

SERVICE AUTOMATION AND
DYNAMIC PROVISIONING
TECHNIQUES IN IP/MPLS
ENVIRONMENTS

WILEY SERIES IN COMMUNICATIONS NETWORKING & DISTRIBUTED
SYSTEMS

Series Editor: David Hutchison, Lancaster University, Lancaster, UK

Series Advisers: Serge Fdida, Université Pierre et Marie Curie, Paris, France

Joe Sventek, University of Glasgow, Glasgow, UK

The ‘Wiley Series in Communications Networking & Distributed Systems’ is a series of

expert-level, technically detailed books covering cutting-edge research, and brand new

developments as well as tutorial-style treatments in networking, middleware and software

technologies for communications and distributed systems. The books will provide timely

and reliable information about the state-of-the-art to researchers, advanced students and

development engineers in the Telecommunications and the Computing sectors.

Other titles in the series:

Wright: Voice over Packet Networks 0-471-49516-6 (February 2001)

Jepsen: Java for Telecommunications 0-471-49826-2 (July 2001)

Sutton: Secure Communications 0-471-49904-8 (December 2001)

Stajano: Security for Ubiquitous Computing 0-470-84493-0 (February 2002)

Martin-Flatin: Web-Based Management of IP Networks and Systems,

0-471-48702-3 (September 2002)

Berman, Fox, Hey: Grid Computing. Making the Global Infrastructure a Reality,

0-470-85319-0 (March 2003)

Turner, Magill, Marples: Service Provision. Technologies for Next Generation

Communications 0-470-85066-3 (April 2004)

Welzl: Network Congestion Control: Managing Internet Traffic 0-470-02528-X (July 2005)

Raz, Juhola, Serrat-Fernandez, Galis: Fast and Efficient Context-Aware Services

0-470-01668-X (April 2006)

Heckmann: The Competitive Internet Service Provider 0-470-01293-5 (April 2006)

Dressler: Self-Organization in Sensor and Actor Networks 0-470-02820-3 (November 2007)

Berndt: Towards 4G Technologies: Services with Initiative 978-0-470-01031-0 (March 2008)

SERVICE AUTOMATION
AND DYNAMIC
PROVISIONING
TECHNIQUES IN IP/MPLS
ENVIRONMENTS

Christian Jacquenet, Gilles Bourdon and Mohamed Boucadair

All at

France Telecom, France

Copyright # 2008 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England

Telephone (þ44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted

in any form or by anymeans, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms

of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright

Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing

of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, JohnWiley & Sons Ltd, The

Atrium, SouthernGate, Chichester,West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (þ44)

1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names

and product names used in this book are trade names, service marks, trademarks or registered trademarks

of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

All trademarks referred to in the text of this publication are the property of their respective owners.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is

sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other

expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be

available in electronic books.

Library of Congress Cataloging-in-Publication Data

Jacquenet, Christian.

Service automation and dynamic provisioning techniques in IP/MPLS

environments / Christian Jacquenet, Gilles Bourdon and Mohamed Boucadair.

p. cm.

Includes index.

ISBN 978-0-470-01829-3 (cloth : alk. paper)

1. MPLS standard. 2. TCP/IP (Computer network protocol) I. Bourdon,

Gilles. II. BoucadaIr, Mohamed. III. Title.

TK5105.573.J33 2008

004.6’2–dc22

2007043741

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-01829-3 (HB)

Typeset in 10/12 pt Times by Thomson Digital, India.

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, England.

This book is printed on acid-free paper.

Contents

Preface xi

Acknowledgements xiii

PART I ARCHITECTURES AND PROTOCOLS FOR SERVICE
AUTOMATION 1

1 Introduction 3
1.1 To Begin With 3

1.1.1 On IP Networks in General, and Routers in Particular 3

1.1.2 On the Usefulness of Dynamic Routing Protocols

in IP Networks 5

1.1.3 On the Inability of an IGP to Address Interdomain

Communication Needs 7

1.1.4 On the BGP-4 Protocol 9

1.1.5 The Rise of MPLS 10

1.2 Context and Motivation of this Book 13

1.2.1 Classifying Capabilities 14

1.2.2 Services and Policies 14

1.2.3 The Need for Automation 15

1.3 How this Book is Organized 16

1.4 What Is and What Should Never Be 16

References 16

2 Basic Concepts 19
2.1 What is a Policy? 19

2.2 Deriving Policies into Rules and Configuration Tasks 19

2.2.1 Instantiation 20

2.2.2 Device Identification 20

2.2.3 Translation 21

2.3 Storing Policies 21

2.4 Policy and Device Configuration 21

2.5 Policy-based Management Model 22

2.5.1 Reaching a Policy Decision 24

2.5.2 Requirements for a PEP–PDP Communication Protocol 24

References 25

3 The RADIUS Protocol and its Extensions 27
3.1 Protocol Design 27

3.1.1 Protocol Structure and Messages 28

3.1.2 Forces and Weaknessess 36

3.1.3 Authorization and Provisioning with RADIUS 39

3.2 Radius Extensions 44

3.2.1 EAP Support with RADIUS 44

3.2.2 Interim Accounting 47

3.2.3 Dynamic Authorization 49

3.2.4 Using RADIUS for Assignment, Prioritization and Filtering

with VLANs 51

3.2.5 Filtering IP Traffic 52

3.2.6 Future Extensions 53

3.2.7 RADIUS and its Future 55

References 59

4 The Diameter Protocol 61
4.1 Learning from RADIUS Deficiencies 61

4.1.1 General Requirements 62

4.1.2 Authentication Requirements 63

4.1.3 Authorization Requirements 64

4.1.4 Accounting Requirements 64

4.1.5 Diameter is Born 64

4.2 Diameter: Main Characteristics 65

4.2.1 Diameter Network Entities 66

4.2.2 Diameter Applications 67

4.2.3 Sessions and Connections 67

4.2.4 Diameter Routing 68

4.2.5 Peer Discovery 70

4.2.6 Peer Connection Maintenance for Reliable

Transmissions 71

4.3 Protocol Details 71

4.3.1 Diameter Header 71

4.3.2 AVP Format 73

4.3.3 Command Codes 74

4.3.4 Accounting 76

4.4 Diameter Network Access Application (NASREQ) 76

4.4.1 AVP Usage for NASREQ 77

4.4.2 Enhanced Authorization Parameters 78

4.4.3 Enhanced Authorization Examples 80

4.5 Diameter Credit Control Application 81

4.6 Diameter in NGN/IMS Architecture for QoS Control 82

4.6.1 What is an NGN? 82

4.6.2 QoS Control in ETSI/TISPAN Architecture 85

References 90

vi Contents

5 The Common Open Policy Service (COPS) Protocol 91
5.1 A New Scheme for Policy-based Admission Control 91

5.2 A Client–Server Architecture 92

5.3 The COPS Protocol 94

5.3.1 The COPS Header 94

5.3.2 The COPS Message Objects 95

5.4 COPS Messages 97

5.4.1 Client-Open (OPN) 97

5.4.2 Client-Accept (CAT) 97

5.4.3 Request (REQ) 97

5.4.4 Decision (DEC) 98

5.4.5 Other COPS Messages 99

5.5 Summary of COPS Operations 100

5.6 Use of COPS in Outsourcing Mode 101

5.7 Use of COPS in Provisioning Mode 101

5.7.1 On the Impact of Provisioning Mode on COPS Operations 102

5.7.2 On the Impact of Provisioning Mode on PEP–PDP Exchanges 103

5.8 Security of COPS Messages 104

References 104

6 The NETCONF Protocol 105
6.1 NETCONF at a Glance 105

6.1.1 Introduction 105

6.1.2 Motivations for Introducing NETCONF 106

6.1.3 NETCONF, an IETF Initiative 107

6.1.4 Missions of the IETF NETCONF Working Group 107

6.1.5 NETCONF-related Literature 108

6.1.6 What is In? What is Out? 109

6.2 NETCONF Protocol Overview 109

6.2.1 Some Words about XML 110

6.2.2 NETCONF Terminology 114

6.2.3 NETCONF Layer Model 114

6.2.4 NETCONF Communication Phases 116

6.2.5 NETCONF Data 117

6.2.6 NETCONF Capability Exchange 118

6.2.7 RPC Layer 120

6.2.8 NETCONF Filtering 129

6.3 NETCONF Protocol Operations 130

6.3.1 Retrieve Configuration Data 135

6.3.2 Get 137

6.3.3 Delete Configuration Data 137

6.3.4 Copy Configuration 138

6.3.5 Edit Configuration Data 139

6.3.6 Close a NETCONF Session 142

6.3.7 Kill a Session 143

Contents vii

6.3.8 Lock NETCONF Sessions 144

6.3.9 Unlock NETCONF Sessions 145

6.3.10 Validate Configuration Data 146

6.3.11 Commit Configuration Changes 148

6.3.12 Discard Changes of Configuration Data 149

6.3.13 NETCONF Notification Procedure 149

6.4 NETCONF Transport Protocol 153

6.4.1 NETCONF as Transport-independent Protocol 153

6.4.2 Transport Protocol Alternatives 153

6.5 NETCONF Capabilities 162

6.5.1 URL Capability 163

6.5.2 XPath Capability 165

6.5.3 Writable-Running Capability 166

6.5.4 Candidate Configuration Capability 167

6.5.5 Confirmed Commit Capability 167

6.5.6 Validate Capability 168

6.5.7 Distinct Startup Capability 169

6.5.8 Rollback on Error Capability 170

6.5.9 Notification Capability 171

6.6 Configuring a Network Device 171

6.7 NETCONF Content Layer 173

References 173

7 Control and Provisioning of Wireless Access Points (CAPWAP) 175
7.1 CAPWAP to Address Access Point Provisioning Challenges 176

7.2 CAPWAP Concepts and Terminology 176

7.3 Objectives: What do we Expect from CAPWAP? 180

7.4 CAPWAP Candidate Protocols 182

7.5 The CAPWAP Protocol 183

7.6 CAPWAP Future 186

References 186

PART II APPLICATION EXAMPLES OF SERVICE AUTOMATION
AND DYNAMIC RESOURCE PROVISIONING TECHNIQUES 187

8 Dynamic Enforcement of QoS Policies 189
8.1 Introduction 189

8.1.1 What is Quality of Service, Anyway? 189

8.1.2 The Need for Service Level Specifications 192

8.2 An Example 193

8.3 Enforcing QoS Policies in Heterogeneous Environments 193

8.3.1 SLS-inferred QoS Policy Enforcement Schemes 193

8.3.2 Policy Rules for Configuring DiffServ Elements 197

References 198

viii Contents

9 Dynamic Enforcement of IP Traffic Engineering Policies 199
9.1 Introduction 199

9.2 Terminology Considerations 200

9.3 Reference Model 201

9.4 COPS Message Content 202

9.4.1 Request Messages (REQ) 202

9.4.2 Decision Messages (DEC) 203

9.4.3 Report Messages (RPT) 203

9.5 COPS-PR Usage of the IP TE Client-Type 204

9.6 Scalability Considerations 205

9.6.1 A Tentative Metric Taxonomy 205

9.6.2 Reporting the Enforcement of IP Traffic Engineering Policy 206

9.7 IP TE PIB Overview 206

9.8 COPS Usage for IP TE Accounting Purposes 207

References 208

10 Automated Production of BGP/MPLS-based VPN Networks 211
10.1 Introduction 211

10.2 Approach 212

10.3 Use of Policies to Define Rules 214

10.4 Instantiation of IP VPN Information Model Classes 214

10.5 Policy Components of an IP VPN Information Model 215

10.5.1 Physical Components of an IP VPN Information Model 216

10.5.2 Virtual Components of an IP VPN Information Model 217

10.5.3 Inheritance Hierarchy 218

10.6 Dynamic Production of IP VPN Services 221

10.7 Context of a Multidomain Environment 222

10.7.1 A Bit of Terminology 222

10.7.2 Reference Model 223

10.8 Possible Extensions of the VPN Model 224

References 224

11 Dynamic Enforcement of Security Policies in IP/MPLS Environments 227
11.1 Enforcing Security Policies for Web-based Access Control 227

11.2 Enforcing Security Policies in Companies with 802.1X 235

References 238

12 Future Challenges 239
12.1 Introduction 239

12.1.1 Current Issues with Configuration Procedures 239

12.1.2 Towards Service-driven Configuration Policies 240

12.2 Towards the Standardization of Dynamic Service Subscription

and Negotiation Techniques 241

12.2.1 Basic Motivation 241

12.2.2 Commercial Framework 241

12.2.3 A Service-oriented Architecture 242

Contents ix

12.2.4 Publishing and Accessing Services 243

12.2.5 Example of Automated IP VPN Service Composition 244

12.3 Introducing Self-organizing Networks 246

12.3.1 What is a Self-organizing Network? 246

12.3.2 Characteristics of SON Networks and Devices 247

12.3.3 On Self-management 248

12.3.4 SON Algorithms and How to Use Them for Enhancing Dynamic

Policy Enforcement Schemes 248

12.3.5 SON-inferred Business Opportunities 249

References 249

APPENDICES 251

Appendix 1 XML Schema for NETCONF RPCs and Operations 253

Appendix 2 XML Schema for NETCONF Notifications 269

Appendix 3 Example of an IP Traffic Engineering Policy Information
Base (IP TE PIB) 273

Appendix 4 Example of an IP TE Accounting PIB 297

Appendix 5 Description of Classes of an IP VPN Information Model 311
A5.1 Introduction 311

A5.2 Policy Class Definitions 311

Index 329

x Contents

Preface

Just remember the set of services offered by the Internet a few years ago – emails, web

services, sometimes experimental voice services, over what used to be referred to as a ‘high-

speed’ connection of a few hundred kbits/second! The Internet has gone through a profound

transformation and has been evolving at an unprecedented rate compared with other

industries, thus becoming the central component of all forms of communication: data

(emails, web services, search engines, peer-to-peer, e-commerce, stock trading, etc.), voice

but also video (TV broadcasting, videoconferencing).

