
www.GetPedia.com

http://www.getpedia.com/showarticles.php?cat=124

Beginning CSS: Cascading Style Sheets
for Web Design

Richard York

01_576429 ffirs.qxd 11/18/04 12:25 PM Page iii

Beginning CSS: Cascading Style Sheets
for Web Design

01_576429 ffirs.qxd 11/18/04 12:25 PM Page i

01_576429 ffirs.qxd 11/18/04 12:25 PM Page ii

Beginning CSS: Cascading Style Sheets
for Web Design

Richard York

01_576429 ffirs.qxd 11/18/04 12:25 PM Page iii

Beginning CSS: Cascading Style Sheets for Web Design
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-7642-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QZ/RS/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTIC-
ULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please
contact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data: 2004-024-101

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affil-
iates, in the United States and other countries, and may not be used without written permission. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

01_576429 ffirs.qxd 11/18/04 12:25 PM Page iv

www.wiley.com

About the Author
Richard York is a freelance web designer and a participant in the open source community. After attend-
ing website and graphic design courses at Indiana University-Purdue University, Indianapolis in
Indianapolis, Indiana, Richard continued a course of self-study which involved mastering design of web
sites using web technologies like CSS, XHTML, and PHP.

When not writing for Wrox or building a website, Richard works on open source webmail applications
written for PHP PEAR, an open source repository of PHP applications. Richard also enjoys writing
poetry, playing music, and painting. He maintains a website at www.smilingsouls.net that exhibits
his personal and professional interests.

01_576429 ffirs.qxd 11/18/04 12:25 PM Page v

01_576429 ffirs.qxd 11/18/04 12:25 PM Page vi

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editors
Tom Dinse
Brian Herrmann
Jodi Jensen

Production Editor
Angela Smith

Technical Editor
Wiley-Dreamtech India Pvt Ltd

Copy Editor
Mary Lagu

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists
Lisa England
Carrie Foster
Denny Hager
Joyce Haughey
Jennifer Heleine

Quality Control Technician
John Greenough
Joe Niesen

Media Development Specialist
Angela Denny

Proofreading and Indexing
TECHBOOKS Production Services

01_576429 ffirs.qxd 11/18/04 12:25 PM Page vii

01_576429 ffirs.qxd 11/18/04 12:25 PM Page viii

Contents

Acknowledgments xix

Introduction 1

Chapter 1: Introducing Cascading Style Sheets 9

Who Creates and Maintains CSS? 10
How the Internet Works 11
Abridged History of the Web 12
How CSS Came to Be 13
Advantages of Using CSS 14
Summary 14

Chapter 2: Document Standards 17

Choosing Which Markup Language to Use 17
How to Write Markup 18
Which Browser to Use 19

Microsoft Internet Explorer 20
Gecko: Mozilla, Mozilla Firefox, and Netscape 21
Opera 22
KHTML: Safari and Konqueror 22

Introduction to HTML 23
Single Tags and HTML Line Breaks 23
HTML Attributes 25

XML 28
XHTML 31

XHTML Is Case-Sensitive 31
All Attribute Values Must Be Enclosed in Quotes 31
No Attribute Minimization Allowed 32
All Elements Require Both an Opening and Closing Tag 32
Why XHTML Is the Future 33

The Document Type Declaration 36
DOCTYPE Sniffing 37
Common Document Type Declarations 40

HTML 4.01 Transitional 40
HTML 4.01 Frameset 40

02_576429 ftoc.qxd 11/18/04 12:27 PM Page ix

x

Contents

HTML 4.01 Strict 41
XHTML 1.0 Transitional 41
XHTML 1.0 Frameset 41
XHTML 1.0 Strict 41

Summary 42
Exercises 42

Chapter 3: The Basics of CSS Anatomy and Syntax 43

CSS Rules 43
Introducing Selectors 44
Grouping Selectors and Declarations 44

Including CSS in a Document 49
Including an Embedded Style Sheet 49
Linking to External Style Sheets 50
Importing Style Sheets 50

How to Structure an External CSS Document 51
Inline Styles 52

CSS Comments 54
Summary 54
Exercises 55

Chapter 4: Data Types, Keywords, Color, Length, and the URI 57

Keywords 57
Strings 59
Length and Measurement Options 63

Inconsistencies with Absolute Measurements 64
Metric Measurements 64
Typographical Measurements 65
Relative Length Measurements 65
Measurements Based on the Height of the Lowercase Letter x 67
Pixel Measurements 67
Percentage Measurements 68

Integers and Real Numbers 68
Colors 69

Color Keywords 70
RGB Colors 70
Hexadecimal Colors 71
Short Hexadecimal and Web-Safe Colors 72

The URI 73
Summary 74
Exercises 75

02_576429 ftoc.qxd 11/18/04 12:27 PM Page x

xi

Contents

Chapter 5: CSS Selectors 77

The Universal Selector 77
Contextual/Descendant Selectors 78
Direct Child Selectors 85
Direct Adjacent Sibling Combinator 89
Indirect Adjacent Sibling Combinators 92
Attribute Selectors 93

Selection Based on the Presence of an Attribute 93
Selection Based on the Value of an Attribute 94
Attribute Substring Selectors 95

Selection Based on Attribute Values That Begin with a String 95
Selection Based on Attribute Values That End with a String 95
Selection Based on Attribute Values That Contain a String 96

Class and ID Selectors 100
Summary 105
Exercises 106

Chapter 6: Pseudo-Element and Pseudo-Class Selectors 107

Pseudo-Elements 107
::first-letter and ::first-line 108
::selection 110
::before and ::after 111

Pseudo-Classes 113
Dynamic Pseudo-Classes 113

:link and :visited 113
:hover 114
:active 115
:focus 116

Structural Pseudo-Classes 120
:root 120
:first-child 121
:last-child 121
:empty 122

The Negation Pseudo-Class :not 126
The :target Pseudo-Class 128

Summary 132
Exercises 133

02_576429 ftoc.qxd 11/18/04 12:27 PM Page xi

xii

Contents

Chapter 7: Inheritance and the Cascade 135

Inheritance 135
The inherit Keyword 137

The Cascade 137
Calculating the Specificity of a Selector 139
!important Rules 155

Custom Style Sheets 156
Specifying a Custom Style Sheet Using MSIE 156
Specifying a Custom Style Sheet Using Mozilla 156

Customizing Mozilla Using CSS 158
Summary 161
Exercises 162

Chapter 8: Text Manipulation 163

The JT’s Website 164
Developing a Design Strategy 164
Creating the Directory Structure 165
Settling on a Table of Contents 167

The letter-spacing Property 175
The word-spacing Property 179
Indenting Paragraph Text Using text-indent 181
Aligning Text with the text-align Property 185

Justifying Text 186
The text-decoration Property 191
The text-transform Property 196
The white-space Property 199
A Look Ahead to CSS 3 200
Summary 201
Exercises 202

Chapter 9: Font Manipulation 203

Specifying Fonts with the font-family Property 203
Generic Font Families 206

The font-style Property 211
The font-variant Property 215
The font-weight Property 216

Relative Values 218

02_576429 ftoc.qxd 11/18/04 12:27 PM Page xii

xiii

Contents

The font-size Property 221
Absolute Font Sizes 222
Relative Font Sizes 223
Percentage Font Sizes 225

The font Shorthand Property 230
System Fonts 232

Summary 234
Exercises 235

Chapter 10: Liquid Design and the CSS Box Model 237

Laying the Foundation for Liquid Design 238
<table> versus <div> 239
Avoiding Tag Soup 241
Examining the Advantages of External Style Sheets 242

The media attribute and @media rule 242
The CSS Box Model 245

Borders 248
border-width 248
border-style 250
border-color 255
Border Shorthand Properties 256
border 259
CSS 3 Border Properties 260

Calculating Dimensions 268
width 269
height 270
Auto Values for width and height 272
Percentage Measurements 274
Minimum and Maximum Dimensions 277
The line-height property 282

Padding 288
Margins 290

Aligning Block-Level Elements with margin: auto 291
Overflowing Content 302

overflow: auto 302
overflow: scroll 304
overflow: hidden 305
overflow-x and overflow-y 305

Summary 306
Exercises 307

02_576429 ftoc.qxd 11/18/04 12:27 PM Page xiii

xiv

Contents

Chapter 11: CSS Buoyancy: Collapsing Margins,
Floating, and Vertical Alignment 309

Collapsing Margins 309
The float Property 313

Floating Box Model 315
Floating Inline Elements and the Inline Box Model 318
Applying Multiple Floats 322
Left and Right Floating 323

The clear Property 329
The vertical-align Property 334

Subscript and Superscript Text 334
The top, middle, and bottom Keywords 335
The text-top and text-bottom Keywords 338
Percentage and Length Value 338
Vertically Aligning the Contents of Table Cells 339

Summary 341
Exercise 342

Chapter 12: Styling Lists and the User Interface 343

The list-style-type Property 343
The list-style-image Property 348
The list-style-position Property 349
The list-style shorthand Property 350
The cursor Property 351
Summary 354
Exercises 354

Chapter 13: Backgrounds: Setting the Scene 357

The background-color Property 357
The background-image Property 362
The background-repeat Property 365
The background-position Property 369
The background-attachment Property 375
The background shorthand Property 377
Summary 379
Exercise 380

02_576429 ftoc.qxd 11/18/04 12:27 PM Page xiv

xv

Contents

Chapter 14: Positioning 383

The position Property 383
Static Positioning 384
Absolute Positioning 384

Offset Properties 387
Relative Positioning 393
Fixed Positioning 403

Controlling Layering with the z-index Property 405
Summary 411
Exercises 412

Chapter 15: Styling for Handheld Devices and Print 413

Styling Web Documents for Handheld Devices 413
Styling Web Documents for Print 421

Controlling page breaks 421
Summary 427
Exercises 427

Chapter 16: Styling Tables 429

Optional Table Elements 430
Table Captions 432

caption-side 432
Table Columns 433
Grouping Table Data 435
Other Table Styles 444

table-layout 444
border-collapse 451
border-spacing 453
empty-cells 455

Summary 459
Exercise 459

02_576429 ftoc.qxd 11/18/04 12:27 PM Page xv

xvi

Contents

Chapter 17: Styling XML 461

XML Documents 461
Creating an XML Schema 464

The XML Declaration 468
XML Declaration Attributes 469
The XML stylesheet Declaration 470

The display Property 471
Styling Inline Elements with display: inline 472
Styling Block Elements with display: block 473
Styling List Items with display: list-item 473

Generating Numbered Lists 474
Table Display Values 478

Applying display: table 479
Adding a Caption with display: table-caption 479
Applying display: table-column-group and display: table-column 480
Styling Groupings, Table Rows, and Table Cells 480

Other Display Values 488
Summary 489
Exercise 489

Chapter 18: Cross-Browser Compatibility 491

Bugs in Microsoft Internet Explorer 491
IE7 492

What IE7 Is 492
Getting the IE7 Source Code 492
CSS Features Provided by IE7 492
How IE7 Works 493
Installing an HTTP Server 493

Specific IE CSS Rendering Bugs and Work-Arounds 502
The Peek-A-Boo Bug 502
The Guillotine Bug 504
The Three-Pixel Jog 507
The Double-Margin Bug 508
Floating Elements and Percentage Widths 510

Installing Multiple Versions of Internet Explorer 512
The Caveats 512

Additional CSS Resources 517
Summary 518
Exercises 518

02_576429 ftoc.qxd 11/18/04 12:27 PM Page xvi

xvii

Contents

Appendix A: Exercise Answers 521

Appendix B: CSS Reference 565

Appendix C: CSS Colors 591

Appendix D: Browser Rendering Modes 603

Index 607

02_576429 ftoc.qxd 11/18/04 12:27 PM Page xvii

Acknowledgments

I would like to thank my very good friends Norman Trabulsy and Avery Sumner for allowing me to use
their business—JT’s Island Grill and Gallery—for the examples in this book. The food at JT’s is unique,
refreshing, and delicious. If you’re ever in Chokoloskee, Florida (a tiny island in the heart of the Ten
Thousand Islands on the western coast of Florida), I recommend that you stop in.

I’d like to thank the editors at Wiley: Jim Minatel, specifically, for giving me a break when no one else
would, and my Development Editor, Jodi Jensen, who put up with my erratic submission schedule and
has been immensely helpful to me. I’d also like to thank the rest of the staff at Wiley for their support,
ideas, and encouragement throughout the writing process.

I’d like to thank Imar Spaanjaars for his suggestions and participation in the book, especially for being
so vigilant in helping me to see content through the eyes of a beginner.

I would also like to thank my parents (Tammy and John) for their support.

Finally I’d like to thank my friends for their help and support: Keith, Mollie, Lisa, Richelle, etc.—thanks
for being there! Especially, Eleanor, who’s been my best friend through everything.

03_576429 flast.qxd 11/18/04 12:27 PM Page xviii

Introduction

Cascading Style Sheets (CSS) are the modern standard for website presentation. When combined
with a structural markup language like HTML, XHTML, or XML (though not limited to these),
Cascading Style Sheets provide Internet browsers with the information that enables them to pre-
sent all the visual aspects of a web document. Cascading Style Sheets apply things like borders,
spacing between paragraphs, headings or images, control of font faces or font colors, background
colors and images, textual effects like underlined or strike-through text, layering, positioning, and
a number of other presentational effects. CSS controls the presentational aspects of a web page’s
design, whereas HTML, XHTML, or XML control the structure of a web page, which means little
more than determining that certain text is a heading, other text is a paragraph, still other text is a
list of hyperlinks, and so on.

Beginning CSS: Cascading Style Sheets for Web Design covers all the details required to combine CSS
with HTML, XHTML, or XML to create rich, aesthetically powerful designs. Throughout the book,
I focus on combining CSS with XHTML specifically because XHTML is the standard hailed by
Internet standards bodies as the successor to HTML and the present and future of website design.
CSS and XHTML allow a web document to be presented with less code, resulting in a significantly
smaller file size and greatly increased maintainability. CSS also enables the presentation of a web
document to be centralized, which allows for the look and feel of an entire website to be written
and centralized in one or a few simple documents, which makes updating a website a breeze. With
only a few simple edits, the look and feel of an entire website can be completely changed.

By using modern standards like CSS and XHTML, you can drastically reduce the cost of building
and maintaining a website when compared to legacy HTML-only pages. You can also greatly
reduce the amount of physical bandwidth and hard disk space required, resulting in immediate
long-term benefits for any website.

In this book, I also discuss how to style XML documents with CSS — XML being a more advanced
markup language with multipurpose applications. XML will play an increasingly larger role in the
production of XHTML documents in the future. The following sections tell you what Beginning
CSS: Cascading Style Sheets for Web Design covers, who this book is intended for, how it is struc-
tured, what equipment you need to use it, where you can go if you have a problem or question,
and the conventions used in writing it.

04_576429 intro.qxd 11/18/04 12:27 PM Page 1

Who Is This Book For?
This book’s primary audience is anyone seeking to learn how to use Cascading Style Sheets to present
web documents. Because Cascading Style Sheets are used to control the presentational layout of a web
document, people from backgrounds in art, graphic design, or those who prepare print layouts for pub-
lishing will feel at home using CSS. Regardless of your background, CSS is a simple and powerful lan-
guage designed so that anyone can understand and use it.

To get the most out of this book, basic familiarity with HTML is helpful but not required. You need no
prior experience creating web pages to use this book or work through the examples; all the necessary
tools and steps to create a complete web document are provided.

What Does This Book Cover?
This book covers portions of the CSS level 1, 2, 2.1, and 3 specifications. These specifications are created
by an independent, not-for-profit Internet standards organization called the World Wide Web
Consortium (W3C) that plans and defines how Internet documents work. I show you which W3C stan-
dards have been implemented so far and which are available today in the most popular browsers. The
most popular browsers include Microsoft Internet Explorer for Windows, Mozilla, Firefox, Netscape,
Opera, and Safari. The major part of the book is written using what is defined in the CSS level 2.1 speci-
fication.

For your convenience, this book also includes an integrated CSS feature reference throughout the book,
as well as notes on browser compatibility. A CSS reference is also included in Appendix B.

How This Book Is Structured
The first half of the book is focused on the background of CSS, the tools required to create and test web
pages, the basic syntax used in CSS, and how CSS comes together with markup to create a web page.
Beginning in Chapter 8, the focus shifts toward the properties CSS provides to control the different
aspects of the presentation of markup in a web document. The following is a summary of the topics cov-
ered in each chapter:

❑ Chapter 1, “Introducing Cascading Style Sheets”: In this first chapter, I talk about what CSS is,
why it exists, who created it, where it is maintained, and how it has evolved. I also discuss some
of the basic differences between the various CSS specifications — CSS Level 1, CSS Level 2, CSS
Level 2.1, and CSS Level 3 — and how these specifications define what CSS is.

❑ Chapter 2, “Document Standards”: I present an overview of the major web browsers. I also
explore the various flavors of documents in which CSS is most commonly used in terms of day-
to-day web design. I present examples of an HTML, XHTML, and XML document, as well as
something called the Document Type Declaration (DTD), what it is, and why it’s important to
the CSS designer.

❑ Chapter 3, “The Basics of CSS Anatomy and Syntax”: This chapter introduces the basics of
CSS. Now that you have some knowledge of what types of documents use CSS, this chapter

2

Introduction

04_576429 intro.qxd 11/18/04 12:27 PM Page 2

introduces CSS rules and how selectors and declarations are combined to create rules. I also
demonstrate the various methods used to include CSS in a document.

❑ Chapter 4, “Data Types, Keywords, Color, Length, and the URI”: Continuing the discussion on
CSS basics, this chapter elaborates on some of the various widgets that can be included in CSS
for property values. I discuss CSS keywords, length units, strings, integers, the URI, and the
various mechanisms that CSS supports for referencing color.

❑ Chapter 5, “CSS Selectors”: Building on the concept of the selector presented in Chapter 3,
Chapter 5 discusses a multitude of selectors supported by the CSS Level 1, 2, and 3 specifica-
tions, which browsers support which selectors, and the usefulness of each selector in real-world
context. This chapter utilizes an example for building a user feedback form throughout the
chapter to demonstrate how you might apply selectors in a real project.

❑ Chapter 6, “Pseudo-Element and Pseudo-Class Selectors”: Furthering the concept of the selec-
tor from Chapters 3 and 5, this chapter introduces some special selectors that apply only when
certain events or conditions are present. For example, you can use pseudo-element and pseudo-
class selectors to give the first letter of a paragraph a larger font than the rest of the paragraph,
or allow a document to be styled based on whether the user is clicking something or where the
mouse pointer is positioned.

❑ Chapter 7, “Inheritance and the Cascade”: Inheritance plays a huge role in CSS. For instance,
inheritance allows a style such as a font, font size, or font color to be set once for the body of a
document and propagated throughout all the text in the body no matter where that text is posi-
tioned. Cascading allows more than one style sheet to be applied to a document gracefully; the
cascade provides an organized way of dealing with the repetition of styles by giving styles
precedence. In this chapter, I show you how to create your own custom style sheets for any
website using features available in modern browsers. This chapter also provides demonstrations
for how to invoke, override, and take advantage of inheritance in CSS. I present a preview of a
real-world website and how the cascade is used in that website.

❑ Chapter 8, “Text Manipulation”: Chapter 8 begins with a look at some of the strategies used in
planning the production of a real-world website. In Chapter 7, you see the finished product of
the JT’s Island Grill and Gallery website, and you explore how inheritance and the cascade play
a role in that design. In Chapter 8, you begin building that page from the ground up, and this
project is revisted through most of the subsequent chapters. You learn what techniques and
planning a professional website designer uses when beginning a project. Then throughout the
rest of Chapter 8, I present the various properties that CSS provides for text manipulation. These
properties provide effects such as controlling the amount of space between the letters of words,
controlling the amount of space between the words of a paragraph, controlling text alignment,
underlining, overlining, or strike-through text. I also show how to control the case of text by
making text all lowercase, uppercase, or capitalized.

❑ Chapter 9, “Font Manipulation”: After you have seen the properties that CSS provides for text
manipulation in Chapter 8, Chapter 9 presents the CSS properties you can use to manipulate the
presentation of fonts. These effects include applying bold text, setting a font face, setting the
font size, setting an italic font, as well as learning to use a property that enables you to specify
all CSS’s font effects in one single property.

❑ Chapter 10, “Liquid Design and the CSS Box Model”: Chapter 10 builds on the discussion of
design techniques presented in Chapter 8 and elaborates on a design technique fundamental to
CSS-based designs: liquid design. In this chapter, I discuss what rules to follow to create a

3

Introduction

04_576429 intro.qxd 11/18/04 12:27 PM Page 3

lightweight design that is accessible on a variety of platforms and media, including presentation
that adapts to multiple screen sizes and resolutions. I also cover the ideal markup to use for
making a website accessibile to visually impaired users. Finally, I lay the foundation for adapt-
ing the website for display on a printed medium or handheld device. Building on the concept of
liquid design, this chapter discusses a set of rules at the heart of CSS called the CSS box model. I
tie these concepts together in a gardening website example utilized throughout the chapter.

❑ Chapter 11, “CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment”: In
Chapter 11, I discuss a unique CSS phenomenon known as margin collapsing, which is what
happens when top or bottom margins come into direct contact with other top or bottom mar-
gins in a web document. I also discuss the float and clear properties, two properties used to
control the flow of layout in a web document and often used to create multicolumn layouts or
flow text beside images. I also discuss the vertical-alignment property, which is used to cre-
ate effects like subscript or superscript text, as well as to control vertical alignment in table cells.

❑ Chapter 12, “Styling Lists and the User Interface”: In this chapter, I look at the properties CSS
provides to control presentation of ordered and unordered lists. This discussion includes the
options CSS provides for predefined list markers, custom list markers, and the position of list
markers. I also discuss the cursor property and how you can use this property to control the
style of the mouse cursor.

❑ Chapter 13, “Backgrounds: Setting the Scene”: In Chapter 13, I present the properties CSS pro-
vides to control backgrounds in a web page. This includes properties that set a background
color or background image, as well as those that control the position of a background, the tiling
of a background, and whether a background remains fixed in place as a web page is scrolled or
remains static. Finally, the chapter shows you how to use a property that combines all these
individual effects into a single property.

❑ Chapter 14, “Positioning”: I discuss four different types of positioning: static, relative, absolute,
and fixed. You use positioning primarily to layer portions of a document, and in Chapter 14 I
provide examples of how positioning works and how it can be applied to a real-world project.

❑ Chapter 15, “Styling for Handheld Devices and Print”: In this chapter, I discuss what steps to
take to use CSS to provide alternative style sheets for devices like cell phones, PDAs, and a
printer-friendly version of a web document.

❑ Chapter 16, “Styling Tables”: I present the different properties that CSS provides for styling
HTML/XHTML tables. The properties presented in this chapter let you control the spacing
between the cells of a table, the placement of the table caption, and whether empty cells are ren-
dered. Additionally, I show you a property that provides a “stricter” mode for measurement of
width in tables. I also look in detail at the available tags and options that HTML/XHTML pro-
vides for structuring tabular data.

❑ Chapter 17, “Styling XML”: In this chapter, I show how you can use CSS to style XML content.
This chapter focuses specifically on the CSS display property and how you use this property to
change the behavior of tags in an XML or HTML/XHTML document.

❑ Chapter 18, “Cross-Browser Compatibility”: In this final chapter of the book, I present the most
common techniques used to make a CSS design compatible with Microsoft Internet Explorer for
Windows. I also look at specific anomalies and bugs and present solutions for correcting these
bugs in the Internet Explorer for Windows browser.

4

Introduction

04_576429 intro.qxd 11/18/04 12:27 PM Page 4

❑ Appendixes: Appendix A contains the answers to chapter exercises. Appendix B, “CSS
Reference,” provides a place for you to look up CSS features and browser compatibility on the
fly. Appendix C, “CSS Colors,” provides a reference of CSS named colors. Appendix D,
“Browser Rendering Modes,” provides a reference for the browser rendering modes invoked by
the presence or absence of a Document Type Declaration (discussed in Chapter 2).

What Do You Need to Use This Book?
To make use of the examples in this book, you need the following.

❑ Several Internet browsers to test your web pages

❑ Text-editing software

Designing content for websites requires being able to reach more than one type of audience. Some of
your audience may be using different operating systems or different browsers other than those you have
installed on your computer. This book focuses on browsers available for the Windows operating system,
although you can also apply CSS to browsers for Macintosh or Linux operating systems. In Chapter 2, I
provide an overview of the most popular browsers for Windows, Macintosh, and Linux and where to go
on the Internet to obtain the required software. The browsers used in the examples of this book are
Microsoft Internet Explorer 6, Mozilla 1.7, and Opera 7.5.

The examples in this book also require that web page source code be composed using text-editing soft-
ware. Chapter 2 discusses a few different options for the text-editing software available on Windows or
Macintosh operating systems.

Conventions
To help you get the most from the text and keep track of what’s happening, I’ve used a number of con-
ventions throughout the book:

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ I highlight important words when I introduce them.

❑ I show keyboard strokes like this: Ctrl+A.

❑ I show URLs and code within the text in a special monofont typeface, like this:
persistence.properties.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

5

Introduction

04_576429 intro.qxd 11/18/04 12:27 PM Page 5

❑ I present code in the following two ways:

In code examples I highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type all the code manually or
use the source code files that accompany the book. All the source code used in this book is available for
download at www.wrox.com. When you arrive at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7642-9.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration; at the same time, you will be helping us provide even higher quality infor-
mation.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

6

Introduction

04_576429 intro.qxd 11/18/04 12:27 PM Page 6

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At p2p.wrox.com you will find a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P; but, in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works, as well as answers to many common questions specific to
P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

7

Introduction

04_576429 intro.qxd 11/18/04 12:27 PM Page 7

04_576429 intro.qxd 11/18/04 12:27 PM Page 8

1
Introducing Cascading

Style Sheets

Cascading Style Sheets, fondly referred to as CSS, is a simple design language intended to simplify
the process of making web pages presentable. Put simply, CSS handles the look and feel part of a
web page. With CSS, you can control the color of the text, the style of fonts, the spacing between
paragraphs, how columns are sized and laid out, what background images or colors are used, as
well as a variety of other effects.

CSS was created in language that is easy to learn and understand, but it provides powerful control
over the presentation of a document. Most commonly, CSS is combined with the markup languages
HTML or XHTML. These markup languages contain the actual text you see in a web page — the
paragraphs, headings, lists, and tables — and are the glue of a web document. They contain the
web page’s data, as well as the CSS document that contains information about what the web page
should look like.

HTML and XHTML are very similar languages. In fact, for the majority of documents today, they
are pretty much identical, although XHTML has some stricter requirements about the type of syn-
tax used. I discuss the differences between these two languages in detail in Chapter 2, and I also
provide a few simple examples of what each language looks like and how CSS comes together
with the language to create a web page. In this chapter, however, I discuss the following:

❑ The W3C, an organization that plans and makes recommendations for how the web
should function and evolve

❑ How Internet documents work, where they come from, and how the browser displays
them

❑ An abridged history of the Internet

❑ Why CSS was a desperately needed solution

❑ The advantages of using CSS

The next section takes a look at the independent organization that makes recommendations about
how CSS, as well as a variety of other web-specific languages, should be used and implemented.

05_576429 ch01.qxd 11/18/04 12:27 PM Page 9

Who Creates and Maintains CSS?
Creating the underlying theory and planning how Cascading Style Sheets should function and work in a
browser are tasks of an independent organization called the World Wide Web Consortium, or W3C. The
W3C is a group that makes recommendations about how the Internet works and how it should evolve.
The W3C is comprised of member companies and organizations that come together to create agreed-
upon standards for how the web should function. Many prominent companies and organizations are
W3C members, including Microsoft, Adobe, The Mozilla Foundation, Apple, and IBM. The W3C over-
sees the planning of several web languages, including CSS, HTML, XHTML, and XML, all of which are
mentioned in this book.

CSS is maintained through a group of people within the W3C called the CSS Working Group. The CSS
Working Group creates documents called specifications. When a specification has been discussed and offi-
cially ratified by W3C members, it becomes a recommendation. These ratified specifications are called
recommendations because the W3C has no control over the actual implementation of the language.
Independent companies and organizations create that software.

The specifications created by the W3C are not limited only to web browsers; in fact, the specifications
can be used in a myriad of software types, including word processor and spreadsheet applications, as
well as by different types of devices, such as PDAs and cell phones. For that reason, the software imple-
menting a specification is referred to by the W3C as the user agent, which is a generic term that encom-
passes all the different types of software that implement W3C specifications.

The W3C merely recommends that a language be implemented in a certain way to ensure that the lan-
guage does what is intended no matter which operating system, browser, or other type of software is
being used. The goal of this standardization is to enable someone using the Netscape browser, for exam-
ple, to have the same Internet experience as someone using Internet Explorer. Common community stan-
dards provide web site developers with the tools they need to reach an audience, regardless of the
platform the audience is using.

As I write this, CSS comes in four different versions, each newer version building on the work of the last.
The first version is called CSS level 1 and became a W3C recommendation in 1996. The second version,
CSS level 2, became a W3C recommendation in 1998. The third version, CSS level 2.1, is currently a can-
didate recommendation. A candidate recommendation is the status the W3C applies to a specification when
it feels the specification is complete and ready to be implemented and tested. After the specification has
been implemented and tested by at least a few of the member companies, the candidate recommenda-
tion can become a full recommendation. The fourth version is called CSS level 3 and portions of it are
still in development.

This book discusses the portions of CSS available in browsers at the time of this writing — that includes
most of CSS 2 and CSS 2.1, and a little of CSS 3. Some portions of CSS 2.1 contradict CSS 2 and are not
yet implemented in any browser. Where appropriate throughout the book and before introducing a new
CSS feature, I reference the W3C specification in which that CSS feature is documented by including the
phrase Documented in CSS followed by the number. In Chapter 2, I discuss the browsers that you need to
test and build CSS-enabled web documents.

You can find the W3C website at www.w3.org. Go there to find documents that browser makers refer to
when they are looking to implement languages such as CSS into a browser or program. Be advised,

10

Chapter 1

05_576429 ch01.qxd 11/18/04 12:27 PM Page 10

these specifications lean heavily toward the technical side. They aren’t intended as documentation for
people who use CSS; rather, they are aimed at those who write programs that interpret CSS.

Now that you know a little about who is responsible for planning and outlining the development of CSS,
the next section describes how a web document makes its way into your browser.

How the Internet Works
As you probably already know, the Internet is a complex network of computers. Most of what goes on
behind the scenes is of little interest to the person developing content for a website, but it is important to
understand some of the fundamentals of what happens when you type an Internet address into your
browser. Figure 1-1 shows a simple diagram of this process.

Figure 1-1

5. HTTP server sends the web document.

Server-side

Client-side

6. Your browser receives the document.

7. Your browser processes the source code.

8. The browser displays the web page.

4. HTTP server looks up the web document.

3. HTTP server receives the request from the browser.

2. Browser contacts the HTTP server at that address.

1. You type a www address into the browser.

11

Introducing Cascading Style Sheets

05_576429 ch01.qxd 11/18/04 12:27 PM Page 11

At the top of the diagram in Figure 1-1, you see a computer labeled server-side and a computer labeled
client-side. The server-side computer houses the documents and data of the website and is generally
always running so that the website’s visitors can access the website at any time of day. The client-side
computer is, of course, your own computer.

The server-side computer contains HTTP server software that handles all the incoming requests for web
pages. When you type an Internet address into a browser, the browser sends out a request that travels
through a long network of computers that act as relays for that request until the address of the remote
(server-side) computer is found. After the request reaches the HTTP server, the HTTP server sees what it
is you are trying to find, searches for the page on the server’s hard drive, and responds to the request
you’ve made, sending the web page that you expect. That response travels back through another long
chain of computers until your computer is found. Your browser then opens the response and reads what
the HTTP server has sent back to it. If that server has sent an HTML document or another type of docu-
ment that your browser can interpret, it reads the source code of that document and processes it into a
displayable web page.

This is where CSS enters the picture. If CSS is present in the document, the CSS describes what the
HTML page should look like to the browser. If the browser understands the CSS, it processes the web
page into something you can see and interact with. If the browser only understands some of the CSS, it
generally ignores what it doesn’t understand. If the browser doesn’t understand CSS at all, it usually
displays a plain-looking version of the HTML document. I show you a few examples of this in some of
the coming chapters, namely Chapters 5, 6, and 8.

Abridged History of the Web
Tim Berners-Lee (currently the director of the W3C) is credited with the invention of the modern Internet.
That is the Internet as we know it and use it today to hop from one page to another by clicking colored
hyperlinks. When Tim Berners-Lee came along with his invention, the Internet had already existed for
several years in a different form. The earlier Internet was the result of the work and research of Vinton
Cerf and Robert Kahn who devised a way for information to be transmitted over a network of comput-
ers. In a 1974 publication of a paper titled A Protocol for Packet Network Intercommunication, they outlined
a protocol called Internet Protocol or IP. The IP is the underlying technology behind how information is
accessed and transferred over the Internet today.

In 1989, Tim Berners-Lee came along with a proposal about how research could be shared more easily
between physicists over the Internet. At the time, information sharing was difficult because there were
so many different methods of doing it. He put together pieces of technology already used on the Internet
for functions such as e-mail and named his invention the World Wide Web (WWW).

In the early 1990s, Berners-Lee created a standardized protocol by which computers in different places
and running different software could communicate with one another. By typing in a simple address, any
network-accessible documents could be accessed by any computer on the network that was capable of
understanding this protocol. He called this protocol HyperText Transfer Protocol, or HTTP. This protocol
would serve as the common ground where HyperText Markup Language (HTML) documents could be
transmitted in a universally applicable way. You saw the details of what the HTTP protocol does in the
diagram in Figure 1-1. Put simply, HTTP allows different computers, and even different devices, to com-
municate using a common language, giving us the World Wide Web of today.

12

Chapter 1

05_576429 ch01.qxd 11/18/04 12:27 PM Page 12

How CSS Came to Be
During the mid-1990s, use of the Internet exploded. At that time, HTML was the only option for present-
ing a web page. As the Internet began to be used by more regular folks (as opposed to government, edu-
cational institutions, and researchers, as in the early days), users began demanding more control over
the presentation of HTML documents. A great quandary arose; clearly HTML alone was not good
enough to make a document presentable. In fact, not only was it not good enough, HTML alone simply
wasn’t suited for the job. HTML did not have the functionality that professional publishing required and
had no way of making magazine- or newspaper-like presentations of an electronic document.

At the time, style sheets were not a new invention. In fact, style sheets were part of the plan from the
beginning of HTML in 1990. Unfortunately, however, no standardized method of implementing style
sheets was ever outlined, leaving this function up to the various browsers. In 1994, Tim Berners-Lee
founded the World Wide Web Consortium, and a few days later, Håkon Wium Lie published his first
draft of Cascading HTML Style Sheets. This draft was a proposal for how HTML documents could be
styled using simple declarations.

Of those that responded to Håkon’s draft of Cascading HTML Style Sheets was Bert Bos, who was work-
ing on a style sheet proposal of his own. The two joined forces and came up with Cascading Style Sheets.
They dropped HTML from the title, realizing that CSS would be better as a general style sheet language,
applicable to more than one type of document. CSS caused some controversy at its inception because part
of the underlying fundamentals of the new style sheet language was that it created a balance between
the browser’s style sheet, the user’s style sheet, and the author’s style sheet. Some simply didn’t like the
idea that the user could have control over the presentation of a web document. Ultimately, however; the
Internet community accepted CSS.

Among CSS supporters was Microsoft, who pledged support for the new style sheet language in its
Internet Explorer web browser. Netscape, on the other hand, another popular web browser at the time,
remained skeptical about CSS and went forward with a style sheet language of its own called JavaScript
Style Sheets, or JSSS. Ultimately, Netscape’s style sheets were not successful, and Microsoft’s Internet
Explorer browser grew more and more popular. At the time of this writing, IE is the dominant browser.

During the time that CSS was being planned, browsers began allowing HTML features that control pre-
sentation of a document into the browser. This change is the primary reason for much of the bloated and
chaotic source code in the majority of websites operating today on the Internet. Even though HTML was
never supposed to be a presentational language, it grew to become one. Unfortunately, by the time CSS
level 1 was made a full W3C recommendation in 1996, the seed had already been planted. Presentational
HTML had already taken root in mainstream website design and continues today.

However, all is not lost. Today, the most popular browsers have fantastic support for Cascading Style
Sheets. Ironically, the browser exhibiting the least support is Microsoft’s Internet Explorer for Windows,
which still has enough CSS support to do away with most presentational HTML design. Among the
browsers with the best CSS support is Netscape’s browser (more on this in Chapter 2). This may beg the
question: If Microsoft was such an avid supporter of Cascading Style Sheets in the beginning, why is
Microsoft’s browser the least standards-compliant today? The answer is that Microsoft did indeed fol-
low through with its promise for CSS support, and it was the most comprehensive and impressive
implementation of CSS even up to the release of Internet Explorer 6 in 2001. Even so, CSS implementa-
tion in Internet Explorer has been declining since the release of Internet Explorer 5. We can only specu-
late as to why Microsoft’s browser no longer offers the best CSS support.

13

Introducing Cascading Style Sheets

05_576429 ch01.qxd 11/18/04 12:27 PM Page 13

In Chapter 2, I discuss each of the browsers in use today. The next section presents some of the advan-
tages of using CSS in a web document.

Advantages of Using CSS
By using Cascading Style Sheets for the presentation of a web document, you can substantially reduce
the amount of time and work spent on composing not only a single document, but an entire website.
Because more can be done with less, Cascading Style Sheets can reduce the amount of hard disk space
that a website occupies, as well as the amount of bandwidth required to transmit that website from the
server to the browser. Cascading Style Sheets have the following advantages:

❑ The presentation of an entire website can be centralized to one or a handful of documents,
enabling the look and feel of a website to be updated at a moment’s notice. In legacy HTML
documents, the presentation was limited only to the document. CSS brings a much needed fea-
ture to HTML: the separation of a document’s structure from its presentation.

❑ Users of a website can compose style sheets of their own, a feature which makes websites more
accessible. For example, a user can compose a high-contrast style sheet that makes content eas-
ier to read.

❑ Browsers are beginning to support multiple style sheets, a feature which allows more than one
design of a website to be presented at the same time. The user can simply select the look and
feel that he or she likes most.

❑ Style sheets allow content to be optimized for more than one type of device. By using the same
HTML document, different versions of a website can be presented for handheld devices such as
PDAs and cell phones or for printing.

❑ Style sheets download much more quickly because web documents using CSS take up less hard
disk space and consume less bandwidth.

Cascading Style Sheets allow the planning, production, and maintenance of a website to be incredibly
simpler than HTML alone ever could be. By using CSS to present your web documents, you curtail liter-
ally days of development time and planning.

Summary
Cascading Style Sheets are the very necessary solution to a cry for more control over the presentation of
a document. In this chapter, you learned that

❑ The World Wide Web Consortium plans and discusses how the Internet should work and
evolve. CSS is managed by a group of people within the W3C called the CSS Working Group.
This group of people makes recommendations about how browsers should implement CSS
itself.

❑ The Internet is a complex network of computers all linked together. When you request a web
document, that request travels through that network to a computer called an HTTP server that
runs software. It sends a response containing the page you requested back through the network.
Your browser receives the response and turns it into something you can see and interact with.

14

Chapter 1

05_576429 ch01.qxd 11/18/04 12:27 PM Page 14

❑ Tim Berners-Lee invented the World Wide Web by creating the HyperText Transfer Protocol and
the HyperText Markup Language.

❑ Vinton Cerf and Robert Kahn are credited with the invention of the Internet itself.

❑ CSS answers a need for a style sheet language capable of controlling the presentation of not only
HTML documents, but several types of documents.

❑ CSS has many advantages. These include being accessible, applicable to more than one lan-
guage; applicable to more than one type of device, and allowing a website to be planned, pro-
duced, and maintained in much less time. CSS also enables a website to take up significantly
less hard disk space and bandwidth than formerly possible.

In Chapter 2, I describe the most popular browsers and the languages that support CSS in much more
detail.

15

Introducing Cascading Style Sheets

05_576429 ch01.qxd 11/18/04 12:27 PM Page 15

05_576429 ch01.qxd 11/18/04 12:27 PM Page 16

2
Document Standards

This chapter explores the various options for a document foundation. CSS is a dynamic tool, in
that you can use it in more than one type of document, including HTML, XHTML, and XML docu-
ments. Each type of document may have several variations, flavors, or degrees of strictness. This
chapter describes what’s involved in creating each type.

Document standards are something very important to the aspiring CSS web designer. Inclusion of
a Document Type Declaration (explained in a moment) and a well-formed document may mean
the difference between a splitting, grueling headache and a mark-up document including CSS that
works as expected in all the major browsers. Chapter 1 discussed the W3C body, the group assem-
bled to decide on web standards. This chapter examines the various documents into which you
can incorporate CSS, describing what each document looks like and giving you a few very basic
examples of each document in action.

The explanation of each topic in the following list is quite lengthy and can easily fill an entire
book. This chapter covers only the basics, including

❑ Writing mark-up

❑ Obtaining the required web browsers

❑ Introduction to HTML, XML, and XHTML

❑ Introduction to the Document Type Declaration

❑ DOCTYPE sniffing and how to invoke standards mode

❑ Creating web documents that survive and perpetuate into the foreseeable future

Choosing Which Markup Language to Use
HTML, XHTML, and XML are all based on SGML, which stands for Standard Generalized Markup
Language. SGML is the parent of tag-based languages like HTML, XHTML, and XML, although it
is not limited to these three examples. SGML defines what it means to be a tag-based language.
Like SGML, HTML, XHTML, and XML are acronyms for more complex names:

06_576429 ch02.qxd 11/18/04 12:28 PM Page 17

❑ HTML: HyperText Markup Language

❑ XHTML: eXtensible HyperText Markup Language

❑ XML: eXtensible Markup Language

Some debate exists about which markup language is best and why. Most HTML coders don’t bother to
follow the W3C standards, which (you may recall from Chapter 1) provide a way to create web docu-
ments that behave predictably from browser to browser and from platform to platform. Standards pro-
vide a level-playing field for development. They allow the document to be designed in such a way that it
can reach the largest audience with the least amount of effort. The tag, for example, a simple
HTML tag that can set a font face, size, and color, has been deprecated (a programming term meaning out-
dated, obsolete, or slated for deletion) since 1996 (the same year as the inception of CSS level 1). Yet the
 tag has lingered, bloating documents, despite the fact that CSS font controls have existed for a
good many years now and are well supported by today’s browsers.

Any professional website designer would tell you to prepare your documents for the future while main-
taining backward-compatibility. However, that’s easier said than done unless you have years of website
designing experience under your belt. This book takes the middle road by using XHTML, which is, gen-
erally speaking, backward-compatible, and is also (from the standpoint of the W3C) HTML’s successor
and the future of HTML.

The following sections examine one example of each of these markup languages.

How to Write Markup
HTML, XHTML, and XML are best written using a plain text editor. WYSIWYG (What You See Is What
You Get) editors such as Microsoft Word aren’t ideally suited for mark-up because the environment is
not ideal for the composition of source code. WYSIWYG programs often have features like
AutoCorrection and line wrapping; a plain text editor is more appealing precisely because it does not
have these automatic features. Furthermore, the more automated WYSIWYG editors are designed to
write the source code for you behind the scenes, so you don’t have complete control over the structure
and formatting of the source code. In contrast, a plain text editor doesn’t insert anything into the source
code beyond what you type into the text editor.

The Windows Notepad program is one example of a text editor that is ideal for composing source code.
To launch Notepad, choose Start ➪ Run and then type Notepad in the Open text box. You can also use
Microsoft FrontPage, but FrontPage is best used in view source mode where you can edit the source code
directly instead of via the WYSIWYG interface. The same holds true for Macromedia Dreamweaver MX.

If Notepad is just too basic for your tastes, a text editor that highlights markup and CSS syntax might
suit your needs better. The following are full-featured alternative text editors for Windows:

❑ Crimson Editor: www.crimsoneditor.com (free)

❑ HTML-kit: www.chami.com/html-kit (free)

18

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 18

Here are some alternative text editors that work with Mac OS X:

❑ CreaText: http://creatext.sourceforge.net (free)

❑ BBEdit: www.barebones.com (shareware)

Using Windows, you must create HTML files with the .html extension. If you use Notepad, beware of
Windows saving your files with a .txt extension, which does not display files properly in a browser. To
ensure that your files are saved properly, choose Start➪Run and type Explorer (or right-click Start and
choose Explore from the pop-up window) to open Windows Explorer. After Windows Explorer is open,
choose Tools➪Folder Options to open the Folder Options window; click the View tab, and uncheck the
Hide Extensions for Known File Types box (see Figure 2-1). Then click OK.

HTML files are not the only file type in which the document extension is important; other file types
require specific extensions as well. Those file types are covered later in this chapter.

Figure 2-1

Now that you’re armed with a text editor to compose your source code, the next section discusses the
various browsers in use today.

Which Browser to Use
Throughout the course of the book, I jump between Mozilla 1.7, Microsoft Internet Explorer 6, and
Opera 7.54. To help you fully understand each example, I recommend that you have access to all three

19

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 19

browsers. Some examples work on one or two of these browsers, but not all three. I use Mozilla most fre-
quently for this book’s examples because it exhibits the most complete support for CSS specifications.

The following sections outline each of these browsers and what role they play in web development.

Microsoft Internet Explorer
Internet Explorer is Microsoft’s browser that comes preloaded with the Windows operating system. The
current version, as of this writing, is version 6.

Microsoft discontinued development of the Internet Explorer browser as a standalone application for
Windows and announced that Internet Explorer will no longer be developed for other operating sys-
tems. That translates into no more Internet Explorer for the Macintosh. Instead, Microsoft plans for
Internet Explorer to be completely integrated with its next operating system, codenamed Longhorn.
Internet Explorer will no longer be its own application but a smaller part of the larger operating system.
Consequently, updates to Internet Explorer will only be available with operating system updates and
upgrades. In the meantime, updates to the current Internet Explorer 6 browser will come in the form of
service packs and updates to the Windows XP and Windows 2000 operating systems via the Windows
Update mechanism provided with Windows. According to Microsoft, this will not include updates to
Internet Explorer’s CSS capabilities or increased support for other web standards.

What does this mean for users and developers? Internet Explorer 6, released in 2001, is the last version of
Internet Explorer until the release of the next Windows OS, Longhorn, currently projected for 2006. That
leaves a gap of several years before developers will have access to improved support for CSS and other
web standards in Microsoft’s flagship browser. At the time of this writing, Internet Explorer is already
aging rapidly. This means developers are likely to be stuck developing for Internet Explorer 6 for a good
few years, coding around features that it does not support and dealing with bugs in the features that it
does support. Internet Explorer’s global market share has also been on the decline. At the time of this
writing, this decline in market share is mostly among technically inclined people. People in the informa-
tion technology industry have been switching more and more to Mozilla, an open-source browser with
far more advanced support for web standards. Current statistics indicate that some websites receive as
many as 20% of visitors using a Mozilla browser, although this figure can be much higher or lower
depending on the website and its target audience. This figure should not to be taken lightly, however, as
the number has been steadily rising over the course of 2004. Despite the decline in its use for some web-
sites, Internet Explorer is still the dominant browser, garnering from 70% to 90% of the browser market
share for most websites.

IE 6 provides the least support for the CSS standards discussed in this book; because of this fact, it
receives the least attention. However, I couldn’t very well write a successful book on website design
without addressing how to design a website for the world’s most popular browser. Internet Explorer’s
CSS bugs are well known; when and where appropriate, I discuss how to get around non-existent func-
tionality and how to fix bugs in Internet Explorer without compromising standards. The bulk of this dis-
cussion is presented in Chapter 18 where I examine a few of Internet Explorer’s most well-known CSS
bugs and explore an emerging solution that actually implements CSS support in Internet Explorer 5, 5.5,
and 6 for Windows.

You should use the Internet Explorer browser for some of this book’s examples. If you don’t currently
have this browser, you can get it by going to the Internet Explorer homepage at www.microsoft.com/ie.

20

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 20

For Macintosh users, I recommend not using Internet Explorer for Mac because the capabilities and bugs
of Internet Explorer for Windows and Internet Explorer for Mac are very different. Internet Explorer for
the Macintosh has much better support for CSS, but it is an entirely different browser. The name may be
the same, but the browsers themselves are very different. For Mac users, I recommend the Safari and
Gecko browsers, which I discuss further in the coming sections. If you don’t have Internet Explorer for
Windows, you still can work through most exercises and examples presented in this book, with the
exception of Chapter 18. That chapter is largely focused on identifying and correcting Internet Explorer
for Windows bugs.

Gecko: Mozilla, Mozilla Firefox, and Netscape
Gecko was created in January 1998. At that time, Netscape announced that it was making its browser
free to its users and that its browser would be open source, meaning that its source code would be freely
available for modification and distribution. This led to the creation of Mozilla, the organization that
develops and manages the Netscape code. America Online later purchased Netscape, and until July
2003, Mozilla remained a part of Netscape. In July 2003, the Mozilla Foundation was created, making
Mozilla an independent, not-for-profit corporation. When the Netscape browser became open source, its
rendering engine, the part of the browser software responsible for making the source code of a web page
into something you can see and interact with, was given the name Gecko.

Gecko is the foundation that a whole suite of browsers relies on to do the behind-the-scenes work of ren-
dering web pages. Gecko is included in AOL for OS X, Netscape 6, Netscape 7, Mozilla, and Mozilla
Firefox browsers.

Netscape’s browser market share has greatly diminished, whereas Mozilla continues to gain in popular-
ity, occupying the number-two spot by most statistical estimates. The following table charts the relation-
ship between Mozilla and Netscape browsers; the version relationships here show the corresponding
version of Gecko shared between the two browsers.

Netscape Browser Mozilla Browser

Netscape 7.2 Mozilla 1.7

Netscape 7.1 Mozilla 1.4

Netscape 7.0.2 Mozilla 1.0.2

Netscape 7.0.1 Mozilla 1.0.1

For instance, Netscape 7.2, which is the latest Netscape browser at the time of this writing, is based on
the Gecko software inside Mozilla 1.7; and the two can be expected to behave the same as far as CSS is
concerned.

The Mozilla browser is more than just a browser. It includes an e-mail client, an Internet Relay Chat
(IRC) client, and a web page-authoring tool. However, this extra functionality doesn’t appeal to every-
one who uses a web browser. In fact, an average web user is unlikely to use anything but the browser
itself. All this extra functionality also significantly increases the size of a Mozilla download. This, and
other considerations, led the Mozilla foundation to create yet another browser. An application that
includes only the browser was initially released under the name Phoenix, a name symbolic of a browser

21

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 21

rising from the ashes of the overly complicated Mozilla browser and its Netscape predecessor. It was
later renamed Firebird because of threats of trademark infringement from a company already using the
Phoenix name; still later, the name was changed to Firefox to avoid conflicts with another open source
project named Firebird. Now, settled on the name Firefox, Mozilla Firefox also uses the Gecko rendering
engine to present web pages; it can be thought of as the browser part of the Mozilla browser.

The following table shows the relationship between the Mozilla and Mozilla Firefox browsers.

Mozilla Browser Firefox Browser

Mozilla 1.7 Firefox 0.9

Mozilla 1.6 Firefox 0.8

Firefox 0.9 and Mozilla 1.7 can be expected to behave identically where CSS and design layout is concerned.

For the purpose of this book, I make heavy use of the Mozilla 1.7 browser, although Firefox 0.9 (or a later
version) is also suitable. You can obtain either browser by visiting ww.mozilla.org. The Mozilla
browser is available for Apple, Linux, and Windows operating systems.

Opera
Opera is a lesser-known, Norwegian-based company. Opera users are fewer, accounting for only a few
percent market share by most statistical estimates. Again, that figure can be much higher or lower
depending on a website’s audience. Also be aware that Opera and Mozilla Firefox browsers can be con-
figured to identify themselves to a website as Microsoft Internet Explorer browsers. This, of course, can
distort statistical analysis. This spoofing is done because websites often create content targeting
Microsoft Internet Explorer and Netscape specifically, leaving everyone else out in the cold — even
though third-party browsers like Mozilla Firefox and Opera probably support the required functionality.

At the time of this writing, the current version of the Opera browser is 7.54. You can download this
browser for free from www.opera.com. The free version of Opera includes a window that displays
advertisements. The Opera browser receives some attention in this book for a few CSS features that nei-
ther Mozilla nor Internet Explorer support, but which are worth mentioning. The Opera browser is
available for Windows, Macintosh, Linux, and a variety of other platforms.

KHTML: Safari and Konqueror
The last browser that I discuss is Safari, which is based on Konqueror, itself an open-source browser
available for Linux operating systems. The rendering engine used in the Safari and Konqueror web

Each chapter of this book features browser-compatibility notes before a new CSS fea-
ture is introduced. These compatibility notes indicate the CSS specification that is
referenced (see Appendix B for a detailed explanation) and which popular browsers
you can expect to support the CSS feature (at the time of this writing). For those
browsers that use the Gecko engine to present web documents — Mozilla, Netscape,
Firefox, and AOL for the Mac — I list only Mozilla in the compatibility notes.

22

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 22

browsers is called KHTML. Safari is developed by Apple and is the browser included with Macintosh
OS X operating systems. Previous to Safari, Internet Explorer and Gecko had been dominant on the Mac.
Safari behaves in much the same way as Gecko.

For the purpose of this book, I note Safari compatibility when appropriate; however, none of the
examples are dependent upon it. Safari is available only for Mac OS X and can be obtained from
www.apple.com/safari. Konqueror is only available for Linux at this time; it can be found at
www.konqueror.org.

Having discussed the browsers required for this book, I now introduce the various types of markup doc-
uments used with CSS.

Introduction to HTML
Plain old HTML is the oldest markup language. It is composed of a variety of tags. This section is
intended as an HTML crash course. HTML is a book-length subject by itself. Unfortunately, I can cover
only basic concepts here.

The following shows a set of HTML tags:

<HTML></HTML>

Tags begin with a left angle bracket (<), also known as the less-than symbol, followed by a tag name, and
ending with a right angle bracket (>), or greater-than symbol. Most HTML tags have both an opening
and closing tag; the closing tag contains a forward slash before the tag name (/>). Each HTML tag has a
predefined purpose. The <HTML> tags in this example denote the beginning and end of an HTML docu-
ment.

Single Tags and HTML Line Breaks
Some tags in HTML don’t come in pairs, such as

This is the HTML line break tag. You use it when you want to break text onto another line. Otherwise,
HTML continues putting text on the same line — even if you’ve pressed the Return or Enter key.

In HTML, you combine tags to structure a document. Each tag tells the browser about the data con-
tained in the document. The following example demonstrates a simple HTML table:

<TABLE BORDER=1 WIDTH=500>
<TR>

<TD>
HEAT 1/2 OF BUTTER SLOWLY
ADD BROWN SUGAR STIRRING UNTIL DISSOLVED
ADD GINGER, RUM, VANILLA & REMAINING BUTTER
TAKE OFF HEAT & STIR UNTIL ALL BUTTER IS MELTED

</TD>
</TR>

</TABLE>

23

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 23

TE
AM
 F
LY

In this example, each tag comes together to define a table. A table is used in HTML to show the relation-
ship between data in much the same way a spreadsheet does. The <TABLE> tag begins the table, the
<TR> tag defines a row of data and the <TD> tag defines a cell of data. Figure 2-2 shows the text con-
tained in the <TD> element. An element is a term often used to refer to a set of HTML tags. In this usage,
for example, it refers to the opening <TD> tag, the closing </TD> tag, and all the data between those two
tags. If only one tag is required, as in the
 tag, that single tag constitutes the element.

Figure 2-2

When viewed in a browser, the text between the <TD> and </TD> tags appears on one line, or the text
wraps around to the next line when it reaches the end of the table cell, table, or window — whichever
comes first. Here is the same code snippet with line breaks added:

<TABLE BORDER=1 WIDTH=500>
<TR>

<TD>
HEAT 1/2 OF BUTTER SLOWLY

ADD BROWN SUGAR STIRRING UNTIL DISSOLVED

ADD GINGER, RUM, VANILLA & REMAINING BUTTER

TAKE OFF HEAT & STIR UNTIL ALL BUTTER IS MELTED

</TD>
</TR>

</TABLE>

As you can see in Figure 2-3, when this code is viewed in a browser, the lines break wherever you
inserted a
 tag.

Figure 2-3

24

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 24

HTML Attributes
You can use HTML attributes to alter some feature offered by a specific element. For instance, you can
alter features pertaining to the presentation of a particular element, or you can alter features to uniquely
identify that element. In the following example, the ID=mytable attribute uniquely distinguishes the
table from other HTML tables. The COLSPAN=2 attribute in an HTML table tells the browser that a spe-
cific cell of table data spans two columns. The BORDER=1 attribute tells the browser that a border should
go around the table, and the WIDTH=250 attribute tells the browser how wide the <TABLE> should be:

<TABLE ID=mytable BORDER=1 WIDTH=250>
<TR>

<TD COLSPAN=2>
Some text.

</TD>
</TR>
<TR>

<TD>
Some more text.

</TD>
<TD>

Yet some more text.
</TD>

</TR>
</TABLE>

Figure 2-4 shows the result of this source code.

Figure 2-4

Now that I’ve shown you some HTML basics, work through the following Try It Out. The example uses
a recipe to demonstrate HTML table-based design, which is a very common HTML design method.

Try It Out Creating an HTML Document
Example 2-1. Follow these steps to create an HTML table:

1. In your favorite text editor, type the following HTML:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<HTML>

<HEAD>
<TITLE>Hummus</TITLE>

</HEAD>
<BODY>

<TABLE BORDER=0 WIDTH=500>

25

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 25

<THEAD>
<TR>

<TH COLSPAN=4 BGCOLOR=#000000>

Hummus

</TH>
</TR>
<TR>

<TH BGCOLOR=#000000>

#

</TH>
<TH BGCOLOR=#000000>

Measurement

</TH>
<TH BGCOLOR=#000000>

Product

</TH>
<TH BGCOLOR=#000000>

Instructions

</TH>

</TR>
</THEAD>
<TBODY>

<TR>
<TD>1</TD>
<TD>#10 can</TD>
<TD>CARBONZO BEANS</TD>
<TD>DRAIN 1/2 CAN</TD>

</TR>
<TR>

<TD>15</TD>
<TD>CLOVES</TD>
<TD COLSPAN=2>FRESH GARLIC</TD>

</TR>
<TR>

<TD>2</TD>
<TD>TEASPOONS</TD>
<TD COLSPAN=2>SALT</TD>

</TR>
<TR>

<TD>8</TD>
<TD>TABLESPOONS</TD>
<TD COLSPAN=2>REAL LEMON JUICE</TD>

</TR>
<TR>

<TD>2</TD>

26

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 26

<TD>CUPS</TD>
<TD COLSPAN=2>TAHINI</TD>

</TR>
<TR>

<TD>2</TD>
<TD>TABLESPOONS</TD>
<TD>PARSLEY</TD>
<TD>CHOPPED</TD>

</TR>
</TBODY>
<TFOOT>

<TR>
<TD COLSPAN=4 BGCOLOR=#808080>

BLEND IN FOOD PROCESSOR

</TD>

</TR>
</TFOOT>

</TABLE>
</BODY>

</HTML>

2. Save the file as example2-1.html. In your browser of choice, you should see the output shown in
Figure 2-5.

Figure 2-5

How It Works
Nothing fancy here. Notice that the text between the <TITLE> and </TITLE> tags now appears in the
title bar of your web browser’s window, and the browser window now contains the text between the
<BODY> and </BODY> tags in the form of a simple recipe card, organized in a table format. So, HTML
gives a document some basic structure and gives the browser a predefined way of organizing the data.
Presentational markup includes the tag and the BGCOLOR attribute. The tag is used in
markup to set the face, size, and color of a font, and the BGCOLOR attribute allows a solid color to be
specified for the background of an element using a hexadecimal notation that I explain in more detail in
Chapter 4. This book demonstrates why CSS is a much better solution for presentation. Can you imagine
having to update 26 table cells just to change the font or background color of each individual cell? With

27

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 27

CSS, the presentational aspects of a document require only a few lines in a style sheet, which can elimi-
nate redundancy. The old way of writing HTML is time-consuming and inefficient on multiple levels.

XML
I discuss XML next because it is, in many ways (especially with its rigid rules), the opposite of HTML. I
could spend the entire book discussing XML, but I’m going to cover only the very basic stuff here.
Unlike HTML, every XML tag absolutely must have both an opening and closing tag. XML is also case-
sensitive, so title isn’t the same thing as TITLE. In a nutshell, XML uses tags and attributes to describe
what they enclose:

<movies>
<movie>Big Fish</movie>
<movie>Lord of the Rings</movie>

</movies>

Although having the tags describe what they enclose is one of the primary benefits of XML, it’s not
required. The following is equally valid XML:

<asdfgh>
<lkj>Big Fish</lkj>
<lkj>Lord of the Rings</lkj>

</asdfgh>

XML is useful not only for web presentation, but for an entire suite of applications, including complex
programming languages, databases, and many other applications. But again, going into all the deep,
dark details of XML is beyond the scope of this book.

To reiterate, the important differences between XML and HTML are primarily the following:

❑ XML is case-sensitive; HTML is not.

❑ XML absolutely requires both an opening and closing tag on all elements or the use of a special
shortcut syntax in which only one tag is required. (This shortcut syntax allows both the opening
and closing tag to be written as one tag.) Conversely, HTML does not always require both an
opening and closing tag.

❑ Unlike HTML, XML tags do not have a predefined meaning. The author (not the browser) cre-
ates the meaning of each tag, which makes XML dynamic and adaptable to more than one appli-
cation.

❑ XML documents are opened with an XML declaration instead of with an <HTML> tag.

You can find out more about applying CSS to an XML document in Chapter 17, or you might consider
buying Wrox’s Beginning XML, 3rd Edition

Now that you know what an XML document is, the following Try It Out demonstrates how the recipe
card used in the preceding Try It Out example is formatted when written in XML.

28

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 28

Try It Out An XML Document
Example 2-2. Follow these steps to create a simple XML document.

1. Continuing the recipe example, fire up your favorite text editor and enter the follow XML:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<recipe>

<title>Hummus</title>
<ingredients>

<ingredient>
<quantity>1</quantity>
<measurement>#10 can</measurement>
<product>CARBONZO BEANS</product>
<instructions>DRAIN 1/2 CAN</instructions>

</ingredient>
<ingredient>

<quantity>15</quantity>
<measurement>CLOVES</measurement>
<product>FRESH GARLIC</product>

</ingredient>
<ingredient>

<quantity>2</quantity>
<measurement>TEASPOONS</measurement>
<product>SALT</product>

</ingredient>
<ingredient>

<quantity>8</quantity>
<measurement>TABLESPOONS</measurement>
<product>REAL LEMON JUICE</product>

</ingredient>
<ingredient>

<quantity>2</quantity>
<measurement>CUPS</measurement>
<product>TAHINI</product>

</ingredient>
<ingredient>

<quantity>2</quantity>
<measurement>TABLESPOONS</measurement>
<product>PARSELY</product>
<instructions>CHOPPED</instructions>

</ingredient>
</ingredients>
<directions>

BLEND IN FOOD PROCESSOR
</directions>

</recipe>

2. Save the file as example2-2.xml. Figure 2-6 shows what the XML document looks like when
loaded into a browser.

29

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 29

Figure 2-6

How It Works
The browser has no information about how to present the document, so the browser shows a tree of
the XML source code. Often, the browser also provides a way to expand and collapse portions of the
XML source code tree by displaying plus and minus signs that act as navigation buttons for the XML
source code.

XML not only structures data; it also describes data. (Although this isn’t required, it is one of XML’s
advantages.)

Chapter 17 explores in greater detail how to style XML documents, as well as offers more discussion on
its background, structure, and uses. For now, simply note that XML is a more advanced method of struc-
turing data that is applicable to more than one medium, not just end-user presentation.

30

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 30

XHTML
XHTML, the marriage of HTML and XML, is the document structure on which this book focuses. Put
more simply, XHTML is a reformulation of HTML that conforms to the strict rules of XML syntax. For
the purpose of this book, the XML part of XHTML is ignored, primarily because without XML, XHTML
is the same as HTML except that it must conform to a stricter set of rules. Without XML, the examples
are less confusing and more straightforward. Furthermore, and perhaps most important, Internet
Explorer 6 — the world’s most popular browser — does not currently properly support XHTML docu-
ments that contain both HTML and XML. Because I ignore the XML piece of XHTML, the examples pre-
sented in this book can work in the largest percentage of browsers.

Even though I have ignored the XML portion of XHTML, the use of XHTML-compliant HTML allows
the documents presented in this book to be forward-compatible. That way, when XHTML support is
improved and becomes more widespread, integration of XML becomes effortless.

XHTML provides the same predefined tags as HTML, while offering the user the extensibility of XML.
XHTML differs from HTML in the following ways:

❑ XHTML, like XML, is case-sensitive, so you must write all HTML tags in all lowercase letters to
achieve their associated HTML meaning.

❑ All attribute values must be enclosed in quotes.

❑ No attribute minimization (described shortly) is allowed.

❑ All tags must have both an opening and closing tag.

This set of rules allows XHTML to take on the extensibility of XML. The following sections discuss each
rule in greater depth.

XHTML Is Case-Sensitive
The HTML part of XHTML basically includes the same tags with the same functionality used in HTML.
More tags in HTML are used than in XHTML; for the most part, however, the two languages include the
same tags with the same functionality.

One of the major differences between XHTML and HTML is that HTML is a very loose language; it
doesn’t care how a tag is written. For instance, <HTML> and <html> is the same tag in HTML. However,
XML is case-sensitive, so when it came to marrying XML with HTML, certain aspects of HTML had to be
made more rigid. In XHTML, <HTML> and <html> are not the same tag. In XHTML, all HTML tags must
appear in all lowercase letters to achieve their associated HTML meaning.

All Attribute Values Must Be Enclosed in Quotes
Just as HTML is not case-sensitive, it is also very forgiving of attribute values not enclosed within quota-
tion marks. The following is an example of an attribute value not enclosed within quotations:

<TD COLSPAN=2>

31

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 31

This attribute value causes an HTML table cell to span across two columns instead of just one. The fol-
lowing is an XHTML acceptable equivalent:

<td colspan=”2”>

The tag and attributes must be written in lowercase, and the value of the attribute must be enclosed
within quotation marks. You may use either single or double quotation marks, as shown in the following
example:

<td colspan=’2’>

This all begs the question, “What happens if I don’t follow the syntax rules?” The simple answer is that
the document ceases to be valid XHTML. The complex answer is that when XML is added to an XHTML
document and the XHTML document is not well formed, the browser refuses to display the document
and displays an error indicating what went awry. I go into further detail about these errors in Chapter 17.

Well formed describes an XML document that strictly follows the syntax rules outlined here.

No Attribute Minimization Allowed
Scattered throughout HTML are a few oddball attributes that can be written with only one word. This
syntax is referred to as attribute minimization. For example, suppose you’re writing an HTML form with a
select field or a field that shows a drop-down box. The following code specifies the option to allow the
preselection of a value that appears in the drop-down list:

<SELECT NAME=’some_field’ SIZE=’5’>
<OPTION VALUE=’1’ SELECTED>Some selection</OPTION>
<OPTION VALUE=’2’>Another selection</OPTION>

</SELECT>

The SELECTED syntax used in the <OPTION> element is an example of attribute minimization. In
XHTML this is not allowed. The following code is an XHTML-acceptable equivalent:

<select name=’some_field’ size=’5’>
<option value=’1’ selected=’selected’>Some selection</option>
<option value=’2’>Another selection</option>

</select>

For backward compatibility, you generally write the SELECTED attribute as selected=”selected”. In
more general terms, wherever there is attribute minimization, write attribute=”attribute”. This
method works best in all browsers, including the older ones.

All Elements Require Both an Opening and Closing Tag
Like XML, XHTML requires both an opening and closing tag for every element, which means that the
simple HTML line break,
, is unacceptable in XHTML. Likewise, the tag, which is used to
insert an image into a document, is also not acceptable in XHTML. The same is true for a plethora of
other tags.

32

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 32

XHTML allows you to write the HTML
 tag in two ways. The first is by using both opening and
closing tags:

</br>

However, this presents a problem with backward compatibility. Modern browsers don’t ignore the clos-
ing </br> tag, meaning that browsers treat </br> like another line break instead of as a closing tag.
Therefore, instead of adding a closing tag, the W3C devised a shortcut syntax: a way to write the open-
ing and closing tags as a single tag, as shown in the following:

This time, the tag includes a forward slash before the closing angle bracket; the forward slash is used to
close the tag. This is a shorthand way to write two tags when only one tag is technically required, as is
the case for line breaks, images, and other special elements requiring no closing tag. This syntax allows
the rule (that all elements requiring both an opening and closing tag) to be honored. This method pre-
sents a problem for older browsers, although modern browsers correctly interpret this tag. Older
browsers ignore the tag altogether. For the tag to work on all browsers, include a single space between
the end of the tag text and the forward slash, like this:

The single space allows the XHTML single slash syntax to work in older browsers. Either the
 syn-
tax (no space) or the
 (including a space) are perfectly valid ways of writing the break tag.

Apply this shortcut syntax to any tag that doesn’t require two tags, such as the image tag (), the
HTML form input (<input />), and so on.

The following section outlines why XHTML is important and why this book focuses on XHTML as the
delivery method for web-based content.

Why XHTML Is the Future
XHTML is what HTML should have been from the very beginning. The following list details what
makes XHTML so exciting to web developers.

❑ XHTML is a cleaner representation of HTML. The language is not bloated with presentational
markup like the tag and other HTML features that exist purely for presentation.

❑ XHTML’s rules are consistent. You always know what to expect when viewing an XHTML
page. Its rules define everything so that every XHTML page contains lowercase tags and
attributes and attribute values are always quoted.

❑ XHTML is far more dynamic than HTML. XML capabilities make XHTML a better fit for com-
plex projects.

❑ XHTML documents download faster. You can design XHTML files to be as much as two-thirds
smaller in size when compared to presentation-oriented HTML documents. Smaller file sizes
save hard disk space as well as expensive bandwidth.

33

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 33

❑ XHTML files are easier to manage and update on multiple levels. XHTML documents use less
markup to structure the data of a document, so updating and managing XHTML becomes that
much easier. When combined with CSS, you can centralize presentation into a single file. This
functionality saves the maintainer the headache of editing each individual XHTML file. CSS also
allows you to alter the entire look and feel of a website with a single file. Because you can link
externally to CSS files (discussed in Chapter 3), a browser can cache them. This means you
avoid re-download of every page requested by the visitor, which again saves expensive band-
width.

Now that you are familiar with XHTML documents, it’s time to revisit the recipe card example. The fol-
lowing Try It Out builds on Example 2-1, but it rewrites the original HTML document in XHTML,
including all XHTML-acceptable syntax.

Try It Out An XHTML Document
Example 2-3. Follow these steps to rewrite the original HTML recipe document in XHTML.

1. Enter the following XHTML code in your text editor.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Hummus</title>
<style type=’text/css’ media=’all’>

table {
border-width: 0px;
width: 500px;

}
th {

background: black;
color: white;

}
tfoot td {

background: #808080;
color: white;

}
</style>

</head>
<body>

<table>
<thead>

<tr>
<th colspan=’4’>

Hummus
</th>

</tr>
<tr>

<th>
#

</th>
<th>

Measurement

34

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 34

</th>
<th>

Product
</th>
<th>

Instructions
</th>

</tr>
</thead>
<tbody>

<tr>
<td>1</td>
<td>#10 can</td>
<td>CARBONZO BEANS</td>
<td>DRAIN 1/2 CAN</td>

</tr>
<tr>

<td>15</td>
<td>CLOVES</td>
<td colspan=’2’>FRESH GARLIC</td>

</tr>
<tr>

<td>2</td>
<td>TEASPOONS</td>
<td colspan=’2’>SALT</td>

</tr>
<tr>

<td>8</td>
<td>TABLESPOONS</td>
<td colspan=’2’>REAL LEMON JUICE</td>

</tr>
<tr>

<td>2</td>
<td>CUPS</td>
<td colspan=’2’>TAHINI</td>

</tr>
<tr>

<td>2</td>
<td>TABLESPOONS</td>
<td>PARSLEY</td>
<td>CHOPPED</td>

</tr>
</tbody>
<tfoot>

<tr>
<td colspan=’4’>

BLEND IN FOOD PROCESSOR
</td>

</tr>
</tfoot>

</table>
</body>

</html>

2. Save the file as example2-3.html. Figure 2-7 shows the output of this source code in the browser.

35

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 35

Figure 2-7

How It Works
Figure 2-7 shows that this output is identical to what’s shown in Figure 2-5. This example demonstrates
that XHTML is a little more rigid than HTML in terms of its syntax and structure. In this example, I
remove the deprecated, presentational HTML that I used in Example 2-1 and replace it with the cleaner,
more concise syntax of XHTML and CSS.

CSS brings a great deal of flexibility to the table by centralizing the document’s presentation in a single
place instead of scattering it all over the document, as was the case in Example 2-1. XHTML extends
HTML by offering the flexibility of XML along with the predefined tags of HTML. Although this exam-
ple does not demonstrate XML within an XHTML document, the subtle differences between XHTML
and HTML are clear. The presentational aspects of Example 2-1 — the BGCOLOR, BORDER, and WIDTH
attributes, and the tag — are now all declared using a cascading style sheet that’s embedded
directly in the document. The tags and attributes are all written in lowercase letters, and the attribute
values are enclosed in quotations. The HTML line break tag is written with the shortcut syntax for clos-
ing a tag:
 instead of
.

Thanks to my good friends at JT’s Island Grill and Gallery in Chokoloskee, Florida, for the delicious
recipe.

