color:blue”>I’m blue now, but I may
not be later.</div>

Notice that since the example uses CSS, there’s no need to use
the font element to color our text. Now, say you want to
change the text to red. This is easy with the DOM and
JavaScript, especially if you’re using Internet Explorer 4 or
above, because IE makes accessing the DOM just a tad easier
than some other browsers do:

<div id=“myID” style=“color:blue; cursor:hand”
onclick=“this.style.fontSize=‘60px’; this.style.color=‘red’”>
I’m blue now, but I may not be later.</div>

If you load the preceding code fragment into Internet Explorer,
your browser will render as shown in Figure 27-1.

449

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

450 Part IV ✦ Advanced Web Authoring

Figure 27-1: When this text styled in CSS is clicked, it will change.

Listing 27-1 shows some modification to the previous code fragment. This time,
the this keyword isn’t used because another div object is created, along with
an onClick event handler for that div object. When the new div object is
clicked, the text in the div object labeled by the myID attribute gets bigger and
turns red.

Note Listing 27-1 only works in IE4 and later and Mozilla/Netscape with Gecko
engines (Netscape 7 and later).

Listing 27-1: Accessing an Element by Drilling Down
the DOM Hierarchy

<html>
<head>
<title>Setting CSS Properties Using Cross-Browser Scripting
Routines</title>
</head>
<body>
<div id=“myID” style=“color:blue;”>

<p>I’m blue now, but I may not be later.</p>

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

451Chapter 27 ✦ Dynamic HTML with CSS

</div>
<div style=“width: 100px; padding: 4px; background-color:

#cccccc; border: blue outset 1px; cursor:hand”>
<div align=“center”><a href=“#” style=“text-decoration:

none” title=“Click to change font styles!”
onclick=“myID.style.fontSize=‘60px’;
myID.style.color=‘red’”>Click

here </div>
</div>

</body>
</html>

Notice in Listing 27-1 the relationship between the myID attribute and the code that
is executed by the onclick event. Normally, you’ll call a function from an onclick
event. But you can also simply execute the script from the event handler, as well.

You can see the changes in Figures 27-2 and 27-3.

Figure 27-2: This text can be changed by clicking the Click Here button.

Cross-
Reference

More detailed information about function calls and other intricacies of event
handling can be found in Chapter 15, Scripts, and Chapter 26, DHTML.

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

452 Part IV ✦ Advanced Web Authoring

Figure 27-3: When the button is clicked, the text changes.

The solutions for changing CSS shown so far are of limited use because they rely on
Gecko’s and Internet Explorer’s interpretation of the object model, the latter of
which deviates quite substantially from that of the W3C object model. They both
share the same core object model defined by the Document Object Model of the
W3C. However, Internet Explorer expands on the DOM by a substantial amount.

Note For the full list of properties and methods available to the Internet Explorer
object model, visit http://msdn.microsoft.com/workshop/author/
dhtml/reference/dhtml-reference-entry.asp

DHTML and CSS Properties
What you’ve been seeing so far is that any object can be accessed using the Document
Object Model, and one of those objects is the style object (in Internet Explorer).
Unfortunately, as easy as the scripts you’ve seen so far seem to be, the real world makes
things a little harder, because different browsers use different nomenclatures for
their objects. For example, Gecko (the engine running current versions of Netscape)
calls its stylesheet object sheet. On the other hand, older versions of Netscape,
such as 4.0, use this kind of document traversal to access style sheet properties:

document.tags.p.fontSize

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

453Chapter 27 ✦ Dynamic HTML with CSS

In order to account for all the differences in syntax between browsers, you need to
set up browser sniffing routines which, as mentioned in the previous chapter, are
chunks of code that check to see what kind of browser is accessing a Web page and
executes the appropriate code. You’ll see how this works in the next section.

Setting CSS properties using JavaScript
Navigator 4.x, Netscape 6, Mozilla, and Internet Explorer make CSS1 properties of
elements accessible from JavaScript through their Document Object Model.
However, the Navigator 4.x DOM and Internet Explorer DOM are different. They both
implement parts of the W3C CSS1 standards, but they cover different areas, so
JavaScript code that defines CSS1 rules on one browser won’t work on other
browsers. The Gecko layout engine covers all of the properties in W3C CSS1
standards.

To define CSS1 rules from JavaScript and have them work in Navigator 4.x,
Netscape 6, Mozilla, and Internet Explorer, you need to do the following things:

1. Insert an empty style element into the document’s head and give it a unique ID
through the use of the id attribute. Then, later, you’ll be able to change the
properties of the style element.

2. In the head element, place the JavaScript for defining your CSS1 rules in a
script element so it executes before the body element is loaded into the
browser window. This is to make Navigator 4.x play nice, because in Navigator
4.z no “Dynamic CSS” will be rendered until you reload the page.

3. Use a browser sniffing routine as shown in bold in Listing 27-2. Note that the
key aspect of this routine is a series of “if” statements. If the browser is
Netscape 4, do one thing, and if the browser is IE, do another. Notice also the
use again of dot syntax to access the browser name through the use of the
userAgent property of the navigator object to determine the browser name.

On Navigator 4.x, the JavaScript is as follows:

document.tags.P.fontSize=“25pt”;

On Internet Explorer, the following is executed:

document.styleSheets[“MyID”].addRule (“P”, “fontSize:25pt”);

On user agents implementing Gecko, the following statement is executed:

document.getElementById(‘tssxyz’).sheet.insertRule(‘P @@ta { fontSize:
25pt }’,
document.getElementById(‘tssxyz’).sheet.cssRules.length)
@@ta is evaluated.

The final code should look something like Listing 27-2.

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

454 Part IV ✦ Advanced Web Authoring

Listing 27-2: Setting CSS Properties Using a Cross-Browser Script

<<html>
<head>
<title>Setting CSS Properties Using Cross-Browser Scripting
Routines</title>
<STYLE ID=“MyID” TYPE=“text/css”>
.MyClass {}
</STYLE>

<SCRIPT LANGUAGE=“JavaScript1.2”><!--
function changeIt() {
NewSize = 20;
var agt=navigator.userAgent.toLowerCase();
if ((parseInt(navigator.appVersion)==4) &&

(agt.indexOf(‘mozilla’)!=-1) &&
(agt.indexOf(‘spoofer’)==-1)
&& (agt.indexOf(‘compatible’) == -1)) {
document.tags.H1.color=“red”;
document.tags.p.fontSize=NewSize;
document.classes.MyClass.all.color=“green”;
document.classes.MyClass.p.color=“blue”;
}
else if (agt.indexOf(‘gecko’) != -1) {
document.getElementById(‘MyID’).sheet.insertRule(‘p
@@ta { font-size: ’ + NewSize + ‘ }’,

document.getElementById(‘MyID’).sheet.cssRules.length)
document.getElementById(‘MyID’).sheet.insertRule(‘.MyClass
@@ta { color: purple }’,
document.getElementById(‘MyID’).sheet.cssRules.length)
document.getElementById(‘MyID’).sheet.insertRule(‘p.MyClass
@@ta { color: blue }’,
document.getElementById(‘MyID’).sheet.cssRules.length)
}
else if ((parseInt(navigator.appVersion)>=4) &&

(agt.indexOf(‘msie’) != -1)) {
document.styleSheets[“MyID”].addRule (“p”, “font-size:”
@@ta + NewSize);
document.styleSheets[“MyID”].addRule (“.MyClass”,
@@ta “color:purple”);
document.styleSheets[“MyID”].addRule (“p.MyClass”,
@@ta “color:blue”);
}
}
//--></SCRIPT>

</head>
<body>
<div style=“width: 100px; padding: 4px; background-color:
#cccccc; border: blue outset 1px; cursor:hand”>

<div align=“center”><a href=“#” style=“text-decoration:
none” title=“Click to change font styles!”
onClick=“changeIt();”>Click

here </div>

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

455Chapter 27 ✦ Dynamic HTML with CSS

</div>
<p class=“MyClass”>
Here is some test script in a P element
</p>
<div class=“MyClass”>
Here is some test script in a P element
</div>
</body>
</html>

Listing 27-2 is a boilerplate of sorts. You could do a lot of different things that are
relevant to specific browsers with it by replacing the code that gets executed
between the braces in an if statement, as shown in bold in the following example:

if ((parseInt(navigator.appVersion)==4) &&
(agt.indexOf(‘mozilla’)!=-1) &&

(agt.indexOf(‘spoofer’)==-1)
&& (agt.indexOf(‘compatible’) == -1)) {

//do something here
}

You can see in Figures 27-4 and 27-5 that clicking the Click Me button achieves the
same kind of effects obtained through Listing 27-1, but this time the changes will
work in most other browsers.

Figure 27-4: This text can be changed in different browsers.

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

456 Part IV ✦ Advanced Web Authoring

Figure 27-5: A cross-browser script lets the user change the text by clicking a button.

Generally, CSS properties are all accessed the same way as shown in the two
preceding examples. CSS properties in script tend to map out in such a way that if
there is a hyphen in the property name, to access the property in script you delete
the hyphen and upper case the next letter, like this:

font-size

becomes

fontSize

Therefore, you can perform tasks such as change visibility and create dynamic
menus quite easily by manipulating CSS scripting properties.

Cross-
Reference

For examples of hierarchical dynamic menus and changing object visibility, refer
back to Chapter 26.

Using behaviors to create DHTML effects
Internet Explorer Behaviors, because they are accessed through style sheets, create
the potential to completely avoid serious cross-browser incompatibility issues.
When calling even highly complicated scripting routines, if you bind your routines to

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

457Chapter 27 ✦ Dynamic HTML with CSS

behavior selectors in style sheets, you might never need to worry about the
ubiquitous JavaScript error codes that occur so often when users access your site
with non-IE browsers.

Behaviors can expose the XML object model as well as a number of other models
and controls, including COM and ActiveX. Yet, because they’re designed to be
exposed through style sheets, browsers and operating systems that don’t support
COM won’t throw a fit when you use them, because they’ll be accessed only by
browsers that support the controls you are calling. This is all possible without any
direct referencing to the navigator object, the tried and true method of redirecting
those you didn’t want accessing certain pages.

The syntax for a behavior looks like this:

.myBehavior {behavior: url(value)}

You may remember the syntax for other style sheet selectors that call on URLs to do
their work, such as the background selector. The behavior selector operates on the
same principle by binding a URL to the Web page, exposing the Web page to
whatever methods and properties are residing in the URL source being referred to.
Specifically, the bound source is a scriptlet (thus, the .sct extension):

.myBehavior {behavior: url(myScriptlet.sct)}

Note A scriptlet is different than an imported JavaScript because it is specific to
Microsoft browsers and is designed specifically to work with behaviors.

If you are using an Active X or COM control, you would specify it as such:

.myBehavior { behavior:url(#myObject)}

In this case, myObject must be accessed in the HTML file by an <OBJECT> tag:

<OBJECT ID=myObject ... ></OBJECT>
<DIV CLASS=“myBehavior”>my text, your text</DIV>

Internet Explorer Filters
IE includes a variety of dynamic effects in a browser-safe way that won’t send
browsers that don’t support them crashing into a heap. The reason for this is that
they use CSS-like syntax. If a browser doesn’t support the syntax, the CSS code that
implements a given effect is simply ignored.

What follows is a closer examination of how to apply various visual effects through
IE’s extension to CSS2 style sheets. None of the properties that follow are part of the
CSS2 specification—rather, they are extensions that are specific to Internet Explorer
beginning with IE4 and, in the case of behaviors, IE5.

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

458 Part IV ✦ Advanced Web Authoring

Filters
If you’ve ever worked in a paint program you’re familiar with filters and their effects.
IE4 and IE have introduced them to the world of Web browsing through a set of
controls that come packaged and install with the program. You can access them
through style sheets, although not through CSS2 style sheets, but, instead, style
sheet extensions that are compatible only with IE4 and IE. There are several kinds of
filters, all of which fall into two basic categories: static and dynamic.

Static filters are visual filters that create effects such as drop shadows,
transparencies, and glows. These visual filters are called static not because they
can’t be made dynamic (they can through just a small amount of scripting code), but
because their siblings, transition filters, are dynamic effects that create an effect
during a transition of some kind, such as hiding or showing a layer, or the loading of
a new page into the browser. In fact, the easiest kind of filter to create is a filter that
produces an effect, such as a wipe or a fade, as a page loads. The code is simply
plunked into a meta tag, and therefore cannot load an error message into browsers
that don’t support it.

Like any other style sheet property, filters can be applied using event handlers. This
can help committed developers who want to produce interesting projects for use
over the Web.

It’s easy to determine if a particular HTML element can react to filter effects.
Generally, if the HTML element is a windowless container, you’ll be able to apply a
filter to it. frame and iframe, then, are out, and div and img are in. When using
div or span, it is imperative that you include at least one positioning property in its
definition. In other words, in its style sheet, indicate either the height or width of the
div or span element, or its left and right position.

Valid HTML filter elements
The following list shows which elements you can apply filters to.

✦ BODY

✦ BUTTON

✦ DIV (with a defined height, width, or absolute positioning)

✦ IMG

✦ INPUT

✦ MARQUEE

✦ SPAN (with a defined height, width, or absolute positioning)

✦ TABLE

✦ TD

✦ TEXTAREA

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

459Chapter 27 ✦ Dynamic HTML with CSS

✦ TFOOT

✦ TH

✦ THEAD

✦ TR

The following section begins with a look at filters with the visual filters that are applied
through style sheets, followed by a look at the light and visual transition filters.

Visual filters
There are several static filter controls that come as a part of the IE package, the
definitions of which follow. They’re easy to use with style sheet selectors, although
the actual rendering of some is better than others. Some of them, such as glow, can
be quite impressive, whereas the drop shadow effect may remind you of the
infamous <BLINK> tag. All visual filters follow the same general syntax: a CSS-like
selector followed by a value consisting of the filter name and a series of its required
parameters.

{ filter: value(parameter, parameter)}

alpha
You know what an alpha channel is, even if you think you don’t. Any graphic file
format that is capable of rendering a transparency or varying degrees of opacity has
an alpha channel. In IE, the alpha channel sets the opacity level of an object. Using
the optional startx(y) and finishx(y) values allows you to create a gradient, as
in the following syntax.

{filter: alpha(Opacity=value, FinishOpacity=value, Style=value,
StartX=value, StartY=value, FinishX=value, FinishY=value)}

Valid parameter values are as follows:

✦ 0 to 100 for opacity, where 0 is transparent and 100 is opaque

✦ 0 to 100 for the optional parameter FinishOpacity

✦ A value of 0 (uniform), 1 (linear), 2 (radial), or 3 (rectangular) for the style
parameter, which sets the gradient shape

✦ An x or y value for the StartX, StartY, FinishX, and FinishY values.

For example:

H1 {filter: alpha (20)}
H2 {filter: alpha (20, 100, 1, 10, 10, 200, 300)}

As you might have surmised, you obviously would need to set all of the gradient
values if you set the FinishOpacity value.

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

460 Part IV ✦ Advanced Web Authoring

blur
This filter creates a movement across the screen according to the parameters you
set for it, and has the following syntax:

{ filter: blur(add=value, direction=value, strength=value,)}

Valid parameter values are as follows:

✦ The boolean values true and false for add, which tell IE whether or not to add
the original image to the blur

✦ A direction value of a point of a round path around the object (the value must
be a multiple of 45 within a 360-degree path)

✦ A strength value that is represented by an integer, indicating the number of
pixels affected by the blur (a default of 5)

These parameters are represented in the following example:

H1 {filter: blur (false, 45, 20)}

chroma
This filter creates a transparency level out of a specific named color and has the
following syntax:

{ filter: chroma(color)}

No parameters are needed with this filter—the only needed value is the color, named
as a hexadecimal color. This is not a reliable filter for any image that has been subject
to dithering, either as a result of antialiasing, or a reduction in the size of its color
palette from 24-bit to 8-bit, including JPEG, but is rather best used on an image that
was created with a Web safe color palette in the first place, as in the following example:

H1 {filter: chroma (#ff3399)}

dropShadow
This filter creates a movement across the screen according to the parameters you
set for it, and has the following syntax:

{FILTER: dropShadow(Color=value, OffX=value, OffY=value,
Positive=value)}

Valid parameter values are as follows:

✦ Hexadecimal color values for color

✦ A positive or negative integer for offx and offy, which indicates how many
pixels along a horizontal (x) and vertical (y) axis the drop shadow is offset

✦ A zero or nonzero value for the parameter positive, which indicates whether or
not to pick up transparent pixels for the drop shadow (0, false, is yes; any other
number, true, is no, because the value is actually inquiring about

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

461Chapter 27 ✦ Dynamic HTML with CSS

nontransparent pixels, so if you want a drop shadow for a fully transparent
object, you should set this value to 0.)

Here is an example using some of the parameters:

H1 {filter: dropShadow (#336699, 8, 8)}

Listing 27-3 shows how to build a drop shadow, and Figure 27-6 shows how it looks
rendered in a browser.

Listing 27-3: Building a Drop Shadow Filter

<html>
<head>
<title>Using a Drop Shadow</title>
</head>
<body>
<DIV style = “ font-size:50px; position: absolute; top: 20; left:15;
width:440px; height: 148; font-family: sans-serif; color: #FF9966;
filter: dropShadow (#336699, 1, 1)”>
Here is a drop shadow.
</div>
</body>
</html>

Figure 27-6: A Drop Shadow rendered in a browser.

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

462 Part IV ✦ Advanced Web Authoring

flipV
This filter flips an object along a horizontal plane. It has the following syntax:

{ filter: flipV}

This filter takes no parameters, as reflected in the following example:

H1 {filter: flipV}

flipH
This filter flips an object along a vertical plane. It has the following syntax:

{ filter: flipH}

This filter takes no parameters, as reflected in the following example:

H1 {filter: flipH}

Glow
This filter creates a glow around the outside pixels of an object. It has the following
syntax:

{FILTER: Glow(Color=color, Strength=strength)}

Valid parameter values are a hexadecimal number for the color value, and a value of
1-255 for the strength value, which represents the intensity of the glow. The following
example shows a strength value of 200:

H1 {filter: glow (#333399, 200)}

gray
This filter removes the color information from an object. It has the following syntax:

{filter: gray}

This filter takes no parameters, as reflected in the following example:

H1 {filter: gray}

invert
This filter reverses the values of an object’s hue, saturation, and brightness. It has
the following syntax:

{filter: invert}

This filter takes no parameters, as reflected in the following example:

H1 {filter: invert}

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

463Chapter 27 ✦ Dynamic HTML with CSS

light ()
The light filter can produce not only some fun effects, but can enhance a page
visually, as well. The light filter has numerous methods you can call on for some
special effects. The various methods you can call on are listed in the next sections.

addAmbient
The addAmbient filter adds an ambient light source to an object. When the light filter
is first applied via a style sheet, a default addAmbient light method is applied that
results in a black box. The syntax is as follows:

object.filters.Light.addAmbient(R,G,B,strength)

The parameters, in parentheses, must be in the order shown.

addCone
By naming a variety of values, you can position a cone light source to act as a kind of
spotlight on a particular portion of an element or image. Here is the syntax for this
filter method:

object.filters.Light.addCone(x1,y1,z1,x2,y2,R,G,B,strength,spread)

Valid cone parameters (in this order) include the following:

✦ x1 is the light’s starting point, or source position on the x axis

✦ y2 is the light’s starting point, or source position on the y axis

✦ z1 is the light’s starting point, or source position on the z axis

✦ x2 is the light’s target point, or target position on the x axis

✦ y2 is the light’s target point, or target position on the x axis

Unlike many other filter calls, valid color ranges are defined as base-10 RGB ranges,
rather than as hexadecimals.

(0-255) Red
(0-255) Green
(0-255) Blue

And in degrees:

(0-255) Strength
(0-90) Spread Angle

You can only add a total of three cones to one image. In some versions of IE4, even if you
only add three cones, if the user clicks a fourth time, an error message is generated.

addPoint
The addPoint filter adds a more finely focused area of light to an element than the
addCone method. To use this method, follow this syntax:

object.filters.Light.addPoint(x,y,z,R,G,B,strength)

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

464 Part IV ✦ Advanced Web Authoring

changeColor
The changeColor filter changes light color using the following syntax:

object.filters.Light.changeColor(lightnumber, r,g,b,
zero/nonzero)

lightnumber refers to the indexed number in the collection. Zero/nonzero refers to
a nonzero or zero (0) number, with zero changing the color in an increment specified
in the r, g, b parameters, and a nonzero number setting the color to the value
indicated.

changeStrength
This filter changes light strength. To use it, follow the syntax shown here:

object.filters.Light.changeStrength(lightnumber, strength,
zero/nonzero

A zero/nonzero value of zero (0) results in an incremental or decremental change in
strength value, and a value of nonzero results in a new strength set to the value
indicated.

Clear
Clear deletes all the lights from the object, and has the following syntax.

object.filters.Light.Clear

moveLight
Moves a light source to a position indicated in the method’s parameters. The syntax
looks like this:

object.filters.Light.moveLight(lightnumber, x, y, z, boolean)

boolean is a true/false operation, indicating whether the movement is absolute or
relative to the source’s original position. False means absolute; true means relative.

mask
Mask creates a stencil-like effect of an object by painting the object’s transparent
pixels and converting its nontransparent pixels into transparent ones. It has the
following syntax:

{Filter: mask(Color=value)}

Valid parameter value is a hexadecimal number for the color value; which indicates
the color that the transparent areas should be painted, as shown in the following
example:

H1 {filter: mask (#333399)}

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

465Chapter 27 ✦ Dynamic HTML with CSS

shadow
This shadow filter creates a border around one of its edges to simulate a shadow. It
has the following syntax:

{ filter: shadow(color=value, direction=value)}

Valid parameter values are hexadecimal RGB values for color and a direction value of
a point of a round path around the object (the value must be a multiple of 45 within a
360-degree path).

H1 {filter: shadow(#333333, 45)}

wave
The wave filter creates a sine wave across the vertical plane of an object. It has the
following syntax:

{ filter: wave(add=value, freq=value, lightStrength=value,
phase=value, strength=value,)}

Valid parameter values are as follows:

✦ The boolean values true and false for add tell IE whether or not to add the
original image to the filter effect.

✦ A frequency value is denoted by an integer that indicates the number of waves.

✦ A value ranging from 1-100 indicates the strength of the light being used in the
filter.

✦ A phase value between 1-100 indicates the offset percentage vis-a-vis the wave.

✦ A strength value denotes the intensity of the wave represented as an integer.

You can see these parameters in the following example:

H1 {filter: wave (false,10, 45, 20, 50)}

x-ray
This filter reduces an image to a black and white format to resemble an x-ray. It has
the following syntax:

{ filter: Xray}

This filter takes no parameters, as reflected in the following example:

{filter: xray}

Reveal transition filter
This is a personal favorite of mine, mostly because I am inherently lazy, and, though
not actually accessed by a style sheet, you can develop a nice page transition by

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

466 Part IV ✦ Advanced Web Authoring

simply writing it in the meta tag at the beginning of a document. The revealtrans
filter has the following syntax:

{filter: revealtrans(duration=value, transition=value)}

Possible values include a floating-point number as a duration value and an integer
for the type of transition you want. There are several kinds of transitions an object or
page can make as it reveals itself. These transitions are listed in Table 27-1.

Table 27-1
Possible Transitions

Transition Value

Box in 0

Box out 1

Circle in 2

Circle out 3

Wipe up 4

Wipe down 5

Wipe right 6

Wipe left 7

Vertical blinds 8

Horizontal blinds 9

Checkerboard across 10

Checkerboard down 11

Random dissolve 12

Split vertical in 13

Split vertical out 14

Split horizontal in 15

Split horizontal out 16

Strips left down 17

Strips left up 18

Strips right down 19

Strips right up 20

Random bars horizontal 21

Random bars vertical 22

Random 23

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

467Chapter 27 ✦ Dynamic HTML with CSS

Two of the possible transition values are used in the following example:

.filter {filter: revealtrans(duration=10, transition=22)}

This style sheet creates a transition that can be applied to whatever HTML element
takes the class name “filter.” You can also apply a transition page to a page as it is
loaded or as it exits the page:

<META HTTP-EQUIV=“Page-Enter”
CONTENT=“RevealTrans(Duration=5,Transition=2)”>

Simply include this in your head tag along with any other meta tags you might have.
Browsers that don’t support the transition will simply ignore it. You can also write a
transition that creates the effect as the browser unloads the page:

<META HTTP-EQUIV=“Page-Exit”
CONTENT=“RevealTrans(Duration=5,Transition=2)”>

In fact, it’s been my experience that this tends to work better than the pages that
have the Page-Enter attribute.

Summary
This chapter introduced you to using Dynamic HTML with CSS. You discovered that
each CSS property is scriptable, and that you can even create dynamic effects
without script. Specifically, this chapter covered the following topics:

✦ An introduction to the Document Object Model

✦ DHTML and CSS properties

✦ Internet Explorer filters

So far, you’ve seen how client-side scripting, which depends on a browser’s
capabilities, can be used to take advantage of a browser’s scripting support to make
changes to Web pages on the fly. In the next chapter, you’ll see how many developers
remove this dependency by using server-side scripting, which allows you to create
scripting routines on the server to dynamically produce HTML based on things such
as user input or even user location. You’ll see that when using server-side scripting,
you can worry less about browser support because you generate basic HTML, and
the “dynamic” qualities of Web page behavior are handled by the server.

✦ ✦ ✦

P1: KTX

WY022-27 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:42

468

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

2828C H A P T E R

Introduction to
Server-Side
Scripting

✦ ✦ ✦ ✦

In This Chapter

How Web Servers Work

Market-Leading Web
Servers

The Need for Server-Side
Scripting

Server-Side Scripting
Languages

✦ ✦ ✦ ✦

Earlier in this book, you learned the ins and outs
of delivering fairly static data via HTML, CSS, and related

technologies. Chapters 25–27 introduced you to client-side
scripting and how it can be used to automate documents.
However, client-side scripting is fairly limited in scope and
resources. It cannot, for example, query a database and
display unique content driven by the query. Enter the world of
server-side scripting—higher level programs that can run on a
Web server to extend its capabilities. This chapter introduces
the server-side scripting concept and the most popular
options for accomplishing server-side scripting.

Note Due to the complexity of the server-side scripting sub-
ject, it is outside the scope of this book to actually
teach any server-side scripting. To do so would require
several chapters for each different technology/language
presented here. This chapter is only designed to intro-
duce the concept and to give you the various options
available for server-side scripts.

How Web Servers Work
A Web server is a patient program that sits on your server (that
is, the physical machine dedicated to serving pages and
performing other server functions) waiting to receive an HTTP
request via TCP/IP.

Any server configured to handle communications via TCP/IP
(the Internet’s communications protocol) has ports. These
aren’t physical ports, like the serial port and parallel ports on
the back of your computer, but they serve the same purpose.
All HTTP requests come through port 80 unless the server has

469

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

470 Part IV ✦ Advanced Web Authoring

been configured differently. Port 80 is the default Web server port. This is how your
server, which may be a file server, an applications server, and an FTP server, in
addition to being a Web server, keeps it all straight.

When an HTTP request comes through port 80 to the Web server, the Web server
finds the page requested, checks the permissions of the client making the request,
and, if the client has the appropriate permission, serves the page. Figure 28-1
illustrates the request process.

Client computer
running browser

Server

HTTP
request

Returns page or
error message

Figure 28-1: The client requests the page. Then the server
evaluates the request and serves the page or an error message.

Generally, HTTP requests are anonymous. What this really means is an account has
been created on the Web server for HTTP requests. When a request comes through
port 80, it is assumed to come from this account. Each file on the Web server has
certain permissions associated with it. If the HTTP account has adequate permission
to read that page, and the page isn’t otherwise protected, the Web server will serve
that page.

Server-side scripting fills many gaps and can be used for the following purposes:

✦ “Intelligent” page generation. The contents of a page can be determined by
the user—via previously established preferences, database queries, and
so on.

✦ Form verification and handling. In Chapter 23 you learned how JavaScript can
be used to do basic form validation. However, using server-side scripts the
form data can be validated at a much more detailed level—data verified against
database content, run through credit card processors, and so on.

✦ Dynamic page generation. Because most server-side scripting languages can
interface with databases, generating dynamic content is fairly easy using
server-side scripting. This concept is covered in more detail in Chapter 29.

You can run server-side scripts via several different methods:

✦ They can be run by specifying the script in a standard URL format, such as
www.example.com/dosomething.cgi.

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

471Chapter 28 ✦ Introduction to Server-Side Scripting

✦ They can be called from another script or static page by using a form action:

<form action=“validate.cgi” method=“POST”>

✦ They can be called from another script or static page by using a link:

The results of the survey can be found
here.

In any case, the Web server must know how to handle server-side script
requests—calling a CGI page (for example, validate.cgi) via any method will only
cause an error in the server unless it knows how to process the request.

In the case of most server-side scripts, the Web server simply turns over processing
of the script to an interpreter or the operating system. The script is executed in a
separate environment, able to draw upon other resources but still have its output
sent to the HTTP client.

Note The concept of using external resources to process scripts is covered in the
Common Gateway Interface section later in this chapter.

Market-Leading Web Servers
Several different Web servers are in use today. Many of these servers are
single-purpose applications, providing an HTTP interface into peripherals,
applications, or appliances.

In the mainstream HTTP server world, two programs reign supreme: The Apache
Software Foundation’s HTTP Server (Apache) and Microsoft’s Internet Information
Server (IIS).

Apache
The Apache Software Foundation is a group that provides support for the Apache
community of Open Source projects. Included in those projects is the Foundation’s
HTTP Server Project (commonly referred to as Apache). Apache gets its name from
the way it was originally developed. Originally, the server was made of several
components or “patches,” making it “a patchy server.”

Apache was one of the earliest developed Web servers and still undergoes continual
development and improvement. Bug and security fixes take only days to find and
correct, making Apache the most stable and secure Web server available.

Another advantage of rapid development and releases is the robust feature set. New
Internet technologies can be deployed in Apache much more quickly than in other
Web servers.

Apache continues to implement its features with distinct pieces, or modules. Utilizing
a modular approach to feature implementation enables Apache to be deployed with

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

472 Part IV ✦ Advanced Web Authoring

only the amount of overhead necessary for the features you want. It also facilitates
third parties developing their own modules to support their own technologies.

Apache supports almost all Internet Web technologies, including proprietary
solutions such as Microsoft’s FrontPage extensions. Apache supports all manner of
HTTP protocols, scripting, authentication, and platform integration.

Tip Visit the Apache module Web site (http://modules.apache.org) for in-
formation on the modules included with Apache and the registered third-party
modules.

Apache is available for many platforms, including Windows, UNIX, and Linux. It is
estimated that more than 70% of Web servers on the Internet are Apache servers.

IIS
Microsoft’s Internet Information Server is Microsoft’s answer to serving HTTP
content. Developed in early 1995, IIS was designed to provide HTTP deployed content
on Microsoft NT servers. Although standard Web deployed documents (HTML, and
so on) were part of the IIS design, the server was created to integrate more fully into
Microsoft’s server products—deploying a litany of Microsoft technology.

IIS continues to evolve with each release of Microsoft’s server platforms. A handful
of new capabilities are included in the newest IIS versions, including the ability to act
as sophisticated media servers, but the underlying structure is still HTTP deliverable
content.

Note Microsoft technologies offer a double-edged sword to the Internet. The Web
owes a lot to Microsoft’s development of both server and client technologies.
However, some of the technologies come in proprietary packages unavailable
to non-Microsoft platforms. For example, Active Server Pages (ASP) redefined
interactivity on the Web, providing a near-Windows-like graphical user experi-
ence. However, ASP technology is only available on Microsoft server platforms.

Because IIS runs on Windows, controlling the server is accomplished through the
use of standard Windows components and management consoles. However, as of
this writing, IIS is still only available on Microsoft server platforms (NT/2000
Server/2003 Server).

The Need for Server-Side Scripting
As you saw in Chapter 25, JavaScript and other client scripting languages are very
limited in the amount of resources available to the script. As a general rule,
client-side scripts can only access the user agent’s features (usually a very limited
set of the features) and the document’s content. Although such capabilities are
enough for simple automation and driving dynamic formatting, such limitations
leave much to be desired. More robust content requires more robust tools.

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

473Chapter 28 ✦ Introduction to Server-Side Scripting

Server-side scripts are so named because they run on the server instead of in the
client’s user agent. As such, server-side scripts can have access to all resources that
the Web server and its underlying platform (operating system and hardware) have
access to. Database content, hardware peripherals, robust data storage, and more
are all available to server-side scripts.

Most server scripting languages perform their magic in the background, without the
user being aware that they are there. The Web server executes the script, which
accesses databases, peripherals, or other servers, and passes any output from the
script on to the user agent for display.

For example, point your browser at an online shopping mecca such as Amazon.com.
Several different server-side scripts are responsible for the content you see on every
page. Some scripts provide the advertising banners, others provide the specials of
the day, while others handle the searching and browsing requests.

Server-side scripting offers another benefit that might not be readily apparent—the
ability to communicate between user agents. Online Web-chat and other such
services utilize server-side scripts and applications to accomplish their magic.

Server-Side Scripting Languages
Several different scripting languages are available for use on Web servers—more are
appearing each day. This section describes the most popular languages and
technologies in use today.

Common Gateway Interface
The Common Gateway Interface (CGI) was developed as a standard way for
programs to talk to a Web server, thereby extending the server’s capabilities. The
CGI specification allows most programming languages to interact with Web servers.
As long as a language can accomplish the following tasks, it is a viable CGI platform:

✦ Read from standard input

✦ Write to standard output

✦ Read from environment variables

Tip Just because a programming language can be used to implement CGI doesn’t
mean that it should be used. There are several security concerns relating to using
CGI with a Web server. Many of the more common CGI-capable languages have
built-in security components and therefore are safer to use. Other, unproven
languages (operating system, macro languages, and so on) can present the
outside world with more access to your server and underlying file system than
you intend.

The most common CGI languages are C and Perl. The former is a compiled language,
that is, it needs to be converted to a binary program before it can be run. The latter

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

474 Part IV ✦ Advanced Web Authoring

is an interpreted language—interpreted languages are converted into binary
programs on the fly, as they are run.

Note Keep in mind that a program must output data in a form recognized by the
user’s interface, typically a Web browser. For example, a CGI program used to
render an HTML document must pass the correct MIME type and document
type definition as well as encapsulate its output in appropriate HTML tags.

Each type of programming language (compiled/interpreted) has distinct advantages
and disadvantages. Compiled languages tend to be faster executing, but require the
extra compilation step to be deployed. Interpreted languages are a bit slower, but
provide a little more flexibility during development.

Note A great online resource for CGI scripting is the CGI Resource Index (www.cgi-
resources.com).

Several varieties of C are available for Windows and Linux platforms. Likewise, Perl is
available for most platforms.

ASP, .NET, and Microsoft’s technologies
As with most technologies, Microsoft has made several noteworthy achievements in
creating tools and deployment solutions for the Internet. The latest initiative, .NET
(pronounced dot-net), provides a solid platform to develop and deploy solutions
over the Internet using Microsoft technology.

Microsoft’s earliest contributions to the Web were in the form of Active Server Pages
(ASP) and ActiveX controls. ASP is Microsoft’s answer to CGI, allowing their
programming languages to be used to extend a Web server’s capabilities. ActiveX
controls extended the interactivity possible in Web pages by providing standard,
Windows-like controls for users to interact with data on the Web. An example of a
complex ActiveX control is provided in Figure 28-2, which shows the interface for a
popular network camera.

Note ActiveX controls only loosely fit into the scheme of server-side scripting, because
they are actually downloaded and used by the client instead of the server. They
are mentioned here for a sense of completeness and because they provide a
viable option for extending the capabilities of the Web.

For the most part, ASP operates much like standard CGI, incorporating programs to
extend a server’s capabilities. For example, the following code uses Visual Basic to
store a value that is later output within an HTML document:

<%@ Page Language=“VB” %>
<%
HelloWorld.InnerText = “Hello World!”
%>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

475Chapter 28 ✦ Introduction to Server-Side Scripting

Figure 28-2: The ActiveX control used by a popular network camera to allow control of
the camera over the Internet.

<html>
<head>
<title>Hello World ASP Sample</title>
</head>
<body>

<p id=“HelloWorld” runat=“server”></p>

</body>
</html>

This simple example only scratches the surface of the power behind ASP. More
complex code could look up data in a database and present it in tabular format or
perform other complex operations whose results could then be presented in HTML,
using the same method as shown previously.

To use ASP (and the latest ASP.NET) requires a Microsoft Server running IIS along
with the various pieces of ASP and .NET technologies. A good tutorial for getting up
and running with ASP appears on the ASP101.com Web site, at www.asp101.com/
lessons/install.asp.

Note The ASP101 Web site is a great resource for all things ASP-related—tutorials,
sample code, and more (www.asp101.com).

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

476 Part IV ✦ Advanced Web Authoring

PHP
PHP is a relative newcomer to the server-side scripting arena. However, it is one of
the few solutions that were developed specifically for Web automation. As such, it
has the most robust set of features for presenting all kinds of data in Web-friendly
formats.

Hypertext Preprocessor (PHP for short) is essentially a general-purpose scripting
language with the following features:

✦ Based on open source technologies

✦ The capability to run before the resulting page is displayed

✦ A Perl-like structure and syntax

✦ Robust HTTP handling capabilities

✦ The capability to coexist with raw HTML in the same file

✦ Modules for interacting with other technologies, such as MySQL

Unfortunately, PHP also has some serious drawbacks, also relating to its newness
and genesis as a Web programming language:

✦ Numerous security issues (although they are typically found and fixed quickly)
are compounded by the relative accessibility of the language to fledgling
programmers.

✦ PHP versions up through 4.3 do not have robust object handling capabilities.
As such, the language is not as flexible (or, arguably, as powerful) as those
languages that do have robust object-oriented programming (OOP) structures.

✦ The structure of PHP programs can be fairly loose, allowing bad programming
techniques to be used where highly structured code would otherwise be used.
(Note that this is also a benefit as PHP tends to be easy to learn and the
concern is mitigated if the person learning PHP takes the time to learn good
programming habits as well.)

The following code is an example of how PHP could be used to render the “Hello
World” example shown in the ASP section, earlier in this chapter:

<?php
$HelloWorld = “Hello World!”;

header(‘Content-type: text/html’);
print <<<HTML
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
<title>Hello World ASP Sample</title>
</head>
<body>

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

477Chapter 28 ✦ Introduction to Server-Side Scripting

<p>$HelloWorld</p>

</body>
</html>
HTML;
?>

As with the earlier ASP example, this simple PHP example only scratches the surface of
what you can accomplish with PHP. Instead of simply setting a string variable, the code
could access a database and present the resulting data in a number of complex forms.

PHP is available on Windows and Linux and requires that the PHP processor be
installed on the Web server (both operating system and Web server application).

Note You can find several sources of information online for PHP. The best resource
is the PHP Web site itself (www.php.net), which has full language documen-
tation, sample code, and more. For more sample code, visit the PHP Resource
Index, at http://php.resourceindex.com.

ColdFusion
ColdFusion by Allaire (now owned by Macromedia) is one product that greatly
increases what your Web site can do without requiring any programming. Using a
simple language, called Cold Fusion Markup Language(CFML), you can create
powerful scripts you write right into your HTML pages. The ColdFusion server
returns the script’s results right into your page.

Some of the cool things you can do are as follows:

✦ Schedule the generation of a page daily, hourly, or at whatever interval you
choose.

✦ Pull content off other sites and parse it into your own format. (Get permission
from the site owner before you try this.)

✦ Send mail to everyone in a database from a Web page based on criteria
indicated on the form on the Web page.

✦ Insert records into a database. Update a database record. Read a database for
records that meet certain criteria.

ColdFusion is available for both NT and UNIX (Solaris) platforms. It works with
ODBC-compliant databases. You can find out more from the Macromedia Web site
(www.macromedia.com).

Summary
Web publishing has come a long way from its humble beginnings as a means of
delivering static textual documents. Using various scripting technologies, browser

P1: KPE

WY022-28 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 20:3

478 Part IV ✦ Advanced Web Authoring

plug-ins, and other technologies, you can deliver just about any type of content via
the Web.

In this chapter, you learned how server-side scripting can be used to extend the
capabilities of the Web server, tying in almost any resource available to the server,
including databases, peripherals, and more.

✦ ✦ ✦

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

2929C H A P T E R

Introduction to
Database-Driven
Web Publishing

✦ ✦ ✦ ✦

In This Chapter

Understanding the Need
for Database Publishing

How Database Integration
Works

Options for Database
Publishing

Database Publishing Case
Study—A Newsletter

Authentication and Security

✦ ✦ ✦ ✦

Although databases are not new to the computer world,
only in the last few years has database-driven Web

content become widespread. From real-time inventory
tracking to dynamic content publishing (think online
newsletters, and so on) database integration can add a lot of
power to your online documents. This chapter introduces you
to the concept of database-driven publishing.

Note A full discussion and in-depth examples of database pub-
lishing are beyond the scope of this book. This chap-
ter introduces you to the concepts and should give you
enough information to get started. However, for more
information on the subject you should pick up a book
dedicated to the subject.

Understanding the Need for
Database Publishing

As previously discussed throughout this book, pure HTML
documents tend to be very static, offering little to no dynamic
content. Consider the following examples:

✦ An order form presented with straight HTML cannot properly
represent the vendor’s stock levels, potentially allowing
customers to order more product than can be shipped.

✦ An online newsletter must be manually assembled and edited
in HTML. Furthermore, such online content cannot be easily
searched or presented in multiple formats.

✦ Customer records, historical data, and so on cannot be
manipulated, searched, or validated against other data.

479

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

480 Part IV ✦ Advanced Web Authoring

However, when your documents can interact with database content, you can easily
mitigate the concerns mentioned in the preceding list:

✦ The order form can represent the current stock level, alerting customers to
backordered items and potential ship dates. The form can also look up
shipping estimates and tax rates where applicable.

✦ The online newsletter can be edited piecemeal and assembled by running
database queries against a database holding massive amounts of content. The
content (even historical content) can be represented in many forms and
searched for specific content.

✦ Data can be stored, retrieved, validated, and otherwise manipulated.

How Database Integration Works
HTML and client-side scripts are not equipped to access databases. Database access
requires tools on the server side of the equation, typically server-side scripts or an
HTTP-enabled data server.

Figure 29-1 shows a simple example of how standard HTTP requests (typically HTML
documents) are served.

Figure 29-1: A typical HTTP request is served
by the Web server.

Figure 29-2 shows an example of how a Web server can be integrated with a database
using server-side scripting.

Cross-
Reference

For more information on server-side scripting, refer to Chapter 28.

Options for Database Publishing
Two methods are commonly used for database publishing: pre-generated content
and on-demand content. Each method has its advantages and disadvantages, as
discussed in the following sections.

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

481Chapter 29 ✦ Introduction to Database-Driven Web Publishing

Figure 29-2: A server-side script can be relied upon to store and
retrieve data from a database. The same script can manipulate the
data in many ways before passing it back to the server for delivery
to the requesting client.

Pre-generated content
The concept of pre-generated content relies upon background scripts being run on
the server at regular intervals, generating static pages from the database content.
For example, a script might run every few hours to refresh the content, allowing
recent articles or prices to appear on the appropriate pages.

Pre-generated content is typically used on sites that experience a high volume of
traffic, or where the content doesn’t change much.

The advantage to pre-generating content is that it takes the load off of the database
server, letting the Web server do what it does best, serve static HTML pages. The
disadvantages are that the content isn’t as timely (it’s only as up-to-date as the
frequency of the generating script allows it to be), and the user cannot dynamically
generate the content.

On-demand content
On-demand content relies on server-side scripts to deliver the data each time a user
visits a page. The scripts query the database for appropriate content and display it
as required on each page. For example, a “Recent Headlines” script might run at the
top of the main page, displaying the headlines of the most recent articles.

On-demand content is typically used on sites that experience a lower volume of
traffic or on sites where the content changes rapidly or must be accurate
up-to-the-minute.

The advantage to on-demand content is that it can be as current as the data in the
database allows. The requesting scripts can also dynamically generate the content,
allowing a user more control over what he or she sees. The disadvantage is that this
method places more load on the scripts and database; the scripts are run and the
database is accessed each time a page is requested.

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

482 Part IV ✦ Advanced Web Authoring

Database Publishing Case Study—A
Newsletter

An online newsletter is a good example to show the power of database publishing.
Many such documents are online, from daily Web logs to online article repositories.

Cross-
Reference

For more information on Web logs, see Chapter 30. For many examples of Web
logs, see the lists at Syndic8.com (www.syndic8.com) or Userland Software
(www.userland.com). For online article repositories, see any number of Web
sites provided by Internet.com (www.internet.com).

The concept is straightforward: take a bunch of small to large articles and present
them in a logical online format. Make them presentable in various formats (by
author, by date, by subject, and so on), and include a search feature for users to find
content that interests them.

The manual method
A friend of mine maintained a publishing site before the golden age of Web blogging,
before the numerous tools were available to aid such efforts. He used a manual
system of publishing, similar to the following:

1. Daily articles would be posted at the top of the main page. This would move
older articles down on the page.

2. Once a month (usually at the end of the month), the content assembled on the
main page would be moved to an archive page. The archive would be named
according to the month it was assembled (for example, march-04.html).

3. The main page would be cleared of article content, and a link to the new
archive would be added to the navigation section.

4. The process would repeat for each month.

Figure 29-3 shows this process in a graphical format.

The database method
After a few months of performing the process outlined in the preceding section, my
friend related his plight to me and we set to work implementing a database
publishing system for his use. The system functioned as outlined in the following list:

1. Using a simple form, each article could be entered into the database. Each
article was stored with the following data:

• Date article was written

• Author of article

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

483Chapter 29 ✦ Introduction to Database-Driven Web Publishing

Figure 29-3: The manual process of maintaining an online
newsletter.

• Subject of article

• Main text of article

• Whether the article is final or in draft form (should it be published?)

2. The main page of the site used a server-side script to retrieve the last few
articles from the database and present them in their entirety.

3. A navigation bar allowed a user to visit monthly archives. The same server-side
script generated all monthly archives—the month was passed as an argument
and the script would retrieve only articles published in that month.

4. A full-text index was generated on each article, allowing a simple search
function to be implemented for users. The user would enter search terms into a
simple form—the data entered would be used in a query against the database
content. Matching articles were presented on a separate page.

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

484 Part IV ✦ Advanced Web Authoring

Tip As previously mentioned in this chapter, many Web blogging programs exist
to easily implement the system described here. However, these programs do
not alleviate the need for custom server-side scripts. At times, you will need a
customized system, either to augment an existing system or to replace a prefab
tool. The concepts presented in this chapter also provide a decent base for
building other database-enabled Web projects.

Figure 29-4 shows a graphical example of this new process.

Figure 29-4: The new process places the content in a database where
server-side scripts can retrieve it as necessary.

The tools
For this task MySQL was used as the database and PHP was used as the scripting
language. Both technologies were well known, could be easily implemented on the
Web server (Apache), and provided enough power and flexibility for the project.
Also, both technologies were attractively priced—they were free. Because both are
open source projects, they can be downloaded, installed, and used without the high
price of other commercial solutions.

Tip For more information on these technologies, visit their home pages. The MySQL
home page can be found at www.mysql.com. The PHP home page can be
found at www.php.net.

Database structure
Three MySQL tables were created to hold the article data. The first table, for
authors, holds the details for various authors allowed to post articles. The second
table, for categories, allows arbitrary categories to be defined and attached to
articles. The third table holds the articles themselves.

Tables 29-1 through 29-3 show the configuration of the tables.

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

485Chapter 29 ✦ Introduction to Database-Driven Web Publishing

Table 29-1
The Authors Table

Column Definition Use

Idx Integer, auto increment Index for authors

Name Character field Name of author

Pwd Character field Password for author (encoded when saved in table)

Email Character field E-mail address of author

Table 29-2
The Categories Table

Column Definition Use

Idx Integer, auto increment Index for category

Name Character field Name of category

Description Character field Full description of category

Table 29-3
The Article Table

Column Definition Use

Idx Integer, auto increment Index for articles

Pubdate Date field Date article was written

Cat Integer Index of category that article should be attached to

Author Integer Index of author that wrote article

Title Character field Title/headline of the article

Article Text field The text of the article

Publish Integer Used as binary field (0 = draft, don’t publish;
1 = final copy, publish)

The following listing shows the table definitions in MySQL:

CREATE TABLE ‘autho1s’ (
‘idx’ int(10) unsigned NOT NULL auto_increment,
‘name’ varchar(40) NOT NULL default ”,
‘pwd’ varchar(20) NOT NULL default ”,

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

486 Part IV ✦ Advanced Web Authoring

‘email’ varchar(40) NOT NULL default ”,
PRIMARY KEY (‘idx’)

) TYPE=MyISAM ;

CREATE TABLE ‘categories’ (
‘idx’ int(10) NOT NULL auto_increment,
‘name’ varchar(40) NOT NULL default ”,
‘description’ text NOT NULL,
PRIMARY KEY (‘idx’)

) TYPE=MyISAM ;

CREATE TABLE ‘articles’ (
‘idx’ int(10) unsigned NOT NULL auto_increment,
‘pubdate’ datetime NOT NULL default ‘0000-00-00 00:00:00’,
‘cat’ int(10) unsigned NOT NULL default ‘0’,
‘author’ int(10) unsigned NOT NULL default ‘0’,
‘title’ varchar(80) NOT NULL default ”,
‘article’ text NOT NULL,
‘publish’ tinyint(1) unsigned NOT NULL default ‘0’,
PRIMARY KEY (‘idx’),
FULLTEXT KEY ‘title’ (‘title’,‘article’)

) TYPE=MyISAM ;

Scripting basics
As mentioned earlier in this section, PHP was chosen for the server-side scripting
because of its ability to interface easily with MySQL. With the MySQL functionality
compiled into PHP, opening a database connection is performed with the
mysql_connect() function:

$link = mysql_connect(“host”, “user”, “password”)

The host, user, and password arguments are replaced by the information
necessary to access the database. In this case, the database is running on the same
machine as the Web server, so localhost is used as the host. The user and
password arguments are replaced by account credentials that have read-only rights
to the database (the scripts will only retrieve info, not write it).

After a link has been established to the database, queries can be run against the data
using the mysql_query() function:

$result = mysql_query($query,$link);

In this example, the $query variable contains the SQL query. The results of the
query are stored in the $result variable. The script can then process the results
and display them accordingly. For example, the following query would return the
titles of all published articles in the database, sorted by their publication date:

SELECT title FROM articles WHERE publish = “1”

ORDER BY pubdate DESC

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

487Chapter 29 ✦ Introduction to Database-Driven Web Publishing

What is SQL?

Structured Query Language (SQL, generally pronounced “sequel”) was developed as a means
to lend consistency to database queries. The language provides keywords to accomplish
standard database tasks—looking up information, storing information, replacing information,
and so on. Each command given to the database is called a query, whether it is simply
querying for information, storing info, or performing some other task.

Like most computer technologies, SQL varies a bit from implementation to implementation.
The examples presented here are specific to MySQL and might be different if you are using
PostgreSQL, Microsoft Access, or other SQL-compatible databases.

The basic way to look up information is via a SELECT query, in a form similar to the following:

SELECT data_list FROM table_list WHERE conditions

For example, to select all customers’ first and last names when the customers’ address is in
the 46250 ZIP code, you could use a query similar to the following:

SELECT first_name, last_name FROM customers
WHERE zipcode = “46250”

This, of course, is provided that you have a table named “customers” that stores data in fields
named first_name, last_name, and zipcode.

Adding data uses a different query, utilizing the INSERT format:

INSERT INTO table_list (data_list) VALUES (data_values)

For example, to insert a customer’s data into the customer table, you might use a query
similar to the following:

INSERT INTO customers (first_name, last_name, address, city,
state, zipcode) VALUES (“T.”, “Wierzbowski”, “Colonial Marine
Way”, “West Hollywood”, “CA”, “90069”);

As previously stated, implementations of SQL vary between applications, so you should check
the documentation for your database server to determine what form of queries to use.

If this query were used in the preceding mysql_query() example, the article
titles would be stored in array form in the $result database. PHP could parse the
data, outputting one title per line (in HTML format) using code similar to the
following:

print “<p> \n”; //Start the text block
while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {

// For each returned title, output in italic font
print “<i>$line[‘title’]</i>
 \n”;

}
print “</p> \n”; // End text block

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

488 Part IV ✦ Advanced Web Authoring

The net result of this code would be a listing of the titles of all published articles,
sorted by their publication date in descending order, similar to the following:

<p>
<i>Bush heads to Africa</i>

<i>Marvel movie news</i>

<i>Thousands of Web sites might be attacked on Monday</i>

<i>Miami running back re-sentenced</i>

<i>Charlie Chan movies banned in the USA</i>

<i>Riddick name change and new release date</i>

</p>

Sample scripts
By using methods similar to those described in the previous section, you can create
several scripts, each of which can access the database of articles and provide the
data in various forms. Some examples follow:

✦ Headlines (the title field) of the last two weeks of articles (see Figure 29-5).

✦ Articles sorted by category (see Figure 29-6).

Figure 29-5: The headline script generates headlines from recent articles.

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

489Chapter 29 ✦ Introduction to Database-Driven Web Publishing

Figure 29-6: The category script generates recent article headlines sorted into
their respective categories.

✦ Teasers of current articles—that is, the first 20 words of the article (see
Figure 29-7).

✦ Full text of the article with links to more articles in the category or by the
author (see Figure 29-8).

In addition to the standard data, the scripts also provide links to additional
information. For example, the headline script outputs the headlines embedded in
links to the full article script, similar to the following:

 Charlie Chan movies
banned in the USA

When a user clicks the headline, the displayarticle script is called to display the
full article. Similar constructs can be used to link to more articles in the same
category, by the same author, and so forth.

The scripts can be included in template pages via server-side includes, or the entire
site can be generated via PHP, and the article scripts can be called as required.

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

490 Part IV ✦ Advanced Web Authoring

Figure 29-7: The teaser script generates short versions of articles.

Adding search capabilities
Adding a search capability to the system is remarkably easy. A full-text index is
created on the title and article columns in the article table (see the MySQL
table definition earlier in this section). This index can then be searched using textual
expressions via a select query, driven by user input into a standard HTML form.
Articles that match the search criteria are then displayed (generally in headline
form), and the user can browse them accordingly.

Tip Even without a full-text index the database can be easily searched via a WHERE
clause in a SELECT query. For example, to find all articles that contain the text
“Charlie Chan,” a query similar to the following could be used:

SELECT idx,title,article FROM articles
WHERE title LIKE “%Charlie Chan%”
OR article LIKE “%Charlie Chan%”

This query would return all articles that contained “Charlie Chan” in their title or in
the text of the article.

The other-side of the process—publishing tools
One area that has not been covered in this case study is the publishing side, that is,
how do the articles get into the database to begin with? This process requires a few

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

491Chapter 29 ✦ Introduction to Database-Driven Web Publishing

Figure 29-8: The full-text script generates the full text of an article.

additional scripts, accessible only to the authors and system administrators. The
scripts allow for creation of new author records, new categories, and new articles.
For security’s sake, only the new article script is accessible to authors—system
administrators take care of the creation of new authors and new categories.

Note As a temporary measure, tools such as phpMyAdmin can be used to manipulate
the data in a MySQL database. Figure 29-9 shows an example of phpMyAdmin
in use. (You can find more information on phpMyAdmin at www.phpmyadmin
.net/.) However, the tool is somewhat archaic in design and can be easily
misused, at worst resulting in massive data loss due to a misplaced click. It’s
usually best to create more user-friendly tools.

An example of an article maintenance tool is shown in Figure 29-10.

Authentication and Security
Any additional technologies added to Web publishing bring additional security
concerns—database publishing is no exception. You need to be concerned with
when adding a database to the mix: access to the database as a whole and further
restricting access for users.

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

492 Part IV ✦ Advanced Web Authoring

Figure 29-9: Tools such as phpMyAdmin, although not very user-friendly, can help fill
gaps in database administration.

Figure 29-10: An example of an article maintenance tool that allows creation
and editing of articles in the database

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

493Chapter 29 ✦ Introduction to Database-Driven Web Publishing

In the case of MySQL, access is restricted per user, as seen in the user and password
fields required in the mysql_connect() PHP function. Each user is assigned unique
rights to the data. Access can be granted or denied on a table-by-table basis.

For a publishing system it is best to create a very limited user for general use. This
user can be used by the scripts for general query access, but have write, delete, and
update access denied. This helps limit the exposure of the data; even if the general
user credentials are compromised, the data can only be queried, not overwritten or
deleted.

For authors you could implement a tiered security structure as follows:

✦ Protect the maintenance scripts by placing them in an area of the Web site that
is only accessible by machines used by the authors or, better yet, is
password-protected by the Web server.

✦ Use a unique user account (author) for author-level database access, granting
permission to the article database but restricting access to the categories
and authors tables.

✦ Use the authors table to uniquely identify each author, requiring the
author(s) to log in using the credentials stored in the table. Additional code in
the article maintenance script(s) can restrict authors from modifying articles
that are not their own.

Note A unique MySQL account for each author might be overkill. It adds additional
database administrator overhead while only providing slight advantages. You
wouldn’t want to restrict individual rows in the database by author; simple
script-employed, individual article security is enough.

Summary
Database publishing has been around for many years. However, only in the last few
years have economical, easy-to-use tools been available to help deploy
database-driven solutions. This chapter introduced you to the concept of database
publishing and showed you an example of how database integration can be used to
add dynamic content to your documents.

✦ ✦ ✦

P1: KPE

WY022-29 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 16, 2004 2:57

494

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

3030C H A P T E R

Creating a
Weblog ✦ ✦ ✦ ✦

In This Chapter

The Blog Phenomenon

Blog Providers and
Software

Posting Content to Your
Blog

Handling Comments

Using Permalinks

Using Trackbacks

Syndicating Content with
RSS

Building an Audience

✦ ✦ ✦ ✦

The Web has created a viable media for publishing all
manner of content—providing an alternative avenue for

businesses and the average Joe alike to propagate information.
A recent innovation, weblogging, extends the ability to publish
content online and to even syndicate the content. This chapter
covers the basics of blogging.

The Blog Phenomenon
Weblogging, or blogging for short, is the latest craze on the
Web. Gaining popularity in the mid-90s, almost everyone has a
blog nowadays.

Blogs come in many varieties:

✦ The equivalent of an online diary, where the owner posts
their thoughts about life, the universe, and everything

✦ Themed articles where the owner posts their thoughts on
specific topics, such as technology, politics, religion, and
so on

✦ News-related blogs where the owner posts aggregated news
content

However, just like the desktop publishing explosion in the
late ’80s taught us, just because someone can access
technology doesn’t mean they should. As desktop publishing
came of age, everyone with a computer began fancying
themselves as a designer—it became quite clear that graphic
design is an art that can only be aided, not replaced, by
technology. Now, as blogging is reaching epic proportions,
many people fancy themselves as Dave Barry-caliber writers
seemingly with the assumption that the entire world cares
what they think. It only takes a few moments of surfing the vast
variety of blogs to ascertain just how wrong those
assumptions can be.

495

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

496 Part IV ✦ Advanced Web Authoring

Note Dave Barry is a well-known humor columnist for the Miami Herald. His column
is syndicated in over 500 newspapers worldwide. Dave Barry actually has his
own blog, which can be found at http://weblog.herald.com/column/
davebarry/.

That said, the blog world is full of useful information. From offering a look at the
daily routine of people in interesting positions to the latest electronic gadget news,
several blogs are bound to interest even the most jaded reader.

Note The support that large corporations (such as Microsoft) are lending to blogging
is a sign that blogging has come into its own and is seen as a valuable resource.
Such corporations encourage their employees to blog with the intent that such
activities will increase communication between employees and the tech world
at large. However, in the wake of such support also come a handful of blog-
related firings, companies letting employees go for inappropriate blog entries.

The real power of blogging comes in the community that has grown up around the
technology. Online blogs have created a tightly knit subculture on the Web where
authors read and respond to each other’s articles, leave comments to articles of
interest, and so forth.

Note The ability to leave comments on an author’s blog is a double-edged sword.
Although the feature allows the community to be more involved, the feature
has also been used inappropriately by the spamming community. Anonymous
comments containing links to other sites routinely get indexed by search en-
gines. As such, comments on popular blogs can cause the site referenced in the
comment to increase in rank in the search engine. Several tools are available
to help stop blog spamming, but just like e-mail spam, nothing will completely
remove it.

Another complementary technology, “Really Simple Syndication” (RSS) feeds, has
helped the aggregation of blog content. RSS is an XML specification for syndicating
content. It enables authors to publish their headlines or teasers for articles in a
distinct format—a format that can then be read by other applications to effectively
syndicate the articles.

Note Look for more information on RSS in the section, Syndicating content with RSS,
later in this chapter.