New innovative applications and services will undoubtedly continue to emerge, and we

are still at an early stage of what the Internet will be able to provide in the near future. With

no doubt, the impact of the Internet on how people communicate around the world and

access to information will continue to increase rapidly. New forms of communication will

arise such as tele-presence, ubiquitous services and distributed gaming, and the Internet will

ineluctably extend its reach to ‘objects’, which is sometimes referred to the ‘Internet of

things’, with billions of objects interconnected with each other and new forms of machine-

to-machine communication. This new era of services will lead to endless possibilities and

opportunities in a variety of domains.

The offering of a wide range of new services has required the design of networking

technologies in the form of sophisticated protocols and mechanisms based on open standards

driven by the Internet Engineering Task Force (IETF). The non-proprietary nature of the

Internet Protocol (IP) led to interoperable solutions, thus making the Internet a unique

platform of innovation.

As a direct implication of the Internet becoming critical to our personal and professional

lives, user expectation has become very high in terms of reliability, quality of service (QoS)

and security. A network failure of a few minutes is now considered as unacceptable! Fast

network failure detection and traffic reroute mechanisms have been designed to find alternate

paths in the network within the timeframe of a few milliseconds while maintaining path

quality.

Fine granularity in terms of QoS is now a must: although some applications are inherently

delay tolerant (e.g. asynchronous communications such as emails), other traffic types impose

bounded delays, jitters and reliability constraints that require complex configuration tasks to

engineer the network. QoS guarantees imply traffic classification at the edge of the network,

sophisticated local forwarding techniques (multipriority scheduling and traffic discard) and

traffic engineering.

The ability to effectively engineer the traffic within the network is now of the utmost

importance and is known as a fairly difficult task for service providers considering the high

volume of varying traffic. Furthermore, service providers have to engineer the network

carefully in order to meet the quality of services imposed by demanding applications while

having to deal with resource constraints. Security has become a central component: user

identification and authentication and protection against attacks of different forms, including

denial of service (DoS) attacks, require the configuration of complex networking technol-

ogies. Last but not least, the ability to efficiently manage and monitor the network is an

absolute requirement to check service level agreements, enforce policies, detect network

faults and perform network troubleshooting to increase the network availability.

A considerable amount of attention has been paid to service automation, network

provisioning and policy enforcement. Network technology designers have been actively

working on various tools to effectively provision, configure and monitor the network with

sophisticated network components so as to ensure the toll quality that the Internet is now

delivering, far from the ‘best effort’ service of the early days of the Internet. These tasks are

increasingly crucial and complex, considering the diversity of the set of services provided by

the Internet and the scale at which such tasks must be performed, with hundreds of millions

of end-users, hundreds of services and a very significant traffic growth.

This is the right book at the right time, and the authors are known for their deep level of

expertise in this domain. The organization of the book is particularly well suited to the topic.

The first part examines the protocols and architecture required for network provisioning and

policy enforcement in IP/MPLS networks. However, a book on this key subject would not be

thorough without a strong emphasis on issues of a practical nature, and this is what the

second part of the book is about. A number of highly relevant examples are provided on

QoS, traffic engineering and virtual private networks, ideally complementing the theory

expounded in the first part of the book.

JP Vasseur

Cisco Distinguished Engineer

Chair of the IETF Path Computation Element Working Group

xii Preface

Acknowledgements

Christian To my wife Béatrice and my sons Pierre and Paul, with all my love

Gilles To my wife and my son

Mohamed To my parents and my wife, with all my love

Part I
Architectures and

Protocols for Service

Automation

1

Introduction

1.1 To Begin With

The Internet has become a privileged playground for the deployment of a wide range of

value-added IP service offerings. These services rely upon the combination of complex yet

advanced capabilities to forward the corresponding traffic with the desired level of quality, as

per a set of policies (in terms of forwarding, routing, security, etc.) that have been defined by

the service provider, and sometimes negotiated with the customers.

This is a book about techniques that allow the dynamic enforcement of such policies.

Before discussing the motivation for such a book and detailing its organization, this

chapter begins with an introductory reminder about the basics of IP networks. A 30 000 ft

overview of the Internet as we know it.

1.1.1 On IP Networks in General, and Routers in Particular

An IP network is a set of transmission and switching resources that process IP traffic. The IP

traffic is composed of protocol data units (PDUs) (RFC 791 [1]), which are called datagrams.

The transmission resources of an IP network rely upon various link-level transport

technologies, such as asynchronous transfer mode (ATM), synchronous digital hierarchy

(SDH), etc.

The switching resources of an IP network are called ‘routers’. IP routers are in charge of

processing each IP datagram, as per the following chronology:

� Upon receipt of a datagram, the router analyzes the contents of the destination address

field of the datagram. This allows the router to identify the output interface through which

the IP datagram will be forwarded, according to the contents of the forwarding

information base, or FIB. An FIB of an IP router is typically composed of a set of

{next hop; IP network} associations. The first member of these associations corresponds

to the interface identifier of the next router capable of processing the datagram whose

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

destination address field corresponds to the IP network (expressed as an IP address) which

is the second member of the pair.

� The analysis of the FIB allows the router to perform the switching features that will direct

the datagram to the appropriate output interface through which the next hop router’s

interface identified in the aforementioned pair can be reached.

� Then the router performs the forwarding task which will actually transmit the datagram

over the selected output interface.

Thus the forwarding of an IP datagram relies upon the hop-by-hop paradigm owing to the

systematic identification of the next router on the path towards the final destination [2–4].

Note also that Postel [1] also mentions the source routing mode, where the path to be

followed by IP datagrams can either be partially (‘loose source routing’) or fully (‘strict

source routing’) defined by the source that sends the IP datagram.

An FIB of an IP router is fed by information that comes from the use of a routing process,

which can be either static or dynamic. In the case of static routing, the set of paths towards

destination prefixes is manually configured on every router of the network.

In the case of a dynamic routing process, the FIB is dynamically fed by information that is

stored and maintained in a specific table – the routing information base (RIB). There are at

least as many RIB databases as routing protocols activated on the IP router.

The IP routers, which are operated by a globally unique administrative entity within the

Internet community, form an autonomous system (AS) (see Figure 1.1) or border gateway

protocol (BGP) domain (RFC 4271 [5]). From a typological standpoint, an AS is composed

of a set of routers, thus yielding the distinction between the inner of an AS and the outer of

an AS. The outer of an AS is the rest of the Internet.

AS #n AS #3

AS #2 Autonomous System (AS) #1

Router

Figure 1.1 The Internet organized into autonomous systems

4 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

1.1.2 On the Usefulness of Dynamic Routing Protocols in IP Networks

The deployment of IP networks of large scale (such as those that compose today’s Internet)

has rapidly led to the necessity of using dynamic routing protocols, so that routers might

determine as efficiently as possible (that is, as fast as possible) the best route to reach a given

destination (such an efficiency can be qualified in terms of convergence time).

Protocol convergence can be defined as the time it takes for a routing protocol to compute,

select, install and disseminate the routing information [that is, the required information to reach

a (set of) destination prefix(es)] at the scale of a region, be it an OSPF area or a BGP domain.

That is, for a given destination prefix, a converged state is reached when information regarding

this prefix has been added/modified or withdrawn in all relevant databases of the routers in the

region. Traffic for a ‘converged’ prefix should be forwarded consistently inside the region.

As a matter of fact, static routing reveals itself as being incompatible with the number of

IP networks that currently compose the Internet, because the static feeding of the FIB

databases (which may therefore contain tens of thousands of entries, as per http://bgp.

potaroo.net/) is a tedious task that may obviously impact upon the forwarding efficiency of

such IP networks, because of network failures or congestion occurrences. Indeed, static

routing leads to ‘frozen’ network architectures, which cannot adapt easily to the aforemen-

tioned events, unlike dynamic routing.

Dynamic routing protocols therefore allow routers to dynamically exchange network

reachability information. Such information is stored in the RIB bases of these routers (as

mentioned above) and is dynamically refreshed. The organization of the Internet into

multiple autonomous systems yields the following routing protocol classification:

� dynamic routing protocols making it possible to exchange reachability information about

networks that are part of the autonomous system: such protocols are called interior

gateway protocols, or IGP;

� dynamic routing protocols making it possible to exchange reachability information about

networks that are outside the autonomous system: such protocols are called exterior

gateway protocols, or EGP.

Figure 1.2 depicts such a classification. Note that the white arrow of the figure should not

be understood as a limitation of EGP exchanges that would be restricted to inter-AS

communications. As a matter of fact, there are also BGP exchanges within domains.

These dynamic routing protocols use a specific algorithm whose calculation process takes

into account one or several parameters which are often called metrics. These metrics are

used by the routing algorithm to enforce a routing policy when the administrator of an IP

network has the ability to actually define (and possibly modify) the values of such metrics.

Among the most commonly used metrics, one can cite:

� the number of routers (hop count metric) to cross before reaching a given destination [the

fewer the routers, the better will be the route, whatever the characteristics of the links (in

terms of speed, among others) that interconnect the routers];

� the cost metric, the meaning of which is broader than the previous hop count metric, and

which generally reflects a weight assigned to an interface, a transmission link, the crossing

of an autonomous system or a combination of these components.

Introduction 5

The nature of the routing algorithms yields another typological effort, which consists in

distinguishing the following:

� Routing protocols using algorithms based upon distance-vector calculation. Such an

algorithm is generally inspired by the Bellman–Ford probabilistic calculation.

� Routing protocols using algorithms that take into account the state of the links

interconnecting the routers. Such routing protocols are called ‘link-state’ routing proto-

cols, and their algorithms are generally based upon the use of the Dijkstra probabilistic

calculation.

Table 1.1 provides a summary of the principal IGP-specific characteristics of both

distance-vector and link-state routing algorithms.

The very first IGP to be specified, standardized, developed and implemented by router

vendors was the routing information protocol (RIP) (RFC 1058 [6], RFC 2453 [7]) back in

1984. The route selection process of RIP relies upon the use of a distance-vector calculation,

directly inspired from the Bellman–Ford algorithm.

AS #n AS #3

AS #2 Autonomous System (AS) #1

Router

IGP Exchanges (within an AS)

EGP Exchanges (between ASs)

Figure 1.2 Two kinds of dynamic routing protocol (IGP and EGP)

6 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

An example of a link-state routing protocol is the open shortest path first (OSPF) protocol

(RFC 2328 [8]), which is supported by most of the routers on the market.

1.1.3 On the Inability of an IGP to Address Interdomain
Communication Needs

The organization of the Internet into autonomous systems does not necessarily justify the

aforementioned IGP/EGP typology, since the network reachability information exchange

between autonomous systems is primarily based upon the use of a dynamic routing protocol,

whatever this protocol might be (static routing between ASs is not an option, for the reasons

mentioned in Section 1.1.2).

Therefore, why not use an IGP protocol to exchange network reachability information

between autonomous systems? Here is a couple of reasons:

1. A router that activates a distance-vector routing protocol advertizes to its neighbors the

whole set of networks it can reach. This information is displayed as a vector list that

includes the cost of the path associated with each network. Each router of the network

builds its own RIB database according to the information contained in these vector lists,

Table 1.1 Comparison between distance-vector and link-state routing protocols

Distance-vector Routing Protocols Link-state Routing Protocols

Each router (periodically but Each router (periodically but also

also spontaneously) sends spontaneously) sends reachability

reachability information (routes information to all the routers of the

to destination prefixes) to its domain to which it belongs

directly-connected neighbors. (a domain corresponds either

to the autonomous system to

which the router belongs to or

part of the autonomous system).

The reachability information is The reachability information is

composed of a cost estimation composed of the cost of the paths

(generally expressed in terms of (generally expressed as a combination

hop count, that is, the number of of metrics that reflect the cost of each

routers that need to be crossed to path better than the hop count metric

reach a given destination) of each of used by distance-vector routing protocols;

the paths that make it possible to reach link-state protocols use metrics that

all the networks (destination prefixes) reflect the link bandwidth associated

of which the router is aware. with a given interface, for example)

towards adjacent networks. Thus,

routers of a given domain acquire a more

accurate knowledge of the domain’s

topology, and hence a better estimation

of the shortest path to reach a given

destination within the domain.