The Document Type Declaration
The Document Type Declaration (commonly abbreviated DTD) is a single line of code that appears
before the opening <html> tag in HTML and XHTML documents. It’s a rather complicated topic; how-
ever, it is a crucial component of writing standards-compliant XHTML documents with CSS. The
Document Type Declaration looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title> My webpage </title>

36

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 36

The inclusion of this code, more or less announces to the browser what type of document it can expect. It
tells the browser about the markup syntax used in the document and provides some rules for its behav-
ior. The example shown here is used to indicate to the browser that the document is an XHTML docu-
ment that strictly follows the W3C recommendation of what XHTML 1.0 is. For introductory purposes,
this is a bit of an over-simplification of the DTD. Understanding the inner components of what it is and
does, however, is not essential knowledge for designing web pages with XHTML and CSS.

The inclusion of the DTD is an important component of designing standards-oriented XHTML docu-
ments. But in relation to CSS, the DTD has a more important effect on designing web pages: DOCTYPE
sniffing.

DOCTYPE Sniffing
DOCTYPE sniffing, also known as the DOCTYPE switch, is a process used by modern browsers to select
a rendering mode based on the inclusion or absence of a DTD. In Internet Explorer 6, the DTD is used to
invoke one of two rendering modes. The first rendering mode is known as quirks mode, and the second
rendering mode is known as standards-compliant mode. Essentially this behavior makes Internet
Explorer 6 two browsers in one. Standards-compliant mode is used to make web pages that follow the
W3C standards to the letter. Quirks mode relies on nonstandard methods to render web pages that were
created before the W3C standards were implemented and came into widespread use. Quirks mode exists
as a way to provide backward-compatibility for the millions of websites in existence today that were
either created before W3C standards were implemented, or for websites whose authors are not yet stan-
dards savvy.

The two rendering modes have very significant differences in Internet Explorer 6. The choice of render-
ing mode may have an adverse effect on authoring CSS-enabled documents because Microsoft has made
some CSS features available only when Internet Explorer 6 is in standards-compliant mode.

Other browsers like Mozilla, Opera, and Safari also have standards-compliant and quirks modes. In fact,
these browser introduce an additional rendering mode known as almost standards mode. Appendix D pro-
vides a detailed table of which DTDs invoke which mode in which browser. However, even though the
less popular browsers also provide these rendering modes, the differences between these modes is not
nearly as significant as Internet Explorer 6’s, which is why I have focused on Internet Explorer 6 here.

Throughout this book, all the examples invoke standards-compliant mode in all browsers. The following
Try It Out demonstrates how Internet Explorer renders a web page in quirks mode. After this example, I
provide an example of how Internet Explorer renders content in standards-compliant mode, and I high-
light the differences between the two.

Try It Out Experimenting with Quirks Mode and Standards Mode
Example 2-4. To demonstrate the nuances in rendering your web page according to these two rendering
modes in Internet Explorer 6, follow these steps.

1. Using your favorite text editor, type the following HTML document:

<html>
<head>

<title> Doctype Sniffing </title>
<style type=’text/css’ media=’all’>

37

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 37

table {
margin: auto;

}
td {

background: green;
margin: 10%;
border: 5px solid black;
padding: 10%;
width: 100%;
color: black;
font-size: 200%;
text-align: center;

}
div {

background: green;
border: 5px solid black;
font-size: 200%;
padding: 1%;

}
#div1 {

float: left;
width: 30%;

}
#div2 {

margin-left: 34%;
width: auto;

}
</style>

</head>
<body>

<table>
<tr>

<td>
Some content.

</td>
</tr>

</table>
<div id=’div1’>

This div smells funny.
</div>
<div id=’div2’>

This div has a strange and rather pleasing odor about it.
</div>

</body>
</html>

2. Save the file as example2-4.html.

3. Using the example2-4.html file, add the following DTD before the opening <html> tag to see
how this example renders according to W3C standards:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title> Doctype Sniffing </title>

38

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 38

4. Save the modified file as example2-5.html.

5. Open Internet Explorer and load example2-4.html in one browser window and example2-5.html
in another.

Figure 2-8 shows example2-4.html in quirks mode in Internet Explorer.

Figure 2-8

Figure 2-9 shows example2-5.html in standards-compliant mode in Internet Explorer.

Figure 2-9

How It Works
When compared side-by-side, the effects of the DTD become obvious. In example2-4.html, the table is
not centered, but it is centered in the rendering of example2-5.html. Furthermore, the <div> elements do
not have the same dimensions. These two examples demonstrate a few of the very important differences
between quirks mode and standards-compliant mode. You do not encounter any of these differences

39

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 39

between these two modes when you view the same two pages using the Mozilla browser. This indicates
to you that the quirks mode of one browser isn’t the same as the quirks mode of another browser.
Furthermore, through this example it becomes obvious that using Internet Explorer in quirks mode lim-
its the scope of available CSS functionality.

Microsoft itself provides a detailed accounting for these inconsistencies in available CSS functionality.
These are documented for each CSS feature at the following URL:

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/css
/reference/attributes.asp

In summary, for CSS design, cross-browser consistency is dependent upon the browser’s interpretation
of the W3C standards. Using the standards-compliant mode provided by the browser is one way to
avoid inconsistency. The following section outlines some of the possible DTDs that are available.

Common Document Type Declarations
The following sections summarize the most common DTDs in use and include a brief description of
what the DOCTYPE is used for. The examples in this book primarily use the XHTML 1.0 Strict DOCTYPE.

HTML 4.01 Transitional
HTML transitional is the loosest document type. It allows the use of deprecated HTML, such as the
 tag, which was one feature of HTML that necessitated the creation of CSS in the first place. The
HTML 4.01 Transitional DOCTYPE is not case-sensitive. For example, <HTML> is the same as <html>. This
principle applies to all HTML 4.01 DOCTYPEs. When this DOCTYPE appears with a URL to the DTD, it
invokes the standards mode:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

If the URL does not appear in the DTD, as in the following example, the DOCTYPE invokes quirks mode:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” >

In fact, if the DTD URL is incorrect in any way, the DOCTYPE invokes quirks mode instead of standards
mode.

HTML 4.01 Frameset
HTML frameset is the same declaration as HTML transitional, but with the inclusion of framesets.
Framesets enable the browser window to be partitioned (or separated) into more than one window,
allowing the author to display and reference more than one HTML page at once. HTML frameset also
allows the use of inline frames, which enables you to include external HTML documents inside another
HTML document. You specify HTML frameset like this:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”
“http://www.w3.org/TR/html4/frameset.dtd”>

40

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 40

Like HTML 4.01 transitional, this DOCTYPE also invokes standards mode. If it appears without the DTD
URL or with an invalid URL, it invokes quirks mode.

HTML 4.01 Strict
HTML strict (theoretically, at least) does not allow the use of deprecated HTML. Like the example of the
XHTML strict Document Type Declaration that I discussed earlier in this chapter, the HTML 4.01 Strict
DTD implies that the document strictly follows the W3C’s definition of what HTML 4.01 is. You specify
HTML strict like this:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

This DOCTYPE invokes standards mode regardless of whether it appears with the DTD URL. But an
incorrect URL may invoke quirks mode in some browsers.

XHTML 1.0 Transitional
Similar to HTML 4.01 Transitional, XHTML transitional implies that the markup is not perfect. You spec-
ify XHTML transitional like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

All XHTML DOCTYPEs invoke standards mode regardless of whether a DTD URL appears in the declara-
tion.

XHTML 1.0 Frameset
Similar to HTML 4.01 frameset, XHTML frameset is essentially XHTML transitional but allows the use of
frames. Note, however, not including a frameset DOCTYPE generally has no effect on frame usage. You
specify the XHTML frameset DOCTYPE like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

As stated previously, this XHTML DOCTYPE invokes standards mode.

XHTML 1.0 Strict
XHTML 1.0 Strict is the DOCTYPE appearing in all of this book’s examples. It implies that the document
conforms to the more rigid XHTML syntax rules and does not allow deprecated HTML tags and
attributes. The browser ignores deprecated HTML tags or attributes if they appear in an XHTML docu-
ment with a strict DOCTYPE. You specify XHTML strict like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

Again, XHTML strict invokes standards mode.

41

Document Standards

06_576429 ch02.qxd 11/18/04 12:28 PM Page 41

Summary
CSS is designed to work with a variety of documents. Although not limited to HTML, XHTML, and
XML, you find CSS most commonly used in those types of documents. In this chapter you learned that
the following:

❑ Internet Explorer 6, Gecko, Opera, and KHTML browsers make up the majority of browsers in
use today, with Internet Explorer 6 being the world’s most popular browser.

❑ Markup languages are used to structure data.

❑ HTML is the oldest markup language and allows the loosest syntax.

❑ XML is the extreme opposite of HTML in terms of syntactical strictness in that it is very rigid
and very defined.

❑ XHTML is the middle road and the chosen delivery medium for most of this book’s examples.

❑ XHTML is stricter than HTML in terms of its basic syntactical rules.

❑ XHTML is case-sensitive, and you must write all its HTML tags in lowercase letters and all
attribute values must be enclosed within quotation marks.

❑ XHTML does not allow attribute minimization.

❑ All XHTML tags must contain both an opening and a closing tag, although XHTML provides a
shortcut syntax that allows the opening and closing tags to be written together as a single tag.

❑ The Document Type Declaration is a line of code that appears before the opening <html> tag; it
provides the browser with some basic information about the document’s syntax.

❑ DOCTYPE sniffing (the DOCTYPE switch) is used to select one of two rendering modes in
Internet Explorer 6, and one of three rendering modes in all other browsers.

❑ Internet Explorer 6 quirks mode limits the scope of available CSS functionality, which results in
huge inconsistencies between Internet Explorer 6 quirks mode and Internet Explorer 6 stan-
dards-compliant mode.

Chapter 3 begins a discussion of basic CSS syntax.

Exercises
1. Using a structure similar to that of the recipe paradigm, create HTML, XML, and XHTML docu-

ments listing your favorite movies. Include information for the lead actor or actress, the title,
and the genre.

2. Explain the differences between quirks mode and standards mode.

42

Chapter 2

06_576429 ch02.qxd 11/18/04 12:28 PM Page 42

3
The Basics of CSS Anatomy

and Syntax

CSS documents aren’t terribly complicated. However, if you’ve ever treaded through the CSS
specifications made available at the W3C website at www.w3.org, CSS may seem like a daunting
undertaking. In all truth, it isn’t. A CSS document may consist of nothing but CSS rules or it may
be included directly in HTML, XHTML, or XML. In this chapter, you learn how to recognize CSS
rules and the basic syntax used to form them. Because CSS is a language used to describe aesthetic
layout, its very design makes it easy to use in more than one type of document (the folks at the
W3C even did that intentionally!). Most commonly, you find CSS in HTML, XHTML, and XML
documents.

In this chapter, I discuss the following:

❑ Basic CSS syntax

❑ CSS rules, selectors, and declarations

❑ How to include CSS in a document

CSS Rules
The following is an example of a CSS rule. You can set the layout of the rule according to your pref-
erences:

body {
color: black;

}

The next line is identical to the preceding example.

body {color: black;}

07_576429 ch03.qxd 11/18/04 12:28 PM Page 43

Like HTML, XHTML, and XML, CSS can use white space and line breaks for purposes of readability. The
interpreter reading the CSS doesn’t care how much white space appears in the style sheet or how many
line breaks are used. Humans, however, must often add some sort of structure to prevent eye strain.

body in this example refers to the <body> tag in an HTML or XHTML document and is what is known
as the selector, or more specifically a type selector. The selector is followed by a curly-brace–delimited list
of one or more semicolon-separated declarations. A declaration is a property followed by a colon, fol-
lowed by a value. Each declaration formats the element or elements specified in the selector list for pre-
sentation to web visitors.

In the preceding rule example, all text and all CSS properties for color receive a value of black unless
specified otherwise elsewhere. (This is where the Cascade comes in. I discuss specifying elements in
Chapter 7.)

Introducing Selectors
In CSS, a selector is the target element or elements to which each CSS rule is applied. Put simply, the
selector tells the browser where and what to format. A selector may be user-specified via the class=””
or id=”” attributes, or it may simply be the HTML or XML tag name itself. But CSS doesn’t stop there.
CSS also supports more complex selectors that function based on the context in which the target element
appears in the document. I discuss each type of selector in depth in Chapter 5; for now, look at the fol-
lowing rule:

td
{

font-family: Arial;
}

This rule applies an Arial font to every <td> element. If there are 160 <td> elements in the web page, the
CSS rule is applied 160 times. Using deprecated HTML to create the same formatting requires a
tag to be included in each and every <td> element. With CSS, the font is specified just once. That’s right,
once.

Grouping Selectors and Declarations
A style sheet wouldn’t be very useful if it didn’t contain a mechanism for grouping selectors and decla-
rations. Complex style sheets can save resources by combining repetitive rules to create a single rule. The
following example groups selectors and declarations:

p, h1, h2, h3, h4, h5
{

font-family: Arial;
color: black;

}

Each selector is separated by a comma, whereas a semicolon separates each declaration. In this example
an Arial font and black text is applied to <p>, <h1>, <h2>, <h3>, <h4> and <h5> elements.

44

Chapter 3

07_576429 ch03.qxd 11/18/04 12:28 PM Page 44

Declarations may also be grouped. The following code:

body {font-family: Arial;}
body {font-size: 10pt;}
body {color: black;}

is identical to this format:

body
{

font-family: Arial;
font-size: 10pt;
color: black;

}

Both are valid in CSS.

The following Try It Out demonstrates how to apply styles to a selected HTML element in the body, as
well as how to group selectors and declarations.

Try It Out Selectors and Grouping
Example 3-1. To see how a selector is used to select HTML elements in the body, follow these steps.

1. Fire up your favorite text editor and type the following XHTML:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<meta http-equiv=”content-type” content=”text/xhtml; charset=windows-1252” />
<meta http-equiv=”content-language” content=”en-us” />

<title>Selectors and Grouping</title>
<style type=”text/css” media=”all”>

p {
font-family: Arial;
font-size: 14pt;

}
h1 {

color: black;
border: 5px solid black;

}
h2 {

color: orange;
border: 4px solid orange;

}
h3 {

color: blue;
border: 3px solid blue;

}
h1, h2, h3 {

letter-spacing: 5px;
padding: 10px;

45

The Basics of CSS Anatomy and Syntax

07_576429 ch03.qxd 11/18/04 12:28 PM Page 45

}
</style>

</head>
<body>

<h1>
Heading 1

</h1>
<h2>

Heading 2
</h2>
<h3>

Heading 3
</h3>
<p>

Selectors choose the element to apply formatting to. These may also be
grouped together.

</p>
</body>

</html>

2. Save this as example3-1.html.

3. Fire up your favorite browser and load the file.

Figure 3-1 shows how CSS selects the different headings in the body of the HTML document to which it
applies different text colors and borders and few other effects.

How It Works
This example demonstrates how CSS uses selectors to determine where and to what you apply presenta-
tion. It also demonstrates how selectors may be grouped together so that formatting changes can be
applied to multiple elements without specifying a separate rule for each individual element. I have used
a number of properties to apply font, font size, text color, borders, spacing between letters, and padding
to the specified elements. The following reviews each individual component of the style sheet.

The first rule selects all the <p> elements in the document:

p {
font-family: Arial;
font-size: 14pt;

}

The preceding rules apply an Arial font face and a font size of 14 points. font-family is a CSS property,
and Arial is the value of that property; together they make a declaration. p is the selector; the selector
combined with the declarations make a rule. This rule applies an Arial font face and 14-point font size to
the following snippet of markup:

<p>
Selectors choose the element to apply formatting to. These may also be
grouped together.

</p>

46

Chapter 3

07_576429 ch03.qxd 11/18/04 12:28 PM Page 46

Figure 3-1

Wherever a <p> element occurs in the HTML document, the type has an Arial font face, 14 points in size.
In Chapter 4, I take a more in-depth look at the different units of measurement CSS allows. In Chapter 9,
I cover the syntax of font properties.

The next rule selects all <h1> elements that occur in the HTML document:

h1 {
color: black;
border: 5px solid black;

}

Every <h1> element will have black text and a 5-pixel thick, solid, black border around it. This selects
the following snippet of markup:

<h1>
Heading 1

</h1>

47

The Basics of CSS Anatomy and Syntax

07_576429 ch03.qxd 11/18/04 12:28 PM Page 47

Because you include h1 as the selector, the browser knows to associate it with <h1> elements that appear
later in the body of the document.

Similar declarations appear in the next rule:

h2 {
color: orange;
border: 4px solid orange;

}

This time, the element is an <h2> instead of an <h1> element, and the text is colored orange with a 4-
pixel thick, solid, orange border placed around the element. This rule applies declarations to the follow-
ing element in the body of the document:

<h2>
Heading 2

</h2>

The browser knows that the h2 as the selector refers to the <h2> element. The same concept is applied by
the next rule:

h3 {
color: blue;
border: 3px solid blue;

}

This time it’s an <h3> element, the text is blue, and a 3-pixel thick, solid, blue border is placed around
the element. Finally, the last rule selects all three heading elements at the same time:

h1, h2, h3 {
letter-spacing: 5px;
padding: 10px;

}

This rule selects all the <h1>, <h2>, and <h3> elements appearing in the body of the document. It
includes a declaration that increases the amount of space between the letters inside each heading.
Padding, a term that refers to the amount of space between the inside border edge and the edge of the
content inside of an element, is also applied. In this example, it’s the space between the sentences inside
each heading and the inside border edge. This rule groups three selectors together; it selects all three
heading elements in the document and applies the declarations to the following snippet of markup:

<h1>
Heading 1

</h1>
<h2>

Heading 2
</h2>
<h3>

Heading 3
</h3>

Now that you’ve had an overview of how selectors work in a CSS document, the next section discusses
the various ways in which you can include CSS in a document.

48

Chapter 3

07_576429 ch03.qxd 11/18/04 12:28 PM Page 48

Including CSS in a Document
CSS is very flexible regarding how you call it in a document. You can include CSS in a document in
four ways:

❑ CSS can be included in a document by using embedded style sheets, which are included
between <style> and </style> tags directly in an HTML or XHTML document.

❑ CSS can be included in its own document and linked to an HTML or XHTML document by
using the <link> element.

❑ CSS can be imported from within another style sheet by using an @import rule.

❑ CSS can be included directly in an element in an HTML or XHTML document by using inline
styles with the style=”” attribute.

Each method has its own particular usefulness. The upcoming sections describe how each of these meth-
ods can be used to include CSS in an HTML or XHTML document.

Including an Embedded Style Sheet
You use the <style></style> tag set to include embedded style sheets directly in the document. This
is one of the style sheet methods I demonstrated in Example 3-1. You can include HTML comment tags if
you want to hide style sheet rules from non-equipped browsers. Since HTML’s early days, HTML has
supported the capability to add comment text to a document. Comment text gives the web author the
ability to add notes to a project so he can recall why he did something in a certain way or to mark the
sections of a document. In HTML, you add a comment by typing a left angle bracket, an exclamation
mark, two dashes, at least one space, and then the comment text itself. You close the comment by typing
at least one space, two more dashes, and the right angle bracket. Here’s what a comment looks like:

<!-- Hi I’m comment text -->

Comments are useful for a number of reasons. After figuring out how to do something complex, you
may want to make a note of what steps you followed to solve the problem. Otherwise, when you return
to the project a day, a week, a month, or a year later, you may look at the code and have no idea why you
did what you did.

In the context of an embedded style sheet, comments have a special meaning. Because they appear
inside the <style>...</style> tags, they tell browsers that don’t support CSS to ignore the text that
appears between them. Modern CSS-equipped browsers, on the other hand, read the sequence of
<style>, followed by <!--, and know that style sheet rules appear there. This allows CSS to be hidden
from browsers that are incapable of interpreting it. The following snippet shows how you can use com-
ment tags to hide CSS from older browsers:

<style type=’text/css’>
<!--

body, td {
color: blue;

}

-->
</style>

49

The Basics of CSS Anatomy and Syntax

07_576429 ch03.qxd 11/18/04 12:28 PM Page 49

Older browsers simply ignore any CSS rules defined inside the HTML comments.

For the <style> tag to be strictly formed XHTML syntax, a type attribute is required for the <style>
tag. This is intended to tell the browser what type of syntax follows.

The next section describes how CSS can be written in its own document and included in an HTML or
XHTML document.

Linking to External Style Sheets
<link/> and @import are supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The authors of CSS recognized that HTML-template creation is a common need. As such, the W3C body
made recommendations that allow external style sheets to be included in a document from within
HTML or XHTML by use of the <link> element or from within a style sheet itself using the @import
rule. External style sheets are the preferred method of CSS inclusion in a web document. External style
sheets can be cached by the user’s browser. This frees the user, who no longer needs to download the
web page or website’s style sheet on every page request. This also ensures that documents load very
quickly, another feature of CSS that conserves expensive bandwidth.

Here’s a demonstration of the <link> element method:

<link rel=”stylesheet” href=”path/to/cssdoc.css” type=”text/css” />

The following attributes are required to use the <link> element for linking to a CSS document:

❑ rel=””: Defines the relation between the external document and the calling document. In this
case, the relation is that the external document is the style sheet for the calling document.

❑ href=””: Like the anchor tag, <a>, href stands for hyperlink reference. It accepts an absolute
or relative path to the style sheet document.

❑ type=””: Refers to the MIME type of the external file.

An absolute path means the complete path to the file. For instance, http://www.somesite.com is an
absolute path. A relative path triggers the application to find the document relative to the requesting doc-
ument. So if the example file’s URL is http://www.somesite.com/example.xhtml, and the CSS doc-
ument is stored in the style_sheets directory as cssdoc.css, the relative path included in <link> is
style_sheets/cssdoc.css and the absolute path to the document is
http://www.somesite.com/style_sheets/cssdoc.css.

Importing Style Sheets
You can also link to an external style sheet by using the @import rule. Here’s a demonstration:

<style type=”text/css”>
@import url(path/to/cssdoc.css);

</style>

50

Chapter 3

07_576429 ch03.qxd 11/18/04 12:28 PM Page 50

This example uses the <style></style> method but includes the @import notation. It’s very straight-
forward: Plug in the @import rule followed by the url(), which may contain an absolute or relative
path.

The @import method is not supported by older browsers, and it is sometimes used as a hack to hide
styles from browsers that would crash horribly if these styles were present. One such browser is
Netscape Navigator 4, which has horrible CSS support and has been known to lock up when certain
styles are present.

How to Structure an External CSS Document
External style sheets are essentially the same thing as embedded style sheets; the key difference is that
no markup exists in a CSS file. When you create an external, independent CSS document, it must be cre-
ated using the .css file extension.

An external CSS document may contain nothing but CSS rules or comments; you see how to include
comments within CSS later in this chapter. A CSS document cannot contain any markup.

The following Try It Out shows you how to link to an external style sheet from an XHTML document.

Try It Out Linking to an External CSS Document
Example 3-2. To see how external style sheets are linked from an XHTML document, follow these steps.

1. Fire up that trusty text editor once more and type the following CSS, which is a modification of
Example 3-1.

p {
font-family: Arial;
font-size: 14pt;

}

h1 {
color: black;
border: 5px solid black;

}
h2 {

color: orange;
border: 4px solid orange;

}
h3 {

color: blue;
border: 3px solid blue;

}

h1, h2, h3 {
letter-spacing: 5px;
padding: 10px;

}

2. Save this file as example3-2.css.

51

The Basics of CSS Anatomy and Syntax

07_576429 ch03.qxd 11/18/04 12:28 PM Page 51

3. Go back to the XHTML document you created for the last Try It Out (example3-1) and modify it
to reflect the following changes:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<meta http-equiv=”content-type” content=”text/xhtml; charset=windows-1252” />
<meta http-equiv=”content-language” content=”en-us” />

<link rel=”stylesheet” href=”example3-2.css” type=”text/css” />
<title>Linking to External Style Sheets</title>

</head>
<body>

<h1>
Heading 1

</h1>
<h2>

Heading 2
</h2>
<h3>

Heading 3
</h3>
<p>

Selectors choose the element to apply formatting to. These may also be
grouped together.

</p>
</body>

</html>

4. Save this file as example3-2.html in the same directory as example3-2.css.

5. View example3-2.html in your browser. You should see output identical to that in Figure 3-1.

How It Works
The embedded style sheet between the <style>... </style> tags has been replaced with an external
style sheet by placing the rules inside the embedded style sheet into their own document, saving that
document with a .css file extension, and then linking to the new file by including the <link/> element
in the XHTML document. One of the benefits of an external style sheet is that it allows the same style
rules to be applied to as many documents as the author wishes. This is one of the key benefits of CSS-
based design. An external style sheet offers flexibility to the author that saves both time and resources.

The next section describes how styles can be included inline, directly on elements, by using the style
attribute.

Inline Styles
The last method for including CSS in a document is from within the XHTML elements themselves.
Sometimes it doesn’t make sense to clutter your external or embedded style sheets with a rule that will
be used on only one element in one document. This is where the style=”” attribute comes into play; it’s
demonstrated by the following markup:

52

Chapter 3

07_576429 ch03.qxd 11/18/04 12:28 PM Page 52

<table style=”border: 1px solid black; margin: auto;”>
<tr>

<td style=”text-align: right; font-size: 18pt;”>
Some text aligned left.

</td>
</tr>

</table>

This method allows for the text to be formatted from within the document and may be applied to any
rendered element.

The following Try It Out demonstrates how the style attribute is used to add styles directly to the ele-
ments of a web document.

Try It Out The style Attribute
Example 3-3. To use the style attribute to apply styles directly to the elements of a document, follow
these steps:

1. Using the documents you created for Example 3-2, return to your text editor and enter the fol-
lowing XHTML:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<meta http-equiv=”content-type” content=”text/xhtml; charset=windows-1252” />
<meta http-equiv=”content-language” content=”en-us” />

<title>The Style Attribute</title>
</head>
<body>

<h1 style=”color: black;
border: 5px solid black;
letter-spacing: 5px;
padding: 10px;”>

Heading 1
</h1>
<h2 style=”color: orange;

border: 4px solid orange;
letter-spacing: 5px;
padding: 10px;”>

Heading 2
</h2>
<h3 style=”color: blue;

border: 3px solid blue;
letter-spacing: 5px;
padding: 10px;”>

Heading 3
</h3>

<p style=”font-family: Arial;
font-size: 14pt;”>

Selectors choose the element to apply formatting to.

53

The Basics of CSS Anatomy and Syntax

07_576429 ch03.qxd 11/18/04 12:28 PM Page 53

These may also be grouped together.
</p>

</body>
</html>

2. Save as example3-3.html.

How It Works
Note that the output is identical to output of the earlier examples depicted in Figure 3-1. The style
attribute allows CSS declarations to be included directly in the XHTML element. The style attribute,
however, is not as dynamic as a style sheet. It gives you no way to group repetitive rules or declarations.
The style attribute should only be used when a more efficient method is not available (if, for example,
the element to be styled does not appear on multiple pages).

Continuing the discussion of basic syntax, the next section discusses how to include comments in a CSS
document.

CSS Comments
Like the HTML comments I described earlier in this chapter, comment text can be added inside style
sheets. In a multipage template, this helps you remember which CSS rule applies to what or why it was
added in the first place. CSS supports multiline comments that begin with a forward slash and an aster-
isk (/*) and terminate with an asterisk and a forward slash (*/):

/* This rule applies to the design.html file */

table {
padding: 50px;
background-color: red;
color: white;

}
/*
* CSS comments may span multiple lines. (extra asterisks not required)

*/

CSS comments provide a mechanism that allow you to insert notes about what the styles in the style
sheet do and why they were added in the first place. As I mentioned for HTML comments, the design of
a website can get complicated, and often it’s helpful to make notes that help you remember why you
added one thing or another.

Summary
CSS consists of selectors and declarations that, when put together, form CSS rules. Selectors may be
grouped using commas, and declarations may be grouped using semicolons. CSS styles may be embed-
ded using style sheets that appear inside a web document. Alternatively, CSS styles may be linked exter-
nally via two methods, one which uses the <link> tag and another from within embedded style sheets
using the @import notation. CSS styles may also be included inline, via the style=”” attribute.

54

Chapter 3

07_576429 ch03.qxd 11/18/04 12:28 PM Page 54

In this chapter, you learned what CSS looks like and a little of what it can do. You established the follow-
ing facts:

❑ CSS selectors determine where and to what you can apply presentational declarations.

❑ CSS may be included directly in the document using embedded styles that appear directly in an
HTML or XHTML document between the <style></style> tags.

❑ Style sheets may be included externally via the @import notation or the <link/> tag.

❑ Styles may be applied directly to an HTML or XHTML element by using the style attribute.

❑ CSS supports comments. Comments can help you remember the purpose of the styles in a style
sheet — why they were added in the first place and what they do.

Having discussed some of the basic syntax of CSS, I continue this discussion in the next chapter by talk-
ing about data types, the units of measurement CSS allows for length, the different methods of specify-
ing colors, and the syntax used to include things like background images.

Exercises
1. Using an inline style sheet, design a CSS document with two headers contained in <h1> and

<h2> tags in which <h1> and <h2> elements both are in green, 22pt, Times New Roman font.
Add a paragraph of text also in black, Times New Roman font, but 12pt in size. No declaration
may be repeated. Include comments to signify what each rule does.

2. Using the scenario in Exercise 1, redesign the document so that the CSS document is included
externally.

3. Again using the scenario in Exercise 1, rewrite the document so that each rule appears in each
HTML element using the style attribute. (Declarations may be repeated.)

55

The Basics of CSS Anatomy and Syntax

07_576429 ch03.qxd 11/18/04 12:28 PM Page 55

07_576429 ch03.qxd 11/18/04 12:28 PM Page 56

4
Data Types, Keywords, Color,

Length, and the URI

CSS is comprised of a variety of smaller widgets and syntactical rules that come together to
enhance the functionality and the wealth of features in style sheets. These features enable you to
use different units of measurement and different methods for referencing colors; they also let you
insert content into a document directly from CSS and call on external files through universally rec-
ognized file paths. This chapter explores how these widgets are used as property values in CSS. In
this chapter I discuss

❑ Keywords and how keywords are used to define the functionality of a property in CSS

❑ Strings — a data type used in CSS that enables content to be inserted from a style sheet

❑ Absolute and relative lengths

❑ Integers and floating-point decimals — data types used in CSS to measure lengths

❑ Color keywords, RGB, and hexadecimal colors

❑ The URI

These pieces of CSS help make it a powerful presentational tool. Although CSS isn’t really a pro-
gramming language, its syntax and components are designed to mirror programming language
components. In Chapter 3, you saw that declarations are composed of properties and values. This
chapter explains the values a CSS property can have: colors, lengths, keywords, strings, and URLs.
The first value you’ll learn about is the keyword value.

Keywords
A keyword value is used to invoke some special functionality. For example, red, green, and blue
are CSS keywords, although, keywords can have uses in CSS other than just specifying colors.
Keywords are used in CSS as property values, as in this example:

08_576429 ch04.qxd 11/18/04 12:28 PM Page 57

table {
background-color: red;

}

The keyword in this example is red. The background-color property applies a solid background color,
red in this case, to the HTML / XHTML <table> element.

Many types of keywords are used in CSS, and sometimes a single keyword can have different meanings
depending on the element to which it is applied. The auto keyword, for example, is used by CSS to
apply some default style or behavior, and its meaning depends on the way it’s used. For example

<table style=’width: auto;’>

Figure 4-1 shows width: auto; applied to the <table> element.

Figure 4-1

When width: auto; is applied to a <table> element, it invokes a different mechanism for width mea-
surement than when it is applied to a <div> element:

<div style=”width: auto;’>

Figure 4-2 shows width: auto; applied to the <div> element.

Figure 4-2

All elements with a width property have an auto value by default, but not all elements behave the same
way when width is applied. The <table> element, for instance, only expands horizontally to accom-
modate its data, a method called shrink-to-fit. A <div> element, on the other hand, expands horizontally
as far as there is space, which is called expand-to-fit.

I’ve added a border around each element in Figures 4-1 and 4-2 so that you can see its width. The border
outlines the edges of each element, showing exactly how much space each element occupies. I discuss
the finer details of the width property in Chapter 10.

58

Chapter 4

08_576429 ch04.qxd 11/18/04 12:28 PM Page 58

Keywords always invoke some special, predefined behavior. In the case of the borders I added for
Figures 4-1 and 4-2, each border contains three separate keywords that define how it appears when the
browser renders it:

<div style=’border: thin solid black;’>

This example defines a property with three keyword values: thin, solid, and black. Each value refers
to a different characteristic of the border’s appearance: thin refers to its measurement, solid to its
style, and black to its color.

Keywords are cousin to another type of value, one that accepts any kind of input. This value is known as
a string.

Strings
Keywords and strings are very different in both their syntax and their effect on your pages. Unlike key-
words, which you use to control the appearance of your pages, strings can be used to add content to a
web page. A string is any sequence of characters; for example, “Hello, World” is a string. In most lan-
guages and in CSS, strings are enclosed within either single or double quotation marks. A string is what
is known as a data type. Data types are used to classify information. Integers, real numbers, and strings
are examples of data types. Strings may contain text, numbers, symbols — any type of character.

One use of strings in CSS is to include content in a document from the style sheet instead of adding the
content within HTML / XHTML tags. You can add content directly from the style sheet. For example,
instead of typing the following:

<div>
Hello, World!

</div>

you can apply a rule using the content property with a string value, like this:

div {
content: “Hello, World!”;

}

The string in this example is “Hello, World!”. In this context, I use the content property to insert
content into a <div> element directly from the style sheet. This type of functionality is referred to in CSS
as generated content. The content property is not yet widely supported; however, it does work with
Opera 7, and it works in Mozilla as well — but only when used with a special type of selector (more on
this in Chapter 6). While using Opera 7, if I make an XHTML document with an empty <div> element
and add a style sheet rule that includes the content property with a string value, the string in the con-
tent property is inserted into the <div> element, as depicted in this next example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title> The content property </title>

59

Data Types, Keywords, Color, Length, and the URI

08_576429 ch04.qxd 11/18/04 12:28 PM Page 59

<style type=’text/css’ media=’all’>

div {
content: “Hello, world!”;

}

</style>
</head>
<body>

<div></div>
</body>

</html>

Figure 4-3 shows that the string “Hello, world!” is inserted into the <div> element using the content
property.

Figure 4-3

Strings and keywords differ in use and in syntax. Strings are used to insert content into a web page, and
keywords invoke special predefined functionality. Keywords are always referenced without quotation
marks, and strings are always referenced with quotation marks. If you were to apply quotation marks to
keywords, you would not achieve the desired effect. The following does not give you the results you
want:

div {
border: “thin” “solid” “black”;

}

Enclosing keywords within quotation marks means that a border is not applied to the <div> element. If
you apply this rule to an element, nothing happens. When quotation marks are added, keywords
become strings. CSS is generally forgiving of such errors, but as of this writing, no browser reports
errors in CSS syntax.

Strings may contain any sequence of characters of any length — even quotation marks are allowed.
However, strings may contain quotation marks only if they’re escaped using another special character, the
backslash character. When you escape quotation marks, you tell the browser: “Ignore the quotation mark;
it is part of the string.” The backslash is used to quote Foghorn Leghorn in the following code:

div {
content: “Foghorn said: \”Get away from me son, you bother me.\””;

}

Figure 4-4 shows that the quotation marks have made it into the rendered page, but the backslashes
don’t show.

60

Chapter 4

08_576429 ch04.qxd 11/18/04 12:28 PM Page 60

Figure 4-4

As an escape character, a backslash is only included to tell the browser to ignore the quotation mark that
appears directly after it. The same backslash character is used to escape single quotes as well, if the
string is enclosed by single quotes:

div {
content: ‘Foghorn said: \’Get away from me son, you bother me.\’’;

}

The browser also ignores the single quotes in the middle with the use of the backslash character before
the quote mark. Quotation marks do not have to be escaped if single quotes are used within a string
enclosed by double quotes or vise versa. In this example

div {
content: “Foghorn said: ‘Get away from me son, you bother me.’”;

}

the single quotes do not have to be escaped because double quotes enclose the string.

In CSS, strings exist primarily to allow content to be inserted from the style sheet, although they do have
some other uses in attribute selectors that I discuss in Chapter 5.

Now that you’ve seen what keywords and strings are, you can create a very simple document that uses
both with the following Try It Out.

Try It Out Keywords and Strings
Example 4-1. Follow these steps to create a simple document with keyword and string property values:

1. Fire up your text editor and enter the following markup and CSS.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title> The content property </title>
<style type=’text/css’ media=’all’>

div {
content: “This string is placed inside of all div elements.”;
border: thick solid black;
background: skyblue;
color: black;
font-size: xx-large;

61

Data Types, Keywords, Color, Length, and the URI

08_576429 ch04.qxd 11/18/04 12:28 PM Page 61

padding: 20px;
}

</style>
</head>
<body>

<div></div>
<div></div>

</body>
</html>

2. Save as example4-1.html.

3. Open the page in the Opera 7.5 browser. It should look like the page shown in Figure 4-5.

Figure 4-5

How It Works
The preceding Try It Out demonstrates the effect of several CSS keywords and one CSS string. To see
how this is put together, examine each declaration in the rule. The first declaration uses the content
property to insert a string into all <div> elements in the document:

content: “This string is placed inside of all div elements.”;

To see the effects of the content property, you must use Opera 7 because Mozilla only partially sup-
ports this property. Internet Explorer does not support it at all. Its effects are simple: The content prop-
erty allows content to be placed inside CSS instead of in the body of the document. Each of the following
declarations has keyword values:

border: thick solid black;
background: skyblue;
color: black;
font-size: xx-large;

The border property, demonstrated in Figures 4-1 and 4-2, may have up to three keyword values, each
defining how the border is styled. Here the border is thick, solid, and black. (I discuss the border
property in further detail in Chapter 10.) The next declaration applies a skyblue background color to
each <div> element. Next comes a declaration making the text black, even though all browsers make
text black by default. The last declaration makes the font size extra, extra large.

62

Chapter 4

08_576429 ch04.qxd 11/18/04 12:28 PM Page 62

Finally, I add padding to the example with the padding: 20px; declaration. Padding is space between
the content of an element and the inner border edges. I added padding to make the text readable; with-
out the padding the text of each <div> is flush with the border.

Now that you’ve seen some examples of CSS property values, the following section shows how length
values such as width and length, can be specified in CSS to define a document’s layout.

Length and Measurement Options
Two kinds of lengths are used in CSS: relative and absolute. Absolute lengths are not dependent on any
other measurement. An absolute measurement retains its length regardless of the environment (operat-
ing system, browser, or screen resolution of a computer monitor) in which it is applied. Relative lengths,
on the other hand, depend on the environment in which they’re used, such as the computer monitor’s
screen resolution or the size of a font.

Absolute length units supported by CSS are shown in the following table.

Unit Abbreviation Description

in Inches

cm Centimeters

mm Millimeters

pt Points, 1 point is equal to 1/72th of an inch

pc Picas, 1 pica is equal to 12 points

Absolute lengths are supposed to maintain their size across multiple screen resolutions and platforms.
For example:

p {
font-size: 1in;
margin: 0;

}

renders a font that is 1 inch tall, as shown in Figure 4-6.

Figure 4-6
63

Data Types, Keywords, Color, Length, and the URI

08_576429 ch04.qxd 11/18/04 12:28 PM Page 63

Inconsistencies with Absolute Measurements
I said earlier that absolute measurements are supposed to maintain their size, but that doesn’t mean that
they actually do. The business of coding real-world physical lengths in a computer isn’t nearly as easy as
it may seem. Figure 4-6 becomes much larger when viewed at an 800 x 600 screen resolution than when
viewed at 1024 x 768. These physical measurements are based on pixels, albeit very poorly. Pixels are
tiny dots that a computer monitor uses to create the image you see, and the number of pixels displayed
depends on the monitor’s screen resolution. A computer monitor set to an 800 x 600 screen resolution
displays 800 pixels horizontally and 600 pixels vertically for a possibility of 480,000 total pixels.
Windows XP typically defines 1 inch as 96 pixels, but that depends on the operating system’s display
settings. It can be far from accurate because the length of a pixel changes depending on the screen reso-
lution setting. Using Mac OS X, 1 inch is equal to 72 pixels (again, this might be far from accurate).

Figure 4-7 shows two <div> elements: The top <div> element has a height and width of 1 inch, and
the bottom <div> has a height and width of 96 pixels. Both have a black background with white text for
clarity. Switching the screen resolution from 800 x 600 pixels to 1280 x 1024 shows that the measurement
of 1 inch remains the same as the 96-pixel measurement. Furthermore, because there is a difference
between how Windows and Mac platforms interpret an inch, absolute measurements are unreliable for
designing content to display on a computer monitor. To make things even more confusing and inconsis-
tent, Mozilla enables you to switch from 96 pixels per inch to 72 pixels per inch using the preferences
panel. In fact all the popular browsers render content based on 96 pixels per inch because of Windows
legacy, including Apple’s own Safari 1.2 browser.

Figure 4-7

So, if physical lengths are so inconsistent and so difficult to get right, why does the CSS specification
include them? It does so because, even though they’re unreliable for designing content that displays on a
computer monitor, these units of measurement are perfectly fine and universally applicable when you
are designing content for print. In Chapter 15 you explore how to use CSS to alter the presentation of a
web document for print. In that case, these units are most useful.

Metric Measurements
Understandably, CSS supports metric units because 99% of the world uses them. Centimeters and mil-
limeters are allowed, and they produce the lengths you would find on a ruler. However, these measure-
ments are subject to the same inconsistencies as inches and should not be used to design content for
display on a computer screen.

64

Chapter 4

08_576429 ch04.qxd 11/18/04 12:28 PM Page 64

Typographical Measurements
The pt unit stands for points, a unit of measurement heavily used in typographical design. One point is
equal to one seventy-second of an inch. Because points are based on the measurement of an inch, points
are also inaccurate. The pc measurement stands for picas, another typographical unit of measurement.
One pica is equal to 12 points.

Relative Length Measurements
As I mentioned earlier, relative lengths depend on the environment in which they’re used. The following
table shows the relative units allowed by CSS.

Unit Abbreviation Description

em Length relevant to the nearest font-size.

ex The x-height of the relevant font (height of the letter x).

px Pixels, relative to the viewing device, for example, a computer
monitor.

The em measurement unit depends on the nearest font size. For example:

div {
font-size: 12px;
height: 2em;

}

This rule defines a font size of 12 pixels and a height of 2em. Because em depends on the font size, this
results in a height of 24 pixels for the <div> element. If I had not defined a font size, the em unit would
depend on the font size of the <div> element’s parent element.

To get a better idea of how em works, the following Try It Out shows how em units relate to the font-size
of the element.

Try It Out Measuring Using em Units
Example 4-2. The following steps show you how to measure using em measurement.

1. Enter the following markup into your text editor.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title> em measurement </title>
<style type=’text/css’ media=’all’>

body {
border: 1em solid black;
margin: 0;
padding: 10px;

65

Data Types, Keywords, Color, Length, and the URI

08_576429 ch04.qxd 11/18/04 12:28 PM Page 65

}
div {

font-size: 24px;
height: 3em;
border: 1em solid black;

}
</style>

</head>
<body>

The body’s border is 1em thick. The body doesn’t have a font
size defined, so the em measurement here goes by the browser’s
default font size, which may vary from browser to browser.
<div>

This font is 24 pixels tall and this div is 3 ems tall,
which results in a div 72 pixels tall (3 * 24 = 72). Its
border is 1em thick, or 24 pixels thick.

</div>
</body>

</html>

2. Save the file as example4-2.html

3. Load the document in a browser; you should see output like that shown in Figure 4-8.

Figure 4-8

How It Works
The output in Figure 4-8 shows how em units are calculated. The first selector in the style sheet applies
style to the <body> element:

body {
border: 1em solid black;
margin: 0;
padding: 10px;

}

66

Chapter 4

08_576429 ch04.qxd 11/18/04 12:28 PM Page 66

Em units are calculated using the font size of the element, but in this case the <body> element has no
font size defined, nor does its parent element, the <html> element. When no font size is specified and no
ancestor elements have a font size defined, the em unit is based on the browser’s default font size. The
default font size in Mozilla is 16 pixels. So in this example, if Mozilla is the browser and it’s running
with default settings, the 1em measurement for the border around the <body> element is 16 pixels. The
<div> element, on the other hand, does have a font size defined — it’s set to 24 pixels:

div {
font-size: 24px;
height: 3em;
border: 1em solid black;

}

The height of the <div> element is set to 3em, or three times the font size. The font size is 24 pixels, so
the height of the <div> element is 72 pixels. Likewise, the border for the <div> element specifies a 1em
thickness, meaning the border is 24 pixels thick.

Measurements Based on the Height
of the Lowercase Letter x

The ex measurement, also known as x-height, is (like the em) based on the font size. However, the ex
measurement is relative to the height of the lowercase letter x. The ex measurement is another unit of
measurement derived from typography.

Like measurement in inches, ex measurement is unreliable, but for different reasons. Because it is diffi-
cult to determine the actual height of the lowercase letter x for a given font, most browser creators take a
shortcut in implementing the ex measurement. Instead of relying on the height of the lowercase letter x,
ex measurement is defined by taking the measurement of half of 1 em, or 0.5 em. Because of its inconsis-
tencies, ex measurement is yet another unit of measure to be avoided when designing for display on a
computer monitor.

Pixel Measurements
Pixels, the px measurement, are measured relative to the computer monitor’s settings. This measurement
depends on the resolution of the user’s monitor. For instance, a 1px measurement viewed at a resolution
of 800 x 600 is larger than a 1px measurement viewed at a resolution of 1024 x 768.

Pixels are easiest to understand when they specify the width and height of an image because images are
created based on the number of pixels they contain. Pixel measurements have some advantages and dis-
advantages. Pixel measurements use the actual pixels on your computer monitor. Although that is often
fine for screen display, it is not as precise when it comes to printing documents. The size of a pixel can
change depending on many factors, among which are monitor size and resolution and the fine-tuning
settings that stretch and shrink the display output. Therefore, defining a pixel measurement for print
leaves lots of room for browser inconsistencies. This is an area best-suited for the absolute units that I
discussed earlier in the chapter. I discuss this issue further in Chapter 15.

67

Data Types, Keywords, Color, Length, and the URI

08_576429 ch04.qxd 11/18/04 12:28 PM Page 67

Percentage Measurements
Percentage measurements are always dependent on something else; therefore, percentage measurements
are also a form of relative measurement. The behavior of a percentage measurement changes depending
on the element to which the measurement is being applied. For instance:

body {
margin: 0;

}
div {

width: 100%;
color: white;
background: black;

}

As you can see in Figure 4-9, the <div> element takes up 100% of the available area. In this example, I
removed the margin from the <body> element with the margin: 0; declaration. I did this because the
body’s default margin affects the <div> element’s rendering. The width: 100%; measurement is based
on the size of the <body> element; therefore, the <div> element’s width is relative to the width of the
<body> element. Because percentage measurements change depending on what they’re applied to, I
continue to revisit this topic throughout the book, as I introduce and explain each property.

Figure 4-9

Because it’s a presentational language, most of CSS is affected in some way by length and units of mea-
surement. The fundamental unit for all measurements when you design for display on a computer mon-
itor is the pixel, because computers display images in pixels. You can define lengths relative to font sizes,
using em units as the most practical and consistent solution. Absolute lengths, on the other hand, are
better suited for print because of the multitude of inconsistencies that occur when absolutes are used for
presentations on a computer monitor. In the next section, I continue the discussion of CSS property val-
ues with a look at how CSS interprets numbers.

Integers and Real Numbers
CSS allows numbers as values for several properties. Two types of numbers are accepted by CSS: integers
and real numbers. Like strings, integers and real numbers are data types and are often used in CSS for the
measurement of length. The first type, integers, are exclusively whole numbers, meaning no decimals
are allowed. In CSS, an integer may be preceded by a plus (+) or minus (-) to indicate the sign. Although
some properties do not accept negative values, many do. As you can see in the following code, one prop-
erty that allows negative values is the margin property:

body {
margin: 0;

}

68

Chapter 4

08_576429 ch04.qxd 11/18/04 12:28 PM Page 68

div {
font-size: 24pt;
width: 100%;
color: white;
background: black;
margin: -10px;

}

The rendering depicted in Figure 4-10 shows what happens when these rules are applied to an XHTML
document. As I did with the percentage width example, I removed the default margin from the <body>
element to observe the effect of the margin property on the <div> element. I also made the font size
large, the text white, and the background color black to clarify the dimensions of the <div> element.
With a negative margin applied, the <div> is shifted partially off-screen.

Figure 4-10

Real numbers are the second type of number allowed by CSS. Real numbers can have a decimal value,
and decimal values increase the precision of measurements in CSS.

Real numbers in CSS can be preceded by plus (+) or minus (-) to indicate the number’s sign. The value
1.2em, for example, means 1.2 times the font size. As in mathematics, a positive sign is assumed if no
sign is present. If I have a declaration that says margin-left: -1.2em;, this causes an element to shift
to the left 1.2 times the font size.

CSS as of this writing does not allow expressions. For instance, I could not write the following:

div {
width: 5px + 8px;

}

5px + 8px is an expression, and CSS is not capable of evaluating it (although a future CSS specification
might include this functionality).

CSS provides some basic and reasonable rules for the specification of integers and real numbers in property
values. CSS is also very flexible with how colors are specified, a topic I discuss in the following section.

Colors
CSS has a number of options for specifying colors, ranging from a 216-color, web-safe pallet to the full
range of colors available in the RGB format, a total of 16,777,216 colors! More specifically, those options
are as follows:

69

Data Types, Keywords, Color, Length, and the URI

08_576429 ch04.qxd 11/18/04 12:28 PM Page 69

❑ Color keywords: These enable you to specify a color by its name.

❑ RGB values: These enable you to specify a color via a Red, Green, Blue representation, which
provides access to millions of colors.

❑ RGB Percentage: This option is the same as RGB but uses percentages.

❑ RGBA (RGB with Alpha channel [available in CSS 3]): The RGB palette is used with the addi-
tion of an alpha channel to specify transparency.

❑ Hexadecimal: This enables you to specify a color by a special hexadecimal number.

❑ Shorthand Hexadecimal: This is a shortened representation of hexadecimal numbers; it is lim-
ited to a special 216-color, web-safe pallet.

Each method is a means to accomplish the same thing: specifying a color. These methods may be used to
specify text color, border color, or background color. Next, you see what each of these methods looks like
when used in the context of a style sheet rule.

Color Keywords
The first method for specifying color, mentioned previously, is to use a color keyword. This is the most
intuitive method because all you need to do is reference the name of the color itself. Here are some
examples:

div {
color: black;
background-color: red;
border: thin solid orange;

}

As I mentioned in Chapter 3, this is a simple element name selector. This rule applies style to any <div>
element contained in the document. I have specified that each <div> element should have black text, a
red background, and a thin, solid orange border around the element. In this example, black, red, and
orange are color keywords, so a color keyword is simply the name of the color.

In CSS 3, 147 colors are named. Browser support for these colors has been very good in the tests I have
run. I found only a single color not supported by Internet Explorer 6. That color is lightgray, spelled with
an a; however, the browser does support lightgrey, spelled with an e. This is an obscure bug that arises
because Internet Explorer only allows the British spelling of grey and not the American English gray. The
CSS specification supports both spellings of gray. Netscape 7 and Mozilla support the full list of colors
defined in CSS 3, as do Opera 7 and Safari 1.

RGB Colors
RGB stands for Red, Green, and Blue. These are the primary colors used to display the color of pixels on
a computer monitor. Using these three colors in various combinations, it is possible to create every color
of the rainbow. This is done through different colored lights either overlapping each other or appearing

A complete table of CSS-supported color keywords is available in Appendix C.

70

Chapter 4

08_576429 ch04.qxd 11/18/04 12:28 PM Page 70

side by side in different intensities to display color. RGB is also known as luminous or additive color.
Luminous means that RGB uses light in varying intensities to create color, and additive means colors are
added to one another to produce the colors of the spectrum. Many computers monitors are capable of
displaying millions of colors: 16,777,216 colors, in fact. CSS RGB color is specified using a special three-
number syntax, with each one representing a color channel. This first number is red, the second green,
and the third blue:

body {
background-color: rgb(128, 128, 128);

}

This produces the same color as the CSS color keyword gray. Equal amounts of all three channels form
a variation of gray, where 0,0,0 is black and 255,255,255 is white.

Here’s another example:

body {
background-color: rgb(135, 206, 235);

}

This produces the same color as the CSS color keyword skyblue. The number 135 refers to the red chan-
nel, 206 to the green channel, and 235 to the blue channel. RGB color is also often specified in hexadeci-
mal format.

RGB values may also be represented using percentages:

body {
background-color: rgb(50%, 50%, 50%);

}

This also produces the same color as the CSS color keyword gray.

CSS 3 is to introduce one more variation on the rgb scheme, with rgba. This specification includes the spec-
ification of an alpha channel, which is used to make an element transparent. The alpha channel of rgba is
specified in the same manner as regular RGB with the A to indicate how transparent the color is, with 0
being fully opaque and 255 being fully transparent. No browser yet supports the rgba specification.

Hexadecimal Colors
Hexadecimal colors were used in old, presentation-based HTML documents. Hexadecimal refers to a
numbering scheme that uses 16 characters as its base, expressed in a combination of letters and numbers.
The decimal numbering system, on the other hand, uses 10 numbers as its base. A hexadecimal system
uses 0-9 for the first 10 digits and A-F to represent the remaining 6 digits. Letter A corresponds to the
number 10, B to 11, C to 12, and so on up to 15, which is represented by F. Hexadecimal values are
another way of expressing an RGB value. For instance, #FFFFFF refers to white, which is expressed in
RGB as 255, 255, 255. To switch from RGB values to hexadecimal, each channel is converted to its hex-
adecimal equivalent, so each 255 becomes FF in hexadecimal. To calculate the hexadecimal value, divide
the RGB number by 16. The result is the first hexadecimal digit. The remainder from the division
becomes the second hexadecimal digit. The RGB value 255 divided by 16 equals 15 with a remainder
of 15. In hexadecimal, 15 are represented by F, so applying this formula results in FF. The process is

71

Data Types, Keywords, Color, Length, and the URI

08_576429 ch04.qxd 11/18/04 12:28 PM Page 71

TE
AM
 F
LY

repeated for each RGB color channel, so the hexadecimal notation of 255, 255, 255 is FF, FF, FF or
#FFFFFF. In CSS, hexadecimal colors are included just as RGB or color keywords are, as shown in the fol-
lowing example.

div {
color: #000000;
background-color: #FF0000;
border: thin solid #FFA500;

}

#000000 is the hexadecimal representation of black; the same as RGB 0, 0, 0 or simply the black color
keyword. #FF0000 is a hexadecimal representation of red, or RGB 255, 0, 0, or the red color keyword.
Finally, #FFA500 is a hexadecimal representation of orange, or RGB 255, 165, 0, or the orange color
keyword.

Short Hexadecimal and Web-Safe Colors
There are 216 web-safe colors. A web-safe color is a hexadecimal color comprised of any combination of
the following: FF, CC, 99, 66, 33, 00, for a potential of 216 colors. These colors were originally identified
and given their web-safe name by Lynda Weinman, a graphic and web design guru and author of
numerous graphic and web design books. These 216 colors were identified as colors safe for cross-plat-
form, cross-browser use on computer systems capable of displaying only 256 colors; in other words, 8-bit
systems. There are 216 colors, minus 40 colors reserved for use by operating systems Different operating
systems, such as Macintosh OS and Windows OS, do not reserve the same 40 colors. So these 40 colors
cannot be relied upon. If one attempts to use a color outside of the 216-color pallet on a system only
capable of displaying 256 colors, the operating system may attempt to display the color through a pro-
cess called dithering. Dithering is a process in which the operating system attempts to mix two colors
that it is capable of displaying to get the requested color.

Figure 4-11 shows a dithered image.

Figure 4-11

72

Chapter 4

08_576429 ch04.qxd 11/18/04 12:28 PM Page 72

Figure 4-12 shows the image undithered.

Figure 4-12

These images have been converted to grayscale for publication, but if you look close, you should be able
to see the effects of dithering. The image in Figure 4-11 is pixilated and grainy; the image in Figure 4-12
is smooth and fluid.

Dithering causes all sorts of nasty things to happen to an image or solid color. In some cases a grid
appears on a solid background where the operating system attempts to display the color using two colors.

Hexadecimal notation is capable of expressing all 16,777,216 colors allowed by RGB. If a color outside
the web-safe pallet is used, this leads to dithering. Short hexadecimal notation, on the other hand, allows
only the 216-color, web-safe pallet:

div {
color: #000;
background-color: #F00;
border: thin solid #FFA500;

}

Only FF, CC, 99, 66, 33, and 00 are allowable in the web-safe pallet, so the notation for these can be sim-
plified. FF becomes simply F, CC becomes C, 99 becomes 9, and so on. A single digit rather than two rep-
resents the pair. So in this example, #000 refers to black and #F00 refers to red. #FFA500 is not
representable in short hexadecimal notation because A5 cannot be simplified to a single digit. Only pairs
in which both numbers have the same value can be converted to short hexadecimal notation.

Although in the past the web-safe pallet was frequently necessary for designers, today advanced graphic
cards capable of displaying millions of colors have become so common that the number of 8-bit systems
capable of displaying only 256 colors has fallen dramatically. Today, it is safer to design creatively with
color. The browser-safe pallet is not yet completely dead — it still has a place in designing web content
for display on PDAs and cell phones, most of which are limited to 256 colors.

The URI
CSS uses a special term — URI (Universal Resource Indicator) — when the location of a resource or data file
must be specified. The acronym URI is related to two other acronyms, URL (Universal Resource Locator),
and URN (Universal Resource Name). The ideas behind both of these specifications are combined to get
the URI, the term used in the W3C CSS specifications. URIs are most used in CSS for two purposes:

73

Data Types, Keywords, Color, Length, and the URI

08_576429 ch04.qxd 11/18/04 12:28 PM Page 73

❑ The inclusion of style sheets.

❑ The inclusion of background images.

The URI is referenced using a special method, as show in the following example.

background: url(mypicture.jpg);

The url() syntax is used to enclose the URI of the file being referenced. Like the @import and <link/>
tag discussed in Chapter 3, this URI can be either a relative or an absolute path to the resource. So in this
example, mypicture.jpg must exist in the same directory as the style sheet. If the style sheet is named
mystyle.css and it’s located at http://www.mysite.com/styles/mystyle.css, the mypicture.jpg file
must also exist in the styles directory, where its path is http://www.mysite.com/styles/mypicture.
jpg. The complete, absolute path or the shortened relative paths are both acceptable references to the
file. I address this topic again in Chapter 8, where I outline some of the techniques that professional web-
site designers use to manage the files of a website and in Chapter 13 where I discuss the background
property and the syntax it allows.

Summary
CSS properties may have a wide range of values that can include keywords, strings, lengths, colors, and
URIs. In this chapter you learned that the following:

❑ Keywords are used in CSS to invoke special behavior or styles for an element, such as how a
border appears or how width is handled.

❑ Strings are used in CSS primarily to insert content dynamically.

❑ Absolute lengths are more suited for print than for screen.

❑ Pixel length measurements are more suited for screen than for print.

❑ RGB colors are luminous or additive colors that are combined to create a possibility of over 16
million colors. In CSS, these can be expressed in three channels by including a number between
0 and 255 for each channel or by a percentage real number.

❑ Hexadecimal colors are RGB colors values written in a system using a 16 alphanumeric charac-
ter base (instead of a 10 number base as with the common decimal system).

❑ Short hexadecimal notation is a representation of the 216-color, web-safe pallet

❑ URIs are used to reference external files in CSS. External files are imported from other sources
and can be, for example, background images and other style sheets.

The discussion of CSS basics is continued in Chapter 5, which takes an in-depth look at the various types
of selectors that CSS supports.

74

Chapter 4

08_576429 ch04.qxd 11/18/04 12:28 PM Page 74

Exercises
1. Compose a web page with a heading of <h1> and a paragraph of text <p>. Specify the font size

in the selector for the <body> element as 12 pixels. Specify the heading font size as 1.2em. Give
the paragraph a font size of 0.9em. Give the heading a thin, black, solid border and a pink back-
ground. Give the paragraph a thin, solid, black border, white text, and a gray background. Give
both the heading and the paragraph a padding of 1em.

2. Repeating the scenario from Exercise 1, specify all sizes using pixels instead of em units, and use
RGB instead of color keywords to specify the colors for the document. Calculate the pixel mea-
surements so that they are exactly the same lengths as the em measurements you used in
Exercise 1.

75

Data Types, Keywords, Color, Length, and the URI

08_576429 ch04.qxd 11/18/04 12:28 PM Page 75

08_576429 ch04.qxd 11/18/04 12:28 PM Page 76

5
CSS Selectors

In Chapter 3, I touched on the topic of type selectors. You learned that CSS Selectors choose where
and what to format in a document. CSS, however, supports a wide range of options for the selec-
tor. This chapter covers

❑ The universal (wild card) selector

❑ Contextual/descendant selectors

❑ Child selectors

❑ Direct/indirect adjacent sibling combinators

❑ Attribute selectors

❑ User-defined class and id selectors

At the time of this writing, no universal support exists for all selector types. For that reason, most
of this chapter’s examples are designed to work in Netscape 7, Mozilla, or Mozilla Firefox. Mozilla
has an excellent implementation of the CSS recommendations as outlined by the W3C, whereas
other browsers still lack this support in some areas.

The Universal Selector
Documented in CSS 3 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari.1.2.

The universal selector is an asterisk. When used alone, the universal selector tells the CSS inter-
preter to apply the CSS rule to the entire document and all conceivable elements:

* {
font-family: Arial;
color: black;

}

09_576429 ch05.qxd 11/18/04 12:29 PM Page 77

This rule is applied to all elements contained in the document unless specified elsewhere by the
cascade — covered in Chapter 7. The universal selector applies to everything, including form input fields
and tables of data. It applies style to any and every element present in a document. The universal selec-
tor can also be used with other types of selectors, such as descendant selectors, which is the focus of the
next section.

Contextual/Descendant Selectors
Documented in CSS 3 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

Descendant selectors apply style based on whether one element is a descendant of another. In CSS,
descendant means an element that is a child, grandchild, great grandchild, and so on of another element.
This type of relationship is referred to as an ancestral relationship.

In the CSS level 1 specification, descendant selectors are referred to as contextual. The name change was
made in the CSS level 2 specification. The name change likely resulted from new selectors in CSS 2, sev-
eral of which can also be considered contextual because their selection is based on the context in which
the target element appears in the document.

The following rule demonstrates a descendant selector:

div h1 {
color: darkolivegreen;

}

This example applies a color of darkolivegreen to <h1> elements, but only if somewhere in the docu-
ment hierarchy the <h1> element appears nested inside a <div> element. That is to say the <h1> could
appear inside a <table> or a paragraph of text, as long as each of these is nested inside at least one
<div> element.

For example, you could have the document hierarchy represented in Figure 5-1.

In Figure 5-1, <html> is the root element; each element following <html> is a child of <html>; <div> is
a child of <body>; <table> is a child of <div>; and so on. The descendant selector, div h1, says that if
an <h1> element has an ancestor <div> element, you should apply the style declarations contained in
the rule. This selector applies style whether <h1> is a direct child of <div> or a distant grandchild.

If div h1 is the descendant selector, that selector applies to the following markup:

<div>
<h1>Some header text</h1>

</div>

78

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 78

as well as to this markup:

<div>
<table>

<tr>
<td>

<h1> Some header text </h1>
</td>

</tr>
</table>

</div>

Both hierarchies are valid for the div h1 descendant selector.

Figure 5-1

79

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 79

Descendant selectors are not limited as to how many elements are referenced in the element hierarchy;
therefore, using the preceding example, all the following rules also reference the <h1> element appear-
ing inside the table.

div table td h1 {
color: darkolivegreen;

}

div table h1 {
color: darkolivegreen;

}

div td h1 {
color: darkolivegreen;

}

The <h1> element inside the table applies darkolivegreen-colored text.

In the last section, I mentioned the universal selector could be combined with other selectors, like the
descendant selector. Take for instance, the following rule:

div * {
color: lavender;

}

The selector in this rule applies to all descendants of the <div> element; every descendant of the <div>
element receives lavender text.

Now that you have an overview of how the universal and descendant selectors work, the following Try
It Out puts that knowledge into a tangible real-world example. Each example in this chapter builds a
user input form for feedback for the Widgets and What’s-its company to demonstrate the various CSS
selectors in action. This example lays the input form’s foundation and shows you how to apply styles to
elements with the universal selector, descendant selectors, and plain old type selectors introduced in
Chapter 3.

Try It Out Descendant Selectors
Example 5-1. This example begins with the basic form look and feel and the input-form questions.

1. Return to your favorite text editor and type the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title>Feedback Form - Widgets and What’s-its</title>
<style type=”text/css”>

* {
font-family: sans-serif;
color: white;

}

80

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 80

/**
* Apply this style to all h1 elements regardless of where they
* appear in the page.
**

*/

h1, form h2 {
background: gray;

}

h1, h2, form {
margin: 0;

}

h1 {
font-size: 24px;
padding: 5px;
border-bottom: 5px solid black;
letter-spacing: -2px;
width: 510px;
-moz-border-radius-topleft: 10px;
-moz-border-radius-topright: 10px;

}

form {
background: lightgrey;
padding: 10px;
width: 500px;
-moz-border-radius-bottomleft: 10px;
-moz-border-radius-bottomright: 10px;

}

/**
* Apply these styles label elements, but only if they
* appear inside of an input form
**

*/

form label {
display: block;
font-weight: bold;
margin: 5px;
width: 225px;
text-align: right;
background: black;

}

/**
* These styles are shared between h2 and label elements
* that appear inside of a form
**

*/

form h2, form label {
font-size: 15px;

81

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 81

-moz-border-radius: 10px;
padding: 3px;

}
</style>

</head>
<body>

<h1>Widgets and What’s-its</h1>
<form>

<h2>Tell us what’s on your mind..</h2>
<label>Name:</label>
<label>Email:</label>
<label>Address:</label>
<label>Comments:</label>
<label>How’d you hear about us?</label>

</form>
</body>

</html>

2. Save the file as example5-1.html. You should see output similar to what is shown in Figure 5-2.

Figure 5-2

82

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 82

How It Works
This example lays the foundation for the user-input form example used throughout this chapter. Because
this example is much more complex than previous examples, take a look at each rule individually. The
style sheet begins with the universal selector:

* {
font-family: sans-serif;
color: white;

}

This rule applies the properties contained in it to all rendered elements. This example applies a generic
font, sans-serif, with the font-family property. Web page authors use generic fonts to avoid specifying
an operating-system–specific font. For instance, Tahoma is a Windows-only font, whereas Helvetica is a
Macintosh/Linux-specific font. (Chapter 9 discusses generic fonts in greater detail.) The color property
follows font-family property, which applies white text to the entire document.

Next comes the first example of a descendant selector. This rule groups two selectors. First it selects all
<h1> elements, and then all <h2> elements, but only if they appear inside of a <form> tag. If the
<form> element is a parent, grandparent, or ancestor of the <h2> element it receives a gray background:

h1, form h2 {
background: gray;

}

The next rule removes preset margins from the <h1>, <h2>, and <form> elements, which squishes every-
thing together and gives the form a nice, seamless look. This rule specifies that the black border on the
bottom of the top <h1> header is flush with the input form:

h1, h2, form {
margin: 0;

}

This style sheet contains comment text to help you understand what each rule does:

/**
* Apply this style to all h1 elements regardless of where they
* appear in the page.
**

*/

Next comes another familiar selector from Chapter 3. This rule selects all <h1> elements:

h1 {
font-size: 24px;
padding: 5px;
border-bottom: 5px solid black;
letter-spacing: -2px;
width: 510px;
-moz-border-radius-topleft: 10px;
-moz-border-radius-topright: 10px;

}

83

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 83

This rule applies an absolute width to the <h1> element with the width: 510px; declaration. It also
applies some padding with the padding: 5px; declaration, which adds some space between the text
inside the <h1> element and the inside border edge, a 24-pixel font size, and a thick, black border under
the heading. The letter-spacing property squishes the header’s letters together. The letter-spacing
property’s negative value causes the letters to appear closer together. This rule contains two new proper-
ties: -moz-border-radius-topleft and -moz-border-radius-topright. These are proprietary CSS
properties that work only in Gecko browsers and round the top-left and top-right edges of the header.
Although many developers discourage its use, it is harmless to include proprietary CSS because browsers
that don’t recognize the styles simply ignore them. For example, the proprietary -moz-border-radius
property is included in CSS 3 as the border-radius property, but no browser support has yet emerged
for this property.

After the header, you style the element that contains the input form itself, the <form> element.

form {
background: lightgrey;
padding: 10px;
width: 500px;
-moz-border-radius-bottomleft: 10px;
-moz-border-radius-bottomright: 10px;

}

This rule includes a light grey background. Grey is spelled with an e here (its British spelling) because
Internet Explorer doesn’t recognize it with an a (its American spelling). All CSS color constants with grey
in the name are laid out by the W3C to be spelled with either an e or an a to accommodate either
spelling.

The form here also includes a width of 500 pixels, as opposed to the header’s width of 510 pixels. Why
the difference? This concept is known in CSS as the box model, and I discuss it in detail in Chapter 10.
The box model is a set of rules that governs the fundamentals of web page layout. To give you a brief
overview of how the box model works, there are four areas where the space of each element is mea-
sured: margins, border, padding, and width, in that order. These four come together to form a box. The
width of an element is measured from inside padding edge to inside padding edge — known as the con-
tent area — where the text and images inside an element appear. Around the content is the padding,
around the padding are the borders, and around the borders is the margin. You can refer to the diagram
presented in the first figure in Chapter 10 (Figure 10-1) for a visual representation.

In CSS, the background of each element is the area from outside border edge to outside border edge,
which includes the borders, padding, and content area. The form has a padding of 10 pixels, and the
header has a padding of 5 pixels. In order to line up the <h1> heading with the <form> element, the
amount of padding you add to each element’s width must be equal because the padding plus the width
equals the background area. Each padding size is doubled to get the amount of padding used on both
the left and right sides of the element, and that amount is then added to the element’s width. The form’s
width, including padding, is 520 pixels; the header’s width including padding is also 520 pixels. Because
the box model is a fundamental concept of CSS design, I continue to revisit this topic throughout the
book.

Next you style the form questions:

form label {
display: block;
font-weight: bold;

84

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 84

margin: 5px;
width: 225px;
text-align: right;
background: black;

}

In this example, <label> elements contain the form questions. The <label> element is intended exclu-
sively for form input controls. Each <label> element can be tied to a specific form input control, which
you see demonstrated in Example 5-2. This rule also employs a descendant selector; the styles are
applied only if the <label> element appears inside a <form> element. The first declaration applied to
each <label> element makes all of them block-level elements; this is a complicated adjustment that
changes the way the <label> element handles the box model. The addition of display: block;
causes the <label> element to take on an entirely different behavior where margin, borders, padding,
and width are concerned. The effects of this change are too complicated to explain here, so I revisit this
in Chapters 10 and 17.

The text of each question in the feedback form is made bold with the font-weight: bold; declaration;
then some margin is applied to each <label>, which provides some space between the bottom of one
<label> and the top of the next. Each is given a width of 225 pixels; this width leaves room for the form
input controls, which you add in Example 5-2. The text of each <label> is then right-aligned with the
text-align: right; declaration, and each is given a black background.

Finally, you apply styles common to <h2> and <label> elements that appear inside forms:

form h2, form label {
font-size: 15px;
-moz-border-radius: 10px;
padding: 3px;

}

The <h2> element is used as the form’s header, and the <h1> heading contains the company name. This
rule applies some padding, a font size, and once more, the proprietary -moz-border-radius property,
which rounds the edges of <h2> and <label> elements appearing inside a form.

The next section continues the discussion of selectors with the direct child selector, a selector that works
in a similar fashion to the descendant selector.

Direct Child Selectors
Documented in CSS 3 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

Direct Child selectors operate much like descendant selectors in that they also rely on an ancestral rela-
tionship to decide where to apply style. Descendant selectors, however, are more ambiguous because
they apply to any descendant of an element. Child selectors apply only to immediate children of the ele-
ment. This is achieved by introducing a new syntax for the selector. This example shows a direct child
selector:

h2 > em {
color: blue;

}

85

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 85

It uses the greater than sign (>) to show the relationship between the two elements. In this example,
 must be a direct child of an <h2> element before it becomes blue. For example

<h2>Welcome to What’s-its and Widgets</h2>

results in the application of this rule. Whereas

<h2>Welcome to Widgets and What’s-its</h2>

does not apply this rule, because isn’t a direct child of <h2>. The element is the direct
child of <h2>, and is the direct child of .

In this Try It Out, you build on the document presented in Example 5-1. You add form input fields to the
Widgets and What’s-its feedback form and implement direct child selectors in the embedded style sheet.

Try It Out Direct Child Selectors
Example 5-2. The following steps show you how to use direct child selectors:

1. Open example5-1.html and modify the embedded style sheet, adding the following highlighted
rules:

/**
* These styles are shared between h2 and label elements
* that appear inside of a form
**

*/

form h2, form label {
font-size: 15px;
-moz-border-radius: 10px;
padding: 3px;

}

/**
* Direct Child Selectors
**

*/

form > div > label {
float: left;

}
form > div {

clear: left;
}
div > input, div > select {

margin: 3px;
padding: 4px;

}

86

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 86

select > option {
padding: 4px;

}
</style>
<title>Feedback Form - Widgets and What’s-its</title>

</head>

2. Next, add form input controls to the document body, a for attribute to each <label> element,
and enclose each form question and input control with <div> elements:

<h1>Widgets and What’s-its</h1>
<form>

<h2>Tell us what’s on your mind..</h2>
<div>

<label for=’feedback[name]’>Name:</label>
<input type=’text’ size=’25’ name=’feedback[name]’ />

</div>
<div>

<label for=’feedback[email]’>Email:</label>
<input type=’text’ size=’25’ name=’feedback[email]’ />

</div>
<div>

<label for=’feedback[address]’>Address:</label>
<textarea name=’feedback[address]’

cols=’40’ rows=’3’ wrap=’virtual’>
</textarea>

</div>
<div>

<label for=’feedback[message]’>Comments:</label>
<textarea name=’feedback[message]’

cols=’40’ rows=’6’ wrap=’virtual’>
</textarea>

</div>
<div>

<label for=’feedback[heard]’>How’d you hear about us?</label>
<select name=’feedback[heard]’>

<option value=’’>Choose...</option>
<option value=’newspaper’>Newspaper</option>
<option value=’magazine’>Magazine</option>
<option value=’television’>Television</option>
<option value=’radio’>Radio</option>
<option value=’other’>Other</option>

</select>
</div>

</form>

3. Save this file as example5-2.html. Loading the file into Mozilla/Firefox/Netscape, you should
see output like that which is shown in Figure 5-3.