Blog Providers and Software
Just as there are many topics for blog content, there are many blog providers and
software to enable blogging. This section gives an overview of the more popular
blogging provider/software solutions.

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

497Chapter 30 ✦ Creating a Weblog

Userland Software
According to the Userland Software site, Userland “provides Web Content
Management and creation tools for building sites that bring people together.” One of
the pioneers of blog technology, Userland provides several different content
management and blog solutions.

Note You can find Userland Software on the Web at: www.userland.com/.

Offered as commercial products, Userland Software’s Manila and Radio Userland
tools enable users to easily set up content management and aggregation sites.
Manila is geared towards workgroups whose members need to share information.
Radio Userland is geared toward the general blog author.

The benefit to using Userland’s tools is twofold:

✦ The tools integrate into your local system, easing the pain of setting up online
solutions or using Web-based solutions.

✦ Userland has built a large blogging community; using their tools connects your
site to this community.

Movable Type
One of the most popular server-side blogging applications is Movable Type. Movable
Type uses a series of CGI programs to publish and maintain blog content. Movable Type
must be installed on a server that has Perl and either a Berkeley DB or MySQL database.

Note You can find Movable Type’s Web site at: www.movabletype.org/.

Movable Type is a very popular solution due to the following:

✦ Movable Type is highly customizable, using a flexible template system to easily
publish content in a variety of formats and/or integrate into an existing site
design.

✦ The large community of developers creating various plug-ins to extend the
capabilities of Movable Type.

✦ The large community of bloggers who use the program.

✦ Its relative low cost (free for non-commercial use, though donations are
encouraged, and $150 for commercial use license).

Movable Type uses special tags that you can embed in any HTML document to
publish your content. Although Movable Type is fairly easy to install and use, it is
recommended for the more technical user.

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

498 Part IV ✦ Advanced Web Authoring

Blosxom
Blosxom (pronounced “blossom”) was designed as a lightweight, feature-packed,
blogging application. One of the more simple solutions for blogging, Blosxom runs as
Perl CGI scripts on a variety of platforms. Using simple text files for article storage,
Blosxom is designed to work with the tools you are already using—Emacs, Microsoft
Word, Notepad, or other text editors.

Note Find the Blosxom Web page at www.blosxom.com/.

Blosxom is completely Open Source, meaning that it is free for use and the source
code is available for you to modify as you want or need. Blosxom also has a fairly
robust plug-in architecture and an active developer community providing several
plug-ins.

Although its simplicity is also its bane, Blosxom is a good middle ground between
the other two solutions mentioned in this section.

Posting Content to Your Blog
Posting content to your blog is usually as easy as typing an article into the blogging
application you are using. In the case of Radio Userland, you use their application;
Movable Type uses Web based forms; and Blosxom uses any text editor.

Blog content varies from blog to blog and article to article, but content generally falls
into one of the following categories:

✦ Generalized, original content

✦ Response to another online article or item

✦ Aggregation of information from elsewhere

In most cases, your content will contain a link to other content online or even text
from the content. For example, the following is typical of a blog entry:

In his Things I Hate column, Joe User makes the following observation:

“This would be text from the column referenced above . . . ”

My feelings on this matter . . . (response to above citation here)

In this example the text “Things I Hate” would be a link to the article being cited. The
verbatim text is set off in quotes or uses a distinct convention to identify the text as
a quote, not the citing author’s work. The text then continues with the current
author’s text, adding to the cited article, offering a retort, or whatever.

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

499Chapter 30 ✦ Creating a Weblog

Tip Although quoting others is a huge part of the whole blog scene, it is still very
important to clearly delimit and credit other people’s text. In most cases, you
will want to indent the text, set it off in quotes or a special font, and make sure
to include a link to the original.

Handling Comments
Most blogs also include a comment section that appears directly after the posted
content. Visitors to the blog are encouraged to post comments about the articles
posted there, creating the hybrid news article-public forum scheme that is a blog.

Most blogging applications support comments and allow you to configure how the
comments are presented in your blog. One of the choices you will need to make is
how comments are represented on your page—whether they are displayed whenever
the attached article is displayed, or only available when a comment link is clicked.

Although most visitors understand the purpose of comments in a blog, there are still
people who abuse the comments, using them to attack others, post inappropriate
content, and so forth.

Thankfully, most blogging software has tools to help stop comment spam and
control user posts. Check the documentation for your blogging software to
determine what tools are at your disposal for displaying and managing comments.

Note Keep in mind that expressing one’s views is part of the appeal of blogs. As such,
you should be prepared for negativity and even direct criticism if you enable
comments. You should resist the urge to delete comments you simply disagree
with—but stay on top of content that is truly objectionable to help protect your-
self and readers. Alternatively, you can disable comments altogether.

Using Permalinks
Most blogs include several methods to browse their content:

✦ The most recent articles are posted in descending order on the main page.

✦ Search features enable users to find articles containing content that interests
them.

✦ Archives list articles by day, week, or month and have controls to move from
article to article.

The advantage to having multiple methods of displaying content is that visitors to
the site can choose the method that best suits their needs. However, other blog
authors need one location to reference an article when linking to it from their
site/blog. Enter the concept of permalinks, a unique URL that points directly to the

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

500 Part IV ✦ Advanced Web Authoring

article in question, usually on a page all by itself (without being buried in a
navigation scheme).

You will typically see permalinks near the bottom of the text of blog articles, as
shown in Figure 30-1.

permalink

Figure 30-1: Permalinks, usually located near the end of articles, provide a unique URL
to reference the article.

Sometimes blog authors use the verbatim text “permalink” to denote the location of
the permalink. Other blogs, such as the example shown in Figure 30-1, note the link
with a graphic or simple “link” text.

Whenever you link to another blog’s content, be sure to use the permalink.

Using Trackbacks
You have seen how links are used to reference articles elsewhere, but how does the
original author know about the link to his material? That dilemma was one of the
reasons behind the invention and adoption of trackback technology.

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

501Chapter 30 ✦ Creating a Weblog

TrackBack was first released as an open specification in 2002. It was released as a
protocol and feature of Movable Type version 2.2 and has since been adopted by
many other blogging applications.

The methodology behind trackbacks is shown in Figure 30-2. Site A posts an article
that is interesting to Site B. Site B references the article on Site A and uses a
trackback to let Site A know about the reference. Site B also uses trackbacks to alert
other sites that may be interested in the topic—whether the interest is in the original
article or the reference.

Article Ref.

Site A Site B

TrackBack

Other
Interested

Sites

Figure 30-2: The methodology behind trackbacks.

Syndicating Content with RSS
Netscape introduced RSS in 1999 as a concept to syndicate content. At that time, RSS
stood for Rich Site Summary. However, Netscape abandoned the concept in 2001 and
UserLand Software began pioneering a similar technology as Really Simple
Syndication. Still others refer to the RSS concept as RDF Site Summary.

In any case, RSS exists as a simple way to syndicate content.

Note UserLand Software maintains quite a bit of documentation on RSS at the
following Web site: http://backend.userland.com/rss.

Syndication is a means of distributing content with the intent of allowing others to
publish it. Typically, syndication applies to newspaper columns, comics, and other
works of art—and, generally, one derives a fee for each use.

In this case, syndication means an easy method for others to preview your content
and optionally republish it. Sites such as slashdot.org, cnet.com, and others use
RSS feeds to syndicate their content, as do many Weblog (blog) authors.

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

502 Part IV ✦ Advanced Web Authoring

RSS syntax
The syntax for RSS feeds varies considerably depending on the version of RSS that
you adhere to. However, the feed is usually published as an XML file with a strict
syntax. For example, a typical RSS feed file might resemble the following:

<?xml version=“1.0”?>
<rss version=“2.0”>
<channel>
<title>title_of_site</title>
<description>description_of_site</description>
<link>http://link.to.site</link>

<item>
<title>title_of_article</title>
<description>short_desc_of_article ...</description>
<pubDate>pubdate_in_RFC 822_format</pubDate>
<link>link_to_article</link>
</item>

<item>
...
</item>

</channel>
</rss>

In XML format, the file’s headers spell out its content and which version of RSS is
being used. The beginning of the <channel> section provides details about the main
site, while each <item> section provides details about a particular article. Each feed
can have up to 15 <item>s and is generally arranged with the newest article first
and the oldest article last. As articles are added to the feed, the older articles are
moved off the feed.

Publishing the feed
The XML file is made accessible via HTTP, and special applications can access the
feeds and notify users when the feed is updated. For example, the open source
project BottomFeeder can monitor several feeds and even seek out new feeds.
Figure 30-3 shows an example of BottomFeeder in action.

Note You can download BottomFeeder from the BottomFeeder home page at
www.cincomsmalltalk.com/BottomFeeder/.

A popular Windows reader is NewsGator (http://www.newsgator.com/), which
integrates into Microsoft Outlook. Several other applications can monitor RSS feeds
as well, such as Trillian (www.trillian.cc/trillian/index.html). (The Pro
version has a nifty news plug-in.)

These tools monitor feeds by periodically accessing the RSS feed file and informing the
user when the feed file changes. The individual <item> blocks are usually displayed
for users, who can visit the site or see the complete article by clicking the listing.

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

503Chapter 30 ✦ Creating a Weblog

Figure 30-3: Applications such as BottomFeeder can monitor several RSS
feeds.

Most blogging software will automatically create RSS feeds from your content. You
still must configure how many articles will be placed in the RSS file, how long they
will stay, and what information (title, teaser, and so on) is stored in the feed. See your
software’s documentation for details on how to configure your feed.

If your blogging software doesn’t support RSS feeds natively, look for tools such as
NewsIsFree (http://www.newsisfree.com/) to build your feeds.

Note Don’t forget to put a link to your feed on your site and publicize your feed
through services such as http://www.syndic8.com/.

Building an Audience
The key to blog success is networking. Finding sites that serve up content in the
same vein as your site and appraising them of articles they might find interesting is a
good strategy. However, use common sense and moderation—don’t be a bother and
back off if you don’t get positive responses.

P1: KTX

WY022-30 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:35

504 Part IV ✦ Advanced Web Authoring

Using syndication listing sites is another good way to drive traffic. Visit
www.syndic8.com/ and register your site. Most blogging software sites will also
include listing areas for listing your blog; doing so helps promote your site as well as
the software you use.

Cross-
Reference

For more tips on promoting your site, see Chapter 37.

Summary
Blogging is the hottest thing on the Web right now. Besides providing an outlet for
folks to express their views on everything from their life to politics and religion,
blogs also provide a great alternative to full content management systems. Blogs can
be used to syndicate and aggregate information.

✦ ✦ ✦

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

3131C H A P T E R

Introduction
to XML ✦ ✦ ✦ ✦

In This Chapter

The Need for XML

Relationship of XML,
SGML, and HTML

How XML Works

Versions of XML

Well-Structured XML

Document Type Definitions
(DTDs)

XML Schemas

✦ ✦ ✦ ✦

The essence of Web development is markup, even when
using a powerful visual editor such as Dreamweaver or

GoLive to create markup. Markup drives everything on the
Web. Without it, there would be no World Wide Web.

Markup consists of a set of rules that a document must follow
in order for the software processing that document to read it
correctly. The process of software reading a marked-up
document is often referred to as parsing. If the document is not
marked up correctly, the software can’t parse it.

In theory, HTML was designed to maintain a strict set of
markup rules, but those rules were enforced rather loosely by
the Web browsing software designed to parse HTML.

The result was inconsistency, and browser vendors who added
their own markup “rules” exacerbated the problem; each
browser, in essence, followed its own set of rules. The frame
element, for example, found its way into the HTML
specification when it gained popularity shortly after Netscape
introduced it. Browser developers raced ahead with new
features, while the W3C, the organization responsible for Web
standards, lagged behind.

Over the past few years, the situation has reversed, and the
W3C has released a slew of specifications that vendors are
having difficulty keeping up with.

One of these specifications, Extensible Markup Language
(XML), was introduced by the W3C to address general
inconsistencies in markup, and to add another data-centric
layer to the user interface paradigm. This chapter introduces
you to XML and how and when to deploy it.

505

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

506 Part IV ✦ Advanced Web Authoring

The Need for XML
The Web is all about markup, but it’s also about data. This is true whether the data is
document-centric, such as the kind of content in a magazine or journal, or more
granular, such as the kind of data extracted from a database. One problem with this
type of data is that it can be difficult to extrapolate across different software
environments and platforms because it has traditionally been stored in proprietary
formats. What if you were able to instead develop a set of rules defining a table of
text-based data and simply wrap markup around each chunk of data?

Such data could be as simple as a Web configuration file that stores settings on how
a Web server is configured, such as this piece of code from a .NET web.config file:

<appSettings>
<add key=”DSN”
value=”server=(local);uid=guest;
pwd=guess;Database=Realtor”/>

</appSettings>

Or, the data could be much more complex, derived from a large number of relational
tables requiring a carefully constructed set of rules in order for the processing
software to know what each element means. Many modern database systems, such
as Oracle, can now be used to extract such data into sets of marked-up elements.
These result in documents that can be easily shared across platforms, software
environments, and even other companies and organizations, because the markup
these documents are based on, XML, has consistent rules worldwide. The key to this
kind of integration is the use of documents that define rules for what an element
means. There isn’t much good to having the following element if you don’t know
what the element is supposed to do:

<book>United</book>

Is it a book named United? Or does it refer to booking a passenger seat on United
Airlines? By developing a document containing rules that describe an element’s use
and purpose, you can use XML to provide a human readable and machine-portable
database that can be easily used among different software languages and
environments. In addition, you can imagine the programming possibilities when you
consider that each element in an XML document is an object that can be
manipulated by JavaScript or another kind of language, such as Java or C#. This is
made possible by the Document Object Model, which consists of a series of
standardized methods and properties created by the W3C to access parts of an XML
document using object-oriented languages.

Some specific uses for XML include the following:

✦ Use it to store data outside your HTML.

✦ Use it to store data inside HTML pages as “Data Islands.”

✦ Use it to share and exchange data between incompatible systems.

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

507Chapter 31 ✦ Introduction to XML

✦ Use it as a data storage mechanism completely outside the HTML layer.

✦ Use it to make data available to runtime languages such as JavaScript or an
object-oriented language such as Java, C#, or Basic/Visual Basic.

✦ Use it to make your data human-readable.

✦ Use it to invent new languages or plug data into an existing language (a process
called transformation, which you’ll see in the section on XSL).

Relationship of XML, SGML, and HTML
XML is a subset of the Standard Generalized Markup Language (SGML). So is HTML.
SGML is a markup standard that asks its document creators to develop a set of rules
that a processor should follow as it attempts to parse a structured document. In the
case of HTML, that set of rules is called a Document Type Definition (DTD). The first
HTML DTD, published by Tim Berners-Lee and Daniel Connolly, contained the most
basic HTML elements—things like paragraph and listing elements. The original draft
of the document defining these basic rules can still be found at www.w3.org/
MarkUp/draft-ietf-iiir-html-01.txt.

In theory, if a Web author deviated from the rules as established by the HTML 1.0
specification, the result should have been a broken document (although browsers
were expected to “fail gracefully,” allowing users to at least view the content even if
the content’s display was ruined). This is because SGML requires strict adherence to
the rules when a DTD is created. In practice, browsers, the software used to parse
HTML documents, did not strictly enforce adherence to these rules.

Berners-Lee and Connolly could have created different elements for HTML rather
than the ones they chose, as long as they stuck to the guidelines as established by
SGML. Among those guidelines are rules that describe how an element should start
(with a < character), what it should contain, what attributes it should possess, and
how DTDs themselves are written. For example, in the DTD, to indicate that an
element has no content, or is empty, you would include the following:

<!ELEMENT IMG - O EMPTY -- Embedded image -->

SGML allows anyone to create a set of markup rules. The trick is getting software
developers to write software that will parse a document according to your custom-
made DTD. You could, for example, write a DTD that instructs a software program
to emit a beep every time a link is clicked. Or, that uses a para element instead
of a p element to define paragraphs. Or, as in the earlier example, you could define
an element named book that describes a book title or refers to an airline reservation.

Note You can view various versions of HTML DTDs at www.hwg.org/resources/
?cid=74.

SGML is very powerful because it lets users create structured documents that are
human readable and very portable across environments. For this reason, it was very

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

508 Part IV ✦ Advanced Web Authoring

popular in government circles and with companies with massive documentation
needs, such as aircraft manufacturers and military contractors. Although it is still
used extensively by these users, XML is replacing SGML in many cases.

With such a good system in place, why would you need XML? SGML is very complex.
It isn’t beyond the capabilities of most people, but it is if you don’t have a lot of time,
and most of us don’t. So there was no payoff unless the scope of a project using
SGML was large. XML was designed to be an SGML Light. It brought the power of
SGML into the hands of everyone without requiring a huge investment in time. If you
can remember just a few basic rules, you can start writing your XML within a few
minutes. And you don’t even need to write a DTD to define the elements you’re
creating. It helps, as you’ll see later, but it isn’t a requirement.

Versions of XML

There is currently only one version of XML. XML 1.0 is currently in its second edition, which
simply means that the specification has undergone some minor editing and a new, cleaned-
up version was released containing such minor differences from the original that not even an
incremental version upgrade was considered necessary. Version 1.1 is currently in Candidate
Recommendation and will presumably be released soon as a final version. There are few
changes in 1.1, other than some minor Unicode-related items (you’ll be learning about
Unicode in the section Understanding Encoding).

How XML Works
XML doesn’t actually do anything on its own. It’s just a way to mark up text-based
data. More specifically, it’s a methodology for describing how a structured document
should handle sequences of characters.

Getting started with XML parsers
Before you begin creating XML documents, it’s a good idea to find a parser, which is
software that can read an XML document. There are two kinds of parsers: validating
and nonvalidating. A validating parser reads an XML document and determines if it is
following the rules of a DTD. A nonvalidating parser doesn’t care about validation,
and only checks an XML document to be sure that the syntax is correct. A document
that follows these rules is called a well-formed document. The obvious examples of
widely distributed nonvalidating parsers are Internet Explorer and Netscape 7.0, or
any of the new Mozilla-based browsers, which can be found at www.mozilla.org/
start/1.5/.

To open an XML document in Internet Explorer 5 or later, or in Netscape/Mozilla, you
simply open it using the File menu in those programs, and choose Open. . . Both
browsers will display the XML in a tree-based format.

You can find a list of other XML parsers at www.xml.com/pub/rg/XML_Parsers.

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

509Chapter 31 ✦ Introduction to XML

Begin with a prolog
There are no pre-existing elements in XML. Most basic XML documents start with a
prolog, which includes a declaration that states a document as being an XML
document:

<?xml version=“1.0” encoding=“ISO-8859-1”?>

The declaration must come first, before anything else, and its characters must be the
first the parser encounters (no white space before that question mark). A prolog can
also include a Processing instruction. A processing instruction (PI) tells the parser to
pass the data it contains to another application. For example, if a prolog has a
processing instruction containing a style sheet, the following PI would tell the
processor to pass the named file to software that can handle the style sheet
processing:

<?xml-stylesheet type=“text/xsl” href=“note.xsl”?>

You’ll learn more about style sheets later in the chapter, in the section named Style
Sheets for XML: XSL, but PIs are not limited to style sheet processing. They can pass
all kinds of information to processors. The trick is whether the XML parser is
actually capable of doing so. No rule exists to say that it must. Generally, when there
is a lot of action with PIs, vendors create extensions to parsers or bundle them into
larger XML processing components so that the processing is hidden. Microsoft’s
XML parser, MSXML, for example, contains a processing component for style sheets.

Understanding encoding
Did you notice the bolded encoding attribute in the prolog (encoding=“ISO-
8859-1”) in the prolog example? That actually isn’t an attribute; it just looks like
one, but it’s an important part of the XML prolog. Encoding, in fact, is a vital part to
truly understanding XML. XML requires all XML parsers to handle an encoding
named UTF-8. An encoding is sort of like a mapping between alphanumeric
characters and the numbering system your computer understands. UTF-8 is a fairly
new and comprehensive encoding that covers most languages of the world. It is
based on Unicode, which is an amalgamation of various encodings such as UTF-8 and
UTF-16, which is also supported by XML and is different than UTF-8 in the number of
byte sequences used to store characters.

In Unicode-based encodings, for example, the capital letter A is represented by the
hexadecimal number U+0041. The small letter a is represented by the hexadecimal
number U+0061. Every letter and numeric character in every alphabet in the world
(almost) has such a number assigned to it.

Note The U+ in the preceding examples are not part of the hexadecimal number, but
characters added to show they are part of Unicode. In a Web page, you would
use &0041 and &0061; instead of U+0041 and U+0061.

Each human language is a subset of the vast UTF-8 encoding attached to it. Western
European languages, for example, use the ISO-8859-1 encoding, which is simply a
table of mappings within UTF-8 dealing specifically with Western languages. This is

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

510 Part IV ✦ Advanced Web Authoring

important to XML development because XML is concerned with how sequences of
these mapped numerical references are structured within an XML document.

Your encodings need to be consistent to successfully parse XML. If you use
Windows-specific encodings, for example, you’ll need to be absolutely sure that
everything that interacts with Windows encodings is also a Windows encoding. This
is because Windows uses a different set of tables for mapping characters to numbers
than UTF-8. The Windows encoding for Latin-based languages, for example, is called
Windows Code Page 1252 (sets of encodings are also called code pages). This code
page, also referred to as ANSI (from the American National Standards Institute), isn’t
a subset of UTF-8 the way ISO-8859-1 is. Luckily, most characters happen to map out
to the same numerical references in both encoding sets, but not all do. For example,
the ™ character used for trademarks does not map out to the same hexadecimal
number in ANSI as it does in ISO-8859-1.

Things get even more difficult when you’re dealing with Chinese alphabets, because
two well-established encoding mechanisms are in use for Chinese languages. For
example, in Taiwan, an encoding named Big 5 is used. Its mappings are quite different
than UTF-8. Even though an XML-compliant parser must be able to parse UTF-8
documents, there’s nothing forcing developers to use UTF-8, and most
Chinese-based Web sites don’t use it. This is a critical distinction to be aware of
when working internationally. A sale element in a Big 5 document (assuming a
Chinese translation, of course) is not a sale element in UTF-8, because element
names are dependent on their encoding.

This may seem like an awfully long explanation about something so arcane, but it is a
virtual guarantee that at some point in your XML work you’ll encounter a square
character or question mark in output generated from XML. It usually takes people
hours or days to figure out the source of these character “anomalies.” You have the
advantage of knowing they occur because of encoding problems. When a system
doesn’t recognize a character, it generally emits a square character (a border with
empty space), a solid black square, or a question mark. This is invariably related to
an encoding issue. Make sure encodings between output and input within your XML
environment are consistent, and you should avoid these kinds of problems. You can’t
force a billion people to change their encodings to UTF-8, but you can develop a
system in your own environment to handle Big 5 encodings, which is a lot easier to
do anyway.

Well-structured XML
XML does not consist of many syntax rules, but the ones it has are very strict, and
parsers that don’t follow them to the letter are not considered genuine XML parsers.

Including a root element
The most basic rule is that in order to be a conforming or well-formed XML document
(in other words, a legitimate one), it must consist of one root element. Therefore, the
following is a conforming XML document:

<hello>world</hello>

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

511Chapter 31 ✦ Introduction to XML

You don’t even have to include the XML declaration, but it’s good form to do so, and
is a much better way to maintain the integrity of your documents if versions should
change. If you do include a declaration and you declare your XML document as an
XML 1.0 document, your syntax must adhere to that version. Declarations are not
required because the creators of the XML specification knew that some existing
SGML and HTML document qualified as XML documents or could be easily made into
XML, and didn’t want those documents to fail when there was no XML declaration.

Properly nesting XML documents
In HTML, you can get away with some improper nesting, such as that shown here:

<i>Most browsers will render this</i>

In XML, all elements must be properly nested within each other, like this:

<i>All XML parsers will parse this</i>

In addition, the root element must contain the group of all the other elements. In
other words, there must be one “master” element, within which all the other
properly nested elements are contained. An XML parser would not correctly parse
the following:

<html><i>All XML parsers will parse this</i>

This is because there is no closing tag for the html element. You can fix this by
simply adding one, as in the following example:

<html><i>All XML parsers will parse this</i> </html>

If an element has no content, you must use a closing tag. There are two ways to do
this. You can use the kind of closing tag you’re used to seeing in HTML, as in the
following:

Or, you can simply include a closing slash within the element tag, as follows:

Note the extra space between the end of the XML name and the closing forward
slash. Although this isn’t necessary in XML, if you’re creating HTML documents with
XML syntax (known as XHTML), you’ll need them or browsers won’t render things
such as line breaks correctly.

Maintaining case sensitivity in XML
HTML elements and attributes are case sensitive. Therefore, <data type=“bad”
/> is different than <data TYPE =“bad”/> and <DATA type=“bad”/>.

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

512 Part IV ✦ Advanced Web Authoring

Using quotes in attribute values
In HTML, you can also get away with not including quotes around attributes. For
example, you can write the following and a browser will render the element correctly:

<td colspan=2>some data</td>

In XML, all attribute values must be quoted:

<td colspan=“2”>some data</td>

Handling line breaks and white space in XML documents
Windows applications store line breaks as pairs of carriage return, line feed (CR LF)
characters, which map out to 000D; and 000A; in XML UTF-8 using hexadecimal
format. In UNIX applications, a line break is usually stored as an LF character.
Macintosh applications use a single CR character to store a line break. This is an
important distinction when working on large Web sites that may have source control
software, which often has a translation option for handling cross-platform line-break
differences when merging files between development and production environments.

Using predefined entities and entity or character references
Several entity references must be used to “escape” XML markup characters to
prevent an XML parser from interpreting markup characters as XML when that is not
your intent. These are called predefined entities and are shown in Table 31-1.

Table 31-1
Predefined Entities

Entity Markup Equivalent Unicode Value (In Decimal
Format)

< < <

> > ”>

& & ”&

‘ ' ”'

“ " ”"

By referring to Table 31-1, instead of writing markup like this,

<body>This is a left angle bracket: < </body>

you need to escape the < character you see in the preceding code in bold, like this
(change is also in bold):

<body>This is a left angle bracket: < </body>

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

513Chapter 31 ✦ Introduction to XML

The same steps are necessary for the other predefined entities listed in Table 31-1.
Instead of using the markup shown under the heading “Markup Equivalent,” you can
also use the Unicode values shown in the next column.

Every character in any language you use (with a few rare exceptions involving
comparatively obscure languages) can be represented by character references,
which are Unicode values mapped to characters (a process described earlier). For
example, if you wanted to write out the word “Foo,” you could write it like this:

Foo

Managing white space in XML
The default behavior of XML is to preserve white space. In HTML, the default
behavior is to collapse white space. This means that within a p element in HTML, the
following,

Hello
there

would look like this in a browser:

Hello there

However, in XML, the original line break is preserved. XML includes a special
attribute that can be used within any element called xml:space. You can use this to
override XML’s default line breaking behavior with the following:

xml:space = “preserve”

The options available for this attribute are default and preserve. Because the
default corresponds to the default mechanism that allows for line breaks, you’ll
rarely specifically call for that value.

Document Type Definitions
As previously mentioned, an XML document that follows the syntax rules of XML is
called a well-formed document. You can also have, or not have, a valid document. A
document is valid if it validates against a Document Type Definition (DTD). A DTD is
a document containing a list of rules about how the structure of an XML document
should appear. For example, should all contact elements contain a phone element,
like this?

<contact>
<name>Johhny Rude</name>
<address>111 East Onion Ave.</address>
<phone>1-323-456-4444</phone>

</contact>

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

514 Part IV ✦ Advanced Web Authoring

The preceding code fragment is a well-formed document as it stands. However, you
may wish to define rules that more clearly delineate the purpose of each element and
the position of each element within the framework, or structure, of the document as
a whole.

A DTD can exist either outside the XML document that validates against it or within
that same document. If the DTD exists outside of the document, you must declare it
within the XML document so that the XML parser knows you’re referring to an
external DTD, like this:

<!DOCTYPE root SYSTEM “filename”>

In the case of the preceding contact XML, the DOCTYPE declaration would look like
this (the DOCTYPE declaration is in bold):

<?xml version=“1.0”?>
<!DOCTYPE contact SYSTEM “contact.dtd”>
<contact>

<name>Johhny Rude</name>
<address>111 East Onion Ave.</address>
<phone>1-323-456-4444</phone>

</contact>

You need to create a separate DTD file named contact.dtd when you declare such
an external DTD, and that DTD must be adhered to.

You can also declare the DOCTYPE and define its rules within the actual XML
document validating against it, as in the following example:

<?xml version=“1.0”?>
<!DOCTYPE contact [

<!ELEMENT contact (name, address, phone)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT phone (#PCDATA)>

]>
<contact>

<name>Johhny Rude</name>
<address>111 East Onion Ave.</address>
<phone>1-323-456-4444</phone>

</contact>

The bolded markup contains the DTD. All you need to do to create an external DTD
is take the following steps:

1. Create an inline DTD first, as done in the preceding code.

2. Cut the bolded part of the code out of the XML document and paste it into a
new text file.

3. Name it contact.dtd (or whatever your DTD’s name really is).

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

515Chapter 31 ✦ Introduction to XML

Of course, creating the DTD within the validating XML document is not a necessary
first step. You can create the file separately from the beginning. But doing it within
the validating XML makes it easy to test if you’re using an XML-enabled browser such
as IE5 and later or Mozilla (and Netscape 7.xxx). When you can load the file into a
browser without any errors, you can then split the DTD markup (in bold in the
preceding code) into a separate file and call it contact.dtd (or some other name),
then refer to it in the XML document as previously shown:

<!DOCTYPE root SYSTEM “contact.dtd”>

DTD and XML structure is defined using the following core components of XML:

✦ Elements

✦ Attributes

✦ Entities

✦ PCDATA

✦ CDATA

Each of these is described in the sections that follow.

Using elements in DTDs
Elements are the main data-containing components of XML. They are used to
structure a document. You’ve seen them in HTML, and the core principles are the
same in HTML. An element can contain data, or it can be empty. If it is empty, it
normally consists of an attribute, but that isn’t a requirement. The HTML br and img
elements are good examples of empty elements.

XML elements are declared with an element declaration using the following syntax:

<!ELEMENT name datatype>

The first part of the declaration (!ELEMENT) says that you are defining an element.
The next part (name) is where you declare the name of your element. The next part
(datatype) declares the type of data that an element can contain. An element can
contain the following types of data when defined by DTDs:

✦ EMPTY data, which means there is no data within the element.

✦ PCDATA, or parsed character data.

✦ One or more child elements: There is always a root element and, if the XML
document defined by the DTD is to contain additional elements, the DTD must
define what those elements are in the root element’s declaration.

Using element declaration syntax for empty elements
Empty elements are declared by using the keyword EMPTY:

<!ELEMENT name EMPTY>

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

516 Part IV ✦ Advanced Web Authoring

For example, to declare an empty br element, you would write the following:

<!ELEMENT br EMPTY>

This element would appear as follows in an XML document:

Using element declaration syntax for elements with PCDATA
Elements that don’t contain any other elements and only contain character data are
declared with the keyword #PCDATA inside parentheses, like this:

<!ELEMENT name (#PCDATA)>

A typical example of such an element follows:

<!ELEMENT note (#PCDATA)>

An XML parser might then encounter an actual note element that looks like this:

<note>This note is to warn you that not all DTDs are good
DTDs. There are bad DTDs. DTD design is more an art than a
science.</note>

You can see there are no elements within the note element, just text (character data).

Using element declaration syntax for elements with child elements
Elements can contain sequences of one or more children, and are defined with the
name of the children elements inside parentheses:

<!ELEMENT name (child_name)>

If there is more than one element, you separate each element with a comma:

<!ELEMENT name (child_name, child_name2)>

An example, using the code you saw earlier for the contact document, might look like
this:

<!ELEMENT contact (name, address, phone)>

Declaring the number of occurrences for elements
You can also declare how often an element can appear within another element by
using an occurrence operator in your element declaration. The plus sign (+) indicates
that an element must occur at least one or more times within an element. Therefore,
if you create the following declaration, the phone element must appear at least once
within the contact element:

<!ELEMENT contact (phone+)>

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

517Chapter 31 ✦ Introduction to XML

You can declare that a group of elements must appear at least one or more times:

<!ELEMENT contact (name, address, phone)+>

To declare that an element can appear zero or more times (in other words, it’s an
optional element), use an asterisk instead of a plus sign, as in the following:

<!ELEMENT contact (phone*)>

If you want to limit an element to zero or one occurrence, use a question mark (?)
operator instead:

<!ELEMENT contact (phone?)>

The following XML would not be valid when the declaration uses a ? operator for the
phone element:

<contact>
<phone>222-222-2222</phone>
<phone>222-222-2223</phone>

</contact>

You can also use a pipe operator (|) to indicate that one element or another element
can be contained within an element:

<!ELEMENT contact (name,address,phone,(email | fax))>

In the preceding declaration, the sequence of name, address, and phone elements
must all appear in the order shown, followed by either the email or fax elements.
This means the following XML is valid:

<contact>
<name>John Smith</name>
<address>111 West Main St.</address>
<phone>212-222-2222</phone>
<email>west@main.com</email>

</contact>

However, the following XML would not be valid if validating against the same DTD:

<contact>
<name>John Smith</name>
<address>111 West Main St.</address>
<phone>212-222-2222</phone>
<email>west@main.com</email>
<fax>222-222-2222</fax>

</contact>

As a test of what you’ve seen so far, look at Listing 31-1 and see if you can determine
why it won’t validate. What could you do to make it work?

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

518 Part IV ✦ Advanced Web Authoring

Listing 31-1: A Nonvalidating XML Document

<?xml version=“1.0”?>
<!DOCTYPE contact [

<!ELEMENT contact (name, address, (address)?, city, state,
postalcode, phone, (email | fax))>

<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT postalcode (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT fax (#PCDATA)>

]>
<contact>

<name>Johhny Rude</name>
<address>111 East Onion Ave.</address>
<city>Big City</city>
<state>CA</state>
<postalcode>96777</postalcode>
<phone>1-323-456-4444</phone>
<fax>test</fax>
<email>rude@rude.com</email>

</contact>

If you try to parse Listing 31-1 using a validating parser, you’ll get an error. The
reason is because there is a fax and an email element, but the DTD in bold calls for
an email or a fax element. To fix the document, you need to remove either the fax
or the email element.

Using attributes in DTDs
Attributes define the properties of an element. For example, in HTML, the img
element has an src property, or attribute, that describes where an image can be
found. When deciding whether something should be an element or attribute, ask
yourself if the potential attribute is a property that helps describe the element in
some way. Attributes shouldn’t contain data with line breaks unless you’re okay with
those breaks being replaced with one nonbreaking space, because attributes don’t
render line breaks in XML.

Using entities in DTDs
Entities are used to store frequently used or referenced character data. You’ve
already seen some of XML’s predefined entities. You can also create your own. When
you do that, you must declare them in your DTD. You can’t, for example, simply use
 in an XML document. You must first declare it by defining what it means and

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

519Chapter 31 ✦ Introduction to XML

letting the XML parser know about it. When an XML parser encounters an entity it
expands that entity. For example, this means that the parser recognizes as a
nonbreaking space if you have defined it as such.

Using PCDATA and CDATA in DTDs
PCDATA is parsed character data, which means that all character data is parsed as
XML; any starting or closing tags are recognized, and entities are expanded.
Elements contain PCDATA.

CDATA is data that is not parsed by the processor. This means that tags are not
recognized, and entities are not expanded. Attributes do not contain PCDATA; they
contain CDATA.

XML Schemas
DTDs can be somewhat limiting. Consider, for example, the following XML document:

<datatypes>
<Boolean>true</Boolean>
<integer>1</integer>
<double>563.34</double>
<date>11-01-2006</date>
</datatypes>

As far as a DTD that might define the rules for the preceding code fragment is
concerned, every element contains character data. The value for the integer
element is not actually an integer, and the date isn’t a date. This is because DTDs
don’t have mathematical, Boolean, or date types of data.

The W3C introduced another rules development methodology called XML Schema to
handle richer data typing and more granular sets of rules that allow for much greater
specificity than DTDs. In addition to the types of rules DTDs manage, Schema
manages the number of child elements that can be used, as well as data types
allowed in an element, such as Booleans and integers.

The use of datatyping is especially important because it facilitates working with
traditional databases and application program interfaces (APIs) based on Java, C++,
and other languages, such as JavaScript.

Working with Schemas
Now that you’re familiar with DTDs, it should be fairly easy to see how their
concepts extend to a greater range of datatypes. XML Schema uses XML syntax to
develop rule sets, so it is actually more intuitive than the DTD syntax you saw earlier
in the chapter.

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

520 Part IV ✦ Advanced Web Authoring

Recall that an example earlier in the chapter created a simple XML document for
contacts that was derived from contact.dtd. Let’s call that XML document
contact.xml. If you look at Listing 31-2, you can see the same principles at work in
a schema. Pay particular attention to the xs:sequence xs:element children (in
bold) that live in the xs:complexType element.

Listing 31-2: A Schema for a Contact XML Document

<?xml version=“1.0”?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”
targetNamespace=“http://www.tumeric.net/schemas”
xmlns=“http://www.tumeric.net/schemas”
elementFormDefault=“qualified”>
<xs:element name=“contact”>

<xs:complexType>
<xs:sequence>

<xs:element name=“name” type=“xs:string”/>
<xs:element name=“address” type=“xs:string”/>
<xs:element name=“city” type=“xs:string”/>
<xs:element name=“state” type=“xs:string”/>
<xs:element name=“postalcode” type=“xs:string”/>
<xs:element name=“age” type=“xs:integer” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

In a DTD, the sequence of elements that should appear in the contact.xml
document was defined by placing commas between elements in an element
definition. In XML Schema, a sequence is defined by creating a sequence of elements
in a specific order with an xs:sequence element. This is part of the larger definition
of the XML document’s root element, which is the contact element. Note the use of
the type attribute in the xs:element element, which defines the data type.

Numerous datatypes are available. If you’re familiar with the Java programming
language, it might help you to know that most of the datatypes are very similar to
Java datatypes. If you’re not familiar with Java, Schema consists of four basic
datatypes:

✦ numerical (such as integer and double)

✦ date

✦ string

✦ Booleans

Tip You can find out the specifics of various datatypes available through XML:
Schema at www.w3.org/TR/xmlschema-2/.

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

521Chapter 31 ✦ Introduction to XML

The contact element is a complex type of element because it contains other elements.
If an element isn’t defined by giving it child elements, it’s a simple type of element.

To reference a schema in an XML document, refer to it like this:

<?xml version=“1.0”?>
<contact xmlns=“http://www.tumeric.net/schemas”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=
“http://www.tumeric.net/schemas/contact.xsd”>

<name>Johhny Rude</name>
<address>111 East Onion Ave.</address>
<city>Big City</city>
<state>CA</state>
<postalcode>96777</postalcode>
<phone>1-323-456-4444</phone>
<fax>test</fax>
<email>rude@rude.com</email>

</contact>

The schema is referenced through a namespace. A namespace is represented in an
XML document by a namespace declaration, which looks suspiciously like an
element attribute but isn’t. This is an important distinction, because when you work
with an XML document’s Document Object Model a namespace is part of that model,
as is an attribute, so don’t confuse the two. The syntax looks like this:

xmlns=“http://www.tumeric.net/schemas”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“
http://www.tumeric.net/schemas/contact.xsd”

Only the code highlighted in bold is an attribute/value pair. The other two lines of
code are namespaces, which serve as identifiers. They tell a processor that elements
associated with them are unique and may have specially developed definitions. The im-
portant part of the namespace is the Uniform Resource Identifier (URI), which is what
gives a namespace its unique identity. Therefore, when elements live within a specific
namespace governed by a schema, they must adhere to the rules of that schema.

The first namespace in the preceding code fragment refers to a namespace
established in the schema that uniquely binds the schema to a specified resource, in
this case a Web site. You don’t have to refer to a Web site, and the reference is not
actually a physical pointer. Instead, the URI is simply an easy way to establish
identity, because a Web site should be unique. It isn’t guaranteed to be unique, of
course, because anyone can hijack your Web site address name and use it for their
own schema, but it has become fairly standard practice to do so. You could, instead
of a Web site name, use a long mash of characters, as in the following example:

xmlns=“hk45kskds-scld456ksaldkttsslae697hg”

The second namespace refers to the W3C’s schema location so that XML processors
will validate the XML document against the schema. This is necessary because you

P1: KPE

WY022-31 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:10

522 Part IV ✦ Advanced Web Authoring

then need to call the resource you’re using, in this case, a schema that can be found
on the path named in the xsi:SchemaLocation attribute. When the processor
finds the schema, it attempts to validate the XML document as the document loads.
If the XML document doesn’t conform to the rules you set forth in the schema
definition, an error will result (assuming your parser can work with XML Schema).

XML on the Web
Many companies leverage XML on the Web by using it as part of their middle tier. For
example, a database can be used to store and return data to users, but along the way
that data may be converted to XML, which, in turn, is transformed using Extensible
Stylesheet Language Transformations (XSLT) into HTML renderable on a browser.

XSLT has thus become an integral part of any XML deployment on the Web. To
render any meaningful HTML from XML, you’ll need to have at least a basic
understanding of how XSLT works.

Summary
XML has played a significant role in many large Web sites during the last few years. If
you are a Web development professional, there isn’t any doubt that at some point, a
prospective employer will ask you about it, or a current employer will want to know
if you’re ready to help with migration to an XML-based environment. Even if you’re a
freelancer or hobbyist, you’ll find yourself exposed to XML frequently.

Most Web logs, for example, which are covered in Chapter 30, rely on XML to store
data, and use an XML-based syntax, Rich Site Summary (RSS), for managing
syndication. The list goes on. The bottom line is that you’ll want to learn how to
convert, or transform, XML documents into HTML. To do this, you’ll need to learn
something about XSLT and other XML components, which are covered in the next
chapter.

✦ ✦ ✦

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

3232C H A P T E R

XML Processing
and
Implementations

✦ ✦ ✦ ✦

In This Chapter

XPath

Style Sheets for XML

XML Implementations

✦ ✦ ✦ ✦Chapter 31 gave you a taste of what XML is like and how
it works, but now it’s time to figure out exactly what you

can do with it. As an HTML/Web developer, you’ll be processing
XML so that you can generate HTML pages for the Web.
Doing this requires that you understand the essential aspects
of addressing an XML document. In other words, how do you
access the various parts of an XML document, referred to as
nodes, and then do something with each of those parts? This
chapter explores how to process XML, heavily emphasizing
the transformation language that makes it possible,
Extensible Stylesheet Language Transformations (XSLT).

Processing XML
You can take various chunks of XML documents and output
them into HTML. To do this, you must use the XSLT language.
This is a language designed to take XML “source” documents
and transform them into something else, such as HTML. But to
work with XSLT, you need to have an idea how another
language, called Xpath, works.

XPath
When working with XML documents you’ll often work with a
process that takes one or more chunks of the XML document
and does something with it. The process may be one that
transforms the XML into an HTML document so that browsers
can view the XML data in a nicely formatted way, or it may be a
SQL Server database that extracts bits of an XML document to
dump into a query or database table. For these processes to
work, you need to be able to get at certain parts of a document.
Generally, the way to do that is through the use of XPath.

523

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

524 Part IV ✦ Advanced Web Authoring

XPath is often associated with a host language that uses specific aspects of XPath
but may expand on the core XPath framework and provide additional functionality.
XSLT is a classic example of a host language for XPath. XQuery is another.

XPath, like XML, is case-sensitive, and all XPath keywords use lower case.

At the core of XPath is an expression. The result of every expression is a sequence,
an ordered collection of zero or more items.

Finding information using XPath
When someone gives you an address for an important meeting and you don’t know
where it is, what do you do? Most likely, you employ one of those online mapping
services or maybe even use a GPS service from your car. Either way, you end up with
a mapping service that shows you the route to your address. This route may be a
very short, simple route, or a very complex one, depending on the quality of the
mapping service and where your address is in relation to your starting point.
Assume for a moment that someone has given you directions from one part of San
Francisco to another. You’re trying to get from the 500 block of Hayes Street to 50
United Nations Plaza by car. To do this, you need to know something about the
structure of the city’s street layout. There is some linkage between each step of the
route. Here are the basic directions:

1. Start out going North on OCTAVIA ST toward IVY ST.

2. Turn RIGHT onto GROVE ST.

3. Turn RIGHT onto HYDE ST.

4. Turn LEFT onto MARKET ST.

Notice that you can’t go straight from Octavia to Hyde Street. You have to follow a
specific series of steps because all of the streets in the city are connected to each
other and have a relationship with one another that you must address to traverse
the city.

XPath works the same way. XPath addresses an XML document, allowing you to
traverse that document. Luckily, traveling around an XML document is much easier
than traveling around San Francisco, because an XML document has a tree structure
like that shown in Figure 32-1, whereas San Francisco streets require years of study
to understand.

Locations and steps
A typical XPath expression walks along the structure of a document that relies on the
development of a link between the node being searched and the root node. Break
that link, and it is much more difficult to find out where you are in a document.

Note The root node in XPath is always the document node. Don’t confuse this with
the root element, which is the first element encountered in an XML document.

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

525Chapter 32 ✦ XML Processing and Implementations

mapdirections

destination directionsstartingPoint

street cross city postalcode street cross city postalcode step

textstreetstart

Figure 32-1: You can navigate an XML document by “walking” along a tree structure.

Consider the following path. It’s not an XPath, but it looks a lot like one, as you’ll
soon discover:

C:\Program Files\Internet Explorer\Setup

The preceding snippet is an addressing scheme for a file management system on
your hard drive (if you’re on Windows).

An XPath works the same way when it traverses an XML document to help you and
your cohorts find information. Consider the XML document in Listing 32-1

Listing 32-1: Map Directions Mapped to an XML Document

<?xml version=“1.0” encoding=“UTF-8”?>
<mapdirections>

<startingPoint>
<street>500 Hayes St</street>
<cross/>
<city>San Francisco</city>
<postalCode>94102-4214</postalCode>

</startingPoint>
<destination>

<street>50 United Nations Plz</street>
<cross/>
<city>San Francisco</city>

<postalCode>94102-4910</postalCode>
</destination>
<directions>

<step>
<start direction=“North”/>
<street>Octavia St</street>
<text>North, towards Ivy St.</text>

</step>
<step>

<street>Grove St</street>
<text>Turn RIGHT onto GROVE ST.</text>

</step>

Continued

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

526 Part IV ✦ Advanced Web Authoring

Listing 32-1 (continued)

<!-- XPath: /mapdirections/directions/step -->
<step>

<street>Hyde St</street>
<text>Turn RIGHT onto HYDE ST.</text>

</step>
<step>

<street>Market St</street>
<text>Turn LEFT onto MARKET ST.</text>

</step>
</directions>

</mapdirections>

To extract information out of Listing 32-1 you need to start somewhere. That
beginning is referred to as the context node, the originating node from which an
XPath expression is evaluated. To find the street element representing the first step
you need to get to your destination, you write an XPath that walks the XML
document tree, as in the following example:

/mapdirections/directions[1]/step[1]/street[1]

The [1] in the preceding code fragment indicates the first node within a node set, so
directions[1] means the first directions element. When you lead off your
expression with the / character, you are indicating the document’s root node. More
formally, a path expression consists of a series of one or more steps separated by /,
and which can, but are not required to, begin with / or // (you’ll learn about the //
characters later). In other words, I didn’t have to lead off the preceding statement
with the / character; I simply chose it to be certain that the XPath processor would
begin evaluating the XML document at the root level. If you look at the directions to
the destination again, you’ll see that no matter where you are in your route, the
starting point never changes. That starting point is like your root node. But as you
progress along the route, obviously your position does change. This position along
the route is your context node. From this point, any time along the route, you can
change your direction. You can decide to change routes or even your final
destination, but you must always begin at your current point along the route.

If you leave off the / character, the XPath processor will begin to evaluate the
expression from wherever the processor was in the document at the time the statement
was read; in other words, from your context node. So leading off with a / character
forces the starting point of your journey to begin at the root node of the document. If
you tried to access the node by providing XPath analysis software nothing more than
the street element, the software would likely not find it. It would be as if a mapping
tool, in giving you the directions I’ve been referring to, simply said, “Go to Hyde Street.”

Note The root node in XPath is always the document node, and consists of all the
nodes of the entire document. Don’t confuse this with the root element, which
is the first element encountered in an XML document.

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

527Chapter 32 ✦ XML Processing and Implementations

A street system in a city is a form of linking system. XPath also provides a consistent
linking mechanism via a special notation called location steps. In their simplest form, lo-
cation steps are simply the process of getting from one part of the tree to another, step
by step, until you reach your destination. In other words, a location step is a progres-
sion through an XML document tree that begins at the context node and moves through
the hierarchy in a specific direction you define in order to get to your destination.

A discussion of some fundamentals behind location steps follows to show you how
you can access different nodes.

For simplicity, continuing with the idea of map directions in San Francisco, say you
only need the value of the last street in the directions. You already know where
you’re going to end up. You can see this by scanning the document. However, the
XPath processor doesn’t know this and will need specific instructions on how to
navigate to the last street element. There are actually a lot of ways to do that, as you
will see as you move your way around XPath.

When traversing documents using location steps, you can use unabbreviated or
abbreviated syntax. The unabbreviated syntax relies on something called an axis. An
axis uses the context node, which is basically whatever your starting point is when
your location step is defined, to move either forwards or backwards from the context
node, or, if you prefer, up and down the XML source document tree. Figure 32-2
shows one view of this, and Figure 32-3 shows a more traditional XPath schematic of
a document (both of these are based on Listing 32-1).

<mapdirections>
<startingPoint>
<street>500 Hayes St</street>

<street>50 United Nations Ptz</street>

<cross/>

<cross/>

<city>San Francisco</city>

<city>San Francisco</city>

<postalCode>94102-4214</postalCode>

 <postalCode>94102-4910</postalCode>

<directions>
<step>
<start direction="North"/>
<street>Octavia St</street>
<text>North, towards lvy St.</text>
</step>
<step>

<street>Hyde St</street>
<text>Turn RIGHT onto HYDE ST.</text>
</step>

<street>Market St</street>
<text>Turn LEFT onto MARKET ST.</text>

</directions>
</mapdirections>

</step>

<step>

</step>
<step>

<street>Grove St</street>
<text>Turn RIGHT onto GROVE ST.</text>

</startingPoint>
<destination>

</destination>

ROOT NODE

Figure 32-2: Walking up and down a document tree reveals a series of steps
you can use to traverse a tree.

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

528 Part IV ✦ Advanced Web Authoring

Root Node

mapdirections

startingPoint destination directions

postalCodecitycrossstreetpostalCodecitycrossstreet

textstreetstart

@direction

textstreet

step

textstreet

step

textstreet

stepstep

Figure 32-3: A schematic of an XML document.

A typical unabbreviated axis notation looks like this:

child::*

The axis is on the left side of the :: characters, and on the right side is a node test.

Here’s an example with the XPath you need to drop into the statement in bold:

/mapdirections/directions[1]/step[1]/street[1]

If you want to access one or more of the nodes indicating a street value, you’ll
need to address your document in the same way you provide directions to someone
to an address they provide:

1. The mapdirections node is retrieved when using child::* or its
abbreviated syntax, /* or*.

2. The startingPoint node is retrieved when using child::*/child::* or
its abbreviated syntax, /*/*.

3. The first step node is retrieved when using child::*/child::*/child::*
or its abbreviated syntax, /*/*/*.

4. Each street node is accessed using /child::*/child::*/child::*
/street or /*/*/*/street.

Each step progresses along the tree following a very specific pattern until you find
your way to the one of the elements you’re looking for.

Using axes for directing traffic
When you’re viewing directions for an address to a city street, you are usually told to
turn right or left at certain intersections. When dealing with XML documents, the
direction you turn is called an axis, only instead of turning right or left, you move
forward, in reverse, or sideways. When you move forward, you refer to a child axis,
as you’ve just seen. In the child::* XPath, child is axis, the :: characters are a
delimiter, and the * is a node test. The node test might be something else, such as a
specific element. When you move in reverse, you refer to a parent axis, which looks

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

529Chapter 32 ✦ XML Processing and Implementations

like this: parent::*. When you move sideways, you refer to a sibling, like this:
preceding-sibling::* or following-sibling::*. XPath uses a number of
axes, which are listed in Table 32-1. Each kind of axis lets you traverse the document
going in one direction or another.

Table 32-1
XPath Axes

Axis Description Example

Child Contains the direct
children of the context
node when the context
node is a root or element
node. Used to move
forward (or down) the
XML document tree
hierarchy

child::*

Descendant Contains the
descendents of the
context node. This is
beyond direct children,
and includes children of
children, and children of
children of children.
Used to move forward
(or down) the XML
document tree hierarchy

/descendant::*

Parent Contains the direct
parent of the context
node. Used to move in
reverse (or up) along the
XML document tree
hierarchy

//street[parent::node()
[name()=‘step’]]

following-sibling Contains all sibling
nodes that occur after
the context node. Used
for moving sideways
along the same level of a
document

/step/street[following-
sibling::node()[.=
‘North, towards Ivy
St.’]]

preceding-sibling Contains all sibling
nodes that occur before
the context node. Used
for moving sideways
along the same level of a
document

text[preceding-sibling::
node()[.=‘Octavia St’]]

Continued

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

530 Part IV ✦ Advanced Web Authoring

Table 32-1 (continued)

Axis Description Example

Self This is the context node
itself

self::*

descendant-or-self Contains all descendant
nodes as well as the
context node itself, not
including attribute or
namespace nodes

descendant-or-
self::someElement

ancestor-or-self Contains all ancestor
nodes, as well as the
context node itself

//text[last()]/
ancestor- or-self::*

Ancestor Contains all the ancestor
nodes of the context
node in reverse
document order. The first
node instance is the
parent of the context
node, the second node is
the grandparent, and the
third is the
great-grandparent. This
pattern is followed to the
top of the document

/street[ancestor::
node() [name()=‘step’]]

Following Contains all the nodes
that follow the current
node, except for attribute
or namespace nodes and
descendent nodes

following::*

Preceding Contains all the nodes
that precede the current
node

preceding::*

Attribute Contains all the attribute
nodes of the context
node

attribute::myAttribute
Name

Namespace Contains the namespace
nodes of the context
node

namespace::*

Style sheets for XML: XSLT
As a Web developer, you’ll need to be able to understand the process of transforming
XML documents into HTML and other formats. This process is based on a language

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

531Chapter 32 ✦ XML Processing and Implementations

called XSLT. Many people call XSLT XSL, but XSL is actually a language for specifically
transforming documents into a print-based XML vocabulary called XSL Formatting
Objects (XSL-FO). XSLT is the engine that drives all transformations from XML to
other formats, such as HTML, other XML documents with different structure, text,
and XSL-FO, which in turn is often converted into PDF. This chapter focuses on XSLT.

Note XSLT is often referred to as XSL. Technically, XSL is the formatting language
informally known as XSL-FO, but the convention of most developers has been
to refer to XSLT as XSL, even though it’s really not technically correct to do so.
This book refers to XSLT by its proper name/acronym.

XSLT is a complex language. You can get through the basics fairly quickly, but it can
take some time to master complex tasks. This chapter introduces you to a few of the
basic concepts. For further information, you should consult a book written
specifically for XSLT development.

Transformation using XSLT
At its most basic, a transformation using XSLT occurs when you transform a
document like this:

<bad>A bad document</bad>

to this:

<good>A good document</good>

In other words, you transform a document whenever you want to change the markup
of an XML document into another format, such as HTML, SVG, or SMIL (just to name
a few examples), or into a set of new XML elements. You can change the name of
elements when you transform a document, and you can even transform the content
of a document by replacing it with different content. Here’s another example of a
transformation from the “bad” document into something else:

<html>
<head>
</head>
<body>
A bad document
</body>
</html>

You can see the resulting document is completely different. It consists of a series of
new elements, in this case HTML elements, as shown in Figure 32-4.

A transformation is generated when a special kind of software called an XSLT
processor receives an XML document called a source document. The source
document must be well-formed XML, because the XSLT processor works in tandem
with an XML parser (which often comes bundled with the XSLT processor you’re
using). The XML parser reviews the XML source document, and if it decides the

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

532 Part IV ✦ Advanced Web Authoring

Source Content Is
Inserted Into
New Result Document

...transforms to this.

This...

<bad> A bad document</bad>

 A bad document

<html>

</html>
</body>

<body>
</head>
<head>

Figure 32-4: The source content is transformed into HTML.

source document is a legitimate XML document, it then passes the document along
to the XSLT processor.

The XSLT processor then examines the XSLT style sheet that you write and, based on
that style sheet, attempts to detect what kind of document you are trying to create.
Once it can detect what kind of document you are trying to create, it then outputs
the type of markup you need based on the markup instructions in your XSLT
document. The output may be a series of XML elements, an HTML document, or a
series of strings (called text nodes). It creates the output by using a series of
elements that exist within the XSLT namespace.

A namespace is a mechanism that allows the definition of an XML element to be
unambiguously identified within an XML document. This identification is made
possible by binding an element to a Uniform Resource Identifier (a URL or URN).
Namespaces are covered more thoroughly in the section titled Namespaces are your
friend—really they are later in the chapter.

XSLT relies on XPath for addressing documents. It uses a subset of the XPath
language called pattern matching to define a set of rules that a specific node should
follow in order to be processed, and it uses the full XPath expression syntax to select
nodes for processing (generally, but not exclusively, through an XSLT element’s
select or test attribute). Whenever you see the select attribute in an XSLT
element, it’s a cue that you have encountered an XPath expression.

Getting started with XSLT
If you’re on Windows, running some XML through an XSLT processor is as easy as
using Internet Explorer. Just be sure you’re using Internet Explorer 6 (not 5 or below).
Earlier versions use an antiquated, pre-1.0 version of XSL, and running the code you
see in this chapter will not work in anything other than Internet Explorer 6. To use it,
add a processing instruction to your XML file that you want to transform, and then load
the XML file into Internet Explorer. The processing instruction should look like this:

<?xml-stylesheet type=“text/xsl” href=“foo.xsl”?>

You can also use the latest Mozilla builds to view style sheet-rendered XML using the
same processing instruction previously shown. The advantage of using Mozilla is

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

533Chapter 32 ✦ XML Processing and Implementations

that it shouldn’t matter what operating system you’re using. It should work as well
on a Mac or Linux as it does on Windows.

You can also use command-line programs such as Saxon, created by the editor of the
upcoming XSLT 2.0 specification, Michael Kay, or Xalan, created by The Apache
Foundation.

Note Look for Saxon at http://saxon.sourceforge.net/, and look for Xalan
at http://xml.apache.org/xalan-j/.

Both of these are Java-based XSLT processors that integrate well with Web servers
such as Apache.

Outputting XML and HTML using XSLT
XSLT has built-in outputting options that make it easy to output just about any
text-based output you can think of, in addition to XML. For example, you can output
HTML. You can also output text. In addition, an XSLT processor automatically makes
certain adjustments for the output you choose. If you choose to output XML, the
XSLT processor will output an XML declaration at the top of the document that is
generated, and if you generate HTML, it will create a minimum amount of meta
information that becomes more detailed depending on the parameters you decide on
when you develop the stylesheet. It will also convert
 elements into more
HTML-friendly
 elements and output other HTML elements correctly, even
though you need to write them within your style sheet using XML syntax.

The first thing an XSLT processor needs to know as it begins to process a source
document for transformation is what kind of output to generate. This is handled by
the aptly named xsl:output element. This element lets you decide what format
your result document, which is also often called a result tree, when output to XML
because of its hierarchical nature, should take. A result document/tree is simply the
result of the transformation after it has made its way through the XSLT processor.
There is no requirement that the result be well-formed XML. The result can be just
about any text format you can think of from text to Rich Text Format.

The xsl:output element is a top-level element, meaning it isn’t nested within any
other elements. Convention also suggests that you should include it as close to the
xsl:stylesheet or xsl:transform element as you can. The syntax for the
xsl:output element looks like this:

xsl:output
name = qname
method = “xml” | “html” | “text”
version = nmtoken
encoding = string
omit-xml-declaration = “yes” | “no”
standalone = “yes” | “no”
doctype-public = string
doctype-system = string
cdata-section-elements = qnames
indent = “yes” | “no”
media-type = string

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

534 Part IV ✦ Advanced Web Authoring

The encoding attribute is important because, as mentioned in the previous chapter,
you need to keep your encodings consistent between XML documents. The method
attribute of the xsl:output element is also obviously important. The default is
xml. Choosing indent=“yes” will pretty-print your result document, meaning it will
indent your results to make them easier to read.

Creating style sheets
Now that you’ve seen what kind of output you can generate, you need to know how
to do it. At the very top of every style sheet is an element called the xsl:
stylesheet element. You can also use the xsl:transform element. They both
mean exactly the same thing, and provide exactly the same functionality.