Introduction 7

but this information does not provide any clue concerning the identity of the routers and

the networks that have to be crossed before reaching a given destination. This may

present some difficulty when exchanging such reachability information between auton-

omous systems:

� The distance-vector routing protocol states that all the routers running it have a

common understanding of the metric that allows them to select a next hop rather than

another. This common understanding may not be the case for routers belonging to

different autonomous systems.

� The routing policy that has been defined within an autonomous system might be

such that communication with specific autonomous systems is forbidden (e.g. for

exchanging specific network reachability information). A distance-vector routing

protocol has no means to reflect such filtering capabilities in the vector lists it can

propagate.

2. A router that activates a link-state routing protocol advertizes network reachability

information which is partly composed of the costs associated with the links that connect

the router to adjacent networks, so that each of these routers has the ability to build up a

complete image of the network topology. This advertisement mechanism relies upon the

use of a flooding capability, which may encounter some scalability issues when

considering communication between autonomous systems:

� The autonomous systems do not necessarily have a common understanding of the

metrics that are used to compute a shortest path, so that the topological information that

is maintained by the routers may be dramatically different from one autonomous

system to another.

� The aforementioned flooding capability of a link-state protocol can rapidly become

incompatible with networks of large scale (in terms of the number of routers

composing a given domain), especially when considering the traffic volume associated

with the broadcasting of network reachability information.

The basic motivation that yielded the specification, the standardization and the develop-

ment of routing protocols of the EGP type was based upon the following information: since

the metrics used by IGP routing protocols can be understood differently by routers belonging

to different autonomous systems, the network reachability information to be exchanged

between autonomous systems should rely upon other metrics.

Thus, a router belonging to autonomous system Awould advertize to autonomous systems

B, C, etc., the networks it can reach, including the autonomous systems that have to be

crossed to reach such networks. This very basic concept is used by EGP routing protocols,

and it is called ‘path-vector routing’.

An EGP routing protocol has the following characteristics:

� The information exchangedbetween routers that belong todifferent autonomous systemsdoes

not contain any clues about the use of a specific metric, or the value of any cost.

� The information exchanged between routers that belong to different autonomous systems

describe a set of routes towards a set of destination prefixes. The description of such routes

includes (but is not necessarily limited to) the number and the identity of the autonomous

systems that have to be crossed to reach the destination networks.

8 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

The latter characteristic allows a router to enforce a routing policy that has been defined

by the administrator of an autonomous system, so that, for example, this router could decide

to avoid using a specific route because this route traverses autonomous systems whose

degree of reliability is incompatible with the sensitive nature of the traffic that could use this

route.

The forwarding of IP traffic over the Internet implies the crossing of several autonomous

systems, thus yielding the activation of an EGP routing protocol. The BGP-4 (border

gateway protocol version 4) protocol (RFC 4271 [9]) is currently the EGP that has been

deployed over the Internet. The BGP protocol has arisen from the experience acquired

during the very first stages of Internet deployment, especially through the deployment of the

NSFNET (National Science Foundation NETwork), owing to the specification and the

implementation of the exterior gateway protocol (EGP) (RFC 904 [10], RFC 1092 [11], RFC

1093 [12]).

1.1.4 On the BGP-4 Protocol

The principal feature of a BGP-4-enabled router consists in exchanging reachability

information about IP networks (aka IP destination prefixes) with other BGP-4-enabled

routers. Such information includes the list of the autonomous systems that have been

crossed, and it is sufficiently specific for it to be possible to build up an AS connectivity

graph from this information.

This AS connectivity graph will help BGP-4-enabled routers in avoiding routing loops

(which result in the development of IP network-killing ‘black holes’), and it will also help in

enforcing the routing policies that have been defined by the AS administrator.

The BGP protocol relies upon transmission control protocol (TCP) port 179 (RFC 793

[13]) – a transport layer-specific protocol that supports fragmentation, retransmission,

acknowledgement and sequencing capabilities.

The BGP communication between two routers can be briefly described according to the

following chronology:

� The BGP routers establish a TCP connection between themselves by exchanging

messages that aim to open this connection, then confirming the parameters that char-

acterize this connection.

� Once the TCP connection has been established, the very first exchange of (reachability)

information is composed of the overall contents of the BGP table maintained by each

peer.

� Then, information is exchanged on a dynamic basis. This information actually represents

specific advertisements every time the contents of one or the other BGP tables have changed.

Since the BGP-4 protocol does not impose a periodic update of the global contents of the

BGP routing table, each router must keep the current version of the global contents of all the

BGP routing tables of the routers with which it has established a connection.

Specific messages are exchanged on a regular basis, so as to keep the BGP connection

active, whereas notifications are sent in response to a transmission error or, more generally,

under specific conditions. The receipt of a notification results in the BGP communication

breakdown between the two BGP peers, but such a breakdown is smoothed by the TCP

Introduction 9

protocol, which waits for the end of the ongoing data transmission before effectively shutting

down the connection.

Although the BGP-4 protocol is a routing protocol of the EGP type, routers that belong to

the same autonomous system have the ability to establish BGP connections between

themselves as well, which yields the following typology:

� The connections that are established between BGP routers belonging to different

autonomous systems are called ‘external sessions’. Such connections are often named

‘external BGP’ or ‘eBGP’ connections.

� The connections that are established between BGP routers belonging to the same

autonomous system are called ‘internal sessions’. Such connections are often named

‘internal BGP’ or ‘iBGP’ connections.

iBGP connections are justified by the will to provide (to the BGP routers belonging to the same

autonomous system) as consistent a view of the outside world as possible. Likewise, an IGP

protocol provides a homogeneous view of the internal routes within an autonomous system.

A BGP route (i.e. the reachability information that is transmitted within the context of the

establishment of a BGP connection) is made up of the association of an IP prefix and the

attributes of the path towards the destination identified by this prefix. Upon receipt of such

information, the router will store it in the BGP routing table, which is actually made up of

three distinct tables:

� The Adj-RIB-In table, which stores all the advertized routes received by a BGP peer. This

information will be exploited by the BGP decision process.

� The Adj-RIB-Out table, which stores all the routes that will be advertized by a BGP peer.

These are the routes that have been selected by the BGP decision process.

� The Loc-RIB table, which stores all the routes that will be taken into consideration by the

BGP decision process. Among these routes there will be those that are stored in the Adj-

RIB-Out.

The distinction between these three tables is motivated by the BGP route selection

process. In practice, most of the BGP-4 implementations use a single BGP routing table,

which will be indexed appropriately according to the above-mentioned typology.

1.1.5 The Rise of MPLS

The hop-by-hop IP routing paradigm of the old days of the Internet (as introduced in

Section 1.1.1) is being questioned by the multiprotocol label switching (MPLS) technique

(RFC 3031 [14]). MPLS is a switching technique that allows the enforcement of a consistent

forwarding policy at the scale of a flow, where a flow can be defined as a set of IP datagrams

that share at least one common characteristic, such as the destination address.

In this case, all the IP datagrams of a given flow [designated as a forwarding equivalence

class (FEC) in the MPLS terminology] will be conveyed over the very same path, which is

called a label switched path (LSP) (see Figure 1.3).

MPLS switching principles rely upon the content of a specific field of the MPLS header,

which is called the label. Labels are the primary information used by MPLS-enabled routers

10 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

to forward traffic over LSP paths. MPLS has been defined so that it can be used whatever the

underlying transport technology, or whatever the network layer-specific communication

protocol, such as IP. The MPLS forwarding scheme is depicted in Figure 1.4.

The MPLS forwarding scheme relies upon the maintenance of label tables, called label

information bases (LIBs). To forward an incoming MPLS packet, the MPLS-enabled router

will check its LIB to determine the outbound interface as well as the outgoing label to use,

based upon the information about the incoming interface as well as the incoming label. As

per the example provided by Figure 1.4:

� Router A of the figure, which does not support MPLS forwarding capabilities, is

connected to (or has the knowledge of) networks N1 and N2, which can be reached

through its Ethernet 0 (E0) interface. Table 1.2 is an excerpt from its FIB, which basically

lists the network prefix, the outgoing interface and the associated next hop router.

� The black arrow in Figure 1.4 suggests that an ordinary routing update (by means of a

dynamic routing protocol, such as OSPF), advertizes the routes to the MPLS-enabled

router [or label switch router (LSR) in the MPLS terminology], which is directly

connected to router A.

� Using the label distribution protocol (LDP) (RFC 3036 [15]), router 1 selects an unused

label [label 3 in the example provided by the excerpt of its label information base below

(Table 1.3)] and advertizes it to the upstream neighbor. The hyphen in the ‘Label’ column

of Table 1.3 denotes that all labels will be popped (or removed) when forwarding the

MPLS Network

A

B

Non-MPLS-capable router

MPLS-capable router (aka
Label Switch Router (LSR))

Label Switched Path (LSP)

3

2

1

4

Figure 1.3 MPLS label switched paths

Introduction 11

packet to router A, which is not MPLS capable. Thus, an MPLS packet received on the

serial 1 interface with label 3 is to be forwarded out through the serial 0 interface with no

label, as far as LSR 1 which is directly connected to router A is concerned. The white

arrow in Figure 1.4 (between router 1 and router 2) denotes the LDP communication that

indicates the use of label 3 to the upstream LSR 2.

LSR 1 has learned routes that lead to N1 and N2 network prefixes. It advertizes such

routes upstream. When LDP information is received, router 1 records the use of label 3 on

the outgoing interface serial 0 for the two prefixes mentioned previously. It then allocates

label 16 on the serial 1 interface for this FEC and uses LDP to communicate this information

E0

Network
N1

Network
N2

MPLS Network

A

B

Non-MPLS-capable router

MPLS-capable router (aka
Label Switch Router (LSR)

Label Switched Path (LSP)

3

2

1

4

S0

S1

Label Distribution Protocol (LDP)-based
exchange of information

Interior Gateway Protocol (IGP)-based
exchange of information

Figure 1.4 MPLS forwarding principle

Table 1.2 Excerpt from the forwarding information base of

router A (as per Figure 1.4)

Network Interface

N1 E0

N2 E0

12 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

to the upstream LSR. Thus, when label 16 is received on serial 1, it is replaced with label 3

and the MPLS packet is sent out through serial 0, as per Table 1.4.

Note that there will be no labels received by router B (and sent by router 4 in the figure),

since the top router B is not an LSR, as illustrated by its routing table (no labels are

maintained in this table). The label switched path (LSP) is now established.

Note also that MPLS labels can be encoded as the virtual path identifier/virtual channel

identifier (VPI/VCI) information of an ATM cell, as the data link connection identifier

(DLCI) information of a frame, in the sense of the frame relay technology, but also as 20-

byte long information encoded in the 4-byte encoded MPLS header associated with each IP

PDU, as depicted in Figure 1.5.

MPLS capabilities are now supported by most of the router vendors of the market, and the

technique is gaining more and more popularity among service providers and network

operators, as the need for traffic engineering capabilities emerges. Traffic engineering is the

ability to (dynamically) compute and select paths whose characteristics comply with

requirements of different kinds: the need to make sure that a given traffic will be conveyed

by a unique path (potentially secured), e.g. for security purposes, or the need for minimum

transit delays, packet loss rates, etc.

MPLS-based traffic engineering capabilities can be seen as some of the elementary

components of a global quality of service (QoS) policy.

1.2 Context and Motivation of this Book

IP service offerings (ranging from access to the Internet to more advanced services such as

TV broadcasting or videoconferencing) are provisioned owing to the combined activation of

different yet complex capabilities, which not only require a high level of technical expertise

but also result in the organization of complex management tasks.

Table 1.3 Excerpt from the label information base of router 1 (as per Figure 1.4)

Network Incoming I/F Label Outgoing I/F Label

N1 Serial 1 3 Serial 0 —

N2 Serial 1 3 Serial 0 —

Table 1.4 Excerpt from the label information base of router 2 (as per Figure 1.4)

Network Incoming I/F Label Outgoing I/F Label

N1 S1 3 S0 16

N2 S1 3 S0 16

Label EXP bits Stack Time To Live (TTL)
20 bits 3 bits 1 bit 8 bits

Figure 1.5 The MPLS header

Introduction 13

1.2.1 Classifying Capabilities

As stated above, IP services are provided by means of a set of elementary capabilities that

are activated in different regions and devices of an IP/MPLS network infrastructure. These

capabilities can be organized as follows:

� Architectural capabilities, which are the cornerstones for the design and enforcement of

addressing, forwarding and routing policies. Such policies aim to convey service-specific

traffic in an efficient manner, e.g. according to the respective requirements and constraints

that may have been (dynamically) negotiated between the customer and the service

provider.

� Quality of Service (QoS) capabilities, as briefly introduced in Section 1.6.