87

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 87

Figure 5-3

How It Works
With this round of modifications, your feedback form looks more like a feedback form, although it’s still
not quite complete. The first rule you applied selects the <label> element if it is a direct child of a
<div>, which, in turn, is a direct child of a <form> element:

form > div > label {
float: left;

}

It wasn’t really necessary to add another rule that selects the <label> element because you created a
rule using the form label selector in Example 5-1 to select <label> elements. You added this rule sim-
ply to see how the direct child selector works. Here you applied a float: left; declaration; this is
another complicated property that I discuss at great length in Chapter 11. The addition of this declara-
tion, float: left; causes the <input> and <select> elements to appear to the right of the <label>
element. In fact, when the float property is applied to an element, it causes all the elements that follow
the floated element to float to the left or right of the element (if there is room for those subsequent ele-

88

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 88

ments to fit in terms of their dimensions). So to limit the effects of the float property you applied
another rule:

form > div {
clear: left;

}

The clear property is a companion property to the float property. The clear property tells the <div>
element to ignore the float property on the <label> element and allows the <div> element to stay on
its own line, preventing the <div> element from floating, too. With the float property on the <label>
element, the inputs you add and every subsequent <label> element and <div> element try to put
themselves beside the first <label> element. This works for everything but the <textarea> elements,
which stay on their own line because they’re bigger than the space between the <label> element and
the edge of the form. This looks a little strange, but you fine-tune this in Example 5-3. Again, these are
complicated properties that are discussed again in Chapter 11. Now that the <input> elements and the
<select> element are on the same line as the question, you need to tweak the spacing and enter the
next rule:

div > input, div > select {
margin: 3px;
padding: 4px;

}

This rule says if <input> and <select> elements are direct children of <div> elements, apply a 3-pixel
margin and a 4-pixel padding to those elements. This adjusts the spacing so that the inputs match up
with the questions vertically. And finally the last rule is the following:

select > option {
padding: 4px;

}

With CSS, you can style the options of drop-down menus individually. Browsers like Mozilla have
impressive CSS support for styling drop-down menus, whereas Internet Explorer 6 doesn’t support
quite as many properties as Mozilla does. The rule says that if <option> elements are direct children of
the <select> element (which they always are) give them 4 pixels-worth of padding.

Continuing the discussion of selectors, the next section discusses a selector much like the direct child
selector, but instead of child elements, it selects siblings.

Direct Adjacent Sibling Combinator
Documented in CSS 3 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

Adjacent sibling selectors, just as the name sounds, select based on whether two elements appear side by
side in a document as siblings. Referring back to the diagram in Figure 5-1, <head> and <body> are sib-
lings because they appear side by side and share the same parent, the <html> element. Likewise, the
two <div> elements in the diagram are siblings because they also appear side by side and share the

89

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 89

same parent, the <body> element. Whereas the direct child selector in the previous section relied on a
parent-child relationship, direct adjacent sibling combinators rely on a sibling relationship.

CSS 2 simply refers to these selectors as adjacent sibling selectors. CSS 3 changes the name slightly to
direct adjacent sibling combinator. The name change is due to an expansion of CSS 3 to also include
indirect adjacent sibling combinators (discussed in the next section). The word combinator is based on
the word selector and what the syntax does.

For example, a rule using a direct adjacent sibling combinator selector looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<style type=”text/css”>

h2 + p {
text-indent: 20px;
color: red;

}
</style>

</head>
<body>

<div>
<h2>

Welcome to CSS widgets.
</h2>
<p>

This paragraph of text is red and is indented 20 pixels.
</p>

</div>
<p>

This paragraph of text is not indented, it does not have the same
parent as an h2 element.

</p>
</body>

</html>

The <p> element directly follows the <h2> element, making the <p> element a direct sibling of the <h2>
element. The h2 + p selector makes the text of the paragraph that follows the <h2> element, red and
indented 20 pixels.

Building on the document that you completed for Example 5-2, this Try It Out continues building on the
feedback form for Widgets and What’s-its with the application of a rule that uses the direct adjacent sib-
ling combinator.

Try It Out Direct Adjacent Sibling Combinator
Example 5-3. In the following steps, the input form is expanded with the inclusion of a style rule that
uses the direct adjacent sibling combinator.

1 Once more in your text editor, open the document example5-2.html and make the following
changes to the Widgets and What’s-its embedded style sheet:

90

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 90

select > option {
padding: 4px;

}

/**
* Direct Adjacent Sibling Combinators
**

*/

label + input, label + select, label + textarea {
background: darkgray;

}
</style>
<title>Feedback Form - Widgets and What’s-its</title>

</head>
<body>

2. Save the file as example5-3.html. Loading the file in Mozilla/Firefox/Netscape, you see output
like that shown in Figure 5-4. I’ve typed some text into each input field so you can see how the
text of each field is styled.

Figure 5-4

91

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 91

How It Works
This example is very straightforward. The new rule selects three different elements. It says if an <input>
element follows a <label>, give the element a dark gray background. If a <select> element follows a
<label>, do the same. If a <textarea> element follows a <label>, do the same.

The next section introduces the indirect adjacent sibling combinator — another contextual selector simi-
lar to the direct adjacent sibling combinatory.

Indirect Adjacent Sibling Combinators
Documented in CSS 3 and supported in Safari 1.2.

Like the direct adjacent sibling combinator selector discussed in the preceding section, the indirect adja-
cent sibling combinator selector also selects elements based on sibling relationships. This new selector
loosens up the rules a bit, however. Indirect adjacent sibling combinators do not require the elements to
appear side by side in the document, but the elements still must share the same parent element. You use
a tilde (~) instead of a plus sign (+) in the syntax for an indirect adjacent sibling combinator selector.

The embedded style sheet of the following XHTML document shows the syntax for this rule:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<style type=”text/css”>

h2 ~ h3 {
text-decoration: underline;
font-size: 22px;
color: lightgreen;

}
</style>

</head>
<body>

<div>
<h2>

Welcome to CSS widgets.
</h2>
<p>

This paragraph of text is indented 20 pixels.
</p>
<h3>

Some underlined text.
</h3>

</div>
</body>

</html>

The <h2> and <h3> element must have the same parent for the selector to work, and element <h2> still
precedes element <h3>. But the two elements do not have to be side by side. This selector results in the
<h3> element receiving underlined, light green text with a font size of 22 pixels.

92

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 92

Browser support for the indirect adjacent sibling is yet to emerge at the time of this writing. Currently,
it is supported only by Safari.

The next section continues discussion of CSS selectors by introducing a new kind of selector, one that
selects elements based on that element’s attributes.

Attribute Selectors
Documented in CSS 3 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

Attribute selectors may decide where to apply style declarations based on the presence of attributes or
attribute values that appear in the HTML, XHTML, or XML tag.

The syntax looks like this:

input[type=’text’] {
background: green;

}

This rule selects <input/> elements that contain the type=’text’ attribute, as in the following:

<input type=”text” name=”some_input” />

There are, however, several types of attribute selectors. CSS provides attribute selectors that select ele-
ments based on the following:

❑ The presence of an attribute

❑ The value of an attribute

❑ Whether one of several possible values is present in an attribute

❑ Whether the attribute value begins with a specific string

❑ Whether the attribute value ends with a specific string

❑ Whether the attribute value contains a specific string anywhere in the value, be it at the begin-
ning, end, or middle

The following sections examine each type of attribute selector in greater depth and provide examples of
the syntax for each.

Selection Based on the Presence of an Attribute
Documented in CSS 3 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

A simple attribute selector selects elements based on the presence of a particular attribute. The syntax
looks like this:

input[type] {
background: lightcoral;
border: 2px dotted darkorange;

}

93

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 93

In this example, the selector begins with a simple type selector preceded by the attribute name enclosed
in square brackets. This rule applies to <input> elements, but only <input> elements that contain a
type attribute. This selector is related to the type selector introduced in Chapter 3; but instead of only
selecting an element, the selection is made based on whether that element contains a particular attribute.

The next section discusses attribute selectors that select based on whether the attribute contains a partic-
ular value.

Selection Based on the Value of an Attribute
Documented in CSS 3 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

Attribute value selectors delegate style declarations based on an attribute’s presence and value. Here is
the selector I showed at the opening of this “Attribute Selectors” section:

input[type=’text’] {
background: green;

}

CSS, however, also supports the specification of multiple values via the following syntax:

input[type~=’text’ ‘file’ ‘password’] {
border: 2px dotted darkorange;

}

The tilde indicates multiple values. In this example, the style sheet rule is applied to <input> elements
that have a type attribute value of text, file, and password, as in

<input type=’text’ name=’some_field’ />

<input type=’password’ name=’some_password’ />

<input type=”file” name=’some_user_file’ />

A 2 pixel-wide dotted border appears around each field. However, the style sheet rule is not applied to
<input> elements with a type attribute value of radio or checkbox, or to an <input> element with a
type attribute containing any other value.

No major browser yet supports the tilde multiple value syntax.

However, you are not limited to the presence of only one attribute. An element may also be selected
based on the presence and value of multiple attributes:

input[type=’text’][name=’some_field’]

This would match any input element that has a type attribute of “text” and a name attribute of
“some_field”.

The values don’t necessarily have to be enclosed in quotes. The following selector is also valid.

input[type=text][name=some_field]

94

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 94

The following section discusses attribute substring selectors that select elements based on where in an
attribute’s value a string appears.

Attribute Substring Selectors
Documented in CSS 3 and supported in Mozilla 1.7 and Safari 1.2.

Taking the flexibility of attribute selectors even further, the selectors in the following sections choose ele-
ments based on whether a particular string appears at the beginning of an attribute’s value, at the end of
an attribute’s value, or anywhere inside an attribute’s value. A string that appears inside another string
is often referred to as a substring.

Selection Based on Attribute Values That Begin with a String
The first type of substring attribute selector chooses elements with an attribute value that begins with a
particular string. This is demonstrated in the following rule:

a[href^=’ftp://’] {
background: orange;

}

This rule selects links (<a/> elements) that have an href attribute when the value of the href attribute
begins with the string “ftp://”. The rule selects all FTP links in a web page and gives them orange
backgrounds.

This attribute substring selector introduces the caret (^) character in the selector syntax, which indicates
that the attribute value begins with “ftp://”. Each href attribute prefixed with “ftp://” is then
styled according to the declarations defined in the rule.

Another example of this syntax in action is to match all e-mail links in a page:

a[href^=’mailto’] {
color: burlywood;

}

This code changes the color of all e-mail links to burlywood!

The next section examines the attribute substring selector that chooses elements with attribute values
ending with a string.

Selection Based on Attribute Values That End with a String
The next substring attribute selector chooses elements with attributes whose value ends with a string.
The syntax of this selector is demonstrated in the following rule:

a[href$=’.html’] {
color: indianred;

}

95

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 95

The selector of the preceding rule uses the dollar sign to signify that the selector matches the end of the
attribute value. This changes all links that end in an .html suffix to indianred. Here’s an example of this
in the document itself:

Hello, World!

The href attribute in the link ends in an .html extension, so it receives a text color of indianred.
Conversely, this principle does not apply to the href attribute of the following <a> element:

A .php page

The attribute’s value in this example ends with a .php suffix, so it does not receive a text color of
indianred.

The next section discusses an attribute substring selector that chooses elements based on whether a
string appears anywhere in an attribute’s value.

Selection Based on Attribute Values That Contain a String
The final type of attribute substring selector is more of a wild card. It selects an element that contains an
attribute whose value contains a string anywhere in the value: at the beginning, end, or anywhere in
between. This attribute substring selector uses an asterisk in the syntax to indicate that the selector is
looking anywhere inside the value:

a[href*=’.php’] {
background-color: thistle;

}

This matches any URL that contains a .php extension regardless of whether the URL contains anchors or
query strings, as shown in this example:

Some link
text

All that garbage after the question mark is called the query string, which holds special meaning for program-
ming languages such as PHP, ASP, Perl, and others. What that stuff does isn’t important. What is impor-
tant is that using this style sheet rule, the selector finds the .php extension even though it is in the middle
of the value. The selector also finds the .php value if it appears at the beginning or the end of the URL:

A .php page

Both links receive the thistle color.

The following Try It Out continues to build on the Widgets and What’s-its input form. This time you
apply attribute selectors.

Try It Out Attribute Selectors
Example 5-4. The following steps demonstrate the usefulness of attribute selectors in an input form.

1. In your text editor, open example5-3.html and modify the embedded style sheet to include the
following highlighted block:

96

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 96

label + input, label + select, label + textarea {
background: darkgray;

}

/**
* Attribute Selectors
**

*/

option[value] {
letter-spacing: 2px;

}
option[value=’newspaper’] {

background: orange;
}
option[value=’magazine’] {

background: red;
}
option[value=’television’] {

background: black;
}
option[value=’radio’] {

background: green;
}
option[value=’other’] {

background: blue;
}
input[name$=’[name]’] {

color: darkred;
}
input[name$=’[email]’] {

color: darkblue;
}
textarea[name$=’[address]’] {

color: purple;
}
textarea[name$=’[message]’] {

color: black;
}
select[name$=’[heard]’] {

color: darkgreen;
}
input[name^=’feedback’],
select[name^=’feedback’],
textarea[name^=’feedback’] {

font-weight: bold;
}

</style>
<title>Feedback Form - Widgets and What’s-its</title>

</head>
<body>

2. Save as example5-4.html. Viewing the example in Mozilla, Netscape 7, or Firefox, you see out-
put that looks like Figure 5-5.

97

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 97

Figure 5-5

How It Works
Following is a review of each rule applied:

option[value] {
letter-spacing: 2px;

}

This rule applies some letter spacing to each individual <option> element. Mozilla has impressive
styling capability for form inputs. The <select> element is styled separately from the individual
options contained inside of it. In the Widgets and What’s-its feedback form, for example, the selected
value has a gray background, bold, dark green text (thanks to a rule discussed later), and a different
style for each option in the drop-down list. The next set of rules applies more styles to each individual
<option> element to further differentiate them:

option[value=’newspaper’] {
background: orange;

}
option[value=’magazine’] {

98

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 98

background: red;
}
option[value=’television’] {

background: black;
}
option[value=’radio’] {

background: green;
}
option[value=’other’] {

background: blue;
}

These rules give each <option> element a different background color based on the value of the value
attribute.

The next set of rules applies a different text color to each input field:

input[name$=’[name]’] {
color: darkred;

}
input[name$=’[email]’] {

color: darkblue;
}
textarea[name$=’[address]’] {

color: purple;
}
textarea[name$=’[message]’] {

color: black;
}
select[name$=’[heard]’] {

color: darkgreen;
}

The first rule specifies that darkred text be applied if the name attribute of <input> elements ends with
the string ‘[name]’. The other input elements receive a different text color based on what the name
attribute’s value ends with. This leads me to the final rule:

input[name^=’feedback’],
select[name^=’feedback’],
textarea[name^=’feedback’] {

font-weight: bold;
}

The last rule specifies that <input> elements, <select> elements, and <textarea> elements receive
bold text if the name attribute’s value begins with the string “feedback”.

The next section continues the discussion of selectors with class and id selectors.

99

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 99

Class and ID Selectors
Documented in CSS 3 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The last of the selectors to be discussed in this chapter are those defined by the author using the
class=”” or id=”” attributes. Class and id selectors are the most widely supported selectors. In fact,
they are as widely supported as the type selector introduced in Chapter 3. There are two types of selec-
tors. The class attribute is more generic, meaning it may encompass many elements in a given docu-
ment, even elements of different types or purposes. On the other hand, you can only use the id attribute
once per page. The name id tells you that the id must be unique. Besides using it in CSS, you can also
use the id to access the element that contains it via a scripting language like JavaScript. You can also link
to the location of the element with an id name using anchors. Anchors are appended to URLs to force a
browser to go to a specific place in a document. I discuss anchors in more detail in Chapter 6. So the id
attribute serves more than one purpose. Think of it as an element’s address inside a document — no two
addresses can be the same.

The following is an example of a class selector:

.someclass {
color: mediumseagreen;

}

The user-defined class contains a dot before the class name. In the document body, you reference the
class like this:

<div class=”someclass”>
Some div text.

</div>

The dot appearing before the class name in the CSS rule tells CSS that you are referencing a class selec-
tor. The dot does not need to appear in the class attribute value itself; in fact it cannot.

When used in this context, the type of element doesn’t matter. In other words, you can also apply the
class to other elements, as in the following:

Some span text.

The same rule applies to the element as applies to the <div> element. Both now have medium
seagreen text. Elements can also be assigned more than one class. The following markup is an example
of this:

<div class=”foo bar”>
Some div text.

</div>

The value of this class attribute actually contains two class names, foo and bar. Each class name in the
attribute is separated by a space. In the corresponding style sheet, the two classes may be referenced by
two separate rules:

100

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 100

.foo {
font-family: monospace;

}
.bar {

color: goldenrod;
}

This results in the <div> element receiving a monospace font and goldenrod colored text. The class
names may also be chained together, which is demonstrated by the following rule:

.foo.bar {
font-weight: bold;

}

The preceding rule applies only to elements that reference both class names in their class attribute.

Internet Explorer incorrectly interprets chained class names; only the last class name in the chain is rec-
ognized. In the preceding example, Internet Explorer would interpret the .foo.bar selector as.bar
only.

To reference an id, you precede the selector syntax with a hash mark (or pound sign, #):

#someid {
color: mediumseagreen;

}

Following the same concept, any element in the document body may contain the id.

<div id=”someid”>
Some div text.

</div>

You can make both class and id selectors more specific by appending the name of the element to the
beginning of the selector. For instance, if in the last examples you only want <div> elements for each
rule, the selectors look like the following:

div.someclass {
color: mediumseagreen;

}
div#someid {

color: mediumseagreen;
}

Now each rule is applied only to <div> elements that contain the corresponding class and id names.

Although the id must be unique, in these examples you can name only one element someid. The CSS
style sheet, however, may contain as many references to that id as are necessary. The uniqueness rule
only applies to naming the elements, not the references to them. You can apply classes, on the other
hand, to as many elements in the body as necessary.

The following Try It Out finishes the Widgets and What’s-its feedback form, this time incorporating
user-defined selectors.

101

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 101

Try It Out User-Defined Selectors
Example 5-5. By following these steps, you can see how to work with user-defined selectors.

1. Using example5-4.html, enter the modifications in the highlighted block to the embedded style
sheet:

input[name^=’feedback’],
select[name^=’feedback’],
textarea[name^=’feedback’] {

font-weight: bold;
}

/**
* Class Selectors
**

*/

label.spanform {
float: none;
width: auto;
text-align: left;

}
div.spanform {

text-align: center;
}

/**
* ID Selectors
**

*/

div#buttons {
text-align: right;

}

input#button {
background: black;
font-weight: bold;
border: 1px solid white;

}
div#copyright {

margin-top: 10px;
border-top: 1px dashed black;
padding-top: 10px;
font-size: 8pt;
text-align: center;
color: black;

}
</style>
<title>Feedback Form - Widgets and What’s-its</title>

</head>
<body>

102

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 102

2. Make the highlighted modifications to the body of the document:

<h1>Widgets and What’s-its</h1>
<form>

<h2>Tell us what’s on your mind..</h2>
<div>

<label for=’feedback[name]’>Name:</label>
<input type=’text’ size=’25’ name=’feedback[name]’ />

</div>
<div>

<label for=’feedback[email]’>Email:</label>
<input type=’text’ size=’25’ name=’feedback[email]’ />

</div>
<div class=’spanform’>

<label for=’feedback[address]’ class=’spanform’>Address:</label>
<textarea name=’feedback[address]’

cols=’40’ rows=’3’ wrap=’virtual’>
</textarea>

</div>
<div class=’spanform’>

<label for=’feedback[message]’ class=’spanform’>Comments:</label>
<textarea name=’feedback[message]’

cols=’40’ rows=’6’ wrap=’virtual’>
</textarea>

</div>
<div>

<label for=’feedback[heard]’>How’d you hear about us?</label>
<select name=’feedback[heard]’>

<option value=’’>Choose...</option>
<option value=’newspaper’>Newspaper</option>
<option value=’magazine’>Magazine</option>
<option value=’television’>Television</option>
<option value=’radio’>Radio</option>
<option value=’other’>Other</option>

</select>
</div>
<div id=’buttons’>

<input type=’submit’
name=’feedback[action]’ value=’Submit’ id=’button’ />

</div>
<div id=’copyright’>

© Copyright 2004 What’s-its and Widgets, All Rights Reserved.
</div>

</form>
</body>

</html>

3. Save the file as example5-5.html. You should see output similar to what appears in Figure 5-6.

103

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 103

Figure 5-6

How It Works
Here is a review of each new style sheet rule:

label.spanform {
float: none;
width: auto;
text-align: left;

}
div.spanform {

text-align: center;
}

The first rule is a class selector referring specifically to <label> elements. The class is glued specifically to
<label> elements containing the class declaration because you use the same class name for two different
sets of elements. The second rule contains the same class name, but applies only to <div> elements.

Reviewing each declaration in the first rule, you apply a float: none declaration to prevent the float
property from being applied to <label> elements containing the spanform class. Recall from Example
5-2 that you applied a float: left declaration to all <label> elements to achieve a two-column effect.

104

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 104

This property repeals that declaration, but only where the class spanform is defined inside <label> ele-
ments. The remaining <label> elements still have a float: left applied. The next property is width:
auto. The width property has a value of auto by default. Although in Example 5-1 you applied a width
of 225 pixels to all <label> elements, this rule repeals that declaration so that <label> elements with a
spanform class definition span the entire form horizontally. The last declaration aligns text left, once
again repealing a declaration from Example 5-1 that right aligns all text in <label> elements. The next
rule for spanform class declarations that apply only to <div> elements centers the <textarea> fields.

The next set of rules applies a Submit button to the form:

div#buttons {
text-align: right;

}
input#button {

background: black;
font-weight: bold;
border: 1px solid white;

}

The first rule uses an id selector named buttons to align the button to the right of the div. Another id
selector named button refers to the input button itself and follows the first id selector. It applies a black
background, bold face font, and a thin white border around the button. Recall from Example 5-1 that all
elements receive white text via the universal selector, which is why you do not need to specify a text
color.

The last rule applies some styling to the copyright text added to the bottom of the input form:

div#copyright {
margin-top: 10px;
border-top: 1px dashed black;
padding-top: 10px;
font-size: 10px;
text-align: center;
color: black;

}

To provide some spacing between the thin, black, dashed border and the bottom of the input form, 10
pixels of margin are added. Next, you apply some space between the thin, black, dashed border and the
content of the copyright <div> by adding 10 pixels of padding. A small, 10-pixel font size and black col-
oring for the text are applied as well, and the text is aligned to the center of the <div>.

Summary
CSS selectors provide a flexible and diverse array of options for applying style to a document. CSS 2
greatly expanded the options made available in CSS 1, and CSS 3 has again expanded selector options.

In this chapter you learned the following:

❑ The universal selector applies style to all conceivable page elements.

❑ Descendant selectors apply style based on document hierarchy and ancestral relationships.

105

CSS Selectors

09_576429 ch05.qxd 11/18/04 12:29 PM Page 105

❑ Using child selectors makes the methodology created for descendant selectors more specific.

❑ Direct adjacent sibling combinators (that’s a mouthful) apply style if two elements, appearing
back to back in a document as siblings, have the same parent.

❑ Indirect adjacent sibling combinators take the methodology created for direct adjacent sibling
combinators and loosen up the rules so that the elements don’t have to appear back to back, just
in the same block.

❑ Attribute selectors delegate style depending on the presence of attributes or attribute values.

❑ Selectors may also be user-defined using the class and/or id attributes.

Chapter 6 continues the discussion of selectors, covering pseudo-class and pseudo-element selectors,
which are special CSS selectors that apply style when certain conditions are present in the document.

Exercises
1. Using what you already know about selectors, rewrite the Widgets and What’s-its input form to

simplify the embedded style sheet. Make the selectors cross-browser compatible (Internet
Explorer, Mozilla, and Opera), and remove redundant references to elements. For example, if
the various selectors in the Widgets and What’s-its input form refer to the same element but
appear more than once in the style sheet (even when written differently, such as a direct child
selector and an adjacent sibling selector that refer to the same element), combine the rules so
that only one rule exists for that selector. If the selectors aren’t compatible with Internet Explorer
6, rewrite the style sheet so that it uses compatible selectors. Avoid repeating declarations.

2. Using what you’ve learned about input forms, create your own company feedback form. Apply
common fields and your own color scheme to your input form (consulting Appendix C if neces-
sary). Your input form must contain at least three fields: a name field, an e-mail field, and com-
ments field.

106

Chapter 5

09_576429 ch05.qxd 11/18/04 12:29 PM Page 106

6
Pseudo-Element and

Pseudo-Class Selectors

This chapter expands on the selectors presented in Chapter 5 and introduces special types of
CSS selectors. These selectors apply only when certain user-initiated events occur or when certain

conditions are present in the document. A user-initiated event can be a mouse click or the mouse
pointer hovering over an element. One example of a special condition is a case where you are
styling only the first letter or the first line of a paragraph of text. Another example is a situation in
which you want to access an element in the document but you don’t know its name. You do, how-
ever, know where it resides in the document tree. In CSS these special circumstances are answered
with pseudo-element and pseudo-class selectors. In this chapter, I discuss

❑ Pseudo-elements

❑ Pseudo-classes

❑ Dynamic pseudo-classes

❑ Structural pseudo-classes

These selectors are called pseudo because they are represented by conditions but are not necessarily
representable with normal markup. They provide a simplified approach to what might otherwise
be a complicated undertaking.

As was the case in Chapter 5, this chapter’s examples rely exclusively on the Mozilla browser
because it supports nearly all the features discussed. You should run these examples in Mozilla 1.7
or greater.

Pseudo-Elements
Pseudo-elements represent certain aspects of a document not easily modifiable with plain markup.
Pseudo-elements may be used to modify the formatting of the first letter of a paragraph, the first
line of a paragraph, to dynamically insert content within an element, or to change the style of the
text currently selected by the user’s mouse.

10_576429 ch06.qxd 11/18/04 12:29 PM Page 107

Following are the pseudo-elements currently supported by browsers that are discussed in this chapter:

❑ ::first-letter: styles only the first letter of an element

❑ ::first-line: styles only the first line of an element

❑ ::selection: styles mouse highlighted text

❑ ::before: inserts content into a document from CSS before an element

❑ ::after: inserts content into a document from CSS after an element

Although CSS 3 contains far more pseudo-elements than those mentioned, this chapter focuses primarily
on those implemented in the major browsers at the time of this writing. Let’s explore each pseudo-element.

The double colon (::) syntax preceding each pseudo-element is new in CSS 3 and is used on pseudo-ele-
ments only. For example, p::first-letter refers to the first letter of a paragraph instead of p:first-
letter. This syntax distinguishes pseudo-elements from pseudo-classes, which use single colon syntax,
as in a:hover, which is a reference to a pseudo-class. Many modern browsers support the new syntax,
but it is not widely supported in older browsers. You must use the old single colon (:) syntax specified
in CSS 1 and 2 in order for pseudo-elements to work in older browsers.

::first-letter and ::first-line
Documented in 3 and supported in IE5.5, IE 6 , Mozilla 1.7, Opera 7.5, and Safari 1.2.

The pseudo-elements ::first-letter and ::first-line refer to the first letter and first line of an
element containing text. When designing a website, it is helpful to have control over how you present
content. With the ::first-letter and ::first-line pseudo-elements, you can control the format-
ting of the first letter and first line of a paragraph completely from CSS. You may add an increased font
size or other font effects, apply a background color or image, or use just about any text effect supported
by CSS and the browser.

You can apply pseudo-elements to a specific element, via a selector, or to all elements. The following rule
applies an 18-pixel font and a yellow background to the first letter of every paragraph element <p> con-
tained in a document.

p::first-letter {
font-size: 18px;
background-color: yellow;

}

The following rule applies an 18-pixel font and yellow background to the first letter of all elements con-
tained in a document.

::first-letter {
font-size: 18px;
background-color: yellow;

}

108

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 108

If only the pseudo-element is used as the selector, the style declarations are applied to all elements in the
document.

The following Try It Out shows you what the ::first-letter and ::first-line pseudo-elements
look like in a style sheet and demonstrates some of the textual effects you can apply. As you did in
Chapter 5, you build a web page to follow along with an example of each pseudo-element and pseudo-
class in action. This example lays the groundwork for a Quotations web page

Try It Out Styling a Paragraph
Example 6-1. In the following steps, I start off with a famous quote by Albert Einstein and apply a little
formatting to the quote.

1. Type the following into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title> Albert Einstein </title>
<style type=’text/css’ media=’all’>

* {
font-family: sans-serif;

}
p::first-letter {

font-size: 200%;
background-color: lightgray;
border: 1px solid black;

}
p::first-line {

letter-spacing: 5px;
}

</style>
</head>
<body>

<p>
You see, wire telegraph is a kind of a very, very long cat.
You pull his tail in New York and his head is meowing in Los
Angeles. Do you understand this? And radio operates exactly
the same way: you send signals here, they receive them there.
The only difference is that there is no cat.

</p>
</body>

</html>

2. Save the file as example6-1.html. This markup results in the rendered output depicted in
Figure 6-1.

109

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 109

Figure 6-1

How It Works
This is a very simple example that begins with the universal selector, which applies the font sans-serif to
all rendered elements via the font-family property. The first letter of text is styled to be 200% in size,
to receive a light gray background, and a thin, solid black border. The paragraph’s first line is styled
with the letter-spacing effect, which spaces each letter 5 pixels apart.

::selection
Documented in CSS 3 and supported in Mozilla 1.7 (Alternative) and Safari 1.2.

New in CSS 3, the ::selection pseudo-element refers to text the user selects with the mouse (mouse
highlighted text). According to the CSS 3 specification, the ::selection pseudo-element accepts only
the following properties: color, cursor, background, and outline. At the time of this writing, sup-
port for this pseudo-element is yet to emerge and is supported only by Apple’s Safari browser; it is sup-
ported by Mozilla 1.7, as ::-moz-selection. For example, the following document demonstrates the
::-moz-selection pseudo-element supported by Mozilla 1.7 and the ::selection pseudo-element
supported by Safari 1.2.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<style type=”text/css”>

::selection {
backgroud: crimson;
color: pink;

}
::-moz-selection {

background: crimson;
color: pink;

}
</style>

</head>
<body>

<div>
<p>

Some paragraph text.
</p>

110

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 110

<p>
Some more paragraph text.

</p>
<p>

Even more paragraph text.
</p>

</div>
</body>

</html>

When combined with markup in the body of the document and when text is highlighted with the mouse
cursor, the highlighted text is displayed with a crimson background and pink text instead of the default
gray background with black text.

To highlight text in a web document, click and hold down your mouse button; then move the cursor to
select a sentence, paragraph, or all the text in the document.

As you saw in the preceding example, Mozilla provides the ::-moz-selection pseudo-element with a
browser-specific -moz- prefix. You saw this prefix in the examples in Chapter 5 with the -moz-border-
radius property. This prefix is applied in Mozilla to proprietary CSS features that have been created by
Mozilla developers and that don’t appear in any W3C CSS specification. This prefix is also applied to
standard W3C CSS features that the Mozilla developers don’t feel are quite ready for prime time. It is also
used for CSS features that appear in a draft of a W3C CSS specification but have not yet been ratified by
the world community in an official recommendation. Therefore, you should use these features with the
caution that many are intended by developers primarily for testing purposes. They may not live up to
what the W3C defines in the official CSS specification. The functionality and the syntax used for these fea-
tures may also change without notice in future releases of Mozilla. Eventually, in some future release of
Mozilla, the ::-moz-selection pseudo-element will become the ::selection pseudo-element.

At the time of this writing, the ::-moz-selection pseudo-element may not be grouped with the
::selection pseudo-element because of a bug in Mozilla. To apply styles with the ::-moz-
selection pseudo-element, place the pseudo-element in its own rule.

::before and ::after
Documented in CSS 3 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

The ::before and ::after pseudo-elements allow you, using the content property, to insert content
before and after the content inside an element. The content property enables you to insert text, image
files, or sound files from CSS. This property is useful in situations where repetition occurs in a document
or where updating a few CSS rules is much easier than editing each document individually across many
pages.

Support for the content property or the ::before and ::after pseudo-elements has not yet reached
Internet Explorer, and Mozilla’s implementation is minimal because the content property works only
when used in conjunction with the ::before and ::after pseudo-elements. This is consistent with the
CSS 2 and 2.1 specifications. However, a CSS 3 draft specifies the content property is applicable with-
out the use of the ::before and ::after pseudo-elements.

111

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 111

Continuing with the Quotations website, the following Try It Out demonstrates the simplest use of
::before and ::after pseudo-elements.

Try It Out Dynamically Inserting Content
Example 6-2. The following steps demonstrate how CSS uses the ::before and ::after pseudo-
elements to dynamically insert content.

1. Using the example6-1.html document you created earlier, type the following (highlighted)
changes to the embedded style sheet for your Quotations website:

p::first-line {
letter-spacing: 5px;

}

/* :: before and ::after */

h1#top::before, h1#top::after {
content: “::”;

}

</style>
</head>

2. Enter the following changes to the body of the document:

<body>
<h1 id=’top’>Albert Einstein</h1>
<p>

You see, wire telegraph is a kind of a very, very long cat.

3. Save as example6-2.html. The output should look like what appears in Figure 6-2.

Figure 6-2

112

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 112

How It Works
This simple demonstration inserts a header for your Quotations website. Using the ::before and
::after pseudo-elements, you insert two colons before and after the heading text.

The ::before and ::after pseudo-elements are from a portion of CSS referred to as the generated con-
tent module. These pseudo-elements provide a mechanism for including redundant content in web pages.
In this example, the demonstration was very simple. As in the Example 4-1 from Chapter 4 where you
created a page that includes content using the content property, the ::before and ::after pseudo-
elements are designed to be used with the content property and allow insertion of content either before
or after the content of an element.

Pseudo-Classes
Pseudo-classes are used to represent dynamic events, a change in state, or a more general condition pre-
sent in the document that is not easily accomplished through other means. This may be the user’s mouse
rolling over or clicking on an element. In more general terms, pseudo-classes style a specific state pre-
sent in the target element. This state may be an input element marked as disabled or enabled. Pseudo-
classes allow the author the freedom to dictate how the element should appear under either condition.

Unlike pseudo-elements, pseudo-classes contain a single colon before the pseudo-class property.

Dynamic Pseudo-Classes
The following are considered dynamic pseudo-classes. They are a classification of elements that are only
present after certain user actions have or have not occurred:

❑ :link: signifies unvisited hyperlinks

❑ :visited: indicates visited hyperlinks

❑ :hover: signifies an element that currently has the user’s mouse pointer hovering over it

❑ :active: signifies an element on which the user is currently clicking

❑ :focus: indicates elements that currently have focus (input form elements, for example)

CSS 3 includes several more dynamic pseudo-classes; however, at the time of this writing, only those
presented here are widely available in browsers.

:link and :visited
Documented in CSS 3 and supported in: IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The :link pseudo-class refers to an unvisited hyperlink, whereas :visited, of course, refers to visited
hyperlinks. These two pseudo-classes are used to separate styles based on user actions. An unvisited
hyperlink may be red and contain no underlined text, whereas a visited hyperlink may be green and
have the underline applied. Dynamic pseudo-classes change document styles based on specific user
actions.

113

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 113

The following document demonstrates how these pseudo-classes are applied:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<style type=’text/css’>

a:link {
background: blue;
color: white;

}
a:visited {

background: white;
color: black;

}
</style>

</head>
<body>

Google |
Wrox |
PHP |
Quirks Mode

</body>
</html>

In this example, unvisited links are styled with the :link dynamic pseudo-class. They receive a blue
background and white text. Visited links, on the other hand, are given a crimson background and pink
text. The order in which the :link and :visited dynamic pseudo-classes appear in the style sheet is
important and has to do with the cascade, which I discuss in Chapter 7. If the :link pseudo-class is
defined after the :visited pseudo-class in the style sheet, the :link pseudo-class takes precedence.
The declarations with the :link pseudo-class override those defined for the :visited pseudo-class.
As you see in Chapter 7, this has to do with how specific the selector is; in this example, the specificity is
the same.

The next section continues the discussion of dynamic pseudo-classes with the :hover pseudo-class.

:hover
Documented in CSS 3 and supported in: IE 5.5 (partial), IE 6 (partial), Mozilla 1.7, Opera 7.5, and
Safari 1.2.

The :hover pseudo-class refers to an element over which the user’s mouse pointer is currently hover-
ing. While the user’s mouse pointer is over the element, the specified style is applied; when the user’s
mouse pointer leaves the element, it returns to the previously specified style. The :hover pseudo-class
is applied in the same way that the :link and :visited pseudo-classes are applied. Using the exam-

A mnemonic device used to remember the order in which dynamic pseudo-classes
(as applied to links) must appear in style sheets is LoVe HAte, or :link, :visited,
:hover and :active.

114

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 114

ple I presented for the :link and :visited pseudo-classes, the following appends a rule that includes
the :hover pseudo-class.

a:link {
background: blue;
color: white;

}
a:visited {

background: white;
color: black;

}
a:hover {

background: black;
color: white;

}

If you apply this rule, the background color changes to black and the text color changes to white when
the mouse cursor is on top of a link.

In IE, the :hover pseudo-class applies only to hyperlinks (which is incorrect under the CSS 2 specifi-
cation), whereas other browsers recognize the :hover pseudo-class on any rendered element, per the
CSS 2 specification.

:active
Documented in CSS 3 and supported in: IE 5.5 (partial), IE 6 (partial), Mozilla 1.7, Opera 7.5. and
Safari 1.2.

The :active pseudo-class refers to an element that the user is currently clicking on. The specified style
remains in place while the user holds down the mouse button, and the element does not return to its
original state until the user releases the mouse button. In the following, I modify the example I pre-
sented for the:hover pseudo-class:

a:link {
background: blue;
color: white;

}
a:visited {

background: white;
color: black;

}
a:hover {

background: black;
color: white;

}
a:active {

background: red;
color: white;

}

If you add this rule, the background color of the link turns red and the color of the link turns white when
the user clicks and holds down the mouse button over a link.

115

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 115

Like the :hover pseudo-class, :active only applies to hyperlinks in IE; whereas, in other browsers it
applies to any rendered element, per the CSS specification.

:focus
Documented in CSS 3 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

The :focus pseudo-class refers to the element that has focus, such as an input field or form button.
Focus refers to the active element in a document. Only one element can be active at a time. A focused ele-
ment is the element that currently has control; one example is when you click an input field and see the
blinking vertical bar or when you press the Tab key to navigate through the links and input fields pre-
sent in a web document. The Tab key shifts focus from one link or input field to the next. A dashed box
around a link typically indicates that a link has focus (although not all browsers treat hyperlinks as
focusable). A blinking vertical bar indicates that a text input element has focus. The following example
applies the :focus pseudo-class to the example you saw for the :active pseudo-class in the preceding
section:

a:link {
background: blue;
color: white;

}
a:visited {

background: white;
color: black;

}
a:hover {

background: black;
color: white;

}
a:active {

background: red;
color: white;

}
a:focus {

background: gray;
color: white;

}

When you load the preceding example into Mozilla and tap the Tab key to navigate through the links,
you see the background of each link become gray and the color of each link become white. This shows
the focus shifting from one link to the next; if you press the Return key, you navigate to the URL in the
hyperlink. While a link has focus, its style becomes controllable with the :focus pseudo-class. Similarly,
you can style form input controls when they have focus.

Opera 7.5 does not support focus when applied to hyperlinks. Opera 7.5 applies the :focus pseudo-class
only to form input controls like text fields and drop-down menus.

In terms of the LoVe HAte mnemonic device introduced earlier in this chapter, :focus
may be applied last.

116

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 116

Now that you have seen what each dynamic pseudo-class looks like and a little of what each does, the
next Try It Out demonstrates each of these in a realistic, real-world application. It expands on your
Quotations website and provides a demonstration of dynamic pseudo-classes through the implementa-
tion of a navigational bar.

Try It Out Dynamic Pseudo-Classes
Example 6-3. In the following steps, you can see how dynamic pseudo-classes work.

1. Using the example6-2.html document you completed in the preceding Try It Out, type the fol-
lowing (highlighted) changes to the embedded style sheet:

h1#top::before, h1#top::after {
content: “::”;

}

/* Dynamic pseudo-classes */
ul {

list-style: none;
}
li {

border: 1px solid black;
padding: 5px;
margin: 2px;
float: left;

}
li a {

padding: 2px;
color: black;
font-size: 15pt;
text-decoration: none;

}
li a:link {

background-color: white;
color: black;

}
li a:visited {

background-color: black;
color: white;

}
li a:active {

background-color: lightgray;
color: black;

}
li a:hover, li a:focus {

background-color: gray;
color: white;

}

</style>
</head>

117

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 117

2. Enter the following changes to the body of the document:

<body>
<h1 id=’top’>Albert Einstein</h1>

Google
Wrox P2P
Mozilla
PEAR

<p>

You see, wire telegraph is a kind of a very, very long cat.

3. Save the file as example6-3.html. You should see output like that shown in Figure 6-3:

Figure 6-3

How It Works
This example utilizes all five dynamic pseudo-classes to build a navigational menu, admittedly one that
doesn’t really have anything to do with the Quotations website.

Take a look at each new style sheet rule and what each does to the document. The navigational menu is
contained in an unordered list, which is used to give the document structure and to make it accessible to
visually impaired users. Using an unordered list makes the web site’s structure more predictable, just as
using heading elements and paragraph elements make the structure describe itself. The concept of acces-
sibility is explored further in Chapter 10. The first CSS rule strips away the preformatted list style, which
usually causes each list item to appear with a bullet.

ul {
list-style: none;

}

With this CSS property, the list now appears without any bullets next to each list item. Next, some for-
matting is applied to each item.

118

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 118

li {
border: 1px solid black;
padding: 5px;
margin: 2px;
float: left;

}

First, each element receives a thin, black border, some padding, and 2 pixels of margin to put
space between one element and another. Next a float: left is applied. If you recall the example of the
float property from Chapter 5, it reorients each element so that each appears on the same line
instead of on separate lines. So instead of being laid out like a list, elements appear side-by-side. The
float property also causes the paragraph text to appear after the navigation bar, which isn’t very aes-
thetically pleasing (but that’s fine). An upcoming example takes advantage of that to make the naviga-
tion bar appear to be layered. Next, the dynamic pseudo-classes add some foundation to each link:

li a {
padding: 2px;
color: black;
font-size: 15pt;
text-decoration: none;

}

Until the dynamic pseudo-classes kick in, this rule provides a foundation for how all links contained
within a element should look. Some padding, black text, and a 15-point font are applied to each
link. The text-decoration: none property strips away the default underline that appears under
every link. When you have the foundational styles in place for each link, next comes styling the unvis-
ited links on the page:

li a:link {
background-color: white;
color: black;

}

This rule is not much different from the last style. It simply says to give unvisited links a white back-
ground and black text. For visited links, the opposite is true:

li a:visited {
background-color: black;
color: white;

}

Visited links receive a black background and white text instead. What about links currently being clicked
on? The next style applies the declarations while the user’s mouse button is clicked. When the user
releases the mouse button, the styles return to those applied before the mouse button was clicked.

li a:active {
background-color: lightgray;
color: black;

}

119

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 119

TE
AM
 F
LY

This style once more changes the background color. Based on whether or not the link is being clicked,
the rule applies a lightgray background and black text. The last rule is two-fold:

li a:hover, li a:focus {
background-color: gray;
color: white;

}

This rule applies style when one or both of two conditions are present: when the user’s mouse cursor is
hovering over the link and/or when the link has focus. In order to give the link focus in Mozilla, use the
Tab key to navigate to the link. The background then turns gray and the text turns white. You can apply
focus to hyperlinks and input form elements. The :hover pseudo-class is intended to be applied to all
elements. Mozilla implements the :hover pseudo-class correctly; Internet Explorer only recognizes the
:hover pseudo-class on links.

Structural Pseudo-Classes
The following selection of CSS 3 pseudo-classes are not yet widely supported; only Mozilla and Safari
browsers support all three of them, and Opera 7.5 supports two of them. Structural pseudo-classes apply
style based on where in the document tree the element resides:

❑ :root: refers to the root element of a document; in HTML, this is the <html> element.

❑ :first-child: refers to the first child element of an element.

❑ :last-child: refers to the last child element of an element.

❑ :empty: refers to an element that has no content, no children, and no white space.

These pseudo-classes also apply style based on the structure of the document. Whereas dynamic
pseudo-classes change styles based on user actions, structural pseudo-classes have no actions associated
with them and apply style based on the document’s structure. For instance, the names of tags in an XML
document may change. You may not know the name of the tag, but you know where in the document
tree the element resides. CSS answers this kind of situation with structural pseudo-classes.

The following sections examine each structural pseudo-class in detail and in what type of situation each
is useful.

:root
Documented in CSS 3 and supported in Mozilla 1.7 and Safari 1.2.

The :root pseudo-class refers to the root element of a document. In HTML or XHTML documents, the
root element is the <html> element; in XML documents, it is the top-level element. The :root element
exists primarily for use in XML documents, and because XML documents have the capability to contain
invented tags and attributes, you may not always know what the :root element is called. In HTML,
however, the root element is guaranteed to be the <html> element.

120

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 120

:first-child
Documented in CSS 3 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

The :first-child pseudo-class refers to the first-child of an element. For instance:

div > p:first-child

This selector matches any <p> element that is the first-child of a <div> element. The following markup
fits the scenario:

<div>
<p> Some text </p>

</div>

Because <p> is the first-child, it matches the selector’s criterion. Yet the following markup does not
match the criterion:

<div>
<h1> Some header </h1>
<p> Some Text </p>

</div>

In this example, <h1> is the first-child of the <div> element. The div > p:first-child selector could
have just as easily been represented with just div > p, if you recall the purpose of the direct child selec-
tor from Chapter 5. However, the :first-child pseudo-element matches only the first child, whereas
the direct child selector matches any child.

Like the :root pseudo-class, the :first-child pseudo-class is more useful in XML documents where
the various elements in the document aren’t guaranteed to be the same from document to document, but
where the underlying structure may remain identical. Using the preceding example, the following selec-
tor applies style to whichever element is the first-child of a <div> element:

div > :first-child

This selector matches both the first example <p> Some text </p> and the second example <h1> Some
header </h1>.

:last-child
Documented in CSS 3 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

The opposite of the :first-child pseudo-class, this pseudo-class matches the last-child of an element.
For instance

div > p:last-child

The preceding selector matches the <p> element in the following markup:

<div>
<h1> Some header </h1>
<p> Some Text </p>

</div>

121

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 121

However, if the <p> were first and the <h1> last, it would not match:

<div>
<p> Some Text </p>
<h1> Some header </h1>

</div>

:empty
Documented in CSS 3 and supported in Mozilla 1.7 and Safari 1.2.

The :empty pseudo-class refers to elements that have no child elements, text, or content of any kind,
including white space. Therefore

div:empty

matches this

<div></div>

but not this:

<div> Hello, world! </div>

Mozilla incorrectly applies the :empty pseudo-class to elements that contain white space.

After reviewing a few structural pseudo-classes, the next Try It Out demonstrates them in action and
continues the Quotations web page from the earlier examples:

Try It Out Structural Pseudo-Classes
Example 6-4. The following steps continue the Quotations website via the implementation and demon-
stration of structural pseudo-classes.

1. Using the example6-3.html document you created in the last Try It Out, type the following
changes to the embedded style sheet:

li {
border: 1px solid black;
padding: 5px;
margin: 2px;
float: left;

}

/* Structural pseudo-classes */

:root {
border: 35px solid black;
-moz-border-radius: 10%;
margin: 35px auto;
padding: 35px;
background-color: lightgray;
width: 550px;

122

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 122

}
div:empty {

height: 30px;
background: black;
-moz-border-radius: 10%;

}
div p:first-child {

border: 10px solid black;
padding: 40px;
-moz-border-radius: 10%;
background-color: gray;
font-weight: bold;

}
div h1:first-child {

padding: 0;
border-bottom: 1px dashed black;
letter-spacing: 2px;

}
div h1:last-child {

padding: 10px;
letter-spacing: -3px;

}

</style>
</head>

2. Enter the following changes to the document’s body:

<body>
<div></div>
<div>

<h1>Famous Quotes</h1>
<h1 id=’top’>Albert Einstein</h1>

</div>
<div></div>

Google
Wrox P2P
Mozilla
PEAR

<div>

<p>
You see, wire telegraph is a kind of a very, very long cat.
You pull his tail in New York and his head is meowing in Los
Angeles. Do you understand this? And radio operates exactly
the same way: you send signals here, they receive them there.
The only difference is that there is no cat.

</p>
</div>
<div></div>

</body>
</html>

123

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 123

3. Save the file as example6-4.html. You should see output like that shown in Figure 6-4, if you’re
using a Gecko browser.

Figure 6-4

How It Works
As you can see from the output, structural pseudo-classes greatly improve the look and feel of the
Quotations website. The exploration of the new style rules begins with the :root pseudo-class.

:root {
border: 35px solid black;
-moz-border-radius: 10%;
margin: 35px auto;
padding: 35px;
background-color: lightgray;
width: 550px;

}

The :root pseudo-class applies style to the base element of a document. In HTML documents, the
<html> element is the base element. In XML documents, the base element might change from document

124

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 124

to document because the entire tag schema can be completely different, which is why the :root pseudo-
class element exists. In HTML, you could simply refer to the base element using the html type selector.
This rule applies a very thick, black border around the document, and it rounds corners with the propri-
etary -moz-border-radius property. Then it adds more box properties, some padding, and an absolute
width. The margin property used here is shorthand. The first value applies to the top and bottom sides,
and the second value applies to the left and right sides. In this case, a value of auto centers block-level
elements. The specifics of how margin, padding, borders, and width work together are explored in
greater depth in Chapter 10.

The next rule applies to all <div> elements that don’t contain anything.

div:empty {
height: 30px;
background: black;
-moz-border-radius: 10%;

}

Using the :empty pseudo-class you can pick out all the elements that don’t contain anything; no text, no
children elements, nothing. The empty <div> elements in the body are used purely for presentation.
They receive a height of 30 pixels, black backgrounds, and rounded edges with the proprietary -moz-
border-radius property. The next rule selects the paragraph element containing the quote itself.

div p:first-child {
border: 10px solid black;
padding: 40px;
-moz-border-radius: 10%;
background-color: gray;
font-weight: bold;

}

This is somewhat fancier than it needs to be. In a simple document like this, it makes more sense to
select the paragraph using the p type selector because more browsers support it. For the sake of demon-
stration, however, the div p:first-child selector selects the <p> element because it is the first child
of a <div> element. This is where you take advantage of the float applied to the elements in the
navigation menu in Example 6-3. This rule applies just enough padding to make the navigational menu
appear layered on top of the paragraph. If I had done this

<div style=’clear: left;’>
<p>

You see, wire telegraph is a kind of a very, very long cat.

the effect wouldn’t have worked because the <div> would have been forced onto its own line, killing
the layered effect. The next style rule formats the heading that you add to the body:

div h1:first-child {
padding: 0;
border-bottom: 1px dashed black;
letter-spacing: 2px;

}

125

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 125

This says if <h1> is the first child of a <div> element: Give it no padding, a dashed black border along
the bottom, and 2 pixels of letter spacing. The final rule is another fancy way to reference the other <h1>
element remaining from previous examples:

div h1:last-child {
padding: 10px;
letter-spacing: -3px;

}

This rule condenses the letters of the text and gives the header 10 pixels of padding on all sides.

The Negation Pseudo-Class :not
Documented in CSS 3 and supported in Mozilla 1.7 and Safari 1.2.

This pseudo-class, again not yet widely supported, applies style based on what the element is not. The
:not pseudo-class takes an argument for what it is not to match. In programming, the term argument
means information passed to a method or function. Methods and functions are subprograms that perform
a predefined task or set of tasks; in this application, the function is the delegation of a style sheet rule.
The argument refers to the data needed to perform the task. In most languages, functions take their
arguments between parentheses, which are used to delimit the argument list:

:not(div)

This selector matches every element present except <div> elements. The :not pseudo-class also accepts
attributes and attribute values in the argument. This selector matches all <a> elements that do not con-
tain an href attribute.

a:not([href])

The selector matches all <a> elements that don’t link to the URL specified:

a[href]:not([href=’http://www.somesite.com’])

This selector matches all elements that are not <div> elements with an id of content:

body:not(div#content)

As is the case with attribute selectors, you can use that syntax in the :not pseudo-class. Therefore, the
following example matches all elements inside a <form> element where the name attribute doesn’t
begin with “some_form”:

form:not([name~=’some_form’])

The :not pseudo-class applies styles based on what an element is not. The next Try It Out is a brief
demonstration of this concept.

Try It Out The Negation Pseudo-Class
Example 6-5. Building again on the Quotations website, the following steps implement an example of the
:not pseudo-class.

126

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 126

1. Using the document you created for Example 6-4, make the following changes to the embedded
style sheet:

div h1:last-child {
padding: 10px;
letter-spacing: -3px;

}

/* :not pseudo-class */

h1:not(#top) {
font-size: 12pt;

}

</style>
</head>

2. Save the file as example6-5.html. You should see output like that shown in Figure 6-5.

Figure 6-5

127

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 127

How It Works
This is a very simple demonstration of the :not pseudo-class, adding only one new rule to the
Quotations website embedded style sheet. This rule says that all <h1> elements that don’t have
id=”top” get a 12-point font size.

The :target Pseudo-Class
Documented in CSS 3 and supported in Mozilla 1.7 and Safari 1.2.

The last pseudo-class covered in this chapter is the :target pseudo-class. Like several of the CSS3
pseudo-classes, this was previously a proprietary, Mozilla-only pseudo-class, adopted by the W3C in the
CSS 3 specification. This pseudo-class applies style based on HTML anchors.

Say, for instance, that you have an extensive FAQ page. After the user clicks on one of the questions on
the page, the browser directs him somewhere further down the page to find the answer. The question
looks something like this:

Q. What are Widgets?

The answer to the question is located somewhere after the previous line:

A. Widgets are things!

When the question is clicked, the browser scrolls automatically to where the answer is. You may have to
add lots of text or HTML line breaks between the question and the answer to see the browser scroll
down to the answer. This feature is called an anchor. Anchors allow the author to makes links within the
same document because some HTML pages can get quite lengthy. Anchors eliminate the need for lots of
scrolling. An anchor is set up using a hash mark and the name of the anchor at the end of a hyperlink.
Such as

Q. What are Widgets?

The anchor’s name is #widgets. You should recall from Chapter 5 that referencing an id selector in CSS
takes the same syntax, so naturally anchors point to an element containing that id name and use an
identical syntax to link to them.

The :target pseudo-class was introduced to make it possible to change the style of the target so that it
can stand out from any other targets on the page.

Using the :target pseudo-class, it is possible for you to change the style of the target element with the
following CSS.

:target {
background-color: yellow;

}

128

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 128

This CSS changes the background color of any target to yellow. When a new target is clicked, the back-
ground color moves to that element instead, and the first element returns to its normal background
color. It is also possible to restrict the styles to one target or another:

span#widgets:target {
background-color: yellow;

}

This CSS restricts the color change to only the element.

Now that you have a feel for what the :target pseudo-class does and what HTML anchors are, you can
take it all for a test drive. The next Try It Out adds the :target pseudo-class to the Quotations website
example.

Try It Out :target Pseudo-Class
Example 6-6. In the following steps, you put the finishing touches on the Quotations website by adding a
picture of Albert Einstein and some :target effects:

1. Building on the example6-5.html document that you created in the last Try It Out, type the high-
lighted changes into the embedded style sheet:

h1:not(#top) {
font-size: 12pt;

}

/* :target pseudo-class */

div#quoteimage:target {
background-color: black;
border: 1px solid white;

}
h1#top:target {

background-color: black;
border: 1px solid white;
color: white;

}
h1 a {

color: inherit;
text-decoration: none;

}

div#quoteimage {
margin: 10px;
text-align: center;

}
img#albert {

width: 305px;
height: 240px;
border: 5px solid black;
margin: 10px;

}

129

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 129

</style>
</head>
<body>

2. Make the following changes to the body of the document:

<div></div>
<div>

<h1>Famous Quotes</h1>
<h1 id=’top’>Albert Einstein</h1>

</div>
<div></div>

Google
Wrox P2P
Mozilla
PEAR

<div>

<p>
You see, wire telegraph is a kind of a very, very long cat.
You pull his tail in New York and his head is meowing in Los
Angeles. Do you understand this? And radio operates exactly
the same way: you send signals here, they receive them there.
The only difference is that there is no cat.

</p>
</div>
<div></div>
<div id=’quoteimage’>

</div>

</body>
</html>

3. Save as example6-6.html. You should see output like that which appears in Figure 6-6.

130

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 130

Figure 6-6

How It Works
This example puts the finishing touches on the Quotations page by adding a picture that appears when a
user clicks the Albert Einstein heading. When a user clicks the image, the Albert Einstein heading is
highlighted in black, with a thin, white border, and the text is inverted to white. Examining each rule
individually, the first rule applies some styles for the image as a target:

div#quoteimage:target {
background-color: black;
border: 1px solid white;

}

It gives the <div> a black background and a thin, white border, but only when it’s the active target. The
next rule applies styles to the header labeled top or the Albert Einstein header:

h1#top:target {
background-color: black;
border: 1px solid white;
color: white;

}

131

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 131

When the <h1> element with id=”top” is the active target, it also receives a black background and thin,
white border, as well as white text, so that the text is readable. The next rule styles the link that relocates
the browser window to the picture of Albert Einstein:

h1 a {
color: inherit;
text-decoration: none;

}

It says if <h1> is an ancestor of <a>, make the color inherit, which means make the color of the link
whatever is specified for <h1> at the moment. And then, the text-decoration: none declaration
removes the underline from the link. The next rules apply style to the image and the <div> containing
the image:

div#quoteimage {
margin: 10px;
text-align: center;

}
img#albert {

width: 305px;
height: 240px;
border: 5px solid black;
margin: 10px;

}

This rule applies a margin to the <div> to space it away from everything else, which results in the space
between the <div> and the empty <div> element above it. Next, the text-align: center declaration
centers the image. And finally the image itself receives some styles: A thick, black border is added; its
width and height are specified in pixels; and yet another margin is applied to space the image edges
from the inside of the <div> containing it.

Summary
CSS offers dynamic solutions to problems that might otherwise require a great deal more effort to solve.
Pseudo-elements and pseudo-classes provide the solution to problems without requiring extra markup
or complex scripting languages. Pseudo-elements and pseudo-classes are special types of CSS selectors
that apply style only when certain conditions are present in the document or after certain user actions
occur. In this chapter, you learned that

❑ ::first-letter and ::first-line alter the first letter and line of a paragraph.

❑ ::selection alters the style of mouse-selected text, when browser support for it emerges.

❑ ::before and ::after insert content before and after content appearing inside of an element.

❑ Dynamic pseudo-classes alter styles based on user actions, which include visiting (or not visit-
ing) a link, hovering the mouse pointer over an element, clicking on an element, or by giving an
element focus.

❑ Structural pseudo-classes apply style based on where an element appears in the document tree.
The element can be the root element, the first child of another element, the last child of another
element, or it may contain no children or content.

132

Chapter 6

10_576429 ch06.qxd 11/18/04 12:29 PM Page 132

❑ The negation pseudo-class :not applies style based on what an element is not.

❑ The :target pseudo-class applies style to an element that is the target of another element.

The next chapter discusses inheritance, the cascade, and how it affects document layout.

Exercises
1. Using a technique similar to those described in this chapter, create a navigational bar for the

Widgets and What’s-Its website. Use the document you created in Chapter 5, exercise 1. Include
styles for :link, :visited, :hover, :active, :focus, and links for home, contact us, prod-
ucts, services, and faq. As was the case in that example, the navigational bar must also be cross-
browser compatible, where possible. Use the unordered list technique discussed in this chapter.
Add the navigation bar between the heading and <form> element. Also add a :focus pseudo-
class to each of the input field elements: <input>, <select>, and <textarea>.

Hint: Add the clear: left property to the <form> element’s selector to prevent it from float-
ing up beside your links.

2. Write an FAQ page for Widgets and What’s-its. Be creative in your questions and answers, and
style the page so that it is identical to the feedback form example in Chapter 5. Include styling
using the :target pseudo-class.

Hint: Use the <div> element instead of a <form> element for the body.

133

Pseudo-Element and Pseudo-Class Selectors

10_576429 ch06.qxd 11/18/04 12:29 PM Page 133

10_576429 ch06.qxd 11/18/04 12:29 PM Page 134

7
Inheritance and the Cascade

In Chapter 6, I discussed pseudo-element and pseudo-class selectors. In this chapter, now that you
have some understanding of the basic nuts and bolts that make up CSS, you learn about inheri-
tance and the cascade. In CSS, inheritance and the cascade are as fundamental as selectors and
properties. In fact, the importance of precedence is implied by the name of the language itself:
Cascading Style Sheets. Cascading is a term used to describe precedence. Because CSS declarations
can appear more than once for a single element, the CSS specification includes a set of guidelines
defining which declarations can take precedence over others and how this is decided. In this chap-
ter, I discuss the following:

❑ Inheritance and why the values of some properties are inherited and some are not

❑ The inherit keyword and how to force inheritance

❑ The cascade and how style sheets and some selectors take precedence over others

❑ The !important rule and how to force precedence

❑ Custom style sheets and how to override website styles with custom style sheets

Inheritance
CSS is designed to simplify web document creation, enabling a property to be applied to all ele-
ments in a document. To put it another way, after a property has been applied to a particular ele-
ment, its children retain those property values as well. This behavior is called inheritance.

Many properties in CSS are inheritable, and inheritance makes writing style sheets a snap. Two
types of properties that can be inherited are most text properties and font properties. After they’re
applied to an element, they are inherited by that element’s descendants. Take, for instance, this rule:

div#parentdiv {
text-align: center;

}

11_576429 ch07.qxd 11/18/04 12:30 PM Page 135

The preceding rule creates center-aligned text, regardless of whether the same text appears in its child
elements, as the following code illustrates:

<div id=’parentdiv’>
Some text aligned center.

<div>
Because the text-align property is inherited,
this text is also aligned center.

</div>
</div>

In the preceding code, the rule is applied to the <div> element with the ‘parentdiv’ id, and the prop-
erty is inherited by the <div> element contained within the ‘parentdiv’ <div> element. The advan-
tage of inherited properties is that you don’t have to specify a property again for each nested element.

This results in the rendering shown in Figure 7-1. As you can see, the text in both elements is center
aligned.

Figure 7-1

Some properties, such as border, margin, and padding, are not inherited because inheriting would not
be appropriate. Most of the time, you want these to be set only on a selected element and not on that
selected element’s children. The following rule is an example of a property that is not inherited:

div#parentdiv {
border: thin solid black;

}

This rule puts a thin, solid, black border around the element selected:

<div id=’parentdiv’>
This div has a border around it.

<div>
This div does not have a border around it.

</div>
</div>

The border property (discussed in detail in Chapter 10) is a box model property. Box model properties
handle things like borders, margins, and padding. These aren’t inherited because their effects are, more
often than not, to be used only on the element, not on its children.

Inheritance for each property is outlined in Appendix B.

136

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 136

Now that you’ve had this brief overview of inheritance, in the next section I discuss the inherit key-
word, which you can use to force inheritance — to determine that a given property inherits.

The inherit Keyword
The inherit keyword was introduced in CSS 2; all properties can have inherit as a value. This key-
word allows you to state explicitly whether a property should inherit a value from its parent element, as
shown in the following rules:

div#parentdiv {
border: thin solid black;

}
div#childdiv {

border: inherit;
}

When these rules are applied to the following markup, the thin, solid, black border is inherited by the
child <div> because the child <div> has a border property with a value of inherit:

<div id=’parentdiv’>
This div has a border around it.

<div id=’childdiv’>
This div also has a border around it.

</div>
</div>

This results in the rendering shown in Figure 7-2.

Figure 7-2

Both <div> elements have a thin, solid, black border.

In the next section, I discuss the cascade and how this concept determines precedence among style
sheets and selectors.

The Cascade
With CSS, style sheets can come from more than one place. A style sheet can originate from any of the
following sources:

❑ From the browser (default look and feel).

❑ From the user visiting the website (a custom, user-defined style sheet).

❑ From the web page itself (the website’s author). 137

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 137

Because a style sheet can originate from more than one source, it is necessary to establish an order of
precedence to determine which style sheet applies style for the page the user is seeing. The first style
sheet comes from the browser itself, and this style sheet applies some default styles for a web page such
as the default font and text color, how much space is applied between each line of text, and how much
space is applied between each letter of text. In a nutshell, it controls the look and feel of the web page by
controlling the behavior of each element when no styles are specified.

A style sheet can also be applied by a user visiting the website via a custom style sheet, which is dis-
cussed later in this chapter. This allows the user to specify his or her own look and feel. This aspect of
CSS makes the web more accessible: A user with visual disabilities can write a style sheet to accommo-
date his or her needs, or the browser can provide options that generate the user’s style sheet behind the
scenes. No knowledge of CSS is required.

Finally, the author of the web page can specify a style sheet (of course). The precedence of each style
sheet is as follows.

❑ The browser’s style sheet is the weakest.

❑ The user’s style sheet takes precedence over the browser’s style sheet.

❑ The author’s style sheet is the strongest and takes precedence over the user’s style sheet.

A user’s style sheet wins out over the browser’s style sheet, but the author’s style sheet wins over both.
Lastly, the order in which style sheets appear in a document is also important, and generally speaking
the last included has the highest precedence.

Take for instance this external style sheet:

@import(styles.css);
div {

color: black;
}

The style sheet included for the @import notation is weaker than the style sheet including it because the
rules in that style sheet appear before those in the style sheet importing it. Likewise, an embedded style
sheet is more important than style sheets that are included externally. Finally, the HTML/XHTML style
attribute is more important than any style sheet.

The order of rules inside a style sheet is also important:

div {
text-align: left;
color: white;

}
div {

text-align: center;
color: blue;

}

138

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 138

This results in the output depicted in Figure 7-3.

Figure 7-3

The second rule wins because it appears after the first one, so the <div> elements appearing in the docu-
ment are center-aligned and in blue text.

Calculating the Specificity of a Selector
In addition to style sheet precedence, an order of precedence exists for the selectors contained in each
style sheet. This precedence is determined by how specific the selector is. For instance, an id selector is
the most specific, and the universal selector is the most general. Between these, the specificity of a selec-
tor is calculated using the following formula:

❑ Count the number of ID attributes in the selector; this is variable a

❑ Count the number of attributes, pseudo-classes, and class names in a selector; this is variable b.

❑ Count the number of element names in the selector; this is variable c.

❑ Ignore pseudo-elements.

Concatenate each number together to get the specificity of the selector. Concatenate is a programming
term that means glue together. In this case if I concatenate a, b, and c I get abc, instead of the sum of a, b,
and c, which I might refer to as x. Following are some examples.

Selector Selector Type Specificity

* Universal Selector 000 (a = 0, b = 0, c = 0)

li Element Name 001 (a = 0, b = 0, c = 1)

ul li Element Name 002 (a = 0, b = 0, c = 2)

div h1 + p Element Name 003 (a = 0, b = 0, c = 3)

input[type=’text’] Element Name + Attribute 011 (a = 0, b = 1, c = 1)

.someclass Class Name 010 (a = 0, b = 1, c = 0)

div.someclass Element Name + Class Name 011 (a = 0, b = 1, c = 1)

div.someclass.someother Element Name + Class Name + 021 (a = 0, b = 2, c = 1)
Class Name

#someid ID Name 100 (a = 1, b = 0, c = 0)

139

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 139

I have included the leading zeros in the specificity chart to clarify how concatenation works, but these
are actually dropped. To determine the order of precedence, simply determine the highest number. The
selector with the highest number wins. For instance, consider this example:

* {
font-family: sans-serif;

}
div {

font-family: “Times New Roman”;
}

Apply this to the following markup:

<body>
This font is sans-serif.
<div>

This font is Times New Roman.
</div>

</body>

The result looks like the output shown in Figure 7-4.

Figure 7-4

The div selector wins over the universal selector because the div selector is more specific. Using the
chart, the universal selector has a specificity of zero, so it’s the broadest and most general. The div selec-
tor has a specificity of one, so it wins — by just one. Here’s another example:

ul li {
border: thin solid black;

}
li#navigation {

border: thick solid black;
}

Apply this to the following markup:

 This list item has a thin border around it.
<li id=’navigation’> This list item has a thick border around it.

140

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 140

The result is shown in Figure 7-5.

Figure 7-5

The first selector is the descendant selector that you saw in Chapter 5. It selects the element because
it is a descendant of the element. Both rules apply a border. The first rule has a specificity of 2
because it contains two element names: and . But it doesn’t have an id or any attributes in the
selector. The second rule is an id selector, but it contains an element name, too. So its specificity is 101. It
has one id name, no attribute selectors, no class names, no pseudo-classes, and one element name. So it
wins by 99, and the border around the is thick instead of thin. If I removed the id=’navigation’
from the second list item, it would also have a thin border because it, too, is a descendant of the
element.

When an HTML style attribute is applied, it is considered the most specific of any selector on the page.
That’s because according to the CSS specification, it is defined as having the specificity of a selector with
an id name. Because the style attribute appears after any styles appearing in style sheets, it also takes
precedence over the id selector. Therefore, the style attribute takes precedence over all other rules.

In the following Try It Out, I show you a few examples of the cascade and inheritance from a complex
real-world web page. The web page in this example is a dinner menu from JT’s Island Grill and Gallery
website, a real website for a restaurant in Chokoloskee, Florida. Don’t be intimidated by the amount of
source code you see here. You’re going to focus only on some specific examples of cascading and inheri-
tance that can be observed in this example. Then, beginning with Chapter 8 and on through Chapter 14,
you see how to build this web page from the ground up. Having seen the design of the completed web
page here, it will be easier for you to follow along in Chapter 8 and subsequent chapters as each piece of
the puzzle fits into place. You can download the images and source code for this example from
www.wrox.com.

Try It Out Examining the Effects of the Cascade and Inheritance
Example 7-1. The following steps show examples of the cascade and inheritance in a real-world website.

1. Enter the following markup into your text editor:

<!DOCTYPE html PUBLIC “-/pp/W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title>

JT’s Island Grill and Gallery - Chokoloskee, Florida
</title>
<link rel=’stylesheet’ type=’text/css’

href=’base_styles.css’ media=’screen’/>

141

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 141

<link rel=’stylesheet’ type=’text/css’
href=’menu_system.css’ media=’screen’/>

<link rel=’stylesheet’ type=’text/css’
href=’dinner_menu.css’ media=’screen’/>

</head>
<body>

<div id=’nav’>
<div>

<ul id=’gifts’>
<li id=’leftedge’>

Unique Gifts
<ul class=’menu’>

Gallery

Chokoloskee
<ul class=’menu’>

Visiting Chokoloskee

The Everglades and Ten
Thousand Islands

Recreation in South
Western Florida

<img src=’jts_sign.jpg’
alt=’JTs sign’
title=’Go home.’/>

<ul id=’food’>

<li id=’rightedge’>
Delicious Food
<ul class=’menu’>

Lunch at JT’s
JT’s Lunch Menu
Dinner at JT’s

JT’s Dinner Menu

Employment
<ul class=’menu’>

Contact JT’s
Seasonal Employment

Opportunities

142

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 142

</div>

</div>
<div id=’body’>

<h1>
JT’s at Night

</h1>
<div id=’content’>

<img src=’dinner_plate.jpg’
id=’dinnerplate’
alt=’dinner plate’/>

<h3>Appetizers</h3>
<h4>Stone Crab Claws Market Price</h4>

<p>
1/2 lb of claws straight from local docks served
cracked with a house stone crab mustard sauce.

</p>
<h4>Sesame Seared Tuna $8</h4>

<p>
Sashimi grade yellowfin tuna encrusted in sesame
seeds lightly seared and served with soy dipping
sauce and wasabi.

</p>
<h4>Pita and Hummus $4</h4>

<p>
Our homemade hummus drizzled with olive oil,
accompanied with warm pita bread.

</p>
<h4>JT’s Triple Crab Cakes $7</h4>

<p>
A rich blend of stone crab, blue crab and snow crab
sautéed to order, seasoned with Old Bay and fresh
parsley.

</p>
<h4>Spicy Coconut Shrimp $8</h4>

<p>
Gulf shrimp sautéed in coconut served with our
spicy peanut sauce.

</p>
<h4>Black Bean Quesadilla $6</h4>

<p>
Cheddar cheese, onions, green peppers, raisins,
almonds & black beans grilled in a spinach
tortilla with fresh salsa.

</p>
<h3>Soups and Salads</h3>

<h4>Key Lime-Cilantro Grilled Seafood Salad
$9

</h4>
<p>

Grilled fish, shrimp & scallops atop bed of

143

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 143

mixed organic greens with home-made key
lime-cilantro vinaigrette.

</p>
<h4>Tomato Avocado Salad $9</h4>

<p>
Organically grown avocados and tomatoes atop a
fresh organic spring mix, with home-made roasted
tomato vinaigrette and freshly baked pita chips.
(add shrimp for $1.25)

</p>
<h4>Florida Citrus Salad $7</h4>

<p>
Almonds, coconut and mandarin oranges atop fresh
organic greens with a house honey-orange dressing.