This element helps establish the fact that the XML document containing the
xsl:stylesheet element is in fact a style sheet document that should be read by
an XSLT processor, as in the following example:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsl:stylesheet>
</xsl:stylesheet>

However, just because you know it’s a style sheet doesn’t mean that any XML
processing software will know it. XML is great for letting you create intuitive
elements, but something needs to provide a hint about what exactly the
xsl:stylesheet element does.

Namespaces are your friend—really they are
One way to identify an XML element name, or group of names, and their purpose,
is by using a namespace, and binding that namespace to an imaginary friend. In this
case, the imaginary friend is a URI that seems shaped like a URL, but the URI
can really take on any shape at all. You’ll want to form it in a way that can
somehow provide a uniquely identifying characteristic to the namespace, which is
why so many software developers bind their namespace to a Uniform Resource
Identifier (URI) that looks like it resolves to a URL. A URI identifies a resource by
way of some kind of meta information; a URL locates a resource, and a URL is itself a
type of URI.

To offer a concrete example of the importance of namespaces, imagine you’re an IT
professional for a company that specializes in body stockings for magicians. Further,
say that you wrote some software that communicated, through an XML message, to
the factory floor the elements and attributes specific to these body stockings. You
could use this XML document to send to some firmware some specifics about the
body stockings. Perhaps you’ve developed some software that the machines on your
factory floor use to help in the fabrication process for making hosiery, and the
software has a built-in processor that looks for the namespace you’ve developed:

xmlns:xsl= “http://fancystockings.magical.com”

The namespace is in bold. This makes your element unique to your organization, in
this case, your company, Fancy Stockings. Your namespace URI doesn’t have to be a
Web site. It can be anything you feel will uniquely identify your elements. So a

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

535Chapter 32 ✦ XML Processing and Implementations

fragment from your XML document might look like this:

<?xml version=“1.0” encoding=“UTF-8”?>
<xsl:stylesheet
xmlns:xsl=“http://fancystockings.magical.com”>

<xsl:stocking type=“silk” color=“chartreuse”>
<xsl:fibercount>600000000001</xsl:fibercount>

</xsl:stocking>
</xsl:stylesheet>

Note the use of the xsl prefix. Because you are using your own namespace,
http://fancystockings.magical.com, this document has nothing to do with
XSLT, even though it uses what looks to be XSLT elements.

The absolutely vital part of this document fragment is the namespace, as
represented by the namespace declaration that leads off with xmlns. (Oh, a quick
aside here. xmlns is not an attribute. It’s a namespace declaration. This matters,
because if you are searching your document for attribute nodes using XPath and
expect to find your namespace, it will pull a major disappearing act. The trick to
finding it will be to hunt for namespace nodes.) The namespace is shared by the
imaginary software you built for the machinery on the factory floor. You design the
software so that it will recognize one namespace and one namespace only, and that
is the fancystockings.magical.com namespace. Interestingly enough, you don’t
even have to use the xsl: prefix in your XML document for your software to
understand that you’re working with a magician’s body stocking elements. The only
part that has to jive is the URI that is bound to your namespace. If you don’t believe
it, try doing a search and replace on all your style sheet elements after you get the
hang of XSLT. Replace the xsl: prefix with anything else containing a colon at the
end (in other words, any other namespace prefix). For example, you could replace
xsl: with foo:, just be sure to also change the prefix bound to the namespace. The
style sheet processor will recognize the style sheet as long as you have the correct
namespace. And this namespace is as follows:

http://www.w3.org/1999/XSL/Transform

The only significance to this URI is the fact that an XSLT processor will recognize it. It
has nothing to do with any actual network traffic, and you don’t need to be
connected to the Internet to make it recognizable to an XSLT processor. All you need
is the software. When you add this namespace to the original style sheet document,
as follows, it makes the XML document instantly recognizable to an XSLT processor:

<xsl:stylesheet
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

But when you’re developing your style sheet, you could do this instead:

<foo:stylesheet
xmlns:foo=“http://www.w3.org/1999/XSL/Transform”>

The prefix is not the namespace; the URI the prefix is bound to is the namespace (see
Figure 32-5):

http://www.w3.org/1999/XSL/Transform

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

536 Part IV ✦ Advanced Web Authoring

The prefix foo is completely arbitrary

<foo:stylesheet xmlns: foo="http://www.w3.org/1999/XSL/Transform">

THIS is the namespace

Not this or this

Figure 32-5: Deconstructing a namespace.

Adding versioning control with the version attribute
Now that the XSLT processor will recognize the namespace and react accordingly,
the first thing it will do is scream about an error. This is because you need to include
the version attribute so the processor knows which version of XSLT you are using.

Note Generally, you’ll use version=”1.0” because, as of this writing, XSLT 2.0 has not
yet been released; and it will probably be a while after it is released before
production-ready XSLT processors get to market, as version 2.0 will undergo
some major changes in the way data typing is handled (XSLT 2.0 will include
support for data types such as integers and Booleans).

This wraps up your first style sheet. The following style sheet will return every node
of a document:

<xsl:stylesheet version=“2.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>
</xsl:stylesheet>

Because this style sheet doesn’t specify any details, it will simply return all the text
nodes of the document jumbled together, but it’s a start. A hidden element is at play
here, a template element that guarantees that something will get returned if you
don’t ever get around to defining your own output instructions.

Listing 32-2 shows how a typical shell for a style sheet might look. There are some
elements involved you haven’t been introduced to yet, but it’s a good idea now to get
an idea of the overall structure of a style sheet.

Listing 32-2: An XSLT Shell

<xsl:stylesheet version=“1.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=“html”/>
<!-- or some other output method -->

<xsl:template match=“/”>
<!-- matches the root of the XML document tree -->

<html>
<head>
<title>My first XSLT document</title>
</head>

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

537Chapter 32 ✦ XML Processing and Implementations

<body>
Directions to:
<xsl:value-of

select=“mapdirections/startingPoint/street” />
</body>

</html>
</xsl:template>

</xsl:stylesheet>

To view the XSLT transformation in a browser, add the following Processing Instruction
to Listing 32-1, immediately underneath the XML declaration (in bold in Listing 32-1):

<?xml-stylesheet type=“text/xsl” href=“L3202.xsl” ?>

If you have access to Mozilla 1.0 or higher, Netscape 7.0 or higher, or Internet
Explorer 6.0 or higher, you can view the transformation in your browser. Otherwise,
you’ll need an XML parser and XSLT processor.

One of the keys to Listing 32-2 is the xsl:value-of element, which generates the
text value of a named node from a source document. Since the value of the street
element is 500 Hayes St, that’s the value inserted by the xsl:value-of element.
You can see the result of using Listing 32-2 with Listing 32-1 as a source document in
Figure 32-6.

Figure 32-6: The result of transforming Listing 32-1 with Listing 32-2 as rendered in Mozilla.

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

538 Part IV ✦ Advanced Web Authoring

Introducing templates
You may have noticed an xsl:template element in the brief XSLT shell shown in
Listing 32-2. This is the primary rule maker that controls what kind of output is
generated. The xsl:template element creates a rule that contains instructions
about what and how to output nodes from the XML source tree. The templates
themselves don’t actually process anything; they merely carry the rules that tell
other elements how to process results.

There is a corresponding xsl:apply-templates element that chooses which
xsl:template, or rule, to apply, because you can have many rules in one document
for any number of different nodes. If there is no xsl:template element in the style
sheet, a default rule is invoked. If there is no xsl:apply-templates element, the
template matching the root of the document is processed. You can also process
templates using the xsl:call-template element. In that case, you define your
template and give it a name using the name attribute, and then use the xsl:call-
template element later to process it when the xsl:call-template element’s
name attribute matches the name attribute in the template you are calling.

When using the xsl:apply-templates element, the default rule, when applied,
processes nodes in the following way:

✦ All the children of the root nodes are processed, or returned, to the result tree.
This might seem confusing at first, since it would be normal to imagine that
this means, for example, that an attribute node will automatically end up in the
root tree. Indeed, it does, but only the text contained in the attribute value is
returned because there is a separate requirement for the way attributes are
returned.

✦ All the children of each element are also returned.

✦ All the attributes are returned as text, not as attribute nodes. This means that
the value of their text is returned.

✦ No comment, processing-instruction, or namespace nodes are returned.

Consider the following source document fragment:

<BSR>
<VERB value=“PROCESS”>PROCESS</VERB>
<NOUN value=“INVOICE”>INVOICE</NOUN>
<REVISION value=“002”>002</REVISION>

</BSR>

If you used your basically empty style sheet to process these nodes, a default
template would be applied and you would get the following back:

PROCESS
INVOICE
002

Notice that essentially what comes back is an amalgamation of the textual content of
the document, but in a pretty unhelpful way (imagine a 20MB source document and
you can see what I mean). So a style sheet’s default template generally needs your

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

539Chapter 32 ✦ XML Processing and Implementations

interdiction. You can stop all this default processing by adding one single instruction
rule, with one very simple instruction (like the example shown in bold in the
following):

<?xml version=“1.0” encoding=“UTF-8”?>
<xsl:stylesheet version=“2.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=“/”>
Magical pants for magical people

</xsl:template>
</xsl:stylesheet>

In the xsl:template element in the preceding code, if you had left off the string of
text “Magical pants for magical people” from the xsl:template and had simply
done this:

<xsl:template match=“/”>
</xsl:template>

You would end up with an empty node set in your result document. This can be a
neat trick, actually because a default template is always going to be invoked against
the root node of a document. By extension, this means that, in effect, a default
template is also invoked against other nodes in the source document that are
children of the root node. At times, you’ll find it convenient to stop the default
processing of one node for some reason as a programming strategy.

A quick glance at XSLT syntax might suggest that templates are governed exclusively
through the use of the xsl:template and xsl:apply-templates elements. This
is a sensible conclusion, because the xsl:template element is such an important
feature of the language, but there is a distinction between template rules, which are
defined by the xsl:template element, and other forms of “template content.” In
fact, several elements contain template content. These are called content constructors
in XSLT 2.0, and although the term isn’t defined for XSLT 1.0, it fits nicely. Table 32-2
shows the content constructors available in XSLT 1.0.

Table 32-2
XSLT Template Elements

Element Name Purpose Parent Element(s)

xsl:comment Generates comments into the
result tree using XML comment
syntax

Any content constructor; any
literal result element

xsl:copy Copies the current node to the
result tree

Any content constructor; any
literal result element

xsl:element Creates an element Any content constructor; any
literal result element

Continued

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

540 Part IV ✦ Advanced Web Authoring

Table 32-2 (continued)

Element Name Purpose Parent Element(s)

xsl:for-each Iterates through one or more
nodes and generates its
content for each instance

Any content constructor; any
literal result element

xsl:if Contains instructions that will
only be processed if the
expression in the xsl:if select
attribute is true

Any content constructor; any
literal result element

xsl:message Generates a system message to
the user

Any XSLT element whose
content model is content
constructor; any literal result
element

xsl:function element

xsl:otherwise Used in conjunction with the
xsl:when statement to provide
one last option in the
alternatives provided by one or
more xsl:when statements in
an xsl:choose statement

xsl:choose

xsl:param Establishes a parameter name
and value that can be used by
non-XSLT environments to pass
values into the result tree and
is often used in conjunction
with xsl:call-template or
xsl:apply-templates elements
and the xsl:with-param to
assign values to nodes

xsl:stylesheet
xsl:transform
xsl:function
xsl:template

xsl:processing-
instruction

Generates a
processing-instruction into the
result tree

Any XSLT element whose
content model is content
constructor; any literal result
element

xsl:template Builds a template rule for later
processing by either the
xsl:apply-templates element or
the xsl:call-template

xsl:stylesheet
xsl:transform

xsl:variable Stores a value for use by other
elements

xsl:stylesheet
xsl:transform
xsl:function
Any XSLT element whose
content model is content
constructor; any literal result
element

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

541Chapter 32 ✦ XML Processing and Implementations

Element Name Purpose Parent Element(s)

xsl:when A conditional that
processes its contents
when its test attribute
evaluates to true

Xsl:choose

xsl:with-param Used for assigning
values to parameters
when using call-
template elements

xsl:apply-templates
xsl:apply-imports
xsl:call-template

A closer look at template rules
You can generate nodes using content constructors in four ways:

✦ By creating literal result elements

✦ By creating text nodes

✦ By creating XSLT instructions

✦ By creating XSLT extension instructions

Creating literal result elements
When you want to generate HTML or some other markup, you create something
called literal result elements, which are elements you add directly to the processing
tree. Take a look at the source document in Listing 32-3; then look at Listing 32-4 to
view a transformation using literal result elements.

Listing 32-3: A Source XML File

<?xml version=“1.0” encoding=“UTF-8”?>
<products>

<product>
<name>Bert's Coffee</name>
<date>2003-01-21</date>

</product>
<product>

<name>Bert's Tea</name>
<date>2003-02-21</date>

</product>
<product>

<name>Bert's Soda</name>
<date>2002-02-15</date>

</product>
<reorders>

Continued

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

542 Part IV ✦ Advanced Web Authoring

Listing 32-3: (continued)

<reorder>
<name>Bert's Soda</name>
<cost>1.99</cost>
<date>2002-12-15</date>

</reorder>
<reorder>

<name>Bert's Tea</name>
<cost>2.99</cost>
<date>2002-06-15</date>

</reorder>
<reorder>

<name>Bert's Coffee</name>
<cost>5.99</cost>
<date>2002-05-15</date>

</reorder>
</reorders>

</products>

Pay special attention to the literal result elements in bold in Listing 32-4.

Listing 32-4: A Transformation Using Literal Result Elements

<?xml version=“1.0” encoding=“UTF-8”?>
<xsl:stylesheet version=“1.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=“html” version=“4.0” encoding=“ISO-
8859-1” indent=“yes”/>

<xsl:template match=“/”>
<html>

<head>
<title>Literal Result

Elements</title>
</head>
<body>

<xsl:apply-templates
select=“products/reorders/reorder/date”/>

</body>
</html>

</xsl:template>
<xsl:template match=“date”>

<p>
<xsl:value-of select=“.”/>

</p>
</xsl:template>

</xsl:stylesheet>

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

543Chapter 32 ✦ XML Processing and Implementations

The result of transforming Listing 32-3 using Listing 32-4 is the following HTML:

<html>
<head>
<META http-equiv=“Content-Type” content=“text/html;
charset=ISO-8859-1”>
<title>Literal Result Elements</title>
</head>
<body>
<p>2002-12-15</p>
<p>2002-06-15</p>
<p>2002-05-15</p>
</body>
</html>

XML Implementations
Most XML implementations you encounter as a Web developer will involve XSLT on
some level, unless you’re writing your XHTML from scratch. However, a few XML
implementations in existence won’t directly involve XSLT. For example, it’s just as
likely as not that your XHTML will be developed without XSLT intervention. You may
also encounter Web services XML vocabularies such as Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and Universal
Description, Discovery, and Integration (UDDI). Then there are the widget-based
XML vocabularies for visual interface development, such as XUL, which is an XML
vocabulary for developing Mozilla skins.

XHTML
XHMTL is the newest edition of HTML released by the W3C. The plan is to eventually
deprecate all versions of HTML prior to XHTML. In other words, as far as the W3C is
concerned, XHTML is the current version of HTML

It’s also possible to transform XHTML into another format, even HTML 4.0. The
biggest difference between HTML and XHTML is that XHTML must follow the rules of
XML syntax. The elements and attributes used by XHTML are basically the same as
HTML, except that you must use a closing tag in an empty element, such as the br
element, like this:

Note the extra space after the br characters. This is done for backwards
compatibility. If you end the tag without the space (
), older browsers won’t
recognize the br element. When you create XHTML from XSLT, you must specify the
PUBLIC and System DOCTYPE using the xsl:output element:

<xsl:output doctype-
system=“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

544 Part IV ✦ Advanced Web Authoring

transitional.dtd” doctype-public=“-//W3C//DTD XHTML 1.0
Transitional//EN” method=“html” version=“4.0” encoding=“ISO-
8859-1” indent=“yes”/>

This will generate the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>
<html>
...
</html>

You also need to indicate the namespace for XHTML within the xsl:stylesheet
element:

xmlns=“http://www.w3.org/1999/xhtml”

XHTML elements are also all case-sensitive, and must be in lower case. Listing 32-5
shows an XSTL document transforming Listing 32-3 into an XHTML document.

Listing 32-5: Creating an XHTML Document with XSLT

<?xml version=“1.0” encoding=“UTF-8”?>
<xsl:stylesheet xmlns=“http://www.w3.org/1999/xhtml”
version=“1.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

<xsl:output doctype-
system=“http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd” doctype-public=“-//W3C//DTD XHTML 1.0
Transitional//EN” method=“html” version=“4.0” encoding=“ISO-
8859-1” indent=“yes”/>

<xsl:template match=“/”>
<html>

<head>
<title>Literal Result

Elements</title>
</head>
<body>

<xsl:apply-templates
select=“products/reorders/reorder/date”/>

</body>
</html>

</xsl:template>
<xsl:template match=“date”>

<p>
<xsl:value-of select=“.”/>

</p>
</xsl:template>

</xsl:stylesheet>

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

545Chapter 32 ✦ XML Processing and Implementations

Listing 32-6 (L3206.xhtml) on the books companion Web site shows the result of the
transformation generated by Listing 32-5.

Cross-
Reference

Appendix A provides more details on the element syntax of XHTML.

Web services (SOAP, UDDI, and so on)
One of the banes of working with multiple environments across the Web has been
that it has been impossible to generate true programmatic experiences across such
systems. In other words, if you want to create an executable program that works
across the Internet, you have to make sure each computer accessing the program
has a browser plug-in installed. Web services were introduced to try to counter that
problem by allowing developers to create function calls across the network without
interference from firewalls and without regard to the kinds of software environments
on either the receiving or transmitting end.

This is accomplished by placing the function calls within XML-based documents
using formats such as SOAP and WSDL.

XUL
XML also is finding increased use as an interface development mechanism. XUL, for
example, is a language developed for Mozilla that helps build the Mozilla and
Netscape interface. You can learn how to build your own custom skins for Mozilla at
http://www.mozilla.org/projects/xul/.

Laszlo, which creates server-based Flash files, uses a similar XML-based vocabulary
for building data-powered and dynamic Flash sites. You can find more information on
Laszlo at http://www.laszlosystems.com/.

Even Longhorn, Microsoft’s upcoming operating system replacement for Windows,
bases its GUI on an XML syntax.

Theoretically, you could output all of these XML vocabularies using XSLT from an
XML source file.

WML
You can also generate markup for mobile phones from XSLT (or from scratch) by
using the WAP Wireless Markup Language Specification (WML). WML is markup that
is similar in concept to HTML but with a different syntax geared specifically for
small, mobile devices, such as cell phones and PDAs. You can find more information
on WML at http://www.wapforum.org/what/technical.htm.

P1: KTU

WY022-32 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:6

546 Part IV ✦ Advanced Web Authoring

Summary
You can easily see the benefits of starting with one source document based on XML
and generating output to HTML, PDF, WML, and even XUL or other GUI vocabularies
from one source. Whenever there is a change in your content, you only need to make
the change in the XML source file. You won’t need to make the changes in the
presentation files if you build your XSLT files correctly.

As XML has matured, more and more large Web sites have adopted it because of its
flexibility. For this reason, getting a handle on at least some of the fundamentals of
XSLT and XML processing in general will contribute significantly to your knowledge
of how modern Web sites are built.

Now that you’ve spent the greater portion of the book on how to develop Web sites,
it’s time for deployment. Chapter 33 examines how to test and validate your pages
during the staging process, which is the necessary first step before your pages and
site go live.

✦ ✦ ✦

P1: JYS

WY022-33 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

P A R T

VVTesting,
Publishing, and
Maintaining
Your Site

✦ ✦ ✦ ✦

In This Part

Chapter 33
Testing and
Validating Your
Documents

Chapter 34
Web
Development
Software

Chapter 35
Choosing a
Service Provider

Chapter 36
Uploading Your
Site with FTP

Chapter 37
Publicizing Your
Site and Building
Your Audience

Chapter 38
Maintaining
Your Site

✦ ✦ ✦ ✦

547

P1: JYS

WY022-33 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

548

P1: JYS

WY022-33 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

3333C H A P T E R

Testing and
Validating Your
Documents

✦ ✦ ✦ ✦

In This Chapter

Testing with a Variety
of Browsers

Testing for a Variety of
Displays

Validating your Code

✦ ✦ ✦ ✦

After creating your documents, it is important to test them
to ensure that visitors to your site will not encounter

any unforeseen problems. This chapter covers the basics
of testing your code, including what tools are at your disposal.

Testing with a Variety
of Browsers

Despite being built on standards, no two browsers support
HTML and CSS to the same degree. Some browsers don’t
implement certain features while others implement them, well,
differently.

Note Contrary to popular belief, Microsoft’s Internet Explorer
is no worse than other browsers regarding supporting
standards. Even though Microsoft has created many pro-
prietary technologies for its browser, it does a fair job of
supporting the actual standards.

When coding your documents it is important to understand
your expected audience and what browsers they may be using.
Although Microsoft Internet Explorer has market share on its
side, many people use other browsers, such as Mozilla, Opera,
Konqueror, Safari, and so forth. As such, it is doubtful that
everyone will be able to view your documents the way you
originally intended, especially if you use some of the more
esoteric features and technologies.

Make sure you test your pages on all target platforms to
ensure that no show-stopping errors exist on any of the

549

P1: JYS

WY022-33 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

550 Part V ✦ Testing, Publishing, and Maintaining Your Site

platforms. At a bare minimum, you should test on a current Microsoft (Internet
Explorer) browser and a Netscape/Mozilla browser because most browsers
incorporate one of these two technology bases.

Tip For a good source of browser compatibilities, check out Brian Wilson’s Index
DOT Html at www.blooberry.com/indexdot/html/index.html.

Also, don’t forget the non-computer browsers used by cell phones, PDAs, and other
mobile devices. If your site will appeal to mobile device users, you should at least
obtain the Software Development Kit (SDK) or emulator for each suspected platform
and preview your documents accordingly.

Tip You can use server-side and client-side scripts to adjust document behavior
according to the browser being used. Typically, such scripting is only necessary to
adjust other script behavior—what document object model objects are accessed
and so forth.

Testing for a Variety of Displays
Many Web designers make the mistake of designing their documents for specific
screen resolutions. When the document is displayed on a smaller resolution the page
elements tend to jam together or break across unexpected lines.

Your documents should be suitable for many resolutions. Although most users will
be running at resolutions of at least 800×600 pixels, you may have the occasional
user running lower resolutions.

Always test your documents at various resolutions and color depths to look for any
shortcomings.

Validating Your Code
Validating your documents’ code is a very good idea. It helps double-check your
document for simple errors—typos, unclosed tags, and so on—and also verifies that
your code meets expected standards.

Specifying the correct document type definition
There are many ways to validate your documents, but they all rely on your
documents containing a correct document type definition (DTD) declaration. For
example, if you want to base your documents on Strict HTML 4.01, you would
include the following DTD declaration at the top of your document:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

P1: JYS

WY022-33 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

551Chapter 33 ✦ Testing and Validating Your Documents

The DOCTYPE declaration informs any user agent reading the document what
standard the document is based on. The information is primarily used by validation
clients in validating the code within the document, but it might also be used by a
display agent to determine what features it must support.

Tip You can find a valid list of DTDs at http://www.w3.org/QA/2002/04/valid-
dtd-list.html.

Validation tools
You can use several tools to validate your documents. Tools you have at your
disposal include the following:

✦ The online W3C HTML validation tool, found at http://validator
.w3.org/.

✦ The online Web Design Group (WDG) validation tool, found at www.htmlhelp
.com/tools/validator/.

✦ Validation utilities built in to Web development tools such as Macromedia’s
Dreamweaver MX, shown in Figure 33-1.

Figure 33-1: Macromedia’s Dreamweaver MX includes a comprehensive code validation
feature.

P1: JYS

WY022-33 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

552 Part V ✦ Testing, Publishing, and Maintaining Your Site

✦ Any of the various separate applications that can be run locally. A
comprehensive list is maintained on the WDG site at
http://www.htmlhelp.com/links/validators.htm.

Understanding validation output
Consider the following HTML document:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>

<title>Validation Test</title>
</head>
<body>

<form action=“” method=“POST”>
<input name=“text” type=“text”>

<input name=“submit” type=“submit”>

</form>
</body>
</html>

When this code is passed through the W3C Markup Validation Service, the following
first error is returned:

Line 9, column 30: document type does not allow element
“INPUT” here; missing one of “P”, “H1”, “H2”, “H3”, “H4”,
“H5”, “H6”, “PRE”, “DIV”, “ADDRESS” start-tag

<input name=“text” type=“text”>

Although the document looks to be conforming HTML, the validation service thinks
otherwise. However, what exactly does the error mean?

In short, it means that the <input> element must be contained within a block
element other than the <form> tag. Typically, the paragraph tag (<p>) is used, but
you can also use <div>, a heading, <pre>, and so on.

Note The W3C also has an online CSS validation tool, accessible at: http://
jigsaw.w3.org/css-validator/. Similar to the HTML validation tool, this
tool will make sure your CSS style sheet is free from typos and that all the
attributes are paired with their matching styles.

Adding a paragraph container solves the problem and makes the document valid:

...
<form action=“” method=“POST”>

<p>
<input name=“text” type=“text”>

<input name=“submit” type=“submit”>
</p>

</form>
...

P1: JYS

WY022-33 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

553Chapter 33 ✦ Testing and Validating Your Documents

Tip When working on making a document validate, always handle the errors in
order. The example in this section actually results in four separate errors, each
relating to the missing block elements. Adding the preceding elements solves
all four problems.

Summary
Throughout this book, you have seen how simple documents can become quite
complex. From simple typos to complex structures gone awry, I’m sure you have also
found your share of errors. However, it’s the errors lying underneath the veneer of
your documents that should concern you the most—the errors that you do not see
but will affect a handful of visitors to your site. It is important to constantly test and
validate your code to help alleviate these problems.

✦ ✦ ✦

P1: JYS

WY022-33 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

554

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

3434C H A P T E R

Web Development
Software ✦ ✦ ✦ ✦

In This Chapter

Text-Oriented Editors

WYSIWYG HTML Editors

Other Tools

✦ ✦ ✦ ✦

As you have seen throughout this book, Web
development is an area rich in features. The Web has

come a long way from its early beginnings as a text-only
medium. As online documents get more complex, the tools to
create them become more powerful. Although you can still
create large, feature-rich sites using a simple text editor, using
more complex and powerful tools can make the task much
easier. This chapter introduces several popular tools that can
help you create the best online documents possible.

Note This chapter provides several recommendations on tools
you should consider for online document development.
However, the recommendations are just that, recom-
mendations. Only you can decide what tools will work
best for you. Luckily, most of the tools covered in this
chapter have demo versions you can download and try
out for a limited time. Be sure to visit the Web sites refer-
enced for each tool to get more information and perhaps
even download a trial version.

Text-Oriented Editors
Text-oriented editors have been around since the dawn of the
cathode-ray tube (CRT, the technology used in most computer
display screens). However, today’s editors can be quite
powerful and feature-rich, doing much more than simply
allowing you to create text documents. This section covers the
latest in text-oriented editing.

Simple text editors
Simple text editors—such as Windows Notepad or vi on
UNIX/Linux—provide an invaluable service. They allow you,
without intervening features, to easily edit text-based
documents. As such, they are a logical addition to your Web
development toolkit.

555

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

556 Part V ✦ Testing, Publishing, and Maintaining Your Site

However, although you could create an entire site with one of these simple tools,
there are better tools for actual creation.

Smart text editors
Smart text editors are editors that understand what you are editing and attempt
to help in various ways. For example, Linux users should look into vim or Emacs
and enable syntax highlighting when editing documents with embedded code
(HTML, CSS, JavaScript, and so on). Figure 34-1 shows an example of a large PHP file
in vim.

Figure 34-1: Syntax highlighting can help you avoid simple errors.

Although it may be hard to tell in the black and white Figure, various elements have
been colorized to show where they begin or end. Using methods like this the editor
keeps you abreast of what elements have been opened and which have been closed.
For example, the editor may highlight quoted text in green. If most of the document
turns green, it is likely that you forgot to close a quote somewhere. These editors
also offer features such as auto-indenting, which can help you keep your documents
structured.

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

557Chapter 34 ✦ Web Development Software

Windows users have a few choices for smart editors, as well. My favorite is Textpad,
which uses document class templates to understand the syntax of almost any coded
document. TextPad is loaded with standard editor features. You can find TextPad on
the Internet at www.textpad.com.

HTML-specific editors
There are a few non-WYSIWYG editors that understand HTML and provide specific
features to help you code. However, Homesite (now owned by Macromedia) has
always stood out from the crowd.

Homesite provides the next level of functionality for HTML editing with special tools
for entering tags and their parameters, codes for entities, and more. Figure 34-2
shows the Homesite main interface, and Figure 34-3 shows a step in the wizard for
creating a <table> tag.

Figure 34-2: Macromedia’s Homesite includes several features to make HTML editing a
breeze.

Homesite includes a host of other features designed to make your coding easier. Visit
Macromedia’s Web site for more information (www.macromedia.com/software
/homesite/).

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

558 Part V ✦ Testing, Publishing, and Maintaining Your Site

Figure 34-3: Homesite includes wizards for building more
complex tags such as tables.

WYSIWYG HTML Editors
Just as what you see is what you get (WYSIWYG) editors revolutionized word
processing, WYSIWYG HTML editors have revolutionized Web publishing. Using such
tools designers can design their pages visually and let the tools create the
underlying HTML code. This section highlights the three most popular visual tools
available for WYSIWYG editing.

Microsoft FrontPage
FrontPage is Microsoft’s Web editing tool. Although most of the Microsoft Office suite
of programs can output HTML, FrontPage allows you to manage documents at the
site level—creating a template design, navigation controls between pages, and more.
Figure 34-4 shows the main interface of FrontPage, and Figure 34-5 shows the Web
(site) view.

Earlier versions of FrontPage were known for creating non-standard HTML and
catering to Microsoft Web extensions. Current versions are much better about
adhering to standard code, though the program is still more feature-rich when used
with other Microsoft technologies. Still, FrontPage makes a solid, economical choice
for a WYSIWYG editor.

Note FrontPage is much more powerful when teamed with a Web server running
Microsoft’s FrontPage extensions. If you use FrontPage, it is worth your time
investigating running the extensions on your Web server.

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

559Chapter 34 ✦ Web Development Software

Figure 34-4: Microsoft FrontPage is a visual editor for Web documents.

Figure 34-5: FrontPage enables you to edit related documents as a site.

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

560 Part V ✦ Testing, Publishing, and Maintaining Your Site

You can learn more about FrontPage and download an evaluation copy from
Microsoft’s FrontPage site, at www.microsoft.com/office/frontpage/
prodinfo/default.mspx.

NetObjects Fusion
NetObjects Fusion is another site-level design tool that offers WYSIWYG editing. The
advantages of using NetObjects Fusion include easy management of entire sites,
pixel-accurate designs, and a plethora of features that make publishing on the Web a
breeze. Such features include the following:

✦ Advanced scripting support

✦ Automatic e-commerce catalog building

✦ Enhanced photo gallery support

✦ Hooks for including external pages and code

✦ Incremental publishing capability

✦ Flexible meta tag management

✦ Powerful, full-site management tools

Note NetObjects Fusion should not be confused with Macromedia’s ColdFusion prod-
uct. The former is owned by Website Pros and is a WYSIWYG Web editor. The
latter is owned by Macromedia and is a database integration tool for the Web.

Figure 34-6 shows the page design view of NetObjects, and Figure 34-7 shows the site
layout view. In the latter you can easily create, delete, and move pages around your
site—NetObjects Fusion will automatically adjust all links, navigation bars, and other
references between the pages.

Besides the visual tools, NetObjects Fusion provides many ways to customize the
actual code behind the documents, as well. You can learn more about NetObjects
Fusion on the Web at www.netobjects.com.

Macromedia Dreamweaver
The king of all Web document editing programs is currently Macromedia
Dreamweaver. Combining the best visual and nonvisual editing tools with several
development features, Dreamweaver is the most feature-rich program covered here.

Dreamweaver provides as much or as little automation during creation of new
documents as you would like. You can create the entire site in text mode, editing
HTML code directly. Alternatively, you can use the WYSIWYG design editor to create
your documents visually. Figure 34-8 shows Dreamweaver’s main editing window,
splitting the code and visual design windows. Figure 34-9 shows the results of the
Target Browser Check feature, which enables you to test your code against the
compatibility of specific browsers.

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

561Chapter 34 ✦ Web Development Software

Figure 34-6: NetObjects Fusion provides a good framework for designing pages visually.

However, the feature-rich nature of Dreamweaver comes at a price—it is easily the
most complicated program covered in this chapter. The learning curve for
Dreamweaver can be quite steep, even to create simple sites. However, once you get
used to Dreamweaver, it is easy to appreciate its powerful features.

You can learn more about Dreamweaver at www.macromedia.com/software/
dreamweaver/.

Other Tools
Tools to create HTML are only half of the equation when creating online documents.
You must also have tools available to do graphic editing and supply any multimedia
content you use. This section covers a handful of additional tools necessary to
create rich, online content.

Graphic editors
Year’s ago text-only Web pages were the norm. However, today’s Web is a visual feast,
and your documents must incorporate as much imagery as possible to get noticed.

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

562 Part V ✦ Testing, Publishing, and Maintaining Your Site

Figure 34-7: At the site level, NetObjects Fusion gives you complete control over your
site’s organization while behind the scenes it adjusts links between pages automatically.

Almost every operating system comes with at least one graphic editor. However, the
capabilities of the included editors are quite limited and should not be relied upon
for much—the same goes for graphics programs bundled with many scanners,
printers, and other graphics peripherals.

In a perfect world you should consider using both a vector-based and a raster-based
editing program. Vector-based editors use shapes and lines to create images, while
raster-based editors use individual dots (pixels) to create images. Vector-based
images are traditionally more exact and clear, but raster-based images allow for more
visually striking effects. The best results can be obtained using both—use the vector
tools to create solid imagery and raster tools for special effects and finishing work.

Note Only raster-based images (specifically JPEG, GIF, and PNG images) are sup-
ported by common user agents.

Vector-based editing tools include the following:

✦ Adobe Illustrator (www.adobe.com/products/illustrator/main.html)

✦ Macromedia Freehand (www.macromedia.com/software/freehand/)

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

Figure 34-8: Dreamweaver’s main editing window can show the code view, the design
(visual) view, or both.

Figure 34-9: The Target Browser Check feature checks your code against the compatibility
of specific browsers.

563

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

564 Part V ✦ Testing, Publishing, and Maintaining Your Site

Raster-based editing tools include the following:

✦ Paint Shop Pro (www.jasc.com/products/paintshoppro)

✦ Adobe Photoshop (www.adobe.com/products/photoshop/main.html)

✦ Macromedia Fireworks (www.macromedia.com/software/fireworks/)

✦ The GIMP (www.gimp.org/)

Note Paint Shop Pro actually supports both raster and vector editing.

Note that these tools can be quite expensive—the latest version of Photoshop is
several hundred dollars. Of course, Photoshop is without equal for raster editing; no
other tool provides as much power and extensibility. Paint Shop Pro is quite capable
at a hundred dollars, and The GIMP provides suitable editing without a price tag (it’s
Open Source).

Figure 34-10: Flash can be used for simple or complex animations.

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

565Chapter 34 ✦ Web Development Software

Tip Fledgling Web designers needing a handful of tools should look into Macro-
media’s Studio product line. The Studio series provides Dreamweaver, Flash,
Freehand, and Fireworks in one comprehensive package. Learn more at:
www.macromedia.com/software/studio/.

Macromedia Flash
Macromedia Flash is the latest staple for simple multimedia on the Web. Flash
provides an animation platform with plenty of power via ActionScript, a flexible
scripting language, and can be used for simple buttons or full-blown product demos.

Although the interface is a bit idiosyncratic, Flash is an indispensable tool for online
animation. Figure 34-10 shows a Flash document in development.

The main draw of Flash is two-fold:

✦ It has become a standard on the Web that users expect.

✦ Flash can provide even complex animations in a small package (small file size).

As such, Flash is another tool you should consider adding to your collection. You
can learn more about Flash at www.macromedia.com/software/flash/.

Summary
This chapter introduced several essential and powerful tools you can use to make
online document creation and deployment a breeze. You saw how text editor
features can help with the tedium of coding and how full-blown Web design packages
can ease the creation of even large sites. Although acquiring the right tools may
seem costly, consider the time you will save by using them.

✦ ✦ ✦

P1: KTX

WY022-34 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:11

566

P1: KTX

WY022-35 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:12

3535C H A P T E R

Choosing a
Service Provider ✦ ✦ ✦ ✦

In This Chapter

Web Publishing Services
Provided by ISPs

Estimating your Costs

Support and Service

Bandwidth and Scalability

Contracts

Domain Names

✦ ✦ ✦ ✦

Now that you’re a seasoned developer, how do you
actually find an appropriate place to publish your Web

site? The answer depends on a number of different factors. If
you’re a family member trying to post some family business or
personal information, you may want to just use the services
your Internet Service Provider (ISP) offers, because they
usually offer free personal Web site hosting with their Internet
access plans. If you’re a small business owner, you’ll want
something more robust, and you’ll want to consider acquiring
a domain name and a company that can host it on a computer
that shares space with other small businesses. If you’re a large
operation or hope to become one, you probably want a
dedicated computer of your own for your Web site.

This chapter takes a look at the options available to you.

Types of Service Providers
There are four general types of Web hosting service plans:

✦ Web publishing services provided by ISPs, or personal Web
sites

✦ Shared hosting services

✦ Dedicated hosting plans

✦ Co-location

One final option is to simply set up your own computer and host
the site yourself. You can do this if you have a static IP address.
A DSL connection is usually fast enough to serve pages fairly
quickly, as long as your traffic is reasonable (once you start
getting into the 100,000 hits per day range, things could become
tricky). Setting up your computer to be a Web server opens
you up to a lot of security issues and can be a time-consuming
task, but if you have a spare computer and want to
learn the ins and outs of Web hosting, there isn’t a better way.

567

P1: KTX

WY022-35 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:12

568 Part V ✦ Testing, Publishing, and Maintaining Your Site

Web publishing services provided by ISPs
A Web publishing service or personal Web hosting service is a very basic Web hosting
service that is generally part of the contract agreement with your ISP. To take a
real-world example, if you have an Internet access account with AOL or Earthlink, you
also get some Web space as a part of the agreement. You can use this kind of account
for running a business, but because domain name hosting is usually not included,
it’s not a great choice for serious online business transactions. A typical Web
hosting arrangement with an ISP will include anywhere from 1MB to 10MB of space.

Generally, a Web site you have using such a sight will have a URL such as
http://myisp.net/∼chwhite. Most people find these kinds of hosting services
sufficient for personal Web sites, but not for businesses.

Using shared hosting services
Shared hosting services are somewhat akin to renting space on a machine that is
shared among several customers. This machine’s Web server dedicates part of its
directory structure to your account, and the host provider makes sure that the
domain name you secure, such as myserioussite.com, resolves to the directory
paths you have secured on the host machine.

Shared hosting sites generally feature significantly more disk space and bandwidth
than a personal hosting service. Most shared hosting services also offer better
support services, which generally aren’t available on personal Web hosting service
plans. This can include maintenance of e-mail accounts linked to the site domain
name and an offering of generic server scripts and instructions on how to use them.
Your data files are stored on a Web server that is shared by other Web sites, which
can affect your Web site’s performance if the traffic generated by other sites on the
server is high. Many kinds of plans are available on any operating system. You can
choose from among Apache-based Web hosting plans using Linux or UNIX operating
systems, and from Microsoft-based operating systems and Web servers.

You can also choose plans that include database access. Linux-based services
usually offer mySQL, and Windows-based services offer SQL Server. The databases
are also shared. You are usually given read/write rights to one database from within
a pretty large collection of databases. If one of the customers has extremely high
traffic, this can slow the database-driven part of your Web site down, because
everyone is competing for the same memory allocation.

Any shared hosting service worth signing up for will set your site up for you and pro-
vide you with simple, easy-to-follow instructions on how to upload files to the server.

Costs range anywhere from free to about $69.00 per month.

Using dedicated hosting
A dedicated host is a service provider that dedicates a computer to your Web site.
No other Web sites share your computer. A dedicated communications line with a
minimum bandwidth allotment may also be provided. The range of services made

P1: KTX

WY022-35 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:12

569Chapter 35 ✦ Choosing a Service Provider

available by the hosting company to you can vary widely. Some will simply set up
your box with a Web site already running, but they’ll also let you set up the server
yourself if you prefer. Because setting up a Web server can be a fairly complex task,
you should only undertake it if you are comfortable with doing so. Some people
prefer to just have the hosting company set the site up for them, and others like to
be responsible for all aspects of their Web site’s configuration.

Some dedicated host providers also offer technical services, including but not
limited to the following:

✦ Script development

✦ Security development

✦ E-mail maintenance

Using co-location services
Co-location, known affectionately as co-lo, is the most expensive and most advanced
kind of hosting service available. You buy your own server and store it at a facility
that has access to a high-speed hub. You can choose between using
telecommunication lines provided by the hosting facility and contracting directly
with a telecommunications company for outside lines. Co-lo facilities maintain
Network Access Points (NAPs) and usually offer extended power backup capability,
climate control, and around-the-clock technical support.

Estimating Your Costs
To estimate your costs on hosting plans, you first have to decide which of the
preceding plan types you wish to acquire. Then you should go to a Web site such as
www.thelist.com, which provides a comprehensive list of each type of hosting
service in each category. You should begin this process before you even start
working on your Web site, because you’ll want to incorporate these costs into your
budget. Some of these costs may be absorbed by your development budget, because
you may find yourself wanting to take advantage of some hosting services’
development services.

Support and Service
The kinds and types of services that hosting providers offer can vary immensely.
The services you choose will have a direct impact on how much money you spend.

For example, the following is a list of services you can choose from
www.thelist.com when selecting a dedicated hosting services provider:

✦ CGI forms—A service that creates, for example, forms that mail results to you.

✦ Design services—Some providers offer graphic and Web design services.

✦ Real Server—A special server that is configured especially for multimedia
streaming on the Real platform.

P1: KTX

WY022-35 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:12

570 Part V ✦ Testing, Publishing, and Maintaining Your Site

✦ CGI Access—Simply means that a CGI directory is made available on a UNIX or
Linux server so that you can create Perl-based executable scripts for more
dynamic server-side pages.

✦ NT servers or UNIX servers—You’ll want to make this basic choice because
development on these platforms can be quite different when working with
backend applications.

✦ MS FrontPage—Some ISPs offer Microsoft FrontPage extensions, which are
extensions installed on the Web host that are configured to communicate with
Microsoft FrontPage markup.

✦ Database support—Expect to add between 20 and 50 U.S. dollars for database
support.

✦ Chat and/or message board software—This option is configured by the hosting
provider to allow the creation of chat sites or message board forums.

✦ Credit card processing—Many host providers provide Secure Sockets Layer
(SSL) credit card processing services.

✦ Access traffic logs and traffic analysis reports—These are pretty basic and a
must-have in any decent plan.

✦ Unique DNS hosting, DNS parking—Can include the management of DNS subdo-
mains so that you can, for example, have a main site named www.mysite.com
and have a subdomain named http://checkout.mysite.com, where the checkout
is handled by a host provider’s DNS configuration to resolve to your site.

✦ E-mail auto responder, forwarding, POP SMTP processing, and list processing—You
can take advantage of numerous e-mail processing services a host provider may
offer. At the most basic level, a host provider should provide you with e-mail
POP and SMTP accounts that resolve to your domain name (ed@mysite.com)
and offer multiple mailboxes. Most providers now also provide List Processing
services so you can distribute e-mail-based newsletters and other kinds of
mass mailings (but a good host provider will prevent you from sending spam).

✦ Shell telnet access—Telnet is a command-line (usually) utility that gives you
access to your Web site’s configuration tables and allows you to edit your
HTML files remotely.

✦ Redundant Internet—Allows you to actually use more than one host provider in
case one of the provider’s servers goes down.

✦ Money-back guarantee and toll-free phone support—Self-explanatory.

✦ Daily site backups—Prevent you from losing data in case of a system crash.

✦ Adult content allowed—Many service providers do not allow adult content, and
if you’re compelled to go that route, it’s best to work with a provider that
specializes in adult content.

✦ 24-Hour Support—This is not necessarily a given with some of the cheaper
plans, but you’ll find it handy when there’s an outage.

✦ VPN Support—Provides support for Virtual Private Networks
so that you can connect to another desktop from your own computer.

P1: KTX

WY022-35 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:12

571Chapter 35 ✦ Choosing a Service Provider

Bandwidth and Scalability
One of your chief considerations in choosing a host provider is whether or not the
host provider can handle the traffic demands of your site. If you have a small
business and aren’t expecting much traffic, particularly if your business is intended
to stay small (maybe you run a small flower shop or some other local business and
you just want to post a Web site), you can probably get by with a shared hosting
plan. You can probably get by with a shared hosting plan if you have expansion
plans, too. In that case, you need to be ready for a sudden spike in traffic. If you can
afford a dedicated site, you should aim for that if you have big plans. If you can’t
afford it, make sure your site is scalable.

Scalability means that you build your site so that it can rapidly absorb growth
without making either your users or you suffer. One way to accomplish this is to be
sure you use commonly known Web application environments, and be certain you
will want to stick with them as your business grows. It’s difficult and time consuming
to port Active Server Pages (ASP) pages to PHP (PHP is a recursive acronym that
stands for Hypertext Preprocessor) or Java Server Pages (JSP), and vice versa.
Simple HTML is much easier to port, of course, but you want to maintain a good,
solid organizational structure for your directories and files.

You must also take into consideration the location of your audience. If you’re
expecting a truly international audience, you want to be prepared to move to a
hosting service that has ready access to a Network Access Point (NAP) on the
Internet. This is also called a backbone. These are like traffic hubs on the Internet. If
your site is on a backbone or has direct access to one, the site’s performance will be
better than if it doesn’t, especially if you have international visitors.

Contracts
You can sign up with a Web hosting company for any amount of time, but pricing is
usually structured so that the longer you sign up for, the better your bargain is.
Typical contracts are one, three, and five years. Many Web hosting companies offer
month-to-month plans, but these are usually limited to shared hosting plans.

Domain Names
Every computer that connects to the Internet is given a unique identifier called an
Internet Protocol (IP) address. IP addressing is easily understood if you liken it to
your phone number, which, when dialed, always manages to connect to your phone.
You’ll come in contact with two kinds of IP addresses when your ISP sets you up on
the Internet. A static IP address is a permanent IP address that you always keep.
More commonly, you’ll get a dynamic IP address from your ISP. This means that the
ISP assigns you a different IP address every time you log on. To host a Web site, you
need a static IP address.

P1: KTX

WY022-35 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:12

572 Part V ✦ Testing, Publishing, and Maintaining Your Site

The Domain Name System (DNS) is used to map a name to a static IP address.
Computers use these to communicate with themselves using a name (such as
www.tumeric.net). When a computer requests a URL, the DNS translates that
name into the corresponding IP address.

When you sign up for a Web site, one of the first things you’ll have to do is determine
a domain name for your site. Then, you register your domain name with a domain
registrar.

Domain registrars register your domain name and hook you up to the Internet by
making sure your domain name is added to a huge database of domain names that
are mapped to specific IP addresses.

Note The organization that governs this process is called The Internet Corporation
for Assigned Names and Numbers (ICANN). They maintain a list of registrars at
www.icann.org/registrars/accredited-list.html.

Generally, the process works like this:

1. You visit one of the accredited registrars.

2. You use the registrar’s site to check and see if the domain name you wish to
use is unclaimed. For example, if you wanted to start a Web site using the name
ebay.com, you’d find that someone is already using that domain name. Most
registrar sites maintain an easy-to-use search interface that allows you to check
if the domain you want is in use, and helps you find alternative names if it is.

3. After you have successfully chosen a name, you submit it to the ICANN through
the registrar’s site.

4. The registrar then usually “parks” your site by assigning you an IP address on
one of its servers for a small fee. You can also provide an IP address, which
your hosting company should have given you when you signed up with them.

5. Have your credit card handy, because next you’ll be asked to pay for the
service provided by the registrar.

6. The registrar then maps the domain name to either the IP address you provided
or the IP address on its server that it used to park your domain name. The
mapping is then is forwarded to ICANN, and it goes into a massive database
containing all the world’s IP addresses and corresponding domain names.

Tip Some Web hosting companies actually take care of this process for you, so you
may be able to skip these steps. Some registrars also act as hosting services, and
will try to sell you a hosting plan. Keep in mind that you’re under no obligation
to host your site using the services of the registrar you use to register your site.

Summary
Your choice of a Web hosting plan is directly related to what you want to achieve. If
you have small plans or have a small business, there is no need to go to the expense
of a dedicated machine, which is always going to cost more than a shared service,

P1: KTX

WY022-35 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:12

573Chapter 35 ✦ Choosing a Service Provider

whether you host it yourself, use a co-location service, or use a Web hosting service
with a dedicated hosting plan.

One thing to keep in mind is that Web hosting services are incredibly competitive.
It’s a buyer’s market. If, after you’ve chosen a Web hosting option, you’re unhappy
with your Web hosting service, get another one.

The next chapter explains how to actually work with your host provider to upload
files and build your site.

✦ ✦ ✦

P1: KTX

WY022-35 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 15:12

574

P1: KTX

WY022-36 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:12

3636C H A P T E R

Uploading Your
Site with FTP ✦ ✦ ✦ ✦

In This Chapter

Introducing FTP

FTP Clients

Principles of Web Server
File Organization

✦ ✦ ✦ ✦

Now that you have documents to deploy on the Web, how
do you actually move the files to the Web server? If you

don’t have an automated publishing tool (as covered in
Chapter 34), you will probably use File Transfer Protocol
(FTP). This chapter provides an introduction to FTP and
explains how you can use it to deploy your files to a server.

Introducing FTP
File Transfer Protocol was created to easily move files between
systems on the Internet. Dating back to the very early days of
TCP/IP and the Internet, FTP hasn’t evolved much in the years
it has been in service. FTP encapsulates several functions to
transfer files, view files on both sides of the connection, and
more.

FTP servers use TCP/IP ports 20 and 21. These ports are
unique to the FTP service, allowing a server to run a Web
server (port 80), an FTP server (ports 20 and 21), as well as
other services at the same time.

The FTP server sits patiently waiting for a client to request a
connection on port 21. The client opens an unprivileged port
greater than port 1024 and requests a connection from the
server. After the connection is authenticated the client can
initiate commands. When data is transferred between the
client and server, the server initiates the connection, using
port 20—the client uses one port higher than the port used for
commands. Figure 36-1 shows a graphical representation of
the connection and port arrangement.

One problem with the traditional FTP process is that the
server must initiate the data connection. This requires that the
server be able to access the requisite port on the client to
initiate the connection. If the client is using a firewall, this
could present a problem, as the firewall might prevent

575

P1: KTX

WY022-36 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:12

576 Part V ✦ Testing, Publishing, and Maintaining Your Site

Client

1026 1027

21 20

FTP
Server

CommandCommand

DataData

Figure 36-1: A typical FTP connection.

the server from accessing the correct port. Because the client port isn’t consistent,
configuring the firewall to allow access is problematic.

To solve this problem, a new mode of FTP was created. Passive mode (typically
referred to as PASV) allows the client to initiate both connections.

Note If you are behind a firewall, you should always try to use passive mode.

FTP Clients
The first FTP clients were text-only applications. The connection is initiated and data
is transferred using textual commands. The latest FTP clients employ the same
graphical interface as most modern operating systems, using standard file
manager-like interfaces to accomplish FTP operations.

Note Graphical FTP clients use the same methods and commands to communicate
with the FTP server, but typically hide the communication from the user.

The following listing shows a typical dialog using a textual FTP client. The client
initiates a connection, and the user logs in, gets a directory listing on the server, and

P1: KTX

WY022-36 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:12

577Chapter 36 ✦ Uploading Your Site with FTP

then transfers a file. For clarity, the commands entered by the user are in boldface:

$ ftp ftp.example.com
Connected to ftp.example.com.
220 ftp.example.com FTP server ready.
Name: sschafer
331 Password required for sschafer.
Password: ——————
230 User sschafer logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd www
250 CWD command successful.
ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for file list.
drwxr-xr-x 2 sschafer sschafer 4096 Jan 20 16:45 Products
drwxr-xr-x 2 sschafer sschafer 4096 Jan 16 18:41 About
drwxr-xr-x 2 sschafer sschafer 4096 Jan 6 15:16 Images
-rwxr-xr-x 1 sschafer sschafer 1571 Jan 12 17:58 index.html
drwxr-xr-x 2 sschafer sschafer 4096 Jan 15 04:16 Scripts
226-Transfer complete.
226 Quotas off
ftp> put index.html
local: index.html remote: index.html
200 PORT command successful.
150 Opening BINARY mode data connection for index.html.
226 Transfer complete.
2095 bytes sent in 0.3 secs (3.6 kB/s)
ftp> close
221 Goodbye.
ftp> quit
$

Figure 36-2 shows a graphical FTP client accessing the same site. The client shows
the file listing of the remote server. To transfer a file, the user simply drags the file
into or out of the client window. Notice the underlying FTP commands and output in
the lower-right corner of the application. Some graphical clients allow you to take
manual control, entering spurious commands as required.

Table 36-1 shows a list of common FTP commands.

ASCII versus Binary Transfers

FTP servers support two modes of file transfers: binary and ASCII. Binary mode transfers are
used when the content of the file contains higher-byte characters—characters not generally
available on the keyboard. ASCII transfers are used when the content contains only lower-
byte characters, such as text files.

Continued

P1: KTX

WY022-36 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:12

578 Part V ✦ Testing, Publishing, and Maintaining Your Site

Continued

Some FTP servers will automatically switch file modes as required, but most FTP servers
require that the mode be explicitly changed. Some FTP clients will also automatically change
the mode depending on the file being transferred. As a general rule, always double-check
the mode being used before transferring files.

Most files can be transferred in binary mode. However, some ASCII files don’t respond well to
being transferred in binary format. For example, Perl scripts transferred in binary format will
generally have their line breaks corrupted, creating problems for the Perl interpreter when
the script is run. You might consider enabling ASCII mode when transferring text files, just in
case.

Figure 36-2: Graphical FTP clients use graphical user interface methods to transfer files.

Notable FTP Clients
Most operating systems include a textual FTP client, aptly named FTP. To use the
client, type ftp at a command prompt. However, not all textual clients use the same
commands or have the same options. Most clients support a help command—type
help followed by the name of the command you need help with. Unfortunately, the

P1: KTX

WY022-36 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:12

579Chapter 36 ✦ Uploading Your Site with FTP

Table 36-1
Common FTP Commands

Command Syntax Use

Ascii Ascii Switch to ASCII mode for file transfers

Binary Binary Switch to binary mode for file transfers

Cd cd directory name Change the remote directory

Close Close Close the current connection to the server (log off)

Get get filename Download a file from the server

Lcd lcd directory name Change the directory on the local machine

Ls ls [file spec] List files on the server (in the current directory)

Mget mget file spec Download multiple files from the server

Mkdir mkdir directory name Create a new directory on the server

Mput mput file spec Upload multiple files to the server

Open open server address Open a new connection to the server (prompt for
username and password)

Pasv Pasv Enter passive mode

Put put filename Upload a file to the server

Quit Quit Exit the client

Rmdir rmdir directory name Remove a directory on the server

standard help output simply tells you what the command does, not the syntax or
options.

Tip There are many ways to place files on the Web server. The easiest, of course, is
to create and edit the files directly on the server. If you are using a development
product (such as those discussed in Chapter 34), you can use its features to
upload your content (typically such programs use FTP to transfer files).

Quite a few graphical FTP clients are available—from $100 commercial solutions to
shareware solutions. The following list is a subset of available clients:

✦ Windows clients

• FTP Voyager—This shareware client allows you to transfer files between
servers, resume aborted downloads, and more. It also has a scheduler
that can automatically transfer files as set times.

• CoffeeCup FTP client—This freeware client contains the usual options for
graphical clients.

P1: KTX

WY022-36 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:12

580 Part V ✦ Testing, Publishing, and Maintaining Your Site

• CuteFTP—This popular Shareware client contains a number of features to
make FTP transfers easier. It provides a download queue, macro
recording, and a scheduler to automate file transfers.

• WS-FTP—This FTP client has the typical features found in other
commercial solutions, but is free for certain individuals and
organizations.

• Internet Neighborhood Pro—This commercial client from KnoWare, Inc.
allows an FTP connection to function as a network drive mapping.

✦ Linux

• Desktop specific clients—Both K Desktop Environment (KDE) and Gnome
include graphical clients specific to the desktop environment.

• Additional Open Source solutions—Many graphical FTP clients are
available for Linux. Each distribution contains several you can choose
from. Even more are available from various online sources.

Tip Your Web browser can be used as a graphical client. Simply specify the FTP
protocol (ftp:) and the server address, as in the following example:

ftp://ftp.example.com

If the server requires authentication, you will be prompted for your login infor-
mation. If you want to create a shortcut to a site with authentication, you can
embed the login information into the URL, as shown in this example:

ftp://username:password@ftp.example.com

Principles of Web Server File Organization
Files on a Web server typically follow a tiered organization—placing subordinate
pages in subdirectories. Furthermore, supplemental files—scripts, images, and so
on—are typically placed in separate directories. Figure 36-3 shows the organizational
structure of a typical Web site.

Note There really isn’t anything typical on the Web. As such, you should use a file and
directory structure that suits your needs. The examples in this chapter are just
that, examples. The important thing is that you use some logical organizational
structure in your files and directories, and be consistent.

If your site is small enough, it can be contained in one single directory. A site with
many files, however, should be organized within several directories. Use your FTP
client’s features to create subdirectories and transfer your files into the directories
accordingly.

P1: KTX

WY022-36 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:12

581Chapter 36 ✦ Uploading Your Site with FTP

Root of site
Main/home page/document

Images
All images for the site

Scripts
External scripts

Products
Documents for the Products section

About
Documents for the About section

Contact
Documents for the Contact section

Figure 36-3: The typical organization of a Web site.

Cross-
Reference

More information on organizing your content can be found in Chapter 40.

Summary
File Transfer Protocol (FTP) has been around for ages and is still the most used tool
to transfer files on the Internet. This chapter introduced you to the technology
behind FTP as well as some of the clients available for your use.

✦ ✦ ✦

P1: KTX

WY022-36 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:12

582

P1: JYS

WY022-37 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:16

3737C H A P T E R

Publicizing Your
Site and Building
Your Audience

✦ ✦ ✦ ✦

In This Chapter

Soliciting Links

Listing your Site with
Search Engines

Facilitating Search Engine
Access

Predicting Users’ Search
Keywords and Enhancing
Search Retrieval

Strategies for Retaining
Visitors On-Site

✦ ✦ ✦ ✦

Now that you’ve developed your site and found the
appropriate place to publish it, how do you get people

to find you?

You can use a number of techniques. Some of them start at the
beginning, with your Web design efforts, because how you
name your pages and what you include in your content can
affect your page rankings in search engines.

You can also play a more direct role in search engine results
by submitting your Web site’s URLs to search engines and
directories.

This chapter explores these options and demonstrates how
some careful Web site planning can enhance your Web site’s
publicity.

Soliciting Links
One tried and true method is to make sure your site gets
linked to by other sites. Naturally, the bigger the linking site,
the better your results. When the Web was in its formative
years, one of the best ways to grow a site was to get included
in a “cool links” site. This same general concept still works,
although such “cool links” sites now are usually more
segmented because of the information glut on the Web.
Although it takes a bit of effort, link building is still an
important way to build awareness of your site. Acquiring a
stable of sites that link to yours will also dramatically
improve your page rankings in search engines such as
Google.

583

P1: JYS

WY022-37 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:16

584 Part V ✦ Testing, Publishing, and Maintaining Your Site

Using link exchanges
One of the oldest methods for soliciting links is to exchange them with other Web
sites. This usually takes the form of an informal arrangement between two
Webmasters that is initiated when one says to another, “I’ll link to your site if you’ll
link to mine,” or simply, “Do you mind if I link to your site?” In the case of the latter,
the hope upon asking a question like that is that the link will be reciprocated.

You can also use the services of banner exchange programs. These are link
exchanges that allow you to place a banner ad on a network of sites. In exchange,
you place a banner on your own site displaying the banner ad of sites that are
members of the link exchange. The banner ads from these other sites are randomly
generated as far as you’re concerned—you won’t know when or what site is going to
be advertised on your site, so you have to accommodate that fact in your design.
Most link exchange programs require that the banner be visible on the screen
without a scroll down by the user.

Newsgroups
Some newsgroups are geared specifically for announcing new Web sites, and others
are dedicated to topics that may be of interest to viewers of your site. You need to be
extremely sensitive to newsgroup policies if you use a newsgroup to announce your
site, and be sure to check out the following:

1. Carefully scour the newsgroup to see what types of posts are acceptable.

2. Seek out the group’s FAQ or any other document that describes the group’s
policy on announcements and/or advertising.

3. Include ANNC: or ADV: in your subject header, before anything else.

4. Keep the message very short. Be sure not to post advertisements to any group
unless such posts are specifically allowed by that group.