� Security capabilities, which include (but are not necessarily limited to):

– the user and device identification and authentication means;

– the protection capabilities that preserve any participating device from any kind of

malicious attacks, including (distributed) denial of service (DDOS) attacks;

– the means to preserve the confidentiality of (some of) the traffic that will be conveyed

by the IP network infrastructure;

– the means to protect users and sites from any kind of malicious attack that may be

relayed by the IP/MPLS network infrastructure;

– the functions that are used to check whether a peering entity is entitled to announce

routing information or not, and also the features that provide some guarantees as far as

the preservation of the integrity (and validity) of such (routing) information is

concerned.

� Management capabilities, composed of fault, configuration, accounting, performance and

security (FCAPS) features. Monitoring tools are also associated with such features. They

are used for analysis of statistical information that aims to reflect how efficiently a given

service is provided and a given policy is enforced.

1.2.2 Services and Policies

The management tasks that are performed to provision and operate an IP network or a set of

IP service offerings can be grouped into several policies that define what capabilities should

be activated, and how they should be used (that is, the specification of the relevant

configuration parameters).

Policies can relate to a specific service [e.g. the forwarding policy to be enforced at the

scale of a BGP domain to convey voice over IP (VoIP) traffic with the relevant level of

quality], or can be defined whatever the nature of the service offerings (e.g. the BGP routing

policy to be enforced within a domain).

The design and the enforcement of a given policy must therefore address a set of

elementary questions, as follows:

� Why? This is what this book is about – the need for policies to facilitate the automation of

sometimes tedious management tasks (configuration of routers to support different

services, identification of the users entitled to access a service, etc.) that need to be

14 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

checked (that is, reliability is a key characteristic of configuration tasks), as well as the

dynamic allocation of (network) resources, either proactively (e.g. as part of a global

network planning policy) or reactively (e.g. to address traffic growth issues).

� What? This is the set of capabilities that are required to enforce a policy, possibly to be

inferred by the different services that may be provided. For example, a security policy may

rely upon the use of filtering, encryption and firewalling capabilities.

� How? This is the set of techniques as well as information (in terms of valued configuration

parameters) that reflects the instantiation of a given policy. This is also what this book is

about – discussing and detailing the various techniques that can be used dynamically to

enforce policies, as well as the provisioning of several examples of services. As an

example of an instantiated policy, the QoS policy that needs to be enforced for VoIP traffic

may include the explicit identification of such traffic (e.g. by means of a specific DSCP

marking), as well as the whole set of configuration arguments (token bucket parameters,

actions to be taken by the routers in case of in-profile and out-of-profile traffic, etc.) that

define how such traffic is prioritized and forwarded. A specific chapter of this book further

elaborates on this example.

� Note that timely parameters are also part of this question, like the epoch during which a

policy is to be enforced (e.g. 24 hours a day, 7 days a week, etc.). ‘When?’ is therefore the

kind of question that is addressed by these parameters.

The design, the provisioning and the operation of a wide range of IP service offerings

are therefore the result of the enforcement of a complex combination of policies. Even

more complex is the underlying substrate of various technologies that are solicited to

provide (from the subscription phase to the actual deployment) and to manage a given

service.

The foreseen development of the so-called ‘triple-play’ services, where data, voice and

image traffics should be gracefully mixed, provided the underlying network infrastructure

has the appropriate resources to convey these different traffics with the relevant level of

quality, is another key driver for policy-based management and dynamic provisioning

techniques.

1.2.3 The Need for Automation

Needless to say, the provisioning of a wide range of service offerings with the adequate

level of quality generally takes time, because policy-based design and management are

complex tasks, and also because consistency checks take time: addressing any issue that

may result from the operation of conflicting configuration tasks, verifying the accessibility

of the service, monitoring its availability and checking the appropriate resources are

correctly provisioned on time, etc., are headaches (if not nightmares) for network engineers

and operators.

In addition, several yet recent initiatives have been launched by the Internet community to

investigate mechanisms and protocols that would contribute to the development of ‘zero

provisioning capabilities’. The objective of such initiatives is to reduce the amount of

configuration tasks that require human interventions. This can be viewed as a generalization

of the ‘plug and play’ concept.

Introduction 15

It is therefore generally expected that the introduction of a high level of automation in the

service provisioning process as well as the use of dynamic policy enforcement techniques

should largely contribute to:

� a reduction in the service delivery time;

� a reduction in the overall operational expenditures (OPEX) costs associated with the

delivery and the exploitation of such services: automation improves production times and

is supposed to reduce the risks of false configuration which may jeopardize the quality of

the impacted services.

Automation is the key notion that motivated the writing of this book.

1.3 How this Book is Organized

The organization of this book is basically twofold:

� The first part deals with the theory, where candidate protocols and architectures for the

dynamic provisioning of services and the enforcement of policies within IP/MPLS

infrastructures are described in detail.

� The second part of the book deals with practice, by introducing and discussing a set of

examples [enforcement of QoS and traffic engineering policies, production of BGP/

MPLS-based virtual private network (VPN) facilities, etc.] that aim to convince the reader

about the reality of such issues and how dynamic provisioning techniques can gracefully

address them.

1.4 What Is and What Should Never Be

This is not a book that aims to promote a ‘one-size-fits-all’ approach, where a single protocol

or architecture would address any kind of concern, whatever the nature of the policy, the

service and/or the environment.

This is not a book about what is going on in standardization, as far as dynamic

provisioning techniques and protocols are concerned.

This is a book that aims to provide readers with a practical yet hopefully exhaustive set of

technical updates and guidelines that should help service providers, network operators but

also students in acquiring a global yet detailed panorama of what can be done to facilitate (if

not automate) the production of services over IP/MPLS infrastructures.

And we sincerely hope you will enjoy it as much as we enjoyed writing it.

References

[1] Postel, J., ‘Internet Protocol’, RFC 791, September 1981.

[2] Perlman, R., ‘Interconnections: Bridges and Routers’, Addison-Wesley, 1992.

[3] Comer, D., ‘Internetworking with TCP/IP. Volume 1. Principles, Protocols and Architecture’,

Prentice-Hall, 1995.

[4] Stallings, W., ‘High-speed Networks, TCP/IP and ATM Design Principles’, Prentice-Hall, 1998.

16 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

[5] Rekhter, Y., Li, T., ‘A Border Gateway Protocol 4 (BGP-4)’, RFC 4271, January 2006.

[6] Hedrick, C., ‘Routing Information Protocol’, RFC 1058, June 1988.

[7] Malkin, G., ‘RIP Version 2’, RFC 2453, November 1998.

[8] Moy, J., ‘OSPF Version 2’, RFC 2328, April 1998.

[9] Rekhter, Y. and Li, T., ‘A Border Gateway Protocol 4 (BGP-4)’, RFC 1771, March 1995.

[10] Mills, D., ‘Exterior Gateway Protocol Formal Specification’, RFC 904, April 1984.

[11] Rekhter, J. et al., ‘EGP and Policy Based Routing in the New NSFNET Backbone, RFC 1092,

February 1989.

[12] Braun, H., ‘The NSFNET Routing Architecture’, RFC 1093, February 1989.

[13] Postel, J., ‘Transmission Control Protocol’, RFC 793, September 1981.

[14] Callon, R. et al., ‘Multiprotocol Label Switching Architecture’, RFC 3031, January 2001.

[15] Andersson, L. et al., ‘LDP Specification’, RFC 3036, January 2001.

[16] Blake, S. et al., ‘An Architecture for Differentiated Services’, RFC 2475, December 1998.

[17] Bernet, Y. et al., ‘An Informal Management Model for Diffserv Routers’, RFC 3290, May 2002.

[18] Heinanen, J. et al., ‘Assured Forwarding PHB Group’, RFC 2597, June 1999.

[19] Davie, B. et al., ‘An Expedited Forwarding PHB (Per-Hop Behavior)’, RFC 3246, March 2002.

Introduction 17

2

Basic Concepts

2.1 What is a Policy?

Policy-based management concepts were introduced at the end of the 1990s and were

standardized in the early 2000s. The notion of policy is generally associated with the concept

of rules with various degrees of abstraction. Policies can reflect a business strategy (e.g.

privilege the forwarding of corporate traffic over Internet traffic within a virtual private

network), a company-wide set of rules (e.g. access to the Internet is forbidden) or a

combined set of network-inferred rules that yield the specification of forwarding, routing,

quality of service and/or security policies.

The aforementioned notion of abstraction refers to the definition of a scope of any given

policy without explicitly describing it. According to RFC 3198 [1], a policy can be defined

as ‘a set of rules to administer, manage and control access to network resources’, where these

rules can be defined in support of business goals. The latter can also define policies as a

‘definite goal, course or method of action to guide and determine present and future

decisions’.

Policies defined as a set of rules follow a common information model (such as RFC 3060

[2]), where each and every rule defines a scope, a mechanism and actions. An example of

such a rule could be: ‘If Internet traffic exceeds 50% of the available bandwidth on the link

that connects a VPN site to the network, then limit the corresponding Internet traffic-

dedicated resources during certain periods’. In this example, the scope of the policy is the

Internet traffic, the mechanism is the bandwidth allocation and the action consists in limiting

resources used by Internet traffic during certain periods. This example also introduces the

notion of the ‘condition’ that will trigger the application of the rule.

2.2 Deriving Policies into Rules and Configuration Tasks

Policies that are defined by network administrators need to be understood by the (network)

devices that will be involved in the enforcement of the corresponding policies. This gives

rise to the need for mechanisms that will process the policy-specific information so that such

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

devices can be configured accordingly, that is, with the configuration tasks that will have to

be performed to enforce the policy. Policy-based management relies upon the following

steps to derive generic policies into configuration information.

2.2.1 Instantiation

The set of rules that define a policy need to be instantiated according to the environment (e.g.

the services to which the policy will be applied) where the policy will be enforced. The

policy instantiation can rely upon received events or information that is descriptive of the

context (Figure 2.1).

The instantiation process requires:

� an understanding of the context-specific information, such as the importance of the mesh

in the network, the operating hours, etc.;

� the processing of the incoming events (e.g. link failure) and their impact on the policies;

� knowledge of the information model.

2.2.2 Device Identification

The enforcement of policies needs not only to reflect the applicability of the policies in a

given condition but also to identify (and locate) the devices that will participate in the

enforcement of the policy. The relationships between the policy and the participating devices

are defined in the information model. The actual location of the ‘target’ devices can rely

upon the network topology information (as part of the information model), but also on the

information depicting the forwarding paths along which traffic will be conveyed in the

network.

Policies

Instantiation

Applicable Policies

(Network)
Context

Events

Figure 2.1 Instantiation of policies

20 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

The device identification processes require:

� knowledge of the scope of action that can be performed by a participating device [e.g.

firewalls are not supposed to enforce traffic engineering policies but security policies

(based upon the establishment and the activation of traffic filters, for example), while

routers may not be solicited to enforce user-specific identification policies, but rather the

forwarding policies that will reflect the level of quality associated with the delivery of a

given service, as per user requirements];

� knowledge of the information model, as well as the (network) topology information.

2.2.3 Translation

Once the policies have been instantiated into a set of applicable policies and the target

devices involved in the enforcement of such applicable policies have been defined and

identified, the rules defined in the applicable policies need to be translated into device-

specific configuration information. This translation process is specific to a policy and might

be local to the participating device, or use a proxy capability by means of protocols such as

the common open policy service (COPS) (RFC 2748 [3], RFC 3084 [4]).

2.3 Storing Policies

The information that depicts a policy needs to be stored and maintained by means of

directory services. Directory services have the following characteristics:

� They provide a defined syntax for the objects they store, as well as a means to uniquely

identify them (notion of distinguished names). Manipulation of the objects accessible

through directory services is also defined by means of a set of allowable operations (such

as ‘retrieve’ information related to a specific object, ‘modify’ the attributes of an object,

etc.).

� The information model stored in directory services is hierarchical and often reflects an

organizational, function-derived structure. Objects are grouped in branches, and they can

have precedence defined by their position in the tree structure.

� Directory services rely upon databases that are distributed, yielding slave–master relation-

ships. Slave databases partially or totally replicate the information stored in master

databases. The master database corresponds to a central repository where policies can be

managed in a centralized fashion.

2.4 Policy and Device Configuration

Figure 2.2 reflects the fact that policy-related configuration is centralized, whereas device-

specific configuration information is distributed by essence.

Policies are stored in a directory and managed by a policy server. The policy server is res-

ponsible for maintaining and updating policy information as appropriate (as part of the

instantiation process). Updates can be motivated by triggering events, as discussed in

section 2.2.1.

Basic Concepts 21

2.5 Policy-based Management Model

Both the Internet Engineering Task Force (IETF) and the Desktop Management Task Force

(DMTF) have been involved in the specification and the standardization of a policy-based

management model, which now serves as a reference for the specification and the

enforcement of a set of policies within networking infrastructures. Figure 2.3 outlines the

different components that are introduced with this model.