</p>
<h4>Spinach Salad with Warm Bacon Dressing $7</h4>

<p>
Fresh spinach topped with a sizzling bacon
vinaigrette garnished with tomatoes and hard
boiled egg.

</p>

<h4>Tonight’s Salad ask</h4>
<p>

Chef’s specialty salad changes nightly.
</p>

<h4>Soup of da’ day ask</h4>
<p>Prepared fresh daily</p>

<h3>Entrees</h3>
<p class=’menucaption’>

Entrees come with tonight’s small salad and fresh baked
ciabatta bread.

</p>
<h4>Stone Crab Claws Market Price</h4>

<p>
One lb locally caught stone crab claws served
cracked with our key lime mustard sauce.

</p>
<h4>Apricot Pork Tenderloin $16</h4>

<p>
Tenderloin rolled and baked with apricot &
spinach with a parmesan crust and apricot sauce,
fanned over rice and seasonal vegetables.

</p>
<h4>Crab Cakes and Mango Salsa $18</h4>

<p>
Blend of fresh stone crab, snow crab, and blue crab
topped with a black bean-ginger sauce and mango
salsa, with pineapple jasmine rice.

</p>
<h4>Red Wine Grilled Portobello $17</h4>

<p>

144

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 144

Portobello mushroom broiled with goat cheese and a
red wine-shallot sauce over linguine, with
pan-fried yams, apples, and scallions.

</p>
<h4>Jamaican Jerk Shrimp & Scallops $17</h4>

<p>
Shrimp & scallops cooked in our home-made
authentic Jamaican marinade served with pineapple
jasmine rice and veggies.

</p>
<h4>Yellowfin Tuna in Flambé Vanilla Rum $21</h4>

<p>
Sashimi Grade Yellowfin tuna seasoned with adobo
& cinnamon, seared, and flambéed in
vanilla-rum, with garlic buttermilk mashed
potatoes and fresh sautéed veggies.

</p>
<h4>Coconut Sesame Chicken $17</h4>

<p>
Chicken Breast sautéed with glazed walnuts and a
sesame sauce, over black bean cakes and
stir-fried vegetables, sprinkled with nutmeg.

</p>
<h4>Picadillo $14</h4>

<p>
Olives & raisins cooked with ground beef,
onions, peppers and Cuban spices, atop rice
with fresh baked bread.

</p>
<h4>Blackened New York Steak $20</h4>

<p>
Spiced and blackened New York Strip with garlic
buttermilk mashed potatoes, a papaya-basil
marmalade, and marinated mushrooms.

</p>
<h3>Children</h3>

<h5>Pasta & Tomato Sauce $4</h5>
<h5>Pasta topped with Cheese $4</h5>
<h5>Mini Crab Cakes $7</h5>
<h5>Grilled Cheese Sandwich $3</h5>
<h5>Peanut Butter & Jelly Sandwich $3</h5>

<h3>Beverages</h3>
<h5>Soft drink cans $1.50</h5>
<h5>Iced tea (sweet or not) $1.50</h5>
<h5>Home-made Key Limeade $1.50</h5>
<h5>Coffee, hot tea, hot chocolate $1.50</h5>
<h5>Juice, milk $1.50</h5>

<h3>Local Flavor</h3>
<h5>Hot Pressed Cuban Sandwich $8</h5>
<h5>JT’s Classic Cheeseburger $7</h5>
<h5>BBQ Pork Sandwich $7</h5>

<h3>Dessert</h3>
<h5>Home-made Key Lime Pie $4</h5>

145

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 145

<p>
The best in the Everglades

</p>
<h3>Local Music & Arts</h3>

<img src=’dinner.jpg’
id=’dinner’
alt=’Dinner Table’/>

<p class=’copy’>
We hope you enjoy tonight’s live music. To help keep
the local arts alive we book musicians from here in
south Florida. Many of them have music CD’s or tapes
for sale in our shop. If you haven’t already done so,
check out our walls and shelves. We like to consider
them a gallery of Florida. We feature local artists,
crafters, musicians and authors. When you purchase
something you like, not only are you taking home a
true piece of this area, you are helping to preserve
its art and culture.

</p>
</div>
<h6>

© Copyright 2003-2004 Panther’s Crossing, Inc.
</h6>

</div>
</body>

</html>

2. Save this file as dinner_menu.html.

3. Enter the following style sheet into your text editor:

body {
background: url(‘palms.jpg’) no-repeat fixed center bottom;
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}
a {

text-decoration: none;
}
a:hover {

text-decoration: underline;
}
div#body {

margin: 0 auto;
width: 50em;

}
h1, h6 {

background-color: lightsteelblue;
border-left: 0.05em solid black;
border-right: 0.05em solid black;

146

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 146

}
h1, h2, h3, h4, h5, h6 {

margin: 0;
}
h1 {

clear: both;
padding: 0.5em 1.1em;
border-top: 0.05em solid black;
-moz-border-radius-topleft: 0.8em;
-moz-border-radius-topright: 0.8em;
font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;
font-size: 1.5em;

}
h2 {

margin: 0 1.2em;
padding: 0.9em 1.1em 0;
border-bottom: 0.05em dotted black;

}
h3 {

border-bottom: 1px dotted black;
font-size: 0.9em;

}
h6 {

padding: 1em 0;
-moz-border-radius-bottomleft: 0.8em;
-moz-border-radius-bottomright: 0.8em;
border-bottom: 0.05em solid black;
font-size: 0.8em;
text-align: center;

}
div#content {

padding: 1.2em;
border: 0.05em solid black;
font-size: 0.9em;
word-spacing: 5px;
letter-spacing: 1px;

}
p.copy {

padding: 1.2em;
margin: 0 1.2em;
line-height: 2em;
border-bottom: 0.05em dotted black;
font-size: 1.2em;
font-family: “Times New Roman”, Times, serif;
text-indent: 20px;
text-align: justify;

}
img {

margin: 1.7em;
border: 0.05em solid black;

}

147

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 147

4. Save the preceding style sheet as base_styles.css.

5. Enter the following style sheet into your text editor.

div#nav {
position: fixed;
right: 0;
left: 0;
top: 0.8em;

}
div#nav > div {

position: relative;
margin: auto;
width: 50em;
text-align: center;

}
div#nav > div > a > img {

position: relative;
clear: left;
display: block;
margin: 0 auto;
width: 17em;
height: auto;
z-index: 1;

}
div#nav ul {

position: absolute;
list-style-type: none;
margin: 0;
padding: 0;

}
div#nav > div > ul {

top: 2.92em;
width: 50%;

}
ul#gifts {

left: 0;
}
ul#food {

right: 0;
}
div#nav span {

display: block;
overflow: hidden;
height: 2.1em;
line-height: 2.2em;

}
div#nav > div > ul > li {

position: relative;
background-color: lightblue;
padding: 0.5em;
border: 0.05em solid black;
font-size: 0.9em;
padding: 0 0.5em;

148

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 148

width: 8.35em;
height: 2.2em;

}
div#nav > div > ul > li:hover {

background-color: lightsteelblue;
}
ul#gifts > li {

float: left;
}
ul#food > li {

float: right;
}
div#nav > div > ul > li#leftedge {

border-right-width: 0;
-moz-border-radius-topleft: 1em;
-moz-border-radius-bottomleft: 1em;
margin-left: 0.3em;

}
div#nav > div > ul > li#leftedge:hover {

-moz-border-radius-bottomleft: 0;
}
div#nav > div > ul > li#rightedge {

border-left-width: 0;
-moz-border-radius-topright: 1em;
-moz-border-radius-bottomright: 1em;
margin-right: 0.3em;

}
div#nav > div > ul > li#rightedge:hover {

-moz-border-radius-bottomright: 0;
}
ul.menu {

top: 2.19em;
background-color: lightblue;
width: 15em;
-moz-border-radius-bottomleft: 1em;
-moz-border-radius-bottomright: 1em;
border: 0.05em solid black;
display: none;

}
ul#food ul.menu {

-moz-border-radius-topleft: 1em;
right: -0.07em;

}
ul#gifts ul.menu {

-moz-border-radius-topright: 1em;
left: -0.05em;

}
div#nav > div > ul > li:hover > ul.menu,
ul.menu:hover {

display: block;
}
ul.menu li {

text-align: left;
color: black;

149

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 149

}
ul.menu a {

margin: 0.4em;
padding: 0.5em;
color: black;
display: block;
border: 0.05em solid lightblue;

}
ul.menu a:hover {

background-color: lightsteelblue;
-moz-border-radius: 0.8em;
border: 0.05em solid black;
text-decoration: none;

}
div#nav ul a:active {

background-color: steelblue;
}

6. Save the preceding style sheet as menu_system.css.

7. Enter the following style sheet into your text editor:

div#content * {
font-family: “Times New Roman”, Times, serif;

}
div#content h3 + p, div#content h4 + p {

margin: 0 0 1.8em 0;
}
div#content h3 {

margin-top: 1.8em;
border-bottom: none;
font-family: “Monotype Corsiva”, cursive;
text-decoration: underline;
font-size: 2em;

}
div#content img + h3 {

margin-top: 0;
}
h3 + p.menucaption {

font-style: italic;
text-align: center;

}
h4, h5 {

font-size: 1.3em;
}
h3, h4, h5, h4 + p, h5 + p {

text-align: center;
}
h4 em, h5 em {

margin-left: 0.9em;
font-weight: lighter;

}
h5 + p {

margin-top: 0;
}
h5 {

150

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 150

font-weight: normal;
}
p.copy {

padding-top: 0;
}
div#content {

background: lightyellow url(‘dinner_glass.jpg’) no-repeat fixed center center;
}
div#body img {

float: right;
height: auto;

}
img#dinnerplate {

width: 9em;
}
img#dinner {

width: 16em;
}

8. Save the preceding style sheet as dinner_menu.css.

9. Open dinner_menu.html in Mozilla, Mozilla Firefox, or Netscape. You should see output like
that shown in Figure 7-6.

Figure 7-6
151

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 151

How It Works
In this example, you see three style sheets and a markup document that contains the data for the JT’s
dinner menu. The three style sheets each have a specific purpose and divide the styles of the JT’s website
into three different categories. The base_styles.css style sheet is broader. It is intended to be applied not
only to the dinner menu, but to all the other pages of the JT’s website as well. The second style sheet,
menu_system.css, houses the styles specific to the navigation bar that floats with the document as you
scroll down the page. The third style sheet, dinner_menu.css, houses styles specific to the dinner menu.
Although the JT’s dinner menu is quite a lengthy example, it contains several simple examples of cas-
cading and inheritance that you can easily identify.

First, let’s review some examples of inheritance taking place in the dinner menu. The first example of
inheritance appears in the first rule of the base_styles.css style sheet:

body {
background: url(‘palms.jpg’) no-repeat fixed center bottom;
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}

I’ll explain the second line of the highlighted declaration in this rule first. The text-transform:
lowercase; declaration can be readily observed in the whole web page. By applying the text-
transform: lowercase; declaration to the <body> element, you’ve made all the text in the entire
document appear in lowercase letters — a style that is not always desirable; but in this case, it seems to
make the dinner menu more artistic. The style is applied beginning with the <body> element and prop-
agates to all its descendants.

Now, look back at the first line of the highlighted declaration in the preceding rule. This declaration sets
the font. I look at the font-family property in detail in Chapter 9. For this immediate discussion, the
font-family property is also an example of a property that is inherited. If you set the font-family
property on the <body> element, it propagates to all the children, grandchildren, and distant descen-
dants of the <body> element. You can observe this in the font face of the menu headings and drop-down
menus at the top of the document, which all have a Courier New font.

Inheritance can also be overridden. You can see this in the jt’s at night heading under the page’s navigation.
This heading has a Monotype Corsiva font instead of the Courier New font set for the <body> element:

h1 {
clear: both;
padding: 0.5em 1.1em;
border-top: 0.05em solid black;
-moz-border-radius-topleft: 0.8em;
-moz-border-radius-topright: 0.8em;
font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;
font-size: 1.5em;

}

152

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 152

The <h1> element is a descendant of the <body> element, so I could have allowed the Courier New font
to inherit from the <body> element to the <h1> element. But I decided a Monotype Corsiva font would
look better for the heading. Additionally, different fonts were utilized in the body of the dinner menu.
The following rule is set in the dinner_menu.css file:

div#content * {
font-family: “Times New Roman”, Times, serif;

}

The preceding rule uses a combination of the id and universal selector that you saw in Chapter 5, and it
gives all the descendant elements of the <div> with a content id name a Times New Roman font. In
this rule, inheritance is not being utilized. Although all the descendant elements are given the Times
New Roman font, they are given this font in a different way. By using the universal selector, each descen-
dant element is given a Times New Roman font explicitly instead of through inheritance. This means
that if you set the font family on a descendant element of the content <div>, the application of that
font is subject to the cascade. The following rule, which also appears in the dinner_menu.css style sheet,
is an example of this:

div#content h3 {
margin-top: 1.8em;
border-bottom: none;
font-family: “Monotype Corsiva”, cursive;
text-decoration: underline;
font-size: 2em;

}

The <h3> heading contains the headings for the different parts of the menu: appetizers, soups and salads,
entrees, and so on. The <h3> element is selected as a descendant of the content <div>. Because the
specificity of the universal selector is zero, and the specificity of the h3 selector is 1, the font specified in
the h3 selector wins. However, as you may remember from Chapter 5, the universal selector selects
everything. If the <h3> element has any children elements, those elements still have a Times New Roman
font. Because the universal selector applies to everything, its selection takes precedence over inheritance.
I have included the example utilizing the universal selector merely to emphasize it as a possibility and to
show that selecting an element takes precedence over inheritance.

The cascade of the JT’s dinner menu is important, as I explained. Each style sheet has a specific purpose —
going from broader to more specific. The base_styles.css style sheet is the weakest because it is included
first. The menu_system.css style sheet takes precedence over the base_style.css style sheet because it
appears after it. The dinner_menu.css style sheet takes precedence over both the base_styles.css and
menu_system.css style sheets because it appears last. The following is a review of some examples of the
cascade that appear in the JT’s dinner menu. The first example comes from the menu_system.css style
sheet:

div#nav > div > ul > li {
position: relative;
background-color: lightblue;
padding: 0.5em;
border: 0.05em solid black;
font-size: 0.9em;
padding: 0 0.5em;
width: 8.35em;
height: 2.2em;

}

153

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 153

div#nav > div > ul > li:hover {
background-color: lightsteelblue;

}

Both rules refer to the same elements, which in this case are the navigational headings unique gifts,
chokoloskee, employment, and delicious food. A light blue background color is specified for each of these list
items in the first rule. In the proceeding rule, that background color is changed to light steel blue when
the user’s mouse cursor hovers over the top of one of the list items. This is done via the cascade. The
selector of the first rule, div#nav > div > ul > li, has a specificity of 104 because it has one id selec-
tor and four element names in the selector. The selector of the following rule, div#nav > div > ul >
li:hover, has a specificity of 114 because it has an id selector, four element names, and a pseudo-class
in the selector. This allows it to take precedence over the preceding rule and to apply a different back-
ground color when the user’s mouse cursor hovers over a navigational heading.

Another example of the cascade appears in one rule in the base_styles.css style sheet and in one rule in
the dinner_menu.css style sheet. The following rule is from the base_styles.css style sheet:

p.copy {
padding: 1.2em;
margin: 0 1.2em;
line-height: 2em;
border-bottom: 0.05em dotted black;
font-size: 1.2em;
font-family: “Times New Roman”, Times, serif;
text-indent: 20px;
text-align: justify;

}

The following rule is from the dinner_menu.css style sheet:

p.copy {
padding-top: 0;

}

The rules have the same specificity: 11. The rule from base_styles.css comes first and sets the padding on
all four sides of <p> elements with a copy class name. I decided that I didn’t want any top padding on
the copy <p> element in the dinner menu. This ensures that the content of the copy <p> is flush with the
heading above it, local music & arts. This is an example of the cascade; I’ve partially overridden the
padding set in the first rule appearing in the base_styles.css style sheet by applying a new rule in the
dinner_menu.css style sheet.

The JT’s dinner menu plays an important role in the coming chapters. From Chapter 8 to Chapter 14 you
see how this design was built from the ground up and how CSS features work. Having seen the final
product here, you’ll be able to follow along more easily with each new feature introduced because you
already know the goal of the project.

The next section continues discussion of the cascade with the !important rules.

154

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 154

!important Rules
Along with the need for the cascade in CSS came the need to override it. This is where !important
rules come in. The !important syntax appears within a declaration after the property value and before
the semicolon that terminates the declaration. Two components make up this syntax: an exclamation
mark, used here as a delimiter, and the important keyword. A delimiter marks the ending of one thing
and the beginning of another. Here the exclamation mark signals the end of the declaration. The
important keyword must appear next, followed by a semicolon to terminate the declaration:

div {
color: black !important;

}

A declaration containing the !important rule, like the preceding one, takes precedence over any other
declaration.

div#someid {
color: orange;

}

Under the cascade, the id selector takes precedence over the element name selector. However, if the
!important rule appears in a declaration, that declaration takes precedence. In this case, as illustrated
by the preceding code, the result is black text color rather than orange.

The !important rule also takes precedence over the style attribute.

<div style=’color: purple;’>
some text

</div>

The color for the div is still black because the !important rule takes precedence over all other
declarations.

Although the cascade dictates that the website author’s style sheet takes precedence over the user’s, the
!important rule allows the user to override author specified styles.

If more than one !important rule appears in a style sheet, and the style sheet has the same origin —
that is, both rules come from the author’s style sheet or both come from the user’s style sheet — the latter
rule wins out over any specified previously.

Under CSS 1, an author’s !important rule takes precedence over a user’s !impor-
tant rule; under CSS 2, a user’s !important rule takes precedence over the
author’s. The change makes CSS more accessible, enabling people with visual dis-
abilities to write their own custom style sheets.

155

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 155

Custom Style Sheets
CSS is not limited to use by website designers. In modern browsers, it is a feasible solution to make web-
sites more accessible. It enables users to create custom style sheets and apply them to all websites they
visit. This is done via a feature offered in some browsers that allows a custom style sheet to be refer-
enced. After the sheet is referenced, its rules can be made to override those of the website’s authors. In
the following sections I describe how to do this with Microsoft Internet Explorer and Mozilla.

Specifying a Custom Style Sheet Using MSIE
Custom style sheets are specified in IE by choosing Tools ➪ Internet Options. Click the Accessibility
button, check the box labeled Format Documents Using My Style Sheet, and click the Browse button to
locate a CSS document (with the .css extension) on your hard disk. The Accessibility panel is depicted
in Figure 7-7.

Figure 7-7

Remember to take into account that website author style sheets take precedence over user-specified
style sheets. To override the author’s style sheet, create declarations in the custom CSS file using the
!important rule to override author-specified styles.

Specifying a Custom Style Sheet Using Mozilla
The process for specifying a custom style sheet isn’t as intuitive when you are using Mozilla. I outline
the process here for specifying a custom style sheet using Windows XP, although a custom style sheet
can be specified for Mozilla using any operating system. Mozilla offers a simplified method of specify-
ing colors, fonts, and other aspects of presentation that requires no knowledge of CSS. These options are
used to create a user-defined style sheet behind the scenes. They are available from the Edit ➪

Preferences menu in Mozilla. Select the Appearance category from the left panel of the Preferences win-
dow. Expand the category, and options for the Font and Color are exposed. The preferences menu is
depicted in Figure 7-8.

156

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 156

Figure 7-8

Although this built-in, idiot-proof method of controlling presentation is perfectly fine for those who
know nothing about CSS, Mozilla has a slightly more complicated method of getting around this built-in
specification of styles so that a completely customized style sheet can be used. This method requires you
to find a special file titled chrome in a hidden directory (in Windows XP). Therefore, before I can show
you how to specify a custom style sheet, a little background information is necessary so you will be able
to locate this hidden folder.

First, Mozilla creates a profile for each user so multiple people can use Mozilla and all have different
preferences and settings. To specify a custom style sheet for Mozilla, you must locate the folder that con-
tains your Mozilla profile settings. The default profile is titled default by default, unless specified other-
wise during the installation process. With this information, you may now begin the task of locating the
folder titled chrome, which is located in a folder that goes by the same name as your Mozilla profile.

Before you can locate this folder, you must make some configuration changes because this folder resides
in a hidden folder. In order to be used, hidden folders must be visible. To make hidden folders visible,
open Windows Explorer by going to the Start menu and clicking the Run option. When the Run dialog
opens, type explorer in the Open text box. After Windows Explorer opens, choose Tools ➪ Folder
Options. (Recall from Chapter 2 that the same menu was required to show extensions for all file types.
The Folder Options menu is depicted in Figure 2-1.) Click the View tab and then click the option labeled
Show Hidden Files and Folders. Finally, click OK to activate the changes. Now all files and folders are
visible.

To navigate to the profile folder, click through the following sequence of folders using Windows
Explorer. Start with My Computer ➪ C:\ (or the drive letter where Windows is installed) ➪ Documents
and Settings. Then open the folder with the Windows XP user name that Mozilla is installed under.

157

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 157

Continue with the following sequence of folders: Application Data ➪ Mozilla ➪ Profiles. Open the
folder with the Mozilla profile name for which you’d like to specify a custom style sheet. Within the
folder for your profile name, you may find a folder with some gobbledegook for a title — a seemingly
random sequence of letters. Within that folder, click the folder titled chrome. Figure 7-9 depicts the com-
plete folder tree required to access the chrome folder.

Figure 7-9

The CSS file used as a custom style sheet for Mozilla must also have a special name: userContent.css.
Add a CSS file named userContent.css to the chrome directory, and Mozilla will attempt to apply the
styles specified in it to the websites you visit while you’re logged on to Mozilla using the profile name of
the directory userContent.css was saved in. I say attempt because the cascade still applies; because this is
a user style sheet, a website author’s style sheet still takes precedence over the user’s style sheet. As I
discussed earlier in this chapter, in the section “!important Rules,” declarations must be made with the
!important rule to override declarations made by the website author.

Customizing Mozilla Using CSS
Mozilla doesn’t stop with allowing a custom style sheet for content. You can also make a style sheet for cer-
tain aspects of the look and feel of the browser itself. In fact, Mozilla itself is written mostly in web program-
ming languages like CSS, JavaScript, and XML, and because Mozilla is open source, this makes it very easy
to enhance — and to participate as a Mozilla developer. The style sheet for the browser differs slightly from

158

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 158

that of the content. First, this file must be named userChrome.css; however, it must be placed in the same
directory as the userContent.css file. Second, the userChome.css file contains a reference to something called
XUL, which stands for the Extensible User-interface Language. Aside from a single reference to XUL, the rest
of this file is written in plain CSS. Mozilla provides some prewritten examples of the userContent.css and
userChrome.css file. You can view these with Windows Explorer at the following location:

C:\Program Files\mozilla.org\Mozilla\defaults\profile\US\chrome

With a default installation, Mozilla is located in C:\Program Files\. However, it can be installed on any
drive. Mozilla’s example files are titled userChrome-example.css and userContent-example.css.

Now that I’ve explained where the file goes and what it does, follow the steps in this Try It Out to create
a custom style sheet for Microsoft Internet Explorer and Mozilla.

Try It Out Creating a userContent.css Style Sheet for Mozilla and IE
Example 7-2. In this exercise, you learn how to use a custom style sheet to change styles in IE and
Mozilla.

1. Open your text editor and add the following CSS:

* {
color: white !important;
-moz-border-radius: 0 !important;

}
a:link, a {

color: royalblue !important;
}
a:active {

color: red !important;
}
a:visited {

color: purple !important;
}
body {

background: black !important;
}
div, table, td, h1, h2, h3, h4, h5, h6 {

background: inherit !important;
}
input, select, textarea {

padding: 5px !important;
border: thin solid gray !important;
background-color: blue !important;
margin: 5px !important;

}
input:focus {

background-color: red !important;
}
input[type=’image’] {

display: none !important;
}
img {

display: none !important;
}

159

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 159

2. Save the file as userContent.css.

3. To use the style sheet with Mozilla, save the file to the Mozilla user profile chrome directory
described in the section “Customizing Mozilla Using CSS” earlier in this chapter.

4. Apply the style sheet using Internet Explorer’s accessibility panel, also described in this chapter
in the section “Specifying a Custom Style Sheet Using MSIE.”

How It Works
This style sheet overrides all styles specified on a website. It uses a high contrast color scheme, white
text on a black background. It sets all unvisited links to royal blue, and changes visited links to purple at
any website the user visits. Let’s review each style rule. The first style rule makes all text white, and it
removes any border radius effects:

* {
color: white !important;
-moz-border-radius: 0 !important;

}

Next, the linking color scheme is defined:

a:link, a {
color: royalblue !important;

}
a:active {

color: red !important;
}
a:visited {

color: purple !important;
}

Unvisited links are made royal blue, active links are made red, and visited links are made purple. Next,
the background is applied to all elements. I’ve done this by applying a black background to the <body>
element; then other elements are told to inherit their background color.

body {
background: black !important;

}
div, table, td, h1, h2, h3, h4, h5, h6 {

background: inherit !important;
}

This forces all the other elements to go along with whatever is defined for the <body> element. Next I
want to control the look and feel of input <form> elements. In this rule, I make <input>, <select>, and
<textarea> elements have a blue background.

input, select, textarea {
padding: 5px !important;
border: thin solid gray !important;
background-color: blue !important;
margin: 5px !important;

}

160

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 160

Some padding and margins are added for clarity, and a thin, gray border is placed around each input
element. As I did for :active links, I also want <input> fields to turn red when in focus, and I do that
with this rule:

input:focus {
background-color: red !important;

}

Finally, because images are annoying, I get rid of them. Luckily, CSS provides me with that capability.
Making background colors black ought to get rid of most background images. For the element
and input buttons that use images, I add the following rules:

input[type=’image’] {
display: none !important;

}
img {

display: none !important;
}

The display: none; declaration takes the images out of the rendered document as though they never
existed. All these styles combined create a high contrast design that loads quickly because images are
not displayed.

Custom style sheets offer a great deal of flexibility for people with visual disabilities, for people using
low bandwidth Internet connections, and for people who simply like to customize their Internet experi-
ence. Mozilla and Internet Explorer provide easy-to-use tools to create them.

Summary
Inheritance and the cascade are fundamental to CSS. Inheritance makes controlling the effects of prop-
erty values a breeze, because each property is defined either to inherit or not, as is appropriate to its pur-
pose. The cascade provides some rules for precedence to determine which styles win when multiple
style sheets and rules containing the same declarations come into play. Precedence is determined by a
simple formula that calculates which selector wins.

In this chapter you learned that the following:

❑ Some properties are inherited, which reduces redundancy in the document by eliminating the
need for declarations to be written multiple times.

❑ Some properties are not inherited, which also reduces redundancy by preventing the effects of
declarations from being applied to the element’s decendants.

❑ The cascade provides both some ground rules and a simple formula to determine the prece-
dence of style sheets and selectors.

❑ Custom style sheets allow users to specify their own styles for the websites they visit.

Now that you know the background of CSS, Chapter 8 begins with a look at the strategies used in begin-
ning a real-world website design project and introduces you to CSS’s text manipulation properties.

161

Inheritance and the Cascade

11_576429 ch07.qxd 11/18/04 12:30 PM Page 161

Exercises
1. Open the file for example5-5.html and calculate the specificity for each selector used in this

example. (If you go to www.wrox.com and download the entire folder structure of files for the
book, you can find example5-5.html under Chapter 5\Try It Out.)

Hint: Don’t forget that selectors can be grouped.

2. Write your own userContent.css file. Make all backgrounds white and all text black. Make all
unvisited links blue, visited links purple, and active links red. Have all input fields use a white
background with a black border and black text. Don’t display any images.

162

Chapter 7

11_576429 ch07.qxd 11/18/04 12:30 PM Page 162

8
Text Manipulation

In Chapter 7 you learned how certain properties in CSS are inherited and how the cascade deter-
mines which style rules are the most important. In this and subsequent chapters, I begin an in-depth
look at the individual properties of CSS and how these come together to style a document. In this
chapter, I also present the beginning of a real-world website project that forms the basis for the
examples in this chapter and every chapter that follows. Each example builds on the JT’s Island
Grill and Gallery website that I presented in Chapter 7 to demonstrate the effects of the cascade and
inheritance. Although in Chapter 7 you have already seen what the completed JT’s Island Grill and
Gallery home page looks like, here I begin the process of building the JT’s website from scratch, step
by step, to demonstrate how I achieved the design presented in Chapter 7.

In this chapter, I also present some of the techniques and strategies required to make a success of a
real-life website, such as basic planning and best markup practices. I also look specifically at prop-
erties that manipulate the presentation of text. You can manipulate text in a variety of ways, from
the length of space between letters in words of text, to the length of space between the words of a
sentence, to the spacing between sentences in a paragraph, to how much space is used to indent
the text contained in a paragraph of text. I discuss design strategy — how to approach a real-world
website design project — and I look ahead to what’s in store in CSS 3.

I cover the various CSS text-manipulation properties:

❑ The letter-spacing property and how it is used to add or subtract space between the
letters that make up a word

❑ The word-spacing property and how it is used to add or subtract space between the
words of a sentence

❑ The text-indent property and how it is used to indent the text of a paragraph

❑ The text-align property and how it is used to align the text of a document

❑ The text-decoration property and how it is used to underline, overline, and
strikethrough text

❑ The text-transform property and how it is used to capitalize text or convert text to
uppercase or lowercase letters

❑ The white-space property and how it is used to control the flow and formatting of text

12_576429 ch08.qxd 11/18/04 12:30 PM Page 163

The text manipulation properties of CSS allow you to design the layout of a document in much the same
way as you use a word processing application. Before I get into the discussion of the various CSS text-
manipulation properties, however, I provide an overview of the JT’s Island Grill and Gallery website to
show you what’s involved in designing a website for the real world using CSS and XHTML.

The JT’s Website
In Chapter 7 you got a sneak peek at what the completed JT’s Island Grill and Gallery restaurant home
page looks like. What I did not mention in Chapter 7 is that this is a real-life website. The restaurant’s
owners (and friends of yours truly) graciously agreed to my including their website in my book for the
purpose of demonstrating what CSS can do. Thrilled at the opportunity to present a real website, I com-
pletely rewrote the entire website so that it makes optimal use of most CSS properties. From this chapter
onward, each “Try It Out” example focuses on how to build a real-life website from scratch using CSS as
the primary designing tool. As the book progresses, new properties are introduced and added to the JT’s
style sheet. This easy-to-follow approach makes the benefits and effects of each property apparent.

To understand what is involved in creating a real website, you must first learn the strategies and tech-
niques required to build it, and this is the focus of the coming sections.

Developing a Design Strategy
Before I continue with the discussion of CSS, you should understand each step required in planning the
JT’s website, particularly which methods to use so that the website can propagate seamlessly across a
variety of screen resolutions, browsers, platforms, and devices. This includes deciding what techniques
to employ to create a website that is accessible, easy to maintain, and fluid to the user’s environment.
This type of design is referred to as liquid design. Liquid design refers to the design of web pages that
are adaptive to the user’s environment — page that increases or decreases in size with the user’s screen
resolution and that are available on a variety of platforms, browsers, and devices. I discuss the tech-
niques involved in creating a liquid design in more detail in Chapter 10, so the strategies I discuss here
lead directly to those strategies.

Building a website requires you to have a strategy for the layout of the website, for the storage and man-
agement of the website’s files, and for how people visiting the website will interact with the website to
locate the information they are looking for. Although these strategies are important, you must also settle
on a strategy for how the markup within each document will be structured because this is part of how
the website will be managed and updated. The following list outlines the requirements for successfully
building the JT’s website. Your plan should include the following:

❑ A logical and organized directory structure, where the website’s images and the different
XHTML pages and style sheets will be stored.

❑ A table of contents that determines what the different pages of the website will contain and
what they will be called, and all the required photos, artwork, or other images that will make up
the content and creative presentation of the website.

❑ A color scheme.

❑ A list of browsers to support — the website must work on a variety of platforms and browsers to
reach the most users possible. The most common browsers include Internet Explorer 5.5 and 6 for
Windows, Safari for Mac OS X, Gecko (Netscape 7, Mozilla and Mozilla Firefox), and Opera 7.

164

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 164

❑ A provision for accessibility for visually impaired users and people who are accessing the content
of the website with the aid of a browser that reads content with a voice synthesizer.

❑ Alternative versions of the website for print and for handheld devices like PDAs and cell
phones.

Each step is important to create a website that adheres to standards that ensure the website can propa-
gate seamlessly across a variety of platforms. Browsers and devices that implement agreed-upon stan-
dards make this possible. I postpone the discussion of the last three points in the preceding list until
later chapters because each is a lengthy topic in itself.

In terms of browser compatibility, many of the examples that I present don’t function properly using the
Microsoft Internet Explorer 5.5 and 6 browsers for Windows. However, I have not ignored Internet
Explorer; in fact, I mentioned it as an important browser to design for. In Chapter 19, I cover techniques
that work around problems you face when displaying content in Internet Explorer. This discussion merits
its own chapter because Internet Explorer has the most problems and the least amount of CSS functionality.

You should use Mozilla to test the examples unless I specify otherwise.

As for the last two bullet points in the preceding list, I discuss accessibility in more detail in Chapter 10
and how to write style sheets for print, handheld devices, and PDAs in Chapter 15. The techniques that I
use between now and then play into those discussions and will become more obvious when those topics
emerge.

As for color schemes, because I am using CSS, I don’t need to absolutely settle on a certain scheme at the
beginning of the project. The color scheme can be updated from one or a few CSS files later and take
effect immediately for the entire website.

For the coming sections, I limit the discussion to the basic directory structure, the pages required in the
JT’s website, and a simple example of how the markup is structured.

Creating the Directory Structure
The directory structure houses all the files required for the website. The directory structure must be
organized and easy to maintain so that the website’s files are easy to find, edit, or remove. The JT’s web-
site is comprised primarily of the following types of documents:

❑ XHTML documents that contain the markup and copy for each page of content

❑ Images: photos, artwork, and other graphical content

❑ Style sheets

The directory structure is an important part of designing a website, even for a small website like JT’s.
Planning the directory structure makes the project easy to manage should the website expand and
become more complicated. With an organized directory structure in place, a website can grow more
easily — it becomes scalable.

The required files for the JT’s website are available from www.wrox.com. However, if you do not have
access to the Wrox website, the following Try It Out outlines how to create the required directory structure.

165

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 165

Try It Out Creating the Required Directory Structure
Example 8-1. To set up the required directory structure for the JT’s website, follow these steps:

1. Create a directory named chokoloskee-island.

2. Inside the chokoloskee-island directory, create a directory called style_sheets and a directory
called images.

3. Inside the images directory, create a directory named backgrounds and a directory named photos.
Your directory structure should look like the one in Figure 8-1.

Figure 8-1

How It Works
Figure 8-1 shows a basic tree view representation of the JT’s website directory structure. The root direc-
tory shown in Figure 8-1 is the directory in which you’ve created the chokoloskee-island directory, and
this can be any directory that you like.

The directory structure is very important because a well-thought–out directory structure makes the files
easy to manage. A clean, logical, and organized directory structure that categorizes the files required for
the website is one step in the process of creating a website. Your clients and colleagues will appreciate
the professionalism of this approach to organizing the website’s files, particularly as the website grows
larger and becomes more complicated. Locating important files will remain a relatively easy task for
those charged with maintaining the site.

The approach here is simple: The chokoloskee-island directory is named after the domain that the clients
have chosen, chokoloskee-island.com. Within that directory, another directory is dedicated to the web-
site’s images, naturally enough called Images. Within that directory are two other directories, one for
background images and one for photos. Additionally, there is a directory for the style sheets. Should the

166

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 166

website be expanded, subcategories of these directories (such as a subdirectory to the Images directory
named Artwork or a subdirectory to the Photos directory named Employees) would be easy to add. The
style sheets directory can also be expanded. For instance, if the clients decide they want a different color
scheme or skins, additional style sheet directories can be added to accommodate that.

Now that a directory structure is in place, let’s look at the different pages required for the website.

Settling on a Table of Contents
Norman and Avery, the clients, have indicated to me what pages they would like on their website.
Luckily for me, they have been gracious enough to also supply the required copy for each page. I have
taken several photos related to the restaurant and surrounding area with my digital camera, and my
clients have also provided several photos of their own. They have outlined the information contained on
each page as follows:

❑ Welcome page

❑ Contact JT’s

❑ Seasonal jobs and employee housing

❑ JT’s gift shop

❑ Calendar of upcoming events

❑ Chokoloskee

❑ The Everglades and Ten Thousand Islands

❑ Recreational information

❑ Lunch at JT’s

❑ Lunch menu

❑ Dinner at JT’s

❑ Dinner menu

With the copy and the images supplied, I begin the task of assembling the required markup for each
page, as well as deciding which images I’m likely to include in the website. For the purposes of this
chapter, I have chosen one of these pages to use as an example: the dinner menu. The concepts presented
to style these pages are applicable to all the pages of the website.

At this point, the creation of a mockup would be appropriate. A mockup is typically a simple image file
that shows your client what the finished product will look like. It can be created with image-editing pro-
grams such as Macromedia Flash, Macromedia Fireworks, or Adobe Photoshop. The mockup is often
just a static image that requires no coding, so the creative vision can be portrayed by the designer with
little effort. The mockup is often the primary vehicle for selling your creativity to the client. In this case,
I’ve already prepared a mockup and gained the client’s approval for the graphical design, navigation,
and creative layout of the website. The mockup for this design was presented in Chapter 7. I’ve already
written all the code, and the examples in the coming chapters illustrate how I put together the markup
and CSS to achieve that design.

167

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 167

TE
AM
 F
LY

The following Try It Out demonstrates the basic strategies applied to create the markup itself. The
markup presented in this example is not identical to that presented in Chapter 7 because it is impossible
to foresee all the necessary elements in an initial design. As the design progresses, additional elements
might become necessary; but using the techniques presented here in the initial planning reduces the
need to include additional elements, class names, or id names. This example presents very basic strate-
gies for including markup that explains the data contained in the document based on the copy provided
by the client.

Try It Out Structuring the Markup
Example 8-2. Follow these steps to create the markup for the JT’s dinner menu:

1. Type the following markup or open the dinner_menu.html file provided in the code download
from www.wrox.com:

<!DOCTYPE html PUBLIC “-/pp/W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title>

JT’s Island Grill and Gallery - Chokoloskee, Florida
</title>

</head>
<body>

<div id=’nav’>

Unique Gifts

Gallery

Chokoloskee

Visiting Chokoloskee

The Everglades and Ten
Thousand Islands

Recreation in South
Western Florida

<img src=’images/photos/jts_sign.jpg’
alt=’JTs sign’
title=’Go home.’/>

Employment

Contact JT’s

168

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 168

Seasonal Employment
Opportunities

Delicious Food

Lunch at JT’s
JT’s Lunch Menu
Dinner at JT’s

JT’s Dinner Menu

</div>
<div id=’body’>

<h1>
JT’s at Night

</h1>
<div id=’content’>

<img src=’images/photos/dinner_plate.jpg’
alt=’dinner plate’/>

<h3>Appetizers</h3>
<h4>Stone Crab Claws Market Price</h4>

<p>
1/2 lb of claws straight from local docks served
cracked with a house stone crab mustard sauce.

</p>
<h4>Sesame Seared Tuna $8</h4>

<p>
Sashimi grade yellowfin tuna encrusted in sesame
seeds lightly seared and served with soy dipping
sauce and wasabi.

</p>
<h4>Pita and Hummus $4</h4>

<p>
Our homemade hummus drizzled with olive oil,
accompanied with warm pita bread.

</p>
<h4>JT’s Triple Crab Cakes $7</h4>

<p>
A rich blend of stone crab, blue crab and snow crab
sautéed to order, seasoned with Old Bay and fresh
parsley.

</p>
<h4>Spicy Coconut Shrimp $8</h4>

<p>
Gulf shrimp sautéed in coconut served with our
spicy peanut sauce.

169

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 169

</p>
<h4>Black Bean Quesadilla $6</h4>

<p>
Cheddar cheese, onions, green peppers, raisins,
almonds & black beans grilled in a spinach
tortilla with fresh salsa.

</p>
<h3>Soups and Salads</h3>

<h4>Key Lime-Cilantro Grilled Seafood Salad
$9

</h4>
<p>

Grilled fish, shrimp & scallops atop bed of
mixed organic greens with home-made key
lime-cilantro vinaigrette.

</p>
<h4>Tomato Avocado Salad $9</h4>

<p>
Organically grown avocados and tomatoes atop a
fresh organic spring mix, with home-made roasted
tomato vinaigrette and freshly baked pita chips.
(add shrimp for $1.25)

</p>
<h4>Florida Citrus Salad $7</h4>

<p>
Almonds, coconut and mandarin oranges atop fresh
organic greens with a house honey-orange dressing.

</p>
<h4>Spinach Salad with Warm Bacon Dressing $7</h4>

<p>
Fresh spinach topped with a sizzling bacon
vinaigrette garnished with tomatoes and hard
boiled egg.

</p>

<h4>Tonight’s Salad ask</h4>
<p>

Chef’s specialty salad changes nightly.
</p>

<h4>Soup of da’ day ask</h4>
<p>Prepared fresh daily</p>

<h3>Entrees</h3>
<p class=’menucaption’>

Entrees come with tonight’s small salad and fresh baked
ciabatta bread.

</p>
<h4>Stone Crab Claws Market Price</h4>

<p>
One lb locally caught stone crab claws served
cracked with our key lime mustard sauce.

</p>
<h4>Apricot Pork Tenderloin $16</h4>

<p>

170

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 170

Tenderloin rolled and baked with apricot &
spinach with a parmesan crust and apricot sauce,
fanned over rice and seasonal vegetables.

</p>
<h4>Crab Cakes and Mango Salsa $18</h4>

<p>
Blend of fresh stone crab, snow crab, and blue crab
topped with a black bean-ginger sauce and mango
salsa, with pineapple jasmine rice.

</p>
<h4>Red Wine Grilled Portobello $17</h4>

<p>
Portobello mushroom broiled with goat cheese and a
red wine-shallot sauce over linguine, with
pan-fried yams, apples, and scallions.

</p>
<h4>Jamaican Jerk Shrimp & Scallops $17</h4>

<p>
Shrimp & scallops cooked in our home-made
authentic Jamaican marinade served with pineapple
jasmine rice and veggies.

</p>
<h4>Yellowfin Tuna in Flambé Vanilla Rum $21</h4>

<p>
Sashimi Grade Yellowfin tuna seasoned with adobo
& cinnamon, seared, and flambéed in
vanilla-rum, with garlic buttermilk mashed
potatoes and fresh sautéed veggies.

</p>
<h4>Coconut Sesame Chicken $17</h4>

<p>
Chicken Breast sautéed with glazed walnuts and a
sesame sauce, over black bean cakes and
stir-fried vegetables, sprinkled with nutmeg.

</p>
<h4>Picadillo $14</h4>

<p>
Olives & raisins cooked with ground beef,
onions, peppers and Cuban spices, atop rice
with fresh baked bread.

</p>
<h4>Blackened New York Steak $20</h4>

<p>
Spiced and blackened New York Strip with garlic
buttermilk mashed potatoes, a papaya-basil
marmalade, and marinated mushrooms.

</p>
<h3>Children</h3>

<h5>Pasta & Tomato Sauce $4</h5>
<h5>Pasta topped with Cheese $4</h5>
<h5>Mini Crab Cakes $7</h5>
<h5>Grilled Cheese Sandwich $3</h5>
<h5>Peanut Butter & Jelly Sandwich $3</h5>

171

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 171

<h3>Beverages</h3>
<h5>Soft drink cans $1.50</h5>
<h5>Iced tea (sweet or not) $1.50</h5>
<h5>Home-made Key Limeade $1.50</h5>
<h5>Coffee, hot tea, hot chocolate $1.50</h5>
<h5>Juice, milk $1.50</h5>

<h3>Local Flavor</h3>
<h5>Hot Pressed Cuban Sandwich $8</h5>
<h5>JT’s Classic Cheeseburger $7</h5>
<h5>BBQ Pork Sandwich $7</h5>

<h3>Dessert</h3>
<h5>Home-made Key Lime Pie $4</h5>
<p>

The best in the Everglades
</p>

<h3>Local Music & Arts</h3>
<img src=’images/photos/dinner.jpg’

alt=’Dinner Table’/>
<p>

We hope you enjoy tonight’s live music. To help keep
the local arts alive we book musicians from here in
south Florida. Many of them have music CD’s or tapes
for sale in our shop. If you haven’t already done so,
check out our walls and shelves. We like to consider
them a gallery of Florida. We feature local artists,
crafters, musicians and authors. When you purchase
something you like, not only are you taking home a
true piece of this area, you are helping to preserve
its art and culture.

</p>
</div>
<h6>

© Copyright 2003-2004 Panther’s Crossing, Inc.
</h6>

</div>
</body>

</html>

172

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 172

2. Save this file in the chokoloskee-island directory as dinner_menu.html. When displayed, the
page should look like Figure 8-2.

Figure 8-2

How It Works
As you can see from Figure 8-2, the markup alone is very mundane when viewed in a browser.
However, there is a strategy in place for the markup. First, the markup used in the dinner menu must
describe the data that makes up the dinner menu itself. HTML lists define the website’s navigation
because the navigation menus are really just a list of links. In Chapter 12, I demonstrate how to style
these lists with CSS; and in Chapter 14, I demonstrate how these navigational lists are converted — using
only CSS — into dynamic drop-down menus that appear only when the user’s mouse cursor is over a
navigation heading. This resembles the behavior of the different drop-down menus that are part of the
browser itself. For example, when the user clicks the File menu in a browser, a menu appears containing
various options. The drop-down menus that you create for the JT’s website behave in a similar manner;
the only difference is the mouse cursor only has to hover over the menu for it to appear. The user need
not click it. The following is an excerpt from the dinner_menu.html document showing how the naviga-
tion is organized using list the elements, and . The nested lists become the drop-down menus
that you observed in Chapter 7:

173

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 173

Unique Gifts

Gallery

Chokoloskee

Visiting Chokoloskee

The Everglades and Ten
Thousand Islands

Recreation in South
Western Florida

I’ve divided the navigation between two lists: The first appears before the company logo, and the second
appears after the company logo. This allows the navigation to be divided into four headings: Unique
Gifts, which contains a link to a page with information about the restaurant’s gift shop; Chokoloskee,
which contains links to information about the local area, Chokoloskee, the Everglades, and Recreation;
Employment, with links to a page containing contact information and a page with employment informa-
tion; and the last heading, Delicious Food, which contains links to pages containing information about the
restaurant’s menus, daily events, and dining atmosphere.

Each section of the page has also been given id names — at least those parts of the markup that are
obvious and easy to name at this early stage of planning:

<title>
JT’s Island Grill and Gallery - Chokoloskee, Florida

</title>
</head>
<body>

<div id=’nav’>

The navigation is wrapped inside a <div> element and given the name nav. The body of the document is
wrapped in a <div> element named body that includes both the heading and the footer, which are con-
tained inside of <h1>, and <h6> tags respectively. The <h1> element contains the name of the page, and
the <h6> element contains the footer text. The content of the menu is contained inside of a <div> element
named content. Then the data of the menu itself is divided into different headings and paragraphs:

<div id=’content’>
<img src=’images/photos/dinner_plate.jpg’

alt=’dinner plate’/>
<h3>Appetizers</h3>

<h4>Stone Crab Claws Market Price</h4>
<p>

174

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 174

1/2 lb of claws straight from local docks served
cracked with a house stone crab mustard sauce.

</p>
<h4>Sesame Seared Tuna $8</h4>

Each section of the menu — Appetizers, Entrees, and so on — is contained within <h3> headings.
Beneath those headings, each menu item is also contained inside a heading, and the price of the menu
item is contained within tags. (em is short for emphasis.) Using the tag allows the price of each
menu item to be styled independently from the heading element that contains the menu item. The
description of the menu item is itself contained within <p> tags because these are really just paragraphs
of text.

Using this strategy of writing markup — using as little markup as possible, only enough markup to
describe the data itself — keeps the file size small and the markup manageable. Although the page
appears quite mundane, every aspect of it is now controllable using CSS. The font sizes, the text layout,
margins, and every other aspect of presentation are controlled directly from the style sheet.

Finally, a strategy employed in this markup — and the markup of previous chapters — is that the
markup is indented to make it easy to read and troubleshoot:

<html>
<head>

<title>
JT’s Island Grill and Gallery - Chokoloskee, Florida

</title>
</head>
<body>

Using this discipline of indenting tags makes it obvious where each tag begins and ends. If you use text
editors like Crimson Editor (that I mentioned in Chapter 2), the process of indenting and un-indenting
tags is very easy. Entire blocks of markup can be indented at once by highlighting the block with the
mouse cursor and pressing the tab key while the block is highlighted. Conversely, entire blocks can be
un-indented by pressing Shift+Tab while a block is highlighted. The benefit of indented markup is that
errors are easier to spot and prevent; secondly, it’s simply good practice.

Other text editors and development environments like Macromedia Dreamweaver MX also provide code
beautification tools that make the life of a website designer much easier.

Now that you’ve read about the strategies for starting a website project, in the remainder of the chapter I
discuss the various CSS properties used to manipulate text, beginning with the letter-spacing
property.

The letter-spacing Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The letter-spacing property, as I have demonstrated briefly in previous chapters, controls the
amount of space between the letters. The following table shows its allowable values.

175

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 175

Property Value

letter-spacing normal | <length> | inherit
Initial value: normal

The letter-spacing property is a simple property that accepts a length as its value. A length value is
any length value supported by CSS, as I discussed in Chapter 4.

This style sheet

p {
letter-spacing: 10px;

}

and this paragraph

<p>
Each letter of each word is ten pixels apart.

</p>

result in the output shown in Figure 8-3. As you can see in the figure, each letter of each word is spaced
10 pixels apart.

Figure 8-3

The letter-spacing property may have either a positive or negative value. When given a negative
value, the letters of words are closer together. Given this style rule

p {
letter-spacing: -2px;

}

and this paragraph

<p>
Two pixels of space have been subtracted from between each letter.

</p>

you get the result shown in Figure 8-4.

176

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 176

Figure 8-4

As you can see in this figure, the letters of the paragraph are condensed together because the value of
the letter-spacing property is a negative value.

The letter-spacing property can be used to add or subtract space between letters. In the following
Try It Out, you add the letter-spacing property to the style sheet for the JT’s website.

Try It Out The letter-spacing Property
Example 8-3. To apply the letter-spacing property to the JT’s website, follow these steps:

1. Create a new style sheet and add the following rules:

h1 {
letter-spacing: 4px;

}
div#content {

letter-spacing: 1px;
}

2. Name the new style sheet base_styles.css and save it in the style_sheets directory you created in
Example 8-1.

3. Open dinner_menu.html and add the following markup to link to the new style sheet:

<link rel=’stylesheet’ type=’text/css’ href=’style_sheets/base_styles.css’/>

4. Save dinner_menu.html. When viewed in Mozilla, it should look like the page shown in
Figure 8-5.

177

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 177

Figure 8-5

How It Works
Figure 8-5 shows the <h1> heading and beginning of the dinner menu, where the effects of the letter-
spacing property are most noticeable.

The base_styles.css file contains styles that can be reused for the entire website, meaning that the
base_styles.css style sheet is included for all the pages of the JT’s website. This example shows the first
addition to the JT’s style sheet. The letters in the <h1> element, which contains the topic for the page, are
spaced 4 pixels apart. Then, in the <div> element that contains the content of the site, 1 pixel of space is
added between all the letters. The letter-spacing property is a simple effect that adds or subtracts
space between the letters of words.

The word-spacing property, covered in the following section, is closely related to the letter-spacing
property.

178

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 178

The word-spacing Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, , Mozilla 1.7, Opera 7.5, and Safari 1.2.

The word-spacing property, in essence, functions identically to the letter-spacing property.
However, instead of controlling the space between letters, the word-spacing property controls the
space between words. The following table shows its allowable values.

Property Value

word-spacing normal | <length> | inherit
Initial value: normal

To demonstrate the effect of the word-spacing property, consider the following style sheet rule

p {
word-spacing: 10px;

}

and this paragraph

<p>
Each of the words of this paragraph are spaced ten pixels apart.

</p>

which together result in the output shown in Figure 8-6. Ten pixels of space now separate each word of
the paragraph.

Figure 8-6

Additionally, like the letter-spacing property, the word-spacing property can contain a negative
value. If given a negative value, the effects are less space between each word. So, the following rule

p {
word-spacing: -5px;

}

and this paragraph

<p>
Each word contained in this paragraph appear closer together since the word-
spacing property has a negative value.

</p>

179

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 179

result in the output shown in Figure 8-7. As you can see, all the words in the paragraph appear close
together.

Figure 8-7

Naturally, the next property on the agenda should be a property that controls the spacing between the
lines of a paragraph; this is done with the line-height property, which accepts a length value just as
the letter-spacing and word-spacing properties do. Although this could easily be discussed here
as well, I discuss the line-height property in detail in Chapter 10 as part of a discussion about con-
trolling width and height in a document.

As you did with the letter-spacing property in example8-3, in the following Try It Out you apply the
word-spacing property to the JT’s website.

Try It Out The word-spacing Property
Example 8-4. In the following steps, you apply the word-spacing property to the JT’s website.

1. Open the base_styles.css file that you created in Example 8-3 and add the following declaration:

div#content {
word-spacing: 5px;
letter-spacing: 1px;

}

2. Save base_styles.css. Then open dinner_menu.html. Figure 8-8 shows the body of the dinner
menu, where the effects of adding the word-spacing property are most noticeable.

180

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 180

Figure 8-8

How It Works
Another relatively simple addition to the JT’s style sheet, this property spaces the words of each sen-
tence of text in the content <div> five pixels apart. This property is useful for spreading out the copy of
the page Additionally, the spacing between each letter is increased. Both these effects enhance the back-
ground image applied to the dinner menu. (The background image is introduced in Chapter 13.)

The next section covers a property that controls the space inserted to indent a paragraph.

Indenting Paragraph Text Using text-indent
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

Indenting text in CSS is done using the text-indent property. The text-indent property identifies
the first line of text of a paragraph and inserts the specified length before the first line of text; thus
indenting the text. The following table shows this property’s allowed values.

181

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 181

Property Value

text-indent <length> | <percentage> | inherit
Initial value: normal

The text-indent property accepts either a normal length value or a percentage value. If a percentage
value is specified, the percentage is based on the width of the containing element. To illustrate this, con-
sider this example

p {
text-indent: 25%;
width: 200px;

}

and this markup:

<body>
<p>

“There are two ways of constructing a software design; one way is to make
it so simple that there are obviously no deficiencies, and the other way is
to make it so complicated that there are no obvious deficiencies. The first
method is far more difficult.” - C. A. R. Hoare

</p>
</body>

Figure 8-9 shows the result of this rule and markup: the text-indent property with a percentage
width.

Figure 8-9

The percentage width assigned by the text-indent property depends on the width of the <p> ele-
ment’s parent element. In this example, the parent element is the <body> element. By default, the
<body> element’s width expands horizontally, filling the entire browser window.

182

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 182

The <p> element is assigned a fixed width of 200 pixels, but the indentation for the <p> element is based
on the width of the <body> element (which is more than 200 pixels). That’s why the first line of the <p>
element text in Figure 8-9 is so far to the right: it’s indented 25% of the width of the <body> element, not
the width of the <p> element.

In contrast to percentage values, a simple length value is illustrated by the following rule:

p {
text-indent: 25px;
width: 200px;

}

and this paragraph of text:

<p>
“There are two ways of constructing a software design; one way is to make it so
simple that there are obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious deficiencies. The first method is
far more difficult.” - C. A. R. Hoare

</p>

Figure 8-10 shows that the first line of the paragraph of text is indented.

Figure 8-10

In the markup, I’ve added a fixed width of 200 pixels to clarify the effects of the text-indent property.

Like letter-spacing and word-spacing, the text-indent property can also accept a negative value.
For instance, I can alter the style sheet rule presented for Figure 8-10 to a negative value, like this:

p {
text-indent: -25px;
width: 200px;

}

183

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 183

Figure 8-11 shows that the text is shifted the other way, and in this case a portion of the first word of the
paragraph is clipped.

Figure 8-11

Now that you’ve seen some examples of the text-indent property, you apply the text-indent prop-
erty to the JT’s style sheet in the following Try It Out.

Try It Out Applying the text-indent Property
Example 8-5. The following steps show you how to apply the text-indent property to the JT’s style
sheet.

1. Add the following rule to the base_styles.css style sheet:

div#content {
word-spacing: 5px;

letter-spacing: 1px;
}
p.copy {

text-indent: 20px;
}

2. Save the base_sstyles.css file.

3. Modify dinner_menu.html by making the following changes:

<img src=’images/photos/dinner.jpg’
alt=’Dinner Table’/>

<p class=’copy’>
We hope you enjoy tonight’s live music. To help keep
the local arts alive we book musicians from here in

4. Save dinner_menu.html. When viewed in Mozilla, your page should look like the one in Figure
8-12.

184

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 184

Figure 8-12

How It Works
As you can see from the output in Figure 8-12, the last paragraph of text is now indented 20 pixels.
Recall from earlier examples that I mentioned the base_styles.css file is a file intended to apply style to
the entire website. I’ve created a class named copy and identified it from the base_styles.css style sheet
using the class selector p.copy, which selects only paragraphs with a class named copy. This naming
allows me to identify and give special styles to certain paragraphs, and it allows the other paragraphs
contained in the dinner_menu.html file to be styled independently from those designated as copy.

Continuing the discussion of text manipulation properties, the next section covers the text-align
property.

Aligning Text with the text-align Property
Documented in CSS 1, 2, and 3 and supported since IE 4, NS 4, Opera 4, and Safari 1.

The purpose of the text-align property is simple: It aligns text! The following table outlines each of
the possible values for the text-align property.

185

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 185

Property Value

text-align left | right | center | justify | inherit
Initial value: left

From earlier discussion in the book, it should be obvious what text-align: left;, text-align:
right; and text-align: center; do. Here is a brief reiteration of what these values do

p#left {
text-align: left;

}
p#right {

text-align: right;
}
p#center {

text-align: center;
}

when combined with this markup:

<p id=’left’>
This text is aligned left.

</p>
<p id=’right’>

This text is aligned right.
</p>
<p id=’center’>

This text is center aligned.
</p>

Figure 8-13 shows that the text-align property aligns the text contained in each paragraph based on
the supplied value.

Figure 8-13

Justifying Text
You haven’t yet seen what text-align: justify; does. At first glance, including text-align:
justify; in a document has the same effect as text-align: left;. Consider this example:

186

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 186

p {
text-align: justify;
border: 1px solid lightgrey;
text-indent: 25px;
width: 200px;

}

Figure 8-14 depicts what the text looks like with text-align: justify; applied.

Figure 8-14

If you refer back to Figure 8-10, you can see what the text of the C.A.R. Hoare quote looks like aligned
left; left alignment is the default behavior. To clarify the effects of text-align: justify; in Figure
8-14, I added a thin, light gray border. When you compare the output of text-align: justify; in
Figure 8-14 to the effects of text-align: left; in Figure 8-10, the effects become obvious. When justi-
fied, each line of text is lined up with the paragraph’s margin on both the left and right sides. Extra
space is applied between the words of each sentence to achieve this.

In the following Try It Out, you continue building the JT’s website with the inclusion of the text-align
property.

Try It Out Applying the text-align Property
Example 8-6. In the following steps, you add the text-align property to the JT’s website.

1. Make the following modifications to the base_styles.css style sheet:

h1 {
letter-spacing: 4px;

}
h6 {

text-align: center;
}
div#content {

word-spacing: 5px;
letter-spacing: 1px;

}
p.copy {

187

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 187

text-indent: 20px;
text-align: justify;

}

2. Save base_styles.css.

3. Create a new .css file and name it menu_system.css. Add the following rule:

div#nav {
text-align: center;

}

4. Save menu_system.css in the style_sheets directory that you created for Example 8-1.

5. Create a new css file and name it dinner_menu.css. Add the following rules:

h3 + p.menucaption {
text-align: center;

}
h3, h4, h5, h4 + p, h5 + p {

text-align: center;
}

6. Save dinner.menu.css in the style sheets directory you created for Example 8-1.

7. Make the following modifications to dinner_menu.html to link to the base_styles.css and
menu_system.css style sheets you just created:

<head>
<title>

JT’s Island Grill and Gallery - Chokoloskee, Florida
</title>
<link rel=’stylesheet’

type=’text/css’ href=’style_sheets/base_styles.css’/>
<link rel=’stylesheet’

type=’text/css’ href=’style_sheets/menu_system.css’/>
<link rel=’stylesheet’

type=’text/css’ href=’style_sheets/dinner_menu.css’/>
</head>

8. Save dinner_menu.html. When viewed in Mozilla, it looks like Figure 8-15.

188

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 188

Figure 8-15

How It Works
Figure 8-15 shows that the navigational menu is center aligned. However, most of the body of the menu
itself is also center-aligned, and the paragraph of text at the bottom of the menu is justified.

This example seems to complicate things a bit, but not really. Before I get into why I placed the proper-
ties where I have, I want to discuss another strategy. That strategy is dividing the CSS rules among dif-
ferent files. The base_styles.css file is used to apply styles to the entire website; the menu_system.css file
deals specifically with the navigation menu that’s contained in the unordered lists. Last,
dinner_menu.css contains styles that are specific to the dinner menu page. Modularizing and organizing
the style sheets is one more strategy to make the website easy to maintain.

Recall from Chapter 7 (where I discussed the cascade) that the order in which style sheets are included
in a document is important: The last style sheet included in the document trumps the one before it and
the one before that, and so on. In this example, the base_styles.css style sheet is included first because it’s
the weakest. It is followed by the menu_system.css style sheet, and if any rule in the menu_system.css
style sheet is identical to a rule in the base_styles.css style sheet, the rule in the menu_system.css file
takes precedence. Lastly, the dinner_menu.css file takes precedence over both previous files because this
style sheet contains styles specific to the presentation of the dinner menu.

189

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 189

Why did I include these styles where I have? The styles are separated into different style sheets to make
each style sheet easier to manage. Broader styles that apply to the whole website are placed in the
base_styles.css style sheet. Styles specific to the navigation are placed in the menu_system.css style
sheet, and finally the style sheet for the dinner menu itself is placed in the dinner_menu.css style sheet.
The following is a review of why each individual modification was made. First, I made two modifica-
tions to the base_styles.css style sheet. The first modification is the addition of a rule, and it centers the
footer text contained in the <h6> element at the bottom of the page.

h6 {
text-align: center;

}

The second modification adds the text-align: justify; declaration to the p.copy rule. This justifies
all paragraphs with a class named copy, which means that the words are spaced so the beginning and
end of each line is flush with the left and right margins, respectively, of the paragraph. The next modifi-
cation involved creating a new style sheet called menu_system.css, and this file houses all styles used for
navigation. One rule is added to this style sheet:

div#nav {
text-align: center;

}

Recall from Chapter 7 that all text properties are inherited by their descendants. So setting the text-
align: center; declaration on the <div> with an id named nav causes the image and all the content
inside the lists to be centered. The idea behind adding this declaration is to center the headings for each
set of links and the JT’s logo. The last modification is the creation of a style sheet that houses all the rules
specific to the dinner menu. Here, again, rules are added to center the text:

h3 + p.menucaption {
text-align: center;

}
h3, h4, h5, h4 + p, h5 + p {

text-align: center;
}

These two rules center all the headings and paragraphs contained in the menu body. The first rule uses
the adjacent sibling selector. If you recall from Chapter 5, the adjacent sibling selector chooses the ele-
ment based on what it’s next to. That means if an <h3> element is followed by a <p> element with a class
name of menucaption, it chooses the markup highlighted in the following code:

<h3>Entrees</h3>
<p class=’menucaption’>

Entrees come with tonight’s small salad and fresh baked
ciabatta bread.

</p>

It chooses the paragraph because it is next to an <h3> element.

Now that you’ve had an overview of text alignment with CSS, the next section covers the text-
decoration property.

190

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 190

The text-decoration Property
Documented in CSS 2.1 and supported in IE 5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The text-decoration property applies underlining, overlining, and strikethrough to text. The follow-
ing table outlines the text-decoration property and the values it allows.

Property Value

text-decoration none | [underline || overline ||
line-through || blink] | inherit
Initial value: none

No version of IE supports the blink value. text-decoration support began in IE 4, NS 4, and
Opera 3, however these only partially implement the text-decoration property. Support listed is
for browsers that support the underline, overline, and line-through values.

Because this property is a little more complicated than those covered previously, a simple explanation of
its use is warranted.

To demonstrate the various styles available using this property, consider this example:

p#underline {
text-decoration: underline;

}
p#overline {

text-decoration: overline;
}
p#line-through {

text-decoration: line-through;
}
p#blink {

text-decoration: blink;
}

and this markup:

<p id=’underline’>
This text is underlined.

</p>
<p id=’overline’>

This text is overlined.
</p>
<p id=’line-through’>

This text has a line through it.
</p>
<p id=’blink’>

This text blinks in those browsers that support it.
</p>

191

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 191

Example 8-16 shows the various effects provided by the text-decoration property as specified by the
preceding code.

Figure 8-16

However, this is not all that is possible with the text-decoration property. This notation:

[underline || overline || line-through || blink]

means that the text-decoration property can accept one or more of these values. To specify more than
one value, each value is separated by a single space. For instance:

p {
text-decoration: underline overline;

}

This rule makes the text of the paragraph both underlined and overlined, as Figure 8-17 shows.

Figure 8-17

The notation for the text-decoration property indicates that it can accept up to four values. Those
values can be any combination of underline, overline, line-through, and blink. The values none
or inherit can be used instead of any of the four values; if either of these values are used, however,
only that lone value may appear. Consider this rule:

p {
text-decoration: underline overline line-through blink;

}

192

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 192

This rule makes the text underlined, overlined, strikethrough, and blinking, as shown in Figure 8-18.

Figure 8-18

Now that you have some understanding of the text-decoration property, the following Try It Out
applies the text-decoration property to the JT’s style sheet.

Try It Out Applying the text-decoration Property
Example 8-7. In the following steps you apply the text-decoration property to the JT’s website.

1. Make the following modifications to the base_styles.css file:

a {
text-decoration: none;

}
a:hover {

text-decoration: underline;
}
h1 {

letter-spacing: 4px;
}
h6 {

text-align: center;
}

2. Save base_styles.css.

3. Make the following modifications to the menu_system.css file:

div#nav {
text-align: center;

}
ul.menu a:hover {

text-decoration: none;
}

4. Save menu_system.css.

5. Make the following modifications to the dinner_menu.css file:

h3 {
text-decoration: underline;

}

193

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 193

h3 + p.menucaption {
text-align: center;

}

6. Modify the dinner_menu.html file, adding the following class names:

Unique Gifts
<ul class=’menu’>

Gallery

Chokoloskee
<ul class=’menu’>

Visiting Chokoloskee

The Everglades and Ten
Thousand Islands

Recreation in South
Western Florida

<img src=’images/photos/jts_sign.jpg’
alt=’JTs sign’
title=’Go home.’/>

Employment
<ul class=’menu’>

Contact JT’s
Seasonal Employment

Opportunities

Delicious Food
<ul class=’menu’>

Lunch at JT’s
JT’s Lunch Menu
Dinner at JT’s

JT’s Dinner Menu

194

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 194

7. Save dinner_menu.html. When viewed in Mozilla, your page should now look like the one
shown in Figure 8-19.

Figure 8-19

How It Works
The effects of this style sheet are simple. First, styles are added for links. The underline is removed from
links with the text-decoration: none; declaration:

a {
text-decoration: none;

}
a:hover {

text-decoration: underline;
}

Then an underline is added to links when the user’s mouse cursor rolls over a link with the :hover
pseudo-class. The underline appears only when the mouse cursor is on top of a link. The addition of an
underline when the user’s mouse cursor is over a link is a cool effect; however, it is used only for links

195

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 195

that appear in the body of the document. For the navigational menus, I have other effects in mind that I
add in later chapters. The underline effect can be removed for the navigational menus using the follow-
ing code:

ul.menu a:hover {
text-decoration: none;

}

The menu class name is added to each embedded list so that these can be distinguished from the other
lists. Now the underline doesn’t show up when the mouse rolls over links in the navigational menu.
Last, each section heading of the JT’s dinner menu is underlined:

h3 {
text-decoration: underline;

}

The next section continues the discussion of text manipulation properties with the text-transform
property.

The text-transform Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The text-transform property exists purely to manipulate the case of text, for instance to capitalize or
make all characters uppercase or all characters lowercase. The following table shows the text-transform
property and its possible values.

Property Value

text-transform capitalize | uppercase | lowercase | none | inherit
Initial value: none

The text-transform property is used to manipulate the case of text. Consider this example

p#capitalize {
text-transform: capitalize;

}
p#uppercase {

text-transform: uppercase;
}
p#lowercase {

text-transform: lowercase;
}

and this markup:

<p id=’capitalize’>
every word of this sentence is capitalized.

196

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 196

</p>
<p id=’uppercase’>

every word of this sentence is in uppercase.
</p>
<p id=’lowercase’>

EVERY WORD OF THIS SENTENCE IS IN LOWERCASE.
</p>

Figure 8-20 shows that the text-transform property overrides the case of the text, no matter how it
appears in the source code.

Figure 8-20

In the first paragraph, even though in the source the sentence appears in all lowercase, if you apply the
text-transform: capitalize; declaration, each word of the sentence is capitalized. Likewise, in the
next paragraph, even though the source code contains all lowercase letters, with the addition of the
text-transform: uppercase; declaration, each word of the sentence appears in all uppercase letters
in the rendered output. Finally, in the last paragraph, each word appears in uppercase in the markup
source code, but with the addition of the text-transform: lowercase; declaration, each word of the
sentence appears in all lowercase in the actual output rendered by the browser.

Now that you’ve seen an example of what the text-transform property does, the following Try It Out
adds the text-transform property to the JT’s Island Grill and Gallery style sheet.

Try It Out Apply the text-transform Property
Example 8-8. In the following steps, you apply the text-transform property to the JT’s website.

1. Add the following rule to the base_styles.css style sheet:

body {
text-transform: lowercase;

}
a {

text-decoration: none;
}

197

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 197

2. Save base_styles.css. The JT’s website now looks like 8-21.

Figure 8-21

How It Works
Adding the text-transform property to the <body> element using the body selector in the
base_styles.css style sheet makes all text on all pages of the JT’s Island Grill and Gallery website appear
in lowercase. Like other text properties, the text-transform property is inherited by all descendant
elements, which makes all the text appearing in the dinner_menu.html page appear in lowercase,
regardless of how it appears in the source code of the markup itself.

The idea of making all of the text lowercase may seem like a bad idea to some. My rationale for applying
this effect is to give the text a more consistent look and feel. If my clients decide that all lowercase text is
too pretentious or otherwise undesirable, the beautiful part about CSS is that I can easily remove the
property, after which the capitalization applied in the source code returns instantly on all the pages of
the website.

The following section continues the discussion of text manipulation properties with the white-space
property.

198

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 198

The white-space Property
Documented in CSS 2 and supported in IE 5.5 (partial), IE 6 , Mozilla 1.7, Opera 7.5, and Safari 1.2.

The white-space property allows you to control text formatting in the source code of the web document.
The following table outlines the possible keyword values of the white-space property as of CSS 2.

Property Value

white-space normal | pre | nowrap | inherit
Initial value: normal

IE 5.5 only supports white-space: nowrap;. IE 6 supports white-space: pre; but only when
in standards mode.

Here is an example of the white-space: pre; declaration:

p {
font-family: monospace;
white-space: pre;

}

I’ve specified a monospace font for clarity. When the preceding declaration is combined with this
markup

<p>
From the moment
I picked up
your book until
I laid it
down, I was
convulsed with laughter.
Some day I
intend reading it.

Groucho Marx
</p>

the result looks like Figure 8-22.

Figure 8-22

199

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 199

In the source code for the output shown in Figure 8-22, I’ve added lots of spaces between the words and
extra line breaks. With the white-space: pre; declaration those spaces are preserved in the browser’s
rendered output.

By default the browser will collapse the extra spaces between words and ignore the line breaks, which is
the behavior of the white-space: normal; declaration. The white-space: pre; declaration pre-
serves that extra space and keeps the line breaks where they appear in the source code. Under normal
circumstances, if there is too much text to appear on a single line, the extra text overflows onto the fol-
lowing line or lines. The white-space: nowrap; declaration prevents that overflow from happening
and forces the text to stay on one line, unless an HTML line break
 element is encountered. That
forces a line break.

p {
white-space: nowrap;

}

Figure 8-23 shows that the text has flowed off the screen to the right because there is more text than can
fit on the screen.

Figure 8-23

Compare the output in Figures 8-22 and 8-23 to that in Figure 8-24 where no white-space property is
applied. That is, applying the white-space: normal; declaration is the same as applying no white-
space property because normal is the initial value of the white-space property.

Figure 8-24

A Look Ahead to CSS 3
The CSS 3 Text module was recently made a candidate recommendation by the W3C. Candidate status
means that the W3C feels the proposed changes to CSS are ready to be implemented and tested by
the various browser makers. Therefore, the text properties appearing in CSS 3 should begin to be

200

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 200

implemented in browsers and available for developers to use in websites in the months and years to
come. The additions to CSS 3 are too numerous to list here, but here is a brief summary of some new
properties in CSS 3:

❑ Several internationalization properties that aid in styling content are presented in different lan-
guages. These properties help to style languages that are read from right to left and also to dis-
play Oriental text. Such properties are used to style mixed language content in XML documents.

❑ More control over preformatted text will be available with the inclusion of several new white-
space properties.

❑ The capability to change the style of underlined, overlined, and line-through text will be pro-
vided. For instance, you’ll be able to change the style of the line used for underlines, overlines,
and line-through. Line options will include dotted, dashed, double line, and so on. You will also
have the capability to specify a different color and a different width for the underline, overline,
and line-through.

❑ Other properties will help you control text overflow. For instance, you’ll have the capability to
hide extra text if it does not fit in a specified area and replace the hidden text with an ellipsis.