Caution Don’t, under any circumstances, post the same message to multiple groups.
This is called spamming, and even if you don’t have a problem with this kind
of activity personally, your ISP does. If they find out you’re doing it, they will
probably terminate your account.

Listing Your Site with Search Engines
Submitting your URL to search engines has been a popular way to increase search
engine optimization for about as long as the Web has been in existence. You can use
submission agents to submit your sites to search engines, or you can do it yourself.
Search engines index sites according to different criteria, so do your homework
about each service before submitting your URL to the various search engines if
you’re doing it yourself. You can usually find a submission agent such as
www.submit-it.com to do it for you for as little as $50 (U.S.). Submission agents

P1: JYS

WY022-37 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:16

585Chapter 37 ✦ Publicizing Your Site and Building Your Audience

generally take the form of Web interfaces that ask you to fill out some
comprehensive forms that help describe the following about your Web site:

✦ The name of your site

✦ The URL of your site

✦ The title of your home page

✦ Your Web site’s focus

✦ Your audience demographics

Then, they’ll walk you through a series of potential sites to which you could submit
your page based on the criteria you’ve selected. This is a fast way for submitting to
as many as 100 search engines without requiring a visit to each one, although the
submission process is still somewhat lengthy because once your “global” form is
filled out, some sites will demand more information. You can expect to take between
one to two hours submitting your site this way.

Some search engines, including Yahoo, charge a fee for submitting URLs to their
directories, but keep in mind that results from the Yahoo directory are not the same
as results from the Yahoo search engine, which is driven by Google. Yahoo maintains
its own, separate, human-edited directory of sites. To be included in that directory,
you must pay a fee and submit your URL to Yahoo.

If you submit your site to a large number of individual search engines yourself, get
help. You can get a good overview on how to submit to individual search engines by
visiting www.searchenginewatch.com/links/article.php/2156221. This
Web site lists the major search directories, and how to submit to them.

You can also submit your site specifically to Google to facilitate that search engine’s
crawler, which is robot software that crawls the Web hunting for sites to include in
the Google search database. Find this at www.google.com/addurl.html.

Facilitating Search Engine Access
You can also do a number of things to facilitate search engine access when you
design your Web site, and these things are possibly even more important than going
through the trouble of submitting your sites to search engines.

In fact, the whole concept of facilitating search engine access is an art called search
engine optimization, and, if successfully deployed, can significantly enhance your
page rankings in search engines such as Google and Overture.

Getting links from other sites
In the section Soliciting Links, you saw that there are ways to get links from other
sources without spending a lot of money. The best reason for getting those links is
that many search engines crawl the Web for links and tally up the results. If your site

P1: JYS

WY022-37 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:16

586 Part V ✦ Testing, Publishing, and Maintaining Your Site

has many other sites pointing to it, this will enhance your page ranking in search
engines. If you aren’t having any luck getting other sites to link to you, consider
building the best set of links you can find on the Web in your subject area. You’ll be
surprised how quickly other sites begin to link to yours, and a chain of events will
occur that may lead you to a very high page ranking within just a couple of months.

Encouraging bookmarks
If you make a note on your page reminding visitors to bookmark your site if they like
it, some of them actually will; and, eventually, some of them will add your link to their
site. Over time, this kind of activity can result in a number of your links appearing on
the Web, because people like to share links. Even Joe Schmoe’s personal Web site
can help your site if he includes links to your site, because search engines pay
attention to who is linking to your site, so the more sites that do, the better.

Keeping your site current
If your site’s content is not fresh, it’s stale, and nobody likes stale content. Even if
you have built a fantastic Web site full of beautiful design elements and intriguing
content, users will eventually stop visiting if you don’t keep the content fresh. The
more compelling and timely your content is, the more often people will return and
link to your site, thus improving page ranking with search engines.

Predicting users’ search keywords and enhancing
search retrieval
Search engines look for a common theme throughout a Web page, so it’s important
that the title of your page as represented in the title element be relevant to the
subject matter of your page, and that the keywords listed in your meta tags reflect
the subject and title matter.

Using the title tag to your advantage
Most search engines place the most emphasis on the title element of your Web page.
A title element that has no meaning will be incredibly inefficient, whereas a title
element that contains a value that has direct relevance to your Web site will begin to
show almost immediate results in many search engine page rankings. This is due to a
concept known as relevancy, which is part of the algorithm used by Web search engines
to help determine a search result. The higher the relevancy, the better placement a
page gets in a search result. You can have low traffic and still get good results from a
well-named page. Plus, the title of that page is used as the first line of the search result.

Using meta tags
The Web is such a huge repository of information that it’s useful to create digests of
information about information. Think of an abstract in a repository of journals that
describes an article or book, and you have an idea of what meta information is.

P1: JYS

WY022-37 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:16

587Chapter 37 ✦ Publicizing Your Site and Building Your Audience

Meta tags involve the use of HTML’s meta element. The two primary types of meta
tags are Meta Descriptions and Meta Keywords.

Using Meta Description
This element is used to describe your site. Search engines use this tag to match
against your title element. The better the match, the better your results will be. If
your page is titled “Vintage Records—2003” and your meta description says, “Hits by
Roy Orbison and other oldies,” your page won’t do as well as it would if your title
more closely reflected the description. The Meta Description tag is written like this:

<meta type=“description” content=“ Hits by Roy Orbison and other great rock
performers from the Traveling Wilburys. This web site presents an overview and
links to the music of such musical luminaries as Roy Orbison, George Harrison,
and Tom Petty.”>

The preceding meta tag should be on a page that has a title element that reflects the
topic of your Web site, like this:

<title> Hits by Roy Orbison and other great rock performers from the Traveling
Wilburys.</title>

Using Meta Keywords
A slightly disparaged but still very effective means for creating search engine
optimization patterns is to use Meta Keywords. This, like Meta Descriptions,
involves the use of the meta element:

<meta type=“keywords” content=“Roy Orbison, Orbison, Tom Petty, George
Harrison, Traveling Wilburys, music, 1980s, music of the 80s”>

The content attribute is filled by comma-delimited keywords and/or phrases. The key
to making this work is to use it legitimately. If you try to fool search engines by using
the same keywords repeatedly in the content attribute, search engines will ignore
the tag and may even banish your site or part of your site from its database. As with
Meta Descriptions, keep your keywords relevant to your page title and description.

Using the alt attribute in an img element
One of the least utilized of search optimization techniques involves the use of the
img element’s alt attribute. If you have a picture of Roy Orbison on a page that has
content like that described in the previous sections, you should most certainly be
sure that the alt attribute is used. You could write content like this:

Or, you could write this:

<img src=“orbison.gif” alt=“Roy Orbison while performing with The Traveling
Wilburys”>

P1: JYS

WY022-37 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:16

588 Part V ✦ Testing, Publishing, and Maintaining Your Site

Creating “Intelligent” URLs
You can also improve your search engine optimization by building “intelligent” URLs,
which simply means that your URLs have relevance to the topic of the pages they
point to. In our current example, this can be as simple as something like the
following:

http://www.mymusic.com/orbison.html

Or, better yet, the following:

http://www.mymusic.com/roy_orbison.html

If you’re working from a database, you can create relevant links by making sure that
your site’s URL variables contain names relevant to your site. Consider the following
nonrelevant URL example:

http://www.mymusic.com/searchresults?12xc=WilOrb001

Now compare it with the following relevant example:

http://www.mymusic.com/searchresults?musician=Orbison&group=Wilburys

Note Many search engines will reject URLs with question marks, so you may need
to “encode” the question mark from the back end by replacing the question
mark with a different character. Most modern back-end systems provide the
facilities to handle this, but the processes are specific to the systems involved
(you would handle it differently using a Java back end than a .NET back end,
for example).

Using a custom domain name
Creating a custom domain name isn’t as easy as it was when the Web was young, but
you can still sometimes acquire a domain name that is similar to your business
specialty. When you do that, users who type a URL into their address bar to “guess”
a domain name may find yours. This is especially true if you have a very unique
name and your customers know the name, even if they don’t know how to spell it.
For example, if they type the name into a Google search, there’s a good chance that if
they get the name wrong Google will supply alternatives by asking the user, “Did you
mean xxxx?” This phenomenon has led to software companies taking on some very
strange names, secure in the fact that customers who type something close to their
name in a search engine’s text input box will still get taken to the right page.

Strategies for Retaining Visitors On-Site
Once people have found your site, how do you keep them coming back? One way is
to provide services. Such services can include chat rooms, discussion boards, and
other interactive facilities.

P1: JYS

WY022-37 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:16

589Chapter 37 ✦ Publicizing Your Site and Building Your Audience

Providing resource services
One of the best ways to both attract people to your site and keep them coming back,
is to provide a service or resource that keeps people interested in your business
field. For example, many of the larger software companies, such as IBM and
Microsoft, maintain extensive libraries of developer information and tutorials.
Whether they maintain these libraries out of altruism is only known by the executive
officers of these companies, but there isn’t any doubt that these kinds of sites drive
traffic. If you’re selling vintage records, you might want to maintain a series of
articles on music, or links to musicians. If you’re an insurance agent, you might want
to include articles and/or links to tips on safe driving.

Maintaining a services area on your Web site will also result in links from other sites.
But most importantly, it will keep your content fresh and keep visitors coming
back.

Creating message boards and chat sites
Many Web hosts now offer easy-to-use message boards that you can customize for
your site to match topics relevant to your Web site. This is a good way to get your
Web site visitors involved in the topic areas of interest on your site. You can also find
free message board software on the Internet, but configuring them can be a little
tricky and usually requires a little knowledge of the back-end processes of your Web
host. For example, if you’re using a Web host that uses a Linux environment, you’ll
probably want to find free software that uses PHP as its logic engine. Similarly, if
you’re on a Microsoft-based environment, you’ll want either an ASP-based message
software solution or a .NET solution.

Many host providers also provide chat solutions, which is another way to get your
visitors engaged with your site.

The Don’ts of Web Site Promotion
There are a number of things you most certainly should not do to promote your site,
because they’re either unethical or possibly even illegal.

Unsolicited e-mail
Hopefully, you don’t need anyone to tell you what spam is or why you shouldn’t be
someone who engages in its use. Even though sending such bulk mailings costs the
sender virtually nothing, its toll on the rest of us is substantial. And no matter what
the promoters of bulk e-mail tell you, your message will not only be ignored and
deleted, but your name will be tarnished if you’re associated with bulk e-mail.
Spamming with unsolicited e-mail typically results in e-mail servers (both the
sending and receiving servers) going down under the load of a massive e-mailing,
filled e-mail boxes, and wasted bandwidth.

P1: JYS

WY022-37 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 22:16

590 Part V ✦ Testing, Publishing, and Maintaining Your Site

Redundant URL submissions
As you’ll see in the sections that follow, most Web site indexing services, such as
Yahoo and Alta Vista, provide an online form where you can submit the address
(URL) of your site to be included in their index. It’s possible to submit a single site
more than once, but doing so will also blacklist you with the search engines. So avoid
the temptation and play by the rules to achieve the best results.

Usenet newsgroup flooding
Another form of inappropriate promotion is the spamming of newsgroups. This is
similar to e-mail spamming. Most newsgroups have strict policies against spamming
and will aggressively report spammers to their ISPs and/or host providers. Even
groups that might once have been advertisement-friendly may now have policies
against bulk e-mail advertising because spamming has become such a problem.
Check with your newsgroup’s FAQ to find out its policies regarding advertising.

Chat room or forum flooding
Some “marketers” have begun to use programs to flood chat rooms (particularly on
AOL or IRC) with messages, or spam every user connected to that service. The
message here is the same as in any other spam situation: All you’ll do is annoy
people and give yourself a bad name.

Summary
When developing a plan to promote your Web site, start thinking early in your
development process about how you want to accomplish your goals. Incorporate
your themes into your pages at an early stage to help search engines find you. This
means making sure that your page titles correspond to your content. It also helps if
early paragraphs in your page content contain references to your page titles and
Meta Descriptions.

After your content passes the page optimization test, you can begin to submit your
URLs to search engines and directories. This process should take no more than a few
hours, especially if you use a service that helps you create multiple submissions to
numerous sites. The final result will be increased page rankings, which translates to
more visitors.

Now that you’ve learned how to build a great site and how to promote it, the next
chapter discusses how to maintain your site to keep your visitors coming back.

✦ ✦ ✦

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

3838C H A P T E R

Maintaining
Your Site ✦ ✦ ✦ ✦

In This Chapter

Analyzing Usage via
Server Logs

Checking for Broken Links

Responding to Feedback

Backing up your Data

✦ ✦ ✦ ✦

Throughout this book, you have learned how to create
online content. However, once you create the content you

also have to maintain it. You need to ensure your site does not
contain errors, that revisions don’t break links, and that you
are fairly insulated from data loss. This chapter covers these
topics and shows you how to perform routine maintenance on
your site to minimize problems.

Analyzing Usage via Server Logs
All Web servers generate logs regarding traffic. It is important
to routinely review the information in the server logs to ensure
your site is not experiencing any problems you might not be
aware of.

Monitoring Apache traffic
Any public Web site should have its traffic monitored. Apache
does a great job of tracking all access, errors, and content it
serves and storing it all in its log files. However, reading a log
file—even a modest one—can be tedious and unproductive.

Thankfully, several tools are available to monitor traffic on
Apache. Most tools work off the Apache log files and can be
used to view retroactive traffic. The following sections cover
three of the most popular open source tools—Analog,
Webalizer, and Advanced Web Statistics (AWStats).

Analog
The maintainers of Analog hail it as “the most popular log file
analyser [sic] in the world.” Whether this claim is actually true
or not, many sites all around the world use Analog. Written in
C, Analog is highly portable.

591

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

592 Part V ✦ Testing, Publishing, and Maintaining Your Site

The main advantage to Analog is its capability to quickly process many different log
file formats. This enables Webmasters to compile data from log files on demand.
Analog also supports 31 different languages.

It can display 45 different reports, including the following:

✦ Quick summaries of activities

✦ Actual hosts that connected to your site

✦ Search terms used to find your site

✦ Most common files requested

Another advantage to Analog is the amount of customization that you can add to its
reports.

Analog is available for multiple platforms from the main Analog Web site
(www.analog.cx). Binaries are available for both Linux and Windows, and full
source is available if you need to compile your own copy.

Tip Analog is one of the few log analyzers that automatically analyzes archived logs—
even logs that have been compressed by a log-rotating program. By specifying
a log filename with a wildcard in its configuration file, such as access.log*,
you can instruct Analog to analyze access.log as well as archived logs such
as access.log.3.gz.

Figure 38-1 shows a sample of the output from Analog.

Figure 38-1: Sample output from Analog.

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

593Chapter 38 ✦ Maintaining Your Site

Webalizer
Webalizer is similar to Analog, providing fast processing of log files into HTML
reports. Also written in C, Webalizer is highly portable, and binary versions are
available for download for Windows and Linux from the Webalizer Web site
(www.webalizer.com). Webalizer supports 33 different languages and has a
multitude of configuration options for customizing the reports it generates.

Figure 38-2 shows a sample of the output from Webalizer.

Figure 38-2: Sample output from Webalizer.

AWStats
Advanced Web Statistics (AWStats, www.awstats.org) is another popular open
source log analyzer. AWStats is written in Perl and runs on any platform running Perl.
It will run on both Apache and Internet Information Server (IIS) logs.

Note Perl is available from several different sources. You can download a copy for
most platforms from CPAN (www.cpan.org). Most Linux distributions include
a packaged version of Perl in their distribution, as well.

Like the other two programs, AWStats supports multiple languages (36), can be
configured to read almost any log file format, and is open source, with full source
code available.

AWStats runs either from the command line or from administrative pages as a CGI
program. Unlike the other two analyzers just described, it is preferable to run

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

594 Part V ✦ Testing, Publishing, and Maintaining Your Site

AWStats on a regular basis, reading the log files as they are generated instead of after
the fact. The advantage to this approach is that your statistic pages are kept
relatively up-to-date automatically. The downside is that AWStats wasn’t written for
speed, so analyzing old logs can take a while.

Figure 38-3 shows a sample of the output from AWStats.

Figure 38-3: Sample output from AWStats.

Note Several other commercial log file-analyzing programs are available, such as
Webtrends’ Log Analyzer series of programs (www.netiq.com/products
/log/default.asp). However, for general use, the open source tools listed
in this session work quite well.

Monitoring IIS Traffic
Unlike Apache, there don’t seem to be as many freely available log analyzers for
Microsoft’s Internet Information Server. This is probably due to Apache’s roots in the
Open Source community—its specifications are freely available and the community
tends to support its own.

That said, there are a few good solutions for IIS log analyzing.

✦ AWStats and Analog, covered in the preceding section on Apache, can also
analyze IIS logs.

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

595Chapter 38 ✦ Maintaining Your Site

Finding the right log analyzer
All three programs covered in this session provide detailed logs that you can use to
help troubleshoot your site, fine-tune your server, or just provide raw statistics. All
in all, they provide fairly equal features and reporting.

How do you determine which tool is right for you?

My advice is to run at least two tools, even if you run one of them only occasionally.
Running more than one helps you get a better view of your data, seeing it from
multiple perspectives. Visit all the sites referenced in this section and view the
sample reports to ensure that each tool provides the data you need.

Checking for Broken Links
Broken links are one of the major banes of Web sites. When you move pages or
redesign your site, there is always a chance that you will break a link to another
page. The various ways a link can be broken include the following:

✦ A page can be orphaned, the links to the page disappearing from referring
page(s).

✦ A referring link can be mistyped or otherwise wrong.

✦ A page that is referred to might not make it to the server.

✦ A page external to your site might move or completely disappear.

Thankfully, broken links are a common problem and you have several tools at your
disposal to help avoid them.

Tip Link checkers can only check what they know about via links in documents. As
such, many link checkers cannot detect totally orphaned pages. It’s important
to occasionally inventory the pages on your server to ensure you link to them
from somewhere.

The W3C Link Checker
The World Wide Web Consortium maintains an online link checker at http://
validator.w3.org/checklink, shown in Figure 38-4.

To use the W3C Link Checker on your site, follow these steps:

1. Put the URL to your home page in the main text box.

2. Choose the options for checking your site.

• Use the Summary only option if you don’t want details.

• Use the Hide redirects option if you don’t want to see redirect reports.
You can choose to eliminate all redirect reports or only those for
directories.

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

596 Part V ✦ Testing, Publishing, and Maintaining Your Site

Figure 38-4: The W3C Link Checker.

• Use the Accept-Language headers option to control whether the
Accept-Language headers are used during checking.

• To check several layers of your site, set the recursion depth option
accordingly. Check the check box and enter the recursion depth in the
associated text box.

• You can check the Save options box if you want the tool to save your
settings in a cookie for later use.

3. Click the Check button to begin checking your site. The tool will display its
progress as it checks your site, as shown in Figure 38-5.

Note You can download the W3C tool and run it locally on a machine that has Perl
(and required Perl modules) installed. Visit the documentation page for the
checker (http://validator.w3.org/docs/checklink.html) for infor-
mation on downloading and running the tool locally.

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

597Chapter 38 ✦ Maintaining Your Site

Figure 38-5: The online W3C Link Checker in action.

Checkers built into development tools
Many Web development tools have integrated link checkers that you can use while
you develop your site. For example, Macromedia Dreamweaver includes a
comprehensive checking feature, as shown in Figure 38-6.

Check the documentation on your favorite tool to see if it has a comparable feature.

Cross-
Reference

Several Web development tools are covered in Chapter 34.

Local tools
There are several tools you can download and run locally to check links on your site.
Visit your favorite software repository site (such as Tucows,www.tucows.com) to
search for a suitable tool for your use.

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

598 Part V ✦ Testing, Publishing, and Maintaining Your Site

Figure 38-6: Macromedia Dreamweaver has a link checker feature built in so you can
check your links as you develop your site.

Tip Many Linux distributions come with a link-checking tool.

Watching your logs
Your server’s log files can also alert you to broken links. For example, the Status
Code Report shown in Figure 38-7 lists several Document not found (404) errors.
These errors can be caused by broken links on your site or sites that refer to your
site. By enabling more reporting details, you can usually find out what referring
document had the broken link.

Responding to Feedback
Always include a feedback link on your site, typically an e-mail link to the Webmaster
(you or the person generally responsible for the site). Visitors to your site can use
the link to alert you to problems, provide feedback on your site, and more.

Tip Feedback links are a target of spammers. To minimize the inconvenience of
spam from feedback links, use a dedicated e-mail address (not your usual

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

599Chapter 38 ✦ Maintaining Your Site

e-mail address), or obscure the address by using a form or other tool to actually
perform the mailing.

Figure 38-7: Server logs report 404 (Document not found) errors that can point to link
errors inside and outside of your site.

Of course, you should always take feedback with the proverbial grain of salt—check
out reported problems yourself before affecting any changes and weigh criticism
(and kudos) accordingly.

Backing Up Your Data
In all areas of computing, backing up data is one of the most important tasks you can
perform. Losing data, even a minimum amount, can cause many problems. To help
avoid data loss, you should create and religiously follow a backup regimen. Consider
the following:

✦ Keep a local, original copy of all files used on your site.

✦ Routinely copy files from your site to another location.

✦ Keep a number of past revisions of your files so you can regress changes, if
necessary.

P1: JYS

WY022-38 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 9, 2004 21:46

600 Part V ✦ Testing, Publishing, and Maintaining Your Site

Tip Use the archiving utility on your server (ZIP or tar) to routinely create com-
pressed archives of your files. The copies will transfer faster and are easier to
deal with in one comprehensive package.

Summary
Developing online content is only half the battle of Web publishing; maintaining the
content is the other half and should be a consistent process. This chapter showed
you several different tasks that should be performed on a routine basis to ensure
that your site remains healthy.

✦ ✦ ✦

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

P A R T

VIVIPrinciples of
Professional
Web Design and
Development

✦ ✦ ✦ ✦

In This Part

Chapter 39
The Web
Development
Process

Chapter 40
Developing and
Structuring
Content

Chapter 41
Designing for
Usability and
Accessibility

Chapter 42
Designing for an
International
Audience

Chapter 43
Security

Chapter 44
Privacy

✦ ✦ ✦ ✦

601

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

602

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

3939C H A P T E R

The Web
Development
Process

✦ ✦ ✦ ✦

In This Chapter

Challenges of Developing
Large Web Sites

Project Management Basics

The Need for Information
Architecture

Overview of the Web
Development Process

Designing your Site
Structure

Tracking Site Usage

Choosing a Design Theme

Tracking Site Usage and
Performance

Maintaining the Site

✦ ✦ ✦ ✦

To develop a quality Web site, you should begin to plan
before you do anything else. This is true whether you’re a

one-person operation or a part of a large team of developers
working for one of the world’s monolithic sites.

Most large software and Web development houses use a
functional or project requirements document and a design
document for managing workflow specifics. The design
document may be a part of the functional or project
requirements document. After the requirements are in place,
an engineering document is often created to demonstrate how
the Web development team will accomplish the tasks set out in
the requirements document.

This chapter explores the Web development process as a
whole, focusing on the importance that planning ahead plays
in the development of a successful Web site.

Challenges of Developing
Large-Scale Web Sites

Many large-scale Web sites are not built from the ground up.
Those that are had a plan. Those that didn’t, which may very
well be most of them (although there is certainly no empirical
evidence for basing such a claim), now circulate many plans
around to manage site updates and feature additions.

Whether you’re starting a brand new site, adding a feature to a
large existing site, or are a one-person operation handling all
the development tasks yourself, you need to create a general
attack plan based on the following steps:

603

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

604 Part VI ✦ Principles of Professional Web Design and Development

1. Establish your priorities through goal and audience definition.

2. Generate a requirements analysis.

3. Produce engineering documents that meet the requirements and establish a
flow for the site, or a portion of the site, to follow.

4. Choose a design theme.

5. Establish a plan for constructing the site.

6. Test and evaluate the site.

7. Market the site and track the site’s usage.

8. Determine short and long-term strategies for maintaining your site.

9. Create a matrix indicating your project’s progress.

These tasks are especially important when you’re involved with development on
very large Web sites, which will have had a lot of hands involved in development
over the years. Chances are good that many of the people who belong to those
hands are no longer working on the site.

Project Management Basics
One of the key ingredients in site development is project scoping. When you scope a
project, you determine how much time your team requires to build it. Often, large
sites have been cobbled together over time, and engineering teams need to
strategize not only on how to make additions to a site, but how to reverse engineer
existing code, especially if the site is complex.

Determining project resources is the first step you’ll take in managing a Web site
project. From a planning perspective, some fundamental questions need to be asked.

✦ What are your site’s goals and objectives?

✦ Who’s your audience?

✦ How will you speak to your audience?

✦ How will you structure your site?

✦ What will your site look like from a design standpoint?

✦ Who will handle site maintenance, and how?

✦ What is the plan for managing security policy?

Answering these questions should be a minimal first step before you begin to plan
the rest of your site. You’ll find that the answers to these questions will yield
fundamental answers in other areas, including questions relating to functional
design as well as graphic design.

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

605Chapter 39 ✦ The Web Development Process

The Need for Information Architecture
The next step in creating a plan for your Web site is to determine its architecture.
This includes determining what kind of environment your Web site will live in. You
have many kinds of server environments to choose from.Your choice will be based
on a combination of factors, not the least of which includes where your expertise
lies. If your strong suit is Active Server Pages (ASP) programming, you might want to
avoid Java environments, and vice-versa. Of course, if you obtain a job on a Web site,
you won’t be making that decision unless you’re running the whole show.

There are two broad categories of Web server environments: vendor-based and open
source. It’s normal to assume that the phrase “vendor-based Web development
environments” means Microsoft, however, other software vendors also create Web
development and Web server environments. The three major Web server software
vendors follow:

✦ Apache, the leading Web server software worldwide, is from the Apache
Software Foundation, and is an open source project. Open source means that
the code base that runs the software is free (based on certain limitations).
Because anyone can afford free, and the software itself is extremely good, it has
captured nearly 70% of the Web server market, according to Netcraft.com.
Apache is a good choice if you’re running Java-based software on your Web
server.

Note Visit Netcraft.com at http://news.netcraft.com/archives/
web_server_survey.html.

✦ Sun. If you have a Sun Microsystems system running Solaris, which is a
UNIX-based operating system that runs Sun servers, you may want to consider
using Sun’s SunONE Web server. This Java-based Web server plays well with
other Sun-based products. It only holds about a 3.5% market share, which is a
steep drop from its heydays of the mid- to late-1990s. However, the most recent
version of SunONE is very powerful and includes a browser-based console,
which provides a GUI interface for configuring, managing, and monitoring the
Web server. Security is also good, as port access is denied by default. This
means access rights must be specifically granted, so you don’t need to search
for potential security holes.

✦ Microsoft holds about 25% of the share of the Web server market. It can be
significantly easier to use Microsoft products, but the security issues are
generally more difficult to deal with. Microsoft servers tend to be easier to
compromise than Apache servers. Microsoft’s Web server is called Information
Services 5.0 or 6.0 (IIS 5.0 or IIS 6.0), depending on the version you are running.

Generally, if you want to run a Java-based architecture or PHP, you should probably
run an Apache server. If you run ASP or .NET, you should run a Microsoft server.
However, you can run Java-based software using Microsoft-based products, and you
can also run Apache on Windows products (since Apache ports its software to

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

606 Part VI ✦ Principles of Professional Web Design and Development

multiple operating systems). If you want to run static HTML pages, pick the
operating environment you’re most comfortable with.

Overview of the Web Development Process
The Web development process consists of several broad steps, beginning with
planning and ending with execution and maintenance. These include the
following:

1. Defining your goals

2. Defining your audience

3. Developing competitive and market analysis

4. Creating a requirements analysis

5. Designing your site’s structure

6. Specifying content

7. Choosing a design theme

8. Constructing the site

9. Testing and evaluating the site

10. Marketing the site

Defining your goals
The most obvious question to ask when developing a Web site is: What is it for?
What are the objectives you want the site to achieve? For example, do you want to
use your site to sell products, or to drive the PR process? You may want to
disseminate news, or build customer service applications.

Defining your audience
Defining your audience will affect everything from the design of the site (a children’s
site may have lots of pastel colors or may even be a bit silly looking, whereas a
science-related site will require a different design approach) to content and even
navigation questions. A sophisticated audience, for example, may not need as much
navigational guidance as a more general audience.

Competitive and market analysis
Discovering what your competition is doing not only helps you enhance your own
market position, but can also give you solid ideas on what and what not to do on
your own Web site. For example, if your competition’s site consists of difficult-to
-read type, you can make sure your site gets high usability ratings by making your
site extremely easy to read.

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

607Chapter 39 ✦ The Web Development Process

Requirements analysis
Most large sites start off with something called a Project Requirements Document or
Functional Requirements Document, which is a comprehensive document written in
a word-processing program that contains specifications about how the Web site or a
specific feature of a Web site is supposed to behave. These documents usually
contain screenshots of mockups created by a team’s graphic designer or graphic
design department. Usually, this mockup is created in a graphics program such as
Adobe Photoshop or Macromedia Fireworks (although sometimes these are broken
out into separate documents called Design Requirement Documents).

A requirements document helps everyone on the team understand a Web site’s
expected behavior. If a part of the Web site doesn’t behave according to the
requirements document during testing, then a bug is filed. The bug remains open
until the problem is fixed.

A list of some of the things included in requirements documents follows:

✦ Design specifications, including specific font sizes and colors

✦ Navigation specifications

✦ User experience and interaction scenarios

✦ Link behavior

✦ Page flow and page flow diagrams

✦ Usability guidelines

✦ Maintenance requirements

✦ Security policies

Often, requirements documents will be followed up by engineering requirements or
execution documents that outline strategies on how the requirements will be met
from an engineering perspective.

Designing the site structure
The site structure is usually defined in a requirements document. This usually
involves a schematic drawing of how the Web site should flow, and which pages are
parents and which are children. Figure 39-1 shows an example of a schematic for a
very simple Web site containing only a few pages.

Using UML to define structure
More complex sites require more formal structure definitions. You can use flow
charts, or a standardized way to create structure definitions called Unified Modeling
Language (UML).

UML is a standardized modeling notation for representing software applications. You
can use UML to model the way your Web application is used by each user, or the way
each component behaves when interacting with other components.

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

608 Part VI ✦ Principles of Professional Web Design and Development

Home Page

Services

consultation

fund raising

legal

About Us

contact us

our location

our team

Figure 39-1: Schematic for a simple Web site.

Note For an introduction to UML, visit www-106.ibm.com/developerworks/
rational/library/769.html.

UML consists of two broad categories of diagrams:

✦ Use cases are diagrams that walk the reader through a typical user session at
the Web site.

✦ Sequential and collaboration diagrams provide an abstract view into the
relationship between the various objects in the Web site, particularly as they
relate to each other. In addition to describing the navigation of a site, these
diagrams focus on the application-level functionality of the site so that Java
developers and other programmers working on business logic can transition
quickly from concept to final production. Figure 39-2 shows a simple sequential
diagram of Web functionality.

Using flow charts to define structure
You can also use your own process for creating a flow chart to define your Web site’s
structure. You may not have time to learn UML, or your site’s team may not have the
resources for it, in which case most developers simply create their own flow charts
by expanding on what you saw in Figure 39-1.

You can also use software designed for creating flow charts, such as SmartDraw
(www.smartdraw.com) and Visio (from Microsoft). These programs accelerate the
flow-charting process by providing a drag-and-drop visual interface you use to create

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

609Chapter 39 ✦ The Web Development Process

checkout() : void
review() : void
update() : void
delete() : void

root

Default.jsp

Service

Shopping Cart

newitem : Int

newOperation(): void login.jsp

authenticate() : void

PublicWeb

Guests

Dreamweaver Chris.dll

bin

Figure 39-2: A sequential diagram showing a Web application process.

your charts and export them into graphic formats that you can use in other
documents.

Specifying content
Another consideration when deciding what type of Web server software
environment to choose is what kind of content you have. If you have static HTML, it
doesn’t matter what kind of environment you have. You can just use the one that is
most comfortable to you. If you have database-driven content, you’ll need to include
the kind of database you expect to use in your considerations regarding a Web
server environment. Several kinds of databases, including several open source
varieties, are available, including the following major databases:

✦ MySQL, which is a popular open source database available on both Windows
and UNIX/Linux servers. It’s freely available at www.mysql.com and is nearly
as powerful as the expensive databases from commercial vendors. If you are
running a Linux box with open source Apache Web server software, this or the
somewhat more powerful postgreSQL is the natural route to take for your
database environment.

✦ postgreSQL is another open source database system that has a few more
features than MySQL. You can find it at www.postgresql.org. This is also a
natural choice if you’re already going the open source route on Web
development.

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

610 Part VI ✦ Principles of Professional Web Design and Development

✦ MS SQL Server is a good choice if you know you’re going to be using a
Microsoft-based Web development environment. SQL Server is extremely
powerful and fast, and is quite reliable. It also includes a relatively easy-to-use
visual interface. It is not, however, inexpensive.

✦ Oracle has long been considered the standard in robust relational database
systems. Oracle is a good choice if you have lots of resources, including the
kind of money it takes to administer Oracle correctly. In other words, can your
team afford to hire an Oracle Database Administrator (DBA)? Oracle is an
expensive product with a cost based on CPU usage and the number of users
that actually use the system.

✦ DB2 is a database system developed by IBM. This is a particularly good fit if
you are developing with IBM’s WebSphere Web application development
software, which is a Java-based Web development and deployment tool that
can hook into any database, but which plays with DB2 especially well. Like
Oracle and MS SQL Server, the cost of DB2 is more in line with what a large Web
site can afford, and isn’t the kind of investment cash-strapped organizations
should consider.

Choosing a design theme
You should base your design theme on the target market analysis you perform at the
opening stages of your Web site development. Sometimes your design theme will be
easy. If you operate a fish store, your theme is pretty obvious. It may not be as
obvious if you run a general interest site. In that case, carefully examine your market
analysis and design accordingly.

If you’re running a small or personal site, you can also check out predesigned
templates at sites such as http://freesitetemplates.com and www
.templatemonster.com.

Constructing the site
The first step in constructing a site is deciding what kind of application server
environment you’ll be using. An application server is somewhat like an engine that
runs your Web site’s logic. If you’re using simple, static HTML, it doesn’t matter what
application server you use or whether you even have one. However, if you’re
interacting with a database or producing dynamic content, you’ll need to work with
an application server environment.

An application server lets you create dynamic content. For example, consider the
following code fragment:

<html>
<head>

<title>Hello, world</title>
</head>
<body>

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

611Chapter 39 ✦ The Web Development Process

<%= myAppServer.Write(“Hello, World!”)
%>

</body>
</html>

The bolded code represents a fictional application server language called
WowServerPages (WSP) that has several thousand prewritten functions (methods)
available to it. One of those is the Write() method, which simply writes text to the
browser window. When the preceding code is read by the application server, it
generates HTML based on the instructions it receives within special markup like that
shown in bold. It then passes its results to the Web server, which sends the HTML to
a user’s Web browser. The user never sees this instruction and can’t access it by
clicking view source from the browser:

<%= myAppServer.Write(“Hello, World!”)
%>

Only the Web application server sees it.

Virtually all application servers work this way. For example, here’s the same example
in a real application server environment called PHP:

<html>
<head>

<title>Hello, world</title>
</head>
<body>

<?php
echo “Hello, world”;
?>

</body>
</html>

In this case, PHP, which borrows heavily from Perl syntax, uses a method called
echo to write text to the browser. The major application server environments
available include the following:

✦ PHP is primarily a UNIX/Linux application server that requires a PHP parser
(CGI or server module) on the machine running your Web server (or linked to a
machine running your Web server). If you are running your site through a Web
hosting service that is UNIX or Linux-based, ask them if PHP is installed. Most
decent Web hosting service plans offer PHP as part of a basic package. You can
recognize PHP pages on the Web by looking for Web sites with .php or .php4
extensions at the end of file names.

✦ Java Server Pages (JSP) is a Java-based Web application server that requires a
J2EE Java environment. You can get a free JSP-based application server called
Tomcat through www.apache.org. JSP pages use a .jsp file extension.

✦ Active Server Pages (ASP) was developed by Microsoft and works especially
well with MS SQL Server because its object model used for programming Web

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

612 Part VI ✦ Principles of Professional Web Design and Development

sites contains numerous data-binding mechanisms geared specifically to work
with SQL Server, although it also works well with MySQL, because many of the
data-binding processes work with any database connection. Programming ASP
is based on Visual Basic. Pages written in ASP use a .asp file extension.

✦ ASP.NET has supplanted ASP and is the next-generation application server in
the Microsoft world. ASP.NET allows developers to choose from a number of
languages, include the new C#, VisualBasic.NET, and J#. ASP.NET pages use a
.aspx file extension.

✦ ColdFusion, from Macromedia, is a commercial application server with
functionality similar to the others. ColdFusion pages have a .cfm file extension.

Testing and evaluating the site
When your Web site is finished, you want to test it before serving it to the public.
How you do that will depend on the resources of your Web development team. If
your team has a lot of resources, you can set up your Web site on a testing server.
This is a separate machine with Web hosting capabilities that can’t be seen by the
general public but provides exactly the same capabilities as your production
machine, which is the machine that will actually host your publicly available site.

If your team doesn’t have the kind of resources needed to make that happen, you can
set up your site on a sandbox. A sandbox is an area on your production machine that
isn’t accessible to the public, which mirrors the directory structure of your Web site.
For example, you may have a directory named sandbox, into which you would place
your index and/or default html pages. Then, each of the directories in your sandbox
would have the same names and files as those on your production Web site.

If your site is new, you can simply deny access to it until you’re ready to go live.

To test the site, you compare the site’s behavior to the requirements documents you
produced at the early stages of your Web site’s development. Generally, you or
someone in your quality assurance (QA) team will create a use case document that is
derived from the requirements document. Often, this is simply a spreadsheet with a
list of use cases and cells containing expected behavior and empty cells containing
actual behavior. When the expected behavior clashes with the actual behavior, a bug
is filed. Then the list of bugs is submitted to the Web development team, and the site
doesn’t go live until the bugs are fixed.

Marketing the site
Once your site is live, you’ll want to find a way to get it noticed by your target
audience. In addition to the marketing tips explored in Chapter 37, Publicizing Your
Site and Building Your Audience, you may want to try the following marketing tactics:

Throw a party and get the party publicized: When the dot-com craze was at its peak,
new Web sites often threw lavish parties with well-known musicians and other talent.
Those days are gone (because the days of wasteful spending have given way to more

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

613Chapter 39 ✦ The Web Development Process

frugality and, as a result, much stronger Web sites), but you can still hold a small
soiree to publicize your site to key players in your industry.

✦ Take an ad out in a trade publication geared towards your profession.

✦ Issue a press release announcing your site.

✦ Participate in e-mail discussion lists in ways that contribute to the knowledge
of people on the list, and include a signature in your posts that points to your
Web site.

✦ Purchase ad banners on other Web sites to announce your site.

✦ Run on-site events.

✦ Generate an e-newsletter and include a link on your Web site encouraging
people to sign up for it (but don’t send out the newsletter unsolicited, because
that will actually do more damage than good with your prospects, who will
interpret those efforts as spam).

✦ Embark on a direct e-marketing campaign.

✦ Integrating traditional marketing and sales programs into your overall plan.
This may include producing brochures and spec sheets with your Web site
included as part of the contact information, and will most certainly include
your Web site name on business cards.

Tracking site usage and performance
Once your marketing is underway, determine its effectiveness. The first step in this
process is to determine where your traffic originates. Then measure what individuals
do once they get to your site. This helps you find out if one marketing approach is
more effective than others.

Every Web server creates log files, which are raw data files containing information
about visitors to your site. This data consists of the user’s IP address, what browser
the user employs, and the time of day the user came to your site.

Reading the access log file
A Web server usually has an access log file containing information formatted in the
common logfile format that is used by most Web servers. You can purchase special
software designed to parse these files and generate user-friendly graphs for your
analysis. Most decent Web site hosting plans include such software with their plans.
One common user access software analysis tool is WebTrends. Check with your host
provider to see if they offer such software.

You can also review access logs yourself. For example, each line in an access log file
represents one request, as in the following example:

someonesmachine_sf_someISP_hub - - [30/Aug/2004:20:01:22 - 0700]
“GET /services/index.html HTTP/1.0” 200 1223

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

614 Part VI ✦ Principles of Professional Web Design and Development

In the preceding line from an access log, someonesmachine_sf_someISP_hub is
the name of the computer that made a request for /services/index.html on the night
of August 30, 2004. The 200 indicates that the request was answered successfully, and
the 1223 indicates how many bytes your machine sent in response to the request.

Using a referrer log file
A referrer log keeps track of where Web users came from. This helps you find out
where links to your Web site exist on other sites. For example, the following is a
result from a Yahoo search resulting in a query for “fish” that leads to your site:

http://search.yahoo.com/bin/search?p=fish ->
/services/fish/index.html

You may also have a link from another site. Perhaps someone likes your pages that
describe the many kinds of fish one can find in the ocean. Their link to your site may
result in someone clicking the link and visiting your site:

http://www.someonessite/links.html ->
/services/fish/index.html

Using an extended log file
A personal extended log file contains a combination of access log and referrer log
information. Not all Web servers generate these, but most do.

Keep in mind that log files can get quite large. Delete them from your server or copy
them over to your personal computer from time to time if your Web hosting provider
doesn’t do that automatically for you.

Maintaining the site
Maintaining your Web site means more than just making sure it continues to work. It
also means keeping your content fresh. This may mean being careful from the outset
about where you place time-sensitive content. If you have time-sensitive content
distributed all over the place, you’ll probably lose track of some of it and it will
become out of date. This is particularly true of links, which is why it’s best to include
a special area for hot links.

You may also want a section that includes news on your industry. You can develop
your own articles, or even provide an RSS-based news feed. You can learn how to do
that by visiting www.webreference.com/perl/tutorial/8/.

Other site maintenance tricks include simply being sure you follow some of the
suggestions made in Chapter 37, particularly in regard to page titling and the use of
meta information to keep your site in the eyes of search engines.

Summary
Developing a modern Web site is a multipart process. It begins with planning,
because even if you have a small, one-person operation, you’ll have competition for
eyes. That competition is very likely to be researching and planning their Web site.

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

615Chapter 39 ✦ The Web Development Process

Today’s Web sites have grown in sophistication because we now have so much
knowledge to start with. There are many best cases out there, and a well-planned site
will take advantage of what has worked in the past and leverage the knowledge
gained by the 40 million or so Web sites that preceded it.

A well-planned Web site will be the final result if your Web development process
consists of the following:

✦ An overview of your goals and audience

✦ An analysis of your competition and your own market

✦ An overall project management documentation including a requirements
document that outlines your Web site’s functional requirements

✦ Site design, construction, and testing

✦ Site marketing and tracking

The next chapter explores more closely how to develop and structure your Web
site’s content, including how to best approach your content from a Web writing
perspective.

✦ ✦ ✦

P1: JYS

WY022-39 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:34

616

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

4040C H A P T E R

Developing and
Structuring
Content

✦ ✦ ✦ ✦

In This Chapter

Principles of Audience
Analysis

Performing an Information
Inventory

Chunking Information

How Users Read the Web

Developing Easily
Scanned Text

Developing Meta Content:
Titles, Headings, and
Taglines

Characteristics of Excellent
Web Writing

Writing for the Web

✦ ✦ ✦ ✦

Computer monitors are not designed for long reading
sessions because they have a very low pixel per inch

(ppi) ratio. Hardware manufacturers are working on
developing monitors with higher densities, but until they do,
people are stuck with 72 pixel-per-inch and 96 pixel-per-inch
computer monitors. 300 pixels per inch would be much nicer,
but in the meantime, if you don’t want to lose your Web site’s
visitors, you must be aware of how quickly they can lose
patience with your site’s contents. Study after study has
confirmed what you’ll discover in this chapter—that
approximately 75% of all Web site viewers scan Web content
instead of reading it. This chapter shows you how to
accommodate that tendency (since you can’t change it) and
find ways to make the scan memorable and help your site’s
readers hone in on the important sections of the site.

Principles of Audience Analysis
One of the basic tenets of any writing is to know your
audience. Without knowing your audience, the odds of actually
communicating with your Web site visitors are nothing more
than a roll of the dice. They may come away with information
they want and/or need, and they may not.

Performing an audience analysis is a useful way of
accomplishing a number of Web content goals, from deciding
how to chunk information to determining how to manage
hyperlinks. You should strive to understand your audience
well so that you can communicate with them effectively.

Unfortunately, much of this analysis will be done after your
site has gone live for the first time. Many Web tools exist to
help generate Web site analysis, but your site must be running
for it to work. Web site analysis software can give you reports

617

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

618 Part VI ✦ Principles of Professional Web Design and Development

on the demographics of your visitors, and provide information on how they came to
your site. You can also create surveys and registration pages with forms asking users
to provide information about themselves.

But how do you analyze your audience before your site is up and running? One way is
to acquire industry reports that provide user demographics for the industry you are
in. Researching general trends within your industry is valuable no matter what
you’re doing, whether it’s building a Web site or building cars, because it helps you
project trends and plan for them instead of reacting to them.

Audience analysis is an ongoing effort, as your Web site is live for a month, six
months, a year, and even ten years down the road. You’ll need to respond to
changing demographics and emerging trends as you develop your Web site
content.

Performing an Information Inventory
You should gather as much information ahead of time as you can to help organize it
better. If you know your content will contain a lot of hyperlinks, for example, you
should try to gather as many of them as possible before you start developing and
writing content.

The same holds true for the rest of your Web site’s content. If some of that content
comes from a database, that information is already organized. Try to organize the
rest of your content in a similar way so that it’s easy for you to access and plug into
your Web pages.

Chunking Information
Web readers often don’t read Web material in sequence. Web pages are more like
reference works than fiction, meaning that you often can’t assume a reader has read
one section before another. By providing information in chunks, you can help your
readers quickly locate specific items of interest. Your chunks can consist of both
specific content and links to supporting content or other related sites.

When organizing chunks of information, consider the following:

✦ How will your users access your content? Will you want to make all of your
content accessible in each chunk, or will you rely heavily on hyperlinking?

✦ Will your users want to print out your pages? If you know your users will print
out the information on your Web page, you might want to avoid chunking. If
you don’t know how many users will print a given page, you may want to point
them to a page designed for printing or to a PDF version of the page.

✦ How long are your pages? Web users as a rule don’t like longer pages, so the
number of chunks of information per page should not be very high.

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

619Chapter 40 ✦ Developing and Structuring Content

If you organize your chunks effectively, it will be obvious on your Web site, because
the site itself will appear organized. This enhances the viewing experience for users,
who will likely return to your site often and begin linking to it.

How Users Read on the Web
According to usability guru Jakob Neilsen, users don’t read Web pages, and he
provides studies to prove his point. If you think about it, you’ll probably realize that
you only scan Web pages, as well. With that in mind, Neilsen and others argue that
the three following statements summarize user behavior regarding written content
(www.useit.com/papers/webwriting/writing.html):

✦ As previously mentioned, users don’t read Web pages, but scan them to focus
on the few sentences that provide the information they’re looking for.

✦ Users don’t like long, scrolling pages and prefer brief, summary-like text.

✦ Users don’t like marketing fluff (or, marketese, as Neilsen calls it), but actively
seek out information.

Numerous studies have been released to back up Nielsen’s findings. These studies
show a clear pattern: Users like brevity, don’t like marketing clichés, and appreciate
it when you provide strong clues as to what kind of content to expect in any given
chunk of text.

Developing Easily Scanned Text
Writing for the Web is not about developing clever material, but is instead about
developing text that can be easily scanned by a reader searching for nuggets of
information he or she can use. According to Neilsen, scannable text consists of the
following characteristics:

✦ Highlighted keywords. These are especially useful when in the form of
hyperlinks, although typeface and color variations also help.

✦ Subheadings that have meanings, instead of subheads that try to be cute and/or
clever. If you’re running a site targeted to an audience that expects that kind of
writing, you obviously can diverge from Nielsen’s theories (like any theory,
these aren’t bulletproof).

✦ Bulleted lists that highlight key points.

✦ Paragraphs that consist of one idea.

✦ Text that uses the inverted pyramid style, starting with the conclusion. You might
want to alter this rule a bit by using a true pyramid style, but with the
conclusion at the top instead of the bottom. The pyramid style is newspaper
jargon that dictates that reporters write the most important sentences of an
article first, and then write the remaining article by adding increasingly less
relevant material.

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

620 Part VI ✦ Principles of Professional Web Design and Development

✦ Use half the word count (or less) you would use in conventional writing. This
doesn’t need to be a hard and fast rule. You can alter it by developing
comprehensive content in another area, and by providing a summary page for
those users who don’t want to deal with your comprehensive content; but
make sure you provide a link to the more comprehensive parts.

Developing Meta Content: Titles,
Headings, and Taglines

One of the most important aspects of developing content for the Web involves meta
content such as titles, headings, and taglines. Meta content is content about content.
It provides glimpses into the material without requiring the reader to scan the entire
text.

Titles
Developing effective titles is a key part of Web content development. They help your
readers understand what your topics are about. They’re also excellent ways to
improve search engine delivery.

Cross-
Reference

See Chapter 37 for more information on how to effectively use the title tag
to improve search engine results.

Headings
Headlines (headings) and titles should both be highly informative. Avoid
superlatives and self-congratulatory text, and avoid marketing lingo. When it comes
to Web content development, marketing professionals need to become information
specialists. Headlines should focus on how to point users to valuable information
they can use on your site. A bad headline is “Cognitive BioResearch, Inc., A Better
Serum for a Better Tomorrow.”

A better headline would be something like “Cognitive BioResearch, Inc.: Developers
of Truth Serum for Government Officials.”

This type of headline shows that the company makes a badly needed product, and it
doesn’t try to seduce readers with slick marketing words that mean little to most
readers. Web users typically spend little time on a Web site, unless they’re compelled
to do so. Compelling them to do so doesn’t require marketing jargon, but headlines
that lure users in with a genuine promise that they’ll be rewarded with timely and
useful information.

Taglines
Traditionally, taglines in the marketing world have referred to the “button” line
under a logo at the bottom of an ad or at the end of a commercial. A famous example
of a tagline is Coca Cola’s long-running “Coke is it” slogan. Tag lines are important on

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

621Chapter 40 ✦ Developing and Structuring Content

Web sites, too, but their tone and purpose must be much different to be effective. On
a Web site, users expect all the information they see to have some immediate
relevancy. So a good tagline should be informative and begin to talk immediately
about what the site does. An example of an effective tagline is from eBay’s site:

Buying new items, brand names, and collectibles on eBay is
simple. Here’s how it works. . .

This not only tells the Web site visitor what the site is about, but promises to
immediately offer help on how to take advantage of the services the Web site offers.

The difference between taglines and headlines is that a tagline is likely to be used in
many places throughout a site, whereas a headline is generally specific to one block
of content.

Jakob Neilsen recommends the following when developing taglines:

“First, collect the taglines from your own site and your three strongest
competitors. Print them in a bulleted list without identifying the company
names. Ask yourself whether you can tell which company does what. More
important, ask a handful of people outside your company the same question.

Second, look at how you present the company in the main copy on the home page.
Rewrite the text to say exactly the opposite. Would any company ever say that? If
not, you’re not saying much with your copy, either.”

Characteristics of Excellent Web Writing
Once you’ve drawn your readers in, you need to keep them. There are several
general guidelines to follow, many of them established through Jakob Nielsen’s
usability studies. Others have cropped up over the years (when 40 million or so Web
pages are up and running at the same time, there’s a good chance some people have
come to some conclusion about how Web development works).

Be concise
Most likely, whatever takes you 200 words to write can probably be done in 100. If
your budget allows, hire a professional writer, but if it doesn’t, be prepared to trim
your writing thoroughly. Keep in mind the impatience of your readers, and
remember that there is a good reason they’re impatient—the written word on
computer monitors is difficult on the eyes.

Creating easily scanned web pages
Since users are scanning your pages anyway, make it easy for them by doing the
following:

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

622 Part VI ✦ Principles of Professional Web Design and Development

✦ Use the strong tag or colored text (but not blue, unless it’s for a hyperlink) to
highlight keywords and a bold face font to highlight key points and words.
Generally, readers who scan can only pick up two or three words at a time, so
don’t highlight entire sentences. You should also highlight words that are
directly associated with topics of each page or section.

✦ Highlight words that differentiate one page from another page.

✦ Use the em element to render italics for figure captions or when you want to
introduce a word that needs to be defined. You can also use this element to add
emphasis to a specific word that doesn’t warrant highlighting.

✦ When you need to highlight entire sentences, use bulleted and numbered lists,
which slow down the scanning eye and draw attention to important points.

Maintaining credibility
Your Web site’s credibility is absolutely crucial to your long-term success. Part of
achieving credibility is avoiding marketing hype, and another part is making sure
that your content is accurate. If you do make claims about your service or products,
back them up somehow. One way to do that is to create informative case studies that
detail how your products or services have helped others achieve specific goals that
they may not have been able to reach without your help. You can also employ
testimonials, but tread lightly here, and avoid falling into the trap of marketing hype.
Any testimonials you use should be informative and useful.

Maintaining objectivity
Try to maintain objectivity, even though your Web site is about you, your services,
or your products. You might even want to include some information about who
shouldn’t use your service or product, if appropriate. This greatly enhances your
credibility with readers.

Maintaining focus and limiting verbosity
Keep your focus on your Web site by avoiding any tendency to provide unnecessary
detail and by keeping paragraphs limited to one main idea. Remember that it doesn’t
take much for a Web site user to stray away from your Web page.

Keep a consistent style throughout your Web site. In other words, try to make sure
your Web site has one “voice.”

Writing in a top-down style
When a newspaper reporter develops a story, he or she will start with the most
important topic and drill down as the story goes on. The reason for this dates back
to the old days of newspaper printing when editors often had to snip articles
wherever necessary to fit them within the space. Since these decisions were made

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

623Chapter 40 ✦ Developing and Structuring Content

quickly under the heat of a print deadline, reporters developed a style of article and
news story writing that made the decisions on where to cut off a story easy. The
details of a story were left for the end. The key points were made at the outset.

Because readers are the ultimate editors, certain aspects of this idea have been
ported to the Web. You should develop your Web site in a top-down manner (also
called pyramid style), because readers will also cut your story off quickly if they
don’t find relevant subject matter.

One difference between print pyramid style and Web pyramid style is that on the Web,
you should show your conclusions first, and then begin the top-down writing style.
You can mimic print articles in this way by making your headline your conclusion.

Another difference between Web and print pyramid style writing is that, as mentioned
earlier, readers tend to read in chunks. This can affect the top-down approach
somewhat, because you can’t assume a reader has read the first part of an article.

Using summaries
It may seem unnatural to put a summary at the beginning of a section, but that’s
exactly where you want to put it. In fact, there’s enough good writing on the Web that
users actually expect to see summaries or conclusions at the beginning of
paragraphs. This concept coincides with the inverted pyramid style of writing
described in the previous section.

Writing for the Web
The style of your Web writing should be directly linked to the concepts you’ve been
reading about so far in this chapter. Keep your Web content tight and focused, with
an inherent respect for your reader’s need to scan your Web site. You can extend this
concept into your writing style.

In yet another of many studies conducted by Jakob Neilsen, 51 Web users tested five
variations of a Web site using the same content, with each Web site consisting of a
different writing style than the others. According to the study, “one version was
written in a promotional style (“marketese”); one version was written to encourage
scanning; one was concise; one had an “objective,” or nonpromotional, writing style;
and one combined concise, scannable, and objective language into a single site.” The
study found significant improvements in reader recall when sites written in
promotional style were rewritten into a scannable format. In fact, although the
scanning-based style Web content fared the best, all the other styles performed
better than the marketese version.

Using bulleted lists
Bulleted lists are more frequently used on Web sites than on printed pages. They’re
generally used to explicitly detail points you’re trying to make. They’re an effective
way to highlight larger chunks of information, because sometimes highlighting just a

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

624 Part VI ✦ Principles of Professional Web Design and Development

keyword or two isn’t enough. But, if you overdo it, they lose their effectiveness. So,
try to limit a bulleted list to seven items or fewer, and each page should not have
more than two lists (one is better).

Using a controlled vocabulary
Now that you know the value of using keywords and meta information, it’s important
to know how to handle them in the body of your text. If you run amok with all kinds
of synonyms for important words, you’ll lose some search engine optimization
benefits, because your pages will rate higher if they contain words in the content
that match the keywords in your meta tags. Include in each page all possible query
terms that can be used to search for the topic on your page, and then make sure
those keywords appear in your meta tags.

Jargon and marketese
Jargon, especially on tech-related Web sites, can overwhelm readers who may be
unfamiliar with it. If you must use jargon, be absolutely sure of your audience’s
ability to comprehend it, and remember that many people who are new to your field
won’t be familiar with expressions, words, and acronyms you became accustomed to
a long time ago. If your industry is prone to jargon, even if you refrain from using it
on your site, Web site visitors will appreciate a Frequently Asked Questions (FAQ)
page that defines some of the jargon used by your industry.

Jargon, however, isn’t as dangerous as marketing hype in place of informative text.
According to Jakob Neilsen (www.useit.com/alertbox/9710a.html), “Users
detested ‘marketese’; the promotional writing style with boastful subjective claims
(‘hottest ever’) that currently is prevalent on the Web.”

Basic Site Components
Web sites are generally split into a number of different sections. The sections are
driven by categories, and each main category may have several subcategories. A
Web site will therefore consist of a category tree, with main branches that look
something like this:

✦ Company and/or organization information contains information about the
organization hosting the site. This may include subcategories containing
biographies of company or organization principals, contact information,
including maps, and other pertinent company data.

✦ Frequently Asked Questions (FAQ) pages answer commonly asked questions.
These aren’t necessarily questions that have been asked frequently at the time
your site goes live. They may simply be questions you feel you need to address
in anticipation of your users’ questions.

✦ Your home page acts as a central hub to all the main branches to the rest of
your site.

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

625Chapter 40 ✦ Developing and Structuring Content

✦ Links pages are specifically designed to provide additional resources for your
Web site visitors.

✦ What’s New pages keep your visitors informed about additions to your site.

✦ The table of contents can take many forms, including a map of your site and/or
well-designed menu systems.

Putting It All Together
Take a look at Figure 40-1, which is a screenshot of the company profile on the Wiley
Web site found at www.wiley.com. Note the way the text on the right side of the
page is sectioned off with easy-to-read section heads. The Web page also contains
easy-to-find links on the left-hand side that show the part of the category tree that is
relevant to the About Wiley link. Each section can be considered a branch (also
called a leaf) of the main category named “About Me.”

Figure 40-1: A category menu.

When you click the first leaf under About Me, Core Businesses, another group of
subcategories appears, as shown in Figure 40-2.

When you click a link in the subcategory, the link for that subcategory disappears, as
shown in Figure 40-3.

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

626 Part VI ✦ Principles of Professional Web Design and Development

Figure 40-2: A category menu for a subcategory.

Figure 40-3: The link in the subcategory disappears when that link is visited.

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

627Chapter 40 ✦ Developing and Structuring Content

The layout is organized in a way that will make sense to most visitors to the site. The
focus is on easy navigation. One exercise to give yourself is to take a few paragraphs
from the site (which is already well-written) and see if it’s possible to improve them.
Consider the following paragraph from the Company Profile page:

Wiley is a leading publisher for the scientific, technical, and medical (STM)
communities worldwide. Our STM programs encompass journals,
encyclopedias, and electronic products in subjects such as the life and
medical sciences, chemistry, statistics and mathematics, electrical and
electronics engineering, and select medical areas with an emphasis on cancer
medicine. Through Wiley InterScience, we provide academic and corporate
customers with online access to a broad range of STM content through
licensing agreements.

Notice that the preceding paragraph gets right to the point, and, in fact, acts as a
summary for the rest of the paragraph. The next paragraph “drills down” to provide
more detail:

Our professional/trade offerings include books and subscription products,
both print and electronic. We serve professionals and business people in
specialized markets, a strategy that permits greater product franchising and
market penetration. Subject areas include business, accounting, nonprofit
institution management, computers, psychology, architecture, engineering,
hospitality and culinary arts, and general interest.

The third paragraph reveals yet more detail:

We publish textbooks and other educational materials in print and online for
undergraduate and graduate students and lifelong learners. Our programs
are targeted to the sciences, engineering, mathematics, and accounting, with
growing positions in business, education, and modern languages. In Australia,
we are a leading publisher for the secondary school market.

By this time, many readers will have moved on, not because there is something
inherently wrong with the content, but simply because most users don’t have the
attention span to read through an entire section.