Figure 2.3 depicts the relationships between the following components:

� The policy decision point (PDP), where policy decisions are made. PDPs use a directory

service for policy repository purposes. The policy repository stores the policy information

…

Policy-derived Device-related Configuration

…

• System
Policies

• Network
Policies

• Access
Policies

Policy Server

Policy-related
Configuration Directory

Figure 2.2 Policy configuration and policy-derived device configuration

PDPPEP
Policy

Repository

LPDP

PIB

Policy server

PEP-PDP

Communication

Protocol

PEP-embedding Device

Figure 2.3 Policy-based management model

22 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

that can be retrieved and updated by the PDP. The PDP delivers policy rules to the policy

enforcement point (PEP – see below) in the form of PIB elements.

� The policy enforcement point (PEP), where policy decisions are applied. PEPs are

embedded in (network) devices, which are dynamically configured from the policy-

formatted information that has been processed by the PEP. PEPs request configuration

from the PDP, store the configuration information in the policy information base (PIB) and

delegate any policy decision to the PDP. This is commonly referred to as the outsourcing

mode. PEPs are responsible for deriving policy-formatted information (as forwarded by

the PDP to the PEP) into (technology-specific) configuration information that will be used

by the PEP-embedding device to enforce the corresponding policies accordingly. Note that

PEP and PDP capabilities could be colocated.

� The policy information base (PIB) is a local database that stores policy information. It

uses a hierarchical structure, where branches are called policy rule classes (PRCs), and

where leaves are called policy rule instances (PRIs). Both PRCs and PRIs are uniquely

identified by means of policy rule identifiers (PRIDs). Figure 2.4 provides a generic

representation of a PIB structure, and Figure 2.5 gives an example of what a PIB can look

like.

� Finally, the local policy decision point (LPDP) is often seen as an optional capability

(from a policy-based management standpoint) that can be embedded in the device to make

local policy decisions in the absence of a PDP. Examples of LPDPs include the routing

processes that enable routers to dynamically compute and select paths towards a

destination without soliciting the resources of a remote PDP.

The example provided in Figure 2.5 denotes a policy that basically consists in filtering out

any multicast traffic sent by any source whose IP address is in the 192.134.76.0/24 range,

and which is forwarded on the 239.0.0.1 and 239.0.0.2 group addresses.

PRC

PRC

PRC

PRI
PRI

PRI

Figure 2.4 Hierarchical structure of a PIB

Basic Concepts 23

2.5.1 Reaching a Policy Decision

When a generic event invokes a PEP for a policy decision, the PEP generates a request that

includes information related to the event. The PEP then passes the request with all the

relevant policy elements to the PDP. The PDP then reaches a decision, which in turn will be

forwarded to the PEP for application purposes.

Within the context of policy-based management, the PEP must contact the PDP even if no

policy information is received, to retrieve the configuration information it needs upon

bootstrap, for example. Both PDP and PEP should have the ability to send an unsolicited

message towards each other at any time (decision change, error message, etc.).

2.5.2 Requirements for a PEP–PDP Communication Protocol

There are several candidate protocols that can be suitable for conveying policy information

between PEP and PDP capabilities. This book details the machinery of some of them, such

as the COPS protocol (RFC 2748 [3], RFC 3084 [4]), the remote authentication dial-in user

service (RADIUS) (RFC 2865 [5]) or the Diameter protocol (RFC 3588 [6]). This section

only aims to list basic requirements for such a protocol:

� The protocol needs to rely upon a reliable transport mode, to avoid undetected loss of

policy queries and responses.

� The protocol should add as small an amount of delay as possible to the response time

experienced by policy queries, hence stimulating fast processing capabilities.

� The protocol needs to support opaque objects to avoid protocol changes every time a new

policy object has to be exchanged between a PEP and a PDP.

� The protocol needs to support a transactional way of communication, so as to stimulate

the query/response formalism, including the ability to renegotiate a previous policy

decision.

� The protocol should support unsolicited messaging, to allow both PEP and PDP to notify

each other whenever a state change occurs.

� Communication between a PEP and a PDP should be secured, hence preserving the

confidentiality of the information exchanged between both entities.

Filter

MulticastIPAdd

Action

239.0.0.1 239.0.0.2

SourceIPAdd Deny

192.134.76.0/24

Figure 2.5 Example of an instantiated filtering policy

24 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

References

[1] Westerinen, A. et al., ‘Terminology for Policy-based Management’, RFC 3198, November 2001.

[2] Moore, B. et al., ‘Policy Core Information Model – Version 1 Specification’, RFC 3060, February

2001.

[3] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja R. and Sastry A., ‘The COPS (Common Open

Policy Service) Protocol’, RFC 2748, Proposed Standard, January 2000.

[4] Ho Chan, K., Durham, D., Gai, S., Herzog, S., McLoghrie, K., Reichmeyer, F., Seligson, J., Smith,

A. and Yavatkar, R., ‘COPS Usage for Policy Provisioning (COPS-PR)’, RFC 3084, March 2001.

[5] Rigney, C. et al., ‘Remote Authentication Dial-in User Service (RADIUS), RFC 2865, June 2000.

[6] Calhoun, P. et al., ‘Diameter Base Protocol’, RFC 3588, December 2003.

Basic Concepts 25

3

The RADIUS Protocol and its
Extensions

The Remote Authentication Dial-In User Service (RADIUS) protocol (RFC 2865) is one of

the most popular authentication protocols used in operators’ networks. Its success began

with the early Livingston implementations, to offer a scalable and centralized solution to

authenticate and authorize users, and possibly to report about resource usage for users

connected to equipment through a log-in service (like Telnet) or to remote access servers,

primarily through public switched telephone network (PSTN) or integrated services digital

network (ISDN) infrastructures. Based on Livingston’s early developments, the IETF has

standardized its concepts and usage. The last version edited by the IETF is RFC 2865, which

is based upon the same concepts than those that were described in the very beginning, but

also enhances the protocol to make its implementation more suited to the evolution of

remote access usages.

Nowadays, RADIUS is often seen as an obsolete protocol, which is partly true in its

conception, as we will see in the next section. However, this judgement has to be moderated,

since RADIUS managed to take up most technical challenges imposed by the evolution of

access technologies such as large xDSL deployments and secured wireless access (IEEE

802.11i), among others. Mobile phone architectures are also using RADIUS extensively for

content billing purposes, even though 3GPP enthroned the Diameter protocol as its

successor.

3.1 Protocol Design

RADIUS is based upon a client/server protocol model. The client sends requests to the

server, which answers back with appropriate replies depending on the initial request. Regular

RADIUS architectures make the Network Access Server (NAS) support the client role, and it

queries the RADIUS server as the Authentication Authorization Accounting (AAA) server,

as we can see in Figure 3.1.

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

RADIUS exchanges can be split into two different categories: AUTH (AUTHentication/

AUTHorization) messages and accounting messages. The corresponding flows can follow

different paths in the network, since purpose and constraints required by these messages are

different. AUTH flows require real-time treatment to grant access as fast as possible,

whereas accounting messages may be stored in a database for further exploitation, such as

billing.

A RADIUS client request is triggered whenever an end-user notifies the NAS that it

requires to be connected to the network. This primary notification is performed with any

access protocol capable of carrying information between the end-user and the NAS, such as

PPP, EAPoL with 802.1X, HTTP or even Telnet. Depending on the complexity of the state

machine of the access protocol, RADIUS exchanges might vary. The very basic framework

of RADIUS protocol exchanges starts with an Access-Request message, requesting an

authentication/authorization on behalf of an end-user, and ends with an Access-Accept

message, transmitting all required parameters for this end-user to make use of the net-

work, assuming this end-user is entitled to access the network. Otherwise, the RADIUS

exchanges will terminate with an Access-Reject message. We will see later that this

simple request/response exchange becomes more complicated when used with EAP, for

instance.

Accounting message exchanges also follow a regular client/server model, with notifica-

tions sent by the RADIUS client to the accounting server, these notifications being

acknowledged by the latter.

In order to provide a way to secure RADIUS transactions, both RADIUS client and server

might be configured with a shared secret, which is used in response messages (messages

from server to client) to ensure message integrity and authenticity, as long as the secret is not

compromised. This method does not protect the content of the message itself, but it is still an

efficient way to protect a RADIUS client against man-in-the-middle replay attacks. In

request messages, the shared secret is only used to encrypt the user’s password.

3.1.1 Protocol Structure and Messages

RADIUS relies upon the UDP protocol, using destination ports 1812 and 1813 for AUTH

and accounting messages respectively. The choice of UDP has been regularly debated, since

Access

Network

(PSTN, ISDN,

ADSL)

RADIUS

Client
Terminal

NAS
Transport Network

RADIUS
Server

Figure 3.1 Participating devices in RADIUS architecture

28 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

UDP might appear to be incompatible with the required level of resilience expected by

access network operators. UDP has been chosen for different reasons such as its simplicity

for RADIUS implementations, and also because UDP is less resource consuming for

operating systems by comparison with TCP. As a consequence, RADIUS implementers

have been obliged to maintain their own timers for retransmissions, but UDP made it easier

to handle backup server switching and to lower CPU consumption. Whatever one’s opinion

of this choice, UDP proved its suitability to RADIUS extensive usage.

RADIUS messages consist of five main fields as shown in Figure 3.2:

� Code: 8 bits. This field identifies the type of RADIUS message. RFC 2865 defines the

different types of message, as listed below:
– Access-Request (code 1);

– Access-Accept (code 2);

– Access-Reject (code 3);

– Accounting-Request (code 4);

– Accounting-Response (code 5);

– Access-Challenge (code 11).

� Identifier: 8 bits. This field is used to identify the message exchange being performed

between the client and the server. It is interesting to note that this 8-bit field length

imposes a limit of 256 simultaneous requests generated by a client without answers from

the AAA server. If 256 requests might appear to give a sufficient cushion to serve all

requests, large-scale deployments have shown that it is not always sufficient to bear

request bursts (e.g. in the case of massive disconnections).

� Length: 16 bits. This field indicates the total length of the RADIUS message.

� Authenticator: 128 bits. This field is filled up with a suite of octets generated to ensure

authenticity of server-initiated messages during RADIUS exchanges. It is also used to

encrypt the user’s password in Access-Request messages.

� Attributes. This field completes the RADIUS message, in the limit of the path MTU

between the client and the server. The attributes carry all required information for

authentication, authorization and accounting messages, each attribute being encoded as

a TLV (Type, Length, Value). Major attributes are described in Section 3.1.1.2.

Code Identifier Length

Authenticator

0 7 15 31

Attributes

32

96

Figure 3.2 RADIUS message structure

The RADIUS Protocol and its Extensions 29

3.1.1.1 RADIUS Message Types

Each message used during client/server exchanges has its own meaning and usage. There-

fore, all attributes sent in an Access-Request message cannot be used within an Access-

Accept message, for example. Each RADIUS message is defined to embed a list of

mandatory attributes (to identify the end-user context, for instance), a list of optional

attributes and a list of unauthorized attributes. The reader is encouraged to consult RFC

2865, and its companion documents defining new attributes, in order to obtain the detailed

list. The examples provided below purposely make use of a restricted set of attributes for the

sake of simplicity.

Access-Request (Code 1)
The Access-Request RADIUS message is the starting point for any further exchange

occurring between the client and the server considering AUTH messages. This message

carries a sufficient set of attributes necessary properly to identify the end-user requesting

access to the network, as well as one password attribute required by the server to

authenticate the end-user. Also, the Access-Request message has to embed an NAS identifier

to determine from which device the end-user is requesting network access. Additional

information might be provided, such as network coordinates (Calling-station-ID, NAS-Port),

type of connection (NAS-Port-Type) or type of service requested (Service-Type).

Receipt of Access-Request messages by the AUTH server is acknowledged by sending

back an Access-Accept, Access-Challenge or Access-Reject message, depending on the

success, incompleteness or failure of the AUTH process respectively.

The authenticator field is filled out with the Request Authenticator randomly generated by

the access server each time a new RADIUS exchange starts over. A Request Authenticator

value must be used only once during the lifetime of the shared secret in order to avoid

attacks by sending response messages making use of the same authenticator. The Request

Authenticator is used to constitute reply messages afterwards, to ensure their integrity.

Access-Accept (Code 2)
The Access-Accept message is usually the expected answer coming back from the AUTH

server (except when challenges are required). This message conveys the authentication

successfulness information (inherently symbolized by the Access-Accept message itself) and

simultaneously the authorization parameters, represented by attributes piggybacked in the

packet. These authorization parameters are used to configure the remote end-user (e.g. the

user’s IP address) to make proper use of the network, but also to apply a predefined set of

policies enforced by the NAS (e.g. a specific filter to apply).

Access-Accept messages terminate the client/server exchange between the NAS and the

AUTH server. As a matter of fact, the network operator cannot rely upon Access-Accept

messages to be assured that the user’s connection actually started. Access-Accept messages

can be interpreted as Access-Reject if authorization attributes are not applicable by the NAS:

if the RADIUS server injects bogus attributes (invalid, malformed, not supported) in Access-

Accept messages, the end-user might get an unexpected service from the NAS. It can also be

lost (UDP is not a reliable transport mode), or silently discarded if the message is improperly

built. However, acceptance of the end-user connection often means the beginning of the

accounting process. An Accounting-Request message is, most of the time, sent after the

connection setup.