In general, CSS 3 introduces more control over the formatting and manipulation of text.

Summary
In this chapter, I presented a variety of techniques for planning the layout and design of a website, as
well as how to employ CSS’s text manipulation properties. The techniques and strategies for approach-
ing a website design project include

❑ Planning how the files are to be stored so you can create an effective, scalable, and organized
directory structure.

❑ Determining the different pages that will appear in the website and gathering the website’s
copy. These activities determine the website’s navigation.

❑ Creating a mockup and then implementing an initial strategy for approaching the markup of
the document. This helps you include only the necessary markup to describe the data contained
in the document.

I also discussed a variety of CSS text-manipulation properties, which include

❑ The letter-spacing property, which is used to specify the length of space between letters.

❑ The word-spacing property, which is used to specify the length of space between words.

❑ The text-indent property, which is used to indent text.

❑ The text-align property, which is used to align the text of a document.

❑ The text-decoration property, which is used to apply decorative styling to text, such as
underlining, overlining, strikethrough, or blinking text.

201

Text Manipulation

12_576429 ch08.qxd 11/18/04 12:30 PM Page 201

❑ The text-transform property, which is used to control the case of text regardless of what case
is used in the document’s source code.

❑ The white-space property, which is used to control text formatting as it relates to how the text
appears in the document’s source code.

In addition, I presented a brief look ahead to CSS 3, which expands your capability to manipulate and
control the presentation of text. Chapter 9 continues the coverage of text manipulation, with a discussion
of the font properties in CSS.

Exercises
1. You’ve been hired to design a website for an artist, who has indicated that the website will con-

tain photography, oil paintings, poetry, and creative writing. Your client has also indicated a
desire to present alternative skins of the website by including alternative styles sheets. How
might you approach storing the website’s files?

2. Continuing with the artist’s website from Exercise 1, design a page with a poem (that you create
or copy). Taking a minimalist approach to the markup, format the poem so that it appears in the
rendered output as it does in the source code. Write the poem so that it appears in all lowercase.

3. Using your work from exercise 2, wrap each line of the poem in <p> tags, indent each line 25
pixels, and capitalize the first letter of every line and the title by using the ::first-letter
pseudo-element. Center-align the title text. Add 2 pixels of space between each letter and 5 pix-
els of space between each word of the poem itself. Give the <body> a fixed width of 200 pixels.
Underline the poem’s title.

202

Chapter 8

12_576429 ch08.qxd 11/18/04 12:30 PM Page 202

9
Font Manipulation

Chapter 8 presented a variety of text manipulation properties and outlined some of the techniques
and strategies involved in beginning a website design project. This chapter continues the discus-
sion of text manipulation with CSS’s font manipulation properties. CSS includes a variety of prop-
erties that change the face, size, and style of a font. This chapter covers:

❑ The font-family property and how it is used to change the face of a font

❑ The font-style property and how it is used to make a font italic or oblique

❑ The font-variant property, a property similar to the text-transform property presented
in Chapter 8, and how this property is used to create a small-caps effect

❑ The font-weight property and how it is used to increase or decrease how bold or light a
font appears

❑ The font-size property and how it is used to increase or decrease the size of a font

❑ The font property and how it is used as shorthand to specify a number of other font
properties.

Specifying Fonts with the
font-family Property

Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The font-family property is used to specify fonts. The following table outlines the font-family
property and the values that it allows.

Property Value

font-family [[<family-name> | <generic-family>]
[, <family-name>| <generic-family>]*] | inherit
Initial value: Varies depending on the browser or user agent.

13_576429 ch09.qxd 11/18/04 12:31 PM Page 203

Here is an example of the basic use of the font-family property:

p#times-new-roman {
font-family: “Times New Roman”;

}
p#arial {

font-family: Arial;
}

The preceding rule, combined with this markup:

<p id=’times-new-roman’>
This font is Times New Roman.

</p>
<p id=’arial’>

This font is Arial.
</p>

results in the display shown in Figure 9-1.

Figure 9-1

The example is pretty straightforward. The first rule applies a Times New Roman font to the paragraph
with the id name times-new-roman, and the second rule applies an Arial font to the paragraph named
arial. There is one fundamental difference between the two: Times New Roman appears enclosed in
double quotes. The name of the font itself contains white space, and so enclosing the name of the font in
quotes prevents the browser from getting confused. The second example, which specifies an Arial font,
does not appear enclosed in quotes because no white space appears in the name of the font.

The documentation of the font-family property specifies the following notation:

[[<family-name> | <generic-family>] [, <family-name> | <generic-family>]*] |
inherit

This notation indicates that the font-family property can accept one or more fonts for its value, which is
what is meant by the repetition of the syntax in the notation and the presence of the asterisk. The asterisk
indicates that the syntax may be repeated one or more times. The inherit value may also be supplied
instead of any font. Two types of fonts can be specified. The first is documented as <family-name> in the
preceding table. The <family-name> notation refers to fonts installed on the user’s computer, which
means that the available fonts depend on the user’s operating system and the fonts available to that oper-
ating system. The <generic-family> notation refers to a small subset of predefined fonts that can be
expected to always be available; this is discussed in more detail in the next section.

204

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 204

The available font families that can be specified vary depending on the operating system. Windows does
not provide the same fonts as Macintosh. Furthermore, the available fonts also vary depending on the
programs installed on the user’s computer. For instance, Microsoft Office installs a number of extra fonts
in addition to those that ship with Windows. For this reason, the font-family property is dynamic
because it can accept more than one font as its value. This capability is provided because it is difficult to
foresee which fonts will be available on the user’s computer. It is usually best to test on several different
platforms using various browsers on different operating systems. To ensure the consistency of fonts, the
font-family property allows fallback fonts to be specified in the event that the first choice is not avail-
able. The following rule

p {
font-family: “Times New Roman”, Times;

}

combined with this markup:

<p>
This text appears in Times New Roman font, if Times New Roman is installed. It
appears in Times if Times New Roman is not installed, but Times is. If neither
font is installed, the browser’s default font is used.

</p>

produces the results shown in Figure 9-2.

Figure 9-2

In this example, two fonts are specified as the value of the font-family property. This allows you to
specify a fallback font. In this case, if Times New Roman (common to Windows computers) is not
installed on the user’s computer, the browser attempts to display the Times font (common to Macintosh
computers). If neither font is available, the browser uses its default font, which is the same as the font
used when no font is specified and varies depending on the browser. The font-family allows a poten-
tially unlimited list of fonts to be specified, meaning that you can specify as many fonts as you’d like to
fallback on.

The effect of the following code is that the browser goes through the list of comma-separated fonts until
it finds one that it is capable of displaying:

p {
font-family: Arial, Shruti, “Microsoft Sans Serif”, Tahoma, Mangal, Helvetica;

}

205

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 205

Generic Font Families
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

As I mentioned in the first section, the available fonts vary from operating system to operating system.
They can vary even more with individual user’s computer systems because even more fonts can be
installed along with certain programs. The only way to maintain consistency displaying from platform
to platform is to provide either a list of font families (so a fallback font can be called upon if the desired
font is not installed) or to specify a generic font. Generic fonts are a set of basic fonts that are available
regardless of the user’s operating system. The following table outlines the generic font family names
defined in CSS.

Generic Font Resembles

serif Times, Times New Roman

sans-serif Helvetica, Arial

cursive Zapf-Chancery

fantasy Western

monospace Courier, Courier New

The generic font names display fonts similarly in different browsers and operating systems. Figure 9-3
shows generic font output in Mozilla.

Figure 9-3

Figure 9-4 shows generic font output in IE 6.

206

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 206

Figure 9-4

Figure 9-5 shows generic font output in Opera 7.5.

Figure 9-5

Figures 9-3, 9-4, and 9-5 show how Mozilla, IE, and Opera 7 render generic fonts on a Windows XP plat-
form. From the output shown in those figures, you can see that generic font rendering is not exactly
identical between browsers. Fonts that display consistently are serif, sans-serif, and monospace. In the
notation for the font-family property documentation, <generic-family> refers to the possible speci-
fication of a generic font name. Often a generic font is included as a last fallback option, as shown in the
following rule:

p {
font-family: Arial, Shruti, “Microsoft Sans Serif”, Tahoma, Mangal, Helvetica,

sans-serif;
}

The addition of sans-serif to the end of the font list for the font-family property means that as a last
resort, if none of the other fonts specified are installed on the user’s computer, the generic sans-serif font
should be used.

207

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 207

The following Try It Out continues to build on the JT’s Island Grill and Gallery website presented in
Chapter 8, this time applying the font-family property to the style sheet.

Try It Out Applying the font-family Property
Example 9-1. Follow these steps to add the font-family property to the style sheet.

1. Make the following modifications to the base_styles.css style sheet:

body {
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}
a {

text-decoration: none;
}
a:hover {

text-decoration: underline;
}
h1 {

font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;

}
h6 {

text-align: center;
}
div#content {

word-spacing: 5px;
letter-spacing: 1px;

}
p.copy {

font-family: “Times New Roman”, Times, serif;
text-indent: 20px;
text-align: justify;

}

2. Save base_styles.css.

3. Make the following modifications to the dinner_menu.css style sheet:

div#content * {
font-family: “Times New Roman”, Times, serif;

}
h3 {

font-family: “Monotype Corsiva”, cursive;
text-decoration: underline;

}

208

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 208

4. Save dinner_menu.css. The result of these modifications is shown in Figure 9-6.

Figure 9-6

How It Works
This example applies a specific font face to all aspects of the JT’s website. Specifying a font face is benefi-
cial because not all browsers use the same default font. By adding these rules, the font is explicitly set,
making display on different browsers more consistent. The first font is applied to the <body> element:

body {
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}

This declaration specifies a fixed width font for the <body> element. However, the font-family prop-
erty is another example of a property that is inherited by its descendant elements. So, if you add only
this declaration, all text on every page of the JT’s website is rendered in a fixed-width, monospace font. I
specified Courier New first because that font is specific to Windows platforms, then the Courier font

209

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 209

because that is specific to Macintosh, and finally, as a last resort, the monospace generic font. This decla-
ration makes the navigational menu appear in a fixed-width, monospace font. The next addition changes
the font of the <h1> element:

h1 {
font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;

}

The Monotype Corsiva font adds a touch of elegance to the <h1> heading, which contains the topic of
the page. Later, after loading up the website on Macintosh and Linux operating systems, I can add fonts
that appear similar to Monotype Corsiva. However, because the style is centralized in one place with
CSS, fine-tuning the style sheet for other operating systems becomes much easier. All that’s required is a
simple edit of the base_styles.css file, so adding additional fonts for those systems takes less than a
minute. The changes are instantaneous to all pages of the JT’s website. The last declaration added to the
base_styles.css style sheet applies a sans-serif font to any paragraph with a class name of copy:

p.copy {
font-family: “Times New Roman”, Times, serif;
text-indent: 20px;
text-align: justify;

}

Thanks to the cascade, the font-family declaration applied to the <h1> element takes precedence over
the one specified for the <body> element. The selectors have the same specificity, if you recall the discus-
sion from Chapter 7, but because the selector for the <h1> element appears later in the style sheet, it
trumps the selector for the <body> element. The same concept is used for the selection of the <p> ele-
ment with a copy class name, which has a greater specificity than the <body> selector. So this selector
has two things going for it as far as the cascade is concerned. It both appears later in the style sheet and
has a greater specificity, which makes all text appearing in <p> elements with a copy class name appear
in Times New Roman for Windows, Times for Macintosh, and the generic serif font otherwise.

The last two modifications made in this exercise are to the dinner_menu.css style sheet:

div#content * {
font-family: “Times New Roman”, Times serif;

}
h3 {

font-family: “Monotype Corsiva”, cursive;
text-decoration: underline;

}

The first selector combines two different selectors. The id selector selects the <div> element with an id
name of content, and it also uses the universal selector. In this context, this combination of selectors
selects all descendants of the <div> element with an id name of content. This has exactly the same
effect as this selector:

div#content {
font-family: “Times New Roman”, Times serif;

}

210

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 210

They have the same effect, first, because they have the same specificity in terms of the cascade, and sec-
ond because the font-family property is inherited by all descendants of the element that it is applied to.

Adding these two fonts does two things. First, it gives the menu a serif font, which overrides the
monospace font specified in the selector for the <body> element for the base_styles.css style sheet earlier
in this example. Second, each <h3> element is given the same Monotype Cursiva font specified for the
<h1> element in the base_styles.css file, which again is intended to add a touch of elegance to the menu.

The next section continues this discussion of font manipulation with the font-style property.

The font-style Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The font-style property is used to switch between styles provided by a particular font. Those styles
are italic or oblique, and they are a part of the font itself. The following table outlines the possible values
for the font-style property.

Property Value

font-style normal | italic | oblique | inherit
Initial value: normal

The italic and oblique values are, with most fonts, indistinguishable in how they render. Consider this
example:

p {
font-family: sans-serif;
font-size: 25px;

}
p#normal {

font-style: normal;
}
p#italic {

font-style: italic;
}
p#oblique {

font-style: oblique;
}

Combine the preceding rules with the following markup:

<p id=’normal’>
This font is normal.

</p>
<p id=’italic’>

This font is italic.
</p>

211

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 211

<p id=’oblique’>
This font is oblique.

</p>

Figure 9-7 shows that the oblique and italic values are identical.

Figure 9-7

This test of the oblique and italic values shows that if the font has an italic style, that italic style is used
when either the italic or oblique values are specified. This behavior is identical when viewed in IE 6,
Opera 7, or Mozilla. However, not all fonts have an italic style or an oblique style. Consider the follow-
ing example, which demonstrates what happens when a font has neither an italic nor an oblique style:

p {
font-family: “Monotype Corsiva”;
font-size: 25px;

}
p#normal {

font-style: normal;
}
p#italic {

font-style: italic;
}
p#oblique {

font-style: oblique;
}

212

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 212

Combine this style sheet with the following markup:

<p id=’normal’>
The font is normal.

</p>
<p id=’italic’>

This font is italic.
</p>
<p id=’oblique’>

This font is oblique.
</p>

Figure 9-8 shows Monotype Corsiva, a font that has neither an italic style nor an oblique style — it has
only one style.

Figure 9-8

The following Try It Out continues the JT’s Island Grill and Gallery website with the addition of the
font-style property.

Try It Out Applying the font-style Property
Example 9-2. Follow these steps to apply the font-style property to the JT’s Island Grill and Gallery web-
site.

1. Open the dinner_menu.css style sheet and make the following modification:

h3 + p.menucaption {
font-style: italic;
text-align: center;

}

213

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 213

2. Save the dinner_menu.css file. The results are shown in Figure 9-9.

Figure 9-9

How It Works
This addition to the JT’s style sheet makes the following highlighted paragraph appear in italics:

<h3>Entrees</h3>
<p class=’menucaption’>

Entrees come with tonight’s small salad and fresh baked
ciabatta bread.

</p>

The addition of the font-style: italic; declaration is a natural styling for the Entrees caption,
which says what each entrée comes with.

The next section continues the discussion of font manipulation properties by introducing the font-
variant property.

214

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 214

The font-variant Property
Documented in CSS 2.1 and supported in IE 5.5 (incorrectly), IE 6, Mozilla 1.7, Opera 7.5, and
Safari 1.2.

The font-variant property provides an effect that is only slightly different from that of the text-
transform: uppercase; declaration presented in Chapter 8. The following table outlines the font-
variant property and its possible values.

Property Value

font-variant normal | small-caps
Initial value: normal

Internet Explorer 4, 5, and 5.5 treat the font-variant: small-caps; effect as identical to the
text-transform: uppercase; effect. IE 6 displays the font-variant: small-caps; effect
correctly.

The font-variant: small-caps; declaration causes letters to appear in uppercase but scaled slightly
smaller than capitalized letters. Consider the following example:

p#text-transform {
text-transform: uppercase;

}
p#font-variant {

font-variant: small-caps;
}

Combine the preceding style sheet with this markup:

<p id=’text-transform’>
This demonstrates the use of the text-transform: uppercase; effect.

</p>
<p id=’font-variant’>

This demonstrates the use of the font-variant: small-caps; effect.
</p>

The result is shown in Figure 9-10.

Figure 9-10

215

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 215

TE
AM
 F
LY

Figure 9-10 shows that when compared side by side with the text-transform: uppercase; declara-
tion, the effect of the font-variant: small-caps; declaration is obvious. The capitalized letter main-
tains its case and size, but all lowercase letters are displayed as capital letters scaled slightly smaller than
any real capital letters appearing in the markup’s source code.

The next section continues the discussion of font manipulation properties with the font-weight
property.

The font-weight Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The font-weight property provides the functionality to specify how bold a font is. The following table
outlines the font-weight property and the values that it allows.

Property Value

font-weight normal | bold | bolder | lighter | 100 | 200 | 300 |
400 | 500 | 600 | 700 | 800 | 900 | inherit
Initial value: normal

The font-weight property is used to specify how bold or how light a font appears, as is demonstrated
by the following example, illustrated in Figure 9-11:

<p style=’font-weight: normal;’>
This font is normal.

</p>
<p style=’font-weight: bold;’>

This font is bold.
</p>
<p style=’font-weight: bolder;’>

This font is bolder.
</p>
<p style=’font-weight: lighter;’>

This font is lighter.
</p>
<p style=’font-weight: 100;’>

This font is 100 weight.
</p>
<p style=’font-weight: 200;’>

This font is 200 weight.
</p>
<p style=’font-weight: 300;’>

This font is 300 weight.
</p>
<p style=’font-weight: 400;’>

This font is 400 weight.
</p>
<p style=’font-weight: 500;’>

216

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 216

This font is 500 weight.
</p>
<p style=’font-weight: 600;’>

This font is 600 weight.
</p>
<p style=’font-weight: 700;’>

This font is 700 weight.
</p>
<p style=’font-weight: 800;’>

This font is 800 weight.
</p>
<p style=’font-weight: 900;’>

This font is 900 weight.
</p>

Figure 9-11

Figure 9-11 illustrates the possible values for the font-weight property. This example demonstrates
that for the majority of fonts, the font is either bold or it isn’t. The rendering of all values appears identi-
cal in IE 6, Opera 7, and Mozilla 1.7. The 600 through 900 values appear the same as the bold value. The
100 through 500 values don’t appear different from normal text. This is what happens when the font is a
simple, standard font, like that used here.

The 100 through 900 values really exist for fonts that have eight different bold faces
defined, as is the case with high-end professional quality fonts used for publishing.
What this means is that to display a font as bold, italic, oblique, or any other style, a
separate font file is used.

217

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 217

Figure 9-12 is a snapshot of the directory containing the various font files. Take for example the
Agaramond font shown in the figure. Four font files are associated with the Agaramond font: one for the
normal font with no style applied (Regular), one for bold, one for italic, and one for bold and italic. To
achieve the effect of a font that becomes increasingly bold — to make use of the 100 through 900 values —
a separate font definition file is required for each variation in the font. Most major browsers, however, will
show more limited font output — like that shown in Figure 9-11 where the font used had only one bold
face and not several. The bolder and lighter keywords are relative values.

Figure 9-12

Relative Values
In the preceding section, the bold, and 100-900 values of the font-weight property are absolute values
because their meaning does not change. The bolder and lighter values of the font-weight property
are relative values, which means their meaning depends on how bold their parent or ancestor element’s
font appears. The following code is a demonstration of this:

body {
font-family: monospace;

}
div {

font-weight: bolder;
}

Accompany the preceding rule with this markup:

<body>
This font is normal.
<div>

This font is bolder than the font for the <body> element.
</div>

</body>

The result looks like the display shown in Figure 9-13.

218

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 218

Figure 9-13

The bolder and lighter keywords make the text bolder or lighter based on the font-weight of the ele-
ment’s parent or ancestor. In this case, the <body> element is the <div> element’s parent. The <body>
element has no font-weight applied, so it appears normal; and the font for the <div> element appears
bolder because of the font-weight: bolder; definition. As is the case with the 100-900 values, if a
sophisticated font is available on the user’s computer that has several variations from light to bold, the
bolder value would trigger the browser to display the variation that is bolder than the one before it.
Likewise, the lighter value would display a less bold variation. The following style sheet

body {
font-family: monospace;
font-weight: bold;

}
div {

font-weight: lighter;
}

accompanied by this markup:

<body>
This font is bold.
<div>

This font is lighter than the font for the <body> element.
</div>

</body>

results in the display shown in Figure 9-14.

Figure 9-14

Now that you’ve seen an overview of the font-weight property’s capabilities, the following Try It Out
lets you apply the font-weight property to the JT’s website.

219

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 219

Try It Out Applying the font-weight Property
Example 9-3. Follow these steps to apply font weight variations to the JT’s website.

1. Make the following modifications to the dinner_menu.css style sheet:

h3, h4, h5, h4 + p, h5 + p {
text-align: center;

}
h4 em {

font-weight: lighter;
}
h5 {

font-weight: normal;
}

The result is shown in Figure 9-15.

Figure 9-15

220

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 220

How It Works
Figure 9-15 shows the effects of these two rules. The first rule added to the dinner_menu.css style sheet
makes the text in the element lighter than that of its parent element (the <h4> element).

h4 em {
font-weight: lighter;

}

This rule selects only elements that are descendants of <h4> elements, which for this project selects
the menu item price. The result is that the font used for the element is lighter than that used for the
<h4> element, which is bold by default. The font-weight: normal; declaration would have had an
identical effect; however, describing the price text as lighter than the menu item text is more intuitive.
What I really want is the text for the price to be lighter than that used for the <h4> heading.

The next rule removes the default bold face font from the <h5> elements used in the menu. Its purpose is
to make these elements appear more natural and consistent with the rest of the menu’s layout.

h5 {
font-weight: normal;

}

Because the font for all heading elements <h1> through <h6> is boldfaced by default, the font-weight:
normal; declaration removes the boldfaced effect.

For the majority of web design projects, a font is either bold or it isn’t. The average web surfer is unlikely
to have installed sophisticated fonts capable of displaying eight variations of bold. In summary, the most
used values of the font-weight property are likely to be normal, bold, bolder, or lighter (with more
emphasis on the first two). I continue the discussion of font manipulation properties by introducing the
font-size property.

The average price tag of professional publishing-industry quality fonts like these ranges from $50 to
$300 for the package, depending on the company providing the fonts.

The font-size Property
Documented in CSS 2 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The font-size property is, of course, used to control the size of fonts. The following table outlines the
font-size property and its possible values.

Property Value

font-size <absolute-size> | <relative-size> | <length> |
<percentage> | inherit
Initial value: medium

221

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 221

The bad news, as I mentioned in Chapter 4 in the discussion of CSS length units, is the number of
caveats and fallbacks attached to each measurement. Some are better suited for screen and some are bet-
ter suited for print, and not all length units are interpreted consistently on different browsers. The same
is true of the keyword values for the font-size property that I discuss in the following sections.

Absolute Font Sizes
The <absolute-size> value notation of the font-size property refers to one of seven keyword val-
ues. Absolute values for the font-size property are defined using keywords that range from xx-large
to xx-small. The following table outlines the absolute values and their relation to HTML heading sizes
as of CSS 2.

Absolute xx-
Keyword small x-small small medium large x-large xx-large

HTML n/a <h6> <h5> <h4> <h3> <h2> <h1>
Heading

These keywords specify the font size based on a scaling factor of 1.2. The scaling factor is the ratio
between two shapes. The scaling factor is determined by multiplying the font size by 1.2 to determine
the next font size relative to the previous one. For instance, if a font size of 16 pixels is assumed for the
medium keyword value, the large keyword would be approximately 19 pixels, rounding down from
19.2 because 16 multiplied by 1.2 equals 19.2

These keywords exist for sizing fonts relative to the browser user’s font-size preferences. The browser
precalculates the value of each keyword depending on those preferences. The name absolute is somewhat
misleading because each keyword is relative to the user’s font-size preferences. The actual length unit
size of each keyword varies depending on a number of factors, such as:

❑ The browser’s default font size.

❑ The user’s font size preferences.

❑ The font family being used.

Despite all of these variables, this is one place where the three browsers, IE 6, Mozilla 1.7, and Opera 7.5,
seem to be consistent.

Figure 9-16 shows each absolute font size in relation to the default HTML heading size and a size speci-
fied in points.

222

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 222

Figure 9-16

Although this association between font size keywords and length units works for the Rockwell font I
used in Figure 9-16, the point sizes depicted are approximations and might not be the same point unit
values when another font is used. If you increase or decrease the size of the text using the zoom feature
of the browser, you’d notice that the point sizes change in response to the absolute keyword values if
you are using Opera and Mozilla. However, Internet Explorer 6 ignores the user’s adjustments to font
size preferences on font sizes specified in points (or any other absolute length unit, like inches or cen-
timeters). Therefore, the point sizes do not change with the size of the absolute keywords when adjust-
ments to the user’s font size preferences are made. Adjustments in the size of the font can be made in
Internet Explorer from the View ➪ Text Size menu. In Mozilla, changes to font size can be made by
pressing Ctrl + + or Ctrl + -, or from the View ➪ Text Zoom menu. In Opera, the font size can be
adjusted using the same shortcuts as in Mozilla, or from the View ➪ Zoom menu.

Relative font-size keywords, covered in the following section, are closely associated with the absolute
font size keywords.

Relative Font Sizes
The <relative-size> notation of the font-size property refers to two values: larger and smaller.
When either of these two values is used, the font size is determined by the values appearing in the table
for absolute size keywords discussed in the previous section. Take, for instance, the following example:

body {
font-size: medium;

}
p {

font-size: larger;
}

Combine this with the following markup:

<body>
This font is medium in size.
<p>

223

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 223

This size of this font corresponds to font-size: large;, which is the next
value in the absolute font-size keyword table.
This is demonstrated by placing the text
next to text with a font-size: large; explicitly specified.

</p>
</body>

The results are shown in Figure 9-17.

Figure 9-17

Figure 9-17 demonstrates how the next value in the absolute font-size keyword table is chosen. Because
the font for the <body> element is made medium in size with the font-size: medium; declaration,
when font-size: larger; is applied to the <p> element, the browser chooses the next larger value in
the absolute keyword table and applies a font size that is the same as would be generated by the
font-size: large; declaration. If the value is specified with a length unit — say, for instance, as
pixels — the browser simply applies a 1.2 scaling factor to that size to get the larger size.

Figure 9-18 shows how a font size specified as 16 pixels gets increasingly larger when font-size:
larger; is applied to descendant elements. This also shows how the font-size: larger; and
font-size: smaller; declarations are very similar to the font-weight: bolder; and
font-weight: lighter; declarations.

Figure 9-18

In contrast to the font-size: larger; declaration, Figure 9-19 shows what happens when the font-
size: smaller; declaration is used instead.

224

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 224

Figure 9-19

The font-size: smaller; declaration performs the same scaling factor changes that the font-size:
larger; declaration does, but does them in reverse.

Percentage Font Sizes
Percentage font sizes work much like the em units discussed in Chapter 4. Consider the following
example:

body {
font-size: 18px;

}
p {

font-size: 90%;
}

Combine this with the following markup:

<body>
This font is 18 pixels in size.
<p>

This font is 90% of the 18 pixel size specified for the <body>
element.

</p>
</body>

The result is shown in Figure 9-20.

Figure 9-20

225

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 225

Figure 9-20 shows that percentage values are based on the element’s ancestry. The font size for the <p>
element is 90% of the size specified for the <body> element. This works much the same as the em unit
does for font sizes. However, unlike the em unit, the meaning of a percentage measurement varies
depending on the CSS property that it is used with. An em unit, you should recall, always refers to the
font size. Most designers prefer em units to other types of measurements because the size of an em unit
depends on the font size. The em units create the possibility for liquid, accessible designs that increase
or decrease in size to accommodate the user’s font size preferences. I discuss this in more detail in
Chapter 10.

A percentage font size measurement might also be used to increase the size of a font. Take, for instance,
the following example:

body {
font-size: 150%;

}

When applied to the following markup

<body>
This font is 150% of the size of the user’s font size preferences.
<p>

This font is 100% of the size of the font used for the <body> element.
</p>

</body>

it renders the results shown in Figure 9-21.

Figure 9-21

The font for the <body> element in Figure 9-21 is 50% larger than the user’s default font size prefer-
ences. In Mozilla, the default font size is set to 16 pixels, so the font for the <body> element in Figure
9-21 is 50% larger than 16 pixels or 24 pixels in size. Specifying the font size as 150% is the same, in this
case, as it would be had you specified a font size of 1.5em. The font for the <p> element is 100% of the
font size used for the <body> element. The <p> element’s font size is only 100% of the <body> element’s
font size because the font-size property is inherited. If the <p> element were to have any descendants,
their font size would be that of the font size specified on the <p> element. This demonstrates that per-
centage font sizes are dependant on the element’s ancestry.

After this overview of how the font-size property works, in the following Try It Out you add the
font-size property to the JT’s Island Grill and Gallery style sheets.

226

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 226

Try It Out Applying a Font Size
Example 9-4. By following these steps, you add the font-size property to the JT’s website style sheets.

1. Make the following highlighted modifications to the base_styles.css style sheet:

h1 {
font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;
font-size: 1.5em;

}
h3 {

font-size: 0.9em;
}
h6 {

font-size: 0.8em;
text-align: center;

}
div#content {

font-size: 0.9em;
word-spacing: 5px;
letter-spacing: 1px;

}
p.copy {

font-size: 1.2em;
font-family: “Times New Roman”, Times, serif;
text-indent: 20px;
text-align: justify;

}

2. Save the base_styles.css style sheet.

3. Make the following modifications to the dinner_menu.css style sheet.

div#content h3 {
font-family: “Monotype Corsiva”, cursive;
text-decoration: underline;
font-size: 2em;

}
h3 + p.menucaption {

font-style: italic;
text-align: center;

}
h4, h5 {

font-size: 1.3em;
}

4. Save the dinner_menu.css style sheet. The results of these modifications can be seen in
Figure 9-22.

227

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 227

Figure 9-22

How It Works
Each of these rules specifies a font size for the JT’s dinner menu. I have chosen to specify each font size
using the em unit that I discussed in Chapter 4 so that font sizes will change with the user’s font size
preferences. If the font size of the browser is increased, the font size of the menu also increases accord-
ingly. Although similar results can be achieved using absolute keywords or percentage font sizes, this
approach facilitates the overall design of the website, because I plan to apply padding, borders, margins,
and other elements of document layout using em units. This approach enables the site’s design to adapt
completely to the user’s font size preferences — scaling larger or smaller depending on how large the
user has the font size set. This makes the design accessible because people with poor vision tend to
crank up the font sizes to make reading easier. Because I’ve used em measurements, making the font size
larger is like applying a magnifying glass to the whole page. I go into more detail on this throughout
Chapter 10.

The approach here is quite simple. I have adjusted the heading sizes in the dinner menu and the heading
sizes of <h1> heading containing the document’s title, as well as the <h6> heading containing the docu-
ment’s footer:

228

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 228

h1 {
font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;
font-size: 1.5em;

}
h3 {

font-size: 0.9em;
}
h6 {

font-size: 0.8em;
text-align: center;

}

The <h1> heading is increased to one and one-half sizes larger than the user’s font setting, and the <h6>
heading is adjusted to 0.8 of the user’s font-size setting. The <h3> element is also made slightly smaller.
(Although the <h3> element is not used in the dinner menu, it is used on the other pages of the JT’s web-
site.)

The next rule adjusts the size of the text appearing in the <div> with an id name of content:

div#content {
font-size: 0.9em;
word-spacing: 5px;
letter-spacing: 1px;

}

This makes the text size just slightly smaller. Next, I increase the size of text appearing in a <p> element
with an id name of copy:

p.copy {
font-size: 1.2em;
font-family: “Times New Roman”, Times, serif;
text-indent: 20px;
text-align: justify;

}

Remember, however, that the copy <p> appears inside of the content <div>, so the 1.2em size is based
on the 0.9em size of the content <div>. This means that the size of the copy <p> font becomes 0.2 larger
than 0.9em, which is itself 0.1 less than the size of the default font. Then adjustments are made to the
dinner_menu.css style sheet to fine-tune the different menu headings:

div#content h3 {
font-family: “Monotype Corsiva”, cursive;
text-decoration: underline;
font-size: 2em;

}

The <h3> elements used for each menu section heading — appetizers, entrees, and so on — are made
double the size of the font used for the content <div>. Therefore, the size of the <h3> elements inside
the content <div> are made two times 0.9em because the em unit depends on the element’s ancestry and
the font size of parent elements, just as the percentage font size does. Finally, <h4> and <h5> elements
are increased in size:

229

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 229

h4, h5 {
font-size: 1.3em;

}

These also appear inside of the content <div>, so their sizes are also based on the font size of the content
div, which is 0.3em larger than the 0.9em size specified for the content <div>.

The next section examines a special short hand property used to specify several font properties in one.

The font Shorthand Property
Documented in CSS 1, 2, and 3, and supported since IE 4, NS 6, Opera 4, and Safari 1.

The font property is a shorthand property that allows several properties to be written in a single prop-
erty. The following table outlines the font property and the values that it allows.

Property Value

font [<’font-style’> || <’font-variant’> || <’font-weight’>]? <’font-size’>
[/ <’line-height’>]? <’font-family’>] caption | icon | menu |
message-box | small-caption | status-bar | inherit

The notation for the font property is somewhat more complicated than those presented in previous
examples. For now, just ignore the caption, icon, menu, message-box, small-caption, and status-bar val-
ues — these are called system fonts, and I discuss them in the next section. As for the first part of the
notation, here’s a break down of each portion:

[<’font-style’> || <’font-variant’> || <’font-weight’>]?

This indicates that either a font-style, font-variant, or font-weight value can be provided. The
question mark indicates that this part is optional. The double vertical bars indicate that each value is
optional, so one, two, or all three of these may appear, but none of them is required.

The next part indicates that a font size must be specified:

<’font-size’>

The font size is not optional, so a font-size value must always be provided.

The next part indicates that a line height may be specified, but because a question mark follows it, the
line height is optional:

[/ <’line-height’>]?

The forward slash in the notation indicates that if a line height is specified, a forward slash must sepa-
rate the font-size and line-height properties. The question mark after the closing square bracket
indicates that this portion of the syntax is optional.

230

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 230

The last portion indicates that a font family must be specified:

<’font-family’>

So at the very least, a font-size value and a font-family value must be specified. Now that you
understand the notation, here’s an example of this property including all its optional values:

p {
font: italic small-caps bold 1em/1.5em sans-serif;

}

When applied to this markup:

<p>
This font is italic, small-caps, bold, 1em in size, with a 1.5 em line height
and a sans-serif font.

</p>

the result shown in Figure 9-23 is generated.

Figure 9-23

This rule includes all the values possible with the font property shorthand. Figure 9-23 shows that this
rule makes the font italic, small-caps, bold, 1em in size with a 1.5 em line-height and a sans-serif font. I
haven’t discussed the line-height property yet because this property is discussed in Chapter 10, but
essentially the line-height property accepts a normal length value, which sets the height for each line
of text.

In contrast to the previous example, this example shows the font property with a minimal set of values:

p {
font: 1em sans-serif;

}

When combined with this markup:

<p>
This font is 1 em in size and sans-serif.

</p>

the result shown in Figure 9-24 is generated.

231

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 231

Figure 9-24

The notation indicates that at least a font size and a font family must be provided, as is reflected in the
preceding example. Figure 9-24 shows output with a sans-serif font 1em in size.

Here are a few more possible variations of the font property:

font: bold 1.2em Arial, Helvetica, sans-serif;

This makes the font bold and 1.2em in size. Then, like the font-family property, the font property
accepts a list of fonts. I’ve specified an Arial font, which is common to Windows systems. If that font
isn’t found on the user’s computer, the Helvetica font is used, which is common to Macintosh systems.
Then as a last resort, the generic sans-serif font is used:

font: italic 1.2/2em “Times New Roman”, Times, serif;

The preceding rule makes the font italic and 1.2em in size with a 2em line height. Those specifications
are followed by a list of font families.

Now that you’ve had an overview of the font shorthand property, the next section introduces you to the
system font keywords.

System Fonts
Documented in CSS 2.1 and supported since IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

System fonts are keywords that refer to a font predefined by the user’s operating system. The following
table outlines each available system font.

Font Name Font Description

caption Refers to the font used for captioned controls.

icon Refers to the font used to label icons like those found on the desktop.

menu Refers to the font used in menus, drop-down menus, and menu lists.

message-box The font used in dialog boxes.

small-caption The font used for labeling small controls.

status-bar The font used in window status bars.

232

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 232

System fonts may only be set as a whole: When a system font is specified using the font shorthand prop-
erty, the font-family, font-size, font-weight properties, and all other aspects of font display are
set at once. The following example demonstrates each of the system fonts:

p#caption {
font: caption;

}
p#icon {

font: icon;
}
p#menu {

font: menu;
}
p#message-box {

font: message-box;
}
p#small-caption {

font: small-caption;
}
p#status-bar {

font: status-bar;
}

It is combined with the following markup:

<p id=’caption’>
This is the caption font.

</p>
<p id=’icon’>

This is the icon font.
</p>
<p id=’menu’>

This is the menu font.
</p>
<p id=’message-box’>

This is the message-box font.
</p>
<p id=’small-caption’>

This is the small-caption font.
</p>
<p id=’status-bar’>

This is the status-bar font.
</p>

233

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 233

The output is shown in Figure 9-25.

Figure 9-25

This figure shows what the system fonts look like rendered in a browser. The fonts, font sizes, and styles
are specific to my configuration of Windows XP and may look different than when rendered in your
browser. The display depends on the fonts, font sizes, and styles used by your operating system. System
fonts provide a way of referencing the fonts found on the user’s operating system, including the size,
style, and weight of the system font. This allows a web page to adapt to the user’s font preferences
because operating systems often offer some method to customize the fonts they use.

Additionally, different aspects of system fonts can be overridden via the cascade by specifying the differ-
ent font properties after a font declaration with a system font value. This is demonstrated by the follow-
ing rule:

p {
font: caption;
font-size: 2em;
font-style: italic;

}

In the preceding example, the font size and font style replace those specified for the system font.

Summary
This chapter demonstrated several properties CSS provides for manipulating font display. These proper-
ties allow both simple and complex control over how fonts are presented to the end user. In this chapter
you learned

❑ How to specify the font face using the font-family property.

❑ How to make the font style oblique or italic with the font-style property.

❑ How to style the small-caps effect using the font-variant property.

❑ How to control the lightness and boldness of a font using the font-weight property.

❑ How to take advantage of specifying a font size that adjusts based on the user’s font size prefer-
ences with the font-size property and absolute keywords.

234

Chapter 9

13_576429 ch09.qxd 11/18/04 12:31 PM Page 234

❑ How to increase the size of a font based on the font size of an element’s parent using relative
keywords, percentage font sizes, or em units with the font-size property.

❑ How to combine the various font properties into one using the font shorthand property.

After learning some of CSS’s simpler properties for text manipulation in Chapter 8 and going over font
manipulation in this chapter, you now investigate the CSS box model and liquid design in Chapter 10.

Exercises
1. Using Exercise 3 from Chapter 8, modify the style sheet, removing the width: 200px; and

text-align: justify; declarations. Make the poem’s title appear in normal font face,
removing the bold styling. Make the first letter of each line of the poem 20% larger than the rest
of the line and italic. Make the title of the poem appear in Monotype Corsiva or a font of your
choice.

2. Based on Exercise 1 that you just completed, use the font shorthand property to specify a
Monotype Corsiva font family (or another font of your choice) for the first letter of each line
appearing in the poem. Keep the remaining font size and style specified in Exercise 1.

235

Font Manipulation

13_576429 ch09.qxd 11/18/04 12:31 PM Page 235

13_576429 ch09.qxd 11/18/04 12:31 PM Page 236

10
Liquid Design and the

CSS Box Model

Throughout this book, you have learned about standards, which ensure that the Internet is an
enjoyable experience for everyone. Standards enable you to deliver a web document through more
than one medium. On computer systems, standards allow web content to behave predictably
when viewed on different browsers and different operating systems. Standards also allow web
content to be delivered to more than one type of device: handheld computers, cell phones, aural
browsers (where the content is read using a voice synthesizer), and a variety of other devices. This
chapter discusses liquid design, a concept that allows content to adapt to the medium of presenta-
tion. Liquid design adjusts to the medium of content delivery regardless of screen size, resolution,
or platform. As I discussed in Chapter 9, the layout stretches to accommodate any increase or
decrease in screen resolution or the user’s font-size preferences.

In this chapter, I discuss

❑ Laying the foundation for liquid design

❑ <table> versus <div>

❑ Tag soup

❑ The advantages of external style sheets: one page to rule them all

❑ The media attribute and @media rule

❑ The CSS box model

❑ CSS box model properties, padding, margins, borders, width, and height

❑ Controlling line height

❑ Establishing minimum and maximum dimensions

❑ Overflowing content

Each component is essential for fluid designs, which make a website accessible through more than
one medium. Throughout this book you may have noticed that compatibility with older browsers

14_576429 ch10.qxd 11/18/04 12:32 PM Page 237

(such as Netscape 4, Internet Explorer 4, and others whose support for things such as CSS and XHTML
is virtually non-existent) is completely ignored. The concepts presented in this chapter would look quite
mundane, if they render at all, in older browsers. The truth is simply this: Why sacrifice all the benefits
of CSS-based design for a handful of designers still using a version 4 browser issued nearly seven years
ago? In short, there comes a time in standards evolution when you must sacrifice backward compatibil-
ity in the name of better things.

This chapter begins by discussing the dos and don’ts of liquid design. Later, the chapter tackles the CSS
Box model, a set of properties that is quite possibly the single most important component of CSS-based
designs, affecting all rendered elements on a page. Its theory and implementation are the cornerstones of
liquid design and require a vastly different way of thinking than do designs created with purely presen-
tational markup like HTML tables.

Laying the Foundation for Liquid Design
In Chapter 8, I presented some of the strategies to begin designing a website from the ground up. The
concept of liquid design plays an important role in this process. I postponed discussion of the strategies
involved in creating liquid design until this chapter because they are closely related to the CSS box
model properties that I also cover in this chapter. The following sections go into more detail about the
theory behind the markup techniques I presented in Chapter 8.

Most websites adhere to some sort of template: a fixed definition of headings, content, and navigation
that remain the same from page to page. In programming terms, this consistency of presentation is
referred to as the UI, or user interface. The user interface is the general term for the buttons and switches
and gizmos that formulate what a website is, and, you guessed it, how the user interfaces with the web-
site. It involves a schema of navigation and a color scheme; put simply, the UI determines the look and
feel of a website. A reusable foundation is important because it greatly increases maintainability. The fol-
lowing list outlines the ground rules for your liquid design project:

❑ No tables are allowed, except where data must be organized.

❑ Avoid using
, , <i> and other unnecessary tags (tag soup).

❑ Styles sheets must be organized by media, and your web documents must use external style
sheets to reduce file size and loading times.

This formulation of ground rules produces a design that is very lightweight, quick to download, and
easy to port to other devices where size is a very big consideration, such as cell phones and PDAs. The
structure becomes self-describing and easier to maintain. It no longer takes hours or days to make sim-
ple adjustments to the template. The design also becomes accessible, meaning that users accessing the
website with a voice synthesizer can quickly navigate through each page without having to listen to
every word on every page before finding a topic of interest.

If you think accommodating voice synthesizers isn’t important, a multitude of accessibility organiza-
tions are ready to take offense. This is the software commonly used to access the Internet by people with
visual or other types of disabilities or impairments. Software such as IBM’s Home Page Reader (avail-
able from http://www.ibm.com/able/hpr) is bringing the web to people with disabilities. By follow-
ing a few simple design guidelines, a disabled person’s Internet experience can be greatly improved and

238

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 238

enriched. In the United States, a set of Federal guidelines, known as Section 508, requires all government
websites to be accessible to the disabled. In the coming sections, I present a few simple design tech-
niques that take care of accessibility and maintainability in one fell swoop.

<table> versus <div>
Before CSS, you simply had no way to achieve an aesthetically pleasing design without using tables.
However, these days, using tables is not desirable for a couple of reasons. The first and weakest argu-
ment is that table-based designs were not the original intention of the W3C. Early on, there wasn’t a bet-
ter alternative to table-based design, and even though CSS level 1 was written in 1996, support for it was
not widespread. It did not become a feasible solution until 2001. Today, however, better methods exist,
even on Internet Explorer 6, which at the time of this writing has the worst CSS support among the
browsers.

Many of today’s designs still make heavy use of HTML tables; in fact, it is quite common to find table
piled on top of table on top of table in older HTML designs. At one time, this was considered quite ele-
gant and creative. In the early days of table design the question was, “In what new way can I twist and
mangle a table before it works on all browsers without breaking my design and still have it convey the
look and feel that my client wants?” In the early days, the Internet was primarily a medium for educa-
tional institutions, corporations, and the military to pass around information. Like any early technology,
the Internet was quite crude and lacked the capability to absolutely control the presentation of content.

As the Internet evolved, the first signs of presentational markup crept into the earlier versions of HTML.
Then Netscape Communicator was the dominant browser, and customers began demanding more con-
trol over the presentation of content. Netscape responded with the tag, and Microsoft followed
suit with an implementation of its own. Around the same time, HTML tables also became quite popular
for establishing the look and feel of a website. The truth is that it is just as difficult to maintain table-
based design as it is to control all the fonts on a page with tags. Tables, like tags, cause
the size of a file to increase significantly. All the extra markup in a document causes the price of file
maintenance to increase almost proportionately to the file size. Tags and content become difficult to sin-
gle out, and consistency of the template decreases because the presentation is contained in each individ-
ual document. On the other hand, designs that use generic <div> containers instead of tables are the
opposite: They are easily maintained, result in smaller file sizes, and allow for skinning of the design. In
other words, you can write new style sheets that give a completely different look and feel using the same
content. This flexibility also opens up the door to delivery on more than one medium. In addition to
designing for home computers, you can write style sheets for delivery on cell phones, PDAs, aural
browsers, and a plethora of other devices.

Following is a snippet of markup bloated with presentational tags and attributes:

<table width=”100%” border=”0” cellspacing=”0” cellpadding=”0”>
<tr>

<td width=”100” valign=”top”>

The Menu

</td>
<td>

The Content

239

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 239

</td>

</tr>
</table>

Using CSS, this entire block of markup can be reduced to only six lines.

<div id=’menu’>
The Menu

</div>
<div id=’content’>

The Content
</div>

You can also move the presentational markup to a style sheet that looks something like this:

* {
font-family: Arial, Helvetica, sans-serif;
color: black;

}
#menu {

float: left;
width: 100px;
color: red;

}

Not only is the <div> and CSS approach simpler with smaller file sizes, many of extra attributes aren’t
required in the <div> design. These include valign=’top’, border=’0’, cellspacing=’0’, and so
on. Because these attributes are all specific to HTML tables, <div> elements don’t require their use. You
could simply eliminate all the presentational markup from the <table> and style the <table> using
CSS, but for the sake of complete flexibility and a smaller, simpler document structure, using <div> ele-
ments makes more sense.

The last huge argument against table-based designs is that they impede accessibility. All too often, table-
based designs do not divide the site into headings (using HTML heading tags) and paragraph tags for
text. They also use images heavily (some that serve no other purpose than spacing content), but don’t
provide alternate text with the image. As a result, blind visitors cannot have the full experience or they
can become confused. Alternate text is presented in the alt attribute of the tag. This is the text
displayed (or read if using a voice synthesizer), if the user cannot see the image or has disabled the
viewing of images in the browser.

<img src=”my.jpg” alt=”This text is presented to the user if the image isn’t
available” title=”This is tooltip text and this text is displayed if the user’s
mouser cursor is resting over the image” />

Table-based designs may also rely heavily on image maps — a design technique in which a link is mapped
to certain coordinates on an image. Image maps are a useful tool as long as they don’t make the website
inaccessible. With CSS, you can completely eliminate or incorporate many of these techniques without
compromising aesthetic design and quality.

240

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 240

To recap, table-based designs

❑ Are meant for data organization, not aesthetic layout.

❑ Are labor-intensive to maintain.

❑ Have a significantly larger file size, and thereby consume more bandwidth and more hard disk
space. This results in longer download times for dial-up users and an all-around more expen-
sive website.

❑ Are not ideal for PDAs and other mobile devices.

❑ Impede accessibility.

Using CSS, you can completely circumvent these complex table-based designs, as this chapter shows
you. In the next section, I explore which tags you should avoid.

Avoiding Tag Soup
The next rule of fluid design is avoiding tag soup. What is tag soup you ask? Tag soup describes unneces-
sary or useless markup. Using CSS and properly formed markup, you can completely avoid the HTML
line break tag,
, or
 in XHTML. You can get around the line break tag by employing a num-
ber of very useful techniques that not only eliminate meaningless markup but also make a website more
accessible and enable the source code to describe its content more intuitively.

Here are some techniques to help you avoid using the line break tag:

❑ Use unordered lists for navigational links ().

❑ Always enclose headings in HTML heading tags (<h1>–<h6>).

❑ Always enclose content text in paragraph tags (<p>).

These techniques remove the clutter of the break tag and allow the document structure to describe itself.
You may recall the markup that I used to build JT’s dinner menu in Chapter 8. There, I employed these
techniques to make the structure of the document itself more intuitive and self-describing. These tech-
niques also play a role in liquid design: By closely following the guidelines presented here, you can cre-
ate a document that adapts to the user’s environment. I show you how all this comes together
throughout this chapter, especially with the addition of the CSS box model properties that I discuss a bit
later.

A good way to avoid tag soup is to avoid the (bold) tag and <i> (italic) tags. For the tag, use the
 tag instead, as in:

Some bold text.

The W3C does not consider the tag to be presentational markup because the tag
adds meaning to the markup’s structure. You can use the tag in aural browsers to trigger a
loader voice or a more emphasized voice. Most browsers associate the tag with bold-faced
text, although this isn’t part of the W3C’s definition of the tag. On the other hand, is used
purely for presentation and has no extra meaning to the document structure. In addition to the
 tag, you can also use a generic container combined with CSS, as in the following:

Some bold text.

241

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 241

The container is a generic inline-level tag that serves no purpose other than the delivery of style.
The container adds no real meaning to the document’s structure, but is a standards-acceptable
method of applying style to specific text. You can use the element to partition part of a para-
graph or line of text for styling. It can be used, for example, to highlight a portion of text with a different
background color or to underline or strike through text that pertains solely to presentation. The
 tag is better suited for simply bolding text because it conveys both structural meaning and
style.

Instead of using the <i> tag, consider using, which stands for emphasis. Again, is another tag
that the W3C doesn’t consider to be presentational markup because adds meaning to the structure,
as in the following:

Some italic text.

Nothing in the W3C recommendations states that the element must be rendered in italics; however,
most browsers interpret it that way. Again, the italic effect provided by using the tag can also be
accomplished by the generic container with CSS:

Some italic text.

Additional obsolete HTML tags exist; but as a rule, you should avoid tags that exist purely for presenta-
tion and replace them with CSS tags that contribute additional meaning to the document structure. In
fact, not only are and <i> obsolete HTML tags, these tags do not function at all when included in an
XHTML document. They are not part of the XHTML specification and, therefore, must be replaced with
suitable replacements if XHTML is the medium of delivery.

Examining the Advantages of External Style Sheets
If you recall from Chapter 3, one advantage of external style sheets is that the browser caches them. This
substantially reduces requests for style sheets as pages load. The browser looks in the cache, sees that the
style sheet is already downloaded, and applies the styles to the page in question. Besides this advantage
of external style sheets, their use enables you to specify different style sheets based on the media — the
method of presentation. You can write one style sheet for a handheld computer or PDA; you can write
another for presentation on a cell phone. You can hide images or resize divs and tables. In a word, you
can optimize the presentation for a particular method of delivery. You optimize presentation with the
media attribute and with @media rules. The media attribute and @media rules don’t clutter the docu-
ment with styles not relevant to the form of presentation you are using, further increasing efficiency.

The media attribute and @media rule
Media attribute: Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.8, Opera 7.5, and
Safari 1.2. @media: Documented in CSS 2.1 and supported in IE 5.5, IE 6, Opera 7.5, and Safari 1.2.

The media attribute is something you can add to the <link> element or <style> element that selects
the method of presentation. As mentioned earlier, the media attribute allows the presentation of a com-
pletely different style sheet depending on what type of device being used to access the website.

The media attribute and @media rule support the values shown in the following table.

242

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 242

Value Purpose

all Suitable for all devices.

Braille Intended for Braille tactical feedback devices.

embossed Intended for paged Braille printers.

handheld Intended for handheld devices.

print Intended for presentation to a printer (in a browser use print
preview to view the print style sheet).

projection Intended for projected presentations.

screen Intended for presentation on a color computer screen.

speech | aural Intended for presentation to a speech synthesizer (called aural
in CSS 2 and speech in CSS 2.1).

tty Intended for media using a fixed-pitch character grid
(such as teletypes, terminals, or portable devices with limited
display capabilities).

tv Intended for television (low resolution, low color, limited
scrollability).

Note: PC browsers only recognize screen, print, and all values.

Recalling the <link> element from Chapter 3, the following is the <link> element with the addition of
the media attribute:

<link rel=’stylesheet’
href=’path/to/some_css_doc.css’
type=’text/css’
media=’screen’/>

The inclusion of the media=’screen’ attribute applies the styles in some_css_doc.css only for those
users accessing the website using a normal PC. In the same way, you can apply the media attribute to an
embedded style sheet using the following:

<style type=’text/css’ media=’screen’>

Using the media=’screen’ attribute with the embedded style sheet has an effect that is identical to
using the media=’screen’ attribute for the <link> element. The @media rule, on the other hand, is a
method of selecting the media within the style sheet itself. In this example

@media print {
body {

font-size: 10pt;
}

}

243

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 243

@media screen {
body {

font-size: 1em;
}

}

the first rule results in a 10-point font size for print (if the user prints the web page from the browser, for
example), and the second rule results in a 1em font size on the computer screen. The @media rule is the
least-supported method, especially in older browsers. For that reason, the examples in this book stick
with the media attribute, which is widely supported.

At this point, the examples focus only on styling for the screen. Chapter 15 explores what’s involved in
writing a style sheet for print and for a handheld device.

The following Try It Out adds the media attribute to JT’s dinner menu to separate the style sheets refer-
enced there by media.

Try It Out Separating Style Sheets by Media
Example 10-1. In the following steps, you separate the JT’s style sheets by media.

1. Make the following adjustments to the dinner_menu.html file:

<!DOCTYPE html PUBLIC “-/pp/W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title>

JT’s Island Grill and Gallery - Chokoloskee, Florida
</title>
<link rel=’stylesheet’

type=’text/css’
href=’style_sheets/base_styles.css’
media=’screen’/>

<link rel=’stylesheet’
type=’text/css’
href=’style_sheets/menu_system.css’
media=’screen’/>

<link rel=’stylesheet’
type=’text/css’
href=’style_sheets/dinner_menu.css’
media=’screen’/>

</head>

2. Save dinner_menu.html. Open the page in Mozilla, Firefox, or Netscape. You can see that there
is no visible change from the output you saw in Figure 9-22.

244

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 244

How It Works
The inclusion of the media=’screen’ attribute limits the styles of the base_styles.css, menu_
system.css, and dinner_menu.css style sheets so that they are only applied to normal home comput-
ers for content displayed on-screen. If you click the Print Preview feature of Mozilla, you can see that no
styles are applied to the document, which demonstrates how the screen value limits the styling of
elements for display on a computer screen only.

In Chapter 15, I present examples of how you can use the media attribute to provide alternative style
sheets for handheld devices and print. This really demonstrates the power of separating content by
media with CSS.

The next section begins a discussion of the CSS box model and how this formulation of properties gov-
erns the basic principles of CSS design.

The CSS Box Model
The next topic on the agenda is the CSS box model, discussed briefly in Chapter 2 and depicted in Figure
10-1. The CSS box model is how the browser measures things such as width, padding, borders, and mar-
gins within a box, and it is quite possibly the most important component of CSS-based designs. Figure
10-1 shows a detailed diagram of the CSS box model.

At the bottom of the diagram, the Internet Explorer width is noted. If you recall from Chapter 2, I made
note of some differences in the Internet Explorer quirks mode rendering of the box model as opposed to
the Internet Explorer standards mode interpretation of the box model. This diagram reflects how
Internet Explorer quirks mode interprets the box model from outside border edge to outside border
edge.

245

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 245

Figure 10-1

As a refresher from previous chapters, the following example provides a brief overview of box model
properties and how they play into designing a website’s layout:

246

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 246

p#paragraph-1 {
padding: 10px;
width: 200px;
border: 1px solid black;
margin: 10px;
background: gray;

}
p#paragraph-2 {

padding: 20px;
width: 180px;
border: 1px solid black;
margin: 10px;
background: lightgrey;

}

Combine this with the following markup:

<p id=’paragraph-1’>
This paragraph has a 200 pixel width and 10 pixels of padding.

</p>
<p id=’paragraph-2’>

This paragraph has a 180-pixel width and 20 pixels of padding, and yet the
backgrounds of both paragraphs are lined up together.

</p>

Figure 10-2 demonstrates that these two <p> elements result in the perfect alignment of backgrounds
when displayed in the browser window.

Figure 10-2

In CSS, the background appears from inside border edge to inside border edge. Width is measured from
inside padding edge to inside padding edge. In order to achieve backgrounds that line up, you must add
the width, the left padding, and the right padding together to get the background width. In the first
<div>, this figure comes out to 220 pixels total; in the second <div>, this also comes out to 220 pixels
total. Margins, on the other hand, do not include the background; rather, they are an invisible edge

247

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 247

around the outside of the container. The border, margin, padding and width properties are examples of
box model properties. The following sections discuss each of these properties, in addition to other prop-
erties closely related to the box model.

Borders
Borders appear between the margin and padding in the box model depicted in Figure 10-1. I begin dis-
cussion of the CSS box model with borders because the effects of the other box model properties become
more obvious after applying borders. It’s obvious that borders put lines around boxes. The following
sections examine each individual border property.

border-width
Documented in CSS 2.1 and supported in IE 5.5 , IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The border-width properties all control the width of a box border in some fashion. The following table
outlines each border-width property.

Property Value

border-top-width
border-right-width <border-width> | inherit
border-bottom-width Initial value: medium
border-left-width

border-width <border-width> {1,4} | inherit
A <border-width> value refers to Initial value: medium
one of the following:
thin | medium | thick | <length>

The individual border-top-width, border-right-width, border-bottom-width, and border-
left-width properties exist for setting the width of the individual sides of a box.

Each of these properties can be combined into the single border-width shorthand property.

Borders aren’t allowed to have percentage values; however, they are capable of accepting any length
measurement supported by CSS (em, pixel, centimeter, and so on). In addition to length units, the border
width may also be specified using one of three keywords: thin, medium, and thick. Figure 10-3 shows
the rendered output of these three keywords.

248

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 248

Figure 10-3

Like the font property discussed in Chapter 9, the border-width property is a combination of the indi-
vidual border-width properties. The border-width shorthand property can be written in one of four
ways. It can include from one to four values, which is what is meant by the {1,4} notation in the table
describing its possible syntax. First, it can be written by including a value for all four sides of the box.
The notation looks like this:

border-width: <border-top-width> <border-right-width> <border-bottom-width>
<border-left-width>;

In real usage, an example declaration looks like this:

border-width: 1px 4px 2px 3px;

Each value sets a border width for each side of the box; the 1px measurement refers to the top border,
the 4px measurement refers to the right border, the 2px measurement refers to the bottom border, and
the 3px measurement refers to the left border. This shorthand is the same thing as writing the following:

border-top-width: 1px;
border-right-width: 4px;
border-bottom-width: 2px;
border-left-width: 3px;

The next example of the border-width shorthand includes of three values:

border-width: <border-top-width> <border-right-width/border-left-width> <border-
bottom-width>;

In real usage, an example declaration looks like this:

border-width: 2em 5em 3em;

249

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 249

This time, the 2em measurement refers to the top border, the 5em measurement refers to the left and
right borders, and the 3em measurement refers to the bottom border. This is the same thing as writing
the following:

border-top-width: 2em;
border-right-width: 5em;
border-bottom-width: 3em;
border-left-width: 5em;

The next version of the border-width property includes only two values:

border-width: <border-top-width/border-bottom-width> <border-right-width/border-
left-width>;

An example declaration looks like the following:

border-width: 5px 2px;

In this example, the 5px measurement refers to the top and bottom borders of the box, and the 2px mea-
surement refers to the left and right borders of the box. This is the same thing as writing the following:

border-top-width: 5px;
border-right-width: 2px;
border-bottom-width: 5px;
border-left-width: 2px;

Finally, the last possibility is to write the property with only one value specified:

border-width: <border-top-width/border-right-width/border-bottom-width/border-left-
width>;

An example looks like this:

border-width: 5px;

This example sets the border width for all four sides of the box at once. The next section continues the
discussion of borders with the border-style property.

border-style
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

You use the border-style property to specify the style of border to be used. The border-style prop-
erty is very similar to the border-width property presented in the previous section in that it uses an
identical syntax to specify the style of border to be used for each side of the box. The following table out-
lines the border-style family of properties.

250

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 250

Property Value

border-style <border-style> {1,4} | inherit
A <border-style> value refers Initial value: none
to one of the following:
none | hidden | dotted | dashed | solid |
double | groove | ridge | inset | outset

border-top-style <border-style>
border-right-style Initial value: none
border-bottom-style
border-left-style

Like the border-width property, the border-style property is also a shorthand property, which
combines the individual border-top-style, border-right-style, border-bottom-style, and
border-left style properties into the single border-style property. Figure 10-4 shows the ren-
dered representation of each of the border-style keywords.

Figure 10-4

251

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 251

Like the border-width property, the border-style property can accept up to four values to specify
the style for each side of the box. The concept presented for the border-width property is the same for
most of the box model shorthand properties. Its syntax follows an easy-to-memorize schema for setting a
value for each side of the box. To reiterate the concept, here is a more generalized run down of how box
model shorthand properties work.

To specify all four values, use the following syntax:

theoretical-shorthand-property: <top-value> <right-value> <bottom-value> <left-
value>;

An example of this syntax in action is demonstrated by the following rule:

p {
margin: 20px;
padding: 20px;
width: 200px;
border-width: thin medium 30px thick;
border-style: solid dashed double dotted;

}

It is used with this markup:

<p>
I hear and I forget. I see and I remember. I do and I understand.

- Confucius
</p>

Figure 10-5 shows how the four-value syntax is used to apply a different border style and width to each
side of the paragraph.

Figure 10-5

The top border is given a thin width and a solid style. The right border is given a medium width and a
dashed border. The bottom border is given a 30-pixel width and a double border, and the left border is
given a thick width and a dotted border.

252

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 252

To specify three values, the syntax is the following:

theoretical-shorthand-property: <top-value> <right-value/left-value> <bottom-
value>;

An example of this syntax in action is demonstrated by the following rule:

p {
margin: 20px;
padding: 20px;
width: 200px;
border-width: thin medium thick;
border-style: solid dashed dotted;

}

It is combined with this markup:

<p>
A lie can travel halfway around the world while the truth is putting on
its shoes.

- Mark Twain
</p>

Figure 10-6 demonstrates how the three-value syntax is used to apply the border width and style.

Figure 10-6

The top border is given a thin width and a solid border. The left and right borders are given a medium
width and a dashed style, and the bottom border is given a thick width and a dotted style.

To specify two values, use the following syntax:

theoretical-shorthand-property: <top-value/bottom-value> <right-value/left-value>;

This syntax is demonstrated by the following rule:

p {
margin: 20px;
padding: 20px;
width: 200px;

253

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 253

border-width: thin thick;
border-style: solid dotted;

}

It is applied to the following markup:

<p>
I never forget a face, but in your case I’ll be glad to make an exception.

- Groucho Marx
</p>

Figure 10-7 shows how the two-value shorthand syntax behaves when applied to markup.

Figure 10-7

In this example, the top and bottom borders are given a thin width and a solid style, and the left and
right borders are given a thick width and a dotted border style.

To specify only one value, use the following syntax:

theoretical-shorthand-property: <top-value/right-value/bottom-value/left-value>;

The syntax for the last example of box model shorthand properties is demonstrated by the following rule:

p {
margin: 20px;
padding: 20px;
width: 200px;
border-width: thick;
border-style: dotted;

}

It is applied to this markup:

<p>
Only two things are infinite, the universe and human stupidity, and I’m not
sure about the former.

- Albert Einstein
</p>

254

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 254

Figure 10-8 shows that the thick width and dotted border style are applied to all four sides of the box.

Figure 10-8

The next section continues the discussion of borders with the border-color properties.

border-color
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The border-color property is another shorthand property. Like the border-style and border-
width properties, you can use border-color to control how a border is styled. The border-color
property, as you may have guessed, specifies the border color for each side of the box. The following
table outlines the border-color family of properties.

Property Value

border-color <color> {1,4} | transparent | inherit
Initial value: the value of the ‘color’ property.

border-top-color <color> | transparent | inherit
border-right-color Initial value: the value of the ‘color’ property.
border-bottom-color
border-left-color

Internet Explorer does not support the transparent keyword.

Like border-style and border-width, this property can accept up to four values. This property
accepts a <color> value, meaning that it can accept a color keyword, a hexadecimal value, short hex-
adecimal value, or an RGB value; any color value accepted by the color property is also acceptable to
the border-color properties.

As you saw in Figures 10-5, 10-6, 10-7, and 10-8, specifying the border-width and border-style
properties on their own — without specifying the border-color property — demonstrates that when
a border-color is not specified, the border color is the same color as specified for the color property.
In those figures, no color property was provided, so the border color was the same as the browser’s
default color for text.

255

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 255

With an overview of what is possible with borders, the upcoming sections discuss the border shorthand
properties.

Border Shorthand Properties
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The border-top, border-right, border-bottom, and border-left properties combine the border-
width, border-style, and border-color properties into single properties for each side of the box.
The following table outlines the possible values for these four properties.

Property Value

border-top [<border-width> || <border-style> || <color>] | inherit
border-right
border-bottom
border-left

The notation for the border-top, border-right, border-bottom, and border-left properties indi-
cates that one to three values are possible; each value refers to a border-width value, a border-style
value and a border-color value. The syntax for all three values is as follows:

border-top: <border-width> <border-style> <color>;

The preceding snippet translates into this declaration:

p {
border-top: 1px solid black;

}

It is applied to this markup:

<p>
The top border of this paragraph has is 1 pixel width, solid and black.

</p>

Figure 10-9 shows that this code results in a 1-pixel-wide, solid, black border across the top of the <p>
element.

Figure 10-9

256

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 256

The preceding shorthand is equivalent to this:

p {
border-top-width: 1px;
border-top-style: solid;
border-top-color: black;

}

The shorthand properties condense all that code into one property. Like the individual border-color,
border-style, and border-color properties discussed in previous sections, more than one type of
syntax is possible. This example provides only the border-width and border-style.

border-top: <border-width> <border-style>;

As you saw in Figures 10-5, 10-6, 10-7, and 10-8, in this syntax the border color becomes the same as that
defined for the color property. In this case, no color is defined, so the border color becomes the same
color as the default color for text in the browser. The following rule demonstrates the border-top
property with two values:

p {
border-top: thin solid;

}

It is applied to this markup:

<p>
The top border of this paragraph is the same color as the text color.

</p>

Figure 10-10 shows that the border receives the same color as the color defined for the text; in this case,
it’s the browser’s default color for text, which is black.

Figure 10-10

The border-top: thin solid; declaration is the same thing as saying the following:

p {
border-top: thin solid black;

}

The border-top declaration inherits the value of the color property. Here’s another variation of the
syntax:

257

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 257

border-top: <border-style> <border-color>;

The initial value of the border-width properties is medium. In this usage, medium is assumed and the
value of the border-width property, the style, and the color are applied accordingly.

p {
border-top: solid black;

}

They are applied to this markup:

<p>
The top border of this paragraph is of medium thickness.

</p>

Figure 10-11 demonstrates that this code results in a black border of medium thickness.

Figure 10-11

These omissions of style do not work for the <border-style> value. Its initial value is none, so when
you omit the style value, no border appears, although it is technically possible to specify only a single
value in this way. The final possibility is a single value because the initial value of the border-style
property is none; single value syntax applies a visible border only when the border-style is specified.
This can be demonstrated with the following rule:

p {
border-top: solid;

}

It is applied to this markup:

<p>
The top border of this paragraph has a medium width and the color specified for
text.

</p>

Figure 10-12 demonstrates how the initial value of the border-width property is applied when no
border-width is specified and how the color of the border is the color specified for the text of the
paragraph when no other color is specified.

258

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 258

Figure 10-12

Because the initial value of the border-style property is none, specifying a single value by using the
border-top, border-right, border-bottom, and border-left properties is best done by specifying
a border-style.

The border-top, border-right, border-bottom, and border-left properties combine the values of
the border-width, border-style, and border-color properties into a single property. The next sec-
tion continues the discussion of borders with the border shorthand property.

border
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The border property combines all four border properties (border-top, border-right, border-
bottom, border-left) and all three style properties (border-width, border-style, border-color)
into a single property. The following table outlines the border shorthand property.

Property Value

border [<border-width> || <border-style> || <color>] | inherit

The syntax used for the border property is identical to the syntax used for the border-top, border-
right, border-bottom and border-left properties. The only difference is that the border property
sets the border-width, border-style, and border-color values for all four sides of the box at once.

border: <border-width> <border-style> <color>;

The border property sets each side in one fell swoop. This is demonstrated by the following example:

p {
border: 1px solid black;

}

It is used with this markup:

<p>
This paragraph has a 1 pixel thick, solid black border around it.

</p>

259

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 259

Figure 10-13 shows the paragraph has a 1px, solid, black border around it on all four sides.

Figure 10-13

This one property replaces four separate properties, as shown in this example.

p {
border-top: 1px solid black;
border-right: 1px solid black;
border-bottom: 1px solid black;
border-left: 1px solid black;

}

This rule provides output identical to that depicted in Figure 10-13. The next section touches briefly on
what’s in store in CSS 3.

CSS 3 Border Properties
The CSS 3 set of border properties has been expanded to include even more flexibility in border styling.
At the time of this writing, the CSS 3 border module has not yet reached candidate recommendation sta-
tus, meaning that the W3C CSS working group can still make modifications to the properties proposed
for inclusion in CSS 3. Rather than discuss each of these potential additions to CSS 3 in detail, this sec-
tion simply summarizes what’s proposed for inclusion.

First are the border-radius properties. Almost identical to the proprietary -moz-border-radius
property used in previous examples in Chapter 5, this property rounds box edges. These properties
include the following:

❑ border-top-right-radius

❑ border-bottom-right-radius

❑ border-bottom-left-radius

❑ border-top-left-radius

❑ border-radius (shorthand for the individual properties)

The border-radius properties answer a need for CSS designs to break out of the square box designs,
which are often prevalent in CSS design. These differ from the -moz-border-radius properties you
saw in Chapter 5, but only slightly. The Mozilla properties refer to each corner as -moz-border-
radius-topright, -moz-border-radius-bottomright, and so on.

260

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 260

Next are the border-image properties, which are a collection of properties used to set an image for each
side and corner of a box, which allows completely customizable borders. The border-image properties
have no proprietary counterpart and have not yet been implemented in a browser, so no further elabora-
tion is necessary.

The following Try It Out walks you through the steps for applying a border.

Try It Out Applying Borders
Example 10-2. Follow these steps to see how borders play into the JT’s website.

1. Apply the following changes to the base_styles.css file:

body {
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}
a {

text-decoration: none;
}
a:hover {

text-decoration: underline;
}
h1, h6 {

border-left: 0.05em solid black;
border-right: 0.05em solid black;

}
h1 {

border-top: 0.05em solid black;
-moz-border-radius-topleft: 0.8em;
-moz-border-radius-topright: 0.8em;
font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;
font-size: 1.5em;

}
h2 {

border-bottom: 0.05em dotted black;
}
h3 {

border-bottom: 1px dotted black;
font-size: 0.9em;

}
h6 {

-moz-border-radius-bottomleft: 0.8em;
-moz-border-radius-bottomright: 0.8em;
border-bottom: 0.05em solid black;
font-size: 0.8em;
text-align: center;

}
div#content {

border: 0.05em solid black;
font-size: 0.9em;
word-spacing: 5px;

261

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 261

letter-spacing: 1px;
}
p.copy {

border-bottom: 0.05em dotted black;
font-size: 1.2em;
font-family: “Times New Roman”, Times, serif;
text-indent: 20px;
text-align: justify;

}
img {

border: 0.05em solid black;
}

2. Save base_styles.css

3. Make the following modifications to the menu_system.css file:

div#nav {
text-align: center;

}
div#nav > ul > li {

border: 0.05em solid black;
font-size: 0.9em;

}
div#nav > ul > li#leftedge {

border-right-width: 0;
-moz-border-radius-topleft: 1em;
-moz-border-radius-bottomleft: 1em;

}
div#nav > ul > li#leftedge:hover {

-moz-border-radius-bottomleft: 0;
}
div#nav > ul > li#rightedge {

border-left-width: 0;
-moz-border-radius-topright: 1em;
-moz-border-radius-bottomright: 1em;

}
div#nav > ul > li#rightedge:hover {

-moz-border-radius-bottomright: 0;
}
ul.menu {

-moz-border-radius-bottomleft: 1em;
-moz-border-radius-bottomright: 1em;
border: 0.05em solid black;

}
ul#food ul.menu {

-moz-border-radius-topleft: 1em;
}
ul#gifts ul.menu {

-moz-border-radius-topright: 1em;
}
ul.menu a {

color: black;
display: block;

262

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 262

border: 0.05em solid lightblue;
}
ul.menu a:hover {

-moz-border-radius: 0.8em;
border: 0.05em solid black;
text-decoration: none;

}

4. Save the menu_system.css file.

5. Make the following modifications to the dinner_menu.css file:

div#content * {
font-family: “Times New Roman”, Times, serif;

}
div#content h3 {

border-bottom: none;
font-family: “Monotype Corsiva”, cursive;
text-decoration: underline;
font-size: 2em;

}
h3 + p.menucaption {

font-style: italic;

6. Save the dinner_menu.css file.

7. Make the following modification to the dinner_menu.html file:

<body>
<div id=’nav’>

<ul id=’gifts’>
<li id=’leftedge’>

Unique Gifts

8. Make the following medication to the dinner_menu.html file:

<img src=’images/photos/jts_sign.jpg’

alt=’JTs sign’
title=’Go home.’/>

<ul id=’food’>

Employment
<ul class=’menu’>

Contact JT’s
Seasonal Employment

Opportunities

<li id=’rightedge’>

Delicious Food
<ul class=’menu’>

263

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 263

TE
AM
 F
LY

9. Save dinner_menu.html and open dinner_menu.html in Mozilla, Firefox, or Netscape. You
should see output like that shown in Figure 10-14.