Another exercise is to review a paragraph’s contents and try to pick keywords that
should be entered into a meta tag, because the site currently doesn’t have any. For
example, the three paragraphs in our example show several possibilities for
keywords, which are in bold in each paragraph. The entire following string could be
pulled out of the second paragraph and be used for keywords:

business, accounting, nonprofit institution management, computers,
psychology, architecture, engineering, hospitality and culinary arts,
and general interest

The pages shown here from the Wiley site incorporate many of the concepts
discussed in this chapter. It consists of a well-designed navigational structure,
chunked text with well-defined highlight points, and succinct inverted pyramid-style

P1: JYS

WY022-40 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 8:36

628 Part VI ✦ Principles of Professional Web Design and Development

copy. Your own Web site will have its own special needs. You can learn a lot by
reviewing other sites, not only for what they’re doing right, but what they may be
doing wrong. As you review what other sites do, take the time to see if you can
determine what areas you’d improve on. Make some notes, and then begin to apply
these principles to your own site.

Summary
Did you read this whole chapter? Or, did you read the first few paragraphs and skip
on down to this summary? If you did skip down to the summary, remember that this
book has the advantage of being on a printed page. Your Web site has no such
advantage. It is subject to the whims of your users, who will be predisposed to skip
much of your content, not because they’re lazy or too rushed, but because looking at
the printed word on a computer screen is hard on the eyes.

You want to do everything you can to make your user’s experience more enjoyable
and fruitful. The next chapter, Designing for Usability and Accessibility, explores the
concepts of taking your user’s browsing experience to a higher level. It’s an
important chapter because it addresses issues affecting individuals who may have
difficulty accessing your site because of vision problems or other difficulties.
Today’s Web sites must not only be easily navigated and easy to read, but must be
accessible. Chapter 41 explores how to achieve accessibility and some of the laws
associated with this topic.

✦ ✦ ✦

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

4141C H A P T E R

Designing for
Usability and
Accessibility

✦ ✦ ✦ ✦

In This Chapter

Usability Issues

Accessibility Mandates

Accessibility Issues

✦ ✦ ✦ ✦Many of the principles of usability and accessibility are
the same. For example, making your Web site

consistent and easily navigated is not just common sense,
but a key tenet in usability and accessibility. But accessibility
takes the concepts a step further to take into account people
with disabilities. Making your Web site easy to use is a key
ingredient to your success. Early planning for both of these
concepts means the difference between spending just a little
time on usability and accessibility and spending a lot of time
on it.

Usability Analysis Methods
Consider using the following usability analysis methods when
planning your site:

✦ Hire an analyst. You can hire an analyst who is an expert on
Web site usability to compare your site to current usability
standards. This can be useful in identifying usability issues
but relies on the strengths, or lack of strengths, of the analyst.

✦ Use focus groups. You can bring in focus groups that share
your target demographic and ask them to work with your
Web site under closely monitored conditions that record
every kind of issue that occurs. The idea is to acquire as
much feedback as possible about such issues as navigation,
site functionality, and overall Web site usability. Most focus
groups consist of 10 to 20 participants. You can also set up
smaller, more intimate labs with four or five participants.

✦ Post surveys on your site to obtain responses from a larger
sample size than focus groups can offer. This is obviously the
route to go if you’re short on cash because smaller Web sites
can likely not afford focus groups. Typical questions should

629

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

630 Part VI ✦ Principles of Professional Web Design and Development

focus on the usability of the site, including such topics as navigation, ease of
purchase (if a shopping component exists on your site), and so on. The
statistical sampling of respondents is not quite as accurate as a focus group
might be, but this is offset somewhat by a larger sample size, which will at least
reveal common problems. If a large majority of survey respondents tell you the
navigation on your site is troublesome, it probably is.

✦ Perform server log analysis. You can examine your Web site’s server requests
made by real users to a Web site to review server performance and which
pages visitors visit. A number of software programs make reviewing your Web
server logs easy and productive. These analysis tools help analyze basic
performance such as document requests and the routes people take to get to
your site, but they can’t make any real quantitative or qualitative analyses on
user motivation and experience or your Web site’s usability.

✦ Employ data-driven site analysis. You can spend some extra money and perform
data-driven site analysis that reviews events from users as they occur. These
events are more detailed than simple Web server logs and include such things
as how a user works with forms on your site—which selections they make from
form selection boxes, how many characters are used to fill out a form text field,
and so on. This can improve the usability of your site’s Web forms and enable
you to perform what is known as hill climbing, which is a technique that lets
you make incremental improvements to your Web site based on user input
over a period of time.

How People Use the Web
It may sound like a ridiculous question, but one of the things to be asking yourself
when setting up your Web site is, “How do people use the Web?” This is an important
usability question, because it makes us explore the human experience with the Web.

Most developers are in a hurry. Time to market is always a consideration, even with
the largest Web sites, some of which have intense production schedules that don’t
leave as much room for quality control as one might prefer. When a Web site doesn’t
perform as expected, the user experience suffers, and a potential regular visitor may
be lost. If a form doesn’t work, especially after a user enters a lot of information, that
user is going to think hard about visiting again.

If anyone is in more of a hurry than developers, it’s users. Web users use Web sites
as if they’re in a hurry even if they’re not. Something about Web sites makes users
impatient. You have to design and construct your site with that in mind, and
remember to keep the user experience as painless as possible.

Principles of Web Site Usability
How do you make a Web site painless? You avoid distractions, make your pages
error-free (test, test, and test again), make your Web site well organized and logical,
and provide lots of navigational cues to help your users on their journey.

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

631Chapter 41 ✦ Designing for Usability and Accessibility

Consistency and ease of use are the order of the day. Some Web usability experts
even recommend that you copy the design of the most successful sites. While that is
probably an extreme nod towards usability, do study the successful sites and try to
find out what it is about them that makes them successful. In the meantime, read on
for details on the theories and best practices that are prevalent today.

Usability Issues
Usability is not just about convenience and the lack of errors that should be the
hallmark of your Web site. In the long run, it means you must also be aware of your
users’ comfort level and disabilities. If you take care to make sure your Web site is
usable for people with disabilities, you can be sure that the site will be usable for
others.

Advertising
Advertising is a necessary evil for many sites that depend on revenue to stay afloat,
but there are some obvious things to avoid:

✦ Looping animations simply drive people crazy and are as bad as the old
blink tag.

✦ Pop-up ads. Usability studies show that not only are they not particularly
effective, but that they instill negative feelings towards Web sites that use them.

✦ Flash interstitials are Flash-based ads that dance across the screen or pop up
in front of content the reader is trying to read. They are often difficult for users
to close, because there is no standard for closing them. Using these is
tantamount to asking your Web visitor to leave.

If you need to use advertising, consider creative ways to do so. Maybe you can find a
sponsor for your site that will add a tagline at the end of all your articles with a link
to the sponsor site. Or, you can use unobtrusive banner ads. The main thing to
remember is to use advertising with care.

Animation, multimedia and applets
The biggest thing to remember about animation and applets is you should use with
extreme caution. If that sounds familiar, it’s because you just read that same thing
about advertising. That’s no coincidence, as much online advertising is animated.
For example, is there a business reason for using a Flash animation, or are you just
tempted by them because they’re cool. Keep in mind, one of the most frequently
clicked links on a Flash presentation is “Skip Intro.” If you’re absolutely compelled to
use animation, be sure they don’t loop (repeat over and over). In addition, avoid
scrolling text and anything in the marquee or blink elements.

Another annoyance for many Web site users is an opening sound that turns on when
you visit a site. This can be especially troublesome in work environments. Users may

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

632 Part VI ✦ Principles of Professional Web Design and Development

feel a genuine business need to visit your site during business hours and may in fact
be doing business for their company through your Web site, but if sound or music
greets them when visiting, they may flee. Worse, they may feel embarrassed for
having initiated your musical background and never return.

Color and links
Most usability studies suggest that white backgrounds are easiest on the eyes. Black
backgrounds tend to be more difficult. Maintain current standards when establishing
the colors for your links: links to pages that have not been visited by the user are
blue; links to previously seen pages are purple or red. Some usability experts
maintain that you should not deviate from the underlining method of linking, but
more and more developers are finding that text simply highlighted in blue combined
with a a:hover CSS style definition that changes the color when a user’s mouse
hovers over the text doesn’t negatively affect usability and may even improve it.

You should also avoid giving archived items new URLs. When designing your site
structure, design it in a way that stories can be stored in a specific directory
permanently, and maintain the link to that site indefinitely.

Maintaining consistency
Make sure you have common layout for your all of your Web pages and be sure that
the location of your title, logo, navigation, and content are all consistent from page
to page. In addition, your navigational links and/or menus should be placed within
the first screen your Web user encounters on any given page so they don’t have to
scroll to find the links.

Contents
The first screen fold, which is the first screen users see, is the most important,
because it’s what determines whether or not users will remain on your site. If the
first screen takes a long time to download and doesn’t immediately specify pertinent
information to the user, users will never go to a second screen.

Drop-down menus
You can create drop-down menus using JavaScript to conserve space. Drop-down
menus can be very helpful if they’re done right. But often drop-down menus don’t
work, they flicker, or the user has to get the mouse over just the right menu at just the
right spot to make it work. If you use drop-down menus, make sure they’re airtight.

Fonts and font size
Fonts should be readable. That sounds obvious, but many of today’s sites have very
small type. This is a strain on anyone with vision that isn’t excellent, which is a large
proportion of any population. Generally, serif typefaces are easier to read than
sans-serif.

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

633Chapter 41 ✦ Designing for Usability and Accessibility

One general survey of the Web found that a majority of sites use 12-point fonts
(size= 3) for most written content. Check out the survey at http://psychology
.wichita.edu/surl/usabilitynews/3S/font.htm.

The same study also rated the best fonts for reading times and ease.

Whatever you do, be consistent. Don’t change your site’s font. If the stories on one
page are Times or serif, all of them should be.

Using frames
Frames were once highly popular with Web site designers, but never with users.
They can cause fundamental problems with your Web site’s navigation, especially
with older browsers (which are admittedly becoming less of an issue as users
upgrade). Note that the functionality of frames can be easily duplicated by using
server-side includes. All major Web site servers support a scripting language
capable of using server-side includes, so in today’s modern Web environment the
excuses for using frames are gone.

Including graphics
Graphics should be related to what you or your Web site offers, rather than acting as
eye candy. Of course, having eye candy that speaks to what your Web site does is
perfectly fine, but creating flashy imagery, especially that found from stock images
(which means someone else may be using the same thing) can be detrimental. Also,
be wary of download times. Optimize your graphics wherever possible. Long
download times resulting from large images (in number of bytes, not necessarily
screen size) can prompt visitors to quickly scan for faster sites.

You’ll often see thumbnails that lead to larger images on many sites. This is a good
compromise between the need for graphics and the need for fast download time, but
be careful not to resize the image using the img element’s attributes. You need to
resize an image in your graphics editor before bringing it into your Web page.

Headings
Always use headings when developing headlines, because they’re structured for that
purpose and are interpreted by accessibility software (software for aiding disabled
persons) correctly as headlines, whereas a CSS-styled sentence with large type will
not be interpreted as a headline by such software. If you don’t like the space
between an H1 element and a paragraph, try to become accustomed to it. Your Web
site viewers are fine with it.

Horizontal scrolling
Avoid forcing the user to scroll horizontally by using flex tables, which are tables
that use widths based on screen size. For example, the following table will take

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

634 Part VI ✦ Principles of Professional Web Design and Development

up100% of the screen, and content will collapse and expand when a user resizes the
window. See Figures 41-1 and 41-2 for examples to see how a flex table can influence
the way content looks in a resized window.

<table width=“100%” border=“0” cellspacing=“0”
cellpadding=“0”>

<tr>
<td>Even though this is a very long line, it will collapse when the

browser window is resized. This is because you have a width that is relative
to the size of the browser window, instead of a set width of, for example 100
(width=“100”) pixels.</td>

</tr>
</table>

Figure 41-1: A flex table as rendered in a full-sized browser window.

JavaScript
We can’t tell you not to use JavaScript because virtually every major site uses it, but
we can tell you that if your JavaScript produces errors your visitors will flee. It’s
absolutely essential that your JavaScript be airtight. If you use JavaScript, get a good
debugger. The newest versions of the Mozilla browser, which is free, contain
excellent JavaScript debugging tools.

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

635Chapter 41 ✦ Designing for Usability and Accessibility

Figure 41-2: A flex table as rendered in a re-sized browser window.

Legibility
Making sure your Web site is legible is another important aspect to usability. Areas of
concern to you should include the following:

✦ Line length. Keep your sentences short. Keep your paragraphs short. Keep
everything short. People are in a hurry. You don’t want them to leave in
mid-sentence.

✦ Novice versus expert users. Keep in mind that not all your users are experts. It’s
possible that your some of your visitors have been surfing the Web for a very
short period of time. Some people still double-clickWeb site links. Keep these
users in mind as you prepare your site.

✦ Page length. Generally, your Web pages still shouldn’t force readers to scroll
down very far, although usability studies are showing that today’s Web users
are more willing to scroll than before. It’s still a good idea to keep Web content
chunked (as discussed in the previous chapter), and to keep each chunk on a
separate page. Hyperlinks are a very good tool and make extremely long pages
unnecessary.

✦ Page width. Users don’t like to scroll right, so don’t make them. Use flex tables
if you want to be sure users won’t have to scroll right (flex tables use widths of
percentage-based units instead of pixel based units).

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

636 Part VI ✦ Principles of Professional Web Design and Development

✦ Personalization. Users have been shown to be willing to register to a site if they
can have some customized preferences. If you can drop a cookie that greets
your Web visitor the next time he or she visits your site, you’ll improve your
chances of obtaining return visits.

Searches
If your site has a lot of pages (100 pages or more is the hard and fast rule, but if you
have 50 pages or more you should consider it), you should include a search box on
your main (home) page with the word “search” next to it. You don’t even need to
develop your own search engine to create a search tool. Google offers a free search
utility that you can plug into your own site. Another free tool is Atomz (www
.atomz.com). Both of these services search your site and return results specific to
your site only.

Sitemaps
Provide a link to a sitemap that maps out all the major areas of your Web site. This
map can appear on its own page and usually consist of category trees showing all of
your site’s categories and major subcategories.

Sitemaps can double as tables of content, and some Web sites place them directly on
their home page and use them as their primary navigation tool.

URL length
Try to keep the length of your URLs as short as possible. If you work with server-side
queries and updates, this advice can come in conflict with the way action=post
and action=get attribute/value pairs work with forms. The post value should
generally be reserved for updating databases, rather than simply querying them.
This is because the browser caches form data and will ask the users if they want to
reload a page when they hit the back button and later return to a page that results
from a database query. This can be annoying to users and can be avoided by using
the get value in a form action attribute when performing such tasks as simple
database queries. The downside of using get is that the query shows up in the
browser’s URL address window. You need to decide which of those two situations is
worse. If you’re updating data, you should always use post.

Taglines
Conventional wisdom in today’s Web world is that all Web sites should have a tagline
that identifies what the owner of a Web site does. It doesn’t need to be more than
one line, although it needs to be clear and, as mentioned in the preceding chapter,
should not consist of marketing hype. It’s better to say something like, “Sellers of
antique Edwardian furniture,” than “The best antique furniture in the world.” Be as

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

637Chapter 41 ✦ Designing for Usability and Accessibility

specific as possible in as few words as possible and allow your visitors to move on,
hopefully to another section on your site.

Windows 1252 character set
The bottom line on this character set is, don’t use it unless you’re absolutely sure
everyone reading your site is an American or Western European using the Windows
operating system. Use the encoding that is appropriate for your Web site’s audience.
Most Western encodings should look like this:

<meta http-equiv=“Content-Type” content=“text/html;
charset=iso-8859-1”>

The Need for Accessibility
How do you feel about shutting out 20% of all Web surfers from your site from the
moment you go live? If you don’t account for individuals with disabilities when you
start up a Web site, that’s exactly what you’re doing. According to the National
Institute on Disability and Rehabilitation, 19.4% of noninstitutionalized civilians in
the United States had a disability in 1996. That comes out to 48.9 million people.
Nearly half were considered to have a severe disability (www.infouse.com/
disabilitydata/p4.textgfx.html).

Nine percent of all Web users have a disability, half of whom are blind or visually
impaired, according to a study by Georgia Tech University (www.gvu.gatech
.edu/user_surveys/).

If that doesn’t convince you of the need for adapting to accessibility guidelines, here
are a few more reasons to think about. By creating a Web site with high usability
standards, you accomplish the following:

✦ You demonstrate good citizenship by not discriminating against people with
disabilities.

✦ You reduce the risk of litigation, costly settlements, unfavorable publicity, and
potential loss of business.

✦ You appeal to baby boomers in the U.S., a large and aging market segment that
will be a contributing factor to the overall growth of disabled people in the
United States as they enter into late adulthood.

✦ You gain an edge on an important market, because nearly 10% of all American
Web users are disabled, along with approximately 750 million people
worldwide. These people have an income of more than $188 billion U.S.
dollars.

✦ You comply with federally regulated guidelines and best practices, as
governments all over the world have enacted laws and regulations mandating
Web site accessibility.

✦ You provide access to wireless devices.

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

638 Part VI ✦ Principles of Professional Web Design and Development

Accessibility Mandates
If you’re not motivated to improve accessibility by the inherent kindness in your
heart or by the hard numbers of lost market share, there are always laws to consider.
The United States, for example, has laws on the books that can make certain kinds of
Web sites, especially those that have business with the Federal government, liable
for criminal and civil damages if they don’t comply with certain laws and regulations.

Americans with Disabilities Act
Although technically only Web sites associated with the federal government
(including contractors) need to comply with the Americans With Disabilities Act
(ADA), any Web site that doesn’t follow its mandates may be potential targets for
lawsuits. Those are the legal justifications for operating an accessible Web site.
There are obvious moral and ethical considerations, as well.

There are a number of considerations when designing for ADA compliance. For
example, use colors, fonts, and graphics with restraint by following these
guidelines:

✦ Avoid the use of more than two or three colors (not including white) and three
font sizes (which is just good design, anyway).

✦ Use bold and italic sparingly (for titles and occasional emphasis), and avoid
underlining plain text (people often mistake underlined plain text as a link).

✦ Since 8–12% of the population is color blind, be careful with colors, and be sure
to provide good contrast between text and the Web page background. The
truth is, nothing is better than black on white when it comes to readability.

✦ Minimize the use of textured backgrounds, and when using them, keep them at
a low contrast, especially when mixing font and link colors on a colored
background.

✦ Avoid animations, especially looping animations, which can be a sufficient
enough distraction to people with some learning disabilities that they may find
your Web pages unreadable.

International
Additional U.S. and international guidelines and laws exist regarding accessibility,
including the Telecommunications Act (Section 255) of 1996 in the United States, the
Information Society Europe Action Plan, and the Beijing Declarations on the Rights of
People with Disabilities established by the UN.

In addition, the W3C has established the Web Content Accessibility Initiative. By
following the rules established by the W3C, you go a long way toward ensuring you’ll
be in compliance with the growing amount of international law regarding Web
accessibility.

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

639Chapter 41 ✦ Designing for Usability and Accessibility

Web Content Accessibility Initiative (W3C)
The W3C’s Web Accessibility Initiative (WAI) provides a comprehensive Web site
containing substantial amounts of information and resources regarding ways to
make your Web site more accessible. The WAI publishes guidelines for browsers,
Web authors, and authoring tools, and sponsors education and outreach efforts
aimed at enhancing developer knowledge and sensitivity to the issue.

A number of disabilities can affect a user’s ability to access your Web page. These
include the following:

✦ Visual disabilities

✦ Hearing disabilities

✦ Mobility-related disabilities

✦ Cognitive and learning disabilities

Accommodating visual disabilities
Individuals who are blind, have low vision, or color blindness have a very difficult
time accessing your site if you don’t accommodate them. Poor vision can render
the sharpest, cleanest, and most impressive-looking Web designs completely
unusable.

The one device most users take for granted, the mouse, is virtually worthless to a
person with low or no vision because it requires hand-eye coordination. Images are
useless on a Web page to someone with a visual impairment if you don’t offer text
values for them in an img element’s alt attribute.

Similarly, you should make use of tabindex attributes to help users with disabilities
make selections, because the computer’s Tab key is used to move the focus to the
item that needs to be selected. The tabindex attribute lets you customize the
tabbing sequence by letting you assign indexed values to a form element. For
example, in the following code fragment the first element is chosen, then the next,
when the user hits the tab button:

<form action=“this.htm” method=“get”>
<input name=“input1” type=“text” tabindex=“1”>

<input name=“input2” type=“text” tabindex=“1”>
</form>

The default behavior of form widgets is that the tab index is based on the
appearance in document order of each widget. The tabindex attribute allows you
to override that behavior. When a device such as a screen reader tracks the user’s
tabbing, it alerts the user with a spoken voice that the user has found the item. This
helps a user keep track of his or her place on a page. Instead of clicking the mouse,
the user presses the Enter key to make a selection.

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

640 Part VI ✦ Principles of Professional Web Design and Development

These are all things you can do easily to help your Web users enjoy your site. You
should focus on using traditional HTML markup, such as em and strong elements,
instead of b and i elements to emphasize points in your markup, because visual
assistance software will often handle them better. You should also use one of the
headline elements, such as H1, to create headlines. If you use style sheets and
regular text, visual assistance software will likely not interpret markup that isn’t
wrapped in h1 or h2 (and so on) elements as headlines. This is an important
consideration, as many designers like to avoid headline elements because of the gap
between a headline and the headline’s associated text content.

Providing access to the hearing-impaired
Individuals with hearing disabilities will not get anything out of your auditory
masterpieces, so they’ll need a way to extract textual information from them. To
accomplish this, you can employ closed captioning, blinking error messages, and
transcripts of the spoken audio that your users can download.

Helping users with mobility disabilities
People with physical impairments that substantially limit movement and motor
controls generally find the mouse and other input devices difficult to work with and
require the use of devices designed to assist the user. For example, an assistive
device can allow the user to enter a key sequence to reboot a computer, instead of
relying on the Ctrl+Alt+Delete key combination. You can’t do too many things as a
Web designer to address the needs of individuals with mobility disabilities, but by
making your Web site accessible in general, you help the users’ assistant devices
work better.

Addressing those with cognitive
and learning disabilities
Providing sensible organization and navigation is an important way to assist people
with cognitive or learning disabilities. If someone has dyslexia, for example,
providing a consistent navigational framework provides reminders about how to
move around the site. You can alleviate short-term memory disabilities by providing
an audio version of a Web page that a Web page user can listen to while reading the
page.

Tools you can use
Most of the barriers people with disabilities face can be eliminated, especially if you
incorporate accessibility into your Web site at the onset.

A number of tools help you help disabled users access your site. Making yourself
aware of these tools and understanding how to develop your HTML accordingly will

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

641Chapter 41 ✦ Designing for Usability and Accessibility

have a significant positive impact on your users. Among these tools are the
following:

✦ Magnifiers

✦ Screen readers

✦ Closed captioning

✦ Keyboard enhancements

✦ Highlighting software

Table 41-1 shows a series of HTML tools you can use to help your Web pages interact
with the tools disabled people use with their computers.

Table 41-1
HTML Techniques for Enhancing Accessibility

Tool Technique to Use for Accessibility

Applets, plug-ins, and non-HTML
content

Provide links to accessible applets, plug-ins, and
other non-HTML content, or provide alternative
content

Blinking, moving or flickering content Avoid causing content to blink, flicker, or move

Cascading Style Sheets Be certain your Web pages are readable without
style sheets

Color and contrast Ensure that all information conveyed with color is
also conveyed in the absence of color

Forms Make forms accessible to assistive browsing
technology

Frames Create a title for each frame element and frame
page, and be sure each frame has an accessible
source

Graphs and charts Summarize the content of each graph and chart,
or use the longdesc attribute to link to the
description or data:

<img src=“/images/test.gif”
style=“width: 400px; height: 200px;
border: none;” alt=“Pie chart of honest
politicians in 2004”
longdesc=“http://www.mywebsite
.com/politicians.html”>

Continued

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

642 Part VI ✦ Principles of Professional Web Design and Development

Table 41-1 (continued)

Tool Technique to Use for Accessibility

Or, you can provide a hidden link that a voice browser
will pick up, but would be invisible in a conventional
browser on a page with a white background color:

<span style=“font-size: 1pt; color:
White;”><a href=“
http://www.mywebsite.com/politicians.html”
title=“Link to a pie chart showing number of
honest politicians circa 2004”>d

Image maps Try to avoid server-side image maps. If you must use
them, provide matching text links. You should rely on
client-side image maps wherever possible, and use
alternative text for image map hot spots. If a server-side
map is needed, provide equivalent text links

Images and animations Use the alt=“text” attribute to provide text
equivalents for images. Use alt=“” for images that do
not convey important information or convey redundant
information

Multimedia Provide captions and/or transcripts of important audio
content. Provide transcripts or audio descriptions of
important video content

Scripts If script-based Web site content is not accessible, provide
alternative content

Skip to main content Offer alternatives to navigation links on content pages so
that users aren’t forced to deal with long navigation
widgets. They should be able to skip directly to the
page’s main content

Table headers, tables Use the th element to mark up table heading cells

Text-only page Provide a text-only page with equivalent information or
functionality when accessibility can be created in other
ways

Timed responses Be careful with session time outs, so that users with
disabilities aren’t forced to rush through a series
of forms

Verify accessibility Test your Web site’s accessibility using available tools
such as Bobby

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

643Chapter 41 ✦ Designing for Usability and Accessibility

Using forms and PDF
Online forms should have a Telecommunications Device for the Deaf (TDD) phone
number available so that persons with disabilities can call your company or
organization instead of worrying about how to fill out an online form. Even PDF files
can be made accessible using a new “Make Accessible” command that creates a
specially tagged PDF file that can be read by screen readers.

Checking accessibility using a validation service
After you’re finished with your Web site and feel comfortable that you’ve made your
Web site accessible, you can validate your site using a third-party tool. One such tool
is called Bobby (http://bobby.watchfire.com/bobby/html/en/index.jsp).

Summary
Don’t look at establishing solid usability and accessibility as a burden. By ignoring
this issue, you’re cutting off a huge segment of potential Web visitors. If you consider
these issues early in your planning, you’ll be able to accomplish your goal with a
surprising small amount of work. On the other hand, if you ignore usability and
accessibility and find yourself either suddenly enlightened later or forced into
implementing accessibility later on, you’ll find it expensive and time-consuming.
Your best bet is to start now.

✦ ✦ ✦

P1: KTU

WY022-41 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 19:49

644

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

4242C H A P T E R

Designing for an
International
Audience

✦ ✦ ✦ ✦

In This Chapter

Principles of
Internationalization and
Localization

Introduction to Web
Internationalization

Understanding Unicode

✦ ✦ ✦ ✦

Even though this book is written in English, chances are
it will be translated into other languages. From a Web site

perspective, if your site is only in English, you may eliminate a
huge portion of your potential world market. This chapter
takes a look at some options for improving your reach to the
world’s population.

Principles of Internationalization
and Localization

Most Web pages are written in English, but only 5% of the
world’s population uses English as their first language. Many
Web sites are responding to this reality by implementing
localization, which is the process of creating several mirrored
Web sites in different languages. By simply including Japanese,
Chinese, German, French, Swedish, and Portuguese into your
Web site, you’re suddenly speaking to a clear majority of the
world’s population. Obviously, this isn’t an option for small
sites or for companies or organizations that haven’t yet
developed the resources for reaching an international
audience, but localization is something you should consider as
soon as it is practical.

Introduction to Web
Internationalization Issues

The first step in dealing with internationalization and
localization is determining your target audience. You will need
to find out how many international visitors view your site, and
whether targeting them is feasible.

645

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

646 Part VI ✦ Principles of Professional Web Design and Development

You may only need to translate a portion of your site, but translation is obviously an
essential first ingredient to localization. Setting aside translation resources is an
important early step in your localization efforts.

Translating your Web site
More goes into localization than simply translating from one language to another.
One of the more famous examples of how direct translation can actually hurt you is
the well known “Got Milk?” campaign, which according to translation experts at The
RWS Group (www.translate.com) translates to “Are you lactating?” in Spanish,
which is most likely not the desired message.

Tip You can acquire free localization software from The RWS Group at: www
.translate.com/locales/en-US/index.html?init_page=default.

For this reason, you should try to find native speakers of any language you are
translating to. This can be an expensive proposition, and may not be an option if you
run a small site that is only marginally profitable. But if you have already made the
decision to localize, it’s important to do it right.

You can also use online translation services at such Web sites as www.etranslate
.com, which claims to have 6,000 translators worldwide. There are also service
bureaus specializing in translation services, such as the well-known language
services company, Berlitz.

If you’re on a tight budget but you need to localize some content, you can try one of
the machine-based translation services available, such as those used by some search
engines to provide on-the-fly translation of Web pages. One such option is Systran’s
Babel Fish, which can be found via AltaVista at http://world.altavista
.com/tr/.

This free service lets you translate a block of text. This is most helpful if your pages
are simply written (without slang) and technical in nature, rather than creative or
humorous. Humor often doesn’t translate well to other languages. Dry and technical
documents translate well when you need to rely on less expensive translation
methods.

On the opposite end of the spectrum are translation software environments for
large-scale enterprise systems by companies such as Idiom, Inc., (www.idiominc
.com/), which offers a global content management system that enables users to use
template-driven translation modules. A typical implementation allows translators to
replace text values (contained within XSLT variables or parameters, for example)
with localized content. These kinds of systems are not inexpensive, but they are very
efficient and help streamline the localization process, as well as provide
accountability in large-scale operations.

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

647Chapter 42 ✦ Designing for an International Audience

Understanding Unicode
Unicode is a standard developed by The Unicode Consortium for processing the
world’s alphabets in a consistent way. The Unicode Consortium is made up of
universities, research institutes, companies, and other interested parties dedicated
to creating an international standard for the way languages are represented to
computers. Unicode consists of a vast number of tables each containing numerical
references to an alphanumeric character. For example, the English letter A is
represented by the hexadecimal number 0041 and the decimal number 65. Every
character in nearly every written language in the world is represented in Unicode, as
shown in Table 42-1, which shows the starting and ending hexadecimal-based
numerical references for each encoding.

Table 42-1
Alphabets Represented in Unicode

Start Code End Code Block Name

\u0000 \u007F Basic Latin

\u0080 \u00FF Latin-1 Supplement

\u0100 \u017F Latin Extended-A

\u0180 \u024F Latin Extended-B

\u0250 \u02AF IPA Extensions

\u02B0 \u02FF Spacing Modifier Letters

\u0300 \u036F Combining Diacritical Marks

\u0370 \u03FF Greek

\u0400 \u04FF Cyrillic

\u0530 \u058F Armenian

\u0590 \u05FF Hebrew

\u0600 \u06FF Arabic

\u0900 \u097F Devanagari

\u0980 \u09FF Bengali

\u0A00 \u0A7F Gurmukhi

\u0A80 \u0AFF Gujarati

\u0B00 \u0B7F Oriya

Continued

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

648 Part VI ✦ Principles of Professional Web Design and Development

Table 42-1 (continued)

Start Code End Code Block Name

\u0B80 \u0BFF Tamil

\u0C00 \u0C7F Telugu

\u0C80 \u0CFF Kannada

\u0D00 \u0D7F Malayalam

\u0E00 \u0E7F Thai

\u0E80 \u0EFF Lao

\u0F00 \u0FBF Tibetan

\u10A0 \u10FF Georgian

\u1100 \u11FF Hangul Jamo

\u1E00 \u1EFF Latin Extended Additional

\u1F00 \u1FFF Greek Extended

\u2000 \u206F General punctuation

\u2070 \u209F Superscripts and subscripts

\u20A0 \u20CF Currency symbols

\u20D0 \u20FF Combining marks for symbols

\u2100 \u214F Letterlink symbols

\u2150 \u218F Number forms

\u2190 \u21FF Arrows

\u2200 \u22FF Mathematical operators

\u2300 \u23FF Miscellaneous technical

\u2400 \u243F Control pictures

\u2440 \u245F Optical character recognition

\u2460 \u24FF Enclosed alphanumerics

\u2500 \u257F Box drawing

\u2580 \u259F Block elements

\u25A0 \u25FF Geometric shapes

\u2600 \u26FF Miscellaneous symbols

\u2700 \u27BF Dingbats

\u3000 \u303F CJK symbols and punctuation

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

649Chapter 42 ✦ Designing for an International Audience

Start Code End Code Block Name

\u3040 \u309F Hiragana

\u30A0 \u30FF Katakana

\u3100 \u312F Bopomofo

\u3130 \u318F Hangul Compatibility Jamo

\u3190 \u319F Kanbun

\u3200 \u32FF Enclosed CJK letters and months

\u3300 \u33FF CJK Compatibility

\u4E00 \u9FFF CJK Unified Ideographs

\uAC00 \uD7A3 Hangul syllables

\uD800 \uDB7F High surrogates

\uDB80 \uDBFF High private use surrogates

\uDC00 \uDFFF Low surrogates

\uE000 \uF8FF Private use

\uF900 \uFAFF CJK Compatibility Ideographs

\uFB00 \Ufb4F Alphabetic presentation forms

\uFB50 \uFDFF Arabic Presentation Forms-A

\uFE20 \uFE2F Combining Half Marks

\uFE30 \uFE4F CJK Compatibility Forms

\uFE50 \uFE6F Small Form Variants

\uFE70 \uFEFF Arabic Presentation Forms-B

\uFF00 \uFFEF Halfwidth and Fullwidth Forms

\uFEFF \uFEFF Specials

\uFFF0 \uFFFF Specials

Unicode tables are called code pages, and each one serves a specific set of languages.
Each code page consists of a table of numerical references to each letter. Each row in
Table 42-1 represents a code page. Each code page, in turn, consists of several rows
of numerical reference values mapping each character of the alphabet defined by the
code page. You could write the following in your HTML using one of the Unicode
encodings, such as UTF-8, and a modern browser would render it as “Hello
World”:

Hello World

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

650 Part VI ✦ Principles of Professional Web Design and Development

To get a handle on how this works, let’s examine a code page most of us are familiar
with, Basic Latin.

Basic Latin (U+0000 - U+007F)
All nations in America, most European nations, most African nations, as well as
Australia and New Zealand all use the Latin encoding. In Unicode, the Latin encoding
is broken down into different parts. The most basic is called Basic Latin. Only
a few languages can be written entirely with a Basic Latin encoding. You generally
need to incorporate additional Latin encodings because Basic Latin consists of
only characters between 0 and 7F (hexadecimal). When you are using UTF-8 as your
encoding, all of these Latin encodings are automatically included as part of the UTF-8
encoding. In fact, Unicode-based UTF-8 includes most of the world’s written languages.

ISO-8859-1
If you are working on Web sites for Western audiences, you will most likely use
ISO-8859-1, which, although not officially a subset of UTF-8, does map out to the Latin
Basic and Latin Extended A Unicode sets.

This character encoding contains many of the numerical references included in the
US-ASCII encoding (ISO/IEC 646), which is not actually a part of the Unicode standard
and predates it. Certain numeric references in ASCII are not defined by the Unicode
Standard. In addition, certain numeric references are different in Macintosh-based
code pages and Windows-based code pages, which is why you’ll sometimes
encounter problems when transferring files between the two platforms. Unicode and
ISO-defined encodings are defined by different international bodies. The Unicode
standard, as previously mentioned, is defined by The Unicode Consortium, whereas
ISO encodings are defined by International Organization for Standardization (ISO). In
addition, the code pages used by Macintosh and Windows in earlier days, although
based on ASCII, actually had a few small variations that were incompatible with each
other. For example, the decimal-based code point (another word for numerical
reference) for the “registered” mark (®) are different for Macintosh and Windows
encodings (168 and 174, respectively), and is 174 in Unicode.

Luckily, the most familiar encoding to Western HTML developers, ISO-8859-1, is a
subset of Unicode and can be used safely because most modern browsers now
support Unicode. Although ISO-8859-1 is not part of the Unicode standard, the two
bodies governing both standards have worked together to standardize the models to
avoid driving everyone crazy.

The entire set of ISO-8859-1 numeric references can be found at http://www.w3
.org/MarkUp/html3/latin1.html.

Table 42-2 shows the entities you are likely to encounter as an HTML developer. If
your encoding is UTF-8, you can use the decimal references, but for compatibility
with older browsers you should use HTML entities, because many older browsers
don’t support Unicode.

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

651Chapter 42 ✦ Designing for an International Audience

Table 42-2
ISO-8859-1 HTML Entities

Decimal-based Character as it
Description Code Value HTML Entity appears on Web Page

quotation mark " " ”

Ampersand & & &

less-than sign < < <

greater-than sign > > >

nonbreaking space

inverted exclamation ¡ ¡ ¡

cent sign ¢ ¢ ¢

pound sterling £ £ £

general currency sign ¤ ¤ ¤

yen sign ¥ ¥ ¥ ¥

broken vertical bar ¦ &brkbar; &brkbar;

section sign § § § § §

umlaut (dieresis) ¨ ¨ ¨ ¨

Copyright © © ©

feminine ordinal ª ª a

left angle quote, « « «
guillemotleft

not sign ¬ ¬

soft hyphen ­ ­

registered trademark ® ® ®

macron accent ¯ ¯ ¯

degree sign ° ° ˚

plus or minus ± ± ±

superscript two ² ² 2

superscript three ³ ³ 3

acute accent ´ ´ ’

micro sign µ µ µ

paragraph sign ¶ ¶

Continued

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

652 Part VI ✦ Principles of Professional Web Design and Development

Table 42-2 (continued)

Decimal-based Character as it
Description Code Value HTML Entity appears on Web Page

middle dot · · •

Cedilla ¸ ¸ ¸

superscript one ¹ ¹ 1

masculine ordinal º º o

right angle quote,
guillemotright

» » »

fraction one-fourth ¼ ¼ 1/4

fraction one-half ½ ½ 1/2

fraction three-fourths ¾ ¾ 3/4

inverted question mark ¿ ¿ ¿

capital A, grave accent À À À

capital A, acute accent Á Á Á

capital A, circumflex
accent

Â Â Â

capital A, tilde Ã Ã Ã

capital A, dieresis or
umlaut mark

Ä Ä Ä

capital A, ring Å Å Å

capital AE diphthong
(ligature)

Æ Æ Æ

capital C, cedilla Ç Ç ç

capital E, grave accent È È È

capital E, acute accent É É É

capital E, circumflex
accent

Ê Ê Ê

capital E, dieresis or
umlaut mark

Ë Ë Ë

capital I, grave accent Ì Ì Ì

capital I, acute accent Í Í Í

capital I, circumflex accent Î Î Î

capital I, dieresis or
umlaut mark

Ï Ï Ï

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

653Chapter 42 ✦ Designing for an International Audience

Decimal-based Character as it
Description Code Value HTML Entity appears on Web Page

capital Eth, Icelandic Ð Ð Đ

capital N, tilde Ñ Ñ Ñ

capital O, grave accent Ò Ò Ò

capital O, acute accent Ó Ó Ó

capital O, circumflex
accent

Ô Ô Ô

capital O, tilde Õ Õ Õ

capital O, dieresis or
umlaut mark

Ö Ö Ö

multiply sign × × x

capital O, slash Ø Ø Ø

capital U, grave accent Ù Ù Ù

capital U, acute accent Ú Ú Ú

capital U, circumflex
accent

Û Û Û

capital U, dieresis or
umlaut mark

Ü Ü Ü

capital Y, acute accent Ý Ý Ý

capital THORN, Icelandic Þ Þ

small sharp s, German (sz
ligature)

ß ß ß

small a, grave accent à à à

small a, acute accent á á á

small a, circumflex accent â â â

small a, tilde ã ã ã

small a, dieresis or umlaut
mark

ä ä Ä

small a, ring å å å

small ae diphthong
(ligature)

æ æ æ

small c, cedilla ç ç ç

Continued

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

654 Part VI ✦ Principles of Professional Web Design and Development

Table 42-2 (continued)

Decimal-based Character as it
Description Code Value HTML Entity appears on Web Page

small e, grave accent è è è

small e, acute accent é é é

small e, circumflex
accent

ê ê ê

small e, dieresis or
umlaut mark

ë ë ë ë

small i, grave accent ì ì ı̀

small i, acute accent í í ı́

small i, circumflex
accent

î î ı̂

small i, dieresis or
umlaut mark

ï ï ı̈

small eth, Icelandic ð ð

small n, tilde ñ ñ ñ

small o, grave accent ò ò ò

small o, acute accent ó ó ó

small o, circumflex
accent

ô ô ô

small o, tilde õ õ õ

small o, dieresis or
umlaut mark

ö ö ö

division sign ÷ ÷ ÷
small o, slash ø ø ø

small u, grave accent ù ù ù

small u, acute accent ú ú ú

small u, circumflex
accent

û û û

small u, dieresis or
umlaut mark

ü ü ü

small y, acute accent ý ý ý

small thorn, Icelandic þ þ

small y, dieresis or
umlaut mark

ÿ ÿ ÿ

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

655Chapter 42 ✦ Designing for an International Audience

Tip One of the nastiest encoding problems occurs with the trademark symbol.
Different encodings use different numeric representations for it, and Macintosh
and Windows platforms treat it differently. The easiest way to deal with
this problem is to simply use good old-fashioned HTML: <SUP><SMALL>TM
</SMALL></SUP>

Latin-1 Supplement (U+00C0 - U+00FF)
The Latin-1 Supplement also contains values from ISO-8859-1. The characters in this
Unicode block are used for the following languages:

✦ Danish

✦ Dutch

✦ Faroese

✦ Finnish

✦ Flemish

✦ German

✦ Icelandic

✦ Irish

✦ Italian

✦ Norwegian

✦ Portuguese

✦ Spanish

✦ Swedish

It extends the Basic Latin encoding with a miscellaneous set of punctuation and
mathematical signs.

Latin Extended-A (U+0100 - U+017F)
Once you roam past Latin-1 Supplement in Unicode, you begin to veer away from
ISO-8859-1, as well. There are specific ISO encodings for different Latin languages.
You can find the names of these encodings here:

http://developer.apple.com/documentation/macos8/TextIntlSvcs/
TextEncodingConversionManager/TEC1.5/TEC.b0.html

Or, you can simply guarantee the incorporation of these encodings by using UTF-8. The
characters in this Unicode block are used in the following languages (among others):

✦ Afrikaans

✦ Basque

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

656 Part VI ✦ Principles of Professional Web Design and Development

✦ Breton

✦ Catalan

✦ Croatian

✦ Czech

✦ Esperanto

✦ Estonian

✦ French

✦ Frisian

✦ Greenlandic

✦ Hungarian

✦ Latin

✦ Latvian

✦ Lithuanian

✦ Maltese

✦ Polish

✦ Provencal

✦ Rhaeto-Romanic

✦ Romanian

✦ Romany

✦ Sami

✦ Slovak

✦ Slovenian

✦ Sorbian

✦ Turkish

✦ Welsh

Latin Extended-B and Latin Extended Additional
The characters in this block are used to write additional languages and to extend
Latin encodings. These characters include seldom-used characters such as the
bilabial click, which looks like this: � . By the time you march into this territory, you
should definitely be using UTF-8.

Constructing Multilanguage Sites
Encoding your pages in UTF-8 may at first seem like a good idea if you are doing a lot
of localization, but some problems exist with taking that course. Mixing encodings
can cause problems, so if your site is only going to be viewed by users reading with

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

657Chapter 42 ✦ Designing for an International Audience

Western languages, it’s fine to use ISO-8859-1, because it’s essentially a subset of
UTF-8. The other problem is that many sites in countries such as China don’t use
Unicode at all. For example, many Chinese sites use Big 5, which is a Chinese
encoding not incorporated into Unicode.

Summary
There are two main considerations when localizing your site. The first is
obvious—how to accomplish the necessary translations to make things work
correctly. The second, more subtle consideration involves managing the way your
encodings behave so that the actual display of text works in a way you expect.
Encoding is a complex subject, but it’s important to understand when dealing with
internationalization. If at the end of the day it all seems overwhelming, one key point
to keep in mind is avoid mixing encodings. This one action on your end will avoid a
lot of misery. The Chinese Big 5 encodings, for example, are simply not compatible
with Unicode. So avoid sending an XML document encoded in UTF-8 through an XSLT
style sheet that outputs Big 5. The same is true for ASCII. Avoid using ASCII
encodings in your Web pages altogether; instead, use ISO-8859-1, and then be
consistent in that use.

The next chapter takes a look at security issues in Web development. Today, hackers
play an increasingly nefarious role in Web site development. Chapter 43 will help you
consider some steps you can take to thwart them.

✦ ✦ ✦

P1: KTU

WY022-42 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:7

658

P1: JYS

WY022-43 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 5:7

4343C H A P T E R

Security
✦ ✦ ✦ ✦

In This Chapter

Understanding the Risks

Web Site Security Issues

Overview of Web
Security Methods

✦ ✦ ✦ ✦

Throughout this book, we have tried to emphasize security,
bringing up issues when appropriate along with potential

solutions. However, you need to be aware of some global
security issues so you can proactively protect your server and
documents. This chapter covers many of those issues.

Understanding the Risks
Putting content on the Web is fairly simple, yet the security
risks of doing so can be numerous and complex. This section
highlights some of the more common risks and, where
applicable, suggests solutions.

Theft of confidential information
One of the major risks of the Internet is theft of information.
Whether it be information of a personal nature to yourself,
your company, or personal information you have gathered and
stored about others.

The easiest solution to prevent theft of confidential information
is not to provide any access to it. Although that isn’t always
practical, you should be especially careful with other people’s
information.

Tip Personal data on others can be a huge liability if you
are not careful. Before creating online solutions, such as
merchant services, consider the liabilities of doing so—
especially when receiving and storing information such
as credit card numbers. Consider using a service that will
bear that responsibility and liability.

Vandalism and defacement
One of the latest trends in cyber hacking is vandalism and
defacement. Just as in the real world, vandals can wreak havoc
on your site—changing documents, creating virtual graffiti,
and more.

659

P1: JYS

WY022-43 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 5:7

660 Part VI ✦ Principles of Professional Web Design and Development

Denial of service
Denial of service (DOS) attacks are attempts (and usually successes) at overloading
a server with bogus requests. The volume of requests keeps the server from replying
to legitimate requests and, in some cases, can even crash the server.

The attacks can originate from distinct hacker locations, or from unsuspecting
computers that have been infected with viruses that spawn the attacks. The intent is
simple: stop the target site from being able to perform its normal tasks.

Some of the largest DOS attacks were leveled against the SCO Web site in December
2003 and January 2004. The attack shut down many of the SCO servers for two days.
The attack originated from computers all over the Internet that had been infected by
the MyDoom virus.

Unfortunately, DOS attacks can have unexpected results, as the massive traffic can
affect other sites or even entire sections of the Internet.

Loss of data
Loss of data is straightforward and involves data files being damaged or deleted
from a server. Loss of data can also result from interruptions in service or the loss of
communication with other systems or customers that causes data to not be stored
in the first place.

Data loss can be slight or catastrophic. Data that is routinely backed up can usually
be restored without much lasting impact. However, data that doesn’t get stored at
all, or data that isn’t routinely backed up cannot be replaced. Such losses can even
result in loss of assets if the loss affects other resources.

Loss of assets
Many attacks on Internet servers result in loss of assets, which ties to actual
revenue. Such attacks could result in the following:

✦ DOS attack that results in a loss of sales (due to a server being unavailable to
take orders)

✦ Loss of proprietary product data

✦ A situation that requires large amounts of technical resources to solve, costing
actual money and time as technicians work on the situation

All of the cases in the preceding list result in a loss of assets, whether hard assets
(money) or soft assets (people, time).

Loss of credibility and reputation
Victims of attacks stand to lose a lot more than data or assets—their credibility and
reputation are also at stake. Losing either of those attributes creates a domino effect
that could cause even more losses.

P1: JYS

WY022-43 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 5:7

661Chapter 43 ✦ Security

Customers who can’t access a site due to a DOS attack may not return to give the site
their business. Customers also are leery of sites that are victims of break-ins or data
theft, fearing that their information (contact info, credit card info, and so on) might
fall into the wrong hands.

Even sites that fully recover their resources and assets after an attack might never
recover their credibility and reputation.

Litigation
Unfortunately, litigation in cyberspace is still in its infancy. Because the U.S. legal
system works on precedent and there aren’t many cyberspace precedents set, the
system doesn’t have the necessary background to make educated decisions. A side
effect of this lack of precedents is that the legal system tends to move cautiously, as
any decision will set precedent for later issues.

This doesn’t deter litigation in cyberspace, but it does complicate it.

Furthermore, most crime that takes place on the Internet takes place through
proxies. For example, DOS attacks are usually carried out via unsuspecting
computers that were infected by worms or viruses. Also, most hackers perform their
work by logging into one site and using that site to log into their target. The result is
that a lot of unsuspecting people are held accountable for actions that they did not
commit and inherit the burden of proving their innocence.

In short, litigation on the Internet and other computer-related areas is still a tricky
business. As such, it behooves anyone using the Internet or who runs a server to
employ as much caution and security as possible.

Web Site Security Issues
Now that we have covered most of the general risks, let’s examine risks and
solutions specific to the Web.

File permissions
A good understanding of the underlying file system on any system you use is
essential to maintaining a secure system. Insufficient permissions will cause
problems for your visitors—overly generous permissions can expose critical
information you would rather not reveal.

When deploying a Web site, consider what rights and file ownership is truly
necessary. Whenever possible assign rights to the Web server instead of general
users. For example, on a Linux system where the Apache server runs as user
www-data, the following permissions may be enough for your documents:

rwxr-x--- your_user_id www-data filename

P1: JYS

WY022-43 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 5:7

662 Part VI ✦ Principles of Professional Web Design and Development

In the preceding example, the file is owned by your user ID, with read, write, and
execute permissions. The group ownership is set to the user ID that the Web server
runs under. The group permissions only allow read and execute, the minimum
permissions necessary for the server to serve the file.

Note Permissions on Windows platforms are a bit more complex and need to be
managed via the IIS Windows MMC.

Unused but open ports
Any open port on a server presents a vulnerability that could be exploited. As such,
it’s important to only have the ports open that you really need. First and foremost,
shut down and even uninstall any services that you don’t need. For example, if you
don’t need an FTP server, don’t even install one.

The next step is to perform a port scan on your system to see what ports are open
that you may not know about. There are many ways to perform a port scan,
including the following:

✦ Use your browser and visit one of the online port scanners, such as the one at
DSL Reports (www.dslreports.com/scan) or the Shields Up scanner at
Gibson Research (www.grc.com).

✦ Use a scanner application such as Nmap from insecure.org
(www.insecure.org/nmap/).

✦ Use a telnet application to probe certain ports for activity. For example, the
following command will attempt to connect via the SMTP port (25) of the local
machine:

telnet localhost 25

CGI scripts
Common Gateway Interface (CGI) scripts are common targets for hackers. Many
CGI scripts are poorly written from a security perspective, allowing savvy
hackers to exploit them in various ways. Some exploits were fairly benign, such as
using the formmail CGI script on a server to send anonymous e-mail (typically
spam). Other CGI exploits are very dangerous, allowing hackers admin access to
your server.

Whenever using CGI scripts, consider the following:

✦ Don’t overly expose your CGI scripts. Avoid calling them where they will show
in the browser’s address bar with explicit arguments.

✦ Use CGI scripts from reputable sources and do some research into any security
issues regarding the scripts you use.

✦ Use intelligent file ownership and permissions with your scripts (see the
File permissions section earlier in this section). Assign rights to the Web

P1: JYS

WY022-43 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 5:7

663Chapter 43 ✦ Security

server user instead of the world, and protect your CGI directories from
browsing.

✦ Follow the same rules with your scripts that you do with your operating
system and applications—audit their logs and update them as necessary to
avoid issues.

Buffer overflows
Buffer overflows are widely used exploits. The concept of a buffer overflow is fairly
simple: force an application to accept more data than it expects, causing it to
overwrite other data in memory with specific data. For example, consider the
following:

1. An application calls a subroutine, placing the address of the calling code on the
memory stack so it can return after execution.

2. The subroutine’s data is also mapped via the stack.

3. An exploit creates an overflow in the data area, causing new data (a new return
address) to be written as the subroutine’s return address.

4. The subroutine returns to the new address, typically accessing previously
placed rogue code, a privileged command prompt, or other exploitable
environment.

This is only one example of how a buffer overflow exploit can be used. The cure for
such exploits is to keep your software up-to-date, as most exploits are fixed quickly
after they are found. Monitoring security updates and patches for your system is
critical to avoiding this issue.

Compromised systems
There is no easy cure for a compromised system. Once the system has been
compromised you can never be truly sure of the extent of the compromise.

Typically, the following steps are the only recourse:

1. Isolate the system

2. Take stock of the damage, perhaps finding the method used to compromise
the system

3. Back up any salvageable data

4. Reinstall the system from scratch, avoiding the component(s) that were
compromised the first time

Tip It’s also good practice to inform fellow system administrators of the compro-
mise, especially those administrators of systems closely tied to the compro-
mised system.

P1: JYS

WY022-43 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 5:7

664 Part VI ✦ Principles of Professional Web Design and Development

Overview of Web Security Methods
The previous sections covered specific risks and solutions. This section covers
preventative solutions—things that you can do on an ongoing basis to ensure you
stay on top of security issues.

Drafting a comprehensive security policy
The first step to security is understanding and enforcing a strict and comprehensive
policy. Start with a list of what you absolutely need your server to be able to do and
pare down the list to the bare essentials, keeping track of any connections to the
outside world that your server will require.

Once you know the requirements for your system, document what software you
will need to accomplish the requirements and what additional security issues each
additional piece of software could create (what ports will be exposed, and so
forth).

Decide what user accounts you will require and what permissions are necessary for
each. Most operating systems have defaults for server software; these defaults have
been tested and should be used whenever possible.

This process simply creates your “to do” list of security concerns. Next, you must
document actual policies and procedures—the most important part of the process.
I suggest that for any questions you have on documenting specific policies and
procedures you seek advice from experts, such as the following:

✦ CERT (www.cert.org) is one of the largest, most organized, and experienced
security organizations.

✦ The SANS (SysAdmin, Audit, Network, Security) Institute (www.sans.org) is
another highly respected security community.

Checking online security warnings
Many sites online publish security advisories, such as the following:

✦ Antivirus software vendor sites (www.mcafee.com, www.symantec.com, and
so on)

✦ Microsoft’s security site (www.microsoft.com/security/)

✦ Linuxsecurity.com publishes most of the security advisories for Linux
(www.linuxsecurity.com/advisories/).

✦ Linux distribution sites (www.debian.org, www.redhat.com, and so on)

Most operating system vendors monitor security issues on an ongoing basis and
provide automated methods to deploy security patches. Windows users should

P1: JYS

WY022-43 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 5:7

665Chapter 43 ✦ Security

enable the Windows update service. Linux users should use up2date (Red Hat), apt
(Debian), or other automated update service.

Excluding search engines
Excluding certain files and directories from search engine crawlers can help keep
your system secure by hiding potentially hazardous files from the search engine.
This keeps the same files from being discovered by hackers using a search engine
such as Google.

Most search engines look for a file named robots.txt when indexing files on a site.
You should place this file on the server’s root; it contains instructions for search
engines. The robots.txt file follows this format:

User-agent: agent_name
Disallow: file_or_directory_spec
Disallow: ...

You can use the name of the agent you want to disallow or an asterisk (*) for all
agents. You can specify as many Disallow sections as necessary, each specifying a
different directory or specific file. Note that if you specify a directory, all
subdirectories of that directory are also disallowed.

A typical robots.txt file might resemble the following:

User-agent: *
Disallow: /tmp
Disallow: /images
Disallow: /cgi-bin
Disallow: /private.html

More information on robots.txt and other methods for directing search engines
can be found on The Web Robot Pages (www.robotstxt.org/wc/robots.html).

Using secure servers
Secure servers offer another layer of security via encrypted data streams between
the server and the client. Typically referred to as Secure Socket Layer (SSL), this
layer can be implemented on many Internet-enabled applications—Web servers,
e-mail servers, and so on.

Secure servers protect against eavesdroppers, hackers that intercept the
communication between the user and server to obtain login information, personal
data, credit card information, and so on.

Various servers implement SSL in various ways. In each case, you will need a
certificate for use with your server. A certificate is an electronic document that is
signed by a trusted authority, representing that the owner of the certificate is who

P1: JYS

WY022-43 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 5:7

666 Part VI ✦ Principles of Professional Web Design and Development

they say they are. It’s a means of providing ID to users of your site and saying “you
can trust me because I am who I say I am.”

There are quite a few certificate authorities, some more trusted than others. You can
even sign your own certificates, though the result isn’t worth much for convincing
end users to trust you.

Tip Thawte is a good place to start if you need a signed certificate. (www.thawte
.com/)

Summary
Although it’s a tangled and difficult subject, security is a topic you cannot ignore if
you decide to put any content online. You can choose to manage security passively
or proactively—this chapter provided details for both. However, being proactive is
the best alternative, helping your content and sites stay free from being
compromised.

✦ ✦ ✦

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

4444C H A P T E R

Privacy
✦ ✦ ✦ ✦

In This Chapter

Understanding Privacy

Privacy Legislation and
Regulations in the EU

Voluntary Solutions

Model Privacy Pages

✦ ✦ ✦ ✦

Privacy is one of the most important considerations in the
minds of many Web site visitors, so it should be at the

forefront of every Web developer’s concerns, as well. Although
many people are now becoming more comfortable with the
notion of data collection and credit card transactions, most
people expect some kind of sign or label on a Web site
indicating that a site is trustworthy. They also want to know
you won’t disseminate your information to third parties
without their approval, especially in light of the spam
epidemic that is bringing the e-mail system to its knees. This
chapter takes a look at privacy issues and what you can do to
create privacy policies that your Web site visitors will be
comfortable with.

Understanding Privacy
What exactly is privacy? Whenever you visit a Web site, there’s
a good chance you’ll have a cookie written to your hard drive
that will record some information about you. Most people
have given up trying to prevent this because disabling cookies
makes the majority of sites that contain personalization
functionality useless. In return for this, consumers now expect
to see privacy policies on a Web site and assurances that
those policies are actually being implemented.

Privacy Legislation and
Regulations in the United States

Privacy laws in the United States are not very strong. Instead,
companies and organizations have adopted self-regulating
policies and procedures, as you’ll see later in this chapter.
However, there are a few U.S. laws you should be aware of:

✦ The Children’s Online Privacy Protection Act

✦ The Electronic Communications Privacy Act (ECPA)

667

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

668 Part VI ✦ Principles of Professional Web Design and Development

✦ The Patriot Act

✦ The Fair Credit Reporting Act

How much these impact you depends on a number of factors. For example, if your
Web site is geared towards children, your privacy policy descriptions and
implementations need to be rock solid.

The Children’s Online Privacy Protection Act
The Children’s Online Privacy Protection Act (COPPA) was put into effect April 21,
2000. It was created to oversee the collection of personal information from children
under 13. According to the Federal Trade Commission (FTC), which enforces the act,
“The new rules spell out what a Web site operator must include in a privacy policy,
when and how to seek verifiable consent from a parent, and what responsibilities an
operator has to protect children’s privacy and safety online.”

As the overseer of this act, the FTC evaluates whether the subject matter and
content of your site suggests that your Web site is geared towards children. Such
content can include the following:

✦ The ages of models used in online photography

✦ The makeup of visual or audio content

✦ Advertising

✦ Whether or not animation or other features are geared toward children

It’s safe to say that if your site has a lot of cartoons and puzzles, the FTC will
consider your site to be one that is aimed towards children.

The intent behind the act is to make sure that you maintain easy access to a privacy
policy on children’s sites, including your home page and wherever you collect
personal information from children. The privacy link can’t be one of those links you
see at the bottom of Web pages using tiny font sizes, but must actually be prominent.
The FTC actually advises you to use a larger font for these links.

The actual notice, which should be clearly understandable by children in the target
market for your Web site, must contain the following information:

✦ The name and contact information of any party that collects information from
children. This includes address, telephone number, and e-mail address.

✦ The type of information actually collected and how the information is
collected, including if that information is collected through cookies or other
passive means.

✦ How you intend to use the personal information, including any marketing
and/or contest plans, or whether or not the information is available via a chat
room.

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

669Chapter 44 ✦ Privacy

✦ Your Web site’s policy and intent on disclosure of collected information. You
must disclose the kinds of businesses that have access to this information,
why it’s being passed along, and whether or not these third parties will honor
the same privacy policies outlined on your site and in COPPA.

✦ A statement that a child’s parent or guardian can refuse to permit the
disclosure of information to a third party and that as a Web site operator you
won’t try to collect any more information than is absolutely necessary for
successful participation in an activity that you claim requires the collection of
this information.

✦ A policy that allows a parent or guardian to review any information on the site
and refuse collection or use of the information you collect.