30 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

The Authenticator field is used with the Response Authenticator, which is a one-way MD5

hash function applied to the concatenation of Code, Identifier and Request Authenticator

fields from the Access-Request and response attributes, followed by the secret shared

between the access server and the authentication server. Therefore, the access server can

verify the integrity of the AUTH server’s reply message.

Access-Reject (Code 3)
The Access-Reject message is used when the connection authorization cannot be granted by

the AUTH server. This can occur whenever the authentication fails, or if the requested

service cannot be provided (e.g. IP address exhaustion, connection type not compatible with

requested service, etc.). The Authenticator field is used in the same way as Access-Accept

messages.

Accounting-Request (Code 4) and Accounting-Response (Code 5)
The type of Accounting-Request or Accounting-Response message is carried within a

mandatory attribute, Acct-Status-Type. The most common values for this attribute are:

Start, Stop, Interim-Update, Accounting-On, Accounting-Off. Accounting messages are used

to report actual usage of an end-user’s connections, at its beginning (Start message), during

the connection lifetime (Interim-Update message) or at connection termination (Stop

message). These messages carry particular attributes with usage information, such as

connection lifetime, volume transferred in both directions and termination cause (Stop

message). Other accounting messages are also used to report the accounting activity of the

RADIUS client. Accounting-On and Accounting-Off messages are used to notify the

activation/deactivation of the accounting process. These messages are often used whenever

the NAS is shut down and rebooted, to refresh connection status in the server connection

database and ensure its consistency.

Access-Challenge (Code 11)
The Access-Challenge message is used whenever the authentication server requires a

multiphase authentication, such as EAP. Access-Challenge is sent by the server upon receipt

of an Access-Request from the client. An Access-Challenge message usually embeds a query

for which the NAS will have to get the answer through the end-user or not. The answer is

carried over a new Access-Request message, for which the AUTH server may reply with an

Access-Accept message if authentication is successful, and an Access-Reject message if not.

The exchange might continue with other Access-Challenge messages, depending on what is

required by the AUTH server.

The Authenticator field is used in the same way as Access-Accept and Access-Reject

messages.

3.1.1.2 RADIUS Attributes

Each RADIUS attribute is encoded using a TLV format, with 8-bit encoded type and length

fields (see Figure 3.3). The attribute value can reach a maximum of 254 bytes length. In this

encoding we see one of the main drawbacks of the RADIUS protocol. The type can only

have a maximum of 256 values, which is the optimistic approach since only values from 1 to

191 are really usable, with 1–102 code types already assigned by IANA. A huge number of

attributes are not standardized, and are considered to be ‘vendor specific’. Multiple sets of

The RADIUS Protocol and its Extensions 31

these attributes are often listed in so-called ‘dictionaries’. Most of the time, RADIUS servers

implement several dictionaries to be compatible with the largest number of RADIUS client

implementations.

RADIUS attributes are used to carry all information that the NAS and the AAA server

have to exchange for identification, authentication and accounting purposes, but also to

configure the end-user terminal or network access (authorization). A description of some

widely used attributes follows.

User-Name (Code 1)
This attribute is used to identify the user’s identity, as configured in the user’s terminal. This

identity is often presented following the rules defined in RFC 4282 (previously RFC 2486),

the network access identifier. As this is not reliable information with which to obtain the

user identity, it is often accompanied with one of the password attributes to perform authe-

ntication.

User-Password (Code 2) and CHAP-Password (Code 3)
These attributes convey the password used to authenticate the end-user. Both attributes

propose password secrecy either by ciphering User-Password with the Authenticator field or

by replying in CHAP-Password to a NAS-generated challenge with a ciphered declination of

this challenge calculated with the user’s password. The CHAP-Password attribute can be

used in conjunction with the CHAP-Challenge attribute which embeds the challenge value

(if not present, the Request Authenticator field is used instead).

NAS-IP-Address (Code 4)
This attribute indicates the NAS IP address that has generated the initial RADIUS message.

This attribute is particularly useful when RADIUS proxies are used, since the authentication

server cannot rely upon the source address field of the IP packet. With this information, the

authentication server (or RADIUS proxy) may activate proper behavior such as using a

predefined RADIUS dictionary for vendor-specific attributes, for instance (see the Vendor-

Specific attribute section). This attribute can be replaced with NAS-Identifier (code 32),

which has the same usage, the NAS identity being encoded as a string instead of an IP

address.

NAS-Port (Code 5)
This attribute gives an indication of the physical connection from which the end-user is

connected. This information is particularly useful for locating the end-user with reliable

network information. Services that require the end-user to be connected from a certain

Type Length Value

0 7 15 31

Figure 3.3 Attribute field format

32 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

location (for security reasons, or to force a service to be available at a specific location)

require this kind of data, which can be combined by the authentication server with the

identity claimed by the end-user to get its service.

Framed-IP-Address (Code 8) and Framed-IP-Netmask (Code 9)
These attributes carry the basic IP network configuration of the end-user by providing a valid

IP address (or IP subnet) and the appropriate network mask. Using this IP address, the end-

user will be able to send and receive routed packets in the IP network. It might be required

for the NAS to keep trace of IP addresses allocated to end-users to avoid IP address spoofing.

In this case, the NAS will have to drop packets sourced with an IP address different from that

allocated. Since RADIUS cannot send these parameters directly to the end-user, this is

realized by means of the access protocol (IPCP in the case of PPP, for instance).

Filter-Id (Code 11)
This attribute, sent by the AUTH server in Access-Accept messages, is an indication for the

NAS to apply a locally defined policy to the end-user. The attribute designates a policy

number that has been previously provisioned in the NAS. The format of this attribute is not

detailed in standard documents, and therefore implementers might use textually encoded

policy rules that can be locally interpreted by the NAS to enforce the required policy. This

alternative is, however, barely used.

Vendor-Specific (Code 26)
The very widespread usage of RADIUS required the creation of new attributes, but the code

space scarcity forced IETF and implementers to use a particular attribute reserved for

specific vendor-inferred usage: the Vendor-Specific attribute (VSA). This attribute gives the

opportunity to extend the code type by starting the value field with a 16-bit encoded Vendor-

Id (as defined in the SMI network management private enterprise code), then followed by a

sub-TLV. Even though the Vendor-Specific attribute payload length can reach a maximum of

192 bytes, this makes it possible to create enough attributes to address all needs.

On the other hand, the massive usage of VSA contributed to creating a huge list of

incompatible attributes between different RADIUS device vendors: it quickly became a

nightmare for network operators as well as authentication server vendors, as it makes it

necessary to maintain multiple dictionaries that have to be properly employed depending on

the RADIUS client vendor. One typical example can be found with the configuration of DNS

addresses to the end-user device, which have to be conveyed in Vendor-Specific attributes,

whereas DNS addresses are common configuration parameters for Internet access nowadays.

Figure 3.4 depicts an example of Vendor-Specific attribute encoding, as proposed in RFC 2865.

Type Length Vendor ID

0 7 15 31

Vendor ID

23

Vendor Type Vendor Length

Vendor Attribute

Figure 3.4 Vendor-Specific attribute format

The RADIUS Protocol and its Extensions 33

3.1.1.3 Availability and Reliability

RADIUS Message Exchanges
Because of its very basic structure, RADIUS is the example of the protocol family where

simplicity serves robustness. UDP is heavily used in lots of signaling protocols. However, it

is known to be highly unreliable for multiple reasons:

� UDP does not provide any mechanism to detect packet loss;

� UDP is unable to ensure packet sequencing;

� UDP does not provide any traffic control mechanisms to avoid overflowing between two

peers.

Usually, protocols relying upon UDP implement specific mechanisms to detect message

loss by introducing sequencing fields. That is the case, for instance, with L2TP (RFC 2661)

which implements this for control messages, lost data messages being supposed to be

handled by the upper layers. When this mechanism is not implemented, the usual work-

around is to acknowledge each message with a dedicated reply packet. None of these

mechanisms has been systematically implemented for RADIUS. Messages are just partially

sequenced in order for peers to match query and answers, but there is no general sequencing

field pertaining to the whole RADIUS exchange.

Moreover, only a partial workaround is provided by the RADIUS state machine, since

only some RADIUS messages require a reply from the client or from the server:

� The RADIUS server has to answer to an Access-Request message with an Access-Accept

message or with an Access-Reject message in the case of failure (see Figure 3.5). The

server may answer with an Access-Challenge message if the AAA server requires another

authentication round (see Figure 3.6). Of course, the request is silently ignored if the

request message is considered invalid (code undefined, invalid length, etc.).

Access Server
(Client)

Authentication Server
(Server)

Access-Request

Access-Accept

Valid Request

Access-Request

Access-Reject

NOK

OK

Invalid Request

Access Granted

User Rejected

Figure 3.5 Simple RADIUS exchange to access the network

34 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� The RADIUS client has to answer to an Access-Challenge message with an Access-

Request message.

� Access-Accept messages are never acknowledged in any way, even though they convey

important authorization information.

Access-Accept message loss is difficult to detect: the RADIUS server usually internally

reserves network resources, with no way of knowing if these resources are actually used. One

can argue that accounting messages can provide this kind of information, which is only

partially true, as accounting messages are not always sent to the same equipment as access

messages. Moreover, accounting messages can follow a batch process, opposed to the real-

time process required for session and authorization management. Retrieving allocated

information requires the accounting database to be synchronized with the authorization history.

Accounting message exchanges do not suffer the same drawback. As the piece of

accounting information is sent from the client to the server, the latter must only acknowledge

it. A specific Accounting-Response message has been defined with the sole purpose of

acknowledging the actual receipt of accounting data (see Figure 3.7). However, RFC 2866

opens up the possibility of conveying Vendor-Specific attributes along Accounting-Response

messages, but usually this message does not carry any additional attribute.

Access Server

(Client)

Authentication Server

(Server)

Access-Request

Access-Challenge

Request

Access-Request

Access-Accept/Access-Reject
OK/NOK

Need more Information

New Information

Prompt User for
More Information

Access Granted/User Rejected

Figure 3.6 RADIUS exchange to access the network with Access-Challenge messages

Access Server

(Client)

Authentication Server

(Server)

Accounting-Request

Accounting-Response

Accounting Info
(Start, Stop, Interim)

Message Received

RADIUS Exchange Over

Figure 3.7 RADIUS accounting messages exchange

The RADIUS Protocol and its Extensions 35

Retransmission Rules
RADIUS requires the maintenance of retransmission timers. Using the Identifier field, each

peer maintains an internal state of ongoing exchanges, and more specifically of pending

messages. The two basic parameters usually configurable in RADIUS-capable equipment are

the retransmission timer and the number of successive retries. When a message is not

answered once the retransmission timer has expired, the same message is issued again, and

so on, until the configured number of retries is reached.

Usually, sending multiple consecutive messages denotes different issues: the network is

down, the RADIUS server is down or the RADIUS server is overloaded. In this case, the

client can try to reach another configured server. Some RADIUS server implementations

reply with Access-Reject messages when receiving an Access-Request when they are almost

saturated. This is something to avoid for two reasons:

� rejected end-users will retry to connect immediately, sustaining the server load as a side

effect (as opposed to a no-response behavior where the end-user waits for its authoriza-

tion, thus not creating additional burden on the server side);

� sending a message (accept or reject) always consumes server resources.

Other parameters are also available to the network administrator, providing a wide panel

of curative tweaks. For instance, some vendors implement a ‘server deadtime’ temporiza-

tion, which is a general timer that might be used by the RADIUS client, during which it

considers a non-responding server as dead. After such a timer expires, the client tries to

reach the nominal server again.

The definition and usage of timers are not specified in RADIUS. That is a really efficient

way to offer a wide range of possibilities and combinations between multiple timers. The

network administrator is free to set up the appropriate timer values depending on the

acceptable level of resilience and local constraints.

Another characteristic of the RADIUS protocol is the lack of a keep-alive mechanism,

clearly designated in RFC 2865 as harmful for the whole protocol, as keep-alive message

processing is not scalable, at a time when CPU resources were scarce. This is something that

can be argued, since other protocols such as L2TP, defined at the same period of time, make

use of keep-alive messages without any history of scalability issues. In its structure,

RADIUS has been designed to be entirely connectionless, running in a purely transactional

fashion. RADIUS clients’ requests are then used as probes to determine the aliveness of

peers: if this is an efficient way to save one specific message every minute or so, this also has

the drawback of lowering the service quality as real end-users will fail to connect, since their

connection request is intended to help the (network) AAA chain to fix itself. Nowadays, this

protocol conception is deprecated, as network operators are in competition for the best

service and availability.