Figure 10-14

How It Works
This example defines borders for the JT’s dinner menu. From a design standpoint, the addition of bor-
ders makes the effects of applying width, margins, and padding (which I introduce in upcoming sec-
tions) easier to see. The styles applied in base_styles.css, as I have said in previous examples, outline the
basic look and feel that I want to be applied to the entire website. In this style sheet I apply borders to
the <h1> and <h6> elements and the content <div> element that contains the copy for each page. I also
choose to use the proprietary -moz-border-radius property to round the edges of the corners of the
<h1> and <h6> elements. This property, although not standard, provides some insight into what the
CSS 3 border-radius property will be used for, if it becomes a part of the final CSS 3 standard. Here is an
explanation of the theory behind these additions to the base_styles.css style sheet. The first rule applies a
left and right border to the <h1> and <h6> headings.

h1, h6 {
border-left: 0.05em solid black;

264

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 264

border-right: 0.05em solid black;
}

In the final design, I want the bottom of the <h1> element to be completely flush with the top of the con-
tent <div>, and the top of the <h6> element to be flush with the bottom of the content <div>. This
effect becomes more obvious when I apply padding and margins to the design. Essentially, if I specify a
border for all sides of the <h1> and <h6> element, I create a double border when I style the <h1> and
<h6> elements to be flush with the content <div>. The next rule follows along with this logic.

h1 {
border-top: 0.05em solid black;
-moz-border-radius-topleft: 0.8em;
-moz-border-radius-topright: 0.8em;
font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;
font-size: 1.5em;

}

Because I want to give the illusion that the <h1>, content <div>, and <h6> elements are seamless, to
appear to be a single element, this rule specifies a top border for the <h1> element and rounds the top-
left and top-right corners with the -moz-border-radius property. The next rules apply to my plan for
the other pages of JT’s website; <h2> and <h3> are simply intended to contain headings for subtopics.

h2 {
border-bottom: 0.05em dotted black;

}
h3 {

border-bottom: 0.05em dotted black;
font-size: 0.9em;

}

The <h3> element is also used in the dinner menu, but it has a different meaning for the dinner
menu than it does for the rest of the site. The rule applied for the dinner menu cancels the effect of
<h3> element.

div#content h3 {
border-bottom: none;
font-family: “Monotype Corsiva”, cursive;
text-decoration: underline;
font-size: 2em;

}

Because the dinner menu has a style that is different from other pages of the site (where the <h3> ele-
ment is used), the border applied in base_styles.css is canceled out via the cascade with border-
bottom: none; in the dinner_menu.css file. The next modification to the base_menu.css file applies
styles to the <h6> element.

h6 {
-moz-border-radius-bottomleft: 0.8em;
-moz-border-radius-bottomright: 0.8em;
border-bottom: 0.05em solid black;

265

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 265

font-size: 0.8em;
text-align: center;

}

This follows the same logic that I used for the <h1> element: A bottom border is specified and the
bottom-left and bottom-right corners are rounded with the -moz-border-radius property. Continuing
the logic of designing the <h1> content <div> and <h6> elements borders relate to each other, the next
rule specifies a border for the content <div>.

div#content {
border: 0.05em solid black;
font-size: 0.9em;

word-spacing: 5px;

The next rule places a thin, dotted border on the bottom of all paragraphs with a copy class name:

p.copy {
border-bottom: 0.05em dotted black;
font-size: 1.2em;
font-family: “Times New Roman”, Times, serif;

This style provides a simple effect that places a dotted border under paragraphs designated as copy. The
last rule added to the base_styles.css style sheet is a border around all images.

img {
border: 0.05em solid black;

}

The next group of changes appears in the menu_system.css file. The changes made here are intended to
achieve the following goals: to make the unique gifts and chokoloskee headings eventually appear to the
left of the JT’s logo; to make the employment and delicious food headings appear to the right of the JT’s
logo; to turn the list of links under each heading into drop-down menus. The border styles applied to the
menu_system.css file also foster these goals. The first addition applies a thin border around each
element that appears in the top-level menu. This is done with the following rule:

div#nav > ul > li {
border: 0.05em solid black;
font-size: 0.9em;

}

I select the element using the direct child selector. As you saw in Chapter 5, this selector chooses an
element based on its immediate descendant. The selector says: If the element is a child of a <div>
with an id of nav and is a child of the element, apply these declarations to the element.
I also decide that I want a slightly smaller font for the elements containing the navigational head-
ings, so I also apply a font-size declaration. The effects of adding this border are difficult to see, but
become more obvious as other box model properties are applied. The next rule applies styles to the
element containing the unique gifts heading.

div#nav > ul > li#leftedge {
border-right-width: 0;
-moz-border-radius-topleft: 1em;
-moz-border-radius-bottomleft: 1em;

}

266

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 266

The goal of this rule is similar to the technique I used for the <h1>, content <div>, and <h6> elements.
For the menu system, the layout plan is for the unique gifts and chokoloskee headings to appear side by
side to the left of the JT’s logo and the employment and delicious food headings to appear side by side at
the right of the JT’s logo. Because I intend the two headings on the left and on the right side of the logo
to appear side by side, I have the problem of double borders. To correct this, I specify a zero width bor-
der on the element that will eventually be the left-most heading. This leaves a single border sepa-
rating the unique gifts and chokoloskee headings. I also round the top-left and bottom-left corners of the
unique gifts element. The next rule provides an effect using the :hover pseudo-class:

div#nav > ul > li#leftedge:hover {
-moz-border-radius-bottomleft: 0;

}

This effect plays directly into my plan to make the navigation into drop-down menus. This becomes
more obvious in Chapter 14. The next rule applies similar effects to the heading that will eventually
become the right-most heading that I applied to the unique gifts heading (that will eventually become the
left-most heading):

div#nav > ul > li#rightedge {
border-left-width: 0;
-moz-border-radius-topright: 1em;
-moz-border-radius-bottomright: 1em;

}

Again, the concept is that the employment and delicious food headings will be side by side on the right
side of the logo. This rule prevents a double border from appearing between the employment and delicious
food headings with the border-left-width: 0; declaration. The top-right and bottom-right corners
of the delicious food element are rounded with the -moz-border-radius property. Like the :hover
effect applied to the left-most unique gifts heading, the effects of the next rule become more obvious in
Chapter 14:

div#nav > ul > li#rightedge:hover {
-moz-border-radius-bottomright: 0;

}

The next rule styles what will eventually become the drop-down menus. These are identified by a menu
class name:

ul.menu {
-moz-border-radius-bottomleft: 1em;
-moz-border-radius-bottomright: 1em;
border: 0.05em solid black;

}

The styles applied in this rule put a thin, solid, black border around each of the nested elements,
designated as submenus. Here again, I round the border corners with the -moz-border-radius prop-
erty. In this rule, I only apply the -moz-border-radius property to the bottom-left and bottom-right
corners. I want the rounded corners to be different depending on which side of the logo they appear. The
next two rules help reach this goal:

267

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 267

ul#food ul.menu {
-moz-border-radius-topleft: 1em;

}
ul#gifts ul.menu {

-moz-border-radius-topright: 1em;
}

With the first rule, the top-left corner of the nested menus that appear in the with an id name
of food are given a rounded top-left corner. The following rule rounds the top right corner of
menus that appear in the element with a gifts id name. This is another effect that becomes more
obvious in Chapter 14. The final two rules apply styles to the links in the submenus:

ul.menu a {
color: black;
display: block;
border: 0.05em solid lightblue;

}
ul.menu a:hover {

-moz-border-radius: 0.8em;
border: 0.05em solid black;
text-decoration: none;

}

These two rules apply styles to the links of the menus. The first declaration ensures that links in the navi-
gational menus stay black in color, even if I decide to change the color of links that appear elsewhere in
the document. The next declaration display: block is a special declaration that makes the <a> element
behave like a <div> element. I go into more detail about the display property in Chapter 17. The purpose
of including it here is to make the entire element clickable as a link, instead of only the link text. The
next declaration specifies a light blue border around each link in the menu. The light blue was chosen
because the background color for each menu will eventually be made light blue, whereas this border will
be invisible, but it will still take up 0.05em of space. I could have also specified the declaration with the
transparent keyword, but Internet Explorer does not support it. The reason why the 0.05em of space is
preserved is observable in the next rule, which applies a :hover effect to each navigation link. This rule
rounds the edges of each border and makes the border black. If I were to remove the border: 0.05em
solid lightblue; declaration, you would observe that the whole menu flickers when the mouse cursor
hovers over each link applying the border: 0.05em solid black; declaration.

If you recall the final design of the JT’s website from Chapter 7, the goal of these styles should be obvi-
ous. After the borders are applied, the effects of the other box model properties also become more obvi-
ous. The next section continues the discussion of box model properties with the dimension properties.

Calculating Dimensions
CSS 1 introduces the width and height properties as part of the CSS box model. CSS 2 expands on those
properties providing minimum and maximum dimensions when variable lengths are involved, as is the
case with percentage width and height values. A liquid design provides lots of opportunities to take
advantage of the full set of box model controls.

The following sections examine each of CSS’s dimension properties individually.

268

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 268

width
Documented in CSS 2.1 and supported since IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The width property is a pretty simple property; it sets the width of an element. According the CSS box
model diagram presented in Figure 10-1, width is the space measured from inside padding edge to
inside padding edge. The following table outlines the width property and its possible values.

Property Value

width <length> | <percentage> | auto | inherit
Initial value: auto

The width property accepts a length unit, which is indicated in the preceding table with the <length>
notation. The following is a simple example of the width property using a length unit:

p {
border: thin solid black;
text-align: justify;
width: 150px;

}

It is used in this markup:

<p>
Peter Piper picked a peck of pickled peppers.
Did Peter Piper pick a peck of pickled peppers?
If Peter Piper picked a peck of pickled peppers,
where’s the peck of pickled peppers Peter Piper picked?

</p>

Figure 10-15 shows the <p> element is 100 pixels wide and the height of the box adjusts automatically to
accommodate the text inside.

Figure 10-15

269

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 269

I applied a thin, solid, black border to highlight the width of the <p> element. In this example, the text is
flush with the border. This is further highlighted by the use of the text-align: justify declaration.
Therefore, the width can be thought of as the portion of the element that contains the actual copy, text,
or images.

The next property is the height property, and it behaves identically to the width property. The differ-
ence is, of course, that it measures the vertical content space.

height
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

Like the width property, the height property sets the amount of space between the top-inside padding
edge and the bottom-inside padding edge. The following table outlines the height property and its pos-
sible values.

Property Value

height <length> | <percentage> | auto | inherit
Initial value: auto

The height property causes an element to behave somewhat differently than its HTML height attribute
counterpart in standards-compliant browsers. When you explicitly specify a height, the height remains
the same regardless of how much text you place inside the element. Consider the following example:

p {
border: thin solid black;
text-align: justify;
width: 150px;
height: 150px;

}

Combine it again with tongue-twisting markup:

<p>
Peter Piper picked a peck of pickled peppers.
Did Peter Piper pick a peck of pickled peppers?
If Peter Piper picked a peck of pickled peppers,
where’s the peck of pickled peppers Peter Piper picked?

</p>

Figure 10-16 demonstrates that in Mozilla, the specified height causes the text to spill over the element’s
bottom border because there is more text than the height allows.

270

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 270

Figure 10-16

As of this writing, Internet Explorer does not correctly interpret CSS dimensions. Internet Explorer inter-
prets the height property in a manner closer to the CSS definition for the min-width and min-height
properties (although not exactly the same). Because of this, if you set height using the height property,
Internet Explorer ignores the setting if the text or object contained inside that element is larger than the
dimensions of that element. Figure 10-17 demonstrates Internet Explorer’s incorrect interpretation of the
CSS height property.

Figure 10-17

All is not lost. Solutions for getting around Internet Explorer’s lack of support and incorrect interpreta-
tion of certain properties are discussed in Chapter 18. For now, Internet Explorer 6 simply adjusts the
height to accommodate the extra text, just as though a height: auto; were applied. If the text is
smaller than the element, the height property applies as it should. The same behavior occurs if the con-
tent is wider than the element’s width allows:

p {
border: thin solid black;
width: 100px;

}

271

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 271

This is shown in the following example, where I use the longest word I could think of:

<p>
Supercalifragilisticexpialidocious!

</p>

Figure 10-18 demonstrates that the same behavior occurs whether the content is wider than the ele-
ment’s width allows or whether the content is more than the height allows.

Figure 10-18

This is another place where Internet Explorer behaves incorrectly; it forces the element’s width to
expand to accommodate the extra content, which is also incorrect behavior according to the W3C CSS
specifications. Figure 10-19 demonstrates IE 6’s incorrect interpretation of the CSS width property with a
fixed-width length.

Figure 10-19

The next section continues the discussion of dimensions with auto values for width and height.

Auto Values for width and height
By default, width and height properties have an auto value. The meaning of the auto keyword
changes depending on the type of element that it is applied to. When used on a <div> element, the ele-
ment spans all the horizontal space available to it and expands vertically to accommodate any content
inside of it, including text, images, or other boxes. Elements with this behavior are called block elements.
Some examples of block elements are <div>, <p>, <h1> through <h6>, <form> and elements. The
following example demonstrates this:

p {
border: thin solid black;
width: auto;
height: auto;

}

272

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 272

It is used with this markup:

<p>
How much wood would a woodchuck chuck if a wooodchuck could chuck wood?
A woodchuck would chuck all the wood a woodchuck could chuck if a woodchuck
could chuck wood.

</p>

Figure 10-20 demonstrates how the <p> element takes up all the space available to it and expands verti-
cally to accommodate the content inside.

Figure 10-20

The width of the <p> element also adjusts to any changes in the window size. The same behavior occurs
with other block elements like <div> or headings <h1> through <h6>. By definition, block elements are
to occupy the entire line.

The auto value can also have different meanings depending on the type of element with which you use
it. The CSS specifications say that the intrinsic dimensions of the element determine the auto value. In
terms of block elements, that means that they span the whole line and expand vertically just enough to
accommodate the elements contained inside of that element. The <table> element is an example of an
element that is not a block element. <table> elements are in a class all of their own. By default, <table>
elements expand and contract only enough to accommodate the text they contain. In CSS this type of
behavior is called shrink-to-fit. This is demonstrated in the following example:

table {
border: thin solid black;
width: auto;
height: auto;

}

It is combined with this markup:

<table>
<tr>

<td>
The table only expands enough for the content inside of it.

</td>
</tr>

</table>

273

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 273

Figure 10-21 demonstrates that a <table> element’s intrinsic dimensions are not the same as a <p> or
<div> element’s intrinsic dimensions.

Figure 10-21

The element is another example of an element that has different intrinsic dimensions. When the
auto keyword is used on images, the auto value allows the image to be displayed as is. If the image is
500 pixels by 600 pixels, the auto value displays the image as 500 by 600 pixels. In that light, the graph-
ics program that generated the image determines the image’s intrinsic dimensions. When you use
height: auto; on an image, and you explicitly specify the image’s width, the image’s height scales in
aspect ratio to the image’s width.

Percentage Measurements
Using percentage width and height measurements in CSS is somewhat different from using the width or
height HTML attributes. Using percentage measurements with the width and height properties
requires factoring in margin, padding, and borders. Consider the following example:

p {
width: 100%;
height: 100%;
margin: 10px;
padding: 10px;
border: 1px solid black;
background: lightgray;

}

The preceding is applied to this markup:

<p>
It is not a bad idea to get in the habit of writing down one’s thoughts. It
saves one having to bother anyone else with them.

- Isabel Colegate
</p>

Figure 10-22 shows that the <p> hasn’t become any larger vertically.

274

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 274

Figure 10-22

The height of the containing element determines the percentage height. By default, that means the con-
taining element has a declaration of height: auto;. In this case, the containing elements are the
<html> and <body> elements. If you include style sheet rules for the <html> and <body> elements and
give them 100 percent heights by adding the following rule:

html, body {
height: 100%;

}

You can see, in Figure 10-23, that the page stretches both horizontally and vertically larger than the
window.

Figure 10-23

Margin is applied to the <body> element by default, in addition to the border. Margin and padding are
applied to the <p> element. If you refer back to the CSS box model in Figure 10-1, you remember that
width is measured from inside padding edge to inside padding edge. As I pointed out in the section on
height, the same is also true of height. At this time, current implementations of CSS offer no feasible

275

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 275

work-around to prevent the scroll bar from appearing while you are applying margins, padding, or bor-
ders to the <div> element in addition to a 100% width and height. Because of margins, padding, and
borders, the element stretches larger than the window. You have a few possible solutions to the problem.
You can specify a smaller percentage, but doing so does not guarantee the text will appear the same on
all screen resolutions. CSS 3 may offer a solution to this problem, but at the time of this writing, the W3C
working group has yet to settle on one. Instead, standards-compliant browsers allow you to utilize a dif-
ferent technique, one using positioning. Using the following rule for the <p> element achieves the
desired effect.

p {
padding: 10px;
margin: 10px;
border: 1px solid black;
background: lightgray;
position: absolute;
top: 0;
right: 0;
bottom: 0;
left: 0;

}

Figure 10-24 shows that the desired effect of horizontal and vertical fluidity has been achieved.

Figure 10-24

This technique uses absolute positioning to stretch the <p> element so that it fills the entire window to
do what you couldn’t do with height: 100%; and width: 100%;. Although this technique does not
work in IE 6, it does work in Mozilla, Opera, and Safari. The concept of positioning is one I’ve yet to dis-
cuss. Essentially, the element is delivered to a specific place on the browser window. The top, right, bot-
tom, and left properties tell the browser where to position the element. In the CSS specifications, these
are known as offset properties because they position an element offset to something else. In this example,
these are positioned relative to the browser window. Each accepts a value for length, and the length is
the amount of the offset. Offset properties are generally used in pairs, such as top: 5px; left: 5px;,
to position the content relative to the top and left sides of the window. Using all four properties causes
the content to be stretched, creating vertical and horizontal fluidity. Chapter 14 covers positioning in
greater detail. The next section discusses a set of properties related to the width and height properties,
and these are properties that specify minimum and maximum dimensions.

276

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 276

Minimum and Maximum Dimensions
The min-width, max-width, min-height, and max-height properties define minimum and maximum
boundaries when it is necessary to constrain a width or height from expanding or contracting past a cer-
tain point. In a liquid design, that scales to fit the user’s screen size. It is sometimes helpful to define
where you want the document to stop stretching. For instance, if you have designed primarily with an
800 x 600 or 1024 x 768 screen resolution in mind, a user viewing your website at 1600 x 1200 pixels may
see the content stretched pretty thin if an auto keyword or percentage values are used to define the
width. This is where the CSS properties min-width, max-width, min-height, and max-height come
into play.

min-width
Documented in CSS 2.1 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2 (partial).

The min-width property defines a lower-size constraint on an element. The available values for the
min-width property are outlined in the following table.

Property Value

min-width <length> | <percentage> | inherit
Initial value: 0

Safari 1.2 does not support the min-width property when used on positioned elements. I discuss posi-
tioned elements in Chapter 14.

The min-width property defines when an element using an auto keyword or percentage width should
stop shrinking to fit the user’s window. Consider the following code:

p {
padding: 10px;
margin: 10px;
border: thin solid black;
width: auto;
min-width: 200px;

}

It is used with the following markup:

<p>
About the most originality that any writer can hope to achieve honestly is to
steal with good judgment.

- Josh Billings
</p>

Figure 10-25 demonstrates that, if you run this snippet in a browser, when the browser window or con-
taining element becomes smaller than 200 pixels, the <p> stops shrinking and a scroll bar appears across
the bottom of the browser window.

277

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 277

Figure 10-25

If the <p> is inside another element and that element becomes smaller than the <p> element’s min-
width, the <p> element overflows the edges of that element. The opposite scenario, defining a maxi-
mum width, is covered in the next section.

max-width
Documented in CSS 2.1 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2

In contrast to the min-width property, the max-width property is used to set an upper constraint for
width with elements using either an auto keyword or percentage measurement for width. The max-
width property is defined in the following table.

Property Value

max-width <length> | <percentage> | none | inherit
Initial value: none

Safari 1.2 does not support the max-width property when used on positioned elements. I discuss posi-
tioned elements in Chapter 14.

The max-width property allows you to define a maximum length if the area available to the element
becomes larger. Consider a <p> element with the following declarations:

p {
padding: 10px;
margin: 10px;
border: thin solid black;
width: auto;
max-width: 500px;

}

278

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 278

This is put together with the following markup:

<p>
You have to know how to accept rejection and reject acceptance.

- Ray Bradbury
</p>

Figure 10-26 shows that the <p> element stops expanding horizontally when it reaches a 500-pixel
width.

Figure 10-26

As a block-level element, the <p> element expands horizontally, filling all the available space. In this
light, it is fluid. On a high-resolution monitor set to 1280 x 1024 pixels, for instance, the content inside of
the <p> element could potentially get stretched very thin. The minimum and maximum width proper-
ties allow an upper and lower limit to be set for the size of an element and allow an author to take
advantage of fluid design that adjusts to accommodate the user’s environment. CSS also offers identical
properties to set upper and lower limits for height.

min-height
Documented in CSS 2.1 and supported in IE 6 (partial), Mozilla 1.7, and Opera 7.5.

If you are using a variable or percentage height, the min-height property lets you specify when you
want the element to stop shrinking vertically. The following table outlines the possible values for the
min-height property.

Property Value

min-height <length> | <percentage> | inherit
Initial value: 0

IE 6 supports the min-height property only when used on <td>, <th>, and <tr> elements.

Recalling the discussion on percentage heights, you have to use a certain combination of properties to
achieve vertical fluidity without overstepping the boundaries of the window. This is done with absolute
positioning and by including all four offset properties. The following demonstrates the required rule and
markup:

279

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 279

p {
padding: 10px;
margin: 10px;
border: 1px solid black;
background: lightgray;
position: absolute;
top: 0;
right: 0;
bottom: 0;
left: 0;
min-height: 200px;

}

It is applied to the following paragraph of text:

<p>
A positive attitude may not solve all your problems, but it will annoy enough
people to make it worth the effort.

- Herm Albright
</p>

Figure 10-27 demonstrates that if the vertical area available to the element is less than 200 pixels, as
defined with the min-height: 200px; declaration, a vertical scroll bar appears and the <p> element
stops shrinking when the 200-pixel threshold is met.

Figure 10-27

Continuing the discussion on minimum and maximum dimensions, I cover the max-height property next.

max-height
Documented in CSS 2.1 and supported in Mozilla 1.7 and Opera 7.5.

280

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 280

The opposite of the min-height property is the max-height property, which allows the author to tell
the browser when an element should stop expanding. It allows an upper height constraint to be speci-
fied for the element. The max-height property is outlined in the following table.

Property Value

max-height <length> | <percentage> | none | inherit
Initial value: none

The max-height property does for height what the max-width property does for width. This is demon-
strated with the following rule and markup:

p {
padding: 10px;
margin: 10px;
border: 1px solid black;
background: lightgray;
position: absolute;
top: 0;
right: 0;
bottom: 0;
left: 0;
max-height: 200px;

}

It is applied to the following paragraph:

<p>
A positive attitude may not solve all your problems, but it will annoy enough
people to make it worth the effort.

- Herm Albright
</p>

Figure 10-28 demonstrates that the <p> element stops expanding vertically at 400 pixels.

281

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 281

Figure 10-28

The next section wraps up discussion of dimensions with the line-height property.

The line-height property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

As I mentioned in Chapter 9, the line-height property refers to the height of the line on which each
line of text appears. The line-height property and its possible values are outlined in the following
table.

Property Value

line-height normal | <number> | <length> | <percentage> | inherit
Initial value: normal

This property allows an explicit length to be defined for each line of text. Consider the following rule
and markup:

282

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 282

p {
margin: 10px;
padding: 10px;
color: black;
border: thin solid;
width: 250px;
line-height: 3em;
font-size: 1em;

}

It is applied to the following paragraph of text.

<p>
Home computers are being called upon to perform many new functions, including
the consumption of homework formerly eaten by the dog.

- Doug Larson
</p>

Figure 10-29 shows that each line of text is contained in a line-height 3em high. This produces the
effect of quadruple-spaced text because a 1em font-size is specified

Figure 10-29

Now that you have some background knowledge about how dimensions work in CSS, the following Try
It Out lets you apply some dimensions to the JT’s Island Grill and Gallery style sheet.

Try It Out Applying Dimensions
Example 10-3. Follow these steps to apply dimensions to the JT’s style sheet.

1. Add the following rule to the base_styles.css style sheet:

a:hover {
text-decoration: underline;

}
div#body {

width: 50em;
}

283

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 283

h1, h6 {
border-left: 0.05em solid black;
border-right: 0.05em solid black;

}

2. Add the following declaration to the base_styles.css style sheet:

p.copy {
line-height: 2em;
border-bottom: 0.05em dotted black;
font-size: 1.2em;
font-family: “Times New Roman”, Times, serif;
text-indent: 20px;
text-align: justify;

}

3. Save base_style.css.

4. Make the following modifications to the menu_system.css style sheet:

div#nav {
width: 50em;
text-align: center;

}
div#nav > a > img {

width: 16em;
height: auto;

}
div#nav > ul > li {

border: 0.05em solid black;
font-size: 0.9em;

}
div#nav > ul > li#leftedge {

border-right-width: 0;
-moz-border-radius-topleft: 1em;
-moz-border-radius-bottomleft: 1em;

}
div#nav > ul > li#leftedge:hover {

-moz-border-radius-bottomleft: 0;
}

284

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 284

div#nav > ul > li#rightedge {
border-left-width: 0;
-moz-border-radius-topright: 1em;
-moz-border-radius-bottomright: 1em;

}
div#nav > ul > li#rightedge:hover {

-moz-border-radius-bottomright: 0;
}
ul.menu {

width: 15em;
-moz-border-radius-bottomleft: 1em;
-moz-border-radius-bottomright: 1em;
border: 0.05em solid black;

}

5. Save menu_system.css.

6. Add the following style attribute to the dinner_menu.html document:

<h1>
JT’s at Night

</h1>
<div id=’content’>

<img src=’images/photos/dinner_plate.jpg’
style=’width: 9em; height: auto;’
alt=’dinner plate’/>

<h3>Appetizers</h3>
<h4>Stone Crab Claws Market Price</h4>

7. Add the following style attribute to the dinner_menu.html document:

<h3>Local Music & Arts</h3>
<img src=’images/photos/meta_playing.jpg’

style=’width: 16em; height: auto;’
alt=’meta playing’/>

<p class=’copy’>
We hope you enjoy tonight’s live music. To help keep

8. Save dinner_menu.html. Open dinner_menu.html in the Mozilla browser; you should see out-
put like that shown in Figure 10-30.

285

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 285

Figure 10-30

How It Works
Figure 10-30 shows the result of applying the dimension properties. Though still quite crude, with the
addition of these properties, the design is beginning to take on a more definitive shape. The goal of these
additions is to put as few constraints on the design as possible so that the design adapts fluidly to the
user’s environment. Although I could have utilized the minimum and maximum properties, I decided
to go with a different approach to achieve a liquid design. As you may have noticed in this and previous
examples, I have used the em unit to specify all lengths. The use of em units, if you recall from Chapter 4,
makes each measurement dependent on the value of the font-size property.

For this design, I also specified font sizes using the em unit, which makes the entire design dependent
on the user’s font size preferences, while preserving the aesthetic intent of the page. If you increase or
decrease Mozilla’s font size setting, the design of the JT’s dinner menu scales fluidly with that design,
including the images! For each image, I also use images slightly larger than I need so that the design
scales gracefully, leaving little possibility of artifacts appearing in the JPEG images. Here is a brief reiter-
ation of each modification and why it was made. The rule that I included in the base_styles.css style
sheet sets a size constraint on the <div> element with a body id name:

286

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 286

div#body {
width: 50em;

}

The value specified for the width is 50em, or 50 times the value of the font size. Because the body <div>
wraps all the headings and copy that appear in the dinner menu, this constraint is enough to achieve a
fluid design. Those headings and paragraphs, because they are block elements, adjust their size accord-
ing to the space available to them. The next modification to the base_styles.css style sheet applies a
line-height of 2em:

p.copy {
line-height: 2em;
border-bottom: 0.05em dotted black;
font-size: 1.2em;
font-family: “Times New Roman”, Times, serif;
text-indent: 20px;
text-align: justify;

}

This declaration makes the size of each line double the size of the font, which results in the copy being
more spread out. The next three modifications set some constraints on the menu navigational system via
the menu_system.css style sheet. The first modification sets a constraint on the <div> element contain-
ing the navigation:

div#nav {
width: 50em;
text-align: center;

}

Again, a 50em width is specified. This is to keep the navigation proportionate with the body <div>. The
next modification scales down the JT’s logo image:

div#nav > a > img {
width: 16em;
height: auto;

}

Another em unit is used to tie the size of the image to the size of the user’s font. An auto height is used
to keep the aspect ratio of the image, which allows the image to scale in perfect proportion with
increases or decreases in the user’s font size. The final modification sets a width for each list of links that
will eventually become drop-down menus.

ul.menu {
width: 15em;
-moz-border-radius-bottomleft: 1em;
-moz-border-radius-bottomright: 1em;
border: 0.05em solid black;

}

The final modifications are made to the dinner_menu.html file itself:

<img src=’images/photos/dinner_plate.jpg’

287

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 287

style=’width: 9em; height: auto;’
alt=’dinner plate’/>

Each of these styles is included directly in the dinner_menu.html file because they are only applied to
one element. Both are included to scale down the images. The next section continues the discussion of
the CSS box model with the padding property.

Padding
Documented in CSS 2.1 and supported in IE 5.5, IE 6 , Mozilla 1.7, Opera 1.7, and Safari 1.2.

Padding is the space between the content of an element and its borders, as has been mentioned briefly in
previous examples. The following table shows the various padding properties.

Property Value

padding [<length> | <percentage> {1,4}] | inherit

padding-top <length> | <percentage> | inherit
padding-right
padding-bottom
padding-left

The padding property is a shorthand property, meaning that it is a simplified representation of other
properties. In the preceding table, the square brackets are used to group the values. In this context, the
padding property can accept either what is contained between the brackets as a value or the inherit
keyword, but not both.

Here’s a brief review on how CSS properties are documented. The <length> syntax (no, not an HTML
tag) is a placeholder, which means that the property may accept any CSS length value, be it pixels, cen-
timeters, inches, or any other measurement supported by CSS. The vertical bar means or in this context
and can accept either a <length> value or a <percentage> value, or any combination of either. The
{1,4} syntax means that the property can accept up to four values, but it must contain at least one
value. To illustrate what all this means, examine each of the acceptable syntaxes for the padding short-
hand property. The first syntax is the padding property accepting four separate values:

padding: <padding-top> <padding-right> <padding-bottom> <padding-left>;

This usage includes all four of the separate padding properties in one; each value represents a side of the
box. Consider the following example:

p {
padding: 10px 0 0 10px;

}

This results in 10 pixels of padding on the top and left sides of the box. It’s the same thing as saying:

288

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 288

p {
padding-top: 10px;
padding-right: 0;
padding-bottom: 0;
padding-left: 10px;

}

The separate properties are combined into a single property. The next possible syntax contains three
values:

padding: <padding-top> <padding-right/padding-left> <padding-bottom>;

This syntax combines the left and right padding values in the middle value, which is equivalent to this
example:

p {
padding: 10px 5px 10px;

}

This is the same thing as saying:

p {
padding-top: 10px;
padding-right: 5px;
padding-bottom: 10px;
padding-left: 5px;

}

All four values are represented with only three values. The next syntax combines the top and bottom in
the first value and the left and right in the second value:

padding: <padding-top/padding-bottom> <padding-right/padding-left>;

This syntax is equivalent to this usage:

p {
padding: 10px 5px;

}

This usage results in 10 pixels of padding on the top and bottom sides, and 5 pixels of padding on the
left and right sides. It’s the same thing as saying:

p {
padding-top: 10px;
padding-bottom: 10px;
padding-left: 5px;
padding-right: 5px;

}

When the padding property contains only a single value, it applies to all four sides at once:

padding: <padding-top/padding-right/padding-bottom/padding-left>;

289

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 289

In the context of actual usage this appears as the following:

p {
padding: 10px;

}

The preceding is the same thing as saying:

p {
padding-top: 10px;
padding-right: 10px;
padding-bottom: 10px;
padding-left: 10px;

}

Each use of the shorthand property is a method of representing all four sides of the box in a simple and
concise manner.

The next property, margin, follows an identical syntax to the padding properties.

Margins
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

Whereas padding puts space between the inside of the box border and the content itself, the margin
property applies space outside the box, between the box and the browser window, or between the box
and the other elements in the document. The following table shows the various margin properties.

Property Value

margin [<length> | <percentage> | auto {1,4}] | inherit

margin-top <length> | <percentage> | auto | inherit
margin-right
margin-bottom
margin-left

The only difference between the padding and margin properties is the name and where they apply
space to the box; otherwise they are identical. The syntax is exactly the same.

The margin property, like the padding property, is also a shorthand property, which simplifies its usage:

margin: <margin-top> <margin-right> <margin-bottom> <margin-left>;

The padding property cannot have a negative value; if one is supplied, it is ignored.

290

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 290

The following is an example of its actual usage:

p {
margin: 10px 0 5px 20px;

}

This syntax is again the same thing as saying:

p {
margin-top: 10px;
margin-right: 0;
margin-bottom: 5px;
margin-left: 20px;

}

In this example, however, instead of adding space between the inside border and the content, you add
the space between the outside border and the window. The margin is an invisible box around the border.

Also like the padding property, the margin property supports the combined usage syntax:

margin: <margin-top> <margin-right/margin-left> <margin-bottom>;
margin: <margin-top/margin-bottom> <margin-right/margin-left>;

The margin property also supports the single usage syntax:

margin <margin-top/margin-right/margin-bottom/margin-left>;

This syntax applies the value simultaneously to all four sides. That leads me to the next topic, aligning
boxes using margins.

The following section outlines how to align block elements using the margin property with the auto
keyword.

Aligning Block-Level Elements with margin: auto
In previous chapters, you may have noticed a curious use of the margin property to center or align
block-level elements. This use is intended to make centering more intuitive and to separate box aligning
from text aligning. Consider the following rule:

p {
padding: 2em;
margin: 2em;
border: thin solid black;
width: 10em;
margin-right: auto;

}

It is combined with this markup:

<p>
Peter Piper picked a peck of pickled peppers.
Did Peter Piper pick a peck of pickled peppers?

291

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 291

If Peter Piper picked a peck of pickled peppers,
where’s the peck of pickled peppers Peter Piper picked?

</p>

Figure 10-31 shows that the <p> element is aligned to the left in the browser window with the inclusion
of the margin-right: auto; declaration.

Figure 10-31

By the same token, using margin-left: auto; aligns the block to the right of the browser window,
resulting in the output shown in Figure 10-32.

Figure 10-32

292

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 292

And finally, using simply margin: auto; results in the block being centered in the browser window,
resulting in the output in Figure 10-33.

Figure 10-33

Using the auto keyword on margin-top and margin-bottom, however, does not affect vertical align-
ing. This requires positioning, which I discuss in Chapter 14. The auto value applies exclusively to the
margin-left and margin-right properties for block alignment.

Now that I’ve discussed the padding and margin properties in more detail, the next Try It Out lets you
apply these properties to the JT’s Island Grill and Gallery style sheets.

Try It Out Applying Margins and Padding
Example 10-4. Follow these steps to add margins and padding to the JT’s style sheets.

1. Make the following changes to the base_styles.css style sheet:

body {
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}
a {

text-decoration: none;
}
a:hover {

text-decoration: underline;
}

293

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 293

div#body {
margin: 0 auto;
width: 50em;

}
h1, h6 {

border-left: 0.05em solid black;
border-right: 0.05em solid black;

}
h1, h2, h3, h4, h5, h6 {

margin: 0;
}
h1 {

padding: 0.5em 1.1em;
border-top: 0.05em solid black;
-moz-border-radius-topleft: 0.8em;
-moz-border-radius-topright: 0.8em;
font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;
font-size: 1.5em;

}
h2 {

margin: 0 1.2em;
padding: 0.9em 1.1em 0;
border-bottom: 0.05em dotted black;

}
h3 {

border-bottom: 1px dotted black;
font-size: 0.9em;

}
h6 {

padding: 1em 0;
-moz-border-radius-bottomleft: 0.8em;
-moz-border-radius-bottomright: 0.8em;
border-bottom: 0.05em solid black;
font-size: 0.8em;
text-align: center;

}
div#content {

padding: 1.2em;
border: 0.05em solid black;
font-size: 0.9em;
word-spacing: 5px;
letter-spacing: 1px;

}
p.copy {

padding: 1.2em;
margin: 0 1.2em;
line-height: 2em;
border-bottom: 0.05em dotted black;
font-size: 1.2em;
font-family: “Times New Roman”, Times, serif;

294

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 294

text-indent: 20px;
text-align: justify;

}
img {

margin: 1.7em;
border: 0.05em solid black;

}

2. Save base_styles.css

3. Make the following changes to the menu_system.css style sheet:

div#nav {
margin: auto;
width: 50em;
text-align: center;

}
div#nav > a > img {

margin: 0;
width: 16em;
height: auto;

}
div#nav ul {

margin: 0;
padding: 0;

}
div#nav > ul > li {

padding: 0.5em;
border: 0.05em solid black;
font-size: 0.9em;

}

4. Continue with modifying the menu_system.css style sheet, with the addition of declarations to
the following rule:

ul.menu a {
margin: 0.4em;
padding: 0.5em;
color: black;
display: block;
border: 0.05em solid lightblue;

}

5. Save menu_system.css.

6. Make the following changes to the dinner_menu.css style sheet:

div#content * {
font-family: “Times New Roman”, Times, serif;

}

295

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 295

div#content h3 + p, div#content h4 + p {
margin: 0 0 1.8em 0;

}
div#content h3 {

margin-top: 1.8em;
border-bottom: none;
font-family: “Monotype Corsiva”, cursive;
text-decoration: underline;
font-size: 2em;

}
div#content img + h3 {

margin-top: 0;
}

h3 + p.menucaption {
font-style: italic;
text-align: center;

}
h4, h5 {

font-size: 1.3em;
}
h3, h4, h5, h4 + p, h5 + p {

text-align: center;
}
h4 em, h5 em {

margin-left: 0.9em;
font-weight: lighter;

}
h5 + p {

margin-top: 0;
}
h5 {

font-weight: normal;
}
p.copy {

padding-top: 0;
}

7. Save dinner_menu.css. Open dinner_menu.html in Mozilla; you should see output like that in
Figure 10-34.

296

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 296

Figure 10-34

How It Works
Figure 10-34 shows that the design for the JT’s Island Grill and Gallery dinner menu has again improved
by leaps and bounds with the addition of margins and padding. The main objective for applying mar-
gins and padding is to eliminate default margins applied to headings and to give the text inside each ele-
ment some breathing room. To illustrate the theory behind each modification, here’s a brief look at each
modification. The first additions are to the rule applying style to the <body> element in the
base_styles.css style sheet.

297

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 297

body {
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}

The first declaration adds 5em of padding to the top of the <body> element, and 1.2em of padding to the
bottom of the <body> element. With the second declaration of margin: 0; all default margins applied
by the browser are removed. The next modification centers the <div> element with a body id that wraps
around the headings and copy of the dinner menu:

div#body {
margin: 0 auto;
width: 50em;

}

No margin is applied to the top and bottom margins and the auto keyword is applied to the left and
right margins to center the block element. The next rule removes all default margins from heading
elements:

h1, h2, h3, h4, h5, h6 {
margin: 0;

}

With all default margins applied by the browser removed, I have more control over the presentation of
the heading elements. The addition of this style also causes the <h1>, content <div>, and <h6> elements
to appear flush and seamless, which was one of my objectives when I applied the borders to these ele-
ments. The next modification uses the padding property to put some space between the text inside the
<h1> element and the border around it:

h1 {
padding: 0.5em 1.1em;
border-top: 0.05em solid black;
-moz-border-radius-topleft: 0.8em;

The next rule doesn’t apply to the dinner menu because it doesn’t contain any <h2> elements, but it is
applicable to other pages of the JT’s website:

h2 {
margin: 0 1.2em;
padding: 0.9em 1.1em 0;
border-bottom: 0.05em dotted black;

}

Just ignore the preceding rule for now. The next modification applies some space between the text inside
the <h6> element and the top and bottom borders:

h6 {
padding: 1em 0;
-moz-border-radius-bottomleft: 0.8em;
-moz-border-radius-bottomright: 0.8em;

298

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 298

The next addition puts some space around all the copy inside the content <div>:

div#content {
padding: 1.2em;
border: 0.05em solid black;
font-size: 0.9em;

This declaration puts some space between the content in the dinner menu itself and the border around it.
The next modification is also made to give the text room to breathe:

p.copy {
padding: 1.2em;
margin: 0 1.2em;
line-height: 2em;
border-bottom: 0.05em dotted black;

1.2em of padding is applied to all sides of copy <p> elements. No margin is added on the top and bot-
tom sides, but 1.2em of margin is added to the left and right sides. The last rule applied puts margins
around all images:

img {
margin: 1.7em;
border: 0.05em solid black;

}

Here 1.7em of margin is applied to all four sides of all images contained in the document. The objective
of this spacing is to give the text breathing room. With margins applied to all the images in the docu-
ment, the content of the document doesn’t run up against each image. The effect of this application of
margin to the images become more obvious in Chapter 11, where these images are adjusted so that the
text and content run up beside each image. The next modifications are made to the navigational menu at
the top of the page. The first modification centers the nav <div> that contains the lists of links, headings,
and the JT’s logo:

div#nav {
margin: auto;
width: 50em;
text-align: center;

}

The margin: auto; declaration centers the <div>; however, I wrote this declaration simply as
margin: auto; instead of margin: 0 auto; to demonstrate that the top and bottom margins are
not affected by the use of the auto keyword. The following modification removes the margin from
the logo image applied with the general img rule in the base_styles.css style sheet:

div#nav > a > img {
margin: 0;
width: 16em;
height: auto;

}

299

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 299

The navigation list that is now above the logo will appear to the left of the logo, and the navigation list
now situated below the logo will appear to the right of the logo. Removing the margin is one step in
achieving that effect. The next rule removes margin and padding from the elements:

div#nav ul {
margin: 0;
padding: 0;

}

The element has padding applied by default in most browsers; however, Internet Explorer uses
margins instead of padding. Therefore both are removed by applying margin: 0; and padding: 0;
declarations. The next rule puts some space around each of the navigation headings:

div#nav > ul > li {
padding: 0.5em;
border: 0.05em solid black;
font-size: 0.9em;

}

Again, this rule keeps the text from running up against the borders of the elements. Finally, the last
modification to the menu_system.css style sheet follows along the same lines:

ul.menu a {
margin: 0.4em;
padding: 0.5em;
color: black;
display: block;

In Example 10-2, with the application of borders, the <a> element was made into a block element instead
of retaining its default behavior as an inline element. This modification made the whole list element
clickable as a link (instead of only the text). The modifications made here spread out each link more with
margin outside each <a> element and padding inside each element. The modifications made to the din-
ner_menu.css style sheet, like those made to the other style sheets, deal mostly with controlling the
default padding and margins applied by the browser:

div#content h3 + p, div#content h4 + p {
margin: 0 0 1.8em 0;

}

The addition of this rule selects <p> elements that follow <h3> or <h4> elements appearing in the
markup by using the adjacent sibling selector. The selector first uses the descendant selector to select
<h3> and <h4> elements that are descendants of the content <div>; then, it selects only the <p> ele-
ments that appear after these headings. So by using this selector, both the descriptions for each menu
item and the captions that appear after menu section headings are selected. This modification puts some
space between the bottom of each paragraph and the next heading in the menu, while at the same time
keeping the top of the paragraph flush with the bottom of the headings appearing before them. The next
modification adds a top margin to each <h3> element that contains headings for the different parts of
the menu:

div#content h3 {
margin-top: 1.8em;

300

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 300

border-bottom: none;
font-family: “Monotype Corsiva”, cursive;

The addition of this space further distinguishes each section of the menu from the others. The next modi-
fication removes the top margin from the first <h3> element appearing in the dinner menu, which is the
Appetizers heading:

div#content img + h3 {
margin-top: 0;

}

When the image is shifted to the right and the text is shifted up beside the image, the first <h3> element
appears closer to the top border of the content <div>. The next modification puts some space between
the text for each menu item and the element containing the menu item’s price:

h4 em, h5 em {
margin-left: 0.9em;
font-weight: lighter;

}

Another selector is also added to the rule so that both the prices of menu items in <h4> elements and
the prices inside <h5> elements are chosen. The next rule removes the default top margin from <p> ele-
ments that appear directly after <h5> elements by using the adjacent sibling selector.

h5 + p {
margin-top: 0;

}

This rule selects the following paragraph and causes its text to appear flush with the bottom border of
the <h5> element:

<h3>Dessert</h3>
<h5>Home-made Key Lime Pie $4</h5>
<p>

The best in the Everglades
</p>

<h3>Local Music & Arts</h3>

Finally, the last modification to the dinner_menu.css style sheet removes the top padding from the copy
<p> appearing at the bottom of the menu:

p.copy {
padding-top: 0;

}

Like the modification made for the first <h3> element, which contains the Appetizers heading, this modi-
fication makes the text at the top of this paragraph flush with the bottom of the <h3> heading above it.
The effect of this becomes more obvious in Chapter 11 when the image is moved to appear beside the
text instead of above it.

301

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 301

Padding and margins are — along with the other box model properties — quite possibly the most impor-
tant properties of CSS. Their theory and implementation are fundamental to the core of CSS design. The
CSS box model properties allow the markup of the document to be minimal; lengthy table-based designs
and tag soup become unnecessary as the presentation of the document can be completely controlled using
only CSS. Although the JT’s style sheet is still far from an elegant design, at this point, the complexity and
power of CSS becomes increasingly more obvious with each new property introduced to its design.

The following sections discuss a property closely related to the box model family of properties: the
overflow property.

Overflowing Content
Documented in CSS 2.1 and supported in IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The CSS overflow property exists to manage content that is susceptible to dimensional constraints,
where the content could possibly overflow the boundaries of those dimensional constraints. The follow-
ing table outlines the overflow property and its possible values.

Property Value

overflow visible | hidden | scroll | auto | inherit
Initial value: visible

The two most common uses of the overflow property are to hide content when more content than space
is available or to apply scroll bars so that the extra content can be accessed. By default, the value of the
overflow property is the visible keyword, the effects of which you saw in Figure 10-16. This figure
showed that when the width and height specified are smaller than the content allows, the content over-
flows the edges of the box containing it. The following sections discuss each of the other possible values
for the overflow property.

overflow: auto
The overflow: auto property tells the browser to decide whether the content is larger than its con-
tainer, as demonstrated by this rule

p {
padding: 10px;
margin: 10px;
border: thin solid black;
width: 150px;
height: 150px;
overflow: auto;

}

It is then combined with some markup:

302

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 302

<p>
Peter Piper picked a peck of pickled peppers.
Did Peter Piper pick a peck of pickled peppers?
If Peter Piper picked a peck of pickled peppers,
where’s the peck of pickled peppers Peter Piper picked?

</p>

When you use the overflow: auto; declaration, a vertical scroll bar appears if the width and height
are set to 150px each and the content is larger than those constraints allow (see Figure 10-35). The scroll
bar gives the user access to the overflowing content.

Figure 10-35

To put it more simply, a vertical scroll bar appears because the content is larger than the box containing
it. By the same token, if you want the text contained in the element not to wrap as it fills up the con-
tainer, you can apply another CSS declaration to prevent wrapping: white-space: no-wrap;. This
declaration was discussed in Chapter 8 and prevents the content from automatically wrapping inside
the container. With white-spance: nowrap; applied, line breaks now occur only where you apply
them with XHTML explicitly. This is demonstrated by the following rule:

p {
padding: 10px;
margin: 10px;
border: thin solid black;
width: 150px;
height: 150px;
overflow: auto;
white-space: nowrap;

}

Figure 10-36 shows that the white-space: nowrap; declaration, when rendered in a browser, causes a
horizontal scroll bar to appear (instead of a vertical scroll bar, as was the case in Figure 10-35).

303

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 303

Figure 10-36

The next section discusses the effects of the scroll keyword when used in conjunction with the over-
flow property.

overflow: scroll
Using the overflow: scroll; declaration ensures that the horizontal and vertical scroll bar tracks
always appear regardless of how much content is inside the box. This is demonstrated by the
following rule:

p {
padding: 10px;
margin: 10px;
border: thin solid black;
width: 150px;
overflow: scroll;

}

With the overflow: scroll; declaration applied to the rule, Figure 10-37 demonstrates that scroll bars
appear regardless of whether the content overflows or not.

Figure 10-37

304

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 304

Removing the height constraint from the rule in the “Peter Piper” snippet of markup would normally
result in no overflow because by default, as a block element, the <p> element expands vertically to
accommodate the content inside it.

The final value discussed here for the overflow property is the hidden keyword.

overflow: hidden
The overflow: hidden; declaration clips any content that doesn’t fit inside the box, essentially ignor-
ing whatever doesn’t fit. This is demonstrated by the following rule.

p {
padding: 10px;
margin: 10px;
border: thin solid black;
width: 150px;
height: 150px;
overflow: hidden;

}

Using this property results in the output depicted in Figure 10-38.

Figure 10-38

It’s obvious from this figure that the content that doesn’t fit inside the box is simply invisible and inac-
cessible to the user. The final section of this chapter discusses two properties proprietary to Internet
Explorer and planned for possible inclusion in CSS 3 as part of the CSS standard: overflow-x and
overflow-y.

overflow-x and overflow-y
The overflow-x and overflow-y properties are currently proprietary Internet Explorer properties that
are proposed additions to the CSS 3 specification. These properties currently work only in Internet
Explorer 6 when Internet Explorer 6 is provided with a standards mode Document Type Declaration.

Like the overflow property, overflow-x and overflow-y control overflow content, but they also
allow users to control the overflowing content with a scroll bar: only a vertical scroll bar for the
overflow-y property, and only a horizontal scroll bar for the overflow-x property. Each of these
properties accepts the same values as the overflow property.

305

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 305

Summary
Liquid design is a combination of techniques that allow web content to be delivered to more than one
medium. The most important principle of liquid design is content that adapts to the user’s environment.
Using some basic ground rules, you can minimize document markup not only for speedy delivery but
also to make the document easy to maintain and manage. Markup, which has nothing to do with struc-
ture, is left out. Headings are enclosed in heading tags, text in paragraph tags, and lists of links are
enclosed in unordered lists, following the principles behind the groundwork laid for the JT’s dinner
menu that I presented in Chapter 8. These techniques assist visually impaired users accessing the web-
site with the aid of a voice synthesizer. Accessibility is increased because the document is more clearly
structured in headings, paragraphs, and lists. With the media attribute and @media rule, you can design
content for delivery to a specific medium, be it for the PC, for print, for handheld devices, or for a
plethora of other devices. Finally, by using em units, you can design a web page that scales to the user’s
font-size preferences without compromising the aesthetic intention of your design.

The CSS box model is a set of rules that tells the browser how to handle the width of a box, padding,
borders, and margins. The box model offers the designer consistency across multiple platforms and
browsers. Margin and padding are essential to a document and prevent the document from rendering in
complete chaos. Borders offer more aesthetic possibilities. CSS dimensions offer controls over how wide
and high an element can be. Finally, overflow allows the simulation of inline frames and gives you con-
trol over content when it is larger than the element containing it.

To recap the material presented in this chapter, you learned the following:

❑ Why table-based designs increase the size and expense of maintaining a website

❑ Why tables should only be used to show relation between data

❑ Why using the <div> element is best for partitioning the different parts of a document

❑ How defining the content of a web page in headings, paragraphs, and lists increases the
accessibility of a website and makes more sense than tag soup

❑ How to apply border widths, border styles, and border colors with the border family of
properties

❑ How to apply dimensions to the elements of a document using the width and height family of
properties

❑ How to control the line height of text using the line-height property

❑ How to apply padding to a document with the padding property

❑ How to apply margins to a document with the margin property

❑ How you can use the overflow property to manage content in cases where the content of an
element is bigger than the element itself

Now that you’ve had a fairly in-depth exposure to the properties fundamental to CSS design, Chapter 11
discusses CSS buoyancy, a topic involving the float and vertical-align properties of CSS.

306

Chapter 10

14_576429 ch10.qxd 11/18/04 12:32 PM Page 306

Exercises
1. Using the exercise completed for Chapter 6, Exercise 2, convert the Widgets and What’s-its FAQ

page to a liquid design that adapts to the user’s font size using em units. Remove all width con-
straints and proprietary CSS from the document, and then convert the length units to em units,
keeping as close to possible to the look and feel of the original units specified in pixels. Use
Mozilla’s default font size to achieve this. Remove any margin separating the elements from the
edge of the browser window.

2. Using the design completed for Exercise 1, write another version of the Widgets and What’s-its
FAQ, one in which the design stops expanding at a 60em width and stops contracting at a 30em
width. The document should be centered if the 60em maximum width is met. Meet these
requirements by adding only a single rule with three declarations to the document.

3. Writing yet another variation of the Widgets and What’s-its FAQ page, add a <div> wrapping
all the content of the FAQ page. Rewrite the rule that you created in Exercise 2 to reference the
wrapper <div>. With two <div> elements in the page at this point, give each a unique name
and rewrite the selectors for both <div> elements accordingly. Include in the rule for the wrap-
ping <div> an upper constraint on the height of 30em, where scroll bars appear to access the
content overflowing that height. Ensure that there is still no margin between the elements them-
selves and the top edge of the browser window.

307

Liquid Design and the CSS Box Model

14_576429 ch10.qxd 11/18/04 12:32 PM Page 307

14_576429 ch10.qxd 11/18/04 12:32 PM Page 308

11
CSS Buoyancy: Collapsing

Margins, Floating, and
Vertical Alignment

In Chapter 10, I presented a subset of properties that combine to define a concept known as the
CSS box model. In this chapter, I continue introducing new properties, this time focusing on two
properties most often misunderstood by users new to CSS design: the float and clear proper-
ties. These properties are often misunderstood because of their unique effect on the elements in a
document. The float property is also closely related to the discussion of the CSS box model that I
presented in Chapter 10. In this chapter I discuss:

❑ Margin collapsing and how this phenomenon affects the layout of block elements

❑ The float property and how it is used to change the flow of elements in a document —
for instance, to place text beside an image

❑ The clear property and how this property is used to cancel the effects of the float
property

❑ The vertical-align property and how this property is used to control the vertical
alignment of text to create subscript or superscript text or control vertical alignment in
table cells

Before I begin the discussion of the float property, I have to rewind to margins, a concept dis-
cussed in Chapter 10 with the CSS box model. The following section explains margin collapsing,
which, in turn, helps you understand why the float property behaves as it does.

Collapsing Margins
Learning CSS involves more than simply memorizing its properties, selectors, widgets, and syn-
tax. CSS is full of anomalies and idiosyncrasies, so sometimes you don’t reach your goal by follow-
ing the most obvious path. In this section, I discuss margin collapsing, which users often fully

15_576429 ch11.qxd 11/18/04 12:32 PM Page 309

understand only after a long and tedious process of trial and error. I discuss it here because it helps to
explain some inconsistencies with the CSS float property, covered in the next section.

In CSS, margin collapsing occurs when top or bottom margins of one element come into contact with the
top or bottom margins of another element. Margin collapsing is demonstrated in the following example:

p {
margin: 20px;
padding: 20px;
border: thin solid black;
background: rgb(218, 218, 218);

}

In the markup, set up two paragraphs, one after the other:

<body>
<p>

This is the first paragraph.
</p>
<p>

This is the second paragraph.
</p>

</body>

Figure 11-1 shows margin collapsing in two places. You can see the margin collapsing between the top
border of the top paragraph and the bottom border of the browser window. If you recall from Chapter
10, the browser often applies margin and padding to elements, although not every browser applies the
same type of spacing to the same elements. Mozilla applies a small margin to the <body> element, which
roughly translates to about 8 pixels. In Figure 11-1, margin collapsing occurs between that default mar-
gin in the <body> element and the top margin of the <p> element. Margin collapsing causes one of the
two margins to be absorbed into the other; the collapsed margin is always the lesser of the two. In this
case, the <body> element has a margin of about 8 pixels, and the top paragraph has a top margin of 20
pixels. Because the 20-pixel length is larger than the margin specified for the <body> element, the body’s
margin is collapsed. Therefore, only 20 pixels separate the text of the first paragraph from the bottom
border of the browser window, instead of the 28 pixels you might expect. Also note in the example that
the left and right margins have not collapsed; this is proper behavior. Margin collapsing affects only top
and bottom margins.

Figure 11-1

310

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 310

The second place in the example where margin collapsing can be observed is between the two para-
graphs. Only 20 pixels of space separate the paragraphs, which can again be attributed to margin col-
lapsing. Margin collapsing can also occur if the elements are nested (as you can see in the preceding
figure) because the <p> elements are nested inside the <body> element, and margin collapsing occurs
between the top paragraph and the <body> element. This is highlighted by the following example

div {
margin: 20px;
background: rgb(178, 178, 178);

}
p {

margin: 20px;
padding: 20px;
background: rgb(218, 218, 218);

}

combined with the following markup:

<div>
<p> No margins, ey?</p>

</div>

Figure 11-2 shows that the top margin of the <p> element has collapsed with the top margin of the
<div> element, and both have collapsed the default margin of the <body> element. Not quite what you
expected right?

Figure 11-2

To prevent margins from collapsing, you must use either borders or padding to prevent the margins
from contacting one another:

div {
margin: 20px;
padding: 20px;
background: rgb(178, 178, 178);

}
p {

margin: 0;
padding: 20px;
background: rgb(218, 218, 218);

}

311

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 311

TE
AM
 F
LY

Figure 11-3 shows what happens when padding is used.

Figure 11-3

Figure 11-3 shows that the desired effect has been achieved. In this example, it was also necessary to
remove the default margin from the <p> element so only 20 pixels separate the outside edge of the <p>
element from the outside edge of its <div> parent — otherwise applying the default margin of the <p>
element would result in more than 20 pixels between top of the div and the top of the paragraph and the
bottom of the div and the bottom of the paragraph. This is demonstrated by leaving off the margin: 0;
declaration:

div {
margin: 20px;
padding: 20px;
background: rgb(178, 178, 178);

}
p {

padding: 20px;
background: rgb(218, 218, 218);

}

Figure 11-4 shows that with padding applied to the <div> element, the default margin of the <p> ele-
ment appears between the bottom outside edge of the <div> element’s padding and the top outside
edge of the <p> element, as well as between the bottom outside edge of the <p> element and the bottom
outside edge of the <div> element’s padding.

Figure 11-4

312

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 312

Margin collapsing is an important, often subtle effect of CSS design. If you understand it, you can often
pinpoint why the space between vertical margins doesn’t always appear as you might anticipate. Margin
collapsing also plays an important role in setting up consistent test cases for the float property, dis-
cussed in the next section.

The float Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

As you have seen in the examples in previous chapters (such as the Einstein quote page in Chapter 6),
the simple explanation of the float property is that it is used to put content side by side. In the coming
sections, you look in depth at the float property, its idiosyncrasies, and how you can use it to lay out a
web page. The following table outlines the float property and its possible values.

Property Value

float left | right | none | inherit
Initial value: none

At this point, the float property appears fairly simple. It accepts keyword values of left, right, and
none, and like all other properties, it also accepts a value of inherit. The effects of the float property
are intrinsically tied to the CSS box model. After the float property is applied to an element, regardless
of the type of element, that element takes on the behavior of a block element, where its dimensions are
defined by width, height, padding, borders, and margins. Before you see some examples of this, the fol-
lowing snippet shows you how the float property affects a document’s layout:

p#floated {
float: left;

}
p {

border: thin solid black;
}

Apply the preceding rule to the following markup:

<p id=’floated’>
This paragraph is floated left.

</p>
<p id=’normal’>

The text of this paragraph is beside the floated paragraph.
</p>

The output in Figure 11-5 shows the text of the normal paragraph is to the right and slightly above the
floated paragraph.

313

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 313

Figure 11-5

The output in Figure 11-6 is output from Opera, and it shows the two paragraphs perfectly level on the
same line.

Figure 11-6

Both outputs shown in the preceding figures are correct! In Figure 11-5, the second paragraph appears
raised because of margin collapsing — the top margin of the normal paragraph is collapsed with the top
margin of the <body> element, and a floated element’s margins never collapse. Opera’s output (shown
in Figure 11-6) is also correct because Opera applies default padding to the <body> element instead of
margins — so, no margins, no margin collapsing.

The following code and figure show what happens if the padding and margin of the <body> element are
explicitly controlled:

body {
margin: 0;
padding: 8px;

}
p#floated {

float: left;
}
p {

border: thin solid black;
}

314

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 314

Figure 11-7 shows that when you control default margins and padding from the style sheet, you can
achieve consistent behavior; the output of Mozilla is now identical to the output of Opera.

Figure 11-7

The next section examines each of the rules that come together when an element is floated.

Floating Box Model
Because floated elements are repositioned to allow other content to flow around them, they exhibit
unique behavior. This behavior is outlined here:

❑ The margins of floated elements do not collapse, no matter what they are next to.

❑ Only the contents of elements following a floated element are affected by the floated element.
That is, the backgrounds, margins, borders, padding, and width (the dimensions) of elements
following a floated element are not affected.

❑ A floated element is always treated like a block element.

Each of these rules is important in determining how floated elements are positioned and rendered. This
section examines each of these rules in depth.

First, the margins of floated elements never collapse. Consider the following diagram in Figure 11-8
showing how the box model is incorporated when an element has been floated.

315

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 315

Figure 11-8

The diagram in Figure 11-8 shows the box model of two elements. The box is the element that contains
the floated element (as shown in Figure 11-5) — that is, the <body> element. The other box is the float ele-
ment (also from Figure 11-5) — that is the floated paragraph. According to the diagram, the margin of the
floated element is inside the element that contains it. In Figure 11-5, the <body> element contains the
floated <p> element, so its margins do not collapse with the <body> element. To highlight this behavior,
consider the following example:

316

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 316

div {
margin: 10px;
background: rgb(200, 200, 200);
height: 100px;

}

p#floated {
background: rgb(220, 220, 220);
margin: 10px;
padding: 10px;
border: 1px solid black;
float: left;

}
p#normal {

background: rgb(240, 240, 240);
border: 1px solid black;

}

Combine the preceding code with this markup:

<body>
<div>

<p id=’floated’>
This paragraph is floated left.

</p>
<p id=’normal’>

The text of this paragraph is beside the floated paragraph.
</p>

</div>
</body>

Figure 11-9 highlights the effects of the diagram presented in Figure 11-8.

Figure 11-9

The normal paragraph appears all the way at the top of the <div> element, meaning that the default top
margin of the normal paragraph has collapsed and yielded to the top margin of the <div> element. The
default top margin of the <body> element has also collapsed and yielded to the top margin of the <div>
element because has the largest margin. The floated paragraph has completely maintained its margins
on all four sides, highlighting that the margins of the floated paragraph have not collapsed.

317

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 317

The next thing that is obvious from Figure 11-9 is the behavior outlined in the second bullet point of our
rules for floated elements: The dimensions of the normal paragraph have been maintained as though the
floated element doesn’t even exist. Its dimensions are clearly highlighted as they pass behind the floated
element, showing that only the content inside the normal paragraph is affected by the presence of the
floated element.

The final rule, which states that all floated elements are treated like block elements, is discussed in the
next section.

Floating Inline Elements and the Inline Box Model
The final rule for floated elements is that they’re always treated like block elements. Inline elements like
 or allow some box model properties such as margin, borders, and padding to be applied.
Inline elements, however, do not allow dimensional properties such as width and height to be applied.
This is understandable because these properties are expected to be contained in the flow of text. The
 element is an exception because it allows dimensional properties to be applied. Elements like the
 element are known as replaced inline elements, and elements like and are known as
non-replaced inline elements. Replaced inline elements are replaced by something — for example the
 element is replaced by the image referenced via the src attribute. After the float property is
applied to an element, it doesn’t matter if the original element was an inline element or a replaced inline
element because a floated element is a block element. This is demonstrated in the following example:

div {
margin: 10px;
background: rgb(200, 200, 200);
height: 100px;

}
span#floated {

background: rgb(220, 220, 220);
margin: 10px;
padding: 10px;
border: 1px solid black;
float: left;
width: 100px;

}
span#normal {

background: rgb(240, 240, 240);
border: 1px solid black;
margin: 100px;
width: 1000px;

}

Apply the preceding rule to the following markup:

<div>

This span is floated left.

The text of this span is beside the floated span.

318

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 318

This is extra text. This is extra text. This is extra text.
This is extra text. This is extra text. This is extra text.
This is extra text. This is extra text. This is extra text.
This is extra text. This is extra text. This is extra text.
This is extra text. This is extra text. This is extra text.
This is extra text. This is extra text. This is extra text.

</div>

Figure 11-10 shows that when an inline element is floated, it becomes a block element and is fully defin-
able by all box model properties.

Figure 11-10

The floated is given a width of 100 pixels, a top margin, and padding — all of which are present
in the rendering in Figure 11-10. The normal is given a width of 1000 pixels, and because it is an
inline element, the browser ignores the width. A margin of 100 pixels is also specified, but Figure 11-10
shows that only the left and right margin actually affect the surrounding text. In fact, although padding,
borders, and margin can be applied to inline elements, these have no effect on the height of the line.
They do, however, affect the text to the left and right. If I add a padding of 50 pixels to the normal
, the top and bottom padding, borders, and margin do not affect the rest of the paragraph, only
the area to the left and right of the inline element are affected as is demonstrated by Figure 11-11.

Figure 11-11

Figure 11-11 shows what happens when the padding and margins are increased even more. From this
example, you can see that a box appears behind the rest of the paragraph, and the text to the left and
right of the normal is displaced by the presence of left and right margins, borders, and padding.
The dimensions of non-replaced inline elements are defined by the line-height font size, the spacing
between letters and words, and the amount of content contained in the inline element. Box model prop-
erties can be applied, although the behavior of box model properties for inline elements is somewhat

319

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 319

different from that of block elements. Box model properties cannot affect the line-height of inline
elements because inline elements may span multiple lines. To demonstrate this concept, study the
following styles:

div {
margin: 10px;
background: rgb(200, 200, 200);
height: 100px;

}
span#floated {

background: rgb(220, 220, 220);
margin: 10px;
padding: 10px;
border: 1px solid black;
float: left;
width: 100px;

}
span#normal {

background: rgb(240, 240, 240);
border: 1px solid black;

}

Apply this to markup that includes more content in the normal element:

<body>
<div>

This span is floated left.

The text of this span is beside the floated span.
The text of this span is beside the floated span.
The text of this span is beside the floated span.
The text of this span is beside the floated span.
The text of this span is beside the floated span.
The text of this span is beside the floated span.
The text of this span is beside the floated span.

This is extra text. This is extra text. This is extra text.

</div>
</body>

Figure 11-12 shows what happens when an inline element that spans multiple lines is given a border and
a background color.

320

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 320

Figure 11-12

Figure 11-12 shows that the box model properties applied to the element are wrapped with each
line of content. The box of an inline element is broken at the end of each line and continues on the fol-
lowing line up until the end of the content. The rendering of the normal element in Figure 11-12
is in stark contrast to how the floated element in the figure is rendered. The floated ele-
ment becomes a block element after the float property is applied to it.

If margin: 20px; and padding: 20px; declarations are applied to the preceding example, the text in
the becomes unreadable, which is demonstrated by the following rule.

span#normal {
background: rgb(240, 240, 240);
border: 1px solid black;
opacity: 0.7;
padding: 20px;
margin: 20px;

}

The application of the preceding opacity, padding, and margin declarations are demonstrated in
Figure 11-13.

Figure 11-13

321

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 321

The application of margins and padding causes the normal to layer over itself with each new
line because line height cannot be affected by the application of box model properties to an inline ele-
ment. I made the in Figure 11-13 slightly transparent with the opacity: 0.7; declaration, to
highlight the unchanging line height. The lighter text of the lines following the first line shows that the
text is obstructed by the background of the preceding lines. This, in turn, shows that the background of
the preceding line is layered on top of each line that follows.

When any element is given a position with the float property, it takes on the behavior of a block ele-
ment regardless of what it was previously. The next section continues exploring floats with a look at
what happens when several elements are floated in sequence.

Applying Multiple Floats
If several elements are floated in a sequence, each one appears next to the previous one, filling all the
space available on the line as the width of each float allows. This is demonstrated by the following rule:

p {
float: left;
border: 1px solid black;
padding: 10px;
background: rgb(218, 218, 218);
margin: 10px;

}

When combined with this markup, you see the results shown in Figure 11-14:

<p>
This is the text of the first paragraph.

</p>
<p>

This is the text of the second paragraph.
</p>
<p>

This is the text of the third paragraph.
</p>

Figure 11-14

The output in Figure 11-14 demonstrates that each paragraph occupies the same line. Figure 11-14 also
demonstrates how applying the float property to an element changes how width is applied to block
elements. In Chapter 10, you saw how a block element occupies all the space available to it because of
the width: auto; declaration. In Figure 11-14, the width of each paragraph is no more than what is

322

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 322

contained inside, making the behavior of a floating block similar to what you saw in Chapter 10 for the
<table> element. In CSS, this type of width is known as shrink-to-fit. Applied here, each <p> only
expands horizontally enough to accommodate the content inside when the float property is applied.

The next section looks at an example of what happens when both a left and right float are specified.

Left and Right Floating
If an element floated to the left is followed by an element floated to the right and the width of each ele-
ment permits, both elements occupy the same line, one on the left side and one on the right side. This is
similar to what you saw in Chapter 10 when the margin property was used with an auto keyword to
align block elements. The following example demonstrates this:

body {
margin: 0;
padding: 8px;

}
p {

border: 1px solid black;
padding: 10px;
background: rgb(218, 218, 218);
margin: 10px;

}
p#left {

float: left;
}
p#right {

float: right;
}

The preceding rule, applied to this markup, results in the output shown in Figure 11-15:

<p id=’left’>
This is the text of the first paragraph.

</p>
<p id=’right’>

This is the text of the second paragraph.
</p>

Figure 11-15

Figure 11-15 demonstrates that the left floated element appears on the left side, and it is only as wide as
the content inside of it. The right floated element appears on the same line, but on the right side of the

323

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 323

browser window. Again, it is only as wide as its content. If the browser window shrinks enough, the left
floated element appears above the right floated element. This is demonstrated by the output shown in
Figure 11-16.

Figure 11-16

If the margins, borders, padding, and width are larger than the free space available on the line, the right
floated element gets bumped to the next line down. What happens if a third paragraph is included, but
not floated? This is demonstrated by the next example:

<p id=’left’>
This is the text of the first paragraph.

</p>
<p id=’right’>

This is the text of the second paragraph.
</p>
<p>

This is the text of the third paragraph. (repeat this text to observe the
wrapping effect shown in Figure 11-15)

</p>

Using the rules given for Figure 11-15, a third paragraph is applied, resulting in the output shown in
Figure 11-17.

Figure 11-17

324

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 324

Figure 11-17 shows that the third paragraph floats up between the left floated paragraph and the right
floated paragraph. The text of the third paragraph fills all the space available between the left floated
paragraph and the right floated paragraph. This is the foundation of one technique for achieving a
multi-column layout with CSS. This results in a true three-column layout. You apply a left and right
margin to the third paragraph and cement the width of the left and right floated paragraphs by supply-
ing an explicit width. The following style sheet demonstrates this concept:

body {
margin: 0;
padding: 8px;

}
p {

border: 1px solid black;
padding: 10px;
background: rgb(218, 218, 218);
margin: 10px;

}
p#left {

float: left;
width: 200px;

}
p#right {

float: right;
width: 200px;

}
p#center {

margin: 10px 231px;
}

Apply this style sheet to the following markup:

<p id=’left’>
This is the text of the first paragraph.

</p>
<p id=’right’>

This is the text of the second paragraph.
</p>
<p id=’center’>

This is the text of the third paragraph. (repeat this text to observe the
wrapping effect shown in Figure 11-15)

</p>

This results in the output shown in Figure 11-18.

325

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 325

Figure 11-18

Figure 11-18 shows that the design is now a true three-column design. By applying a fixed width to the
left and right paragraphs and a left and right margin to the center paragraph, you achieve a three-
column layout.

Having seen what the float property does, you can work through the following Try It Out, which con-
tinues the JT’s Island Grill and Gallery website presented in Chapter 10 with the addition of the float
property.

Try It Out Applying the float Property
Example 11-1. The following steps show how the float property fits into the JT’s style sheet.

1. Add the following rules to the menu_system.css style sheet.

div#nav > ul > li {
padding: 0.5em;
border: 0.05em solid black;
font-size: 0.9em;

}
ul#gifts > li {

float: left;
}
ul#food > li {

float: right;
}

2. Save menu_system.css.

3. Add the following declaration to inline style attribute for the dinner_plate.jpg image.

326

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 326

<img src=’images/photos/dinner_plate.jpg’
style=’width: 9em; height: auto; float: right;’
alt=’dinner plate’/>

4. Add the following declaration to the inline style attribute for the meta_playing.jpg image.

<img src=’images/photos/meta_playing.jpg’
style=’width: 16em; height: auto; float: right;’
alt=’meta playing’/>

5. Swap around the following navigation headings so that, in the dinner menu source code, the
Delicious Food heading comes before the Employment heading.