The law is designed to protect the rights of children and to prevent some of the more
malicious behavior that can crop up when information gathering on children takes
place, so the last thing you’ll want to worry about is how compliance with the act
will impact the design of your Web site. Instead, before you even consider collecting
information from children, ask yourself if you really need to.

Electronic Communications Privacy Act
The ECPA was enacted in 1986 and prohibits unlawful access of electronic content,
as well as disclosure of electronic content as it may apply to the privacy rights of
individuals. The law covers a variety of wire and electronic communications
services, which is defined by the law as “any transfer of signs, signals, writing,
images, sounds, data, or intelligence of any nature transmitted in whole or in part by
a wire, radio, electromagnetic, photo electronic, or photo optical system that affects
interstate or foreign commerce.” In addition to discouraging unlawful access to
electronic communications (think wiretaps), the law also prevents government
agencies from requiring disclosure of electronic communications without following a
protocol such as the gathering of search warrants, and so on. The newer Patriot Act
of 2001 has superseded some aspects of this law.

The Patriot Act of 2001
The Patriot Act of 2001 has become a rallying cry among civil liberty groups involved
with Web privacy, particularly the Electronic Frontier Foundation. The act is a rather
massive tome (300 plus pages) that was passed shortly after the events of
September 11, 2001. Generally, however, this act shouldn’t affect your Web site
development, unless you’re contracting with some foreign governments that may be
considered friendly to terrorists or may be known to harbor them. If this is the case,
you should review the documentation of the act, as well as the EFF’s take on the
situation at the following URL:

www.eff.org/Privacy/Surveillance/Terrorism/
20011031_eff_usa_patriot_analysis.php

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

670 Part VI ✦ Principles of Professional Web Design and Development

You can review the law itself in PDF format here:

www.dhs.gov/dhspublic/interweb/assetlibrary/hr_5005_enr.pdf&e=7417

Fair Credit Reporting Act
If you’ve ever obtained a credit card you’ve been impacted by the Fair Credit
Reporting Act, which requires that credit bureaus provide access to consumers’
credit reports and provides an opportunity to dispute them, which is where you
come in. If a consumer disputes a blemish you’ve created on their credit report, you
are required to respond to inquiries credit bureaus make on their behalf.

Privacy Legislation and Regulations
in the EU

You may find that you are in compliance with laws in the United States, which really
aren’t very strong in the privacy arena, but have run afoul of standards in the
European Union.

The European Union considers privacy a fundamental right, and has codified this
general philosophy into law, whereas the political culture in the United States
leans towards a general distrust of government that predates the Revolutionary
War. Thus, the approach in the United States is largely hands-off, and is a
combination of watered-down legislation, administrative regulation, and industry
self-regulation.

The EU Directive on the Protection of Personal Data governs electronic
communications as it pertains to information gathering and prohibits the
transfer of data to any non-EU nation that doesn’t meet European privacy
standards.

The EU directive requires that any personal information gathered from its Web site
visitors comply with the following:

✦ Collected for specified, explicit, and legitimate purposes, and in a way that
is both fair and lawful under the eyes of each European Union member
nation.

✦ Bears a direct relation to the activity that prompts the information gathering
and does not exceed reasonable standards in regards to how much information
is gathered.

✦ Maintained and updated accurately and with expirations that reflect the actual
need for retaining the records.

Although the United States may seem to lag behind the EU in legislating privacy, it
actually leads in areas of self-regulation, and many companies and organizations
adhere to stringent privacy policies. In fact, most companies include a privacy policy
in a link at the footer of their Web sites that details specific information about a
company’s privacy policy.

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

671Chapter 44 ✦ Privacy

Voluntary Solutions
As previously mentioned, the United States tends to have less stringent laws
regarding polices than the EU, but generally companies and organizations, especially
those with substantial sites, carry privacy notices anyway. One of the most
important guidelines to emerge in recent years that can help organizations develop a
policy “template” is the Platform for Privacy Preferences Project from the World
Wide Web Consortium (W3C), which incorporates many of the procedures
developed for the EU’s Directive on the Protection of Personal Data.

Platform for Privacy Preferences project
The Platform for Privacy Preferences (P3P) is a specification developed by the W3C
that helps a Web site develop and implement privacy policies in a standardized way
and provide these policies in a machine readable format. Not surprisingly, the
specification relies on XML, which is very handy because it means your policy
development can be both simple and easy to transmit.

The specification can be found at www.w3.org/TR/2004/WD-P3P11-20040210/.

If you look at the specification, you’ll see it contains a number of XML elements so
you can create policies such as that shown in this example from the W3C Web site:

<META xmlns=“http://www.w3.org/2002/01/P3Pv1”>
<POLICY-REFERENCES>

<POLICY-REF about=“/P3P/Policies.xml# first”>
<COOKIE-INCLUDE name=“*” value=“*” domain=“*”

path=“*”/>
</POLICY-REF>

</POLICY-REFERENCES>
</META>

P3P general syntax
Like any XML, the case of the elements is important, so it’s not policy or Policy,
it’s POLICY. If you look at Listing 44-1, you can see that the XML vocabulary used for
P3P is very intuitive.

Listing 44-1: An Example of a P3P Policy Generated in XML

<POLICIES xmlns=“http://www.tumeric.net/P3P”>
<POLICY name=“YourAssurance”

discuri=“http://www.tumeric.net/P3P/policies.aspx”
opturi=“ http://www.tumeric.net/P3P/preferences.html”
xml:lang=“en”>

<ENTITY>
<DATA-GROUP>
<DATA ref=“#business.name”>InfoExample</DATA>
<DATA ref=“#business.contact-info.postal.street”>400 Data Base

Continued

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

672 Part VI ✦ Principles of Professional Web Design and Development

Listing 44-1 (continued)

Avenue</DATA>
<DATA ref=“#business.contact-info.postal.city”>San Francisco</DATA>
<DATA ref=“#business.contact-info.postal.stateprov”>CA</DATA>
<DATA ref=“#business.contact-info.postal.postalcode”>94112</DATA>
<DATA ref=“#business.contact-info.postal.country”>USA</DATA>
<DATA ref=“#business.contact-info.online.email”>me@tumeric.net</DATA>
<DATA ref=“#business.contact-info.telecom.telephone.intcode”>1</DATA>
<DATA ref=“#business.contact-info.telecom.telephone.loccode”>415</DATA>
<DATA ref=“#business.contact-info.telecom.telephone.number”>1111111</DATA>
</DATA-GROUP>
</ENTITY>
<ACCESS><contact-and-other/></ACCESS>
<DISPUTES-GROUP>
<DISPUTES resolution-type=“independent”

service=“http://www.PrivacyGuaranteed.org”
short-description=“ PrivacyGuaranteed.org”>
<IMG src=“http://www. PrivacyGuaranteed.org/logo.gif”

alt=“PrivacyGuaranteed&logo”/>
<REMEDIES><correct/></REMEDIES>
</DISPUTES>
</DISPUTES-GROUP>
<STATEMENT>
<CONSEQUENCE>

We do this because we are good corporate citizens and we don’t want
to get in trouble in Europe.

</CONSEQUENCE>
<PURPOSE><admin/><develop/></PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>
<DATA ref=“#ex.data.aspx”/>
<DATA ref=“#ex.http.useragent”/>
</DATA-GROUP>
</STATEMENT>
<STATEMENT>
<CONSEQUENCE>

We use this information when you register on our site.
</CONSEQUENCE>
<PURPOSE><current/></PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>
<DATA ref=“#user.name”/>
<DATA ref=“#user.postal”/>
<DATA ref=“#user.telephone”/>
<DATA ref=“#user.login.id”/>
<DATA ref=“#user.login.password”/>
<CATEGORIES><register/></CATEGORIES>

*#
</DATA-GROUP>
</STATEMENT>

</POLICY>
</POLICIES>

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

673Chapter 44 ✦ Privacy

Listing 44-1 shows a limited number of STATEMENT elements, but you can use one for
every instance of data collection that exists on your Web site. Each instance is
described by a STATEMENT element and abstracted using a CONSEQUENCE element.

P3P processes
P3P is currently in Working Draft, which means you can expect changes in its syntax.
However, it is still a useful guide in developing privacy policies. For example, just
perusing the specification’s table of contents reveals an outline that reflects much of
what you’ve learned in this chapter about both the European approach to privacy
and the American approach to privacy regarding information gathering on children
(the two of which are quite similar). The core steps in implementing P3P will by now
look familiar:

1. Identify the Entity (using the ENTITY element)—who you are and how a user
can contact you.

2. Disclose where your policy lives on your site using the discuri attribute of
the POLICY element

3. Provide assurances that you are doing what you say by naming the entities that
are providing proof of your claims, using the DISPUTES element.

4. Provide information on the kind of data you are collecting and how you are
collecting it using the DATA-GROUP element.

Because P3P is based on XML, a P3P policy can be embedded in a Web Services
Description Language (WSDL) document such as that shown in bold in Listing 44-2.

Listing 44-2: Incorporating a Generic P3P Attribute in a
WSDL File

<?xml version=“1.0”?>
<definitions xmlns=“http://www.w3.org/2003/11/wsdl”

xmlns:foospace=“http://www.tumeric.net/webservice”
xmlns:somens=“http://example.org/myservice-types”
xmlns:p3p=“http://www.w3.org/2004/02/P3Pv11”
xmlns:soap=“http://www.w3.org/2003/06/wsdl/soap12”
xmlns:xs=“http://www.w3.org/2001/XMLSchema”
targetNamespace=“ http://www.tumeric.net/webservice”>
<documentation>
How to use a P3P generic attribute in a WSDL file
</documentation>
<types>

<xs:import
namespave=‘http://www.tumeric.net/webservice’/>
</types>
<interface name=“fooface”>

<operation name=“foo_ops”
pattern=“http://www.tumeric.net/wsdl”>

Continued

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

674 Part VI ✦ Principles of Professional Web Design and Development

Listing 44-2 (continued)

<input message=“somens:commentReq”/>
<output message=“myntypes:commentResp”/>

</operation>
</interface>

<binding name=“Binding” interface=“foospace:fooface”>
<soap:binding protocol=“http://www.w3.org/2003/05/soap/bindings
/HTTP/”/>

</binding>

<service name=“Service” interface=“foospace:fooface”
p3p:p3p=“http://www.tumeric.net/p3p.xml”>
<endpoint name=“Endpoint1” binding=“foospace:binding”>
<soap:address
location=“http://www.tumeric.net/webservice” />

</endpoint>
</service>

</definitions>

Listing 44-2 uses a “generic” attribute that can be embedded into other XML
vocabularies. You can then develop an XSLT style sheet to transform the file into
HTML.

Generating P3P files the easy way
Nobody would be too surprised to find out that you don’t want to learn a new
vocabulary just to generate some private policies. Luckily, several P3P editors are
available that will generate the files for you:

✦ IBM P3P Policy Editor (www.alphaworks.ibm.com/tech/p3peditor)

✦ PrivacyBot.com (www.privacybot.com)

✦ For Japanese language sites, Iajapan’s Privacy Policy Wizard
(http://fs.pics.enc.or.jp/p3pwiz/p3p_en.html)

✦ P3PEdit (http://policyeditor.com)

✦ Customer Paradigm’s P3P Privacy Policy Creation
(www.customerparadigm.com/p3p-privacy-policy3.htm)

These save you the trouble of learning the new syntax, however, it does help to have
a general understanding of how the syntax works, because you may find yourself
editing small portions of a completed file in a text editor after the file has been
completed and uploaded to your server.

Certification and seal programs
A number of privacy and certification sites will guarantee the authenticity of
software downloads coming from your site and provide assurances to users of your
site that your Web site adheres to the highest privacy and trust standards. These

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

675Chapter 44 ✦ Privacy

include the following:

✦ TRUSTe. “TRUSTe Privacy Seals are committed to abiding by a privacy policy
that gives users notice, choice, access, security, and redress with regard to
their personal information,” according to the company’s Web site at
www.truste.org. The company offers seals for demonstrating compliance
with the American Children’s Online Privacy Protection Act, EU guidelines, and
health-based privacy issues.

✦ The Better Business Bureau Online Privacy Seal demonstrates compliance set
for businesses wishing to adhere to Better Business Bureau standards
(www.bbbonline.org/privacy).

✦ E-Safe is a fee-based service that provides privacy certification seals to Web
sites that meet its privacy guidelines (www.e-safecertified.com).

✦ Guardian eCommerce Security provides ratings and an approval program for
Web sites (www.guardianecommerce.net).

✦ Privacy Secure, Inc. runs a credit check on your company or organization (or
your client’s, if you’re developing as a vendor), reviews any complaints with
the Better Business Bureau, and reviews your online payment system
(www.privacysecure.com).

✦ PrivacyBot.com, in addition to helping you create P3P-based privacy policy
files, registers your site and offers a “Trustmark” that indicates compliance
with established privacy trends (www.privacybot.com).

✦ SecureBiz provides an Online Privacy Seal (https://securebiz
.securelook.com).

✦ Web Trust provides Web site auditing services (www.cpawebtrust.org).

✦ Verisign provides layers of security and authentication for secure Web sites
(www.verisign.com) and generates seals of authenticity for software
downloads from your Web site.

Model Privacy Policy Pages
To help guide you on your way to developing policy pages, consider reviewing some
that already exist. As previously mentioned, most major Web sites carry privacy
policies on their Web sites and almost always link them in the footers of their Web
pages. Review policies created by large companies and organizations to gain ideas
for your own site. The Federal Government of the United States maintains a best case
Web site for developing privacy policies for U.S. government Web sites and
contractors for the U.S. government at the following URL:

www.whitehouse.gov/omb/memoranda/m99-18attach.html

Summary
You can probably see a similarity between privacy guidelines and law in the United
States regarding children, privacy policy in Europe regarding everybody, and the

P1: JYS

WY022-44 WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 10, 2004 7:49

676 Part VI ✦ Principles of Professional Web Design and Development

approach the W3C and independent privacy consultants take. Generally, the privacy
model dictates that you provide access to your policies through easy-to-find links,
provide assurances that your policies are actually being implemented, justify their
use, and identify the type of data you gathered and what you intend to do with it.

Most organizations don’t wait for legislation or bad publicity before developing
privacy guidelines and procedures. They simply implement them from the beginning.
You’ll find that doing so helps clarify both your mission and intent to the public. By
making your Web site “trustworthy,” you’ll get more business, especially if you mean
business.

✦ ✦ ✦

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

P A R T

VIIVIIAppendixes

✦ ✦ ✦ ✦

In This Part

Appendix A
HTML 4.01
Elements

Appendix B
CSS Properties

✦ ✦ ✦ ✦

677

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

678

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

AAA P P E N D I X

HTML 4.01
Elements ✦ ✦ ✦ ✦

In This Appendix

Reading this Reference

XHTML

Alphabetical List of
the Elements

Event Attributes

Other Common Attributes

✦ ✦ ✦ ✦

Parent elements are indicated only where there is a limited set
of associations (for example, <td> within <tr>, or <area>
inside <map>). When no parent relationship is expressed, the
“classification” of an element is provided as a general category
that is used by other elements to describe their contents. This
is distinct from the “display” information, which expresses
how browsers render the element (see http://www.w3.org/
TR/REC-CSS2/sample.html for the results of an
investigation into modern browsers’ rendering styles).

Let’s examine the first part of the <isindex> reference.

This element is deprecated, which means that the HTML 4.01
Transitional DTD defines it, but the Strict DTD does not.

It is an empty element, with no content and no closing tag.

It renders inline, so it can be surrounded on both sides by text.
However, it is classified as a block element, which means that
it can only be contained by elements that allow block content.
<p> is a prime example of an element that cannot act as the
parent for <isindex> because <p> can only contain elements
classified as inline.

XHTML
To create HTML that is XHTML-compliant, 4.01 elements and
attributes must follow XML rules.

✦ Empty elements must either have a closing tag or use the
XML empty element syntax, as in the following example:

To support older browsers, the empty element syntax
should include a space before the trailing slash, as in the
following example:

679

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

680 Part VII ✦ Appendixes

✦ Because XML is case-sensitive, all elements and attributes must be
lowercase.

✦ Attribute values must always be quoted.

✦ Minimized attributes are not allowed. Attributes that do not take a value
must be given a value equal to the name of the attribute, as in the following
examples:

• <input checked=“checked” />

• <select multiple=“multiple”>

Alphabetical List of the Elements

a

Context

Purpose Insert a hyperlink

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

Required Optional Deprecated

charset = “encoding” targeet=“frame”

type = “MIME type”

name = “anchor name”

href = “URL”

hreflang = “language code”

rel = “forward link type”

rev = “reverse link type”

accesskey = “key”

shape = (rect|circle|poly|default)

coords = “coordinates”

tabindex = “sequence value”

onfocus = “script”

onblur = “script”

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

681Appendix A ✦ HTML 4.01 Elements

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Any type of URL may be used here.

Example

Google search engine

abbr

Context

Purpose Indicate the enclosed text is an abbreviation

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use the title attribute to express the
unabbreviated text. Stylesheets can be used to subtly
highlight abbreviations.

Example

<abbr title=“Incorporated”>Inc.</abbr>

acronym

Context

Purpose Indicate the enclosed text is an acronym

Start/End Tag Required/Required

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

682 Part VII ✦ Appendixes

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip See <abbr> for usage tips.

Example

<acronym title=“HyperText Markup Language”>HTML</acronym>

address

Context

Purpose Provide information about the author

Start/End Tag Required/Required

Display Block

Classification Block

Content <p>, inline, and text.

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Always sign your work.

Example

<address>John Doe (jd@mydomain.com)
</address>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

683Appendix A ✦ HTML 4.01 Elements

applet (deprecated)

Context

Purpose Incorporate a Java applet

Start/End Tag Required/Required

Display Block

Classification Inline

Content Any block, inline, and text; any
<param> elements must come first

Attributes

Required Optional Deprecated

width = “pixels or relative” codebase = “URI”

height = “pixels or relative” archive = “URI, . . . ”

code = “applet.class”

object = “serialized object”

alt = “description”

name = “locator”

align = (top|middle|bottom|left|right)

hspace = “pixels”

vspace = “pixels”

General

� Core (id, class, style, title)

Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip Use <object> instead.

Example

<applet code=“tic-tac-toe.class” width=“500” height=“500”>Play tic-tac-toe!</applet>

area

Context

Purpose Describe a client-side image map

Start/End Tag Required/Forbidden

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

684 Part VII ✦ Appendixes

Parent <map>

Content Empty

Attributes

Required Optional Deprecated

alt = “description” shape = (rect|circle|poly|default) target = “frame”

coords = “length, length”

href = “URL”

nohref

tabindex = “sequence value”

accesskey = “key”

onfocus = “script”

onblur = “script”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip The code for client-side imagemaps can be generated by
imagemap editors. Don’t forget the alt attribute, to make the
map accessible to non-graphical clients.

Example

See <map>

b

Context

Purpose Bold text

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

685Appendix A ✦ HTML 4.01 Elements

Usage

Tip Be careful to close this element properly, and don’t overlap with
similar tags like <i>. Nest them instead.

Example

This is bold, <i>this is bold italic</i>.

base

Context

Purpose Specify an absolute URL for use when evaluating relative
URLs elsewhere in the document

Start/End Tag Required/Forbidden

Parent <head>

Content Empty

Attributes

Required Optional Deprecated

href = “URL” target = “frame”

Usage

Tip If you use this element, use it consistently, to make it
easier to remember to change the <base> element in all
documents when they are moved.

Example

<base href=“http://www.mydomain.com/sample/”>

basefont (deprecated)

Context

Purpose Set the default font, size, and color for the entire document

Start/End Tag Required/Forbidden

Classification Inline

Content Empty

Attributes

Required Optional Deprecated

size = “font size” id = “unique id”

color = “color value”

face = “typeface, typeface”

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

686 Part VII ✦ Appendixes

Usage

Tip Use CSS instead by assigning style to the body tag.

Example

<basefont face=“Arial, Helvetica” color=“blue” size=“10”>

bdo

Context

Purpose Override the default text direction

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

Required Optional Deprecated

dir = (rtl|ltr) lang = “language code”

General

� Core (id, class, style, title)

Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip Any element that supports the internationalization attributes
can define the dir attribute, making this tag unnecessary.

Example

<bdo dir=“ltr”>Here’s some English embedded in text in another language requiring a
right-to-left presentation.</bdo>

big

Context

Purpose Display text in a large font

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

687Appendix A ✦ HTML 4.01 Elements

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Be careful to close this element properly, and don’t overlap
with similar tags like <i>. Nest them instead.

Example

<big>This is large, <i>this is large and italic</i>.</big>

blockquote

Context

Purpose Denote an extended quotation

Start/End Tag Required/Required

Display Block

Classification Block

Content Block, inline, and text

Attributes

Required Optional Deprecated

cite = “URL”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Browsers will typically indent the contents. For an inline quote,
you may use <q>, but be warned that all versions of Internet
Explorer up to and including 6.0 do not properly support <q>.

The 4.01 specification indicates that <blockquote> is
deprecated and should be handled via stylesheets, but it is
supported in 4.01 strict , XHTML 1.0, and XHTML 1.1.

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

688 Part VII ✦ Appendixes

Example

<blockquote
cite=“http://www.archives.gov/national_archives_experience/declaration_transcript.html”
>

When in the Course of human events, it becomes necessary for one people to dissolve
the political bands which have connected them with another, and to assume among the
powers of the earth, the separate and equal station to which the Laws of Nature and of
Nature’s God entitle them, a decent respect to the opinions of mankind requires that
they should declare the causes which impel them to the separation.

</blockquote>

body

Context

Purpose Provide a container for all the text and elements that appear
onscreen within the browser window

Start/End Tag Optional/Optional

Display Block

Parent <html>, <noframes> (in the frameset DTD only)

Content Block, inline, and text

Attributes

Required Optional Deprecated

onload = “script” background = “image URL”

onunload = “script” bgcolor = “background color”

text = “text color”

link = “link color”

vlink = “visited link color”

alink = “selected link color”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Treat the start and end tags as required, not optional.

Example

See <html>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

689Appendix A ✦ HTML 4.01 Elements

br

Context

Purpose Insert a line break

Start/End Tag Required/Forbidden

Classification Inline

Content Empty

Attributes

Required Optional Deprecated

clear = (left|all|right|none)

General

� Core (id, class, style, title)

Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip This is purely for presentation, and as such can almost always
be replaced with margin style attached to semantic markup.

Example

This is one line.
This is the next.

button

Context

Purpose Create a button in a form

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Any block, inline, and text

Attributes

Required Optional Deprecated

name = “form name”

value = “form value”

type = (button|submit|reset)

disabled

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

690 Part VII ✦ Appendixes

tabindex = “sequence value”

accesskey = “key”

onfocus = “script”

onblur = “script”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip If you want to specify the text on the button face, use this
element instead of <input>.

Example

<button name=“submit” value=“submit” type=“submit”>Feed me, Seymour</button>

caption

Context

Purpose Define a caption for a table

Start/End Tag Required/Required

Display Inline

Parent <table>

Content Inline and text

Attributes

Required Optional Deprecated

align = (top|bottom|left|right)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip This element may be used only as the first child of a <table> element.

Example

See <table>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

691Appendix A ✦ HTML 4.01 Elements

center (deprecated)

Context

Purpose Align contents in the center of the enclosing block

Start/End Tag Required/Required

Display Block

Classification Block

Content Block, inline, and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip This is equivalent to <div align=“center”> (deprecated) or
<div style=“text-align: center”>.

Example

<body>

<center>This text is centered.</center>
. . .

cite

Context

Purpose Indicate that the contents are the title of a cited text

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

692 Part VII ✦ Appendixes

Usage

Tip Typically rendered in italics.

Example

<cite>Leaves of Grass</cite> by Walt Whitman

code

Context

Purpose Identify the enclosed text as computer code

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Typically rendered in monospace. For a block of code, use <pre>.

Example

In Java, the <code>toString()</code> method is handy for debugging.

col

Context

Purpose Identify columns within a table for customization

Start/End Tag Required/Forbidden

Parent <colgroup>, <table>

Content Empty

Attributes

Required Optional Deprecated

span = “number of columns”

width = “column width”

align = (left|center|right|justify|char)

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

693Appendix A ✦ HTML 4.01 Elements

char = “alignment character”

charoff = “alignment char offset”

valign = (top|middle|bottom|baseline)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip This tag and <colgroup> are designed to provide a central
place to apply attributes to all the cells in a column. Be
warned, however, that most browsers do not support this
properly, and thus CSS is recommended instead.

Example

See <table>

colgroup

Context

Purpose Groups semantically related column descriptors

Start/End Tag Required/Optional

Parent <table>

Content 0 or more <col> elements

Attributes

Required Optional Deprecated

span = “number of columns”

width = “column width”

align = (left|center|right|justify|char)

char = “alignment character”

charoff = “alignment char offset”

valign = (top|middle|bottom|baseline)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

694 Part VII ✦ Appendixes

Usage

Tip This tag and <col> are designed to provide a central place to
apply attributes to all the cells in a column. Be warned,
however, that most browsers do not support this properly,
and thus CSS is recommended instead.

Example

See <table>

dd

Context

Purpose Identify a definition in a definition list

Start/End Tag Required/Optional

Display Block

Parent <dl>

Content Block, inline, and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip There can be multiple definitions for each term (<dt>). There
can also be multiple terms for each definition.

Example

See <div>

del

Context

Purpose Indicate part of a document that has been deleted

Start/End Tag Required/Required

Display Block or inline, depending on the content

Parent Any element within (and including) <body>

Content Any block, inline, and text (but cannot contain block content
when used as an inline element)

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

695Appendix A ✦ HTML 4.01 Elements

Attributes

Required Optional Deprecated

cite = ”URL”

datetime = “ISO date”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip and <ins> are unusual. They can operate either as
inline or block elements, and can appear anywhere inside the
<body> element.

Example

<p>Our <acronym>CEO</acronym> is Jack Mann<ins>Barbara
Smith</ins>.</p>

dfn

Context

Purpose Identify the enclosed text as the defining instance

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip See <dl> for a definition list.

Example

<dfn>anime</dfn> refers to a distinctive Japanese tradition of cartoon animation.

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

696 Part VII ✦ Appendixes

dir (deprecated)

Context

Purpose Originally intended for multi-column directory listings, it is
rendered like .

Start/End Tag Required/Required

Display Block

Classification Block

Content elements that are constrained to contain inline content only

Attributes

Required Optional Deprecated

compact

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use instead.

Example

<dir>

This is

a very short

list.

</dir>

div

Context

Purpose Provide structure for a group of elements

Start/End Tag Required/Required

Display Block

Classification Block

Content Block, inline, and text

Attributes

Required Optional Deprecated

align = (left|center|right|justify)

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

697Appendix A ✦ HTML 4.01 Elements

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip <div> (a block) and (an inline) provide a convenient
grouping mechanism for applying CSS style. Use the class
attribute for the CSS selectors.

Example

<style type=‘‘text/css”> <!--

.dictionary dt {

font-style: italic;

}

.section {

border-top: thin groove black;

} -->
</style>

<div class=‘‘section dictionary”>

<dl>

<dt>tenebrous</dt>

<dt>tenebrious</dt>

<dd>Dark and gloomy.</dd>

<dt>tertiary</dt>

<dd>Third.

</dd>

</dl>

</div>

dl

Context

Purpose Create a definition list

Start/End Tag Required/Required

Display Block
Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

698 Part VII ✦ Appendixes

Classification Block

Content <dt> and <dd>

Attributes

Required Optional Deprecated

compact

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip This typically renders with the definition(s) rendered below and
to the right of the term(s).

Example

See <div>

dt

Context

Purpose Identify a defined term in a definition list

Start/End Tag Required/Optional

Display Block

Parent <dl>

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip There can be multiple definitions (<dd>) for each term. There
can also be multiple terms for each definition.

Example

See <div>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

699Appendix A ✦ HTML 4.01 Elements

em

Context

Purpose Mark text as emphasis

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Usually rendered in italics. If bold is desired instead of italics use .

Example

There are three rooms, not two.

fieldset

Context

Purpose Group thematically related elements in a form

Start/End Tag Required/Required

Display Block

Classification Block

Content <legend> as first child; after that block, inline, and text in any order

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Useful for accessibility.

Example

See <form>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

700 Part VII ✦ Appendixes

font (deprecated)

Context

Purpose Define presentational style for text

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

Required Optional Deprecated

size = “font size”

color = “color”

face = “typeface”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip Use CSS instead.

Example

<p>For Christmas, decorate your web pages in red and green.</p>

form

Context

Purpose Create a form for user input

Start/End Tag Required/Required

Display Block

Classification Block

Content Transitional DTD: Block, inline, and text

Strict DTD: Block and <script>

Attributes

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

701Appendix A ✦ HTML 4.01 Elements

Required Optional Deprecated

action = “URL”

method = (GET|POST)

enctype = “MIME type”

accept = “MIME type”

name = “form name”

onsubmit = “script”

onreset = “script”

accept-charset = “charset”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip In the 4.01 strict DTD form elements like <input> are not
allowed as direct children of a form. Those elements must
be enclosed in block elements like <fieldset>, <p>, and
<div>.

Example

<form action=‘‘http://www.mydomain.com/cgi-bin/handle-input.cgi” method=‘‘POST”>

<fieldset>

<legend>Personal data</legend>

<label for=‘‘name”>Name: </label><input id=‘‘name” type=‘‘text” size=‘‘30”
name=‘‘Name”>

</fieldset>

<fieldset>

<legend>Billing data</legend>

<label for=‘‘creditcard”>Credit card: </label>

<input id=‘‘creditcard” type=‘‘password” size=‘‘18” name=‘‘Credit”>

</fieldset>

<div>

<input type=‘‘submit”>

</div>

</form>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

702 Part VII ✦ Appendixes

frame

Context

Purpose Describe the content for a single frame of a page

Start/End Tag Required/Forbidden

Display Block

Parent <frameset>

Content Empty

Attributes

Required Optional Deprecated

longdesc = “URL”

name = “frame name”

src = “URL”

frameborder = (1|0)

marginwidth = “number of pixels”

marginheight = “number of pixels”

noresize

scrolling = (yes|no|auto)

General

� Core (id, class, style, title)

Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip To use frames, declare your document to comply with
the 4.01 frameset DTD.

Example

See <frameset>

frameset

Context

Purpose Define frame sizes and positions

Start/End Tag Required/Required

Display Block

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

703Appendix A ✦ HTML 4.01 Elements

Parent <html>

Content <frameset>, <frame>, <noframes>

Attributes

Required Optional Deprecated

rows = “height, height . . . ”

cols = “width, width . . . ”

onload = “script”

onunload = “script”

General

� Core (id, class, style, title)

Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip To use frames, declare your document to comply with
the 4.01 frameset DTD.

Example

<frameset rows=‘‘40, 25%, *”>

<frame src=‘‘header.html” name=‘‘header”>

<frame src=‘‘navbar.html” name=‘‘navbar”>

<frameset cols=‘‘20%, *”>

<frame src=‘‘left-navbar.html” name=‘‘left”>

<frame src=‘‘content.html” name=‘‘main”>

</frameset>

<noframes>

<body>Warning: this site expects a browser that understands frames.</body>

</noframes>

</frameset>

h1, h2, h3, h4, h5, h6

Context

Purpose Mark the enclosed text as a heading, ranging from most
prominent (<h1>) to least prominent (<h6>)

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

704 Part VII ✦ Appendixes

Start/End Tag Required/Required

Display Block

Classification Block

Content Inline and text

Attributes

Required Optional Deprecated

align = (left|center|right|justify)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip <h1> should be reserved for the title of a document, due
to its prominence. If text should be prominent, but it isn’t
technically a heading, consider using a <div> element
with CSS to define the size and font weight.

Example

<h1>Document Title</h1>

<h3>Introduction</h3>

<p> . . . </p>

<h3>Conclusion</h3>

<p> . . . </p>

head

Context

Purpose Enclose document metadata

Start/End Tag Optional/Optional

Parent <html>

Content <title> (required), <isindex> (deprecated), <base>,
<script>, <style>, <meta>, <link>, <object>

Attributes

Required Optional Deprecated

profile = “URI”

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

705Appendix A ✦ HTML 4.01 Elements

General

Core (id, class, style, title)

� Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip As with <body>, to be compliant with XHTML treat the
open and close tags as required instead of optional.

Example

<head>

<meta http-equiv=‘‘Content-Type” content=‘‘text/html; charset=ISO-8859-4”>

<title>Bryology Directory: Page 3</title>

<link rel=‘‘previous” href=‘‘page2.html”>

<link rel=‘‘next” href=‘‘page4.html”>

<link rel=‘‘stylesheet” type=‘‘text/css” href=‘‘/style/global.css”>

<meta name=‘‘keywords” content=‘‘bryophyte, bryology, bryologist, moss, liverwort,
hornwort”>

</head>

hr

Context

Purpose Insert a line break

Start/End Tag Required/Forbidden

Classification Block

Content Empty

Attributes

Required Optional Deprecated

align = (left|center|right)

noshade

size = “pixels”

width = “pixels or relative”

General

� Core (id, class, style, title)

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

706 Part VII ✦ Appendixes

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Styling <hr> with CSS is problematic due to pronounced
differences between browsers. You may wish to use
borders with CSS in place of <hr>.

Example

<h1>My Document</h1>

<hr>

<p> . . . </p>

html

Context

Purpose The master element containing the entire document

Start/End Tag Optional/Optional

Parent None

Content <head> and either <body> or <frameset>

Attributes

General

Core (id, class, style, title)

� Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip It is poor form to not include the start and end tags.

Example

<html>

<head>

<title>Hello, Web</title>

</head>

<body>

<p>Just a small document.</p>

</body>

</html>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

707Appendix A ✦ HTML 4.01 Elements

i

Context

Purpose Italic text

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip If the goal is emphasized text, consider instead to
convey the semantics. Conversely, don’t use when
you just want italics.

Example

See

iframe

Context

Purpose Create an inline subwindow in which can be inserted
another document

Start/End Tag Required/Required

Display Block

Classification Inline

Content Any block, inline, and text

Attributes

Required Optional Deprecated

longdesc = “URL”

name = “locator”

src = “URL”

frameborder = (1|0)

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

708 Part VII ✦ Appendixes

marginwidth = “pixels”

marginheight = “pixels”

scrolling = (yes|no|auto)

align = (top|middle|bottom|left|right)

height = “pixels or relative”

width = “pixels or relative”

General

� Core (id, class, style, title)

Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip This tag is not defined in the strict DTD, and it is not well supported in
browsers other than IE. Consider <object> instead.

Example

<iframe src=‘‘sample.html” scrolling=‘‘auto” width=‘‘50%” height=‘‘300”>

See for an illustration of this concept. <!-- Fallback text -->

</iframe>

img

Context

Purpose Insert a graphic

Start/End Tag Required/Forbidden

Display Inline

Classification Inline

Content Empty

Attributes

Required Optional Deprecated

src = “URL” longdesc = “URL” align = (top|middle|bottom|left|right)

alt = “description” name = “name” border = “pixels”

height = “pixels or relative” hspace = “pixels”

width = “pixels or relative” vspace = “pixels”

usemap = “URL”

ismap

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

709Appendix A ✦ HTML 4.01 Elements

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Always use the alt attribute to enhance accessibility. If the image
is entirely irrelevant to a non-graphical browser, such as spacer
images or other visual fluff, use an empty string as the value

Example

See <button>

input

Context

Purpose Accept user input within a form

Start/End Tag Required/Forbidden

Display Inline

Classification Inline

Content Empty

Attributes

Required Optional Deprecated

type = (text|password|checkbox| align = (top|middle|bottom|left|right)
radio|submit|reset|file|hidden|
image|button)

name = “form name”

value = “form value”

checked

disabled

readonly

size = “character width”

maxlength = “max width”

src = “URL”

alt = “description”

usemap = “URL”

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

710 Part VII ✦ Appendixes

ismap

tabindex = “sequence value”

accesskey = “key”

onfocus = “script”

onblur = “script”

onselect = “script”

onchange = “script”

accept = “MIME type, . . . ”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip The purpose of some attributes varies between input types.

Example

See <form>

ins

Context

Purpose Indicate part of a document that has been inserted

Start/End Tag Required/Required

Display Block or inline, depending on the content

Parent Any element within (and including) <body>

Content Any block, inline, and text (but cannot contain block
content when used as an inline element)

Attributes

Required Optional Deprecated

cite = “URL”

datetime = “ISO date”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

711Appendix A ✦ HTML 4.01 Elements

Usage

Tip and <ins> are unusual. They can operate either as
inline or block elements, and can appear anywhere
inside the <body> element.

Example

See

isindex (deprecated)

Context

Purpose Create a single-line text input field for server-enabled searches

Start/End Tag Required/Forbidden

Display Inline

Classification Block

Content Empty

Attributes

Required Optional Deprecated

prompt = “prompt message”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip Use a form instead.

Example

<isindex prompt=“Search this site”>

kbd

Context

Purpose Mark text as user input

Start/End Tag Required/Required

Display Inline

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

712 Part VII ✦ Appendixes

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Usually rendered in monospace. For semantically similar
content, see <code>, <samp>, and <var>.

Example

<p>In your browser’s location bar, type <kbd>www.mydomain.com</kbd>.</p>

label

Context

Purpose Associate text with a form control

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline or text

Attributes

Required Optional Deprecated

for = “control id”

accesskey = “key”

onfocus = “script”

onblur = “script”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip This is very valuable for accessibility purposes. If the for
attribute is not defined, the associated form control must be
embedded in the <label> element.

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

713Appendix A ✦ HTML 4.01 Elements

Example

See <form>

legend

Context

Purpose Title for related form content

Start/End Tag Required/Required

Display Inline

Parent <fieldset>

Content Inline and text

Attributes

Required Optional Deprecated

accesskey = “key” align = (top|bottom|left|right)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Enhances accessibility by providing an explanation for the
grouping of form content.

Example

See <form>

li

Context

Purpose Define an item in a list

Start/End Tag Required/Optional

Display Block

Parent , , <dir>, <menu>

Content Block, inline, and text

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

714 Part VII ✦ Appendixes

Attributes

Required Optional Deprecated

type = (1|a|A|i|I|disc|square|circle)

value = “sequence number”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip The value attribute is intended to be replaced by automatic
numbering in CSS, but support for that is currently spotty.

Example

See

link

Context

Purpose Describe an inter-document relationship

Start/End Tag Required/Forbidden

Parent <head>

Content Empty

Attributes

Required Optional Deprecated

charset = “character set” target = “frame”

href = “URL”

hreflang = “language”

type = “MIME type”

rel = “relationship”

rev = “reverse relationship”

media = “media type”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

715Appendix A ✦ HTML 4.01 Elements

Usage

Tip Defining navigation links in a set of documents
with meaningful linear navigation can dramatically
enhance usability in those browsers that
understand them.

Example

See <head>

map

Context

Purpose Create a client-side image map

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Block and <area>

Attributes

Required Optional Deprecated

name = “name”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use <area shape=“default”> to provide a
fallback for the entire region, but make it the
last <area> in the list or it will be the only one
interpreted.

Example

<map name=‘‘site-overview”>

<area shape=‘‘rect” coords=‘‘10, 30, 70, 110” href=‘‘books.html” alt=‘‘Books for sale”>

<area shape=‘‘circle” coords=‘‘130,114,30” href=‘‘music.html” alt=‘‘Music online”>

<area shape=‘‘default” nohref alt=‘‘Site overview”>

</map>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

716 Part VII ✦ Appendixes

menu (deprecated)

Context

Purpose Create a single-column menu list

Start/End Tag Required/Required

Display Block

Classification Block

Content elements that are constrained to contain
inline content only

Attributes

Required Optional Deprecated

compact

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use instead.

Example

<menu>

 . . .

</menu>

meta

Context

Purpose Describe properties of a document

Start/End Tag Required/Forbidden

Parent <head>

Content Empty

Attributes

Required Optional Deprecated

content = “metadata value” http-equiv = “HTTP header” target = “frame”

name = “metadata key”

scheme = “identifier”

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

717Appendix A ✦ HTML 4.01 Elements

General

Core (id, class, style, title)

� Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip Any character encoding should be the first
<meta> tag in the <head> element.

Example

See <head>

noframes

Context

Purpose Provide content for browsers that do not display frames

Start/End Tag Required/Required

Display Block

Classification Block

Content <body> (when used inside <frameset>), block, inline, and text

Attributes

Required Optional Deprecated

longdesc = “URL”

name = “frame name”

src = “URL”

frameborder = (1|0)

marginwidth = “number of pixels”

marginheight = “number of pixels”

noresize

scrolling = (yes|no|auto)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

718 Part VII ✦ Appendixes

Usage

Tip Most commonly used as the last tag in a <frameset>, this
may also be used in documents incorporated into a frame.

Example

See <frameset>

noscript

Context

Purpose Provide content for browsers that do not support scripting

Start/End Tag Required/Required

Display Block

Classification Block

Content Block, inline, and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip If a script on the page provides important information, offer an
alternative mechanism for obtaining the information.

Example

See <script>

object

Context

Purpose Incorporate an external media object such as an
applet, movie, or image

Start/End Tag Required/Required

Display Block

Classification Inline

Content Block, inline, and text; any <param> elements must come first

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

719Appendix A ✦ HTML 4.01 Elements

Attributes

Required Optional Deprecated

declare align = (top|middle|bottom|left|right)

classid = “URI” border = “pixels”

codebase = “URI” hspace = “pixels”

data = “URL” vspace = “pixels”

type = “object MIME type”

codetype = “code MIME type”

archive = “URI, . . . ”

standby = “Load message”

height = “pixels or relative”

width = “pixels or relative”

usemap = “URI”

name = “form name”

tabindex = “sequence value”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Nested <object> tags provide a fallback mechanism.

Example

<!-- Try, in order: an applet, a movie, an image, and if all else fails, some text. -->

<object title=‘‘Explore campus” classid=‘‘java:campusStroll.class”
codetype=‘‘application/java”>

<param name=‘‘startLocation” value=‘‘adminBldg”>

<object data=‘‘across-campus.mpeg” type=‘‘application/mpeg”>

<object data=‘‘campus-map.gif” type=‘‘image/gif”>

Please visit our campus overview
for a map and more details.

</object>

</object>

</object>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

720 Part VII ✦ Appendixes

ol

Context

Purpose Create a numbered (“ordered”) list

Start/End Tag Required/Required

Display Block

Classification Block

Content One or more elements

Attributes

Required Optional Deprecated

type = (1|a|A|i|I)
compact

start = “start with number”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use CSS to define the numbering style.

Example

<ol style=‘‘list-style-type: lower-roman”>

First item

Second item

optgroup

Context

Purpose Group related <option> elements inside <select>

Start/End Tag Required/Required

Parent <select>

Content One or more <option> elements

Attributes

Required Optional Deprecated

label = “category label” disabled

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

721Appendix A ✦ HTML 4.01 Elements

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Future versions of HTML may allow for nested
<optgroup> elements.

Example

See <select>

option

Context

Purpose Define an item in a selection list in a form

Start/End Tag Required/Optional

Display Inline

Parent <select>, <optgroup>

Content Text

Attributes

Required Optional Deprecated

selected

disabled

label = “shorter label”

value = “form value”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip The value for the label attribute should be an extension
of any enclosing <optgroup> label. The <option>
contents should be the full name of the item.

Example

See <select>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

722 Part VII ✦ Appendixes

p

Context

Purpose Define a paragraph of body text

Start/End Tag Required/Optional

Display Block

Classification Block

Content Inline and text

Attributes

Required Optional Deprecated

align = (left|center|right|justify)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Using an empty <p> element to introduce a blank line is
strongly discouraged.

Example

<p>Four score and seven years ago our fathers brought forth on this continent a new nation,
conceived in liberty, and dedicated to the proposition that all men are created equal.</p>

param

Context

Purpose Provide run-time settings for an object

Start/End Tag Required/Forbidden

Parent <object>, <applet>

Content Empty

Attributes

Required Optional Deprecated

name = “property name” id = “unique document id”

value = “property value”

valuetype = (data|ref|object)

type = “MIME type”

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

723Appendix A ✦ HTML 4.01 Elements

Usage

Tip When used, this tag should be the first child of
<object> or <applet>.

Example

See <object>

pre

Context

Purpose Define a block of text with preserved white space

Start/End Tag Required/Required

Display Block

Classification Block

Content Most inline tags and text

Attributes

Required Optional Deprecated

width = “number of characters”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Using this tag does not eliminate the need to escape &
and < characters.

Example

<pre>

There once was a man from Nantucket,

Who kept all of his cash in a bucket,

But his daughter, named Nan,

Ran away with a man,

And as for the bucket, Nantucket.

</pre>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

724 Part VII ✦ Appendixes

q

Context

Purpose Mark in inline quotation

Start/End Tag Required/Required

Display Inline

Classification Inline

Content inline and text

Attributes

Required Optional Deprecated

cite = “URI”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Browsers must render enclosing quotation marks (but IE
does not). See also <blockquote> for longer quotes.

Example

<p>Who said <q>A fool and his money are soon parted</q>?</p>

s (deprecated)

Context

Purpose Strike-through text

Start/End Tag Required/Required

Display Inline

Classification Inline

Content inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

725Appendix A ✦ HTML 4.01 Elements

Usage

Tip Use CSS instead: text-decoration: line-through.

Example

See <strike>

samp

Context

Purpose Identify computer output

Start/End Tag Required/Required

Display Inline

Classification Inline

Content inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Typically rendered in a monospace font.

Example

Wait until you see <samp>fatal error</samp> on the screen; then panic.

script

Context

Purpose Contain a script

Start/End Tag Required/Required

Classification Inline (but can also be contained in <head>)

Content Text

Attributes

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

726 Part VII ✦ Appendixes

Required Optional Deprecated

type = “MIME type” charset = “character encoding” language = “ language name”

src = “URL”

defer

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Hide your script within comment tags so that it won’t be
displayed by older browsers. Some browsers end
comments at the first > character, so escape any
occurrences of that character using the syntax of the
scripting language if possible.

Example

<script type=‘‘text/javascript”>

<!--

document.write(‘‘This could easily be statically defined text!”);

-->

</script>

<noscript>

This could easily be statically defined text (and is!)

<noscript>

select

Context

Purpose Define a selection of form
items

Start/End Tag Required/Required

Display Inline

Classification Inline

Content One or more of <optgroup> and/or <option>

Attributes

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

727Appendix A ✦ HTML 4.01 Elements

Required Optional Deprecated

name = “form name”

size = “visible rows”

multiple

disabled

tabindex = “sequence value”

onfocus = “script”

onblur= “script”

onchange = “script”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip In the absence of a pre-defined default option (through the selected
attribute), browser behavior varies. Always define a default selection.

Example

<form action=‘‘http://www.mydomain.com/cgi-bin/handle-input.cgi”>

<p>

<select name=‘‘moss”>

<optgroup label=‘‘Hypnum”>

<option label=‘‘strigosum” value=‘‘hypnum-strigosum”>Hypnum strigosum</option>

<option label=‘‘strumiferum” value=‘‘hypnum-strumiferum”>Hypnum strumiferum
</option>

<option label=‘‘strumosum” value=‘‘hypnum-strumosum”>Hypnum strumosum</option>

</optgroup>

<optgroup label=‘‘Lembophyllum”>

<option label=‘‘porotrichoides” value=‘‘lembophyllum-porotrichoides”>Lembophyllum
porotrichoides</option>

<option label=‘‘vagum” value=‘‘lembophyllum-vagum”>Lembophyllum vagum</option>

</optgroup>

</select>

</p>

</form>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

728 Part VII ✦ Appendixes

small

Context

Purpose Display text in a small font

Start/End Tag Required/Required

Display Inline

Classification Inline

Content inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Be careful to close this element properly, and
don’t overlap with similar tags like . Nest
them instead.

Example

This is bold, <small>this is small and bold</small>.

span

Context

Purpose Generic inline container

Start/End Tag Required/Required

Display Inline

Classification Inline

Content inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

729Appendix A ✦ HTML 4.01 Elements

Tip <div> (a block) and (an inline) provide a
convenient grouping mechanism for applying CSS
style. Use the class attribute for the CSS selectors.

Example

See <strike>

strike (deprecated)

Context

Purpose Strike-through text

Start/End Tag Required/Required

Display Inline

Classification Inline

Content inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use CSS instead – text-decoration: line-through.

Example

<p>This, <strike>This</strike>, and
<s>This</s> should render the same.</p>

strong

Context

Purpose Strong emphasis

Start/End Tag Required/Required

Display Inline

Classification Inline

Content inline and text

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

730 Part VII ✦ Appendixes

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Typically rendered in bold.

Example

<p>Stop, or I’ll say stop again!</p>

style

Context

Purpose Define styles to be used in a document

Start/End Tag Required/Required

Parent <head>

Content Text

Attributes

Required Optional Deprecated

type = “MIME type” media = “type, . . . ”

title = “label”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip For styles common to multiple documents, consider
using an external stylesheet referenced by <link>
instead.

Example

See <div>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

731Appendix A ✦ HTML 4.01 Elements

sub, sup

Context

Purpose Subscripted (<sub>) or superscripted (<sup>) text

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip It is difficult to render non-trivial mathematical text in
HTML; MathML helps to address the problem.

Example

<p>The amount of energy gained by converting water (H₂O) to energy would
follow Einstein’s <tt>E = mc²</tt> equation.</p>

table

Context

Purpose Create a table

Start/End Tag Required/Required

Display Block

Classification Block

Content An optional <caption>, zero or more <col> or <colgroup> tags,
optional <thead> and <tfoot>, and at least one <tbody>
(which has optional start and end tags).

Attributes

Required Optional Deprecated

summary = “description” align = (left|center|right)

width = “pixels or relative” bgcolor= “color”

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

732 Part VII ✦ Appendixes

border = “pixels”

frame = (void|above|below|hsides|
lhs|rhs|vsides|box|border)

rules = (none|groups|rows|cols|all)

cellspacing = “pixels or relative”

cellpadding = “pixels or relative”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use the summary attribute to describe the structure
and content for speech and Braille browsers.

Example

<table rules=‘‘cols” summary=‘‘Lists the current office-holders in various nations; first column
is those nations, second is the president, third is the prime minister”>

<caption>Selected Governments in the Americas and Europe</caption>

<colgroup span=‘‘1” align=‘‘left”>

<colgroup><col align=‘‘center”><col align=‘‘center”></colgroup>

<thead>

<tr><th scope=‘‘col”>Country</th><th scope=‘‘col”>President</th>

<th scope=‘‘col”>Prime Minister</th></tr>

</thead>

<tfoot>

<tr>

<th scope=‘‘row”>Governments Represented</th>

<td>3</td><td>1</td>

</tr>

</tfoot>

<tbody>

<tr>

<td scope=‘‘row”>Argentina</th>

<td>Eduardo Alberto Duhalde</td><td></td>

</tr>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

733Appendix A ✦ HTML 4.01 Elements

<tr>

<td scope=‘‘row”>France</th>

<td>Jacques Chirac</td><td>Jean-Pierre Raffarin</td>

</tr>

<tr>

<td scope=‘‘row”>United States</th>

<td>George W. Bush</td><td></td>

</tr>

</tbody>

</table>

tbody

Context

Purpose Define the body of a table separate from any header or footer

Start/End Tag Optional/Optional

Parent <table>

Content <tr>

Attributes

Required Optional Deprecated

align = (left|center|right|justify|char)

char = “alignment character”

charoff = “pixels or relative”

valign = (top|middle|bottom|baseline)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Using <thead>, <tfoot>, and <tbody> allows
browsers to intelligently place the header and footer
of a table if the table spans multiple pages.

Example

See <table>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

734 Part VII ✦ Appendixes

td

Context

Purpose Define a table cell

Start/End Tag Required/Optional

Parent <tr>

Content Block, inline, and text.

Attributes

Required Optional Deprecated

abbr = “abbreviation” nowrap

axis = “category, . . . ” bgcolor = “color”

headers = “idref, . . . ” width = “pixels or relative”

scope = (row|col|rowgroup|colgroup) height = “pixels or relative”

rowspan = “number”

colspan = “number”

align = (left|center|right|justify|char)

char = “alignment character”

charoff = “pixels or relative”

valign = (top|middle|bottom|baseline)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip If a cell acts as both header and data, use <td> instead of <th>.

Example

See <table>

textarea

Context

Purpose Create a multiline text entry box

Start/End Tag Required/Required

Display Inline

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

735Appendix A ✦ HTML 4.01 Elements

Classification Inline

Content Text

Attributes

Required Optional Deprecated

rows = “number” name = “form name”

cols = “number” disabled

readonly

tabindex = “sequence value”

accesskey = “key”

onfocus = “script”

onblur = “script”

onselect = “script”

onchange = “script”

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use <input type=“text”> to create a one-line text box.

Example

<textarea rows=“6” cols=“50” name=“comments”>Replace this text with any comments
you have.</textarea>

tfoot

Context

Purpose Create a table footer

Start/End Tag Required/Optional

Parent <table>

Content <tr>

Attributes

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

736 Part VII ✦ Appendixes

Required Optional Deprecated

align = (left|center|right|justify|char)

char = “alignment character”

charoff = “pixels or relative”

valign = (top|middle|bottom|baseline)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip <tfoot> must precede <tbody>

Example

See <table>

th

Context

Purpose Define a table header cell

Start/End Tag Required/Optional

Parent <tr>

Content Block, inline, and text

Attributes

Required Optional Deprecated

abbr = “abbreviation” nowrap

axis = “category, . . . ” bgcolor = “color”

headers = “idref, . . . ” width = “pixels or relative”

scope = (row|col|rowgroup|colgroup) height = “pixels or relative”

rowspan = “number”

colspan = “number”

align = (left|center|right|justify|char)

char = “alignment character”

charoff = “pixels or relative”

valign = (top|middle|bottom|baseline)

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

737Appendix A ✦ HTML 4.01 Elements

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Providing an abbreviation via the abbr attribute allows speech
renderers to provide that abbreviation before each data cell. Use the
scope attribute to specify the data cells to which this header applies.

Example

See <table>

thead

Context

Purpose Create a table header that browsers can place intelligently
when dealing with long tables

Start/End Tag Required/Optional

Parent <table>

Content <tr>

Attributes

Required Optional Deprecated

align = (left|center|right|justify|char)

char = “alignment character”

charoff = “pixels or relative”

valign = (top|middle|bottom|baseline)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Using <thead>, <tfoot>, and <tbody> allows browsers to
intelligently place the header and footer of a table if the table
spans multiple pages.

Example

See <table>

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

738 Part VII ✦ Appendixes

title

Context

Purpose Provide a caption for the document that is typically not directly
rendered as part of the page

Start/End Tag Required/Required

Parent <head>

Content Text

Attributes

General

Core (id, class, style, title)

� Internationalization (lang, dir)

Standard Events (see end of appendix)

Usage

Tip Provide a meaningful title to make search results
easier to decipher and help a user orient him/herself.

Example

See <head>

tr

Context

Purpose Define a row in the table

Start/End Tag Required/Optional

Parent <thead>, <tfoot>, <tbody>

Content <th>, <td>

Attributes

Required Optional Deprecated

align = (left|center|right|justify|char) bgcolor = “color”

char = “alignment character”

charoff = “pixels or relative”

valign = (top|middle|bottom|baseline)

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

739Appendix A ✦ HTML 4.01 Elements

Usage

Tip If the first column is a header, use <th scope=“row”> for that cell.

Example

See <head>

tt

Context

Purpose Monospaced (“teletype”) text

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Typically renders like <code>, <kbd>, <samp>, and
<var>, but conveys no semantic information.

Example

<p>The top row of letters on a computer keyboard is <tt>qwertyuiop</tt>.</p>

u (deprecated)

Context

Purpose Underline text

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Continued

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

740 Part VII ✦ Appendixes

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use CSS instead -- text-decoration: underline.

Example

<p>This and <u>This</u> should
render the same.</p>

ul

Context

Purpose Create a bullet list

Start/End Tag Required/Required

Display Block

Classification Block

Content One or more elements

Attributes

Required Optional Deprecated

type = (disc|square|circle) compact

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Use CSS to define the bullet style.

Example

<ul style=‘‘list-style-type: square”>

One item

Another item

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

741Appendix A ✦ HTML 4.01 Elements

var

Context

Purpose Indicate an instance of some replaceable value, such
as a variable or argument to a program

Start/End Tag Required/Required

Display Inline

Classification Inline

Content Inline and text

Attributes

General

� Core (id, class, style, title)

� Internationalization (lang, dir)

� Standard Events (see end of appendix)

Usage

Tip Typically renders as monospaced text.

Example

<p>Set the <var>CLASSPATH</var> environment variable to run a Java application.</p>

Event Attributes
Standard Events
The standard event attributes:

Attribute Triggered By

onclick Pointer button was clicked

ondblclick Pointer button was double clicked

onmousedown Pointer button was pressed down

onmouseup Pointer button was released

onmouseover Pointer was moved into

onmousemove Pointer was moved within

onmouseout Pointer was moved away

onkeypress Key was pressed and released

onkeydown Key was pressed

onkeyup Key was released

P1: KTX

WY022-App-A WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 17:18

742 Part VII ✦ Appendixes

Other Events
Less-common event attributes:

Attribute Triggered By

onload Document has been loaded

onunload Document was been removed

onblur Element lost focus

onfocus Element gained focus

onreset Form was reset

onsubmit Form was submitted

onchange Form element value changed

onselect Text in a form field has been selected

Other Common Attributes
Core Attributes

Attribute Description

id ID value unique to this document

class Space-separated list of classes useful for selecting this
element for style and other purposes

style Local style information

title Advisory title, typically rendered by a graphical
browser when the pointer is over the element

Internationalization Attributes
Attribute Description

lang Language code for this element’s contents

dir Direction (ltr or rtl) for the text

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

BBA P P E N D I X

CSS Properties
✦ ✦ ✦ ✦

This appendix provides a laundry list of sorts of
CSS properties with which you may need to be familiar at

some point.

Browser Support
Historically, CSS support in browsers has been erratic. To help
developers and browser implementors navigate these
troubled waters, the W3C has issued a CSS 2.1 specification
that reflects a survey of modern browsers; this appendix is
drawn from that specification.

For additional information about property support, go to
www.blooberry.com; it’s a valuable resource. Brian
Wilson has posted the results of his extensive testing of some
of the major browsers (Internet Explorer, Netscape, and
Opera).

For many properties, it is sufficient to determine whether they
are supported by your target browsers, but, particularly for
the positioning properties, testing on as many browsers as
reasonable is highly recommended. You have at least four
modern rendering engines to consider:

✦ Internet Explorer for Windows

✦ Gecko (as seen in Mozilla, Netscape 6/7, and several
other browsers)

✦ Konqueror (the browser re-used by Apple as Safari)

✦ Opera

Note Internet Explorer 5.2 for the Macintosh is apparently dif-
ferent (and significantly more standards-compliant) from
the then-current Windows versions, but has been aban-
doned by Microsoft and supplanted by Safari.

743

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

744 Part VII ✦ Appendixes

Key to the Property Summaries
Regardless of whether a CSS property is automatically inherited, the value inherit
is always valid, and thus is not repeated for each property in this appendix.

Examples have not been provided for the many properties that allow for only one
value and will always be represented as <property-name>:<value>. Exceptions
are made for cases where the value may be open-ended or otherwise ambiguous.

The value <length> is shorthand for a number followed by “pt”, “em”, or “ex”, for
points, em-units, or ex-units. <percentage> is shorthand for a number followed by
a percent sign; typically this is a percentage of the enclosing box size or current font
size, but the context is indicated where it may be ambiguous or not obvious.

The color mnemonics defined by the CSS specification are as follows:

✦ aqua

✦ black

✦ blue

✦ fuchsia

✦ gray

✦ green

✦ lime

✦ maroon

✦ navy

✦ olive

✦ orange

✦ purple

✦ red

✦ silver

✦ teal

✦ white

✦ yellow

Color codes are taken from the RGB color model, and are represented as
hexadecimal, base 10, or percentage values:

✦ #f0f or #ff00ff

✦ rgb(255, 0, 255)

✦ rgb(100%, 0%, 100%)

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

745Appendix B ✦ CSS Properties

Background and Color Properties
color

Purpose Specify the foreground color of an element

Inherited Yes

Values Color code or mnemonic

Default Defined by browser

Used In All elements

Example {color: #C0C0C0} or {color: red}

background

Purpose Shorthand method for background properties

Inherited Yes

Values See values for background-color, background-image,
background-repeat, background-attachment, and
background-position

Default See individual properties

Used In All elements

Example {background: url(“picture.gif”) repeat fixed}

background-attachment

Purpose Define whether the background image is fixed in the
viewport or scrolls

Inherited No

Values scroll, fixed

Default scroll

Used In All elements

background-color

Purpose Specify the background color of an element

Inherited Yes

Continued

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

746 Part VII ✦ Appendixes

Values Color code or mnemonic

Default Transparent

Used In All elements

Example {background-color: #C0C0C0} or
{background-color: red}

background-image

Purpose Insert a graphic in an element’s background

Inherited Yes

Values <url>

Default None

Used In All elements

Example {background-image: url
(“/images/bg.jpg”)}

Tip The URL may be any of the usual forms: relative and
absolute, with or without a server name and
protocol scheme

background-position

Purpose Define the position of a graphic in an element’s
background

Inherited No

Values top left, top center, right top, left center, center,
right center, bottom left, bottom center, bottom
right

<percentage> <percentage> (expressing the
distance from the left and top)

<length> <length> (from the left and top)

Default 0% 0%

Used In All elements

Example {background-position: top center}

{background-position: 50% 0%}

{background position: 48pt 60pt}

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

747Appendix B ✦ CSS Properties

background-repeat

Purpose Specify whether the background image is tiled

Inherited No

Values repeat-x, repeat-y, repeat, no-repeat

Default repeat

Used In All elements

Box Properties
border

Purpose Shorthand method for border properties

Inherited No

Values See values for border-width, border-style, and border-color.