3.1.2 Forces and Weaknesses

Message Loss Barely Impacts upon the Service Offered for End-users
As a matter of fact, the RADIUS protocol is a success story: even though protocol reliability

is not fully satisfying, operational problems are rare. These problems have never been seen

to be fundamentally crucial by network operators so far. Generally, when a RADIUS

36 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

message is lost, only one end-user is affected, with no compromise of the AAA infra-

structure as a whole. When the number of requests becomes significant, losing one message

does not have any impact on the service: the end-user usually may not even see any service

disruption if s/he runs an automatic connection client. During the connection lifetime,

RADIUS message losses do not compromise the service: the end-user, again, will not notice

any problem if a RADIUS server goes down. To sum up, all these ingredients explain why

RADIUS is accepted with its handicaps:

� One message loss does not compromise the service provided by the ISP.

� One message loss will only have a (limited) impact on a single end-user.

� One message loss might not even be seen by the end-user if s/he is connected through a

router or with an automatic connection client.

� When a RADIUS server is down, no sessions already existing are affected, implying no

service degradation for end-users.

RADIUS Failures Have to be Handled with Care by Network Operators
Here is a non-exhaustive list of possible situations that need particular care from network

administrators:

� Access-Accept message loss from the server to the client. In this case there is an impact for

the end-user, who will not be serviced. Moreover, successive connection attempts will

have to be handled specifically by the server, since it internally maintains used resources

for each end-user (such as an IP address, for instance). The only way rapidly to free

resources is to keep trace, in real time, of pertaining accounting messages. In this case, the

server will be able to release users’ resources after a reasonable delay during which it is

intended to receive accounting information. Having a RADIUS server being able to

handle accounting messages may require a specific engineering design, as these messages

might also be required for the billing chain.

� Accounting message lost from the client to the accounting chain. This situation might have

an impact similar to the previous case, where the resource for a particular end-user is not

freed, blocking further connection to the network. To avoid resource usage state

inconsistencies, operators are obliged to purge their databases to make sure that

disconnected end-users have no more resources allocated by the network. This issue

arises where lost messages are not retransmitted (to spare RADIUS client resources, for

instance). Losing accounting messages also affects the billing chain, since it becomes

impossible for the operator to bill the end-user for the related connection.

� The RADIUS server goes down. Even with a backup server being able to treat RADIUS

queries, all problems are not solved. The backup server is not aware of ongoing

connections, creating a problematic situation where it is difficult (or impossible)

consistently to continue the provisioning of specific and unique resources such as IP

addresses. The problem gets even worse when the nominal server goes up again. Some

operational methods exist to manage this situation: using accounting Interim-Update

messages is a way for the server regularly to have a refreshed status of ongoing sessions,

even though this adds a consequent burden for both the client and the server. Another

method consists in integrating sophisticated proxies which are able to store messages

The RADIUS Protocol and its Extensions 37

during server failures, or to install a mirroring accounting server that transparently listens

and stores accounting messages.

� The RADIUS client goes down. In this case, end-users will usually have a service failure

since the RADIUS client is also the access server. But as the client loses all connection

contexts, the server does not have any trace of terminated connections, and it becomes

impossible to bill clients for the service provided until the moment the access server

failed. Again, a workaround can be found in sending regular Interim-Update messages.

However, this will not provide an efficient way for the server to free resources reserved for

disconnected end-users. Therefore, the RADIUS client must send an Accounting-Off/On

message to the RADIUS server to indicate that resources previously allocated to end-users

connected to the client have to be freed.

It is highly recommendable for the network administrator to enforce prioritization rules

between RADIUS messages in the case of congestion: some messages deserve more

attention for operators than others. For instance, it might be reasonable to drop new

Access-Request messages in order to privilege accounting messages (especially Start

messages) of sessions already established. However, Access-Request messages issued after

an Access-Challenge have to be prioritized, or the complete sequence of previous messages

will be lost.

An Incomplete Set of Messages
As a counterpart to being simple, RADIUS offers an incomplete set of messages, forcing

RADIUS implementers and network administrators to elaborate and enforce various tricks to

reach their goals. One of the most striking examples is the ambivalent meaning of the

Accounting-Request message, which is simultaneously used to give session and usage

information to the accounting chain, and used by the RADIUS server to manage the end-user

session. One can consider the AUTH chain to have real-time constraints, as accounting

tickets may deserve a batch treatment. For this reason, most RADIUS client implementa-

tions propose to set up different RADIUS servers for AUTH or accounting messages. Using

RADIUS dynamically to detect session aliveness requires a very responsive accounting

chain that is permanently connected to resource management servers used for authorization

purposes.

Diameter offers more opportunities to create and extend the message vocabulary of the

AAA chain. In spite of the definition of extensions to the RADIUS protocol at the IETF, it

has been admitted as a specific rule not to create any new message, because of Diameter. As

network administrators would like to have a complete RADIUS toolkit to handle particular

features (such as credit control, for instance), no new message definition is allowed for

RADIUS, even though it might ease the implementation. As a consequence, a significant

amount of vendor-specific extensions are proposed, making use of existing, and not always

adapted, RADIUS messages, worsening protocol weaknesses.

Compatibility Issues
As mentioned before, RADIUS offers a high degree of liberty for implementers to define

new message attributes that might be necessary to run networks. As it is an undeniable

advantage for vendors and network administrators, who do not have to wait for standardized

features, this causes a real compatibility issue between all RADIUS-capable equipment.

38 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

For a network operator using RADIUS equipment built by different vendors, it is a

challenge to synchronize the equipment to offer the same services, with identical attribute

format, for both clients and servers. The solution can often be found in adding a RADIUS

proxy in the chain, to behave as a translator between various vendor-specific attribute

dictionaries.

3.1.3 Authorization and Provisioning with RADIUS

One of the primary goals of RADIUS is to carry authorization parameters after successful

authentication, usually in the Access-Accept message (we will see later that other types of

message can also be used). Authorization parameters can be divided into two major groups:

parameters that will be transmitted by the access protocol (PPP/IPCP, DHCP, . . .) to the end-
user terminal in order to use the authorized network properly, and parameters that have to be

taken into account by the access server to enforce user-specific policy rules. It is interesting

to note that parameters transmitted to the end-user terminal can also be used by the access

server to ensure that the remote terminal actually uses the right parameters. This situation

arises for IP addresses that are assigned to the end-user terminal: since this address

parameter (Framed-IP-Address) is transmitted from the authentication server to the access

server with RADIUS and from the access server to the end-user with the access protocol, the

access server uses this parameter to enforce antispoofing policies, to make sure that the end-

user terminal actually uses a valid source address in IP packets.

3.1.3.1 Authorization Parameters

Among the parameters that have been defined in the RADIUS base protocol (RFC 2865), a

classification of NAS or terminal parameters can be done. These parameters are those that

may be used in Access-Accept messages, and more specifically focused towards plain IP

network access provided by ISPs. Parameters defined for administrative usage or to provide

a command line interface are not described.

(i) NAS Authorization Parameters

� Service-Type. As this parameter may be used by the client in Access-Request messages as

a hint for the access server to provide a certain type of service, it is also often used in

Access-Accept messages in order to define the operation currently performed, or the

operation that needs to be done next. Here is a list of values carried by a Service-Type

attribute used in Access-Accept messages, and usually used in the ISP context:

– Framed: the end-user has to be connected with a framed layer-2 protocol (such as PPP);

– Call-back Framed: the same as Framed, but the user is first disconnected and then called

back by the access server;

– Authorize-Only: defined in RFC 3576, its usage is detailed in Section 3.2.3.2. The

Authorize-Only service type is sent by the RADIUS server to trigger a new authoriza-

tion phase that has to be initiated by the RADIUS client with an Access-Request

message. This service type is particularly useful to ease Diameter/RADIUS translations.

� Framed-Protocol. This indicates the protocol to use between the terminal and the access

server (PPP, SLIP, GPRS PDP Context, etc.).

The RADIUS Protocol and its Extensions 39

� Framed-Routing. This is used when the authorized terminal happens to be a router. The

value indicates the routing role of the terminal (route listener, route sender or both).

� Filter-Id. This parameter is very important, probably the most powerful to be used with

RADIUS to communicate authorization policies and rules. The Filter-Id parameter is

indicated by the authentication server, conveying a locally defined reference that can be

interpreted by the NAS. Section 3.1.3.2 talks more extensively about the usage of this

parameter.

� Framed-MTU. When the access protocol does not negotiate this parameter, the Framed-

MTU is used to set the maximum transmission unit to be applied by the NAS for the

remote terminal. Framed-MTU might be different from the MRU value negotiated

between PPP peers, for instance, since PPP-LCP is run before RADIUS exchanges occur.

� Framed-Compression. This is the type of compression to be used between the access

server and the terminal (TCP/IP VJ header compression, IPX header compression, Stac-

LZS compression).

� Callback-Number. The number to be used to call the end-user. This attribute is only

relevant when the terminal is reachable through a PSTN/ISDN network.

� Framed-Route. This parameter is used to provision IP routes for the end-user to be

configured on the NAS. The content of the value field is implementation dependent, but

routes should be noted in a human-readable manner including prefix, subnet (Ascend/xx

notation, where xx denotes the number of high-order bits positioned), the IP address of the

gateway and a set of metrics.

� Vendor-Specific. With Filter-Id, this is a very interesting attribute to convey complex

authorization parameters that can be applied by the NAS (see Section 3.1.3.2).

� Session-Timeout. The value of this attribute specifies the authorized connection duration in

seconds. However, some NAS vendors round off this value to the nearest minute in order

to lower the surveillance burden when thousands of connections are managed by the same

equipment.

� Idle-Timeout. The same as Session-Timeout, but the timer is reinitialized every time traffic

is flowing for the end-user.

� Termination-Action. This attribute is used by the authentication server to inform the NAS

about the next operation to realize. This attribute is used when authentication/authoriza-

tion operations are incomplete. Since Access-Accept messages terminate normal RADIUS

exchange, this attribute is used to continue or to restart the process.

� Port-Limit. This provides the maximum number of ports to be assigned for a specific end-

user. This might be used for multilink PPP, when an end-user makes use of multiple ISDN

channels to increase connection bandwidth.

(ii) Terminal Authorization Parameters

� Framed-IP-Address. This attribute is sent by the authentication server to assign an IP

address to the end-user terminal. The actual IP address assignment of the terminal has to

be performed with the access protocol. For instance, this can be done with IPCP in the PPP

case, or by DHCP. As already mentioned, this parameter can also be used by the access

server to enforce antispoofing filtering policies.

� Framed-IP-Netmask. The same usage as the Framed-IP-Address, this is the network mask

that has to be associated with the IP address.

40 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Reply-Message. This attribute is used to display a message to the end-user. It is not a pure

authorization parameter, but it can be used to continue the authentication/authorization

stage when used in Access-Challenge messages, or simply be used as an authorization

notification in Access-Accept messages. This notification has to be transferred to the end-

user thereafter, owing to the access protocol.

� Vendor-Specific. This can also be used to convey information to provision the end-user

terminal with some specific configuration parameters. For example, DNS addresses to be

configured to the end-user terminal are conveyed by RADIUS Vendor-Specific attributes.

3.1.3.2 Conveying Specifically Elaborated Policy Rules

The current set of RADIUS messages makes it possible to provision terminals as well as

access servers with policy rules that can by transmitted in Access-Accept or Change-of-

Authorization messages. The latter, defined in RFC 3576, will be explained more thoroughly

in Section 3.2.3. For RADIUS implementations that do not support RFC 3576, Access-

Accept messages are the only provisioning means that can be used. Since Access-Accept

messages are not acknowledged, it is not always possible to be 100 % sure that authorization

and provisioning parameters have been correctly transmitted and applied. As this is not

really a problem for the initial user connection/authorization request, this may become

problematic if the Access-Accept has been sent within a complementary authorization round,

which occurs when the end-user session is already established. Fortunately, solutions exist to

solve this issue:

� The RADIUS client could be configured to send successive requests if it does not receive

any response from the RADIUS server.

� Accounting messages could be sent as soon as the authorization changed, simultaneously

acknowledging the Access-Accept message and providing an explicit notification detailing

the policy rules applied. This solution is implementation specific.

It is important to note that the IETF RADIUS extensions working group is currently

defining new attributes that are specifically designed to provision filtering rules. This is

discussed in Section 3.2.6.1. Even though these attributes are not yet finalized, and are yet to

be adopted by the IETF community, they are very likely to be used in the future to convey

precise provisioning and authorization rules with RADIUS.

This section will focus on the two standardized attributes briefly mentioned in Section

3.1.3.1, and which can be used to build specifically elaborated policy rules: Vendor-Specific

and Filter-Id attributes. The transport of a complete set of provisioning parameters might not

be possible in a single attribute, since the TLV format (Figure 3.3) imposes a limit of 253

bytes. However, it is possible to convey multiple Vendor-Specific or Filter-Id attributes in

one single RADIUS message. Therefore, proprietary syntax rules have to be implemented

when a large policy rule has to be split into multiple attributes.