<li id=’rightedge’>
Delicious Food
<ul class=’menu’>

Lunch at JT’s
JT’s Lunch Menu
Dinner at JT’s

JT’s Dinner Menu

Employment
<ul class=’menu’>

Contact JT’s
Seasonal Employment

Opportunities

6. Save dinner_menu.html. When you open dinner_menu.html in Mozilla, you see the output in
Figure 11-19.

327

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 327

Figure 11-19

How It Works
Figure 11-19 shows what can happen when the float property is applied to the JT’s style sheet. Because
the objective of the float property is to allow content to flow around the floated element, at this point the
JT’s dinner menu looks chaotic; but you’ll correct the bad side effects of the float property in Example
11-2. For the time being, review each modification and explore the theory behind each addition and
change. The first change is made so that the unique gifts and chokoloskee headings appear side by side.
This is done by applying the float: left; declaration:

ul#gifts > li {
float: left;

}
ul#food > li {

float: right;
}

The second rule does the same thing for the employment and delicious food headings, but in the opposite
way: These are floated to the right instead of to the left. The theory behind these additions is that eventu-
ally the unordered list with the unique gifts and chokoloskee headings will be positioned to the left of the

328

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 328

JT’s logo and the employment and delicious food headings will be positioned to the right of the JT’s logo. At
this point, I am getting closer to achieving my goal. The application of each float, however, has had
unexpected side effects. Floated elements must be placed as high as possible in the document, and the
content that follows a float must fill in all the space left over. That puts the top half of the dinner menu
right in the middle of the navigation. In the upcoming section on the clear property, I discuss how to
control the effects of the float property. Another unanticipated side effect is that the float: right;
property causes the delicious food heading to appear before the employment heading, when I intended it to
be the last heading. This is corrected by flip-flopping the list items in the markup itself so that when the
delicious food list item is right floated, the employment heading directly follows to the left of it. The last
addition to the JT’s markup is floating the images appearing in the menu itself so that the content of the
menu wraps around them.

The next section continues clear property, which is closely related to the float property.

The clear Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

In this section, I discuss a property intrinsically related to the float property: the clear property. The
clear property is used to control floating content. The following table outlines the clear property and
its possible values.

Property Value

clear none | left | right | both | inherit
Initial value: none

The simplest explanation for the clear property is that it is used to cancel the effects of one or more
floated elements. An example of its use can be observed in the following rules:

p {
border: 1px solid black;
background: rgb(218, 218, 218);
line-height: 1em;
padding: 10px;

}
p#floated {

float: left;
margin: 10px;

}
p#cleared {

clear: left;
}

Applying those rules to the following markup renders the image shown in Figure 11-20:

329

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 329

<p id=’floated’>
This is the text of the first paragraph.

</p>
<p id=’cleared’>

This is the text of the second paragraph.
</p>

Figure 11-20

Figure 11-20 shows how the clear: left; declaration is used to cancel the effects of the left floated
paragraph. If the paragraph has been right floated, a clear: right; declaration is used to cancel the
effects of that float. A declaration of clear: both; is used to clear the effects of both left and right
floated elements. Based on the example presented in Figure 11-20, the following demonstrates how the
clear: both; declaration is used to avoid the effects of both left and right floated elements:

body {
margin: 0;
padding: 8px;

}
p {

border: 1px solid black;
background: rgb(218, 218, 218);
line-height: 1em;
padding: 10px;

}
p#left {

width: 200px;
float: left;
margin: 10px;

}
p#right {

width: 200px;
float: right;
margin: 10px;

}
p#clear {

clear: both;
}

330

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 330

When the preceding rules are combined with the following markup, you see the results shown in
Figure 11-21.

<p id=’left’>
This is the text of the first paragraph.
This is the text of the first paragraph.
This is the text of the first paragraph.
This is the text of the first paragraph.

</p>
<p id=’right’>

This is the text of the second paragraph.
This is the text of the second paragraph.
This is the text of the second paragraph.
This is the text of the second paragraph.
This is the text of the second paragraph.
This is the text of the second paragraph.
This is the text of the second paragraph.
This is the text of the second paragraph.

</p>
<p>

This is the text of the third paragraph.
</p>
<p id=’clear’>

This is the text of the forth paragraph.
</p>

Figure 11-21

Figure 11-21 shows that the clear paragraph is below both the left and right floated paragraphs. If I had
applied a clear: left; declaration instead, the clear paragraph would be beside the right floated para-
graph and not beside the left floated paragraph. This is demonstrated in the output shown in Figure 11-22.

331

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 331

Figure 11-22

Now that you’ve seen some examples of how the clear property is used to control the elements that
appear after a floated element, the following Try It Out applies the clear property to the JT’s Island
Grill and Gallery website.

Try It Out Applying the clear Property
Example 11-2. In the following steps, you can see how the clear property controls the effects of the
float property.

1. Add the following declaration to the base_styles.css style sheet:

h1 {
clear: both;
padding: 0.5em 1.1em;
border-top: 0.05em solid black;
-moz-border-radius-topleft: 0.8em;
-moz-border-radius-topright: 0.8em;
font-family: “Monotype Corsiva”, cursive;
letter-spacing: 4px;
font-size: 1.5em;

}

2. Save base_styles.css.

3. Add the following declarations to the menu_system.css style sheet:

div#nav > a > img {
clear: left;
display: block;
margin: 0 auto;
width: 16em;
height: auto;

}

4. Save menu_system.css. When you open dinner_menu.html in Mozilla, you see the output in
Figure 11-23.

332

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 332

Figure 11-23

How It Works
Figure 11-23 shows that the dinner menu is much more cleanly defined. The left side of the navigation
bar appears above the JT’s logo. In Chapter 14, I apply CSS positioning properties to place this naviga-
tion to the left of the logo, and I apply several declarations to the logo to control both its placement and
how it handles the floating elements around it:

clear: left;
display: block;
margin: 0 auto;

The clear: left; declaration prevents the logo from going to the left of the navigation menu. This is
done so that the layout appears clean and organized as additional properties are applied. In Chapter 14
(using other CSS properties), the navigation menu will be positioned explicitly to the left of the logo and
the links underneath each heading will become dynamic drop-down menus that appear only when the
user’s mouse cursor is over a heading. The same will happen to the navigation appearing below the JT’s
logo, but it will be positioned to the right of the logo. A display: block; declaration was necessary for
the image because the clear property can be applied only to block elements. This declaration causes the

333

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 333

image to no longer be centered. The text-align: center; property applied to the nav <div> in
Chapter 8 has no effect on block elements. To correct this, the image is centered using the margin: 0
auto; declaration, so that no margin is applied to the top or bottom sides of the image, and the auto
keyword is used to center the image. Next a clear property is applied to the <h1> element that begins
the menu and its content. Here, a clear: both; is applied, although simply applying a clear:
right; declaration would have the same effect.

This example demonstrates how the clear property is used to control the flow of content with respect
to floated elements. With the clear property applied, the floated images in the dinner menu appear in
their intended places, with text flowing around them to their left sides.

The next section focuses on the vertical-align property.

The ver tical-align Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The vertical-align property is used primarily in two contexts. In one context, it is used to vertically
align text appearing within the lines of a paragraph. One example of this creates subscript or superscript
text. The vertical-align property may also be used to align the content appearing inside a table cell.
The following table outlines the vertical-align property and its possible values.

Property Value

vertical-align baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage> | <length> | inherit
Initial value: baseline

The vertical-align property applies exclusively to inline elements, such as and . It
has different meaning when applied to table cells. I discuss its use in cells in an upcoming section. In the
next section, however, I look at how to format subscript text with the vertical-align property.

Subscript and Superscript Text
Within a paragraph, you may need several different types of styles that are only applied to snippets of
the text, such as bold or italic fonts. Figure 11-12 showed that it is possible to apply a different back-
ground color to only one subset of text appearing within a paragraph by using the element.
Subscript text is an example of styles that often apply only to a selection of text rather than to a whole
paragraph. Subscript text is text that appears slightly smaller than the text surrounding it and slightly
lower than the baseline of the surrounding text. The baseline is the invisible line created for each line of
text against which the bottom of each letter is aligned. In other words, the baseline is the line that letters
“sit” on. Superscript text, on the other hand, is text raised above the baseline and that appears slightly
smaller than the surrounding text. The following is a demonstration of subscript and superscript text:

334

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 334

p {

font-size: 16px;
}
span {

font-size: 0.8em;
}
p#sub span {

vertical-align: sub;
}
p#super span {

vertical-align: super;
}

Apply these rules to the following markup:

<p id=’sub’>
This is normal text. This is subscript text. This is normal text.

</p>
<p id=’super’>

This is normal text. This is superscript text. This is normal text.
</p>

Figure 11-24

Figure 11-24 shows that the content of the element of the first paragraph appears lower than
that of the rest of the text and has a smaller font size, which is a result of applying the vertical-
align: sub; and font-size: 0.8em; declarations. The figure also shows that the element
of the second paragraph appears slightly higher and with a slightly smaller font size, which is a result
of the vertical-align: super; and font-size: 0.8em; declarations. In the normal text of both
paragraphs, you observe the behavior of the baseline keyword, which is the default value of the
vertical-align property.

The next section continues the discussion of the vertical-align property with superscript text.

The top, middle, and bottom Keywords
The top, middle, and bottom keywords are used to control vertical alignment of selections of text that
are slightly smaller than the surrounding text. This is demonstrated in the following style sheet:

335

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 335

p {
margin: 10px;
font-size: 40px;

}
span {

background: lightblue;
}
span.valign {

font-size: 16px;
color: white;
background: steelblue;
font-weight: bold;

}
span#baseline {

vertical-align: baseline;
}
span#text-top {

vertical-align: top;
}
span#middle {

vertical-align: middle;
}
span#text-bottom {

vertical-align: bottom;
}

Combine the preceding style sheet with the following markup:

<p>

Peter Piper picked a peck of
pickled

peppers.

</p>
<p>

Did Peter Piper pick a peck of

pickled
peppers?

</p>
<p>

If Peter Piper picked a peck of

pickled
peppers,

</p>
<p>

where’s the peck of

pickled
peppers Peter Piper picked?

</p>

336

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 336

This source code results in the rendering depicted in Figure 11-25.

Figure 11-25

The preceding example highlights the differences between the baseline, top, middle, and bottom
keyword values of the vertical-align property. In the output, the text with a light blue (or lighter
gray in the black and white screen shot shown in Figure 11-25) background is normal text. The font size
of this text is increased to highlight the effects of each vertical-align keyword value. The text is
given a background to highlight the dimensions of each line box. This is done by wrapping the entire
line with tags and applying the light blue background to those elements to highlight the
inline box model. Then, within each line of text, a single word, pickled, is wrapped in another set of
 tags and given a different background color, steel blue, and a smaller font size than the text that
surrounds it.

The application of these styles highlights the dimensions of the inline box model of the single word, pick-
led. Then a different vertical-align keyword is applied to the tag wrapping the word pickled
in each of the four paragraphs. In the first paragraph, you see what happens when pickled is given the
baseline keyword. The letters of pickled are aligned with the baseline of the letters of the surrounding
text. In the second paragraph, the top keyword is applied to the tags surrounding pickled, which
causes the top border of the inline box for pickled to be aligned with the top border of the inline box con-
taining it. Then in the third paragraph, the middle keyword is applied to the tags enclosing pick-
led. This causes the word to be aligned with respect to the middle of the lowercase letters. You may recall
from Chapter 4, the x-height or ex unit is a measurement based on the height of the lowercase letter x. In
this example, the middle keyword causes the element containing the word pickled to be verti-
cally centered based on the height of the lowercase letter x. The middle point of the inline box is aligned
to the center of the lowercase letter x. And finally, in the last paragraph, the element containing
the word pickled is given the bottom keyword. This causes the bottom of the inline box containing the
word pickled to be aligned with the bottom border of the inline box containing it.

The next section discusses the text-top and text-bottom keywords of the vertical-align property.

337

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 337

The text-top and text-bottom Keywords
Like the top, middle, and bottom values, the text-top and text-bottom keywords raise or lower a
subset of text. The difference in the text-top keyword as opposed to the top keyword is that the text-
top keyword causes alignment to happen with respect to the tallest character of the font of the surround-
ing text, for instance the lowercase letters t, l, f, or the uppercase letters. Likewise the text-bottom
keyword aligns with respect to the lowest character, for instance the letters p, y, or g, which drop below
the baseline. The text-top and text-bottom keyword values produce output similar to that produced
by the top and bottom keywords. The most important difference between top and text-top is that
top causes the border of the inline box to align with the top border of the line containing that inline box,
whereas text-top aligns with respect to the tallest character in the font.

The next section discusses percentage and length values as applied to the vertical-align property.

Percentage and Length Value
If the selection of keywords I presented in the previous sections weren’t enough for you, the vertical-
align property also allows percentage and length values to be applied. The following example demon-
strates the vertical-align property with a percentage value:

p {
width: 200px;
margin: 10px;
padding: 10px;
border: 1px solid black;
font-size: 16px;

}
span {

background: lightblue;
}
span > span {

vertical-align: 100%;
background: lightgray;

}

Combine the preceding style sheet with the following markup:

<p>

Peter Piper picked a peck of pickled peppers.
Did Peter Piper pick a peck of pickled peppers?
If Peter Piper picked a peck of pickled peppers,
where’s the peck of pickled peppers Peter Piper picked?

</p>

You get the output shown in Figure 11-26.

338

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 338

Figure 11-26

Figure 11-26 shows that the wrapping all the contents of the paragraph is given a light blue
background to highlight the dimensions of each line box. The elements containing the word
pickled are given the vertical-align: 100%; declaration. The application of this declaration results in
each nested element being raised 100% of the line height. Percentage measurements as applied
with the vertical-align property are based on the height of the line. So if the value of the line-height
property is 32 pixels and a vertical-align: 50%; declaration is applied, this results in the box being
raised 50% of 32 pixels, or 16 pixels. A negative percentage may also be applied. If a negative percentage
is applied, the opposite happens. The box is lowered by that percentage amount. A 0% value is the same
value as the baseline keyword. Likewise, a length measurement may be applied, such as vertical-
align: 1em;. This declaration causes the box to be raised 1em from the baseline. A negative value may
also be applied. A vertical-align: -1em; declaration causes the box to be lowered 1em from the
baseline.

The next section discusses the vertical-align property as applied to table cells.

Vertically Aligning the Contents of Table Cells
The vertical-align property has completely different meaning when it is applied to table cells. When
applied to table cells only the baseline, top, middle, and bottom keywords are applicable, and the
vertical-align property is used to align the entire contents of the cell. This is demonstrated in the fol-
lowing example:

table {
font: 16px sans-serif;
border: 1px solid black;

}
td {

border: 1px solid black;
width: 125px;

}
td.baseline {

vertical-align: baseline;
}

339

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 339

td#largefont {
font-size: 60px;
vertical-align: baseline;

}
td#top {

vertical-align: top;
}
td#middle {

vertical-align: middle;
}
td#bottom {

vertical-align: bottom;
}

Apply the preceding style sheet to the following markup:

<table>
<tr>

<td class=’baseline’>
The contents of this cell
are aligned to the baseline.

</td>
<td class=’baseline’ id=’largefont’>

L
</td>
<td id=’top’>

The contents of this cell
are top aligned.

</td>
<td id=’middle’>

The contents of this
cell are middle aligned.

</td>
<td id=’bottom’>

The contents of this
cell are bottom aligned.

</td>
</tr>

</table>

Figure 11-27 shows the output from this example.

Figure 11-27

340

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 340

The preceding example is a demonstration of the four vertical-align properties that are applicable to
table cells: baseline, top, middle, and bottom. The first two cells are aligned to the baseline. The base-
line of a table cell is determined by the baseline of the table row. The baseline of the table row is deter-
mined by taking the baseline of the first line of each baseline-aligned table cell in that row. The one with
the largest font determines the baseline of the row, which each table cell is aligned against.

In short, this complicated summary of baselining results in the line The contents of in the first table cell in
Figure 11-27 having the same baseline as the letter L that appears in the second cell. In this case, the size
of the letter L determines where the baseline of the table row is. The third cell is top-aligned, which
means the content begins at the top of the cell and flows on downward from there. The fourth cell is
middle-aligned, which means that the height of the content is measured to determine the middle point
of the content, and then that midpoint is aligned with the midpoint of the cell. Finally, the fifth cell is
bottom-aligned, which means that the bottom-most point of the content in the cell is aligned with the
bottom of the cell.

Although you might expect the vertical-align property to apply to all elements — to block elements,
for example, in the same way it is applied to table cells — this isn’t the case. The vertical-align prop-
erty is applicable only to inline elements and table cell elements: <td> and <th>.

Summary
This chapter focused on three key areas of CSS design. In this chapter you learned that

❑ Margin collapsing is a phenomenon that occurs when two vertical margins come into contact
with one another, regardless of how many margins are present. Margin collapsing can occur
between adjacent elements or nested elements; as a rule of thumb, the element with the largest
margin wins, and the other margins are collapsed to zero.

❑ The float property is a seemingly complex property that has a unique place in CSS design. The
float property is used for layout — for instance, to achieve a multicolumn design and to
include content in the flow of paragraph text in such a way that text wraps around the floated
element.

❑ The clear property is used to control the effects of the float property in situations where you
don’t want all the content following a floated element to float beside it.

❑ The vertical-align property is used to vertically align inline elements such as the
element or the element relative to the line containing those inline elements; this prop-
erty can be used, for instance, to create subscript or superscript text.

❑ The vertical-align property may also be applied to table cells to control vertical alignment
of the content within table cells. If the vertical-align property is applied to table cells, only a
subset of properties are applicable. These include the baseline, top, middle, and bottom
properties. The behavior of these properties is completely different when applied to table cells
as opposed to normal inline content.

Chapter 12 discusses how to control the styling of list elements with CSS.

341

CSS Buoyancy: Collapsing Margins, Floating, and Vertical Alignment

15_576429 ch11.qxd 11/18/04 12:32 PM Page 341

Exercise
Using the float and clear properties (and not using tables), design a web page with a four-column
layout and a footer that spans all four columns. Apply whatever text or images you like to each column,
or create an empty design that simply demonstrates the concept (by adding width, height, borders, back-
ground colors, and so on to each column). Give each column a 1-pixel-thick border, 5 pixels of padding,
and give three of the four columns a fixed width. Put 5 pixels of space between each column, the footer,
and the browser window. You should end up with a design like that shown in Figure 11-28.

Figure 11-28

342

Chapter 11

15_576429 ch11.qxd 11/18/04 12:32 PM Page 342

12
Styling Lists and the

User Interface

In Chapter 11, you saw how the float and clear properties are used to control the flow of content
in a web document. In this chapter, I look at properties used to control the styling of list elements, as
well as special CSS properties used to style certain aspects of the user interface, such as the type of
mouse cursor displayed. I cover the following:

❑ The list-style-type property and how it’s used to present different types of lists
through a variety of marker styles for bulleted lists and numbered lists

❑ The list-style-image property and how it’s used to provide a custom marker for each
list item

❑ The list-style-position property and how it’s used to control the positioning of list
item markers

❑ The cursor property and how it’s used to control mouse cursors

Like the CSS properties I’ve covered in previous chapters, the CSS list properties give you complete
control over the way you present and style list items.

The list-style-type Property
Documented in CSS 2.1 and supported in IE 5.5 (partial)IE 6 (partial), Mozilla 1.7, Opera 7.5,
and Safari 1.2.

You use the list-style-type property to change the presentation of bulleted and numbered
lists. For example, you can change an ordered list to a list using Roman numerals for markers, or
you can change a bulleted list to one using squares instead of circles for markers. The following
table outlines the list-style-type property and its possible values.

16_576429 ch12.qxd 11/18/04 12:33 PM Page 343

Property Value

list-style-type disc | circle | square | decimal | decimal-leading-zero | lower-roman |
upper-roman | lower-greek | lower-latin | upper-latin | armenian |
georgian | none | inherit
Initial value: disc

Internet Explorer 6 supports only CSS 1 keyword values: disc | circle | square | decimal | lower-
roman | upper-roman | lower-alpha | upper-alpha | none. Netscape 4 supports only CSS 1 values;
CSS 2 support began with NS 6.

Naturally, the default list type used also depends on whether or list elements are used to
structure the list. A variety of keywords allows for a variety of presentational styles. The next series of
figures shows what each of these keywords looks like when rendered in a browser. Each of the following
renderings is based on a simple test page. For unordered lists, you use a rule like

ul {
font-family: sans-serif;

}
li.square {

list-style-type: square;
}
li.disc {

list-style-type: disc;
}
li.circle {

list-style-type: circle;
}

with this markup:

<li class=’square’>This list item has a square marker.
<li class=’square’>This list item has a square marker.
<li class=’disc’>This list item has a disc marker.
<li class=’disc’>This list item has a disc marker.
<li class=’circle’>This list item has a circle marker.
<li class=’circle’>This list item has a circle marker.

The list-style-type property is inherited, so it may be applied to either the element or the
 element.

For ordered list styles, I’ve used a test page that includes an element to keep the structure intuitive.
Figure 12-2 shows what the list-style-type: decimal; and list-style-type: decimal-leading-
zero; declarations look like.

344

Chapter 12

16_576429 ch12.qxd 11/18/04 12:33 PM Page 344

Figure 12-1

Figure 12-2

As you can see in Figure 12-2, the list markers of the first ordered list include only the number; the sec-
ond ordered list includes the leading zero in the marker.

Figure 12-3 shows the list-style-type: lower-roman; and list-style-type: upper-roman;
declarations. The top ordered list uses lowercase Roman numerals for the list markers, whereas the bot-
tom list uses uppercase Roman numerals.

Figure 12-3

345

Styling Lists and the User Interface

16_576429 ch12.qxd 11/18/04 12:33 PM Page 345

Figure 12-4 shows the list-style-type: lower-latin; and the list-style-type: upper-latin;
declarations. As you can see, the top ordered list uses lowercase Latin letters for the list markers, and the
bottom list uses uppercase Latin letters.

Figure 12-4

Figure 12-5 shows the list-style-type: lower-greek; declaration.

Figure 12-5

Figure 12-6 shows the list-style-type: armenian; declaration.

Figure 12-6

The lower-latin and upper-latin keywords were called lower-alpha and
upper-alpha in CSS 1.

346

Chapter 12

16_576429 ch12.qxd 11/18/04 12:33 PM Page 346

Figure 12-7 shows the list-style-type: georgian; declaration. The output shown in this figure is
from Opera because Mozilla does not support this declaration.

Figure 12-7

In the preceding figures, you saw the various already built-in styling that CSS provides for ordered
and unordered list markers. The following Try It Out continues the JT’s Island Grill and Gallery website.
In this example, the list markers are removed from the navigation lists using the list-style-none
property.

Try It Out Removing List Style
Example 12-1. In the following steps, you see how to remove the list item markers from the navigation of
the JT’s Island Grill and Gallery website.

1. Add the following declaration to the menu_system.css style sheet:

div#nav ul {
list-style-type: none;
margin: 0;
padding: 0;

}

2. Save menu_system.css.

As you can see in Figure 12-8, the list item markers have been removed by the list-style-type:
none; declaration, which brings the navigation menus one step closer to the desired styles.

How It Works
By removing the list item markers, the navigation of the JT’s website resembles menus rather than lists.

The next section continues the discussion of CSS list properties with the introduction of the list-
style-image property. This property enables you to use a tiny version of an image file as a list marker.

347

Styling Lists and the User Interface

16_576429 ch12.qxd 11/18/04 12:33 PM Page 347

Figure 12-8

The list-style-image Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

Like the list-style-type property, you can use the list-style-image property to change the
marker used for list items. The list-style-image property is most suited for custom bulleted lists.
The following table outlines the list-style-image property and its possible values.

Property Value

list-style-image <uri> | none | inherit
Initial value: none

348

Chapter 12

16_576429 ch12.qxd 11/18/04 12:33 PM Page 348

The list-style-image property is quite straightforward; it accepts a file path to the image, which is
denoted in the preceding table by the <uri> notation. Here is a simple example of the list-style-
image property in action

ul {
font-family: sans-serif;
list-style-image: url(‘download.gif’);

}

given this markup:

Download cat.jpg
Download myapp.exe
Download powertools.zip

This results in the output in Figure 12-9.

Figure 12-9

As you can see in Figure 12-9, the download.gif icon has replaced the list bullets, making the list marker
into a tiny image of a floppy disc.

In the next section, I discuss the list-style-position property, which enables you to control the
placement of list markers.

The list-style-position Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

You can use the list-style-position property to control the placement of list item markers and
whether the list item marker appears on the inside of the list item element or outside of it. The following
table outlines the list-style-position property and its possible values.

349

Styling Lists and the User Interface

16_576429 ch12.qxd 11/18/04 12:33 PM Page 349

Property Value

list-style-position inside | outside | inherit
Initial value: outside

You can highlight the effects of the list-style-position property. Figure 12-10 shows the list item
dimensions highlighted using a light gray border.

Figure 12-10

Figure 12-10 highlights the dimensions of each list item by applying a border to each element; this
demonstrates the behavior of the list-style-position: outside; declaration. Figure 12-11 shows
what happens when a list-style-position: inside declaration is applied: The download.gif
image now appears inside the list item borders.

Figure 12-11

The next section wraps up discussion of CSS list properties with the list-style shorthand property.
Using this property, you can combine several properties into one.

The list-style shorthand Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

Like the shorthand properties I presented in previous chapters, the list-style shorthand property
allows multiple properties to be combined into one property. The following table outlines the list-
style shorthand property and the possible values it allows.

350

Chapter 12

16_576429 ch12.qxd 11/18/04 12:33 PM Page 350

Property Value

list-style [<’list-style-type’> || <’list-style-position’> || <’list-style-image’>] | inherit
Initial value: n/a

The list-style property enables you to specify from one to three values, with each value correspond-
ing to the list style properties I have discussed throughout this chapter: list-style-type, list-
style-image, and list-style-position. For example, you could rewrite the example shown in
Figure 12-9 like this using the list-style property:

ul {
font-family: sans-serif;
list-style: disc outside url(‘download.gif’);

}

This produces the same output as that shown in Figure 12-9. You may be thinking “Why specify both an
image and a marker style? Won’t the image replace the marker style?” Although that’s true, it is also
possible that the user has disabled the display of images. Voice synthesizers may also provide a different
style of voice for different marker styles to help visually impaired visitors.

You don’t have to specify values for all three properties. You can include only two values in the list-
style property, like this:

ul {
font-family: sans-serif;
list-style: inside url(‘download.gif’);

}

This rule produces output identical to what was shown earlier in Figure 12-11.

Finally, it is also possible to provide only one value for this property, which would be list-style-
type, list-style-position, or list-style-image.

ul {
font-family: sans-serif;
list-style: url(‘download.gif’);

}

The preceding rule provides output identical to that shown in Figure 12-9. The final property that I discuss
in this chapter is the cursor property, which enables you to control the kind of cursor displayed on your
page.

The cursor Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

CSS provides the cursor property to control the type of cursor displayed for a particular element. The
following table outlines the cursor property and its possible values.

351

Styling Lists and the User Interface

16_576429 ch12.qxd 11/18/04 12:33 PM Page 351

Property Value

cursor [[<uri> ,]* [auto | crosshair | default | pointer | move | e-resize |
ne-resize | nw-resize | n-resize | se-resize | sw-resize | s-resize | w-resize |
text | wait | help | progress]] | inherit
Initial value: auto

The notation in the preceding table shows that the cursor property can accept a reference to a custom
cursor with the <uri> notation. The table also shows that you can provide more than one URL by giving
a comma-separated list of URLs. Alternatively, you can provide a keyword to change the cursor displayed
while the user’s mouse pointer is hovering over an element. To demonstrate how the cursor can be
changed, consider the following rule:

div {
cursor: move;
border: thin solid black;
width: 100px;
height: 100px;

}

Figure 12-12 shows that the cursor changes to a crosshair with arrows on all four points when the user’s
mouse hovers over the <div> element.

Figure 12-12

The following table shows what type of cursor to expect with each keyword value.

Cursor Keyword Cursor Image

crosshair

pointer

move

352

Chapter 12

16_576429 ch12.qxd 11/18/04 12:33 PM Page 352

Cursor Keyword Cursor Image

e-resize / w-resize

ne-resize / sw-resize

n-resize / s-resize

nw-resize / se-resize

text

wait

help

progress

The cursors of the preceding table are typical of the Windows OS. If you have a Windows OS, you can
find more cursors in the C:\Windows\Cursors directory.

Although the table shows cursors specific to the Windows OS, other operating systems provide similar
cursors. The type of cursor displayed for each keyword may be different based on the user’s cursor pref-
erences. For instance, the user may have installed a theme that includes a different style of cursor. The
style of cursor is also different on different operating systems, meaning it would differ from Mac OS X to
Windows. Despite the possible differences in the aesthetic appearance of cursors, the cursors provided
by the operating system will match the cursor keywords provided by CSS.

You can also provide a custom cursor by referencing the file path to the cursor file:

div {
cursor: url(‘banana.ani’);
border: thin solid black;
width: 100px;
height: 100px;

}

The rendered output in Figure 12-13 shows an animated banana cursor when viewed in IE 6.

Mozilla, Opera, and Safari do not yet support custom cursors. IE 6 supports only Windows native cursor
formats: .cur (a static cursor image) and .ani (an animated cursor image). The W3C specification states
that more than one cursor image may be referenced, as in the following, in the event that the browser
does not understand the first cursor image provided:

cursor: url(‘cursor.svg’), url(‘cursor.cur’), pointer;

In this example, an .svg file is referenced first. If the browser isn’t capable of displaying an .svg file, it
attempts to retrieve the cursor.cur image. If it can’t display that cursor, it defaults to the pointer keyword.

353

Styling Lists and the User Interface

16_576429 ch12.qxd 11/18/04 12:33 PM Page 353

Figure 12-13

Summary
The CSS list properties provide complete control over how list elements are presented. To recap, in this
chapter you learned that

❑ A variety of predefined options are available for the display of list item markers using the
list-style-type property.

❑ The list-style-image property may be used to provide a custom image as the list item marker.

❑ The list-style-position property dictates whether the markers appear inside the list item
element or outside of it.

❑ The list-style property provides a shortcut syntax where all three list style properties may
be referenced at once.

❑ The cursor property may be used to change the cursor displayed to the user, which may be via
a predefined list of keywords or by referencing a custom image via a URL, although the latter is
only supported (at the time of this writing) by Internet Explorer 6.

In Chapter 13, I explore the properties that CSS provides for control over the presentation of backgrounds.

Exercises
1. Using the list-style-type property introduced in this chapter and properties introduced in

previous chapters, create a tabbed navigation menu using only lists (and) and CSS.
Include four links, one in each list-item and lay out the tabs horizontally. Put a thin, solid border
below all the tabs and around each individual tab, make each tab 100 pixels wide, center the text
of each tab, and space each tab from the other.

Floated elements are taken out of the normal flow. To place the border on the bottom
of the tabs, the element must have an explicit height.

354

Chapter 12

16_576429 ch12.qxd 11/18/04 12:33 PM Page 354

2. Create a list that resembles a folder navigation tree. Use two images: an image representing a
closed folder and an image representing an open folder. Place at least five items in your folder
tree. Make the last list item positioned on the inside of the list and display an open folder for the
list item marker. You may use only one list and only two rules; and you cannot use any class or
id names.

Use adjacent selectors to select a specific list item.

355

Styling Lists and the User Interface

16_576429 ch12.qxd 11/18/04 12:33 PM Page 355

16_576429 ch12.qxd 11/18/04 12:33 PM Page 356

13
Backgrounds:

Setting the Scene

In Chapter 12, you learned how CSS lists are styled and how you can control the mouse cursor by
using the cursor property. In this chapter, you explore the CSS background properties and see
how these provide control over the presentation of the background. In this chapter, I discuss the
following:

❑ How to use the background-color property to set a background color

❑ How to use the background-image property to specify a background image

❑ How to use the background-repeat property to control background tiling

❑ How to use the background-position property to control how the background is
positioned

❑ How to use the background-attachment property to control whether the background
scrolls with the page or remains fixed in place with respect to the view port

❑ How to use the background shorthand property to combine all the separate background
properties into a single property

Backgrounds play a large role in CSS design and are often the bread and butter of the overall
aesthetic presentation of a web page. This chapter begins the discussion of background properties
by exploring the background-color property.

The background-color Property
Documented in CSS 2.1 and supported in IE5.5, IE6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

As I touched on in Chapter 4, you use the background-color property to specify a solid back-
ground color. The following table shows the possible values for the background-color property.

17_576429 ch13.qxd 11/18/04 12:33 PM Page 357

Property Value

background-color <color> | transparent | inherit
Initial value: transparent

The background-color property allows any of the color values supported by CSS, such as a color key-
word, an RGB value, or a hexadecimal, or short hexadecimal value. It may also be given the transparent
keyword, which indicates that no color should be used.

The following exercise applies the background-color property to the JT’s Island Grill and Gallery style
sheet.

Try It Out Applying a Background Color
Example 13-1. To apply the background-color property to the JT’s Island Grill website, follow these
steps.

1. Add the following declaration to the base_styles.css style sheet to apply background colors for
the page heading and footer:

h1, h6 {
background-color: lightsteelblue;
border-left: 0.05em solid black;
border-right: 0.05em solid black;

}

2. Save base_styles.css.

3. Make the following modifications to the menu_system.css style sheet to apply background colors
for each aspect of the site’s navigation:

div#nav > ul > li {
background-color: lightblue;
padding: 0.5em;
border: 0.05em solid black;
font-size: 0.9em;

}
div#nav > ul > li:hover {

background-color: lightsteelblue;
}

4. Still modifying the menu_system.css style sheet, make the following changes:

ul.menu {
background-color: lightblue;
width: 15em;

358

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 358

-moz-border-radius-bottomleft: 1em;
-moz-border-radius-bottomright: 1em;
border: 0.05em solid black;

}
ul#food ul.menu {

-moz-border-radius-topleft: 1em;
}
ul#gifts ul.menu {

-moz-border-radius-topright: 1em;
}
ul.menu li {

color: black;
}
ul.menu a {

margin: 0.4em;
padding: 0.5em;
color: black;
display: block;
border: 0.05em solid lightblue;

}
ul.menu a:hover {

background-color: lightsteelblue;
-moz-border-radius: 0.8em;
border: 0.05em solid black;
text-decoration: none;

}
div#nav ul a:active {

background-color: steelblue;
}

5. Save menu_system.css.

6. Add the following rule to the dinner_menu.css style sheet to give the dinner menu itself a back-
ground color:

p.copy {
padding-top: 0;

}
div#content {

background-color: lightyellow;
}

7. Save dinner_menu.css.

Figure 13-1 shows that a number of background colors have been applied to the JT’s dinner menu.

359

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 359

TE
AM
 F
LY

Figure 13-1

How It Works
Different background colors have been applied to each navigational heading and each list of links
underneath each heading. A background color has been applied to the <h1> heading containing the
page’s title, the body of the dinner menu itself, and the <h6> heading containing the page’s footer. I’ve
already covered the background-color property fairly extensively in previous chapters, but here’s a
review of the most important modifications made to the menu_system.css style sheet. The following
shows how these modifications impact the presentation of the web page.

The first modification to the menu_system.css style sheet is made to give each heading a light blue back-
ground color.

div#nav > ul > li {
background-color: lightblue;
padding: 0.5em;

360

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 360

Okay, straightforward enough. The navigational headings are selected here based on their ancestry with
the direct child selector. If the nav <div> element has a element as a child and that element
has an element as a child, apply a lightblue background color. The next modification changes
the color of those item background colors if the user’s mouse cursor is over the element.

div#nav > ul > li:hover {
background-color: lightsteelblue;

}

This step adds dynamic functionality to each navigational heading. The background color of each list
item changes in response to user actions, allowing the JT’s menu to feel more like an application and less
like a static, unchanging web document. In the old days, such functionality could only be achieved by
using complicated client-side scripting languages. Today, simple dynamic functionality, such as a head-
ing that changes color when the user’s mouse cursor rolls over it, can be completely created using plain
HTML and CSS.

The next modification gives each submenu that contains the links for each heading a light blue back-
ground color to complement the background color of each individual heading:

ul.menu {
background-color: lightblue;
width: 15em;

These submenus are provided with their own background colors. When I turn these into drop-down
menus in Chapter 14, each menu will have a solid background instead of a transparent background.

Next, as I did for each individual navigation heading, I specified a background color that appears when
the user’s mouse cursor hovers over the individual links contained in each menu:

ul.menu a:hover {
background-color: lightsteelblue;
-moz-border-radius: 0.8em;

This follows along with the same dynamic principles applied to each heading. The background color of
each link changes in response to user action; in this case, the background color of each link changes as
the user makes a selection from the menu. Finally, I provide another background color for links that
have actually been clicked:

div#nav ul a:active {
background-color: steelblue;

}

When clicked, each link briefly changes color (in this case, to steel blue) to indicate that it has been clicked.

In the next section, I discuss the background-image property, which lets you use an image for the back-
ground of your page.

361

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 361

The background-image Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

As you probably guessed, the background-image property enables you to provide an image for the back-
ground. The following table outlines the possible values available for the background-image property.

Property Value

background-image <uri> | none | inherit
Initial value: none

Like the list-style-image property that I discussed in Chapter 12, the background-image property
allows you to reference a URL, which is indicated by the <uri> notation in the preceding table, a key-
word of none, or, like all other properties, a keyword of inherit. When you specify a background
image, by default the image tiles across the entire area available to it. The size of each tile depends on
the size of the image itself. Consider the following example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title></title>
<style type=’text/css’>

html, body {
height: 1000px;

}
body {

background-image: url(‘jts.jpg’);
}

</style>
</head>
<body>
</body>

</html>

Figure 13-2 shows that the image is tiled horizontally and vertically, covering all the available space. To be
able to see how the background reacts while scrolling the page I gave the <html> and <body> elements
both an explicit height, overriding their auto height behavior.

The following Try It Out applies two background images to the JT’s Island Grill and Gallery style sheet.
These images — palms.jpg (1600 pixels in width by 781 pixels in height) and dinner_glass.jpg (1600 pixels
in width by 1200 pixels in height) — are available to download from www.wrox.com. If you are unable to
download them for any reason, you can substitute your own images.

362

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 362

Figure 13-2

Try It Out Applying a Background Image
Example 13-2. In the following steps, you apply background images to the JT’s Island Grill and Gallery
dinner menu.

1. Add the following declaration to the base_styles.css style sheet to apply a background image to
the <body> of the web page:

body {
background-image: url(‘../images/backgrounds/palms.jpg’);
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}

2. Save base_styles.css.

363

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 363

3. Add the following declaration to the dinner_menu.css style sheet to apply a background image
to the body of the dinner menu itself:

p.copy {
padding-top: 0;

}
div#content {

background-color: lightyellow;
background-image: url(‘../images/backgrounds/dinner_glass.jpg’);

}

4. Save dinner_menu.css

In Figure 13-3, you can see that two images have been applied to the JT’s dinner menu.

Figure 13-3

How It Works
Figure 13-3 shows that two images have been applied to the JT’s dinner menu. One (palms.jpg) to the
background of the <body> element, which in essence means the browser view port. This image is a soft-
ened representation of a Chokoloskee sunset as viewed from JT’s front porch. I created this image with

364

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 364

the largest possible screen resolutions in mind, giving it dimensions of 1600 x 781 pixels. This allows the
background image to remain stretched across the view port as the screen resolution increases. It isn’t the
best way to approach the background image, but CSS offers no way to dynamically resize the image
with the area available to the image. In other words, you can’t dynamically scale the image to 1024 x 768
(if that is the user’s screen resolution). In order to size the background image so that it reaches the most
screen resolutions, I’ve made it as wide as the largest screen resolution I’m willing to target: 1600 x 1200.

I also experimented with different JPEG compression rates to get the image as small in file size as possi-
ble, selecting the lowest-possible compression resulting in the least artifacts appearing in the image.
Compression artifacts are very similar to the effects of pixelization that I discussed in Chapter 4. An
image of low-quality compression containing artifacts makes the image ugly, so I settled on a compres-
sion rate that produces as few as possible. This technique can be explored with Adobe Photoshop or
other graphic editing tools.

I also employed similar techniques for the dinner_glass.jpg image that I used for the background of the
dinner menu. Although with this second image, I used Adobe Photoshop with the various filters and the
image editing tools it offers to soften the original photo, thereby ensuring that the text of the menu itself
would not be difficult to read with the dinner_glass.jpg image behind it. Adobe Photoshop offers a far
more powerful range of image-editing capabilities. I also gave this image a size of 1600 x 1200 pixels so
that it would respond gracefully to adjustments in the user’s screen resolution and the user’s default text
size. Once more experimenting with different JPEG compression rates, I achieved an image about 60KB
in size, which results in acceptable download times for the majority of users.

The final technique employed in this example is the use of a relative file path preceded by two periods
and a forward slash:

background-image: url(‘../images/backgrounds/dinner_glass.jpg’);

The two periods and forward slash before the reference to the images directory tells the browser that the
images directory can be found in the parent directory of the style_sheets directory. The parent directory
here is the chokoloskee-island directory. This is necessary because, if I specified the file path like this

background-image: url(‘images/backgrounds/dinner_glass.jpg’);

the browser would expect the images directory to be in the style_sheets directory and would consider
style_sheets/images/backgrounds/dinner_glass.jpg to be the path to the dinner_glass.jpg. Of
course, the browser wouldn’t be able to find the image there. So I used the two periods and forward
slash to tell it to first go up one directory level before looking for the images directory.

The next section continues the discussion of CSS background properties with the background-repeat
property. This property enables you to control whether and how an image is tiled.

The background-repeat Property
Documented in CSS 2.1 and supported in IE 5, IE 6,Mozilla 1.7, Opera 7.5, and Safari 1.2.

The background-repeat property is used to control how an image is tiled or if it is tiled at all. The fol-
lowing table shows the possible values for the background-repeat property.

365

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 365

Property Value

background-repeat repeat | repeat-x | repeat-y | no-repeat | inherit
Initial value: repeat

As you saw in the last section, by default a background is tiled vertically and horizontally. The back-
ground-repeat property offers control over this. For instance, you can limit the tiling of a background
image to the x-axis by supplying the repeat-x keyword value to the background-repeat property.
Consider this keyword applied to the example shown in Figure 13-2:

html, body {
height: 1000px;

}
body {

background-image: url(‘jts.jpg’);
background-repeat: repeat-x;

}

Figure 13-4 shows that the jts.jpg image is tiled only along the x-axis.

Figure 13-4

366

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 366

Conversely, you can limit the image to tiling along the y-axis by using the repeat-y keyword, as is
shown in Figure 13-5.

Figure 13-5

Or, you can make the image not repeat (tile) at all by using the no-repeat keyword, as depicted in
Figure 13-6.

367

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 367

Figure 13-6

The following Try It Out applies the background-repeat property to the JT’s Island Grill and Gallery
style sheet.

Try It Out Controlling Background Repetition
Example 13-3. In the following steps you can see the effects of the background-repeat property.

1. Add the following declaration to the base_styles.css style sheet to turn off tiling of the palms.jpg
background image:

body {
background-image: url(‘../images/backgrounds/palms.jpg’);
background-repeat: no-repeat;
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}

368

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 368

2. Save base_styles.css.

3. Add the following declaration to the dinner_menu.css style sheet to turn off tiling of the
dinner_glass.jpg background image:

div#content {
background-color: lightyellow;
background-image: url(‘../images/backgrounds/dinner_glass.jpg’);
background-repeat: no-repeat;

}

4. Save dinner_menu.css.

How It Works
The effects of this property are not easily captured with a screen shot because the page is simply too long
for the space available here. If you’re working through these examples with me, however, you can see that
when dinner_menu.html is loaded into Mozilla, the palms.jpg and dinner_glass.jpg images appear only
once on the page, instead of being tiled as they were when you applied the background-image property.

The next section continues discussion of CSS background properties by introducing the background-
position property. The background-position property lets you control the placement of the
background.

The background-position Property
Documented in CSS 3 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

The background-position property, as its name implies, allows you to control the placement of the
background. The following table shows the possible values for the background-position property.

Property Value

background-position [[<percentage> | <length>]{1,2} | [[top | center | bottom] || [left |
center | right]]] | inherit
Initial value: 0% 0%

At first glance, this property looks a little complicated; in truth, it isn’t all that complex. The notation
boils down to this: The property allows two values that express the position of the background; one
value that gives the position of the background, or a value of inherit. The value must be one of the three
possibilities shown in the preceding table, but all three cannot be used at once. Square brackets are used
to group the possible values. The following is the first subgrouping of values within the first grouping:

[<percentage> | <length>]{1,2}

The first grouping indicates that the value may be a percentage or length value. Either one or two values
may be provided; but if two values are provided, both must be percentage values or length values — not

369

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 369

a mixture. This is indicated by the presence of a single vertical bar between the <percentage> and
<length> values. The second subgrouping is preceded by a vertical bar, which indicates another possi-
bility for the value:

| [[top | center | bottom] || [left | center | right]]

The second grouping indicates that either one or two keyword values may be provided; if two values are
provided, it may be any keyword from the first grouping combined with any of the keywords from the
second grouping.

Consider the following example of this in action:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title></title>
<style type=’text/css’>

html, body {
height: 1000px;

}
body {

background-image: url(‘jts.jpg’);
background-repeat: no-repeat;
background-position: left top;

}
</style>

</head>
<body>
</body>

</html>

This example results in the same output shown in Figure 13-6; the image is positioned to the left and top
of the view port. This use of the background-position property is an example of the first grouping of
values in which two values are provided to the property. The background-position: left top; dec-
laration is the same as saying background-position: top left; or what you would get by supply-
ing a percentage measurement of background-position: 0% 0%;. Each results in the same output.
Here is another example:

body {
background-image: url(‘jts.jpg’);
background-repeat: no-repeat;
background-position: top center;

}

Figure 13-7 shows the background image centered at the top of the browser window.

You can also express this position with a single keyword: background-position: top;. Using this value
results in the same output shown in Figure 13-7. In addition, the declaration background-position:
center top; provides output identical to that shown in Figure 13-7.

370

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 370

Figure 13-7

If a percentage measurement or a length unit is used, two values must be provided, as is indicated in the
first grouping of values in the notation for the background-position property. Consider the following
example:

body {
background-image: url(‘jts.jpg’);
background-repeat: no-repeat;
background-position: 0% 50%;

}

Figure 13-8 shows that the background image is now vertically centered and appears horizontally on the
left side of the browser window.

The background-position: 0% 50%; declaration is the same thing as saying background-position:
left center; or background-position: center left;.

371

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 371

Figure 13-8

The following Try It Out applies the background-position property to the JT’s Island Grill and
Gallery dinner menu.

Try It Out Controlling the Background’s Position
Example 13-4. The following steps show how you can use the background-position property to position
the background on JT’s website.

1. Add the following declaration to the base_styles.css style sheet to position the palms.jpg back-
ground image:

body {
background-image: url(‘../images/backgrounds/palms.jpg’);
background-repeat: no-repeat;
background-position: center bottom;
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}

372

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 372

2. Save base_styles.css.

3. Add the following declaration to the dinner_menu.css style sheet to position the
dinner_glass.jpg image:

div#content {
background-color: lightyellow;
background-image: url(‘../images/backgrounds/dinner_glass.jpg’);
background-repeat: no-repeat;
background-position: center center;

}

4. Save dinner_menu.css

Figure 13-9 shows the dinner_glass.jpg image positioned at the center and bottom of the browser window.

Figure 13-9

Figure 13-10 shows the browser window scrolled down below the dinner menu; you can see that the
palms.jpg image is now positioned at the center and bottom of the window.

373

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 373

Figure 13-10

How It Works
In Figure 13-9, the dinner_glass.jpg image is centered vertically and horizontally in the output. Positioning
it at the center of the content <div>— both horizontally and vertically — allows the wine glass in the pic-
ture to take center stage. This image isn’t visible in Figure 13-10, however, because the figure shows only
the bottom of the dinner menu.

Controlling the positioning of the background image in Figure 13-10 enables the palms.jpg image to be
visible in the background. Being centered in the window, it becomes more visible as the screen resolution
increases.

The effects of these modifications are brought out even further with the addition of the next property, the
background-attachment property. This property lets you control whether an image scrolls with the
rest of a page’s content.

374

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 374

The background-attachment Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Opera 7.5, and Safari 1.2.

You can use the background-attachment property to control whether a background image scrolls with
the content of a web page (when scroll bars are activated because that content is larger than the browser
window). The following table outlines the possible values for the background-attachment property.

Property Value

background-attachment scroll | fixed | inheri
Initial value: scroll

Internet Explorer supports the fixed keyword only if applied to the <body> element.

The background-attachment property provides one very cool effect. By default, the background image
scrolls with the content of the web page; this is the behavior of the background-attachment: scroll;
declaration. If the fixed keyword is provided and the browser in question supports it, the background
image remains fixed in place while the page scrolls. Here is an example of this scenario:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title></title>
<style type=’text/css’>

html, body {
height: 1000px;

}
body {

background-image: url(‘jts.jpg’);
background-repeat: no-repeat;
background-position: 0% 0%;
background-attachment: fixed;

}
</style>

</head>
<body>
</body>

</html>

This effect is not easily represented in a screen capture. To view the effect of the preceding code, load up
the preceding example into Mozilla and be in awe as the jts.jpg image remains fixed to the left top corner
of the browser window while you scroll. You can obtain this image in the book’s code download at
www.wrox.com and also see the finished .html file (background-attachment-fixed.html). If you don’t
have Internet access, you may substitute an image of your own.

The following Try It Out implements the background-attachment property in JT’s dinner menu.

375

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 375

Try It Out Fixing the Background in Place
Example 13-5. To see how the dinner menu background images remain fixed in place while scrolling, fol-
low these steps.

1. Add the following declaration to the base_styles.css style sheet:

body {
background-image: url(‘../images/backgrounds/palms.jpg’);
background-repeat: no-repeat;
background-position: center bottom;
background-attachment: fixed;
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}

2. Save base_styles.css.

3. Add the following declaration to the dinner_menu.css style sheet:

div#content {
background-color: lightyellow;
background-image: url(‘../images/backgrounds/dinner_glass.jpg’);
background-repeat: no-repeat;
background-position: center center;
background-attachment: fixed;

}

4. Save dinner_menu.css.

Figure 13-11 shows that both images are fixed in place and remain in place while the menu is scrolled.

How It Works
As you can see, the palms.jpg image is no longer at the very bottom of the page (as it was in Figure 13-10)
because the menu has been scrolled down. Being fixed in place, both background images appear as
though they are a part of the browser window itself.

The next section wraps up this chapter with a discussion of the background shorthand property. As
with the shorthand properties you’ve been introduced to in other chapters, this property lets you com-
bine several background properties into one.

376

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 376

Figure 13-11

The background shorthand Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2.

Like the shorthand properties I introduced in previous chapters, the background property combines
each of the individual background properties into a single property. The following table outlines the
values allowed by the background property.

Property Value

background [<’background-color’> || <’background-image’> || <’background-
repeat’> || <’background-attachment’> || <’background-position’>] |
inherit
Initial value: n/a

377

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 377

With the background property, you can specify anywhere from one to five separate background properties.
Consider the following rule:

body {
background: transparent url(‘jts.jpg’) no-repeat scroll top center;

}

This rule provides output identical to what you see if you refer back to Figure 13-7. Actually, because
transparent is the default background color and scroll is the default value for background repeat,
these two values are unnecessary. You could rewrite this rule like this:

body {
background: url(‘jts.jpg’) no-repeat top center;

}

And because you can express the top center position with only the top keyword, you could rewrite
this rule as follows:

body {
background: url(‘jts.jpg’) no-repeat top;

}

Now even more simplified, the preceding rule still produces the same output as shown in Figure 13-7. As
you have seen in examples in previous chapters, the background property can be used with only a single
value. The background: red; declaration is the same as the background-color: red; declaration.
Likewise, the declaration demonstrated in Figure 13-2, background-image: url(‘jts.jpg’);, can
also be written as background: url(‘jts.jpg’);. The background property provides the functional-
ity of all five background properties in one property.

The following Try It Out simplifies the JT’s style sheet by rewriting the rules of previous examples into
one using the background shorthand property.

Try It Out Applying the Background Shorthand Property
Example 13-6. To see how individual background properties can be rewritten using the background
property, follow these steps.

1. Locate the following rule from the base_styles.css style sheet:

body {
background-image: url(‘../images/backgrounds/palms.jpg’);
background-repeat: no-repeat;
background-position: center bottom;
background-attachment: fixed;
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}

378

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 378

2. Rewrite the highlighted declarations in Step 1 as the following:

body {
background: url(‘../images/backgrounds/palms.jpg’) no-repeat fixed center

bottom;
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New”, Courier, monospace;
text-transform: lowercase;

}

3. Save base_styles.css.

4. Locate the following rule from the dinner_menu.css style sheet:

div#content {
background-color: lightyellow;
background-image: url(‘../images/backgrounds/dinner_glass.jpg’);
background-repeat: no-repeat;
background-position: center center;
background-attachment: fixed;

}

5. Rewrite the declarations that you located in Step 4 as the following:

div#content {
background: lightyellow url(‘../images/backgrounds/dinner_glass.jpg’) no-repeat

fixed center center;
}

6. Save dinner_menu.css.

How It Works
The modifications made to the JT’s style sheet in this example provide identical output to that observed in
Figure 13-11 using only one declaration where there were previously five. Shorthand properties provide
the functionality of many using the syntax of only one.

Summary
The CSS background properties provide a fine-grained control over the presentation of backgrounds in a
web document, which allows interesting aesthetic possibilities. To recap in this chapter, you learned that

❑ You can specify a solid background color by using the background-color property.

❑ You can use the background-image property to provide a background image that tiles all the
space available to it by default.

❑ You can use the background-repeat property to control the tiling of background images. This
can be limited to the x-axis or the y-axis, or you can use the no-repeat keyword to prevent the
background image from tiling.

379

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 379

❑ You can use the background-position property to position the background image.

❑ You can use the background-attachment property to control whether a background image
scrolls with a page or remains fixed in place. If the image is fixed in place it becomes positioned
relative to the browser window itself instead of the element it is applied to.

❑ You can use the background shorthand property to put the control of all five properties into
one property.

Chapter 14 discusses the properties that CSS provides to position elements.

Exercise
Using the four-column design you created for Chapter 11, Exercise 1, create an image as large as the res-
olution of your computer screen. For full effect, make two different versions of the same background
image using a graphics editing program: a black-and-white version of the original image and the origi-
nal image itself. The idea is to create two versions of the same image identical in size, with the only dif-
ference being that one is black and white and the other is full color. You may obtain an example of this in
this book’s source code download from www.wrox.com. (See kayaking.jpg, kayaking2.jpg, and exer-
cise13-1.html in the Chapter 13 folder after you download the files.)

Armed with two variations of the same image, add a list of hyperlinks in column #1 enclosing the hyper-
links in unordered lists and removing the default padding, margin, and list styles. Given each list item a
height of 50 pixels and a solid black border. Add a bottom margin to each list item so that each list item
is separated from the others by a small gap. Set the background image for each list item using the origi-
nal image. Position the image in the center both vertically and horizontally, but use only one keyword to
do so. Fix the background in place as the page scrolls. Turn off tiling of the image. Repeat the same tech-
nique for the background of each column 1–4, this time using the black and white version of the original
image. Again repeating the same technique set the background of the body of the document with the
original image. Finally, give the footer a background using a solid color.

Use only the background shorthand property to set all the backgrounds. You can see a preview of what
this should look like in Figure 13-12.

380

Chapter 13

17_576429 ch13.qxd 11/18/04 12:33 PM Page 380

Figure 13-12

381

Backgrounds: Setting the Scene

17_576429 ch13.qxd 11/18/04 12:33 PM Page 381

17_576429 ch13.qxd 11/18/04 12:33 PM Page 382

14
Positioning

This chapter examines the various properties that CSS provides to position elements in a document.
Positioning can be thought of as layering, in that the various elements of a page can be layered on
top of others and given specific places to appear in the browser’s window. In this chapter I discuss:

❑ The position property and the four types of positioning that CSS has to offer: static,
relative, absolute, and fixed

❑ The offset properties top, right, bottom, left and how these are used to deliver an
element to a specific position in a web document

❑ The z-index property and how this property is used to layer the elements of a document

Positioning makes CSS a very powerful presentational language, and further enhances its flexibility.
Like floating elements, positioning offers some unique characteristics that allow behavior you might
not always expect. In Chapter 10, I introduced positioning by demonstrating how combining abso-
lute positioning with the four offset properties can create an element that has margins, borders, and
padding with fluid height and width. This chapter begins the discussion of positioning with none
other than the position property.

The position Property
Documented in CSS 2 and supported in IE 5.5 (partial), IE 6 (partial), Opera 7.5, Mozilla 1.7,
and Safari 1.2.

The position property is used to give an element a certain type of positioning. The following table
outlines the position property and its possible values.

Property Value

position static | relative | absolute | fixed | inherit
Initial value: static

Neither IE 5.5 nor IE 6 supports fixed positioning.

18_576429 ch14.qxd 11/18/04 12:34 PM Page 383

There are four different types of positioning. In the upcoming sections I describe each of the four types
of positioning in detail: static, absolute, relative, and fixed. The next section begins this discussion with
static positioning.

Static Positioning
By default, all elements are positioned statically, which you do using the position: static; declaration.
This is the behavior you’ve observed in the majority of examples up to this point. Static positioning means
that all elements appear in a normal flow; that is, elements appear one after another from the top of the doc-
ument and flow in sequence to the bottom of the document. A statically positioned element has no special
positioning applied and cannot be affected by the use of the four offset properties —top, right, bottom
and left— which control the placement of an absolutely, relatively, or fixed positioned element. The four
offset properties are discussed in further detail in the upcoming “Offset Properties” section in this chapter.

The next section continues discussion of absolute positioning, which is often used to layer elements in a
document.

Absolute Positioning
Absolute positioning is used to deliver an element to a specific place in a web document. The effects of
absolute positioning cannot be fully conveyed without also discussing relative positioning, and the four
offset properties, top, bottom, left, and right. To those ends, absolute positioning is something I con-
tinue to cover throughout this chapter because it can be combined with different types of positioning,
the four offset properties, and layering. However, in the meantime, examine what absolute positioning
does on its own. Consider the following rules:

div {
position: absolute;
width: 200px;
border: 1px solid black;
opacity: 0.7;
background: lightyellow;

}
p {

margin: 0;
}

Combine these rules with the following markup:

<div>
<p>

Paragraph text. Paragraph text. Paragraph text.
Paragraph text. Paragraph text. Paragraph text.

</p>
</div>
<div>

Second div text.
</div>

The screen shot in Figure 14-1 shows that something interesting is happening. Both <div> elements are
given a position: absolute; declaration, which causes the <div> elements to appear stacked one on
top of the other.

384

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 384

Figure 14-1

Applying a slight opacity to the second <div> element further highlights the stacking of the two elements.
The opacity property is new to CSS 3, and at the time of this writing is only supported by Mozilla 1.7 and
Safari 1.2. It accepts a floating-point number between 0 and 1, where 0 is fully transparent and 1 is fully
opaque. Applying the opacity property allows you to see that the paragraph text inside of the first <div>
element is underneath the second <div> element. This example demonstrates how absolute positioning is
used for layering elements in a document. An element that is absolutely positioned is completely taken out
of the normal flow of the document and positioned along an invisible z-axis.

At this point, you know that absolute positioning places elements in a specific place in a document. In
the following Try it Out example, you add absolute positioning to the JT’s Island Grill and Gallery style
sheet to begin the processes of positioning the navigation of the JT’s website and making dynamic drop-
down menus.

Try It Out Applying Absolute Positioning
Example 14-1. The following steps show you how to apply absolute positioning.

1. Open menu_system.css and apply the following declarations:

div#nav {
position: absolute;
margin: auto;
width: 50em;
text-align: center;

}
div#nav > a > img {

clear: left;
display: block;
margin: 0 auto;
width: 16em;
height: auto;

}
div#nav ul {

position: absolute;
list-style-type: none;
margin: 0;
padding: 0;

}

2. Save menu_system.css.

Figure 14-2 shows that things have turned chaotic in the JT’s dinner menu, although it is closer to having
dynamic drop-down menus.

385

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 385

Figure 14-2

How It Works
In this example, you apply absolute positioning to the areas of the dinner menu that you can easily fore-
see as positioned. Each of the four navigation headings is split into two pairs. One pair is positioned to the
left and one pair is positioned to the right of the logo. This takes you a step closer to the goal of having
each of these headings contain a drop-down menu that appears only when the user’s mouse hovers over
the corresponding heading. The logo and navigation headings are also layered slightly on top of the first
heading of the document. According to this plan, absolute positioning is applied to the menu_system.css
style sheet for the relevant elements. The nav <div> is positioned absolutely so that it can be layered
slightly on top of the first heading of the dinner menu. All the elements inside of the nav <div> are
also positioned absolutely, because both the headings and the menus of links are to be delivered to spe-
cific places in the document.

This example highlights how elements that are positioned absolutely are taken out of the normal flow of
the document. In Chapter 10 you applied a declaration to base_styles.css that applied 5em of top
padding on the <body> element:

386

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 386

body {
background: url(‘../images/backgrounds/palms.jpg’) no-repeat fixed center

bottom;
padding: 5em 0 1.2em 0;
margin: 0;
font-family: “Courier New” Courier monospace;
text-transform: lowercase;

}

You applied this padding in Chapter 10, so when the navigation was given positioning here, a small gap
appeared between the top heading of the menu and the bottom border of the browser window, reserving
a place for that navigation to reside. It should be obvious that the navigation is now layered along an
invisible z-axis.

Offset Properties
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Opera 7.5, Mozilla 1.7, and Safari 1.2.

Offset properties are used to precision position elements. In Chapter 10, you saw how specifying all four
offset properties stretches content. This chapter demonstrates how offset properties are used in the vast
majority of scenarios to control placement of positioned elements. The following table outlines the four
offset properties and their possible values.

Property Value

top <length> | <percentage> | auto | inherit
Initial value: auto

right <length> | <percentage> | auto | inherit
Initial value: auto

bottom <length> | <percentage> | auto | inherit
Initial value: auto

left <length> | <percentage> | auto | inherit
Initial value: auto

Offset properties contribute much to understanding exactly what part positioning plays in the design of
a web document. Without the four offset properties, positioning isn’t very interesting; therefore, these
properties have an intrinsic part to play. Consider the following rules:

div {
position: absolute;
width: 150px;
height: 150px;
padding: 10px;
border: 1px solid black;

387

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 387

opacity: 0.7;
background: lightyellow;

}
div#div1 {

top: 0;
left: 0;

}
div#div2 {

top: 20px;
left: 20px;

}

Also consider this markup:

<div id=’div1’>
This is the text of the first div.
This is the text of the first div.

</div>
<div id=’div2’>

This is the text of the second div.
This is the text of the second div.

</div>

Figure 14-3 shows that the position of each <div> element can be controlled precisely with inclusion of
the top and left offset properties.

Figure 14-3

The top and left properties in Figure 14-3 show that each <div> element is positioned relative to the
browser view port: top refers to the top border of the view port and left to the left side. If you follow
along with the markup presented for Figure 14-3, you see what happens when right is specified instead
of left:

388

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 388

div#div1 {
top: 0;
right: 0;

}
div#div2 {

top: 20px;
right: 20px;

}

Figure 14-4 shows essentially the same concept as Figure 14-3, except this time both are positioned from
the right side of the browser’s view port.

Figure 14-4

Naturally, the next example shows the bottom property instead of the top:

div#div1 {
bottom: 0;
right: 0;

}
div#div2 {

bottom: 20px;
right: 20px;

}

Figure 14-5 shows that the element is positioned from the bottom of the browser’s view port.

389

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 389

Figure 14-5

I’m sure you can guess what happens when bottom and left are specified (as shown in Figure 14-6).

From the screen output in Figures 14-3, 14-4, 14-5, and 14-6 you get an idea of what the offset properties
do to position an element on the screen. When only two properties are provided, such as top and left
or top and right or bottom and left or bottom and right, this indicates the position of the element
on screen. The top and left properties position the element using the top and left borders of the box
and the top and left sides of the browser’s view port. So when top: 0; and left: 0; are provided that
tells the browser that the element should appear 0 from the left side and 0 from the topside of the view
port. Naturally, the same thing happens with other combinations, such as bottom and right. If bot-
tom: 10px; is provided with right: 10px; that tells the browser 10 pixels of space should separate
the element’s right outside border edge and the right edge of the browser’s view port, and 10 pixels of
space should separate the element’s bottom outside border edge from the bottom of the view port.

390

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 390

Figure 14-6

Up until now you have observed absolutely positioned <div> elements with a defined width and
height. Now, examine what happens when no width or height is defined:

div {
position: absolute;
padding: 10px;
border: 1px solid black;
opacity: 0.7;
background: lightyellow;

}
div#div1 {

top: 0;
left: 0;

}
div#div2 {

top: 20px;
left: 20px;

}

391

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 391

Figure 14-7 demonstrates something you saw in Chapter 11 with floating elements. When an element is
positioned, it takes on the shrink-to-fit behavior you saw in Chapter 10 with tables and Chapter 11 with
floated elements. The <div> elements only expand enough to accommodate the content contained
within.

Figure 14-7

Finally, to reiterate what was presented in Chapter 10, if both top and bottom are specified on an abso-
lutely positioned element, height is implied. Likewise, if both left and right are provided, width is
implied. Techniques like this can be used to create liquid layout. Consider the following example:

div {
position: absolute;
padding: 10px;
border: 1px solid black;
opacity: 0.7;
background: lightyellow;

}
div#div1 {

top: 0;
right: 0;
bottom: 0;
left: 0;

}
div#div2 {

top: 20px;
right: 20px;
bottom: 20px;
left: 20px;

}

Figure 14-8 shows output stretched out vertically and horizontally, demonstrating that if right and
left are both provided, the width of the element is implied; if both top and bottom are provided, the
height of the element is implied.

The next section continues the discussion of positioning with a discussion of relative positioning.

392

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 392

Figure 14-8

Relative Positioning
Unlike in absolute positioning, relatively positioned elements are not removed from the flow of a docu-
ment. Relatively positioned elements remain in the flow of the document, but can be positioned with off-
set properties. To demonstrate this, consider the following example:

div {
position: relative;
padding: 10px;
border: 1px solid black;
opacity: 0.7;
background: lightyellow;

}
div#div1 {

top: 0;
left: 0;

}
div#div2 {

top: 20px;
left: 20px;

}

The preceding is combined with the following markup:

<div id=’div1’>
This is the text of the first div.
This is the text of the first div.

</div>
<div id=’div2’>

This is the text of the second div.
This is the text of the second div.

</div>

Figure 14-9 shows that both <div> elements appear normally because block elements span the window
filling the area available to them.

393

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 393

Figure 14-9

Figure 14-9 also shows that the first <div> element is still affected by the default margin of the <body> ele-
ment. What’s interesting in this example is that the second <div> is positioned 20 pixels from the bottom of
the first <div> and 20 pixels from the outside margin edge of the <body> element on the left side. At first
glance, the position properties when applied to a relatively positioned element appear to have the same
effect as margin. However, one very fundamental difference exists: If margin: 20px 0 0 20px; instead of
top: 20px; and left: 20px; had been applied to the second <div> element, it would not venture slightly
off screen on the right side of the window. The application of the offset properties moves the element, but
does not affect its width because, as a block element, it is still as wide as the <body> element allows.

Often times, relative positioning has a single purpose: to cause absolutely positioned elements to posi-
tion themselves relative to the element with relative positioning. When an element is given a relative
position, and an element inside of that element (a descendant element) is given an absolute position, a
very cool thing happens. The element with absolute positioning is positioned relative to the element
with relative positioning applied, instead of relative to the view port. The case in point is the following:

div {
padding: 10px;
border: 1px solid black;
opacity: 0.7;
background: lightyellow;

}
div#div1 {

position: relative;
margin: 30px;

}
div#div2 {

position: absolute;
top: 20px;
left: 20px;

}

The preceding is combined with the following markup:

<div id=’div1’>
This is the text of the first div.
This is the text of the first div.
<div id=’div2’>

This is the text of the second div.
This is the text of the second div.

</div>
</div>

394

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 394

In Figure 14-10, you see how the absolutely positioned element positions itself relative to the borders of
its relatively positioned parent.

Figure 14-10

The first <div> is supplied a hefty margin of 30 pixels to provide a gap between it and the borders of the
view port to highlight the positioning of the second <div>, whereas you can observe that 20 pixels of
space separates the second <div> from the top and left borders of the first <div> element.

Having seen a few examples of the uses of relative positioning, you can now use Try It Out to apply rela-
tive positioning and the offset properties to the JT’s Island Grill and Gallery style sheet.

Try It Out Applying Relative Positioning and the Four Offset Properties
Example 14-2. You can apply relative positioning with the following steps.

1. In Example 14-1, you saw how the JT’s style sheet turned rather chaotic after you applied abso-
lute positioning. In this step, you add a few declarations to control positioning of those abso-
lutely positioned elements. Open menu_system.css and apply the following modifications:

div#nav {
position: absolute;
right: 0;
left: 0;
top: 0.8em;

}
div#nav > div {

position: relative;
margin: auto;
width: 50em;
text-align: center;

}
div#nav > div > a > img {

position: relative;
clear: left;
display: block;
margin: 0 auto;
width: 17em;
height: auto;

}
div#nav ul {

position: absolute;

395

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 395

list-style-type: none;
margin: 0;
padding: 0;

}
div#nav > div > ul {

top: 2.92em;
width: 50%;

}
ul#gifts {

left: 0;
}
ul#food {

right: 0;
}
div#nav span {

display: block;
overflow: hidden;
height: 2.1em;
line-height: 2.2em;

}
div#nav > div > ul > li {

position: relative;
background-color: lightblue;
padding: 0.5em;
border: 0.05em solid black;
font-size: 0.9em;
padding: 0 0.5em;
width: 8.35em;
height: 2.2em;

}
div#nav > div > ul > li:hover {

background-color: lightsteelblue;
}
ul#gifts > li {

float: left;
}
ul#food > li {

float: right;
}
div#nav > div > ul > li#leftedge {

border-right-width: 0;
-moz-border-radius-topleft: 1em;
-moz-border-radius-bottomleft: 1em;
margin-left: 0.3em;

}
div#nav > div > ul > li#leftedge:hover {

-moz-border-radius-bottomleft: 0;
}
div#nav > div > ul > li#rightedge {

border-left-width: 0;
-moz-border-radius-topright: 1em;
-moz-border-radius-bottomright: 1em;
margin-right: 0.3em;

}

396

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 396

div#nav > div > ul > li#rightedge:hover {
-moz-border-radius-bottomright: 0;

}
ul.menu {

top: 2.19em;
background-color: lightblue;
width: 15em;
-moz-border-radius-bottomleft: 1em;
-moz-border-radius-bottomright: 1em;
border: 0.05em solid black;

}
ul#food ul.menu {

-moz-border-radius-topleft: 1em;
right: -0.07em;

}
ul#gifts ul.menu {

-moz-border-radius-topright: 1em;
left: -0.05em;

}
ul.menu li {

text-align: left;
color: black;

}
ul.menu a {

margin: 0.4em;
padding: 0.5em;
color: black;
display: block;
border: 0.05em solid lightblue;

}
ul.menu a:hover {

background-color: lightsteelblue;
-moz-border-radius: 0.8em;
border: 0.05em solid black;
text-decoration: none;

}
div#nav ul a:active {

background-color: steelblue;
}

2. Save menu_system.css. The menu_style.css style sheet is presented here in its entirety. Be sure to
double-check that your style sheet matches the one presented here.

3. Make the following modifications to dinner_menu.html:

<body>
<div id=’nav’>

<div>
<ul id=’gifts’>

<li id=’leftedge’>
Unique Gifts
<ul class=’menu’>

Gallery

397

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 397

Chokoloskee
<ul class=’menu’>

Visiting Chokoloskee

The Everglades and Ten
Thousand Islands

Recreation in South
Western Florida

<img src=’images/photos/jts_sign.jpg’
alt=’JTs sign’
title=’Go home.’/>

<ul id=’food’>

<li id=’rightedge’>
Delicious Food
<ul class=’menu’>

Lunch at JT’s
JT’s Lunch Menu
Dinner at JT’s

JT’s Dinner Menu

Employment
<ul class=’menu’>

Contact JT’s
Seasonal Employment

Opportunities

</div>
</div>
<div id=’body’>

<h1>
JT’s at Night

</h1>

4. Save dinner_menu.html.

Figure 14-11 shows that the navigational headings and submenus are moved into place.

398

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 398

Figure 14-11

How It Works
This example contains lengthy, complicated changes; and each has a very important effect on the final
product. Let’s review each modification and why it was important. The first involves the addition of a
new <div> element in the dinner_menu.html markup. This change was essential because of how posi-
tioning works. The <div> with a ‘nav’ id name was given an absolute position in Example 14-1. Here
I’ve stretched the nav <div> element by specifying both a left and right offset property. This is necessary
because the nav <div> is absolutely positioned. The margin: auto; declaration, therefore, no longer
centers the element as it did when the nav <div> was positioned statically.

div#nav {
position: absolute;
right: 0;
left: 0;
top: 0.8em;

}

399

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 399

Applying both the right and left offset properties makes the nav <div> fluid; it spans the whole
window horizontally. Unfortunately, that presents a problem. Because it is fluid, it has a variable width.
A variable width that means that elements positioned relative to it won’t always appear in the same
place. Any elements positioned relative to the nav <div> move depending on its width. To remedy this
problem, you add another <div> element and mov the defined width of 50em, auto margins, and cen-
tered text declarations to the selector for that <div> element:

div#nav > div {
position: relative;
margin: auto;
width: 50em;
text-align: center;

}

The elements that you positioned absolutely in Example 14-1 now reposition relative to this new
<div>. Because it has a fixed width, those absolutely positioned elements remain in place no matter
how wide or narrow the browser window is.