Default See individual properties

Used In All elements

Example {border: 1pt inset blue}

border-color

Purpose Shorthand method for border colors

Inherited No

Values Colors for border-top, border-right, border-bottom, and border-left

Default The value of the color property

Used In All elements

Example {border-color: red}

Tip If one value is provided, it applies to all four borders. If two, then
the first will apply to top and bottom, the second to left and right.
If three: top, right/left, bottom. If four: top, right, bottom, left.

border-{bottom|left|right|top}-color

Purpose Specify a border side color

Inherited No

Continued

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

748 Part VII ✦ Appendixes

Values Color code or mnemonic

Default The value of the color property

Used In All elements

Example {border-right-color: red}

border-style

Purpose Shorthand method for border styles

Inherited No

Values Styles for border-top, border-right, border-bottom,
and border-left

Default none

Used In All elements

Example {border-style: double solid}

Tip See border-color for the rules on how different
numbers of values apply.

border-{bottom|left|right|top}-style

Purpose Specify a border side style

Inherited No

Values none, hidden, dotted, dashed, solid, double, groove,
ridge, inset, outset

Default none

Used In All elements

Example {border-top-style: ridge}

border-width

Purpose Shorthand method for border widths

Inherited No

Values Widths for border-top, border-right, border-bottom,
and border-left

Default medium

Used In All elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

749Appendix B ✦ CSS Properties

Example {border-width: thin}

Tip See border-color for the rules on how different
numbers of values apply.

border-{bottom|left|right|top}-width

Purpose Specify a border side width

Inherited No

Values thin, medium, thick, <length>

Default medium

Used In All elements

Example {border-left-width: 2em}

border-{bottom|left|right|top}

Purpose Shorthand method for border styles

Inherited No

Values Styles for border-width, border-style, border-color

Default See individual properties

Used In All elements

Example {border-left: 2em solid blue}

Tip See border-color for the rules on how different
numbers of values apply.

height

Purpose Specify the height of an element

Inherited No

Values <length>, <percentage>, auto

Default auto

Used In Block, inline-block, and replaced elements

Example {height: 50%}

Tip A percentage value is calculated relative to the
containing element.

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

750 Part VII ✦ Appendixes

max-height

Purpose Specify the maximum height of an element

Inherited No

Values <length>, <percentage>, none

Default none

Used In Block, inline-block, and replaced elements

Example {max-height: 8em}

Tip A percentage value is calculated relative to the
containing element

min-height

Purpose Specify the minimum height of an element

Inherited No

Values <length>, <percentage>

Default 0

Used In Block, inline-block, and replaced elements

Example {min-height: 2pt}

Tip A percentage value is calculated relative to the
containing element

width

Purpose Specify the width of an element

Inherited No

Values <length>, <percentage>, auto

Default auto

Used In Block, inline-block, and replaced elements

Example {width: 25%}

Tip A percentage value is calculated relative to the
containing element

max-width

Purpose Specify the maximum width of an element

Inherited No

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

751Appendix B ✦ CSS Properties

Values <length>, <percentage>, none

Default none

Used In Block, inline-block, and replaced elements

Example {max-width: 25em}

Tip A percentage value is calculated relative to the
containing element

min-width

Purpose Specify the minimum width of an element

Inherited No

Values <length>, <percentage>

Default 0

Used In Block, inline-block, and replaced elements

Example {min-width: 10pt}

Tip A percentage value is calculated relative to the
containing element

margin

Purpose Shorthand method for margin widths

Inherited No

Values Widths for margin-top, margin-right, margin-bottom,
and margin-left

Default 0

Used In All elements except for grouping table elements
(such as <tr> and <colgroup>).

Example {margin: 3em 2em}

Tip See border-color for the rules on how different
numbers of values apply

margin-{bottom|left|right|top}

Purpose Specify a margin side width

Inherited No

Continued

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

752 Part VII ✦ Appendixes

Values <length>, <percentage>, auto

Default 0

Used In All elements except for grouping table elements
(such as <tr> and <colgroup>)

Example {margin-left: 5em}

Tip When deciding whether to use margin or padding, it
is helpful to visualize a border around the element:
space inside the border is padding, outside is margin

padding

Purpose Shorthand method for padding widths

Inherited No

Values Widths for padding-top, padding-right,
padding-bottom, and padding-left

Default 0

Used In All elements except for grouping table elements
(such as <tr> and <colgroup>)

Example {padding: 3em 0}

Tip See border-color for the rules on how different
numbers of values apply

padding-{bottom|left|right|top}

Purpose Specify a padding side width

Inherited No

Values <length>, <percentage>, auto

Default 0

Used In All elements except for grouping table elements
(such as <tr> and <colgroup>)

Example {padding-left: 5em}

Tip When deciding whether to use margin or padding, it
is helpful to envision a border around the element:
space inside the border is padding, outside is margin

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

753Appendix B ✦ CSS Properties

Display Properties
clip

Purpose Define an element’s clipping region

Inherited No

Values auto—No clipping

rect(<top>, <right>, <bottom>, <left>)—Border
offsets

Default auto

Used In Absolutely positioned elements

Example {clip: rect(auto, 30px, 40px, auto)}

Tip The above example indicates that the clipping
should be performed 30px to the right of the left
border and 40px below the top border

cursor

Purpose Define the mouse pointer appearance while
over an element

Inherited Yes

Values <url>, auto, crosshair, default, pointer, move,
{e|ne|nw|n|se|sw|s|w}-resize, text, wait, help,
progress

Default auto

Used In All elements

Example {cursor: url(/images/pointer.png),
crosshair}

Tip Any number of URLs may be provided; the
browser will try each in order until it finds one
that it supports. In the above example,
if the pointer image doesn’t work, crosshair
will be the fallback.

In practice, only IE seems to behave
properly; Netscape and Safari will neither use
the URL nor proceed to successive items in
the list

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

754 Part VII ✦ Appendixes

display

Purpose Specify the rendering class in which this element
belongs

Inherited No

Values inline, block, list-item, run-in, inline-block, table,
inline-table, table-row-group, table-header-group,
table-footer-group, table-row, table-column-group,
table-column, table-cell, table-caption, none

Default inline

Used In All elements

Tip This property is most commonly used in HTML to
remove an element from the document flow. See
also the visibility property

It can also be used to categorize XML elements so
that browsers know how to handle them

outline

Purpose Shorthand method for outline properties

Inherited No

Values See values for outline-color, outline-style, outline-width

Default See individual properties

Used In All elements

Example {outline: red groove thin}

Tip Outlines are very similar to borders, with key differences: the
outline occupies no space in the flow model, and it reflects
the content (and thus may not be a rectangle)

outline-color

Purpose Set a color for an outline

Inherited No

Values <color>, invert

Default invert

Used In All elements

Tip Invert tells the browser to perform a color inversion
on the normal background color

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

755Appendix B ✦ CSS Properties

outline-style

Purpose Specify a style for an outline

Inherited No

Values Same as border-style (except hidden is not legal)

Default none

Used In All elements

outline-width

Purpose Specify a width for an outline

Inherited No

Values Same as border-width

Default medium

Used In All elements

overflow

Purpose Specify whether content should be clipped when it
overflows its container

Inherited No

Values visible, hidden, scroll, auto

Default visible

Used In Block and replaced elements

Tip scroll should result in a scrollbar regardless of whether
the content overflows. auto is browser-defined

visibility

Purpose Specify whether an element should be visible

Inherited Yes

Values visible, hidden, collapse

Default visible

Used In All elements

Tip Setting an element to hidden does not remove it from the
document flow; use display: none to achieve that

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

756 Part VII ✦ Appendixes

Font Properties
font

Purpose Shorthand method for font properties

Inherited Yes

Values Values for these properties: font-style, font-variant, font-weight,
font-size, line-height, and font-family

Additional values (representing system fonts): caption, icon,
menu, message-box, small-caption, status-bar

Default See individual properties

Used In All elements

Example {font: 14pt Arial, Helvetica, sans-serif bold}

Tip Note that the commas are only used to express a list for the
font-family property; other values are not comma-separated

font-family

Purpose Define preferred font and fallbacks

Inherited Yes

Values family or generic (serif, sans-serif, cursive, fantasy, monospace)

Default Determined by browser

Used In All elements

Example {font-family: “Times Roman”, sans-serif}

Tip Use quotes for any font that requires two or more words.
Conversely, don’t use quotes around the generic family names; to
do so indicates that the name refers to a specific font family

font-size

Purpose Specify a font size

Inherited Yes

Values <length>, <percentage>, or one of:

Absolute: xx-small, x-small, small, medium, large, x-large, xx-large

Relative: larger, smaller

Default medium

Used In All elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

757Appendix B ✦ CSS Properties

font-style

Purpose Specify the face for the current font

Inherited Yes

Values normal, italic, oblique

Default normal

Used In All elements

font-variant

Purpose Allow for a small capital font

Inherited Yes

Values normal, small-caps

Default normal

Used In All elements

font-weight

Purpose Determine weight (boldness)

Inherited Yes

Values normal, bold, bolder, lighter, 100 (lightest), 200, 300,
400 (equivalent to normal), 500, 600, 700
(equivalent to bold), 800, 900 (darkest)

Default normal

Used In All elements

Positioning Properties
Using these properties in place of tables for layout enhances accessibility and
maintainability, but requires care and extensive testing due to browser quirks.

bottom, left, right, top

Purpose Specify an offset from one edge of a positioned
element’s reference box

Inherited Yes

Values <length>, <percentage>, auto

Continued

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

758 Part VII ✦ Appendixes

Default auto

Used In Positioned elements

Tip A positioned element is one whose position property is
defined to something other than the default, static.

clear

Purpose Declare whether an element will forbid floating
elements to either side

Inherited No

Values none, left, right, both

Default none

Used In Block elements

float

Purpose Float an element to the left or right, allowing text to
flow around it to the other side

Inherited No

Values none, left, right

Default none

Used In All elements

position

Purpose Determines whether an element flows with the text (static), occupies
a fixed position (absolute or fixed), or is offset from the position it
would occupy were it static (relative).

Inherited No

Values static, relative, absolute, fixed

Default static

Used In All elements

Tip The difference between fixed and absolute is that a fixed element
will not scroll.

The next box after a relative element will flow as if the previous
one were static. Elements that are absolute or fixed are not
part of the document flow at all.

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

759Appendix B ✦ CSS Properties

z-index

Purpose Specify the position of an element in a
three-dimensional stack (back to front)

Inherited No

Values auto, <integer>

Default auto

Used In Positioned elements

Example {z-index: 3}

Tip Use this when boxes may overlap to define which
boxes are closer to the front. Smaller numbers are
further away from the user; negative values are
allowed

Text Properties
direction

Purpose Define the direction (right to left, or left to right) of
the contained text

Inherited Yes

Values ltr, rtl

Default ltr

Used In All elements

line-height

Purpose Specify the distance between the baselines of each
line of text in an element

Inherited Yes

Values normal, <number> (multiple of the font height),
<length>, <percentage> (of the font height)

Default normal

Used In All elements

Example {line-height: 2.5} and {line-height:
250%} are equivalent

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

760 Part VII ✦ Appendixes

letter-spacing, word-spacing

Purpose Add to the default spacing between characters
(letter-spacing) or words (word-spacing)

Inherited Yes

Values normal, <length> (to be added to the normal
spacing)

Default normal

Used In All elements

text-align

Purpose Control horizontal alignment of inline content

Inherited Yes

Values left, right, center, justify

Default left (unless direction is rtl)

Used In Block elements

text-decoration

Purpose Add decorations (such as strikethrough) to text

Inherited No

Values none, underline, overline, line-through, blink

Default none

Used In All elements

Tip Browsers are permitted to ignore the blink value (and
developers are encouraged to do the same)

text-indent

Purpose Indent the first line of text

Inherited Yes

Values <length>, <percentage>

Default 0

Used In Block elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

761Appendix B ✦ CSS Properties

text-transform

Purpose Change case

Inherited Yes

Values capitalize, uppercase, lowercase, none

Default none

Used In All elements

Tip The capitalize value will only transform the first
character of each word. Both uppercase and
lowercase affect all characters

unicode-bidi

Purpose Describe how to handle embedded text per the
Unicode bidirectionality (bidi) algorithm

Inherited Yes

Values normal, embed, bidi-override

Default normal

Used In All elements

white-space

Purpose Control white space handling

Inherited Yes

Values normal—Collapse white space, break lines as
needed

pre—Don’t collapse whitespace, break only at
explicitly line breaks

nowrap—Collapse whitespace, suppress line
breaks in the source

pre-wrap—Don’t collapse whitespace, break lines
as needed

pre-line—Collapse whitespace, break lines as
needed and as found in the source

Default normal

Used In All elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

762 Part VII ✦ Appendixes

vertical-align

Purpose Control the vertical position of an element relative to the
current text baseline

Inherited No

Values baseline—Match the baseline with the element’s parent’s

middle—Place the vertical midpoint at the parent’s baseline

sub—Subscript

super—Superscript

text-top—Top of the box should align with the top of the
parent’s font

text-bottom—Bottom of the box should align with the
bottom of the parent’s font

Default baseline

Used In All elements

List Properties
list-style

Purpose Shorthand method for list styles

Inherited Yes

Values Styles for list-style-type, list-style-position,
list-style-image

Default See individual properties

Used In Elements with display: list-item

Example {list-style: upper-roman inside}

Tip These styles can often be used to preserve list
semantics while changing the appearance instead of
using
 elements to create an ad hoc list

list-style-image

Purpose Replace the bullet in an unordered list with a graphic

Inherited Yes

Values <url>, none

Default none

Used In Elements with display: list-item

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

763Appendix B ✦ CSS Properties

list-style-position

Purpose Place the list-item marker (bullet or number) relative to the content

Inherited Yes

Values inside (the content box), outside (same)

Default outside

Used In Elements with display: list-item

list-style-type

Purpose Specify the marker style

Inherited Yes

Values disc, circle, square—Glyphs for unordered content

decimal—Decimal numbers

decimal-leading-zero—Decimals padded with initial zeroes

lower-roman—Lowercase roman numerals

upper-roman—Uppercase roman numerals

lower-latin/lower-alpha—Lowercase letters

upper-latin/upper-alpha—Uppercase letters

lower-greek—Lowercase Greek letters

georgian—Georgian numbering

armenian—Armenian

Default outside

Used In Elements with display: list-item

Table Properties
border-collapse

Purpose Indicate whether table elements should have overlapping or
separate borders

Inherited Yes

Values collapse, separate

Default separate

Used In Table and inline-table elements

Tip Use border-spacing to define the amount of separation

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

764 Part VII ✦ Appendixes

border-spacing

Purpose Shorthand method for border widths

Inherited Yes

Values <length>

Default 0

Used In Table and inline-table elements

Example {border-spacing: 2pt}

Tip Only applicable if border-collapse is set to
separate

caption-side

Purpose Place a table’s caption at the head or foot

Inherited Yes

Values top, bottom

Default top

Used In Table elements

empty-cells

Purpose Show or hide backgrounds and borders of empty
table cells

Inherited Yes

Values show, hide

Default show

Used In Table elements

Tip If an entire row is composed of empty cells and this
attribute is set to hide, the net effect should be
comparable to display: none

table-layout

Purpose Select a table generation algorithm

Inherited No

Values auto—Scan the entire table before determining the horizontal layout

fixed—Decide on the horizontal layout after the first row

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

765Appendix B ✦ CSS Properties

Default auto

Used In Table elements

Tip If a row after the first has more columns than previously
seen, the behavior is undefined

Generated Content
No version of Internet Explorer supports any of these properties. Opera is the only
major browser that supports all of them.

content

Purpose Generate content for :before and :after
pseudo-elements

Inherited No

Values normal—No content

<string>—Text to be inserted

<uri>—An external resource

<counter>—Content generated from counter() or counters()

attr(<attribute name>)—The value of the attribute by that
name on this element

open-quote/close-quote—Values from the quotes property

no-open-quote/no-close-quote—No content, but
appropriately adjusts the level of nesting for quotes

Default normal

Used In :before and :after pseudo-elements

Example acronym:after {content: “ (” attr(title) “)”}

counter-increment

Purpose Increment a counter for use by counter() or counters()

Inherited No

Values <identifier> <optional integer>, none

Default none

Used In All elements

Example {counter-increment: section}

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

766 Part VII ✦ Appendixes

counter-reset

Purpose Reset a counter for use by counter() or counters()

Inherited No

Values <identifier> <optional integer>, none

Default none

Used In All elements

Example {counter-reset: section -1}

quotes

Purpose Define pairs of open and close quote strings for use
by the content property

Inherited Yes

Values <open quote string> <close quote string>

Default Browser defined

Used In All elements

Example {quotes: ‘“’ ‘”’ “‘” “’”}

Printing Properties
page-break-{after|before|inside}

Purpose Insert a page break after (or before, or inside) the
element

Inherited No

Values auto—Neither force nor forbid

always—Mandatory page break

avoid—Encourage the browser to not insert a page
break

left—Insert one or two page breaks so that the
remaining content will start on a left page

right—Insert one or two page breaks so that the
remaining content will start on a right page

Default auto

Used In Block elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

767Appendix B ✦ CSS Properties

orphans, widows

Purpose Specify the minimum number of lines from a single paragraph that
must be left at the bottom (orphans) or top (widows) of a page

Inherited Yes

Values <integer>

Default 2

Used In Block elements

Aural Properties
These are not supported by any of the major browsers, and are deprecated as of CSS
2.1. A similar but incompatible speech module is under development for CSS 3.

azimuth

Purpose Separate voices by position on a virtual stage

Inherited Yes

Values <angle>, left-side, far-left, left, center-left, center, center-right,
right, far-right, right-side, behind, leftwards, rightwards

Default center

Used In All elements

cue

Purpose Shorthand method for cue properties

Inherited No

Values See values for cue-before and cue-after

Default See individual properties

Used In All elements

cue-after, cue-before

Purpose Provide a sound to be played before or after the element

Inherited No

Values <url>, none

Default none

Used In All elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

768 Part VII ✦ Appendixes

elevation

Purpose Separate voices by altitude on a virtual stage

Inherited Yes

Values <angle>, below, level, above, higher, lower

Default level

Used In All elements

pause

Purpose Shorthand method for pause properties

Inherited No

Values See values for pause-before and pause-after

Default See individual properties

Used In All elements

pause-after, pause-before

Purpose Define a pause before or after the element

Inherited No

Values <time>—Number of seconds (s) or
milliseconds (ms)

<percentage>—Relative to the inverse of the
speech-rate property

Default 0

Used In All elements

pitch

Purpose Specify the frequency of the speaking voice

Inherited Yes

Values <frequency>, x-low, low, medium, high, x-high

Default medium

Used In All elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

769Appendix B ✦ CSS Properties

pitch-range

Purpose Specify the variation in average pitch

Inherited Yes

Values <number> between 0 and 100

Default 50

Used In All elements

play-during

Purpose Provide a background sound

Inherited No

Values <url> [mix, repeat]—If mix, continue to play any parent’s sound,
otherwise replace. If repeat, start the sound over if it is too short

auto—Continue to play the parent’s sound (rather than re-start it
if inherited)

none—Silence; stop the parent’s sound

Default auto

Used In All elements

richness

Purpose Specify the brightness of the voice

Inherited Yes

Values <number> between 0 and 100 (the higher the
number, the more the voice will carry)

Default 50

Used In All elements

speak

Purpose Determine whether this element will be spoken

Inherited Yes

Values normal—Speak normally

none—Suppress rendition

spell-out—Speak one character at a time

Default normal

Used In All elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

770 Part VII ✦ Appendixes

speak-header

Purpose Define whether the relevant table header
information should be spoken before each cell

Inherited Yes

Values once, always

Default once

Used In Elements that have table header information

speak-numeral

Purpose Define whether numbers should be spoken as
individual digits or as words

Inherited Yes

Values digits, continuous

Default continuous

Used In All elements

speak-punctuation

Purpose Define how punctuation should be rendered

Inherited Yes

Values code—Speak the punctuation

none—Pause appropriately

Default none

Used In All elements

speech-rate

Purpose Specify the rate of speech

Inherited Yes

Values <number>—words per minute

x-slow, slow, medium, fast, x-fast, faster, slower

Default medium

Used In All elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

771Appendix B ✦ CSS Properties

stress

Purpose Determine the amount of inflection

Inherited Yes

Values <number> between 0 and 100

Default 50

Used In All elements

voice-family

Purpose Request specific voices

Inherited Yes

Values <specific voice>, <general voice>

Default Browser dependent

Used In All elements

volume

Purpose Define the median volume

Inherited Yes

Values <number>—0 to 100

<percentage>—relative to the inherited value

silent—no sound at all

x-soft—0

soft—25

medium—50

loud—75

x-loud—100

Default medium

Used In All elements

P1: FCH

WY022-App-B WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:12

772

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

CCA P P E N D I X

Named Colors
and the Web
Safe Palette

✦ ✦ ✦ ✦

The HTML 4.01 specification recognizes 16 distinct colors
that can be referred to by name. Those colors are shown

in the following table.

The “Web safe” color palette (also known as the Netscape
palette, or 216 palette) was devised as a standard for browsers
when the browser’s platform was set to display only 8-bit color
(a maximum of 256 colors). Although the palette has
somewhat outgrown its usefulness (since most browser
platforms are set to display far more than 256 colors), it can
still be prudent to design your site colors within this standard.

Note More information on the “Web safe” palette can be found
at Lynda Weinman’s Web site (specifically: http://www
.lynda.com/hexh.html). Lynda is credited with being
the first to identify and publish information about the
Web safe palette.

Most graphic design and Web design programs include the
Web safe palette for your convenience. The following table
lists the 216 colors in the Web safe palette.

1

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

2 Part VII ✦ Appendixes

16 Named Colors
Aqua Black Blue

Fuchsia Gray Green

Lime Maroon Navy

Olive Purple Red

Silver Teal White

Yellow

Web Safe Palette
#000000
R 0 G 0 B 0

#000033
R 0 G 0 B 51

#000066
R 0 G 0 B 102

#000099
R 0 G 0 B 153

#0000CC
R 0 G 0 B 204

#0000FF
R 0 G 0 B 255

#003300
R 0 G 51 B 0

#003333
R 0 G 51 B 51

#003366
R 0 G 51 B 102

#003399
R 0 G 51 B 153

#0033CC
R 0 G 51 B 204

#0033FF
R 0 G 51 B 255

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

3Appendix C ✦ Named Colors and the Web Safe Palette

#006600
R 0 G 102 B 0

#006633
R 0 G 102 B 51

#006666
R 0 G 102 B 102

#006699
R 0 G 102 B 153

#0066CC
R 0 G 102 B 204

#0066FF
R 0 G 102 B 255

#009900
R 0 G 153 B 0

#009933
R 0 G 153 B 51

#009966
R 0 G 153 B 102

#009999
R 0 G 153 B 153

#0099CC
R 0 G 153 B 204

#0099FF
R 0 G 153 B 255

#00CC00
R 0 G 204 B 0

#00CC33
R 0 G 204 B 51

#00CC66
R 0 G 204 B 102

#00CC99
R 0 G 204 B 153

#00CCCC
R 0 G 204 B 204

#00CCFF
R 0 G 204 B 255

#00FF00
R 0 G 255 B 0

#00FF33
R 0 G 255 B 51

#00FF66
R 0 G 255 B 102

#00FF99
R 0 G 255 B 153

#00FFCC
R 0 G 255 B 204

#00FFFF
R 0 G 255 B 255

#330000
R 51 G 0 B 0

#330033
R 51 G 0 B 51

#330066
R 51 G 0 B 102

#330099
R 51 G 0 B 153

#3300CC
R 51 G 0 B 204

#3300FF
R 51 G 0 B 255

Continued

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

4 Part VII ✦ Appendixes

#333300
R 51 G 51 B 0

#333333
R 51 G 51 B 51

#333366
R 51 G 51 B 102

#333399
R 51 G 51 B 153

#3333CC
R 51 G 51 B 204

#3333FF
R 51 G 51 B 255

#336600
R 51 G 102 B 0

#336633
R 51 G 102 B 51

#336666
R 51 G 102 B 102

#336699
R 51 G 102 B 153

#3366CC
R 51 G 102 B 204

#3366FF
R 51 G 102 B 255

#339900
R 51 G 153 B 0

#339933
R 51 G 153 B 51

#339966
R 51 G 153 B 102

#339999
R 51 G 153 B 153

#3399CC
R 51 G 153 B 204

#3399FF
R 51 G 153 B 255

#33CC00
R 51 G 204 B 0

#33CC33
R 51 G 204 B 51

#33CC66
R 51 G 204 B 102

#33CC99
R 51 G 204 B 153

#33CCCC
R 51 G 204 B 204

#33CCFF
R 51 G 204 B 255

#33FF00
R 51 G 255 B 0

#33FF33
R 51 G 255 B 51

#33FF66
R 51 G 255 B 102

#33FF99
R 51 G 255 B 153

#33FFCC
R 51 G 255 B 204

#33FFFF
R 51 G 255 B 255

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

5Appendix C ✦ Named Colors and the Web Safe Palette

#660000
R 102 G 0 B 0

#660033
R 102 G 0 B 51

#660066
R 102 G 0 B 102

#660099
R 102 G 0 B 153

#6600CC
R 102 G 0 B 204

#6600FF
R 102 G 0 B 255

#663300
R 102 G 51 B 0

#663333
R 102 G 51 B 51

#663366
R 102 G 51 B 102

#663399
R 102 G 51 B 153

#6633CC
R 102 G 51 B 204

#6633FF
R 102 G 51 B 255

#666600
R 102 G 102 B 0

#666633
R 102 G 102 B 51

#666666
R 102 G 102 B 102

#666699
R 102 G 102 B 153

#6666CC
R 102 G 102 B 204

#6666FF
R 102 G 102 B 255

#669900
R 102 G 153 B 0

#669933
R 102 G 153 B 51

#669966
R 102 G 153 B 102

#669999
R 102 G 153 B 153

#6699CC
R 102 G 153 B 204

#6699FF
R 102 G 153 B 255

#66CC00
R 102 G 204 B 0

#66CC33
R 102 G 204 B 51

#66CC66
R 102 G 204 B 102

#66CC99
R 102 G 204 B 153

#66CCCC
R 102 G 204 B 204

#66CCFF
R 102 G 204 B 255

Continued

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

6 Part VII ✦ Appendixes

#66FF00
R 102 G 255 B 0

#66FF33
R 102 G 255 B 51

#66FF66
R 102 G 255 B 102

#66FF99
R 102 G 255 B 153

#66FFCC
R 102 G 255 B 204

#66FFFF
R 102 G 255 B 255

#990000
R 153 G 0 B 0

#990033
R 153 G 0 B 51

#990066
R 153 G 0 B 102

#990099
R 153 G 0 B 153

#9900CC
R 153 G 0 B 204

#9900FF
R 153 G 0 B 255

#993300
R 153 G 51 B 0

#993333
R 153 G 51 B 51

#993366
R 153 G 51 B 102

#993399
R 153 G 51 B 153

#9933CC
R 153 G 51 B 204

#9933FF
R 153 G 51 B 255

#996600
R 153 G 102 B 0

#996633
R 153 G 102 B 51

#996666
R 153 G 102 B 102

#996699
R 153 G 102 B 153

#9966CC
R 153 G 102 B 204

#9966FF
R 153 G 102 B 255

#999900
R 153 G 153 B 0

#999933
R 153 G 153 B 51

#999966
R 153 G 153 B 102

#999999
R 153 G 153 B 153

#9999CC
R 153 G 153 B 204

#9999FF
R 153 G 153 B 255

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

7Appendix C ✦ Named Colors and the Web Safe Palette

#99CC00
R 153 G 204 B 0

#99CC33
R 153 G 204 B 51

#99CC66
R 153 G 204 B 102

#99CC99
R 153 G 204 B 153

#99CCCC
R 153 G 204 B 204

#99CCFF
R 153 G 204 B 255

#99FF00
R 153 G 255 B 0

#99FF33
R 153 G 255 B 51

#99FF66
R 153 G 255 B 102

#99FF99
R 153 G 255 B 153

#99FFCC
R 153 G 255 B 204

#99FFFF
R 153 G 255 B 255

#CC0000
R 204 G 0 B 0

#CC0033
R 204 G 0 B 51

#CC0066
R 204 G 0 B 102

#CC0099
R 204 G 0 B 153

#CC00CC
R 204 G 0 B 204

#CC00FF
R 204 G 0 B 255

#CC3300
R 204 G 51 B 0

#CC3333
R 204 G 51 B 51

#CC3366
R 204 G 51 B 102

#CC3399
R 204 G 51 B 153

#CC33CC
R 204 G 51 B 204

#CC33FF
R 204 G 51 B 255

#CC6600
R 204 G 102 B 0

#CC6633
R 204 G 102 B 51

#CC6666
R 204 G 102 B 102

#CC6699
R 204 G 102 B 153

#CC66CC
R 204 G 102 B 204

#CC66FF
R 204 G 102 B 255

Continued

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

8 Part VII ✦ Appendixes

#CC9900
R 204 G 153 B 0

#CC9933
R 204 G 153 B 51

#CC9966
R 204 G 153 B 102

#CC9999
R 204 G 153 B 153

#CC99CC
R 204 G 153 B 204

#CC99FF
R 204 G 153 B 255

#CCCC00
R 204 G 204 B 0

#CCCC33
R 204 G 204 B 51

#CCCC66
R 204 G 204 B 102

#CCCC99
R 204 G 204 B 153

#CCCCCC
R 204 G 204 B 204

#CCCCFF
R 204 G 204 B 255

#CCFF00
R 204 G 255 B 0

#CCFF33
R 204 G 255 B 51

#CCFF66
R 204 G 255 B 102

#CCFF99
R 204 G 255 B 153

#CCFFCC
R 204 G 255 B 204

#CCFFFF
R 204 G 255 B 255

#FF0000
R 255 G 0 B 0

#FF0033
R 255 G 0 B 51

#FF0066
R 255 G 0 B 102

#FF0099
R 255 G 0 B 153

#FF00CC
R 255 G 0 B 204

#FF00FF
R 255 G 0 B 255

#FF3300
R 255 G 51 B 0

#FF3333
R 255 G 51 B 51

#FF3366
R 255 G 51 B 102

#FF3399
R 255 G 51 B 153

#FF33CC
R 255 G 51 B 204

#FF33FF
R 255 G 51 B 255

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

9Appendix C ✦ Named Colors and the Web Safe Palette

#FF6600
R 255 G 102 B 0

#FF6633
R 255 G 102 B 51

#FF6666
R 255 G 102 B 102

#FF6699
R 255 G 102 B 153

#FF66CC
R 255 G 102 B 204

#FF66FF
R 255 G 102 B 255

#FF9900
R 255 G 153 B 0

#FF9933
R 255 G 153 B 51

#FF9966
R 255 G 153 B 102

#FF9999
R 255 G 153 B 153

#FF99CC
R 255 G 153 B 204

#FF99FF
R 255 G 153 B 255

#FFCC00
R 255 G 204 B 0

#FFCC33
R 255 G 204 B 51

#FFCC66
R 255 G 204 B 102

#FFCC99
R 255 G 204 B 153

#FFCCCC
R 255 G 204 B 204

#FFCCFF
R 255 G 204 B 255

#FFFF00
R 255 G 255 B 0

#FFFF33
R 255 G 255 B 51

#FFFF66
R 255 G 255 B 102

#FFFF99
R 255 G 255 B 153

#FFFFCC
R 255 G 255 B 204

#FFFFFF
R 255 G 255 B 255

P1: FRU

WY022-App-C WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 14, 2004 22:34

10

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

DDA P P E N D I X

Language and
Country Codes
Reference

✦ ✦ ✦ ✦

L anguage Codes (and optionally, Country Codes) are used
with the lang and dir attributes. The lang attribute

assigns a language to the text in a Web page to be read by the
opening browser. The dir attribute assigns a direction, right or
left, to the assigned language. For example, Hebrew is not read
left to right like English, but right to left.

For example, to specify a particular section in United
States–specific English and another, subsection in Spanish,
you could use the following code:

<div id=“English” lang=“en-US”>
English text here...

<div id=“Spanish” lang=“es”>
Spanish text here....

</div>
Back to English...

Note For more information on language codes and encoding,
see the W3C HTML 4.01 specification, specifically Section
8: Language information and text direction.

Language Codes Reference
Language family Language Name code

Amerindian Aymara ay

Amerindian Guarani gn

Amerindian Quechua qu

Asian Bhutani dz

Continued

1

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

2 Part VII ✦ Appendixes

Language family Language Name code

Asian Bislama bi [not given]

Asian Burmese my

Asian Cambodian km

Asian Chinese zh

Asian Japanese ja

Asian Korean ko

Asian Laotian lo

Asian Thai th

Asian Tibetan bo

Asian Vietnamese vi

Baltic Latvian; Lettish lv

Baltic Lithuanian lt

Basque Basque eu

Celtic Breton br

Celtic Irish ga

Celtic Gaelic gd

Celtic Welsh cy

Dravidian Kannada kn

Dravidian Malayalam ml

Dravidian Tamil ta

Dravidian Telugu te

Eskimo Greenlandic kl

Eskimo Inupiak ik

Finno-Ugric Estonian et

Finno-Ugric Finnish fi

Finno-Ugric Hungarian hu

Germanic Afrikaans af

Germanic Danish da

Germanic Dutch nl

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

3Appendix D ✦ Language and Country Codes Reference

Language family Language Name code

Germanic English en

Germanic Faroese fo

Germanic Frisian fy

Germanic German de

Germanic Icelandic is

Germanic Norwegian no

Germanic Swedish sv

Germanic Yiddish yi

Hamitic Afan (Oromo) om

Hamitic Afar aa

Hamitic Somali so

Ibero-Caucasian Abkhazian ab

Ibero-Caucasian Georgian ka

Indian Assamese as

Indian Bengali; Bangla bn

Indian Bihari bh

Indian Gujarati gu

Indian Hindi hi

Indian Kashmiri ks

Indian Marathi mr

Indian Nepali ne

Indian Oriya or

Indian Punjabi pa

Indian Sanskrit sa

Indian Sindhi sd

Indian Singhalese si

Indian Urdu ur

Indo-European (other) Albanian sq

Indo-European (other) Armenian hy

Continued

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

4 Part VII ✦ Appendixes

Language family Language Name code

International aux. Esperanto eo

International aux. Interlingua ia

International aux. Interlingue ie

International aux. Volapük vo

Iranian Kurdish ku

Iranian Pashto; Pushto ps

Iranian Persian (Farsi) fa

Iranian Tajik tg

Latin/Greek Greek el

Latin/Greek Latin la

Negro-African Hausa ha

Negro-African Kinyarwanda rw

Negro-African Kurundi rn

Negro-African Lingala ln

Negro-African Sangho sg

Negro-African Sesotho st

Negro-African Setswana tn

Negro-African Shona sn

Negro-African Siswati ss

Negro-African Swahili sw

Negro-African Tsonga ts

Negro-African Twi tw

Negro-African Wolof wo

Negro-African Xhosa xh

Negro-African Yoruba yo

Negro-African Zulu zu

Oceanic/Indonesian Fiji fj

Oceanic/Indonesian Indonesian id

Oceanic/Indonesian Javanese jw

Oceanic/Indonesian Malagasy mg

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

5Appendix D ✦ Language and Country Codes Reference

Language family Language Name code

Oceanic/Indonesian Malay ms

Oceanic/Indonesian Maori mi

Oceanic/Indonesian Samoan sm

Oceanic/Indonesian Sudanese su

Oceanic/Indonesian Tagalog tl

Oceanic/Indonesian Tonga to

Romance Catalan ca

Romance Corsican co

Romance French fr

Romance Galician gl

Romance Italian it

Romance Moldavian mo

Romance Occitan oc

Romance Portuguese pt

Romance Rhaeto-Romance rm

Romance Romanian ro

Romance Spanish es

Semitic Amharic am

Semitic Arabic ar

Semitic Hebrew he

Semitic Maltese mt

Semitic Tigrinya ti

Slavic Bulgarian bg

Slavic Byelorussian be

Slavic Croatian hr

Slavic Czech cs

Slavic Macedonian mk

Slavic Polish pl

Continued

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

6 Part VII ✦ Appendixes

Language family Language Name code

Slavic Russian ru

Slavic Serbian sr

Slavic Serbo-Croatian sh

Slavic Slovak sk

Slavic Slovenian sl

Slavic Ukrainian uk

Turkic/Altaic Azerbaijani az

Turkic/Altaic Bashkir ba

Turkic/Altaic Kazakh kk

Turkic/Altaic Kirghiz ky

Turkic/Altaic Tatar tt

Turkic/Altaic Turkish tr

Turkic/Altaic Turkmen tk

Turkic/Altaic Uzbek uz

Country Codes Reference
Code Country

AD Andorra, Principality of

AE United Arab Emirates

AF Afghanistan, Islamic State of

AG Antigua and Barbuda

AI Anguilla

AL Albania

AM Armenia

AN Netherlands Antilles

AO Angola

AQ Antarctica

AR Argentina

AS American Samoa

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

7Appendix D ✦ Language and Country Codes Reference

Code Country

AT Austria

AU Australia

AW Aruba

AZ Azerbaidjan

BA Bosnia-Herzegovina

BB Barbados

BD Bangladesh

BE Belgium

BF Burkina Faso

BG Bulgaria

BH Bahrain

BI Burundi

BJ Benin

BM Bermuda

BN Brunei Darussalam

BO Bolivia

BR Brazil

BS Bahamas

BT Bhutan

BV Bouvet Island

BW Botswana

BY Belarus

BZ Belize

CA Canada

CC Cocos (Keeling) Islands

CF Central African Republic

CD Congo, The Democratic Republic of the

CG Congo

Continued

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

8 Part VII ✦ Appendixes

Code Country

CH Switzerland

CI Ivory Coast (Cote D’Ivoire)

CK Cook Islands

CL Chile

CM Cameroon

CN China

CO Colombia

CR Costa Rica

CS Former Czechoslovakia

CU Cuba

CV Cape Verde

CX Christmas Island

CY Cyprus

CZ Czech Republic

DE Germany

DJ Djibouti

DK Denmark

DM Dominica

DO Dominican Republic

DZ Algeria

EC Ecuador

EE Estonia

EG Egypt

EH Western Sahara

ER Eritrea

ES Spain

ET Ethiopia

FI Finland

FJ Fiji

FK Falkland Islands

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

9Appendix D ✦ Language and Country Codes Reference

Code Country

FM Micronesia

FO Faroe Islands

FR France

FX France (European Territory)

GA Gabon

GB Great Britain

GD Grenada

GE Georgia

GF French Guyana

GH Ghana

GI Gibraltar

GL Greenland

GM Gambia

GN Guinea

GP Guadeloupe (French)

GQ Equatorial Guinea

GR Greece

GS S. Georgia & S. Sandwich Isls.

GT Guatemala

GU Guam (USA)

GW Guinea Bissau

GY Guyana

HK Hong Kong

HM Heard and McDonald Islands

HN Honduras

HR Croatia

HT Haiti

HU Hungary

Continued

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

10 Part VII ✦ Appendixes

Code Country

ID Indonesia

IE Ireland

IL Israel

IN India

IO British Indian Ocean Territory

IQ Iraq

IR Iran

IS Iceland

IT Italy

JM Jamaica

JO Jordan

JP Japan

KE Kenya

KG Kyrgyz Republic (Kyrgyzstan)

KH Cambodia, Kingdom of

KI Kiribati

KM Comoros

KN Saint Kitts & Nevis Anguilla

KP North Korea

KR South Korea

KW Kuwait

KY Cayman Islands

KZ Kazakhstan

LA Laos

LB Lebanon

LC Saint Lucia

LI Liechtenstein

LK Sri Lanka

LR Liberia

LS Lesotho

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

11Appendix D ✦ Language and Country Codes Reference

Code Country

LT Lithuania

LU Luxembourg

LV Latvia

LY Libya

MA Morocco

MC Monaco

MD Moldavia

MG Madagascar

MH Marshall Islands

MK Macedonia

ML Mali

MM Myanmar

MN Mongolia

MO Macau

MP Northern Mariana Islands

MQ Martinique (French)

MR Mauritania

MS Montserrat

MT Malta

MU Mauritius

MV Maldives

MW Malawi

MX Mexico

MY Malaysia

MZ Mozambique

NA Namibia

NC New Caledonia (French)

NE Niger

Continued

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

12 Part VII ✦ Appendixes

Code Country

NF Norfolk Island

NG Nigeria

NI Nicaragua

NL Netherlands

NO Norway

NP Nepal

NR Nauru

NT Neutral Zone

NU Niue

NZ New Zealand

OM Oman

PA Panama

PE Peru

PF Polynesia (French)

PG Papua New Guinea

PH Philippines

PK Pakistan

PL Poland

PM Saint Pierre and Miquelon

PN Pitcairn Island

PR Puerto Rico

PT Portugal

PW Palau

PY Paraguay

QA Qatar

RE Reunion (French)

RO Romania

RU Russian Federation

RW Rwanda

SA Saudi Arabia

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

13Appendix D ✦ Language and Country Codes Reference

Code Country

SB Solomon Islands

SC Seychelles

SD Sudan

SE Sweden

SG Singapore

SH Saint Helena

SI Slovenia

SJ Svalbard and Jan Mayen Islands

SK Slovak Republic

SL Sierra Leone

SM San Marino

SN Senegal

SO Somalia

SR Suriname

ST Saint Tome (Sao Tome) and Principe

SU Former USSR

SV El Salvador

SY Syria

SZ Swaziland

TC Turks and Caicos Islands

TD Chad

TF French Southern Territories

TG Togo

TH Thailand

TJ Tadjikistan

TK Tokelau

TM Turkmenistan

TN Tunisia

TO Tonga

Continued

P1: KTU

WY022-APP-D WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 12, 2004 22:15

14 Part VII ✦ Appendixes

Code Country

TP East Timor

TR Turkey

TT Trinidad and Tobago

TV Tuvalu

TW Taiwan

TZ Tanzania

UA Ukraine

UG Uganda

UK United Kingdom

UM USA Minor Outlying Islands

US United States

UY Uruguay

UZ Uzbekistan

VA Holy See (Vatican City State)

VC Saint Vincent & Grenadines

VE Venezuela

VG Virgin Islands (British)

VI Virgin Islands (USA)

VN Vietnam

VU Vanuatu

WF Wallis and Futuna Islands

WS Samoa

YE Yemen

YT Mayotte

YU Yugoslavia

ZA South Africa

ZM Zambia

ZR Zaire

ZW Zimbabwe

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

Index

Symbols & Numbers
identifier, 441
PCDATA keyword, 516
$ query variable, 486
$ result variable, 486
(#) hash symbol, 38
(), 61
(­), 61
(*) universal selector, 280
(/) character, 526
(//) character, 526
(;) semicolon, 403
(?) operator, 517
(<p>) paragraph tag, 552
.button class, 440
@page rule, 389
<!DOCTYPE> tag, 19
<abbr> tag, 132
<area> tag, 109
<base> tag, 49
<basefont> tag, 127
<blink> tag, 228
<blockquote> tag, 27
<body> tag, 21, 46
<caption> tag, 160. See also table tag
<col> tag, 153, 169, 170
<col> tag, rules for, 171
<colgroup> tag, 153, 159, 169
 tag, 133
<div> element, 70
<div> tag, 30, 134, 379
<DOCTYPE> declaration, 46
<DOCTYPE> definition, 47
<DOCTYPE> tag in well-formed

HTML, 44
<DOCTYPE> tag, 46
<fieldset> tag, 221
 tag, 127, 208
<form> element, 422
<form> tag attributes

Accept, 209
accept-charset, 209
Enctype, 209
Name, 209
Target, 209

<form> tag, 208, 209, 552
<frame> tag, 192, 193, 196
<frame> tag, format for, 193
<frame> tag’s attributes

frameborder, 194
longdesc, 194
marginheight, 194
marginwidth, 194
scrolling, 194

<frameset> tag, 192, 193
<frameset> tag, format for, 193
<h> tag, 66
<h1> elements for autonumbering, 333
<h1> tag, 66
<h6>, 66
<head> element, 47
<head> tag, 20, 46
<hr> tag, 45, 68
<HTML> tag, 20
<html> tag, 20, 46
<iframe> layout, 203
<iframe> tag attributes

Align, 203
frameborder, 203
height, 203
longdesc, 203
marginheight, 203
marginwidth, 203
name, 203
scrolling, 203

src, 203
width, 203

<iframe> tag, 201
 element, 417
 tag

defined, 39, 99
image map specifying, 107
image sizing and scaling, 103
nongraphical browsers, 102
using border attribute, 105

<input> element, 552
<ins> tag, 133
<label> tag, 210
<legend> tag, 222
<meta> tag for refreshing

document, 49
<meta> tags, 48
 tag, 80, 336
<optgroup> tags, 213
<option> tag attributes

Label, 212
Selected, 212
Value, 212

<pre> element, 63
<pre> tag, use of, 63
<script> tag, 40, 257, 263
 tag, 134
 tag, use of, 134
<style> element in CSS, 266
<style> element, 268
<style> tags, 23
<sub> tag, 132
<sup> tag, 132
<table> tag attributes

border, 359
borders, 360
cellpadding, 359
cellspacing, 359, 362
rules, 359

<table> tag, 34, 150, 151, 163
<td> tags for data positioning, 171
<td> tags, 150, 153, 158
<th> tags, 153, 158, 160
<thead> tags, 163
<title> tag, 46, 47
<tr> tag attributes

Align, 158
Char, 158
Charoff, 158
Valign, 159

<tr> tag, 150, 157, 159
<u> tag, 133
abbreviation tag (<abbr>), 132
anchor tag (<a>), 38, 113, 197, 201
assignment operator (=), 405
braces ({ and }), 403
cell tags

<td>, 159
<th>, 159

closing brace (}), 438
concatenate operator (+), 405
dashes types

em, 137
en, 137

definition list tags
<dd>, 28
<dt>, 28

delete () tag, 32
division tag (<div>), 30
entities examples

—, 33
&, 33
©, 33
<, 33
 , 33

773

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

774 Index ✦ Symbols & Numbers–A

equal sign (=), 283
hash symbol (#), 38
HTML document structure

<body> tag, 46
<body>tag, 20, 21
<DOCTYPE> tag, 46
<head> tag, 46
<head>tag, 20
<html> tag, 46
<html>tags, 20
<title> tag, 46

HTML table tags
<table>, 34
<td>, 34
<tr>, 34

inline tag
, 134
<i>, 134
<tt>, 134
big text (<big>), 31
bold (), 31
emphasized text (), 31
italic (<i>), 31
small text (<small>), 31
strong text (), 31
teletype (monospaced) text (<tt>), 31

insert (<ins>) tag, 32
JavaScript arithmetic operators

%, 404
*, 404
/, 404
+, 404
++, 404

JavaScript assignment operators
%=, 404
*=, 404
/=, 404
+=, 404
=, 404
-=, 404

JavaScript comment marker (//), 413
JavaScript comparison operators

!=, 405
<, 405
<=, 405
==, 405
>=, 405
s>, 405

line break tag (
), 60
list item element (), 28
list item tag (), 76, 82
logical operators

!, 405
&&, 405
||, 405
And, 405
Not, 405
Or, 405

nonbreaking space entity (), 61, 160)
ordered list tag (), 76
paragraph markups

<blockquote> tag, 24, 27
<center>tag, 24
<div> tag, 24, 30
<dl> tag, 24
<h1> through <h6> tag, 24, 26
 tag, 24
<p> tag, 24, 25
<pre> tag, 24, 30
 tag, 24

pipe operator (|), 517
plus sign (+), 516
predefined entities

&, 512
‘, 512
<, 512
>, 512

question mark (?) operator, 517
soft hyphen entity (­), 61
strikethrough (<strike>) tags, 31
table tags

<tbody>, 163
<tfoot>, 163

tags. See also inline tags
(), 76, 82
(), 76
(), 82, 84
<abbr>, 132

<basefont>, 127
<blink> tag, 228
<blockquote>, 24, 27
<body>, 21
<caption>, 160
<center>, 24
<col>, 153
<colgroup>, 153
, 22, 133
<div>, 24, 30
<dl>, 24
<fieldset>, 221
, 22, 127
<form> tag, 209
<form> tags, 208
<frame> tag, 193
<frame>, 192
<frameset> tag, 193
<frameset>, 192
<h>, 66
<h1> through <h6>, 24, 26
<head>, 20
<hr>, 68
<HTML>, 20
<iframe>, 201
, 39, 99
<ins>, 133
<label> tag, 210
<legend> tag, 222
<meta>, 48
, 24
<p>, 24, 25, 56
<pre>, 24, 30
<script> tag, 257, 263
<script>, 40
<style>, 23
<sub>, 132
<sup>, 132
<table>, 150, 151
<table>, 34
<td>, 158
<th>, 158, 160
<tr>, 157
<u> tag, 133
, 24
bold, 130
comment tag, 39
DOCTYPE, 19
italic, 13, 130
span, 13

text tags
<cite>, 128
<code>, 128
<dfn>, 128
, 128
<kbd>, 128
<samp>, 128
, 128
<var>, 128

underline tag (<u>), 133

A
absolute links, 116
accented characters, 140
access log file, 613
accessibility enhancing tools

Applets, 641
Cascading Style Sheets (CSS), 641
color and contrast, 641
forms, 641
frames, 641
graphs and charts, 641
image maps, 642
images and animations, 642
multimedia, 642
scripts, 642
table headers, 642
text-only page, 642
timed responses, 642
verify accessibility, 642

accessibility, Web site, 637
accesskey attribute, 120, 219, 425
action attribute, 219
active link mode, 122
Active Server Pages (ASP), 472, 571, 611
ActiveX control for font embedding, 310
ActiveX control, 234, 474
address variable, 409

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

775Index ✦ A–B

advertising and Web usability, 631
AIFF (Audio Interchange File Format), 242
align attribute in table tags, 153
align attribute values, 101
alignment attributes, 159
alt attribute in an img element, using, 587, 589
alt attribute, 102, 109
always value, 393
Americans with Disabilities Act (ADA) for Web accessbility, 638
Analog for

Apache Web traffic monitoring, 591
IIS Web traffic monitoring, 594

anchor tags for Web links, 114
anchor tags, creating, 121
animated GIF images, 110
animated GIF, 229
animated GIFs, creating, 237
animated images, 110
animation and Web usability, 631
animation categories

ActiveX, 237
animated GIF file, 237
Flash, 237

animation, 229, 237
Apache log file analyzer

Analog, 591
AWStats (Advanced Web Statistics), 591, 593
Webalizer, 591, 593

Apache traffic monitoring tools. See Apache log
file analyzer

Apache traffic monitoring, 591. See also IIS
traffic monitoring

Apache, 471
applets for Web usability, 631
application programming interface (API), 430, 519
application server environments

Active Server Pages (ASP), 611
ASP.NET, 612
ColdFusion, 612
Java Server Pages (JSP), 611
PHP, 611

area tags, 108
ASCII versus binary transfers, 577
ASP (Active Server Pages), 611
ASP, .NET, and Microsoft’s technologies, 474
ASP.NET, 475, 612
ASX markup language for Windows Media

Player, 235
attribute-matching methods for

hyphen-separated list, 283
space-separated list, 283

attributes in DTDs, using, 518
audience analysis, principles, 617
Audio Interchange File Format (AIFF), 242
aural properties, 768
authentication and security, 491
Authors table

Email, 485
Idx, 485
Name, 485
Pwd, 485

auto. See element overflow, controling
autogenerating text

elements numbering, automatic, 332
quotation marks specifying, 331

automatic refreshes and redirects, creating, 49
autonumbering

counter object, use of, 332
defined, 332
for chapter and section numbers, 333
of list numbers, 336

AWStats for
Apache Web traffic monitoring, 593
IIS Web traffic monitoring, 594

axes for directing traffic, using, 528
axis, 527

B
backbone. See bandwidth and scalability
background attributes, 358
background color

defined, 348
page, 50

background colors code for
CSS, 165
HTML 4.01, 165

background element sizing, 348
background image effects, 350

background images
CSS definition for, 350
positioning, 355
repeating and scrolling, 351

background properties
Default, 740
Example, 740
Inherited, 740
Purpose, 740
Used in, 740
Values, 740

background-attachment property, 352, 354
background-color property, 51, 348, 440
background-image property, 349
background-position property keywords

bottom, 358
center, 358
left, 358
right, 358
top, 358

background-position property values
keywords, 356
lengths, 356
percentages, 356

background-position property, 355
background-repeat property, 352
bandwidth and scalability, 571
Basic Latin (U+0000 - U+007F) encoding, 650
behaviors to create DHTML effects, using, 456
bgcolor attribute, 50, 165
bgcolor attribute, defined, 159
bgsound element, 243
bit-depth reduction, 96
block delimiter ({ or }), 403
blog content, 496
blog phenomenon, 495
blog providers and software, 496
blogging application, 498
Blosxom, 498
body element, 390
bold tags, 130
bold text, 130
border attribute, 105, 155
border color properties

border-bottom-color, 343
border-color, 343
border-right-color, 343
border-top-color, 343
bottom-left-color, 343

border color values
color decimal or percentage values, 343
color hexadecimal values, 343
color keywords, 343

border color, 343
border property format, 344
border styles

dashed, 274
dotted, 274
double, 274
groove, 274
inset, 274
none, 274
outset, 274
ridge, 274
solid, 274

border width properties
border-bottom-width, 343
border-left-width, 343
border-right-width, 343
border-top-width, 343
border-width, 343

border-collapse property values, 363
border-collapse property, 345, 363
borders

adding, 341
collapsing, 363
defined, 339
frame, 194

borders and rules, 155
borders on empty cells, 363
borders properties

border, 291
border-bottom, 291
border-bottom-color, 291
border-bottom-style, 291
border-bottom-width, 291
border-collapse, 291

Continued

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

776 Index ✦ B–C

borders properties (coninued)
border-color, 291
border-left, 291
border-left-color, 291
border-left-style, 291
border-left-width, 291
border-right, 291
border-right-color, 291
border-right-style, 291
border-right-width, 291
border-spacing, 291
border-style, 291
border-top, 291
border-top-color, 291
border-top-style, 291
border-top-width, 291
border-width, 291

border-spacing definition, 362
border-spacing property format, 362
border-spacing property, 345, 362
border-style properties

border-bottom-style, 342
border-left-style, 342
border-right-style, 342
border-top-style, 342

box formatting model
background color, 347
foreground color, 347

box formatting model, understanding of, 337
box layout elements

borders, 341
margins, 339
padding, 341

box properties, description of, 743
br element, 515
Breadcrumbs (page location indicator), 434
breadcrumbs() function, 439
broken links checking tools

checkers built into development tools, 597
local tools, 597
logs watching, 598
W3C Link Checker, 595

browser detection, 228, 432
browser identification and conformance, 414
browser sniffing, 228, 432
Browser tab using in PowerPoint, 245
browser window properties and methods,

useful
document.body.clientHeight, 423
document.body.clientWidth, 423
document.body.scrollLeft, 423
document.body.scrollTop, 423
window.moveTo(x,y), 423
window.pageXOffset, 423
window.pageYOffset, 423
window.resizeBy(x,y), 423
window.resizeTo(x,y), 423

browser-based media, 388
browser-detection script, 432
browsers

Internet Explorer, 401, 412
Navigator, 401, 412
Opera, 401, 412
StarOffice, 401, 412

browser-sniffing script, using, 228
btnHome button, 417
buffer overflow, defined, 663
bullet sizing aspect, 84
bulleted list, 5
bulleted lists for Web writing, 623
buzz and scrambling, 9

C
caching images, 418
calculations and operators, 404
capitalization, specifying, 324
caption code, 365
captions

aligning, 365
positioning, 365

caption-side property, 365
carriage return line feed (CR LF), 512
Cascading Style Sheets (CSS)

contribution to Web, 6
defined, 8
element-specific, 14
global styles, 14
overview of, 13, 266

page-specific, 14
understanding, 269

categories table
Description, 485
Idx, 485
Name, 485

cell attributes
Abbr, 161
Align, 161
Axis, 161
Char, 161
Charoff, 161
Colspan, 161
Headers, 161
rowspan, 161
Scope, 161
Valign, 161

cell padding, 153
cell spacing options

padding, 153
spacings, 153

cell wraping, 151
cellspacing attribute, 154
CGI page, 471
CGI programs, 497
CGI Resource Index, 474
CGI scripting, 474
CGI scripts

for Web security, 662
using, 662

chapter counter, 334
character encodings, understanding of, 135
character entity for

accented characters, 140
apostrophe, 139
arrow symbols, 140
copyright symbol, 138
currency symbol, 139
essential entites, 137
essential entities, 137
Greek symbols, 143
mathematical symbol, 144
miscellaneous entities, 146
registered trademark, 138

charset attribute, 257
Chat room or forum flooding, 590
check boxes, 211
child element matching, 283
class attribute, 134, 286, 392, 394
clear property, 378
client browser, 48
client scripting languages, 472
client-side image maps, 106
client-side scripting

embedding of, 257
overview of, 256

client-side versus server-side scripting, 256
CLUT (color look-up table), 94
code formatting, 56
code in pseudo-code, writing, 434
cognitive, learning disabilities and Web accessing, 640
ColdFusion, 477, 612
collapse value, 385
collapsible menus

different styles of, 445
working of, 445

collapsible menus on the Internet, finding, 446
collapsible menus, 445
collapsing borders, 363
co-location services, using, 569
color

background, 348
foreground, 347

color depth, 93
color look-up table (CLUT), 94
color properties

Default, 740
Example, 740
Inherited, 740
Purpose, 740
Used in, 740
Values, 740

color property format, 347
color values

color decimal or percentage values, 347
color hexadecimal values, 347
color keywords, 347

colspan attribute, 166, 168

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

777Index ✦ C–D

column spanning, 166
columnar formatting, 187. See also multiple columns
columns and rows spanning, code for, 166
common event attributes

onblur, 736
onchange, 736
onfocus, 736
onreset, 736
onselect, 736
onsubmit, 736
onunload, 736

common FTP commands
Ascii, 579
Binary, 579
Cd, 579
Close, 579
Get, 579
Lcd, 579
Ls, 579
Mget, 579
Mkdir, 579
Mput, 579
Open, 579
Pasv, 579
Put, 579
Quit, 579
Rmdir, 579

Common Gateway Interface (CGI), 473
competitive analysis, 606
complex type. See schemas, working with
compression options

GIF, 92
JPEG, 93
PNG, 93

compromised system and Web security, 663
constraining element’s size, properties for

max-height, 379
max-width, 379
min-height, 379
min-width, 379

contact element, 516, 521
content

constructors, 539
development, overview of, 617
generation, 766
property, 332

content to blog, posting, 498
context node. See locations and steps
continuous media, 389
control structures

for, 405
if-else, 405
while, 405

controlled vocabulary for Web writing, 624
cookies, using, 425
copyright symbol, 138
core attributes

class, 736
id, 736
style, 736
title, 736

correct document type definition, specifying,
550

counter object, 332
counter-increment property, 333
counter-reset property, 333
counters, 81
cross-browser compatibility issues, 432
cross-browser DHTML, 432
cross-browser scripting compatibility, 430
CSS @page pseudo-classes

left, 398
right, 398

CSS 1.0, 8
CSS 2.1 specification, 739
CSS border properties

border, 105
border-color options, 105
border-color, 105
border-style, 105
border-width options, 105

CSS box formatting model
border, 273
box dimensions, 271
margins, 274
padding, 272

CSS definition for background images, 350
CSS display property, 445

CSS formatting for tables, 361
CSS layout, 181
CSS levels

CSS1, 274
CSS2, 274
CSS3, 274

CSS lists, 327
CSS page box formatting model, 388
CSS page-break properties

page-break-after property, 392
page-break-before property, 392
page-break-inside property, 392

CSS positioning, 381
CSS properties

boder-spacing, 360
cellpadding, 360
cellspacing, 360
for browser support, 739
padding, 360
table borders, 362

CSS properties for image alignment
float, 102
text-align, 101
vertical-align, 102