Adding the new <div> element means that many of the selectors no longer work because they rely upon
a direct child relationship with the nav <div> element. So you add the extra <div> reference to each
selector that requires it. The first is the reference to the JT’s logo:

div#nav > div > a > img {
position: relative;
clear: left;
display: block;
margin: 0 auto;
width: 17em;
height: auto;

}

The JT’s logo is given a relative position; this allows the logo to be layered. I cover layering in the upcoming
discussion on the z-index property. The logo is also increased in width from 16em to 17em; the increase in
width corrects an error on my part early in the planning of this example. It also makes the logo consistent
with the final product you observed in Chapter 7. The next modification does two things: It positions the
two pairs of navigation headings and it fixes positioned floated elements in Opera:

div#nav > div > ul {
top: 2.92em;
width: 50%;

}
ul#gifts {

left: 0;
}
ul#food {

right: 0;
}

In the preceding three rules, the addition of the top property places 2.92em of space between the top bor-
der of the wrapper <div> that you added and the top border of the two elements that contain the
main navigational headings, unique gifts, chokoloskee, employment, and delicious food. The 2.92 measurement

400

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 400

allows the bottom border of the list elements inside those elements to line up with the bottom of the
JT’s logo. Because one is to be positioned to the left and the other to the right, those properties
are added in the separate rules that follow. The with the ‘gifts’ id name is positioned to the left of
the logo and the with the ‘food’ id name is positioned to the right of the logo with the left: 0;
and right: 0; declarations, respectively:

ul#gifts {
left: 0;

}
ul#food {

right: 0;
}

A 50% width is given to each element with the div#nav > div > ul selector to correct Opera’s
rendering of the navigational toolbar:

div#nav > div > ul {
top: 2.92em;
width: 50%;

}

In Chapter 11, you applied the float property to the list items of both pairs of navigation headings,
resulting in one side being floated to the left and the other side being floated to the right. Earlier in this
chapter, you learned that positioned elements, by default, apply width using the shrink-to-fit algorithm.
In Opera, the shrink-to-fit algorithm means that because the doesn’t have a defined width, those list
elements don’t float beside each other. You correct this by giving both elements a width larger than
that of the width for each list item. Mozilla doesn’t have this problem; it follows the rule that a floating
element must be placed as high as possible and calculates the width of the element after floating
has occurred. So which one is correct? Amazingly enough, according to the W3C specifications both are
correct. They simply have different interpretations of the specifications.

The next rule that you apply is a bug fix:

div#nav span {
display: block;
overflow: hidden;
height: 2.1em;
line-height: 2.2em;

}

For this rule, you wrap each corresponding navigational heading with elements in the dinner_
menu.html markup. The addition of this rule serves two purposes. Its first purpose involves what happens
when the user increases the font size. When the font size of the page is increased, sometimes the delicious
food heading spans two lines instead of only one. This can be observed not only in Mozilla, but in other
browsers as well. To keep both design consistency and fluidity with increases or decreases to the font size,
the elements are converted to block elements with the display: block; declaration. Then, the
overflow: hidden; declaration and an explicit height of 2.1em are used so that if that delicious food
heading decides to span more than one line, the user will see only delicious and the aesthetics of the navi-
gation toolbar are preserved. This behavior is rather obscure and isn’t likely to be experienced by the
majority of users. But because it is an easy behavior to circumvent, a bug fix is applied.

401

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 401

The second purpose of this rule involves vertically centering the text. Without a line height, the text
appears too far toward the top of each list item. Therefore, to center the text vertically, you apply a line-
height of 2.2em, which moves the baseline of the text farther down and results in the text of each head-
ing being centered vertically. This is a bug fix that may not apply to every case, but it is acceptable for
this scenario. The next rule defines the two pairs of navigational headings to the left and right of the
JT’s logo:

div#nav > div > ul > li {
position: relative;
background-color: lightblue;
padding: 0.5em;
border: 0.05em solid black;
font-size: 0.9em;
padding: 0 0.5em;
width: 8.35em;
height: 2.2em;

}

The list items on both sides of the JT’s logo are given properties that they have in common. First you apply
a relative position, so that each submenu containing hyperlinks is positioned relative to its corresponding
heading. You also apply a fixed width and height for further consistency. This gives each list item the same
dimensions. Left and right padding are also applied to further space each heading apart. The next few
modifications involve adding that new <div> element to each selector and applying margins:

div#nav > div > ul > li:hover {
background-color: lightsteelblue;

}
ul#gifts > li {

float: left;
}
ul#food > li {

float: right;
}
div#nav > div > ul > li#leftedge {

border-right-width: 0;
-moz-border-radius-topleft: 1em;
-moz-border-radius-bottomleft: 1em;
margin-left: 0.3em;

}
div#nav > div > ul > li#leftedge:hover {

-moz-border-radius-bottomleft: 0;
}
div#nav > div > ul > li#rightedge {

border-left-width: 0;
-moz-border-radius-topright: 1em;
-moz-border-radius-bottomright: 1em;
margin-right: 0.3em;

}
div#nav > div > ul > li#rightedge:hover {

-moz-border-radius-bottomright: 0;
}

402

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 402

Left and right margins are applied to the left pair of navigation headings and the right pair of navigation
headings. The application of margin-left: 0.3em; causes a small gap to appear between the left side
of the menu itself and the beginning of the left pair of navigation headings. The same is done for the right
side with the margin-right: 0.3em; declaration. The last modifications made to the menu_system.css
style sheet position and style each submenu:

ul.menu {
top: 2.19em;
background-color: lightblue;
width: 15em;
-moz-border-radius-bottomleft: 1em;
-moz-border-radius-bottomright: 1em;
border: 0.05em solid black;

}
ul#food ul.menu {

-moz-border-radius-topleft: 1em;
right: -0.07em;

}
ul#gifts ul.menu {

-moz-border-radius-topright: 1em;
left: -0.05em;

}
ul.menu li {

text-align: left;
color: black;

}

Each menu contains the hyperlinks for each heading. These are now positioned relative to each list-
item heading. They are positioned 2.19em from the top border of each list-item heading; then in the two
subsequent rules, the menu elements under the left headings are positioned from the left. These are
given a position of -0.05em to line up the left borders of the menu elements with the left borders of
each heading. Similarly, the right side menu elements are positioned -0.07em to the right, to line up
the right borders of these elements with the right borders of their corresponding headings.

Having now covered absolute and relative positioning as well as the four offset properties, I continue in
the next section with fixed positioning.

Fixed Positioning
Fixed positioning is very similar to absolute positioning, with two major differences:

❑ Elements that have fixed positioning are always positioned relative to the view port, no matter
what type of positioning their parent element may have applied.

❑ Elements that have fixed positioning remain fixed in place as the document is scrolled by the user.

Now that you have an overview of what fixed positioning is, the question becomes what can you use it
for? Fixed positioning is useful for creating things like watermarks, a semitransparent logo that remains
in place as the page is scrolled. Often times, when this logo is clicked, it takes the user back to the home
page of a website. Fixed positioning can be used to create a navigational toolbar that remains fixed in
place as the page scrolls, providing the user with easy to access navigational options. To demonstrate
fixed positioning, consider the following code:

403

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 403

html, body {
height: 2000px;

}
div {

position: fixed;
padding: 10px;
border: 1px solid black;
opacity: 0.7;
background: lightyellow;

}
div#div1 {

top: 0;
left: 0;

}
div#div2 {

top: 20px;
left: 20px;

}

This provides output like that shown in Figure 14-12.

The markup used for the screen shot in Figure 14-12 applies a 2000-pixel height to both the <html> and
<body> elements. This forces a scroll bar to appear. You can observe the effects of fixed positioning in
that, as the page is scrolled, both <div> elements remain fixed in place.

Figure 14-12

In the following Try It Out, you apply fixed positioning to the JT’s Island Grill and Gallery style sheet.

Try It Out Applying Fixed Positioning
Example 14-3. Follow these steps to apply fixed positioning.

1. Open menu_system.css and replace the position: absolute; declaration in the selector for
the nav <div> with a position: fixed; declaration to observe the effects of a fixed position
navigation on the JT’s Island Grill and Gallery website:

div#nav {
position: fixed;
right: 0;
left: 0;
top: 0.8em;

}

404

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 404

2. Save menu_system.css. When this is opened in Mozilla, you see output like that shown in
Figure 14-13.

Figure 14-13

How It Works
Figure 14-13 shows that now when the page is scrolled, the JT’s logo and navigation remains fixed in
place. This gives the user convenient access to the navigation from any place on the dinner menu page.

The next section finishes the discussion of positioning with the z-index property.

Controlling Layering with the z-index Property
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Opera 7.5, Mozilla 1.7, and Safari 1.2.

As I mentioned earlier in this chapter, the z-index property is used to control the layering of elements in
a web document. The following table outlines the z-index property and the values that it allows.

405

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 405

Property Value

z-index auto | <integer> | inherit
Initial value: auto

The z-index property is fairly straightforward; it can accept a positive or negative integer value. By
default the value of z-index is the auto keyword. With the auto keyword, each new positioned element
receives a higher z-index value than the one before it. Using an integer value, you can control an element’s
placement along an invisible z-axis. This is demonstrated by the following rules:

div {
position: absolute;
padding: 10px;
border: 1px solid black;
opacity: 0.9;
background: lightyellow;
width: 100px;
height: 100px;
top: 20px;
left: 20px;
z-index: 4;

}
div + div {

background: lightblue;
top: 40px;
left: 40px;
z-index: 3;

}
div + div + div {

background: lightgreen;
top: 60px;
left: 60px;
z-index: 2;

}
div + div + div + div {

background: pink;
top: 80px;
left: 80px;
z-index: 1;

}

The preceding code is combined with the following markup:

<div></div>
<div></div>
<div></div>
<div></div>

406

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 406

Figure 14-14 shows that because the z-index value of each <div> element is specified explicitly, layering
of each element is controlled.

Figure 14-14

The first <div> in the sequence of four is given a light yellow background and some basic dimensions
and properties that also apply to the other <div> elements. Then, by using the adjacent sibling selector, I
select the subsequent <div> elements and provide those with different backgrounds and a decrementing
z-index value. This results in the <div> with a light yellow background being displayed on top, fol-
lowed by the <div> with the light blue background, followed by the <div> with the light green back-
ground, and finally the <div> with a pink background is shown at the back of the stack. This example
demonstrates that the highest z-index value appears highest on the z-axis, or if you envision an invisi-
ble line perpendicular to the computer screen, the highest z-index appears furthest toward the user on
that invisible line. If I omit the z-index property from the example shown in Figure 14-14, the value of
the z-index property becomes auto, and the stack along the z-axis is determined by the document flow.
For instance, the first element with positioning applied appears on the bottom of the stack, and each
subsequent element appears one higher. The last element in the document with positioning receives the
highest z-index value. Omitting the z-index value is demonstrated in Figure 14-15.

Figure 14-15

407

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 407

TE
AM
 F
LY

In Figure 14-15, you see that with the z-index property omitted, the auto keyword is assumed for the
value of the z-index, which causes the <div> element with the pink background to appear on top of
the stack, and the <div> element with a light yellow background to appear on the bottom. The z-index
also works differently based on an element’s ancestry. Consider the following example:

div {
position: absolute;
padding: 10px;
border: 1px solid black;
opacity: 0.9;
background: lightyellow;
width: 100px;
height: 100px;
top: 20px;
left: 20px;
z-index: 4;

}
div > div {

background: lightblue;
z-index: 3;

}
div > div > div {

background: lightgreen;
z-index: 2;

}
div > div > div > div {

background: pink;
z-index: 1;

}

The preceding is combined with this markup:

<div>
<div>

<div>
<div>
</div>

</div>
</div>

</div>

This time, each <div> element is placed inside the last. The result is very similar to that shown in
Figure 14-15 with the auto z-index, but I set up the test case with the same z-index values used for
Figure 14-14. The result shown in Figure 14-16 demonstrates that child elements are forbidden to have a
lower z-index value than their parent element.

You have been introduced to the concept of layering. The following Try It Out lets you control layering
by applying the z-index property. You also convert each list of navigation into dynamic drop-down
menus.

408

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 408

Figure 14-16

Try It Out Applying Layering and Creating Drop-Down Menus
Example 14-4. The following steps show you how to apply layering and create drop-down navigational
menus.

1. Modify the following rule in menu_system.css, applying the highlighted declaration to control
layering of JT’s logo:

div#nav > div > a > img {
position: relative;
clear: left;
display: block;
margin: 0 auto;
width: 17em;
height: auto;
z-index: 1;

}

2. Still modifying menu_system.css, make the following highlighted modifications to convert each
list of hyperlinks into dynamic drop-down menus:

ul.menu {
top: 2.19em;
background-color: lightblue;
width: 15em;
-moz-border-radius-bottomleft: 1em;
-moz-border-radius-bottomright: 1em;
border: 0.05em solid black;
display: none;

}
div#nav > div > ul > li:hover > ul.menu,
ul.menu:hover {

display: block;
}

409

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 409

ul#food ul.menu {
-moz-border-radius-topleft: 1em;
right: -0.07em;

}
ul#gifts ul.menu {

-moz-border-radius-topright: 1em;
left: -0.05em;

}

3. Save menu_system.css. The result is shown in Figure 14-17.

Figure 14-17

How It Works
You modify the menu_system.css style sheet in two key areas. The first modification involved controlling
the layering of the JT’s logo, so that the JT’s logo is always on top. To do this, you apply a z-index: 1;
declaration to the rule for the JT’s logo. This demonstrates that an integer provided to the z-index
property, which specifies layering by providing a number, takes precedence over the auto z-index. This

410

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 410

means that the auto z-index is determined first, and then elements with a numbered z-index appear
above those with an auto z-index. In this scenario, this eliminates the need to explicitly specify a z-index
for any of the other elements.

The second round of modifications to the menu_style.css style sheet in this example involves making
each list of navigation links into drop-down menus. First a display: none; declaration is supplied to
the ul.menu selector to hide all the menus. The display: none; declaration prevents the browser from
rendering the menu elements. Then, the :hover pseudo-class is applied to make those menus
reappear if the user’s mouse cursor hovers over a navigational heading:

div#nav > div > ul > li:hover > ul.menu,
ul.menu:hover {

display: block;
}

The first selector in this example works using the same direct child relationship that you’ve observed
before. Essentially what you are stating here is the following: If the nav <div> element has a child <div>
element, and that child <div> element has a child element, and that child element has a
element that the user’s mouse is hovering over, and that element has a element with a menu
class name, display it as a block element. This creates the effect of dynamic drop-down menus using
CSS. The second selector is applied merely as a logical precaution. If the user’s mouse is hovering over a
 element with a menu class name, for example any submenu, you continue to display that element
as a block element.

Summary
This chapter presented some important CSS properties used to control positioning. Positioning, like the
box model presented in Chapter 10, is a cornerstone of CSS development. In this chapter you learned the
following:

❑ The position property is used to specify different types of positioning for an element.

❑ By default, elements are positioned statically.

❑ Absolutely positioned elements can be positioned in a specific place in a document, or positioned
relative to the borders of the browser window or relative to the borders of a specific element.

❑ The four offset properties, top, right, bottom, and left are used to precision position any
positioned element, with the exception of statically positioned elements.

❑ Relative positioned elements do not leave the flow of text. The position of a relatively posi-
tioned element can be fine-tuned by providing offset properties. Relative positioning can be
used to cause a descendant absolutely-positioned element to position relative to its relatively
positioned parent.

❑ Fixed positioning is similar to absolute positioning, except that elements with fixed positioning
are always positioned relative to the view port and remain fixed in that position when the user
scrolls the page.

411

Positioning

18_576429 ch14.qxd 11/18/04 12:34 PM Page 411

❑ The z-index property is used to control the layering of positioned elements. When a z-index
property is not supplied, the auto keyword is assumed, which causes the z-index to increase
with each positioned element in a document. The z-index property works differently when it
is applied to descendant elements that are positioned than when it is applied to adjacent ele-
ments. Positioning applied to descendant elements causes the z-index to increase with each
descendant, and this cannot be overridden.

In Chapter 15, I show you how to create style sheets for print and handheld devices.

Exercises
1. Using the Widgets and What’s-its FAQ page that you completed in Chapter 10, Exercise 1, add

dynamic text to each of the five links for the Widget’s and What’s-its navigation that describes
what it located at each link. Position the text so that it appears in the upper-right–hand corner
of the page, layered abover the “Widgets and What’s-its” heading. Use the combination of the
:hover psuedo-class and display property technique that you observed for the JT’s dynamic
drop-down menus to accomplish this.

2. Add a semi-transparent watermark logo to the Widgets and What’s-its FAQ page, positioning
the watermark in the lower-right–hand corner of the page. Determine that it stays in place as
the page is scrolled, and add any decorative styles that you like.

412

Chapter 14

18_576429 ch14.qxd 11/18/04 12:34 PM Page 412

15
Styling for Handheld

Devices and Print

In this chapter, I present some of the techniques you can use to style a web document for devices
other than traditional personal computers. As I mentioned in Chapters 8 and 10, part of the target
audience for the JT’s Island Grill and Gallery website are those people accessing the site via a cel-
lular phone or PDA device. Additionally, it’s important that each page be given specific styling for
presentation as a printed document. In this chapter, I discuss

❑ How to present web documents for handheld devices

❑ How to present web documents for print

The portion of the JT’s website that I focus on here is a dinner menu, so it naturally makes sense
that you might want to print or access the menu using a mobile device. These options provide con-
venience to JT’s customers, who are primarily tourists and are likely to have done some Internet
research before visiting the Chokoloskee area. The first types of devices I tackle in this chapter are
handheld devices such as PDAs and cell phones.

Styling Web Documents
for Handheld Devices

In recent years, the technology used to view web content using a cellular phone or PDA device has
improved by leaps and bounds. Improved technology, combined with the falling cost of the cellu-
lar phones that use it, should tell you that styling web documents for presentation on a handheld
device makes a great deal of sense. Doing so increases the potential audience of a website, as well
as provides end users with the additional convenience these devices offer.

19_576429 ch15.qxd 11/18/04 12:34 PM Page 413

Like personal computers, different mobile devices use different browsers to present content. Mobile
device vendors often provide emulators for previewing web content styled for their devices. I chose
three emulators to preview content styled for handheld devices instead of going through the expense
and trouble of physically obtaining each handheld device. An emulator is software designed to replicate
the functionality of something else — in this case, the functionality of a handheld device. To facilitate
developing content for handheld devices, most mobile phone manufactures provide free software capa-
ble of replicating what a user would see using an actual phone. I chose the following emulators:

❑ Motorola emulator: Software capable of previewing content as it would appear on a Motorola
phone; available from www.motocoder.com

❑ Openwave emulator: Software capable of previewing content as it would appear on an
Openwave phone; available from http://developer.openwave.com

❑ The Opera 7.5 browser: Contains a built-in, handheld emulator called Small Screen capable of
previewing content styled for a variety of handheld devices made by manufactures such as
Nokia and Sony Ericsson; certain models use a special mobile device version of the Opera
browser.

In Chapter 10, you learned that a style sheet could be designated for a specific device using the media
attribute with either the <link/> or <style> elements, an @media rule within the style sheet itself, or
by specifying the media when importing a style sheet using the @import rule. For instance, you can tar-
get a handheld device by applying the media=’handheld’ attribute to a style sheet via the <link/> or
<style> element. The rules inside that style sheet are then limited only to handheld devices, whereas
the media=’screen’ attribute applies rules for normal personal computers.

For the purposes of this book, the emulator built into Opera 7.5 works perfectly for previewing content
designated for the ‘handheld’ media type. In Opera 7.5, the mobile browser emulator is activated by
selecting Small Screen from the View menu. Figure 15-1 shows the JT’s website on the Opera 7.5 emulator.

Some mobile device browsers — such as the NetFront browser developed by Access, which happens to
be in my Sanyo Sprint PCS phone — try to render content intended for full-sized computer screens by
using the ‘screen’ media type with absolutely no support for the ‘handheld’ media type intended
for mobile devices. Although the NetFront browser has impressive CSS support, mobile devices with
this browser have serious limitations. This is because this particular browser attempts to render a web
document the same way that a personal computer would. That makes the content difficult to read and
access because the screen is simply too small. In fact, when I loaded up JT’s dinner menu into my Sprint
PCS phone, I was surprised to find the browser even supported fixed positioning. Unfortunately, this
also made all the navigation completely inaccessible because the navigation remained fixed in place
while I was scrolling horizontally.

414

Chapter 15

19_576429 ch15.qxd 11/18/04 12:34 PM Page 414

In the real world, I would turn to a server-side technology, such as PHP or ASP, to sniff out the type of
browser attempting to access data and then dynamically change the content so that everyone can access
the website using a mobile device. Unfortunately, server-side technologies are beyond the scope of this
book. With that in mind, the solutions I present here can be expected to work with any mobile device
browser that supports the ‘handheld’ media type. You can find out if the browser in your mobile
device supports the ‘handheld’ media type by using your mobile device’s browser to visit
www.htmldog.com/test/handheld.html.

Figure 15-1

In Figure 15-2, the JT’s web site is displayed on the Motorola emulator. You can see that it produces simi-
lar results to that of Opera’s built-in Small Screen feature, in that it applies the handheld style sheet, if
one is present.

415

Styling for Handheld Devices and Print

19_576429 ch15.qxd 11/18/04 12:34 PM Page 415

Figure 15-2

The Openwave emulator is also capable of reading handheld style sheets. Figure 15-3 shows JT’s website
displayed in the Openwave emulator.

416

Chapter 15

19_576429 ch15.qxd 11/18/04 12:34 PM Page 416

Figure 15-3

If a handheld style sheet is not present, the Opera browser uses a special proprietary formatting to con-
trol presentation for handheld devices. The best way to observe how Opera changes formatting using
the Small Screen feature is to visit a website that does not have a handheld style sheet defined. Whereas
Opera reformats the page to completely remove any horizontal scrolling, this built-in rendering for
handheld devices is overridden by the presence of a handheld style sheet. Opera also limits the CSS
properties available in handheld mode. A complete table of the CSS features supported in the handheld
version of Opera is available at www.opera.com/docs/specs/css/.

In the following Try It Out, you can see some of the techniques used to control presentation of a web
document for a handheld device by applying a handheld style sheet to the JT’s Island Grill and Gallery
website.

Try It Out Applying a Style Sheet for Handheld Devices
Example 15-1. The following steps show you how to apply a handheld style sheet.

1. Enter the following rules into a new style sheet:

body {
font: 0.6em sans-serif;
max-width: 20em;

}

417

Styling for Handheld Devices and Print

19_576429 ch15.qxd 11/18/04 12:34 PM Page 417

h1, h2, h3, h4, h5, h6 {
margin: 0;
padding: 0;
background: #ccc;

}
h1 {

font-size: 1.3em;
margin-top: 2em;

}
p {

margin-top: 0;
}
img {

width: 100%;
height: auto;
border: none;

}
ul {

margin: 0.5em 0;
padding-left: 1em;
background: #ccc;

}
ul ul {

margin: 0;
}
h5 {

font-weight: normal;
}
h3, h4 {

margin-top: 1em;
}
h5 {

font-size: 1em;
background: transparent none;

}
a:focus {

color: white;
background: black;

}

2. Save the new style sheet in the style_sheets directory as handheld.css.

3. Make the following modifications to the dinner_menu.html file:

<html>
<head>

<title>
JT’s Island Grill and Gallery - Chokoloskee, Florida

</title>
<link rel=’stylesheet’

type=’text/css’
href=’style_sheets/base_styles.css’ media=’screen’/>

418

Chapter 15

19_576429 ch15.qxd 11/18/04 12:34 PM Page 418

<link rel=’stylesheet’
type=’text/css’
href=’style_sheets/menu_system.css’ media=’screen’/>

<link rel=’stylesheet’
type=’text/css’
href=’style_sheets/dinner_menu.css’ media=’screen’/>

<link rel=’stylesheet’
type=’text/css’
href=’style_sheets/handheld.css’ media=’handheld’/>

</head>

4. The styles included in dinner_menu.html for elements using the style attribute conflict with
the new handheld style sheet, so you need to relocate these styles. Remove the style attribute
from this element and add an id attribute:

<img src=’images/photos/dinner_plate.jpg’
id=’dinnerplate’
alt=’dinner plate’/>

5. As you did in Step 4, remove the style attribute and add an id attribute:

<img src=’images/photos/dinner.jpg’
id=’dinner’
alt=’Dinner Table’/>

6. Save dinner_menu.html.

7. Add the following rules to the dinner_menu.css style sheet:

div#content {
background: lightyellow url(‘../images/backgrounds/dinner_glass.jpg’) no-repeat

fixed center center;
}
div#body img {

float: right;
height: auto;

}
img#dinnerplate {

width: 9em;
}
img#dinner {

width: 16em;
}

8. Save dinner_menu.css

Figure 15-4 shows output from the Opera Small Screen mobile device emulator.

419

Styling for Handheld Devices and Print

19_576429 ch15.qxd 11/18/04 12:34 PM Page 419

Figure 15-4

How It Works
As you can see from the output in Figure 15-4, the handheld style sheet that you wrote for this example
does much to emulate the look and feel you observed in Figure 15-1, where the Opera small screen tech-
nology adjusted the styles of the page automatically. In this example, a handheld style sheet, which over-
rides automatic formatting, is explicitly provided. Handheld devices have tiny screens, so formatting
features such as fixed-width, positioning, and the various textual effects aren’t as effective when viewed
on a small screen. These types of effects more often than not cause the user to have to scroll horizontally
to view the content. Additionally, the number of colors available on a handheld device is limited, which
makes a barebones design that presents only the necessary information the most effective. If you recall
from Chapter 4, a web-safe color pallet exists for devices with limited color display capabilities (think
shorthand hexadecimal colors = web-safe pallet), but for some devices, even the web-safe pallet may be too
much. Keep in mind that most handheld devices are capable of displaying around 256 colors, some even
less than that. This is one area where the device emulator is very useful. Be sure to check colors using the
emulator for your target device to ensure that the colors you have chosen will display properly.

420

Chapter 15

19_576429 ch15.qxd 11/18/04 12:34 PM Page 420

The style sheet provided for handheld devices in this example does little more than control the spacing
of elements in the JT’s dinner menu and control the sizes of fonts. Each image in the document is also
limited to a 15em width or less to accommodate tiny screen sizes. By using a 100% width on the image
and an auto height, the image scales to the available screen size. This type of formatting allows the user
to access the information in the document in an organized fashion. Figure 15-4 shows output similar to
that shown in Figure 8-2, before any CSS is applied. Because the handheld medium is limited in what it
can display, the design is adjusted to accommodate those limitations. Horizontal scrolling makes the
information more difficult to access, so it is completely avoided to provide the user with the easiest
experience.

In this example, you also modified the dinner_menu.html file itself: First you changed it to link to the
handheld style sheet and then to remove all style attributes from the body of the document. Even though
handheld devices are limited in size and color, most still interpret properties like float. Naturally, in some
cases, this adversely affected the design. So the styles for each image are relocated to the dinner_menu.css
file, where they cannot affect presentation on handheld devices.

In the next sections, I discuss some of the techniques involved in styling content for print.

Styling Web Documents for Print
Like handheld devices, a specific style sheet can be used to style content for print. In Chapter 4, you saw
the differences between length units used for a computer screen and length units used for print. This is
one of the key reasons that separate style sheets for print exist. Specifying measurements designated for
computer screens, such as pixel units, can potentially be inconsistent in printed documents, whereas real-
world, absolute length units such as inches, centimeters, points, and so on are ideally suited for print.

A style sheet written explicitly for print enables developers to exclude irrelevant portions of a web docu-
ment from the printed version. For example, no document navigation is required in a printed version.
Additionally, because color documents have some expense associated with them, depending on the type
of printer and what type of ink or toner the printer users, it is also often better to exclude background
images or other aspects of the design that result in greater consumption of expensive ink or toner. For
these reasons, print versions of web documents are often simplified to simple black and white produc-
tions of the original document. Only foreground images relevant to the document are retained.

CSS 2 provides several properties for controlling the presentation of paged media, although at the time
of this writing a sparse selection of those features is actually implemented in current browsers. CSS 2
properties control such things as where page breaks occur, the size of the page margins, and the size of
the page itself. In this area, Opera 7.5 boasts the best support for the CSS 2 paged media properties.

Controlling page breaks
page-break-before and page-break-after: Documented in CSS 2 and supported in IE 6
(Partial), Mozilla 1.7 (Partial), Opera 7.5, and Safari 1.2 (Partial).

Two properties that most browsers (Internet Explorer, Mozilla, Opera, and Safari) have in common are
page-break-before and page-break-after. These properties are outlined in the following table.

421

Styling for Handheld Devices and Print

19_576429 ch15.qxd 11/18/04 12:34 PM Page 421

Property Value

page-break-before auto | always | avoid | left | right | inherit

Initial value: auto

page-break-after auto | always | avoid | left | right | inherit

Initial value: auto

The page-break-before and page-break-after properties control where page breaks are made.
Unfortunately, even though different browsers offer support for these two properties, they do not sup-
port all the values that CSS 2 allows. Mozilla, Safari, and Internet Explorer support only the keywords
always and auto.

The page-break-before and page-break-after properties dictate where a page break should be
made depending on where an element appears in a document. For example, the following rule causes
a page break to happen before the start of any <p> elements in a document:

p {
page-break-before: always;

}

Apply this rule to the following markup:

<body>
This text appears on the first printed page.
<p>

This text appears at the start of the second printed page.
</p>
<p>

This text appears at the start of the third printed page.
</p>

</body>

Figure 15-5 shows the print preview screen of Mozilla. Here the text before the first <p> element appears
on the first page.

Figure 15-5

422

Chapter 15

19_576429 ch15.qxd 11/18/04 12:34 PM Page 422

Figure 15-6 shows Mozilla’s print preview screen advanced to the second page, which shows the text
inside the first <p> element.

Figure 15-6

Figure 15-7 shows Mozilla’s print preview screen advanced to the third page, which shows the text
inside the second <p> element.

Figure 15-7

Figures 15-5, 15-6, and 15-7 show that the page-break-before: always; declaration forces a page
break before the start of the <p> element. The page-break-after: always; declaration performs the
same function, with the exception that page breaks come after the element.

In the following Try It Out, you apply a print style sheet to the JT’s Island Grill and Gallery website.

The print properties that CSS provides should be used in situations where you have
control over the actual printing of a document (size of the paper and the printer set-
tings), such as in a corporate intranet application. For a public website, you should
provide a print version of the document that exhibits as much flexibility as possible.

423

Styling for Handheld Devices and Print

19_576429 ch15.qxd 11/18/04 12:34 PM Page 423

Try It Out Applying a Style Sheet for Print
Example 15-2. The following steps show you how to apply a print style sheet.

1. Open your text editor and enter the following styles:

body {
letter-spacing: 1pt;

}
div#nav ul {

display: none;
}
div#nav img {

width: 3in;
display: block;
margin: auto;

}
img {

border: thin solid black;
}
h1 {

font-size: 14pt;
border-bottom: thin dotted black;

}
img#dinnerplate, img#dinner {

float: right;
width: 2in;
height: auto;
margin: 0.25in;

}
div#content {

text-align: center;
}
p {

margin-top: 0;
}
h2, h3, h4, h5, h6 {

margin: 0;
}
h3 {

text-decoration: underline;
}
h1, h3 {

font: 16pt “Monotype Corsiva” cursive;
}
h5 + h3 {

margin-top: 0.25in;
}
h4 > em, h5 > em {

font-weight: normal;
margin-left: 0.20in;

}

424

Chapter 15

19_576429 ch15.qxd 11/18/04 12:34 PM Page 424

h5 {
font-weight: normal;
font-size: 12pt;

}
h6 {

border-top: thin dotted black;
text-align: center;

}
p.copy {

text-align: justify;
text-indent: 0.25in;
margin-top: 0;
line-height: 24pt;

}

2. Save this style sheet in the style_sheets directory as print.css.

3. To link to the new print style sheet, open dinner_menu.html and apply the following markup:

<html>
<head>

<title>
JT’s Island Grill and Gallery - Chokoloskee, Florida

</title>
<link rel=’stylesheet’

type=’text/css’
href=’style_sheets/base_styles.css’ media=’screen’/>

<link rel=’stylesheet’
type=’text/css’
href=’style_sheets/menu_system.css’ media=’screen’/>

<link rel=’stylesheet’
type=’text/css’
href=’style_sheets/dinner_menu.css’ media=’screen’/>

<link rel=’stylesheet’
type=’text/css’
href=’style_sheets/handheld.css’ media=’handheld’/>

<link rel=’stylesheet’
type=’text/css’
href=’style_sheets/print.css’ media=’print’/>

</head>

4. Save dinner_menu.html.

Open the file dinner_menu.html in Mozilla and choose File ➪ Print Preview to see the screen shown in
Figure 15-8.

425

Styling for Handheld Devices and Print

19_576429 ch15.qxd 11/18/04 12:34 PM Page 425

Figure 15-8

How It Works
Like the handheld style sheet that you created for Example 15-1, the print style sheet is a stripped-down
representation of the dinner menu. Background images and background colors are avoided, as the user
is unlikely to want these in the printed document.

Some of the styles presented in this style sheet are redundant because some of the same techniques are
used in the style sheets for screen. In a real-world project, it would make sense to combine styles that
apply to all types of media devices in a style sheet with media=’all’ specified. However, the styles pre-
sented in the handheld style sheet are vastly different from those in the screen and media style sheets,
and the print style sheet uses real-world measurement units instead of those intended for screen. A little
redundancy, therefore, isn’t too bad in this case.

Another technique likely to be deployed in a real-world project is separating the print style sheet into dif-
ferent style sheets, as you did with the screen style sheets. By creating a base_styles.css, menu_system.css,
and dinner_menu.css style sheet, you have one for the entire website, one specifically for navigation, and
one for styles specific to the dinner menu. I lumped these together for print to keep the example simple.

426

Chapter 15

19_576429 ch15.qxd 11/18/04 12:34 PM Page 426

Other techniques deployed in the print style sheet include avoiding fixed widths and using real-world
measurements to design a print dinner menu that looks similar to the one presented on-screen. Fixed
widths especially should be avoided because you, as the designer, have no way of knowing what size
paper the user intends to print on.

Print style sheets provide a version of a web page optimized for print. Print style sheets are best approached
by avoiding background colors and images and keeping to a simple black and white design. Real-world
length units should also be utilized to avoid possible inconsistencies with length units designed for the com-
puter screen, such as the px unit.

Summary
Media-specific style sheets open up doors to a much larger potential audience for a website. In this chapter,
you leaned the following:

❑ With handheld technology progressing in the way it is, more and more people have the capabil-
ity to access the web using a handheld device.

❑ When you plan to present content for specific mediums, you should take into account the limi-
tations and possible expense of using each medium.

❑ The limitations of handheld devices include a tiny screen, potentially longer loading times, and
a limited selection of color.

❑ For print, you should consider the cost of ink. Because ink and toner are expensive, avoiding
high color designs is considered best practice in the formulation of print style sheets.

❑ Navigation is useless for a printed document. For a print style sheet, the parts of the document
most useful to the user should be included and the rest should be hidden using the display:
none; declaration.

❑ The print properties that CSS provides should not be used unless you have control over the
actual printing of the document.

In Chapter 16, I take a look at the properties that CSS provides for styling tabular data.

Exercises
1. Write a handheld style sheet for the Widgets and What’s-it’s FAQ page. Use the markup that

you completed for Chapter 14, Exercise 2. Things like floating and positioning should be
avoided. Use the Small Screen feature offered in the Opera 7 browser as a guide for how the
handheld style sheet should be styled. Convert the embedded style sheet to an external style
sheet and limit it to screen media.

2. Write a print style sheet for the Widgets and What’s-it’s FAQ page. Use all real-world measure-
ments and remove the navigation, colored backgrounds, and watermark from the printed ver-
sion. Create the print style sheet so that it is a simple black and white representation of the same
page, with a similar look and feel to its screen counterpart.

427

Styling for Handheld Devices and Print

19_576429 ch15.qxd 11/18/04 12:34 PM Page 427

19_576429 ch15.qxd 11/18/04 12:34 PM Page 428

16
Styling Tables

In Chapter 15, I showed some examples of how to create style sheets for specific mediums like
print and handheld devices. In this chapter, I discuss some odds and ends related to styling
HTML/XHTML table elements and the controls that CSS provides for flexibility.

In Chapter 10, I told you how using tables to lay out a web page can be inefficient and, perhaps,
make your website inaccessible for visually impaired users. However, tables are not all bad and not
completely taboo. Tables are primarily a method to show the relationship between data, much as a
spreadsheet application does. As I explore some acceptable uses of tables in this chapter, I discuss

❑ The optional table elements that can make it easier to style a table and that make the
structure more intuitive

❑ Controlling placement of the table caption

❑ Controlling the layout of the table

❑ Controlling the spacing between table cells

❑ Controlling whether empty cells are displayed

Tables can be complex creatures in HTML/XHTML. If used properly, they allow information to be
presented in a neat, organized, and consistent manner. Put simply, data that needs to show relation
and logic should be placed into tables because that is what tables are for. The discussion presented
in this chapter also plays heavily into the discussion about styling XML in Chapter 17. The exam-
ples presented in Chapter 17 are identical to those presented in this chapter with one very impor-
tant difference: They’re written in XML.

Tables have several optional tags that may be used to further enhance the structure and presenta-
tion of a table. This is where I start the discussion.

20_576429 ch16.qxd 11/18/04 12:35 PM Page 429

Optional Table Elements
The <table> element has a number of optional tags that can be utilized to enhance the presentation of a
table, including captions, columns, headings, and footers. Take a look at a <table> element that makes
use of all these optional tags. When I get into the discussion of styling tables, beginning with the section
“Table Captions,” you must understand what is possible in a table. I also present CSS 2 properties that
are table-specific, allowing more control over table presentation. The following markup is a <table>
element complete with all the optional bells and whistles:

<table>
<caption>

Table: My favorite records.
</caption>
<colgroup>

<col id=’album’ />
<col id=’artist’ />
<col id=’released’ />

</colgroup>
<thead>

<tr>
<th> album </th>
<th> artist </th>
<th> released </th>

</tr>
</thead>
<tbody>

<tr>
<td> Rubber Soul </td>
<td> The Beatles </td>
<td> 1965 </td>

</tr>
<tr>

<td> Brown Eyed Girl </td>
<td> Van Morrison </td>
<td> 1967 </td>

</tr>
<tr>

<td> Queen II </td>
<td> Queen </td>
<td> 1974 </td>

</tr>
<tr>

<td> Mellon Collie and the Infinite Sadness </td>
<td> The Smashing Pumpkins </td>
<td> 1995 </td>

</tr>
<tr>

<td></td>
<td></td>
<td></td>

</tr>
</tbody>
<tfoot>

<tr>

430

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 430

<td> album </td>
<td> artist </td>
<td> released </td>

</tr>
</tfoot>

</table>

Next, I have some CSS to apply to this markup. After the CSS is applied, I show you what it looks like in
a browser. In the next few sections, I refer back to this example, which is also available if you download
this book’s files from www.wrox.com. (The file is named html-table.html, and if you download the entire
directory structure, you can find this file under Chapter 16\Examples.) Using this example, I present dif-
ferent properties that allow manipulation of how a table is presented and explain the different elements
that structure the various parts of a table. If you don’t have access to the Wrox website, you can type the
preceding markup in an XHTML document and save the file as html-table.html so that you can fol-
low along with the examples.

In the next few sections I discuss

❑ Table captions — the caption-side property

❑ Table columns — what they are and how to style them

❑ Grouping table data with the <thead>, <tbody>, and <tfoot> elements

❑ Other table styles for controlling table layout, borders, and cell spacing using CSS

To complement the preceding example, I’ve prepared a style sheet that allows some basic presentation to
be applied. In the next few sections, I add to this style sheet to demonstrate the different properties that
allow control over table presentation.

* {
font-family: monospace;

}
body {

margin: 0;
}
table {

width: 100%;
border: thin solid black;

}
th, tfoot td {

border: thin solid black;
text-align: center;
font-weight: bold;

}
tbody td {

font-size: 120%;
}
caption {

font-size: 90%;
text-align: right;

}
td, th, caption {

padding: 5px;
}

431

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 431

This style sheet can be embedded in the XHTML document or saved to be referenced externally as
html-table.css. Before you apply any additional styles to the table, the document appears as it does in
Figure 16-1.

Figure 16-1

Each section starts with the example file presented here. Therefore, at the beginning of each section, start
with the original html-table.html and html-table.css example files shown here and modify the original
files to see the examples presented in that section in action. Each variation of the html-table.html and
html-table.css file is also available in the code download at the Wrox website.

Table Captions
Captions are presented in the <caption> element. By default, these are rendered above the table in the
document. You use the caption-side property to control the placement of the table caption.

caption-side
Documented in CSS 2.1 and supported in Mozilla 1.7, Opera 7.5, and Safari 1.2.

The following table shows the caption-side property and its possible values.

Property Value

caption-side top | bottom | inherit

Using the caption-side property, you can control whether the caption appears above or below the table.
If you use the html-table.css file, here’s what the inclusion of the caption-side property looks like.

* {
font-family: monospace;

}
body {

432

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 432

margin: 0;
}
table {

width: 100%;
border: thin solid black;
caption-side: bottom;

}

I have saved the variation of the html-table.css and html-table.html file as html-table-1.html, and html-
table-1.css respectively. With the inclusion of the caption-side property in the html-table.css file, the
caption is moved to the bottom of the table, as depicted in Figure 16-2.

Figure 16-2

Table Columns
In HTML/XHTML, the <colgroup> and <col> elements allow the vertical columns of a table to be con-
trolled. This is useful for controlling the width of a column of data or other aspects of presentation, such
as background color or text color.

By using these elements, you can span more than one column or have one column defined for each
actual column, as in the following example:

<table>
<colgroup>

<col span=’2’ />
<col />

</colgroup>
<tbody>

<tr>
<td> column 1 </td>
<td> column 2 </td>
<td> column 3 </td>

</tr>
</tbody>

</table>

433

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 433

<col span=’2’ /> controls the presentation of the <td> elements containing the text of column 1 and
column 2, the first two columns of the table. The last <col /> element (without the span attribute) con-
trols the presentation of column 3, contained in the last <td> element.

Using CSS, I can continue the example containing my favorite records (using the html-table.html markup
and style sheet). This example shows a column defined for each actual column of data, or in other words,
each <td> element appearing in a row. In this html-table.html example, a column is defined for each cell,
and each row has three cells; consequently, there are three columns. Adding the following CSS to the style
sheet enables me to control the styles of each column in the html-table.html markup using CSS:

col#album {
background: lightgrey;

}
col#artist {

width: 250px;
}
col#released {

width: 100px;
background: lightgrey;

}

I’ve saved this variation as html-table-2.html and html-table-2.css. After I apply these rules, the table
now looks like Figure 16-3.

Figure 16-3

Each column is given a different background color. The first column is lightgrey, spelled according to
the British spelling to accommodate Internet Explorer, which does not allow lightgray, the U.S. spelling.
The next column is given no background and a fixed width of 250 pixels. The last column is also given a
lightgrey background and a fixed width of 100 pixels.

Internet Explorer allows more flexibility with the <col> element and allows the text
color to be changed. Mozilla is slightly more restrictive, allowing the width and a
background color to be specified, but not much else. The W3C specs don’t elaborate
specifically on what is allowed, leaving this to the individual browsers to decide for
themselves.

434

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 434

Grouping Table Data
Table data is grouped using four elements, including <colgroup>, which you saw in the table columns
section earlier in this chapter. Here are the four elements for grouping table data:

❑ <colgroup>: Used to control aspects of the vertical columns of a table, such as column width,
background color, and text color

❑ <thead>: Used to designate the table headings; using this element generally results in a bold-
faced font and the text being centered in the rows and cells contained inside it

❑ <tbody>: Designates the portion of the table that is the body where all the tabular data is
contained

❑ <tfoot>: Used on the footer cells of the table; provides no special styles on the cells it
encapsulates

Grouping table data is useful from both a structural and a presentational perspective. Because the table
data is grouped, you don’t add class or id attributes to the table to differentiate between cells contained
in the heading, in the body, or in the footer; additionally, the structure of the document is more intuitive.
Grouping table data also provides special functionality for printed documents. When a table with head-
ing, body, and footers designated with <thead>, <tbody> and <tfoot> is printed, the table headers and
footers are repeated for each page of the table.

From a CSS standpoint, this structure enables you to use descendant selectors and a named table instead
of creating individual class and id names for each cell of the table. For instance, if I have this markup

<table id=’beatles’>
<tbody>

<td> John </td>
<td> Paul </td>
<td> George </td>
<td> Ringo </td>

</tbody>
</table>

and this CSS,

table#beatles tbody td {
font: 12pt sans-serif;

}

I can use descendant selectors to select cells in the body of the table. Using this selector, the <td> ele-
ment must be nested inside a <tbody> element, and the <tbody> element must be nested inside a
<table> element that has an id of ‘beatles’. With this approach, I can limit the selector to the cells
contained in the <tbody> element of a table with the id of ‘beatles’. I can also invent similar rules for
the <thead> and <tfoot> elements and give them different styles from those cells contained inside the
<tbody> element.

In the following Try It Out, I show how all the extra bells and whistles available for <table> elements
work in a real-world project and how these elements help you take advantage of CSS. This Try It Out
continues the example, which I used in Chapter 2, which demonstrates placing a recipe in a table. I’m

435

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 435

also adding a little eye candy here with CSS background images to enhance the look and feel of the doc-
ument. This example is also important in Chapter 17, where I show you how it can be ported to XML
and styled with CSS as an XML document.

Try It Out Applying Tables to a Real Project
Example 16-1. In the following steps, you apply tables to a real-world project.

1. Type the following XHTML markup into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title> Spicy Thai Peanut Sauce </title>
<link rel=’stylesheet’ type=’text/css’ href=’example16.css’/>

</head>
<body>

<table class=’recipe’>
<caption>

Spicy Thai Peanut Sauce
</caption>
<colgroup>

<col/>
<col/>
<col/>
<col/>

</colgroup>
<thead>

<tr>
<th> quantity </th>
<th> measurement </th>
<th> product </th>
<th> instructions </th>

</tr>
</thead>
<tbody>

<tr>
<td> .5 </td>
<td> CUPS </td>
<td> Peanut Oil </td>
<td></td>

</tr>
<tr>

<td> 12 </td>
<td> Each </td>
<td> Serrano Peppers </td>
<td> Sliced </td>

</tr>
<tr>

436

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 436

<td> 16 </td>
<td> Each </td>
<td> Garlic Cloves </td>
<td> Minced </td>

</tr>
<tr>

<td> 2 </td>
<td> CUPS </td>
<td> Peanut Butter </td>
<td></td>

</tr>
<tr>

<td> 1 </td>
<td> CUPS </td>
<td> Soy Sauce </td>
<td></td>

</tr>
<tr>

<td> .5 </td>
<td> CUPS </td>
<td> Lime Juice </td>
<td></td>

</tr>
<tr>

<td> 4 </td>
<td> TABLESPOONS </td>
<td> Sesame Oil </td>
<td></td>

</tr>
<tr>

<td> 4 </td>
<td> CUPS </td>
<td> Coconut Milk </td>
<td></td>

</tr>
<tr>

<td> .5 </td>
<td> CUPS </td>
<td> Honey </td>
<td></td>

</tr>
<tr>

<td> .5 </td>
<td> CUPS </td>
<td> Brown Sugar </td>
<td></td>

</tr>
</tbody>
<tfoot>

<tr>
<td colspan=’4’>

437

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 437

Sautee sliced serranos and garlic in peanut oil
till lightly browned.

Add all other ingredients and stir till dissolved.

Simmer for 5 minutes.

Puree all in blender.

<p>

Sautee your favorite vegetables; onions, mushrooms,
green peppers and squash work best, sprinkle with
allspice, salt and pepper. Optionally add walnuts
or pine nuts. Add browned chicken or tofu and glaze
with sauce. Serve with jasmine rice.

</p>
</td>

</tr>
</tfoot>

</table>
</body>

</html>

2. Save the file as example16-1.html.

3. Write the following CSS into your text editor in a separate document:

* {
font-family: monospace;

}
html {

background: #fff url(‘fruit_veg_web.jpg’) no-repeat fixed center center;
}
body {

padding: 10px;
margin: 10px auto;
min-width: 500px;
max-width: 900px;
/* Moz proprietary opacity property */
-moz-opacity: 0.7;
/* Safari / KHTML proprietary opacity property */
-khtml-opacity: 0.7;
/* Microsoft proprietary filter property */
filter:progid:DXImageTransform.Microsoft.Alpha(opacity=70);
/* CSS 3 opacity property */

438

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 438

opacity: 0.7;
background: url(‘cross_hatch.jpg’) repeat;

}
table.recipe {

width: 100%;
margin-bottom: 5px;

}
caption {

text-align: left;
margin-bottom: 5px;
text-transform: lowercase;
font-size: 160%;
padding: 5px;
letter-spacing: 10px;
font-weight: bold;

}
table.recipe thead th {

font-weight: bold;
font-size: 150%;
color: black;

}
table.recipe thead th, table.recipe tbody td {

padding: 5px;
text-transform: lowercase;

}
table.recipe tbody td, table.recipe tfoot td {

font-size: 130%;
}
table.recipe tfoot td {

padding: 5px;
}
table.recipe tbody td:hover,
table.recipe thead th:hover,
table.recipe tfoot td ul:hover,
table.recipe caption:hover,
table.recipe tfoot td p:hover {

background: black;
color: white;
font-weight: bold;

}
table.recipe tfoot td p {

padding: 5px;
}
li {

margin-left: 30px;
padding-left: 30px;

}

4. Save the file as example16-1.css.

This results in the output shown in Figure 16-4.

439

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 439

Figure 16-4

How It Works
This example is a lot to digest. Take a look at each part of it in detail to see how it comes together. First,
explore the markup of the document. I have included a <caption> element inside the table to house the
name of the recipe:

<table class=’recipe’>
<caption>

Spicy Thai Peanut Sauce
</caption>
<colgroup>

<col/>
<col/>

I could just as easily have put the name of the recipe in a heading tag like <h1> and placed it outside the
table. I chose the caption so the name of the recipe is bound to the table of ingredients. Later, if I choose
to, I can include the name of the website or a logo above the table of ingredients. Next, I’ve added
<colgroup> and <col/> tags. These can be used to control the layout of each column, although I haven’t

440

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 440

chosen to take advantage of this capability yet. Although you can use these tags, they are not absolutely
necessary. I can leave them out, causing no impact on the table’s final rendered layout. Next, I added the
table headings, placed inside <thead> tags, and I used <th> instead of <td> to house the contents of
each cell:

<col/>
<col/>

</colgroup>
<thead>

<tr>
<th> quantity </th>
<th> measurement </th>
<th> product </th>
<th> instructions </th>

</tr>
</thead>
<tbody>

I added the <tbody> element to house the contents of the recipe itself, and near the bottom of the recipe
I listed the instructions in an unordered list () element. I placed final suggestions in a paragraph at
the bottom of the document.

Look more closely at how the CSS comes together with the markup to produce the final rendered output
in Figure 16-4. The first rule styles the <body> element, and there’s quite a bit going on here:

body {
padding: 10px;
margin: 10px auto;
min-width: 500px;
max-width: 900px;
/* Moz proprietary opacity property */
-moz-opacity: 0.7;
/* Safari / KHTML proprietary opacity property */
-khtml-opacity: 0.7;
/* Microsoft proprietary filter property */
filter:progid:DXImageTransform.Microsoft.Alpha(opacity=70);
/* CSS 3 opacity property */
opacity: 0.7;
background: url(‘cross_hatch.jpg’) repeat;

}

First things, first. The <body> element is a block-level element, and it behaves identically to the <div>
element. Its width expands to fill the entire available area by default, and its height expands only
enough to accommodate the content inside. I take advantage of that behavior here, using the margin:
10px auto; declaration, which adds 10 pixels of margin to the top and bottom of the element. It is cen-
tered horizontally with the auto value. Because the <body> element expands to fill the entire available
area by default, I decided that I want it to stop expanding at a certain point for those visitors viewing the
page using a high-resolution monitor. I use the max-width: 900px; declaration to stop the element
from expanding when it reaches 900 pixels. Conversely, I don’t want the element to shrink past a certain
point if the document is being viewed on a low-resolution monitor. This causes nasty things to happen.
I stop the element from shrinking by using the min-width: 500px; declaration.

441

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 441

The next four declarations all deal with opacity. At the time of this writing, the opacity property is an
official part of CSS 3. Before the CSS 3 implementation, each browser had its own way of handling opac-
ity, with the exception of Opera, which does not support opacity in any form. The Mozilla proprietary
CSS opacity property is -moz-opacity;; -khtml-opacity is the Safari proprietary opacity property.
Microsoft has a completely different method for specifying opacity: it’s handled through a proprietary
filter property. The use of these opacity properties produces an aesthetically pleasing transparency effect
that allows the background specified for the <html> element in this rule to bleed through:

html {
background: #fff url(‘fruit_veg_web.jpg’) no-repeat fixed center center;

}

I discuss special effects like this in great detail in Chapter 18.

Lastly, for the <body> element, I’ve applied a background that uses a cross-hatching effect. The back-
grounds I’ve chosen for this document are purely aesthetical. The image ‘fruit_veg_web.jpg’ is quite
large in size, over 100KB. On first download, this image takes a while to load on a low-bandwidth con-
nection. However, with browser caching, the technique that saves a local copy of all the documents and
components of the web page, the bite caused by this large file is limited to the first visit. As visitors view
subsequent pages with the same background, the browser remembers that this file is the same one
requested from the page before and simply displays that local copy instead of requesting it again from
the server.

The next rule on the style sheet is the <table> containing the Spicy Thai Peanut Sauce recipe:

table.recipe {
width: 100%;
margin-bottom: 5px;

}

Here the table is told to take up 100% of the available space horizontally. Because it resides inside of the
<body> element, the amount of free space is what’s available inside of that element. A margin is applied
to the bottom of the table to provide more spacing from the end of the <table> and the start of the
. The caption, containing the name of the recipe, renders above the table by default. Therefore, the
table appears in Figure 16-4 just as if you had written the following:

table.recipe {
caption-side: top;
width: 100%;
margin-bottom: 5px;

}

If I wanted the caption to appear below the table, after the data contained in the <table> element and
before the element, I would have included caption-side: bottom; instead. For this example, it
made more sense for the caption to appear above the table because it contains the name of the recipe.

The next group of style sheet rules style the cells of the table:

table.recipe thead th {
font-weight: bold;
font-size: 150%;

442

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 442

color: black;
}
table.recipe thead th, table.recipe tbody td {

padding: 5px;
text-transform: lowercase;

}
table.recipe tbody td, table.recipe tfoot td {

font-size: 130%;
}
table.recipe tfoot td {

padding: 5px;
}

For the cells of the table, I have chosen to take advantage of grouping elements to differentiate the styles
for table headings (<thead> element), the body of the table (<tbody> element), and the footer of the
table (<tfoot> element). This approach allows me to apply style to the table without adding additional
id or class attributes. I use the descendant selector here to ensure that styles are applied only to tables
containing the recipe class name. This allows me to include more than one recipe per page or possibly
introduce other tables of data without affecting the styles for those tables. Again, the descendant selector
works by looking at the element’s ancestry. For instance, table.recipe thead th says to look first for
a <table> that contains a recipe class name; then look for a <thead> element inside that table; look for a
<th> element inside the <thead> element; and finally, apply the declarations contained inside the rule.

Next, I add some effects to the page using the :hover pseudo-class:

table.recipe tbody td:hover,
table.recipe thead th:hover,
table.recipe tfoot td ul:hover,
table.recipe caption:hover,
table.recipe tfoot td p:hover {

background: black;
color: white;
font-weight: bold;

}

If you recall from Chapter 6, the :hover pseudo-class is a selector that applies style when the user’s
mouse is hovering over an element. For example, the table.recipe tbody td:hover selector uses
the descendant selector that I just discussed. It says that if a <table> element has a class name of
“recipe” and if inside that <table> element is a <tbody> element, and if inside that <tbody> element
is a <td> element, when the user’s mouse hovers over that <td> element these declarations should be
applied. I have grouped several selectors here using commas, and this allows me to select the <td> ele-
ments contained in the <tbody>, the <th> elements contained in the <thead> element, the ele-
ment containing preparation instructions in the table footer, and the paragraph containing the
suggestions for use. I included this effect so that when the user’s mouse is over an element, the cell gets
a semi-transparent black background, white text, and bold font — for both clarity and aesthetic effect.
The semitransparent effect is achieved because the opacity properties that I included in the selector for
the <body> element are inherited, meaning that all elements inside the <body> element are made semi-
transparent, including the text, borders, and backgrounds.

Now, that you have seen the various elements available for use in a <table> element, the following sec-
tion explores what else is possible with CSS and tables.

443

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 443

Other Table Styles
Besides the table styles I’ve discussed so far, you can also use the properties shown in the following
table. With these properties, you can control table layout with the table-layout property, control how
table cells are spaced using the border-collapse and border-spacing properties, and choose
whether the browser should render empty cells with the empty-cells property.

Property Value

table-layout auto | fixed | inherit
Initial value: auto

border-collapse collapse | separate | inherit
Initial value: separate

border-spacing <length> <length>? | inherit
Initial value: 0

empty-cells show | hide | inherit
Initial value: show

These properties control the more trivial aspects of presenting HTML/XHTML tables. The following sec-
tions look at each property in detail.

table-layout
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Opera 7.5, Mozilla 1.7 (partial), and Safari 1.2.

By default, a table expands and contracts to accommodate the data contained inside. As data fills the
table, it continues to expand as long as there is space. When you look at them this way, tables are inher-
ently fluid. Here’s what happens if I remove the width: 100%; declaration from the <table> element
in the html-table.html example (remember to use the original example file to create the variation).

table {
border: thin solid black;

}

This rule is the same as saying:

table {
border: thin solid black;
table-layout: auto;

}

The table-layout: auto; declaration is the default behavior of a table. Save this variation as html-
table-3.html and html-table-3.css; this code results in the output depicted in Figure 16-5.

444

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 444

Figure 16-5

By default, the table expands only enough for the content that it contains, and this is the same as table-
layout: auto;. Sometimes, however, it is necessary to force a table into a fixed width for both the table
and the cells. Here’s what happens when I specify a fixed width for the table:

table {
width: 200px;
border: thin solid black;

}

To see what a 200-pixel width looks like, add this snippet of markup to the body of the html-table.html
document:

<body>
<div style=’width: 200px;

height: 30px;
background: gray;
color: white;
text-align: center;’>

< -- 200 pixels -- >
</div>

<table>
<caption>

Table: My favorite records.
</caption>

Save this variation as html-table-4.html and html-table-4.css. This code results in the output depicted in
Figure 16-6.

445

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 445

Figure 16-6

The table is larger than 200 pixels because the text contained in the cells results in a width larger than
200 pixels. You can use the table-layout: fixed; declaration to force the table into a 200-pixel width.
Incorporate the following change into the html-table example:

table {
width: 200px;
border: thin solid black;
table-layout: fixed;

}

Save this variation as html-table-5.html and html-table-5.css. Figure 16-7 shows the result when ren-
dered in a browser.

The table is forced to maintain its width of 200 pixels, regardless of how much data is contained in its
table cells. If the content inside the cells results in a width larger than 200 pixels, the content gets clipped.
The clipped content is not visible when the document is viewed using Internet Explorer or Opera 7, which
is what is supposed to happen. As you see in Figure 16-7, however, the clipped content is visible. You can
correct this with the following:

th, td {
overflow: hidden;

}

Save this as html-table-6.html and html-table-6.css. The result is shown in Figure 16-8.

This is what the output is supposed to look like. In contrast, as you saw in Chapter 10, the overflow
property may also be used to add scroll bars so that the clipped content can be viewed.

446

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 446

3. Make the following changes to example16-1.html to reference the new style sheet:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title> Spicy Thai Peanut Sauce </title>
<link rel=’stylesheet’ type=’text/css’ href=’example16-2.css’/>

</head>

4. Save the file as example16-2.html. The result is depicted in Figure 16-10.

Figure 16-10

How It Works
The borders highlight the fact that the cells of the table are uneven. Each cell has a different width
depending on the contents of the cell; by default, a table expands just enough to accommodate its con-
tent. This table has a 100% width, which only alters that behavior slightly. The cells themselves still
expand and contract depending only on how much content is in each cell. The more content a cell is
given, the more its column width expands.

449

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 449

Temporary style rules like this are often helpful in highlighting the effects of rendering that are difficult
to see. Keeping the highlighted borders, examine the following Try It Out to see what this example looks
like when the table-layout: fixed declaration is applied.

Try It Out Applying the table-layout Property
Example 16-3. In the following steps, you apply the table-layout: fixed; property.

1. Open example16-2.css and add the highlighted declaration to the style sheet:

table.recipe {
width: 100%;
margin-bottom: 5px;
table-layout: fixed;

}

2. Save the file as example16-3.css.

3. Make the following changes to modify example16-2.html so that it references the new style
sheet:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title> Spicy Thai Peanut Sauce </title>
<link rel=’stylesheet’ type=’text/css’ href=’example16-3.css’/>

</head>

4. Save the file as example16-3.html. The result is shown in Figure 16-11.

How It Works
The addition of the table-layout: fixed; declaration gives the table a very clean, organized look. All
the columns have equal, consistent widths. With this particular design, the table fills the area available
inside the <body> element because it has a width of 100%. With the minimum and maximum widths I
applied to the <body> element, no possibility exists that the cell data will be clipped if the viewing area
becomes too small.

The table-layout: fixed; declaration allows a table’s layout to be more consistent by forcing a table
to honor the value contained in the width property. The width property may be applied to the <table>
element itself, to the <col/> elements inside the table, or to the cells themselves.

Now that I’ve thoroughly explored the table-layout property, in the following sections I examine the
other CSS properties that exist for controlling table layout.

450

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 450

Figure 16-11

border-collapse
Documented in CSS 2.1 and supported in IE 5.5, IE 6, Mozilla 1.7, Opera 7.5, and Safari 1.2

Just as you did with the file you created earlier in Example 16-2, you need to add extra borders here for
clarification so that you can truly see the effect of the border-collapse property when it’s added to the
html-table example.

td {
border: thin solid black;

}

Save this variation as html-table-8.html and html-table-8.css. Figure 16-12 shows the result.

451

Styling Tables

20_576429 ch16.qxd 11/18/04 12:35 PM Page 451

When I apply empty-cells: hide; the cells are not rendered, but the space where they should appear
remains open:

table {
width: 100%;
border: thin solid black;
empty-cells: hide;

}
td:empty {

background: gray;
}

Save this variation as html-table-14.html and html-table-14.css. The result is shown in Figure 16-18.

Figure 16-18

The gray background added by the td:empty selector has been hidden.

Now that I’ve shown you how to control the spacing between cells and whether empty cells are ren-
dered, you can apply this knowledge to the Spicy Thai Peanut Sauce recipe. The following Try It Out
demonstrates a practical use of these properties in action.

Try It Out Cell Spacing and Empty Cells
Example 16-4. The following steps show how to work with cell spacing and empty cells.

1. Open example16-3.css and make the following modifications to the file:

/* Microsoft proprietary filter property */
filter:progid:DXImageTransform.Microsoft.Alpha(opacity=70);
/* CSS 3 opacity property */
opacity: 0.7;
background: url(‘cross_hatch.jpg’) repeat;

}
table.recipe {

width: 100%;
margin-bottom: 5px;
table-layout: fixed;

456

Chapter 16

20_576429 ch16.qxd 11/18/04 12:35 PM Page 456

17
Styling XML

In Chapter 16, I demonstrated the various options available to structure and style tables. In this
chapter, I discuss how CSS can be combined with XML to style XML documents. This chapter
covers the following:

❑ What XML is

❑ How to create an XML document structure suitable for presentation

❑ The XML declaration

❑ The CSS display property

❑ Displaying block-level boxes with XML and CSS

❑ Displaying inline-level boxes with XML and CSS

❑ Recreating the structure, layout, and behavior of HTML tables using XML and CSS

XML is a robust and flexible markup language. Its uses extend to desktop applications such as
spreadsheets and music jukebox software. It is also used heavily on the Internet for a plethora of
applications. Many people see XML as the web language of tomorrow, one that will eventually
replace HTML as the mainstream markup language of choice for building websites. In the follow-
ing sections you look further into XML.

XML Documents
As you learned in Chapter 2, XML documents have a number of uses. For example, an XML docu-
ment can be used to store data (like a database) because in an XML document you invent the tags
and attributes. You have the advantage of creating tags in an XML document that describe the data
they contain. Because you have the freedom to create tags and attributes as you wish, the data con-
tained in the document can be organized much more efficiently than by using HTML alone. Your
ability to invent tags and attributes makes using XML advantageous in another way as well. It
creates a document structure that makes sense to both humans and computers. Placing a recipe
between <recipe> tags makes much more sense than using the various tags of HTML and

21_576429 ch17.qxd 11/18/04 12:35 PM Page 461

<html> or <body> elements. This is the complete document. However, before the XML version of the My
Favorite Records example is complete it needs two more things: an XML declaration and an XML
stylesheet declaration, both of which I add later in this chapter.

Now that you’ve seen an example of converting an HTML document to an XML document, the follow-
ing Try It Out presents the Spicy Thai Peanut Sauce recipe that you saw in Chapter 16. Here the recipe is
reformatted as an XML document.

Try It Out Creating an XML Schema
Example 17-1. In the following steps, you create an XML version of Chapter 16’s Spicy Thai Peanut Sauce
recipe.

1. Enter the following XML into your text editor:

<page>
<recipe>

<ingredients>
<title>

Spicy Thai Peanut Sauce
</title>
<columns>

<quantity/>
<measurement/>
<product/>
<instructions/>

</columns>
<headings>

<heading>
<quantity> quantity </quantity>
<measurement> measurement </measurement>
<product> product </product>
<instructions> instructions </instructions>

</heading>
</headings>
<ingredientsbody>

<ingredient>
<quantity> .5 </quantity>
<measurement> CUPS </measurement>
<product> Peanut Oil </product>
<instructions></instructions>

</ingredient>
<ingredient>

<quantity> 12 </quantity>
<measurement> Each </measurement>
<product> Serrano Peppers </product>
<instructions> Sliced </instructions>

</ingredient>
<ingredient>

<quantity> 16 </quantity>
<measurement> Each </measurement>
<product> Garlic Cloves </product>
<instructions> Minced </instructions>

466

Chapter 17

21_576429 ch17.qxd 11/18/04 12:35 PM Page 466

	cover.pdf
	page_c2.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf
	page_z0173.pdf
	page_z0174.pdf
	page_z0175.pdf
	page_z0176.pdf
	page_z0177.pdf
	page_z0178.pdf
	page_z0179.pdf
	page_z0180.pdf
	page_z0181.pdf
	page_z0182.pdf
	page_z0183.pdf
	page_z0184.pdf
	page_z0185.pdf
	page_z0186.pdf
	page_z0187.pdf
	page_z0188.pdf
	page_z0189.pdf
	page_z0190.pdf
	page_z0191.pdf
	page_z0192.pdf
	page_z0193.pdf
	page_z0194.pdf
	page_z0195.pdf
	page_z0196.pdf
	page_z0197.pdf
	page_z0198.pdf
	page_z0199.pdf
	page_z0200.pdf
	page_z0201.pdf
	page_z0202.pdf
	page_z0203.pdf
	page_z0204.pdf
	page_z0205.pdf
	page_z0206.pdf
	page_z0207.pdf
	page_z0208.pdf
	page_z0209.pdf
	page_z0210.pdf
	page_z0211.pdf
	page_z0212.pdf
	page_z0213.pdf
	page_z0214.pdf
	page_z0215.pdf
	page_z0216.pdf
	page_z0217.pdf
	page_z0218.pdf
	page_z0219.pdf
	page_z0220.pdf
	page_z0221.pdf
	page_z0222.pdf
	page_z0223.pdf
	page_z0224.pdf
	page_z0225.pdf
	page_z0226.pdf
	page_z0227.pdf
	page_z0228.pdf
	page_z0229.pdf
	page_z0230.pdf
	page_z0231.pdf
	page_z0232.pdf
	page_z0233.pdf
	page_z0234.pdf
	page_z0235.pdf
	page_z0236.pdf
	page_z0237.pdf
	page_z0238.pdf
	page_z0239.pdf
	page_z0240.pdf
	page_z0241.pdf
	page_z0242.pdf
	page_z0243.pdf
	page_z0244.pdf
	page_z0245.pdf
	page_z0246.pdf
	page_z0247.pdf
	page_z0248.pdf
	page_z0249.pdf
	page_z0250.pdf
	page_z0251.pdf
	page_z0252.pdf
	page_z0253.pdf
	page_z0254.pdf
	page_z0255.pdf
	page_z0256.pdf
	page_z0257.pdf
	page_z0258.pdf
	page_z0259.pdf
	page_z0260.pdf
	page_z0261.pdf
	page_z0262.pdf
	page_z0263.pdf
	page_z0264.pdf
	page_z0265.pdf
	page_z0266.pdf
	page_z0267.pdf
	page_z0268.pdf
	page_z0269.pdf
	page_z0270.pdf
	page_z0271.pdf
	page_z0272.pdf
	page_z0273.pdf
	page_z0274.pdf
	page_z0275.pdf
	page_z0276.pdf
	page_z0277.pdf
	page_z0278.pdf
	page_z0279.pdf
	page_z0280.pdf
	page_z0281.pdf
	page_z0282.pdf
	page_z0283.pdf
	page_z0284.pdf
	page_z0285.pdf
	page_z0286.pdf
	page_z0287.pdf
	page_z0288.pdf
	page_z0289.pdf
	page_z0290.pdf
	page_z0291.pdf
	page_z0292.pdf
	page_z0293.pdf
	page_z0294.pdf
	page_z0295.pdf
	page_z0296.pdf
	page_z0297.pdf
	page_z0298.pdf
	page_z0299.pdf
	page_z0300.pdf
	page_z0301.pdf
	page_z0302.pdf
	page_z0303.pdf
	page_z0304.pdf
	page_z0305.pdf
	page_z0306.pdf
	page_z0307.pdf
	page_z0308.pdf
	page_z0309.pdf
	page_z0310.pdf
	page_z0311.pdf
	page_z0312.pdf
	page_z0313.pdf
	page_z0314.pdf
	page_z0315.pdf
	page_z0316.pdf
	page_z0317.pdf
	page_z0318.pdf
	page_z0319.pdf
	page_z0320.pdf
	page_z0321.pdf
	page_z0322.pdf
	page_z0323.pdf
	page_z0324.pdf
	page_z0325.pdf
	page_z0326.pdf
	page_z0327.pdf
	page_z0328.pdf
	page_z0329.pdf
	page_z0330.pdf
	page_z0331.pdf
	page_z0332.pdf
	page_z0333.pdf
	page_z0334.pdf
	page_z0335.pdf
	page_z0336.pdf
	page_z0337.pdf
	page_z0338.pdf
	page_z0339.pdf
	page_z0340.pdf
	page_z0341.pdf
	page_z0342.pdf
	page_z0343.pdf
	page_z0344.pdf
	page_z0345.pdf
	page_z0346.pdf
	page_z0347.pdf
	page_z0348.pdf
	page_z0349.pdf
	page_z0350.pdf
	page_z0351.pdf
	page_z0352.pdf
	page_z0353.pdf
	page_z0354.pdf
	page_z0355.pdf
	page_z0356.pdf
	page_z0357.pdf
	page_z0358.pdf
	page_z0359.pdf
	page_z0360.pdf
	page_z0361.pdf
	page_z0362.pdf
	page_z0363.pdf
	page_z0364.pdf
	page_z0365.pdf
	page_z0366.pdf
	page_z0367.pdf
	page_z0368.pdf
	page_z0369.pdf
	page_z0370.pdf
	page_z0371.pdf
	page_z0372.pdf
	page_z0373.pdf
	page_z0374.pdf
	page_z0375.pdf
	page_z0376.pdf
	page_z0377.pdf
	page_z0378.pdf
	page_z0379.pdf
	page_z0380.pdf
	page_z0381.pdf
	page_z0382.pdf
	page_z0383.pdf
	page_z0384.pdf
	page_z0385.pdf
	page_z0386.pdf
	page_z0387.pdf
	page_z0388.pdf
	page_z0389.pdf
	page_z0390.pdf
	page_z0391.pdf
	page_z0392.pdf
	page_z0393.pdf
	page_z0394.pdf
	page_z0395.pdf
	page_z0396.pdf
	page_z0397.pdf
	page_z0398.pdf
	page_z0399.pdf
	page_z0400.pdf
	page_z0401.pdf
	page_z0402.pdf
	page_z0403.pdf
	page_z0404.pdf
	page_z0405.pdf
	page_z0406.pdf
	page_z0407.pdf
	page_z0408.pdf
	page_z0409.pdf
	page_z0410.pdf
	page_z0411.pdf
	page_z0412.pdf
	page_z0413.pdf
	page_z0414.pdf
	page_z0415.pdf
	page_z0416.pdf
	page_z0417.pdf
	page_z0418.pdf
	page_z0419.pdf
	page_z0420.pdf
	page_z0421.pdf
	page_z0422.pdf
	page_z0423.pdf
	page_z0424.pdf
	page_z0425.pdf
	page_z0426.pdf
	page_z0427.pdf
	page_z0428.pdf
	page_z0429.pdf
	page_z0430.pdf
	page_z0431.pdf
	page_z0432.pdf
	page_z0433.pdf
	page_z0434.pdf
	page_z0435.pdf
	page_z0436.pdf
	page_z0437.pdf
	page_z0438.pdf
	page_z0439.pdf
	page_z0440.pdf
	page_z0441.pdf
	page_z0442.pdf
	page_z0443.pdf
	page_z0444.pdf
	page_z0445.pdf
	page_z0446.pdf
	page_z0449.pdf
	page_z0450.pdf
	page_z0451.pdf
	page_z0456.pdf
	page_z0461.pdf
	page_z0466.pdf
	Copywriting.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/pictures/getpedia.html