CSS properties for table attributes
Alignment, 360
Borders, 360
Spacing between cells, 360
Spacing inside cell, 360
Table framing, 360
Width of table, 360

CSS properties using JavaScript, setting, 453
CSS pseudo-classes, 286
CSS standard, 22
CSS style definition format, 280
CSS styles

for font size establishing, 306
for fonts, 300
for tables, 361
link styles, 286
property value metrics, 293
pseudo-classes, 286
pseudo-elements, 288
selectors, 280
shorthand expressions, 291

CSS text control, 128
CSS text properties

color, 129
font, 129
font-family, 129
font-size, 129
font-stretch, 129
font-style, 130
font-variant, 130
font-weight, 130
text-decoration, 130
text-transform, 130

CSS visibility property, 445
CSS, overview of, 3, 10
CSS. See Cascading Style Sheets
CSS1 level, 274
CSS2 concepts

counters, 81
pseudo-elements, 81

CSS2 documentation, general guidelines for,
392

CSS2 level, 274
CSS2 style for ordered list, 80
CSS2, list-style-type property supported in, 78
CSS3 level, 274
currency symbols, 138
current iteration, 407
currentTime() function, 413
custom domain name, using, 588
custom list numbering, 336

D
data backup, 599
data types and variables, 403
database integration, working of, 480
database method, 482
database publishing

options for, 480
understanding the need for, 479

database publishing, methods for
on-demand content, 480
pre-generated content, 480

database structure, 484

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

778 Index ✦ D–E

database-driven
publishing, 479
Web content, 479
Web publishing, introduction to, 479

decimal entity for
accented character, 140
apostrophe, 139
arrow, 140
copyright, 138
currency, 139
en and em elements, 137
Greek symbol, 143
mathematical symbol, 144
miscellaneous entities, 146
quote mark, 139
registered trademark, 138
trademark, 138

dedicated host providers offering technical services
e-mail maintenance, 569
script development, 569
security development, 569

dedicated host, 568
dedicated hosting, using, 568
default

attribute, 513
path setting, 49
scripting language, 257

definition list, display options for, 75
definition lists

coding for, 86
overview of, 86

definition lists elements
definition, 86
terms, 86

denial of service (DOS) attacks, 660
descendent element matching, 283
desktop publishing environment, 388
desktop publishing platform, 387
desktop publishing softwares

InDesign, 387
PageMaker, 387
Quark XPress, 387

DHTML
examples of, 434
for Web page creating, 234
menu, 445
need for, 429
working of, 429

DHTML and CSS properties, 452
DHTML and Document Object Model (DOM), 430
directions element, 526
directory shortcuts, use of, 116
disabled attribute, 220
disabling control

onblur attribute, 221
onchange attribute, 221

display properties with a hover to create rollovers, using, 441
display property, 445, 752
displayarticle script, 489
div element, 396, 430
DNS (Domain Name System), 572
DOCTYPE declaration, 514
DOCTYPE, 543
document hierarchy, understanding, 283
Document Object Model (DOM), 402, 414, 430
document title, specifying of, 47
document type

declaring of, 46
specifying of, 19

Document Type Definitions (DTD), 15, 19, 189, 507, 550, 513
document.cookie property, 426
document.location.href property, 418
document.write method, 234
documents

encoding, 135
formatting, 17
structure, 16
testing and validating, 549

documents for double-sided printing, preparing, 398
DOM (Document Object Model), 402
DOM model, 415
Domain Name System (DNS), 572
domain names, 571
downloading fonts, 308
downloading of Web pages, 94
downloading speed enhancing aspects

image file sizes, limiting of, 94
image numbers, limiting of, 94

image reusing, 94, 95
use of frames, 94, 95
use of text, 94, 95

drop shadows, 429
drop-down menus and Web usability, 632
DTD (document type definition), 550
dynamic content publishing, 479
dynamic documents, 369
dynamic font standards, 308
Dynamic HTML (DHTML) for multimedia objects, 229
Dynamic HTML (DHTML), 40, 429
Dynamic HTML with CSS, 449
dynamic menus, 429
dynamic Web page effects, 429

E
easily scannable text, 619
ECMAScript, 402, 430
editorial insertions and deletions, 133
Electronic Communications Privacy Act (ECPA), the, 669
element declaration syntax for elements with PCDATA, using,

516
element declaration syntax for empty elements, using, 515
element overflow, controling, 379
element position, specifying, 374
element positioning, 369
element positioning, properties of

bottom, 374
right, 374
top, 374

element positioning, understanding, 369
element visibility, controling, 384
element, positioning properties of, 369

left, 369
top, 369

element’s width and height, defining, 378
elements in DTDs, using, 515
elements in layers, stacking, 381
elements to the left or tight, floating, 377
elements, sizing properties of

height, 371
width, 371

em dashes, 137
em metrics, 294
em spaces, 137
em square, 298
email element, 517
embed element for sound, 243
embed element for video clips, 242
embed element, 233
embedded font file, defined, 308
emphasis class, 286
EMPTY keyword, 515
empty-cells property settings, 364
empty-cells property values

hide, 363
show, 363

empty-cells property, 363
en and em entities

character, 137
decimal, 137
mnemonic, 137

Encoding tab, 247
encoding, understanding, 509
encouraging bookmarks, 586
entities

accented character, 140
apostrophe, 139
arrow, 140
copyright, 138
currency, 139
em, 137
en, 137
essential, 137
Greek symbol, 143
mathematical symbol, 144
miscellaneous, 146
quote mark, 139
registered trademark, 138
trademark, 138

entities in DTDs, using, 518
entities, defined, 32
entities, essential, 137

character, 137
decimal, 137
mnemonic, 137

entities, specifying of
decimal value, use of, 33

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

779Index ✦ E–F

hexadecimal value, use of, 33
using mneumonic code, 33

entity use, inappropriate, 33
Eolas lawsuit, 234. See also embed element; object element
European Union (EU) privacy standards, 670
event attributes

Onblur, 260
Onclick, 259
Ondblclick, 259
Onfocus, 260
Onkeydown, 260
Onkeypress, 260
Onkeyup, 260
Onload, 260
Onmousedown, 259
Onmousemove, 259
Onmouseout, 259
Onmouseover, 259
Onmouseup, 259
Onreset, 260
Onsubmit, 260
Onunload, 260

event attributes using JavaScript script, 261
event handlers, 410
event handlers, using, 430
event handling in JavaScript, 410
event triggers, using, 260
exact sizes, specifying, 378
extended log file, 614
Extensible HyperText Markup Language. See XHTML
Extensible Markup Language. See XML
Extensible Stylesheet Language Transformations (XSLT), 522,

523
external DTD, 514
external DTD, steps for creating, 514
external style sheets, 268

F
Fair Credit Reporting Act, the, 670
fax element, 517
feed, publishing, 502
feedback link, 598
field labels, 210
fieldsets, 221
file compression, 91
file fields, 217
file permissions for securing Web, 661
File Transfer Protocol (FTP), 575
file transfers, different modes of

ASCII mode, 577
binary mode, 577

files sizes for animation, 237
Files tab settings, 246
files, naming of, 16
filters

static filters, 458
visual filters, 458

fine-tuning breadcrumbs, 438
FinishOpacity value, 459
finite page sizes, 388
first-child pseudo-class, 287
Flash file embedded in HTML

using object element, 232
using param element, 232

Flash file format, 240
Flash file, creating, 240
Flash for animations, 237
Flash MX, 242
Flash, overview of, 235
float elements, 377
float property, 319, 377
floating page layout

code, 179
defined, 179

flow charts for Web site structuring, 608
font attributes

COLOR=Color, 299
FACE=CDATA, 299
HTML 4.0 core attributes, 299
HTML 4.0 internationalization attributes, 299
SIZE=CDATA, 299

font availability, 305
font element, 300, 444
font element, use of, 300
font element’s size attribute, 301
font embedding

licensing issues, 309
syntax, 310

use of, 309
WEFT tool, using, 310

font families, 304
font family, naming

class selector, use of, 303
inline style, use of, 303

font file, embedding, 308
font properties

bold, 307
Default, 756
Example, 756
Inherited, 756
Purpose, 756
Tip, 756
Used in, 756
Values, 756
widening or thinning, 308

font size aspects of Web usability, 632
font size creating, 301
font sizes

em form, 307
ex form, 307
pt form for points, 307
px form for pixels, 306

font sizes, establishing, 306
font standards

OpenType, 309, 310
TrueDoc, 309, 310

font styles, working with, 305
font styling attributes, working with

CSS for font families naming
class selector, 303
inline style, 303

font availability, 305
font families, understanding, 304
font size establishing, 306
fonts, understanding, 305

font tag code, 130
font variants, use of

font stretch, 308
font weight, 307

font weight, defined, 307
font-embedding platforms

OpenType, 308
TrueDoc, 308, 309

fonts describing
right way, 300
wrong way, 299

fonts embedding into Web page, 310
Fonts tab, 247
fonts, automatic downloading, 308
fonts, overview of, 298
for loop, 436
for structure, 406
foreground color, defined, 347
foreground properties, 285
form handlers, downloading, 224
form scripts, 222
form validation, 419
formatted paragraphs, 25
formatting

forced, 63
lists, 326
tables, 359
text, 313
using preformatted tag (<pre>), 63

formatting of code, 56
formatting with tables, 173
formatting, preserving, 63
forms. See HTML forms
forms and PDF for Web accessibility enhancing, 643
Frame

attribute, 157
borders, 194
content, manipulation of, 197
documents, 191
element, 505
inline, 201
margins, 194
navigation bar, 189
overview of, 189
resizing, 196
targeting, 196
use of, 95

frame attribute values
above, 157
below, 157

Continued

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

780 Index ✦ F–H

frame attribute values (continued)
box or border, 157
Hsides, 157
lhs or rhs, 157
void, 157
Vsides, 157

frame layout
<frame> tag, 193
<frameset> tag, 193

frameborder attribute, 194
frames and frameset control, 425
frames and Web usability, 633
frames in Windows Explorer, use of, 189
frameset DTD, 192, 197
frameset navigation code, 198
framesets

<frame> tags, use of, 192
borders, 194
creating, 191
frame margins, 194
nested, 200
scroll bars, 194
user modifications, permitting or prohibiting of, 196

framesets document, 191
Frequently Asked Questions (FAQ) pages, 624
FTP (File Transfer Protocol), 575
FTP clients, 576
FTP clients, notable, 578
FTP server, 470, 577
FTP, overview of, 575
full name variable, 405
functions

built-in JavaScript functions, 408
user-defined functions, 408

G
General tab options, 245
generate nodes using content constructors

literal result elements, creating, 541
text nodes, creating, 541
XSLT extension instructions, creating, 541
XSLT instructions, creating, 541

getting started with XSLT, 532
GIF format for animated images, 110
GIF format, 92
GIF image format, 38
glyph properties, 298
GNU-based JavaScript file, 438
graphic editors

raster-based editing program, 562
vector-based editing program, 562

graphical FTP client, 577
graphical FTP clients available

Linux
Additional Open Source solutions, 580
Desktop specific clients, 580

Windows clients
CoffeeCup FTP client, 579
CuteFTP, 580
FTP Voyager, 579
Internet Neighborhood Pro, 580
WS-FTP, 580

graphics and text, 182
graphics creating, overview of, 95
graphics file format, 91
graphics inclusion and Web usability, 633
Graphics Interchange Format (GIF), 38
Greek symbol entities, 142
grouping columns tags

<col>, 169
<colgroup>, 169

GUI controls, 205
GUI HTML editors, 169
GUI vocabularies, 546

H
handling comments, 499
head element, 439
header graphic, 183
headings aspect of Web usability, 633
headings, 26, 66
hearing disabilities and Web accessing, 640
height attribute, 103
height property, 379
hexadecimal methods for entities, 33
hgh variable, 417
hidden. See element overflow, controling

hidden fields, 215
hidden property, 384
hierarchies, selector mechanisms for, 284
hierarchy, document

ancestors and descendents, 284
parents and children, 284
siblings, 284

high-speed hub, 569
home page, 624
horizontal alignment, controlling, 313
horizontal rules, 68
host argument, 486
hover link mode, 122
href attribute, 38, 114
HTML

codes, defined
comment tag, 413
document path setting, 49
document refreshing and redirecting, 49
document structure, creating, 46
documents, 412, 479
elements, 429, 511
history of, 6
introduction of, 3
invention of, 5
maintenance issues, 10
media, 381
overview of, 5
pages, 387
styles, 22
styles, codes for, 22
table borders, 155
table code using grouping columns tags, 170
table code, 149
table layout, 182
tags, 474
writing, 16

HTML 1.0, 7
HTML 2.0, 7
HTML 3.2 code, 10. See also HTML 4.01 code
HTML 3.2 standard, 6, 7, 12
HTML 4

recommendation, 10
standards, 16

HTML 4.0
core attributes for fonts, 299
for multimedia object embedding, 229
internationalization attributes for fonts, 299

HTML 4.01
elements, 679
grouping columns tags, 169
specification for tables, 163

HTML 4.01 code, 12. See also HTML 3.2 code
HTML and XHTML, differences between, 15, 543
HTML code

<div> element, 70
<script> tag, 40
abbreviation tag, 132
displaying two links, 118
division tag, 30
floating page layout, 179
font tags, 130
for styles, 22
forms, 36
frameset navigation, 198
heading rules, 68
horizontal alignment, 313
image inserting, 99
images, 85
indents, 65
inline frameset, 203
letter and word spacing, 322
line breaks, 55
list elements, 28
list item tag, 76
nested lists, 88
ordered list tag, 76
paragraph tags, 56
preformatted text, 30
quoted text, 27
read-only and disabled control, 220
soft-hyphens, 61
spanning tags, 32
superscript and subscript, 132
tab order, 120
table caption, 161
table tags, 34

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

781Index ✦ H–I

teletype tag (<tt>), 131
unordered list, 82
vertical alignment, 316
white spaces, 43

HTML code, basic rules for
code comments, 45
liberal line breaks, use of, 43
well-formed HTML, use of, 44

HTML document
background color, 50
background image, 51

HTML document background color
background-color property, use of, 51
bgcolor attribute, use of, 50
style definition, 51

HTML document background image
background image attribute, use of, 51
style definition, 52

HTML document, creating
document structuring, 16
files naming, 16
HTML writing, 16
text formatting, 16

HTML documents using
heading tags, 66
image tags, 39

HTML Export wizard. See OpenOffice HTML Export
wizard

HTML form
inserting, 208
preventing changes in

using disabled attribute, 220
using readonly attribute, 220

HTML form fields
buttons, 216
check boxes, 211
field labels, 210
file fields, 217
hidden fields, 215
images, 217
keyboard shortcuts, 219
large text areas, 214
list boxes, 212
password input boxes, 210
radio buttons, 211
submit and reset buttons, 218
tab order, 219
text input boxes, 210

HTML form, inserting
<form> tag attributes, 209
HTTP GET protocol, use of, 208
HTTP POST method, 209

HTML forms
code for, 205
defined, 36
overview of, 205

HTML lists
definition, 28
ordered, 28
unordered, 28

HTML organizational elements
forms, 36
tables, 33

HTML table parts
body cells, 149
body rows, 149
caption, 149
columns, 149
footer rows, 149
header cells, 149
header rows, 149
rows, 149

HTML tables, defined, 34
HTML versions

CSS 1.0, 8
CSS 2.0, 8
HTML 1.0, 7
HTML 2.0, 7
HTML 3.2, 7
HTML 4.0, 7
HTML 4.01, 8
XHTML 1.0, 8
XML 1.0, 8

HTML-specific editors, 557
HTTP

client, 471
for Web communication, 4

GET protocol, 208
interface, 471
POST method, 209
protocols, 472
requests, 4, 470
working of, 4

HTTP Server (Apache), 471
HTTP-enabled data server, 480
hyperlinks, 4
hypermedia, defined, 5
Hypertext Markup Language. See HTML
Hypertext Preprocessor (PHP), 476, 571
Hypertext REFerence attribute, 38
HyperText Transfer Protocol. See HTTP
Hypertext, defined, 4
hyphens, soft, 61

I
id attribute, 282, 441
if statement, 434
if/then statements, 415
if-else structure, 405
IIS log analyzers, 594
IIS traffic monitoring, 594. See also Apache traffic monitoring

image
borders, 105
color depth, 93
compression, 91
editors, 110
file size comparison, 92
file sizes, 94
file-naming conventions, 417
inserting, 99
maps, 39
numbers, 94
reusing, 95

image alignment
attribute values

bottom, 101
left, 101
middle, 101
right, 101
top, 101

using tag, 100
image format for Web

compression options, 91
downloading speed, enhancing, 94
image color depth, 93

image formats
GIF, 92
PNG, 93

image map
coding for, 109
overview of, 106

image map, specifying
using anchor tags, 108
using area tags, 108

image maps, types of
client-side, 106
server-side, 106

image saving as
interlaced GIF, 96, 97
PNG file, 96, 98
progressive JPEG, 97
transparent GIF, 96, 98

image sizing and scaling, 103
image sizing attributes, 104
images for Web

GIF (Graphics Interchange Format), 38
JPEG (Joint Photographic Experts Group), 38
JPEG, 38

img element, 229, 515, 518
indenting, text, 318
information chunking, 618
information inventory for content development, 618
information using XPath, finding, 524
inherit property value, 393
inheritance, defined, 285
inline elements, grouping of, 134
inline frames, 201
inline frameset code, 203
inline style for font family naming, 303
innerHTML property, 234
INSERT format. See Structured Query Language (SQL),

overview of
inside list-style-position value, 79
integer element, 519

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

782 Index ✦ I–L

interlaced GIF, 96, 97
internationalization attributes

dir, 736
lang, 736

Internet Explorer filters, 457
Internet Information Server (IIS), 472
Internet Protocol (IP)

dynamic IP address, 571
static IP address, 571

Internet Service Provider (ISP), 567
Internet’s communications protocol, 469
interpreted language, 413
IP (Internet Protocol), 571
ISO-8859-1 HTML entities, 651
ISO-8859-1 standard for Web internationalization, 650
ISP (Internet Service Provider), 567
italic tags, 130
italic text, 130
item function, 446

J
jargon using on Web sites, 624
Java applets, 229
Java Server Pages (JSP), 571, 611
Java Virtual Machine (JVM), 229, 237
JavaScript

array, 445
background, 401
built-in functions of, 408
code, writing, 403
environment, 430
features of, 402, 414
limitations of, 401
user-defined functions of, 408

JavaScript event handlers
onAbort, 431
onBlur, 431
onChange, 431
onClick, 431
onError, 431
onFocus, 431
onLoad, 431
onMouseOut, 431
onMouseOver, 431
onSelect, 431
onSubmit, 431
onUnload, 431

JavaScript execution, 413
JavaScript for Web page, 634
JavaScript in HTML documents, using, 412
JavaScript script using event attributes, 261
JavaScript split() method, 435
JavaScript, 401
JavaScript-based functionality, 443
JavaScript-capable browser, 412
Joint Photographic Experts Group (JPEG), 38, 93
JPEG image formats, 38
JPG. See JPEG file formats
JSP (Java Server Pages), 571, 611
justification settings, 313
JVM (Java Virtual Machine), 229, 237

K
keyboard shortcuts, 119, 219

L
language pseudo-class, 287
large text areas, 214
last modification date, 416
lastModified property, 416
Latin Extended Additional, 656
Latin Extended-A (U+0100 - U+017F), 655
Latin Extended-B, 656
Latin-1 Supplement (U+00C0 - U+00FF) languages, 655
layout, page

CSS layout, 181
defined, 173
floating, 179
html table layout, 182
table layout, 181

legends, 221
letter controlling, 322
letter-spacing property, 322
LF character, 512
liberal line breaks, inserting, 43
liberal nonbreaking spaces, 63
light filters

addAmbient, 463
addCone, 463

addPoint, 463
changeColor, 464
changeStrength, 464
Clear, 464
moveLight, 464
reveal transition filter, 465

line breaks
in paragraphs, 56
manual, 59
overview of, 55

line breaks code, 55
line breaks, use of, 56
line height property, 308
link colors, 122
link colors, choosing, 121
link components

descriptor, 113
reference to target, 113

link exchanges, using, 584
link id attribute values, 442
link pseudo-classes

active, 286
focus, 287
hover, 286
link, 286
visited, 286

link status colors, 122
link styles, defining of, 286
link tag, 125
link target attributes

Charset, 123
Hreflang, 123
Rel, 123
Rev, 123
Type, 124

link targets, 117
link text, 122
link titles, 119
link types

absolute links, 116
relative links, 116

link, overview of, 113
linking to Web page, 115
linking to Web, 37
links creating, 38
links from other sites, getting, 585
links pages, 625
links status modes

active, 122
hover, 122
link, 122
visited, 122

links to frames, targeting, 196
links, broken, 595
links. See hyperlinks
Linux-based services, 568
list

formatting, 326
item tag, coding for, 76
overview of, 75, 326
properties, 763
structure, 75
style type property, 328
terms, 86

list boxes, 212
list definitions, 86
list elements

definition lists, 28
ordered lists, 28
unordered lists, 28

list’s display format for
definition list, 75
ordered list, 75
unordered list, 75

list-style attribute, 77
list-style property, 81
list-style-image property, 84, 330
list-style-position property for

ordered lists, 79
unordered lists, 84

list-style-position property values
inside, 79
outside, 79

list-style-type property
for ordered lists

armenian, 79
cjk-ideographic, 79
decimal, 78

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

783Index ✦ L–N

decimal-leading-zero, 78
georgian, 79
hebrew, 79
hiragana, 79
hiragana-iroha, 79
katakana, 79
katakana-iroha, 79
lower-alpha, 79
lower-greek, 79
lower-latin, 79
lower-Roman, 79
none, 79
upper-alpha, 79
upper-latin, 79
upper-roman, 79

for unordered lists
circle, 83
disc, 83
none, 83
square, 83

list-style-type property values
armenian, 328
circle, 328
cjk-ideographic, 328
decimal, 328
decimal-leading-zero, 328
disc, 328
georgian, 328
hebrew, 328
hiragana, 329
hiragana-iroha, 329
katakana, 329
katakana-iroha, 329
lower-alpha, 328
lower-greek, 328
lower-latin, 328
lower-roman, 328
none, 329
square, 328
upper-alpha, 328
upper-latin, 328
upper-roman, 328

list-style-types, 79
literal result elements, creating, 541
localhost, 486
location property, 435
locations and steps, 524
log file

access, 613
extended, 614
referrer, 614

logs watching, 598
longdesc attribute, 103
loop-related commands

break, 407
continue, 407

LZW compression, 92

M
Macromedia Dreamweaver, 560
Macromedia Flash, 565
manual line breaks, 59
manual method, 482
margins with the margin property, setting, 390
margins, defined, 337, 339
market-leading Web servers, 471
markup for characters, 31
markup for paragraphs. See paragraph markups
markup languages, 15
markup, 5
mathematical characters entities, 142
maximum and minimum sizes, specifying, 379
meta content development

headings, 620
overview, 620
taglines, 620
titles, 620

meta description, using, 587
meta information, 48
meta keywords, using, 587
meta tags in SMIL, 251
meta tags, using, 586
method attribute, 534
Microsoft FrontPage, 558
Microsoft’s FrontPage extensions, 472
Microsoft’s Internet Information Server (IIS), 471
Microsoft’s Web editing tool, 558
MIDI (Musical instrument digital interface), 242

MIME type, 474
miscellaneous entities, 146
mnemonic entity for

accented character, 140
apostrophe, 139
arrow, 140
copyright, 138
currency, 139
en ans em entities, 137
essential entities, 137
Greek symbol, 143
mathematical symbol, 144
miscellaneous, 146
quote mark, 139
registered trademark, 138

mnuemonic code for entities, 33
mobility disabilities and Web accessing, 640
monospace (typewriter) fonts, 131
monospaced font, specifying of, 63
monospaced tag, 131
Mosaic 1.0, 7
Movable Type, 497
Mozilla-based browsers, 444, 508
MP3 video versions, 241
MS SQL Server, 610
MSHTML component, 389
MSXML, 509
multilanguage sites, constructing, 656
multimedia aspects of Web usability, 631
multimedia inclusion in Web pages, 229
multimedia object embedding via HTML 4.0, 229
multimedia objects, introducing, 227
multimedia options

animations, 229, 237
slide shows, 229, 243
sounds, 229, 242
video clips, 228, 241

Multimedia Player support, SMIL using
AVI video, 253
GIF img, 252
JPEG img, 253
Microsoft Wav audio, 253
MOV video, 253
MP3 audio, 253
MPEG video, 253
Plain text, 253
Real movie video, 253
Real text textstream, 253
Sun Audio audio, 253
Sun Audio Zipped audio, 253
SVG img, 253

multimedia plug-ins and players
Adobe Acrobat Reader, 235
Flash, 234, 235
QuickTime, 236
RealOne, 234, 235
Windows Media Player, 235

multiple columns, 187
multiple methods of displaying content, advantages of, 499
multiple spaces, use of, 56
Musical instrument digital interface. See MIDI
MySQL, 484, 609
mysql connect() function, 486
mysql connect() PHP function, 493
mysql query(), 487

N
name attribute, 233, 538
namespace declaration, 521
namespace, 521
NAPs (Network Access Points), 569
navigational menus, 185
navigator object, 457
navigator.userAgent variable, 414
nested framesets, 200
nested lists code, 88
nested lists, overview of, 87
nested tables for floating page layout, 179
NetObjects Fusion, 560
NetObjects Fusion, advantages of, 560
NetObjects Fusion, features of

advanced scripting support, 560
automatic e-commerce catalog building, 560
enhanced photo gallery support, 560
flexible meta tag management, 560
hooks for including external pages and code, 560
incremental publishing capability, 560
powerful, full-site management tools, 560

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

784 Index ✦ N–P

Network Access Points (NAPs), 569
NewsGator, 502
newsgroups, 584
nodes. See XML Document, 523
nonbreaking spaces, 60
nongraphical browsers, text to display for, 102
non-WYSIWYG editors, 557
noresize attribute, 196
normal positioning model, 369
nowrap attribute, 160
number of occurrences for elements, declaring, 516
numerically coded entities, 136

O
object detection, 434
object element attributes
archive, 230
classid, 230
codebase, 230
codetype, 230
data, 230
height, 230
hspace, 230
id, 230
name, 230
standby, 230
style, 230
type, 230
vspace, 230
width, 230

object element of multimedia, 229
object element, 233
object-oriented programming (OOP) structures, 476
object-oriented scripting language, 401
objects, using, 409
occurrence operator, 516
ODBC-compliant databases, 477
Onclick attribute, 219, 259, 430
onClick event, 418
on-demand content, 481
on-demand content, advantages of, 481
Onfocus attribute, 260
online security warnings, 664
onMouseOut event, 417
OnMouseOver event, 416, 417
onparty event, 430
onSubmit event, 422
open ports, unused, 662
open source database

MySQL, 609
postgreSQL, 609

open source tools for Apache traffic monitoring, 591
open() method, 430
OpenOffice for slideshow presentation, 243
OpenOffice HTML Export wizard, 249
OpenOffice presentation, 249
OpenOffice wizard Publication type options

Automatic, 250
Webcast, 250

OpenOffice.org presentations, exporting, 249
OpenType, font standard, 309, 310
Opera 3.5, 396
Oracle, 610
ordered (numbered) lists, overview of, 76
ordered list tag, coding for, 76
ordered list, display options for

arabic numbers, 76
letters, 76
Roman numerals, 76

ordered lists supporting list-style-position property, 79
ordered lists, 24, 28, 76
other tools, 561
other-side of the process publishing tools, 490
outerHTML property, 234
outline properties

outline-color, 346
outline-style, 346
outline-width, 346
using

active pseudo-element, 346
focus pseudo-element, 346

outside list-style-position value, 79
overflow property, 354, 379

P
P3P. See Platform for Privacy Preferences
padding properties

bottom, 341

padding, 272
padding-bottom, 272, 341
padding-left, 272, 341
padding-right, 272, 341
padding-top, 272, 341

padding space, 348
padding, 272. See also margins
padding, defined, 339, 341
padding-left attribute, 66
padding-right attribute, 66
page background color, 50
page box formatting model, 387
page box, 387
page breaks, controling, 391
page layout

CSS layout, 181
defined, 173
floating, 179
html table layout, 182
multiple columns, use of, 187
table layout, 181

page margins, 388
page property, 389
page size with the @page rule, defining, 389
page size with the size property, setting, 390
page-break properties, using, 392
page-break-before and page-break- after properties, using, 392
page-break-before/after property values

always, 393
auto, 393
avoid, 393
inherit, 393
left, 393
right, 393

page-break-inside property, using, 396
paged media, 389
pages for printing, defining, 387
para element, 507
paragraph formatting <div> element, use of, 70
paragraph tag (<p>), 25, 56
paragraph tags, use of, 70
param element attributes
Name, 232
type, 232
value, 232
Valuetype, 232

parent argument, 446
parent value, 201
parsed character data, 519
parsing, 505
password arguments, 486
password input boxes, 210
pattern matching, 532
PCDATA and CDATA in DTDs, using, 519
PDAs, 545
PDF for Web accessibility, enhancing, 643
percentage for vertical text alignment, 316
Perl CGI scripts, 498
permalinks, using, 499
PHP (Hypertext Preprocessor), 571
PHP for Web site development, 611
pictures array, 418
Pictures tab option, 246
Platform for Privacy Preferences (P3P) project

overview of, 671
P3P attribute in a WSDL file, 673
P3P files, generating, 674
P3P general syntax, 671
P3P policy generated in XML, 671
P3P processes, 673

PNG format, 93
Portable Network Graphics (PNG) format, 93
positioning models, different

absolute positioning, 371
fixed positioning, 373
relative positioning, 370
static positioning, 369

positioning properties, 758
positioning, background images, 355
possible transitions

Box in, 466
Box out, 466
Checkerboard across, 466
Checkerboard down, 466
Circle in, 466
Circle out, 466
Horizontal blinds, 466
Random bars horizontal, 466

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

785Index ✦ P–S

Random bars vertical, 466
Random dissolve, 466
Random, 466
Split horizontal in, 466
Split horizontal out, 466
Split vertical in, 466
Split vertical out, 466
Strips left down, 466
Strips left up, 466
Strips right down, 466
Strips right up, 466
Vertical blinds, 466
Wipe down, 466
Wipe left, 466
Wipe right, 466
Wipe Up, 466

PostgreSQL, 487, 609
PowerPoint presentation tabs

Browsers, 245
Encoding, 247
Encodings, 245
Files, 245, 246
Fonts, 245, 247
General, 245
Pictures, 245, 246

PowerPoint Web page, exporting
coding, 248
overview, 243

preformatted text, 30
pre-generated content, 481
presentation code for Web site, 12
presentation code, 13
preserve attribute, 513
Print Preview screen, 394
print previewing and printing, 389
printed media, 387
printed page management, 398
printing properties, 768
privacy laws. See Web privacy
privacy policy pages, modeling, 675
processing instruction (PI), 509
progressive JPEG, 96, 97
project management basics, 604
project scoping, 604
prolog, overview of, 509
property value metrics

angles, 293
color codes, 293
CSS keywords, 293
font size, 293
real-world measures, 293
relational values

em, 294
percentages, 293

screen measures, 293
textual strings, 293
time values, 293

property/value pair of style definition, 267
protocols, 4
pseudo-classes

defined, 286
first-child pseudo-class, 287
language pseudo-class, 287

pseudo-elements
after, 289
before, 289
defined, 288
styles applying, 288

pseudo-elements styles applying
before and after text, specifying, 289
to first letter of element, 289
to first line of element, 288

PUBLIC, 543
publicizing site and building audience, 583

Q
query. See Structured Query Language (SQL), overview of, 487
QuickTime, 236, 241. See also RealOne; Windows Media Player
quotation marks, specifying, 331
quote mark, 139
quoted text, 27
quotes property

close, 332
open, 332

R
radio buttons, 211
raster-based editing tools

Adobe Photoshop, 564
Macromedia Fireworks, 564
Paint Shop Pro, 564
The GIMP, 564

readonly attribute, 220
real quotation marks, 139
Really Simple Syndication (RSS), 496
RealOne, overview of, 235
real-world examples

corporate Web site, 177
layout format

floating page and multiple columns of content, 177, 178
floating page and two columns of content, 177, 179

redirecting of HTML document, 49
redundant URL submissions, 590
referrer log file, 614
refreshing HTML document, 49
registered trademark symbol, 138
relative link, 116
rendering engines

Gecko, 739
Internet Explorer for Windows, 739
Konqueror, 739
Opera, 739

repeating, background images, 351
requirements analysis, 607
reset button format, 218
resize method, 423
resource services, providing, 589
retaining visitors on-site, strategies, 588
RGB values, 348
rollover images, 416
rollovers using hover pseudo-class, creating, 440
rollovers using JavaScript, creating, 443
rollovers, 439
row groupings

body, 163
footer, 163
header, 163

row spanning, 166
row tags, 157
rowspan attributes, 166, 185
rowspan, 186
RSS syntax, 502
rules attribute values

all, 158
cols, 158
groups, 158
None, 158
rows, 158

rules attribute, 157
runthis function, 411

S
sample scripts, 488
sandbox, 403
sandbox, defined, 612
scalability. See bandwidth and scalability, 571
Scalable Vector Graphics (SVG), 298
schema basic types

Booleans, 520
date, 520
numerical (such as integer and double), 520
string, 520

schemas, working with, 519
scrambling. See buzz and scrambling
script

default scripting language settings, 257
external script calling, 258
hiding from older browsers, 263
inclusion in document, 257
triggering with events, 259

script element, 412
script service, use of, 224
script services, 222
script types

text/ecmascript, 257
text/javascript, 257
text/jscript, 257
text/vbs, 257
text/vbscript, 257
text/xml, 257

scriptable events
Blur, 411
Change, 411
Click, 411
DblClick, 411

Continued

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

786 Index ✦ S

scriptable events (continued)
Focus, 411
keyDown, 411
keyPress, 411
keyUp, 411
Load, 410
MouseDown, 411
MouseOut, 410
MouseOver, 410
MouseUp, 411
Reset, 411
Submit, 411
Unload, 410

script-hiding tags, 263
scripting language settings, 257
scripting language, 401
scripting languages

JavaScript, 40
using <script> tags, 40

scripting varieties
client-side, 256
server-side, 256

scripting, 401
scripting, basics of, 486
scripts with the script element, adding, 412
scroll bars, 194
scroll. See element overflow, controling, 380
scrolling asepcts of Web usability, 633
scrolling attribute, 196
scrolling, background images, 351
SDK (Software Development Kit), 550
search capabilities, adding, 490
search engine access, facilitating, 585
search engine optimization, 585
search engines

Google, 585
Overture, 585
Yahoo, 585

search engines and Web security, 665
section counter, 334
secure servers, 665
Secure Socket Layer (SSL), 665. See also Web security methods
select attribute, 532
SELECT query. See Structured Query Language (SQL), overview

of, 487
selector mechanisms for hierarchies, 284. See also hierarchy,

document
selectors method

matching child, descendent, and adjacent sibling elements, 283
matching elements by class, 281
matching elements by identifier, 282
matching elements by name, 280
matching elements containing specified attribute, 282
universal selector, using, 280

selectors, understanding, 280
server logs for monitoring

Apache traffic, 591
IIS traffic, 594

server-based Flash files, 545
server-side blogging applications, 497
server-side image maps, 106
server-side scripting

benefits of, 470
dynamic page generation, 470
form verification and handling, 470
introduction to, 469
methods to run, 470
need for, 472
overview of, 256
versus client-side scripting, 256

server-side scripting engine, 434
server-side scripting languages

ASP, .NET, and Microsoft’s technologies, 474
ColdFusion, 477
Common Gateway Interface (CGI), 473
Java, 256
Perl, 256
PHP, 256, 476
Python, 256

server-side scripts, 473
service provider, choosing, 567
service providers, types of

co-location, 567
dedicated hosting plans, 567
shared hosting services, 567
Web publishing services provided by ISPs, or personal Web

sites, 567

SGML (Standard Generalized Markup Language)
advantages of, 6
features of, 507
overview of, 15
overview of, 5
presentation, 5
structure, 5

shared hosting services, using, 568
shorthand expressions, 291
sibling elements, 283
Simple Object Access Protocol (SOAP), 543
simple text editors

vi on UNIX/Linux, 555
Windows Notepad, 555

site with search engines, listing, 584
site-level design tool, 560
sitemaps and Web usability, 636
size property, 390
size values

auto, 390
landscape, 390
portrait, 390

slide shows
OpenOffice.org presentations, exporting, 249
overview of, 243
PowerPoint Web page, exporting of, 243

smart text editors, 556
SMIL (Synchronized Multimedia Language)

creating, 251
for elements positioning, 251
for QuickTime, 237, 251, 252
for RealOne, 235, 251, 252
Multimedia Player supports

AVI video, 253
GIF img, 252
JPEG img, 253
Microsoft Wav audio, 253
MOV video, 253
MP3 audio, 253
MPEG video, 253
Plain text, 253
Real movie video, 253
Real text textstream, 253
Sun Audio audio, 253
Sun Audio Zipped audio, 253
SVG img, 253

overview of, 250
using meta tags, 251

SMIL documents
body element, 251
head element, 251

smil element, 251
SOAP (Simple object Access Protocol), 543
soft hyphens, 61
Software Development Kit (SDK), 550
software package for graphics creating, 96
soliciting links, 583
sound formats

AIFF (Audio Interchange File Format), 242
AU, 242
MIDI (Musical instrument digital interface), 242
WAV, 242

source document, 531
space types

em, 137
en, 137

spacefill function, 409
spanning columns and rows, 166
Spanning tags () tag, 32
special characters (entities), 32
special characters, overview of, 136
split() method, 435
SQL Server, 610
src attribute, 412
src property, 518
SSL (Secure Socket Layer), 665. See also Web security methods
standard event attributes

onclick, 735
ondblclick, 735
onkeydown, 735
onkeypress, 735
onkeyup, 736
onmousedown, 735
onmousemove, 735
onmouseout, 735
onmouseover, 735
onmouseup, 735

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

787Index ✦ S–T

Standard Generalized Markup Language. See SGML
standard HTML document, 40
standard HTTP requests, 480
start attribute, 80
static filter controls, 459
static HTML pages, 481
street element, 526
string arrays with the split() method, building, 435
strings, handling, 405
structural markup. See also SGML
structure versus presentation rule, 14
Structured Query Language (SQL), overview of, 487
style attribute, 134, 269
style code for

headings, 68
image borders, 106

style code using list item tag, 80, 81
style code using ordered list tag, 80, 81
style definition for

<div> element, 70
background color, 51
background image, 52
definition lists, 87
indents, 65

style definition layers
linked style sheets, 270
styles in <style> element, 270
styles specified in style attribute, 270
user agent settings, 270

style definitions within individual tags, 269
style for list, 77
style object, 452
style rule locations

external style sheets, 268
using <style element>, 268

style rules
format, 267
overview of, 267
properties, 267
selector, 267, 280
values, 267

style rules, creating, 280
style sheet cascade, understanding, 269
style sheet property, 458
style sheet, 13
style sheets comparison with embedded fonts, 309
style sheets, creating, 534
style.color, 430
style.fontSize, 430
styles applying to pseudo-elements, 288, 289
styles definition for link status colors, 122
styles for paragraph tag, 58
styles. See HTML styles

borders properties, 291
shorthand expressions, 291

submit button format, 218
subscripts tags, 132
superscripts tags, 132
support and service, 569
sURL variable, 435
SVG (Scalable Vector Graphics), 298
SVG image, 252
Synchronized Multimedia Language. See SMIL
syndicating content with RSS, 501

T
tab order codings, 120
tab order, 119, 120, 219
tabindex attribute, 120, 219
table attributes

Alignment, 360
borders, 360
Spacing between cells, 360
Spacing inside cell, 360
Table framing, 360
Width of table, 360

table attributes, controling, 360
table border spacing, defined, 362
table borders, 155
table borders, defined, 360
table caption properties, 365
table caption, code for, 161
table captions, 160
table cells

<td> tags, use of, 159
code for, 159
delimiting, 159

table header code, 183
table header tags (<th>), code for, 160
table header, 163
table layout versus CSS layout, 181
table layout, 181, 183, 364
table properties, 764
table rows, 157
table rules, 157
table styles, defined, 359
table width and alignment, 151
table-layout property values

auto, 364
fixed, 364

table-layout property, 364
tables combining text and graphics, 182
tables for column elements positioning,

187
tables formatting code, 173
tables. See HTML tables
tabs, use of, 56
tag, defined, 19
taglines and Web usability, 636
target attribute for link targets, 117
target attribute values

blank, 117, 198
frame name, 198
name, 118
parent, 118, 198
self, 117, 198
top, 118, 198

target attribute, 197, 201
TCP/IP, 469, 575
teletype (<tt>) tag, 131
templates, introduction to, 538
text

autogenerating, 331
easily scannable, 619
use of, 95

text aligning
horizontal, 313
vertical, 316

text control methods, overview of, 127
text decorations, use of, 325
text editor, 498
text effects, 429
text formatting

auto-generated text, 331
capitalization, 324
lists formatting, 326
overview, 313
text aligning, 313
text decorations, use of

text-decoration property, 325
text-shadow property, 325

text indenting, 318
white space controling, 319

text indenting, 318
text input boxes, 210
text properties, 760
text to display for nongraphical browsers, 102
text variable, 409
text-align property. See also vertical-align property

center, 313
full, 313
left, 313
right, 313

text-decoration property attributes
blink, 325
line-through, 325
overline, 325
underline, 325

text-decoration property, 325, 441
text-indent property, 64, 318
text-oriented editors, 555
text-shadow property, 325
text-transform property, 324
this keyword, 432
title attribute, 119, 441
title tag to your advantage, using, 586
top value, 201
top-down Web writing style, 622
total variable, 404
trackbacks, using, 500
trademark symbol, 138
traditional FTP process, limitations of, 575
transformation using XSLT, 531
transparent GIF, 96, 98

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

788 Index ✦ T–W

TrueDoc, font standard, 309, 310
type attribute, 520

U
UDDI (Universal Description, Discovery, and Integration), 543
UML diagrams

sequential and collaboration diagrams, 608
use cases, 608

UML for Web site structuring, 607
uncompressed images, 91
unicode

alphabets, 647
Basic Latin (U+0000 - U+007F) encoding, 650
for Web internationalization, 647
ISO-8859-1 standard, 650
Latin Extended Additional, 656
Latin Extended-A (U+0100 - U+017F), 655
Latin Extended-B, 656
Latin-1 Supplement (U+00C0 - U+00FF), 655

Unicode-based encodings, 509
Uniform Resource Identifier (URI), 521, 532, 534
Universal Description, Discovery, and Integration (UDDI), 543
universal selector, 280
unnumbered lists, 24
unordered (bulleted) lists overview of, 82
unordered list tag (), 82, 84
unordered list, 5, 76
unordered list, display options

bullets, 76, 82
images, 76, 84

unsolicited e-mail, 589
uploading site with FTP, 575
URL elements

directories, 115
file name, 115
protocol, 115
server name, 115

URL for Web page linking, 115
URL length and Web usability, 636
URL string, 435
URL styles

using absolute links, 116
using relative links, 116

URL, 499
usability issues

advertising, 631
animation, 631
applets, 631
color and links, 632
consistency maintaining, 632
contents, 632
drop-down menus, 632
fonts and font size, 632
frames using, 633
headings, 633
horizontal scrolling, 633
including graphics, 633
JavaScript, 634
legibility, 635
multimedia, 631
searches, 636
sitemaps, 636
taglines, 636
URL length, 636
Windows 1252 character set, 637

useful browser window properties and methods
navigator.appName, 414
navigator.appVersion, 414
navigator.platform, 414
navigator.userLanguage, 414

Usenet newsgroup flooding, 590
user argument, 486
userAgent property, 453
users’ search keywords and enhancing search retrieval,

predicting, 586
UTF-8 encoding, 509, 650
UTF-8, 509, 649, 656

V
valform FUNCTION, 422
valid HTML filter elements

BODY, 458
BUTTON, 458
DIV, 458
IMG, 458
INPUT, 458
MARQUEE, 458

SPAN, 458
TABLE, 458
TD, 458
TEXTAREA, 458
TFOOT, 459
TH, 459
THEAD, 459
TR, 459

validating code, 550
validation output, understanding, 552
validation tools

Macromedia’s Dreamweaver MX, 551
W3C HTML validation tool, 551
Web Design Group (WDG), 551

var keyword, 404
variable types

float, 403
integer, 403
string, 403

variables, 403
variety of browsers, testing with, 549
variety of displays, testing for, 550
VBScript, 401
vector-based editing tools

Adobe Illustrator, 562
Macromedia Freehand, 562

version attribute, 536
versioning control with the version attribute, adding, 536
vertical alignment, controlling, 316
vertical-align property values

baseline, 316
bottom, 316
length, 316
middle, 316
percentage, 316
sub, 316
super, 316
text-bottom, 316
text-top, 316
top, 316

vertical-align property, 318. See also text-align property
video files, 241
video types

AVI, 241
MPEG (Motion Picture Experts Group)), 241
QuickTime, 241

view port edges, 372
visibility property, 384, 445
visible. See element overflow, controling, 380
visited link mode, 122
visual disabilities and Web accessing, 639
visual editors

Dreamweaver, 505
GoLive, 505

visual filters
alpha channel, 459
blur, 460
chroma, 460
dropShadow, 460
flipH, 462
flipV, 462
Glow, 462
gray, 462
invert, 462
light, 463
mask, 464
shadow, 465
wave, 465
x-ray, 465

W
W3C Link Checker, 595
WAI. See Web Accessibility Initiative
WAV sound format, 242
Web

image formats for, 91
introducing, 3
working of, 3

Web accessibility checking via validation service, 643
Web Accessibility Initiative (WAI)

cognitive and learning disabilities, 640
hearing disabilities, accomodating, 640
mobility disabilities, 640
overview, 639
visual disabilities, accomodating, 639

Web application server. See application server
Web authors, 387, 507

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

789Index ✦ W

Web browsers
Microsoft, 9
Netscape, 9

Web client, 3. See also Web servers
Web configuration file, 506
Web content development

audience analysis, 617
chunking information, 618
easily scanned text, developing, 619
information inventory, 618
meta content, developing, 620
overview, 617
Web writing, concept of, 621, 623

Web content management, 497
Web deployed documents, 472
Web designing for international audience, 645
Web development process steps

application server environment selection, 610
audience defining, 606
content specifying, 609
design theme choosing, 610
goals defining, 606
market analysis, 606
requirement analysis, 607
site maintenance, 614
site marketing, 612
site structure designing, 607
site testing and evaluation, 612
site usage, tracking of, 613

Web development process, overview of, 603, 606
Web development softwares, 555
Web development, 505
Web documents, 389
Web hosting service, 568
Web hosting, 567
Web internationalization

multilanguage sites, constructing, 656
Unicode, use of, 647

Web internationalization issues
localization software, use of, 646
Web site, translating, 646

Web internationalization principles, 645
Web linking aspects, 37
Web links components

link, 113
target, 113

Web localization principles, 645
Web logs, 482
Web Options dialog box, 245
Web page using DHTML, 234
Web pages

automating, 401
background coloring of, 50
downloading of, 94
easily scannable, 621
linking to, 115
multimedia included, 229

Web privacy legislation and regulations
in the US

Children’s Online Privacy Protection Act (COPPA), 668
Electronic Communications Privacy Act (ECPA), 669
Fair Credit Reporting Act, 670
Patriot Act of 2001, 669

Web privacy, overview of, 667
Web privacy, voluntary solutions for

certification and seal programs, 674
Platform for Privacy Preferences (P3P) project, 671

Web publishing services provided by ISPs, 568
Web publishing, 477
Web scripting languages, 401
Web searching aspects of Web usability, 636
Web security methods

excluding search engines, 665
online security warnings, 664
overview of, 664
secure servers, use of, 665
security policy, drafting of, 664

Web security policy, 664
Web security risks

assets, loss of, 660
credibility and reputation, loss of, 660
data loss, 660
denial of service (DOS), 660
litigation, 661
theft of confidential information, 659
vandalism and defacement, 659

Web security, overview of, 659

Web server file organization, principle of, 580
Web server software

DB2, 610
MS SQL Server, 610
MySQL, 609
Oracle, 610
postgreSQL, 609

Web server, 469
Web Server, need for, 17
Web servers, 3. See also Web client
Web servers, working of, 469
Web services (SOAP, UDDI, and so on), 545
Web Services Description Language (WSDL), 543, 673
Web site accessibility

enhancing tools
closed captioning, 641
highlighting software, 641
keyboard enhancements, 641
magnifiers, 641
screen readers, 641

Web site accessibility defines, 637
Web site accessibility mandates

Americans with Disabilities Act, 638
international guidelines, 638

Web site components
company information, 624
Frequently Asked Questions (FAQ) pages, 624
home page, 624
links pages, 625
table of contents, 625

Web site designing for usability and accessibility, 629
Web site maintenance

broken links, checking for, 595
data, backing up, 599
feedback responding, 598
overview, 591
usage analyzing via server logs, 591

Web site privacy, understanding, 667
Web site security issues

buffer overflows, 663
CGI scripts, 662
compromised systems, 663
file permissions, 661
unused open ports, 662

Web site structuring
using flow charts, 608
using UML, 607

Web site translation, 646
Web site usability

analysis methods, 629
issues, 631
principles, 630
Web users, 630

Web site, 438, 568
Web sites development

challenges, 603
information architecture, need for, 605
overview of, 606
project management aspects, 604
steps, 603

Web standards, 6
Web surfing, 5
Web typography basics, 298
Web users, 619
Web writing characteristics

conciseness, 621
credibility maintaining, 622
easily scannable Web pages, 621
maintaining focus and limiting verbosity, 622
objectivity maintaining, 622
top-down style writing, 622
using summaries, 623

Web writing style
bulleted lists, 623
controlled vocabulary, use of, 624
jargon, use of, 624

Webalizer (Web traffic monitoring tool), 593
Webcast publication type, 250
Web-friendly extension

.gif, 16

.htm, 16

.html, 16

.jpg, 16

.php, 16

.png, 16
Weblog, creating, 495
Weblogging, 495

P1: FMK

WY022-IND WY022/Pfaffenberger WY022/Pfaffenberger-v3.cls June 15, 2004 3:23

790 Index ✦ W–Z

Web-supported graphics formats
GIF, 98
PNG, 98

WEFT for font embedding, 310
well-formed document, 513
well-formed HTML characteristics, 44
what you see is what you get (WYSIWYG) editors, 558
WHERE clause, 490
while structure, 406
white space controlling within text

floating objects, clearing of, 319
white-space property, use of, 320

white space, 56
white space, use of, 43
white-space property values

normal, 322
nowrap, 322
pre, 322

widows and orphans, handling, 396
width attribute, 103
window object, 430
window object to manage URLs, using, 435
window size and location, SPECIFYING, 423
window.focus(), 414, 415
window.frames property, 425
window.open() method, 430
Windows 1252 character set, 637
Windows Explorer-like menu tree, 446
Windows Media Player. See also Flash; RealOne

creating, 234
loading, 234
overview of, 235

Windows reader, 502
Windows-based services, 568
Wireless Markup Language Specification (WML), 545
WML (Wireless Markup Language Specification), 545
word processing packages, 388
word-spacing property, 322
World Wide Consortium. See W3C
World Wide Web, overview of, 3
WSDL (Web Services Description Language), 543, 673
www.thelist.com, services provided by

24-Hour Support, 570
Access traffic logs and traffic analysis reports, 570
Adult content allowed, 570
CGI Access, 570
CGI forms, 569
Chat and/or message board software, 570
Credit card processing, 570
Daily site backups, 570
Database support, 570
Design services, 569
E-mail auto responder, forwarding, POP SMTP processing, and

list processing, 570
Money- back guarantee and toll- free phone support,

570
MS FrontPage, 570
NT servers or UNIX servers, 570
Real Server, 569
Redundant Internet, 570
Shell telnet access, 570
Unique DNS hosting, DNS parking, 570
VPN Support, 570

WYSIWYG HTML editors, 558
WYSIWYG tools, 398

X
XHMTL, 543
XHTML

overview of, 15
tags, 45

XHTML (Extensible HyperText Markup Language), 8
XHTML 1.0, 8
XHTML and HTML, difference between, 15
XHTML block elements

headings, 73
horizontal rules, 73
paragraphs, 73

XHTML-compliant HTML, creating, 679
XML

environment, 510
implementations, 543
introduction to, 505
need for, 506
on the Web, 522

parser, 509
processing and implementations, 523
processing, 523
processors, 521
schemas, 519
syntax, 511
uses of, 506
versions of, 508

XML (Extensible Markup Language), 8
XML 1.0, 8
XML and HTML using XSLT, outputting, 533
XML contribution to Web, 6
XML documents, creating, 508
XML parsers, getting started with, 508
XML, core components of

Attributes, 515
CDATA, 515
Elements, 515
Entities, 515
PCDATA, 515

XML, SGML, and HTML, relationship of, 507
XML, well-structured

case sensitivity in XML, maintaining, 511
line breaks and white space in XML documents, handling,

512
nesting XML documents, properly, 511
predefined entities and entity or character references, using,

512
quotes in attribute values, using, 512
root element, including, 510
white space in XML, managing, 513

XML, working of, 508
XML-based vocabulary, 545
XPath axes
ancestor- or- self, 530
Ancestor, 530
Attribute, 530
Child, 529
Descendant, 529
descendant-or- self, 530
Following, 530
following-sibling, 529
Namespace, 530
Parent, 529
Preceding, 530
preceding-sibling, 529
Self, 530

XPath framework, 523
XPath processor, 526
XPath, 523
XQuery, 523
xs

complexType element, 520
sequence element, 520

xsl
apply-templates, 538
output element, 533
template element, 538
transform element, 534

XSL Formatting Objects (XSL-FO), 531
XSLT

elements, 535
namespace, 532
processor, 531, 532, 535
style sheet, 532

XSLT template elements
xsl
comment, 539
copy, 539
element, 539
for-each, 540
if, 540
message, 540
otherwise, 540
param, 540
processing-instruction, 540
template, 540
variable, 540
when, 541
with-param, 541

XUL, 545

Z
Z axis, 381
z-index property, 381

	HTML, XHTML, and CSS Bible
	Cover page
	Title page
	Copyright
	About the Authors
	Credits
	Dedication
	Acknowledgments

	Contents at a Glance (linked)
	Contents (linked)
	Introduction
	Who Should Read This Book?
	Book Organization, Conventions,
	and Features
	Organization
	Conventions and features
	Tips, Notes, and Cautions
	Code

	Feedback

	Part I: Understanding (X)HTML
	Chapter 1: Introducing the Web and HTML
	What Is the World Wide Web?
	How Does the Web Work?
	What Is Hypertext?
	Where Does HTML Fit In?
	The invention of HTML
	A short history of HTML
	HTML 1.0
	HTML 2.0
	HTML 3.2
	HTML 4.0
	XML 1.0
	CSS 1.0 and 2.0
	HTML 4.01
	XHTML 1.0

	So who makes the rules?
	Buzz and scrambling
	Committees and working drafts
	Voting process

	What Is CSS?
	The maintenance nightmare
	Enter CSS
	What does “cascading” mean?

	What Is XHTML?
	Creating an HTML Document
	Writing HTML
	Name your files with a Web-friendly extension
	Format your text
	Structure your document

	Don’t I Need a Web Server?
	Summary

	Chapter 2: What Goes Into a Web Page?
	Specifying Document Type
	The Overall Structure: HTML,
	Head, and Body
	The <html> tag
	The <head> tag

	Styles
	Block Elements: Markup for Paragraphs
	Formatted paragraphs
	Headings
	Quoted text
	List elements
	Preformatted text
	Divisions

	Inline Elements: Markup for Characters
	Basic inline tags
	Spanning

	Special Characters (Entities)
	Organizational Elements
	Tables
	Forms

	Linking to Other Pages
	Images
	Comments
	Scripts
	Putting it All Together
	Summary

	Chapter 3: Starting Your Web Page
	Basic Rules for HTML Code
	Use liberal white space
	Use well-formed HTML
	Comment your code

	Creating the Basic Structure
	Declaring the Document Type
	Specifying the Document Title
	Providing Information to Search Engines
	Setting the Default Path
	Creating Automatic Refreshes and Redirects
	Page Background Color and
	Background Images
	Specifying the document background color
	Specifying the document background image

	Summary

	Part II: HTML/XHTML Authoring Fundamentals
	Chapter 4: Lines, Line Breaks, and Paragraphs
	Line Breaks
	Paragraphs
	Manual line breaks

	Nonbreaking Spaces
	Soft Hyphens
	Preserving Formatting—The <pre> Element
	Indents
	Headings
	Horizontal Rules
	Grouping with the <div> Element
	Summary

	Chapter 5: Lists
	Understanding Lists
	Ordered (Numbered) Lists
	Unordered (Bulleted) Lists
	Definition Lists
	Unknown
	Internet Explorer
	Mozilla
	Netscape
	Safari

	Nested Lists
	Summary

	Chapter 6: Images
	Image Formats for the Web
	Image compression
	Compression options
	GIF
	JPEG
	PNG

	Image color depth
	Enhancing downloading speed
	Image file sizes
	Number of images
	Reuse images
	Use frames
	Use text rather than images

	Creating Graphics
	Essential functions
	Free alternatives
	Progressive JPEGs and interlaced GIFs

	Inserting an Image
	Image Alignment
	Specifying Text to Display for
	Nongraphical Browsers
	Size and Scaling
	Image Borders
	Image Maps
	Specifying an image map
	Specifying clickable regions
	Specifying regions using anchor tags
	Specifying regions using area tags

	Putting it all together

	Animated Images
	Summary

	Chapter 7: Links
	What’s in a Link?
	Linking to a Web Page
	Absolute versus Relative Links
	Link Targets
	Link Titles
	Keyboard Shortcuts and Tab Order
	Keyboard shortcuts
	Tab order

	Creating an Anchor
	Choosing Link Colors
	Link Target Details
	The Link Tag
	Summary

	Chapter 8: Text
	Methods of Text Control
	The tag
	Emphasis and other text tags
	CSS text control

	Bold and Italic Text
	Monospace (Typewriter) Fonts
	Superscripts and Subscripts
	Abbreviations
	Marking Editorial Insertions and Deletions
	Grouping Inline Elements with
	the Tag
	Summary

	Chapter 9: Special Characters.
	Understanding Character Encodings
	Special Characters
	En and Em Spaces and Dashes
	Copyright and Trademark Symbols
	Currency Symbols
	“Real” Quotation Marks
	Arrows
	Accented Characters
	Greek and Mathematical Characters
	Other Useful Entities
	Summary

	Chapter 10: Tables
	Parts of an HTML Table
	Table Width and Alignment
	Cell Spacing and Padding
	Borders and Rules
	Table borders
	Table rules

	Rows
	Cells
	Table Captions
	Row Groupings—Header, Body, and Footer
	Background Colors
	Spanning Columns and Rows
	Grouping Columns
	Summary

	Chapter 11: Page Layout with Tables.
	Rudimentary Formatting with Tables

	Chapter 12: Frames
	Chapter 13: Forms
	Chapter 14: Multimedia
	Chapter 15: Scripts

	Part III: Controlling Presentation with CSS
	Chapter 16: Introducing Cascading Style Sheets.
	Chapter 17: Creating Style Rules
	Chapter 18: Fonts
	Chapter 19: Text Formatting
	Chapter 20: Padding, Margins, and Borders
	Chapter 21: Colors and Backgrounds
	Chapter 22: Tables
	Chapter 23: Element Positioning
	Chapter 24: Defining Pages for Printing

	Part IV: Advanced Web Authoring
	Chapter 25: JavaScript
	Chapter 26: Dynamic DHTML
	Chapter 27: Dynamic HTML with CSS
	Chapter 28: Introduction to Server-Side Scripting
	Chapter 29: Introduction to Database-Driven Web Publishing
	Chapter 30: Creating a Weblog
	Chapter 31: Introduction to XML.
	Chapter 32: XML Processing and Implementations

	Part V: Testing, Publishing, and Maintaining Your Site
	Chapter 33: Testing and Validating Your Documents
	Chapter 34: Web Development Software
	Chapter 35: Choosing a Service Provider.
	Chapter 36: Uploading Your Site with FTP.
	Chapter 37: Publicizing Your Site and Building Your Audience
	Chapter 38: Maintaining Your Site

	Part VI: Principles of Professional Web Design and Development
	Chapter 39: The Web Development Process.
	Chapter 40: Developing and Structuring Content.
	Chapter 41: Designing for Usability and Accessibility
	Chapter 42: Designing for an International Audience
	Chapter 43: Security
	Chapter 44: Privacy

	Part VII: Appendixes
	Appendix A: HTML 4.01 Elements
	Appendix B: CSS Properties
	Appendix C: Named Colors and the Web Palette
	Appendix D: Language and Country Codes Reference

	Index (linked)