(i) Using Vendor-Specific Attributes

The Vendor-Specific attribute has a specific format described in Figure 3.4 and is particularly

suited to configure very different authorization parameters. To define a Vendor-Specific

The RADIUS Protocol and its Extensions 41

attribute, the implementer needs a Vendor-Id number, registered in the SMI network

management private enterprise code (a list of registered companies can be found at the

following URL: http://www.iana.org/assignments/enterprise-numbers). The Vendor-Id attri-

bute is a 32-bit field. Considering that there are less than 25 000 registered companies at this

time, it leaves some room for newcomers. The Vendor-Type field can be freely used within

the Vendor-Id space to dissociate different parameter types such as filtering rules, bandwidth

limitation boundaries, NAT/PAT parameters, etc. The Attribute-Specific value is defined to

make sense with a particular Vendor-Type, and must follow specific syntax and semantic

rules in order to be properly interpreted by the NAS. The RADIUS server also has to

implement this syntax and semantics, especially if it has dynamically to transfer policy rules,

following specific end-user session characteristics. For instance, monitoring and controlling

a specific end-user may require specific IP parameters to be described in the policy rule that

depend on the subscribed service.

(ii) Using the Filter-Id Attribute

The Filter-Id format is very liberal, as the value field is text encoded and is initially used to

designate a particular policy rule already listed in the NAS. There are two different ways to

use this attribute:

� NAS locally defined policy. Both RADIUS server and NAS have the knowledge of the

same set of filtering rules, listed by name or by number (or both) and transported in text

format in a human-readable manner.

� Dynamically interpreted policy. The RADIUS server is able to elaborate dynamic policy

rules in a way that the NAS is able to interpret and to apply the rules in conformance with

the granted service. As this behavior is not explicitly mentioned in RFC 2865, there is no

technical reason to forbid this usage. However, this is not a very practical way to provision

configuration parameters since it requires the implementation of a specific rule parser on

the NAS.

Whatever the Filter-Id usage, the RADIUS protocol operations must not be affected by

this attribute. It is therefore not possible to trigger another round of RADIUS authorization

messages depending on the value of this attribute, for instance.

The Filter-Id attribute is very sensitive to compatibility issues, as the value field usually

has a local meaning and is interpreted depending on the equipment used. This has to be taken

into consideration, especially if services have to be extended to roaming users, and/or if new

incompatible equipment is deployed in the network. For this specific case, the Vendor-

Specific attribute has two advantages: the attribute cannot be misinterpreted (correctly

interpreted or simply rejected), and the attribute can be translated by a proxy if different

equipment brands are involved.

(iii) Example

The following example describes a method to use Filter-Id and Vendor-Specific attributes to

provide the same service. The case presents a registered user Omer who is entitled to connect

to the Internet with a limited speed of 2048 kbit/s for downloads and 512 kbit/s for uploads,

applied to the IP traffic. The provisioning of this bandwidth limitation is done during

connection establishment, by parameters transmitted in the Access-Accept RADIUS message.

42 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Vendor-Specific Attributes
For the purpose of this example we have defined two Vendor-Specific attributes, especially

created for the virtual ‘Foobar’ company, which was given the enterprise code 30 000

(Vendor-Id). The first Vendor-Specific attribute created by the Foobar company has been

allocated the type number 1 to define the download bandwidth boundary, as the type number

2 defines the upload bandwidth boundary. The choice of the company is to encode the speed

limit in 32 bits, using the integer format. The two newly created attributes are shown in

Figure 3.8.

Filter-Id Attribute with Predefined Local Policy
In every NAS on which a user has the possibility of being connected, a common set of

services is configured, spanning the whole possible download/upload offers the ISP is able to

provide (Table 3.1).

When the user Omer is connecting to the network, the authentication server will have to

indicate the ‘2048/512’ offer that corresponds to the Filter-Id number 3. In this example, the

Filter-Id value is UTF-8 encoded in a 2-byte length field. The attribute will be as shown in

Figure 3.9.

Type = 26 Lg = 12 Vendor ID = 30000

0 7 15 31

(Vendor ID)

23

Vd-Type = 1 Vd-Lg = 6

2048

Type = 26 Lg = 12 Vendor ID = 30000

0 7 15 31

(Vendor ID)

23

Vd-Type = 2 Vd-Lg = 6

512

Subattribute #1 (download speed limit = 2048):

Subattribute #2 (upload speed limit = 512):

Figure 3.8 Example of two Vendor-Specific attributes defined for bandwidth limitation

Table 3.1 Table of service offers indexed with the Filter-Id attribute

Filter-Id Download limit Upload limit

1 512 128

2 1024 256

3 2048 512

4 8192 512

The RADIUS Protocol and its Extensions 43

Filter-Id with Dynamic Interpretation
In this example, the Filter-Id value field is parsed by the NAS with the following

grammatical rule:

Download Bandwidth Limit ¼ string;
Upload Bandwidth Limit ¼ string;
Value ¼ ''Service:'' Download Bandwidth Limit ''/''Upload
Bandwidth Limit;

If the grammatical rules are correctly parsed during analysis of the attribute, the NAS

converts strings into real values to be applied as the bandwidth limit for the user. The

attribute will be as shown in Figure 3.10.

3.2 RADIUS Extensions

3.2.1 EAP Support with RADIUS

The Extended Authentication Protocol (EAP) was primarily designed for PPP (RFC 2284)

but quickly became the standard used for layer-2 links other than PPP. EAP is an access

protocol that makes use of dedicated authentication methods and therefore has to interact

with authentication protocols. RFC 2869 was the first effort to standardize a smooth

interworking between RADIUS and EAP, and RFC 3579 came up afterwards as a complete

solution set, updating the EAP part of RFC 2869.

In order to carry EAP messages from the authenticator to the authentication server, two

new RADIUS attributes have been specifically defined: EAP-Message, which conveys the

Type = 11 Lg = 4 « 03 »

0 7 15 23 31

Figure 3.9 Filter-Id attribute with predefined local policy

Type = 11 Lg = 18

«Service:2048/512»

0 7 15 31

32

64

96

128

Figure 3.10 Filter-Id attribute with dynamic interpretation

44 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

actual EAP information, and Message-Authenticator, which is used to check the message

integrity of request messages, because the original RADIUS Authenticator field is only

relevant for replies. Checking the integrity of requests is a way to prevent spoofing attacks

targeted against the RADIUS server.

The other challenge for a successful interaction was to adapt the RADIUS protocol to the

multipass EAP exchanges. As mentioned earlier, the RADIUS protocol is usually restricted

to a request/response authentication, since EAP methods usually require multiple yet

successive exchanges. To achieve this, Access-Challenge messages are sent by the authenti-

cation server, as long as message exchanges have to be pursued. As in CHAP or PAP

authentication cases, successful or invalid authentication is terminated either by an Access-

Accept or by an Access-Reject message respectively.

The integration of EAP support within RADIUS is a key to use the latter for layer-2 and

layer-3 authorization: EAP is now widely deployed with 802.1X (which is a layer-2

authentication/authorization standard), and RADIUS can be used to integrate additional

layer-3 authorization attributes if the 802.1X authenticator has the corresponding layer-3

capabilities. This case is an example of how RADIUS can easily extend usages.

The complete description of EAP can be found in RFC 3748, but this introduction will

describe in a quick and simple manner what typical EAP exchanges might occur between a

peer and its authenticator (the NAS in our case):

(a) The authenticator (NAS) is the initiator of EAP exchanges, by first sending an EAP

Request message claiming for peer identity.

(b) The peer replies to the authenticator with the required information, by sending an EAP

Response message.

(c) The authenticator sends a new request, requiring a response from the peer.

(d) The (b) þ (c) phases are repeated until all EAP method phases are completed.

(e) If authentication is successful, the authenticator sends an EAP Success message to the

peer; if it fails, it sends an EAP Failure message.

As can be seen above, there are only four messages defined in EAP: Request, Response,

Success, Failure. EAP defines multiple types for Request and Response messages, in order to

specify the nature of the request or response.

An authentication server is not required for EAP to work, as authentication can be

completely handled by the authenticator. However, it is most of the time desirable to make

use of a centralized entity designated to perform the authentication on behalf of the

authenticator. The authenticator may be used in this case as a RADIUS client, and will

have to transmit EAP messages between the peer and the RADIUS server. Note that the

RADIUS server may itself delegate the EAP method processing to an external server, since

authentication computation procedures can be managed independently of RADIUS protocol

exchanges.

3.2.1.1 EAP-Message and Message-Authenticator Description

The EAP-Message (attribute 79) is an attribute used by the authenticator to encapsulate EAP

messages coming from the peer to the authentication server, and is used to convey replies from

the authentication server to be sent to the peer. The EAP-Message attribute can be inserted in

The RADIUS Protocol and its Extensions 45

Access-Request, Access-Challenge, Access-Accept and Access-Reject RADIUS messages. It is

possible to have multiple EAP-Message attributes in a single RADIUS message, as the

maximum size of an attribute may not be sufficient to carry the original EAP message. In this

case, EAP-Message attributes are concatenated to form one EAP message. However, it is not

possible to send one EAP message within multiple successive RADIUS messages, as this

would break the state machine of the RADIUS protocol.

On the other hand, it is not possible for a RADIUS message to carry more than one EAP

message either. The EAP/RADIUS interaction has been built around the idea that every

message of one protocol matches to the other. There is no possibility of message

aggregation, nor reduction of exchanges between the peers.

The Message-Authenticator message (attribute 80) has been defined to ensure integrity

and authentication of RADIUS messages used to convey EAP information within Access-

Request, Access-Challenge, Access-Accept and Access-Reject messages, but can also be used

to reinforce protection of these RADIUS messages, even when not used within the context of

EAP. The value field of theMessage-Authenticator attribute is the calculation of a MD5 hash

of the whole packet, including the Authenticator field and the shared secret used as the key

for integrity check. The essential innovation of this attribute is to protect the server from

spoofed Access-Request messages, whereas the Authenticator field could just be used by the

RADIUS client to ensure the integrity of the RADIUS server’s replies.

3.2.1.2 EAP and RADIUS Exchange Overview

There is a infinite combination of exchanges that might occur between the peer, the

authenticator and the authentication server. Most of the cases that can be encountered are

described in RFC 3579, but we will present here the typical framework of an EAP/RADIUS

message interaction (Figure 3.11):

1. The NAS (authenticator) sends an EAP Request/Identity to the peer.

2. The peer answers with an EAP Response/Identity message.

3. The NAS relays this information to the authentication server within an Access-Request

message.

4. The RADIUS server sends back an EAP Request, hence initiating the actual EAP

authentication method process, within an Access-Challenge message.

5. The NAS relays the EAP Request to the peer and waits for the peer’s answer (which will

be sent in another Access-Request message, by which an Access-Challenge has to be

followed).

6. The peer sends back its answers using an EAP Response message, with a subtype adapted

to the chosen method, and containing the relevant information.

7. The NAS relays the EAP message in an Access-Request message.

Steps 4 to 7 are repeated until the EAP method phases are completed or fail:

� If the authentication server considers that authentication is successful, it encapsulates the

EAP Success message in an Access-Accept message and sends it to the NAS which will

enforce the RADIUS authorization parameters that have to be sent along, and will

simultaneously send the EAP Success message to the peer (step 8).

46 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� If the authentication fails, the authentication server encapsulates an EAP Failure message

within an Access-Reject message. The NAS will relay the EAP Failure message to the

peer and will take appropriate actions to keep the peer in the appropriate unauthorized

state (step 9).

3.2.2 Interim Accounting

The notion of ‘interim accounting update’ messages appeared in RFC 2869, along with

numerous additional notions, as already seen. In any standard authentication/authorization/

accounting process with RADIUS, the client sends an Accounting-Request message with an

Acct-Status-Type ¼ Start once the session has been authorized by an Access-Accept message

and the NAS has enforced appropriate authorization parameters.

The RADIUS server is intended to send back an Accounting-Response message to

acknowledge receipt and treatment of the message. By the end of the session, the RADIUS

client sends an Accounting-Request message with an Acct-Status-Type ¼ Stop, acknowl-

edged again by the server with an Accounting-Response message. As RADIUS does not

implement a connected mode as Diameter does, the server gets the status of the end-user at

the end of the session, hopefully if no network perturbations have impeached the transmis-

sion of the Stop message.

The benefits of and need for an intermediate status update are then obvious: by sending

periodic accounting messages, the server is able to keep track of active session states more

NAS

(Authenticator)

RADIUS Server

(Authentication Server)

3 - Access-Request+ EAP Message (Response)

8a - Access-Accept

+ EAP Message (Success)

1 - EAP Request/Identity

4 - Access-Challenge

+ EAP Message

(Request for method X)

B-User Rejected

Authenticating peer

Steps 4 to 7 repeated
until success or failure:

A-Access Granted

2 - EAP Response /Identity

5 - EAP Request for method X

6 - EAP Response for method X
7 - Access-Request+ EAP Message (Response)

8b - EAP Success

9a - Access-Reject

+ EAP Message (Failure)

9b - EAP Failure

Provisioning of

authorization parameters

OK

NOK

Figure 3.11 Generic EAP and RADIUS exchanges

The RADIUS Protocol and its Extensions 47

precisely, with the advantage of giving a hint of actual resource consumption. This is helpful

for credit control applications, and also to reduce gain loss whenever end-user consumption

cannot be retrieved because of network failure, for instance. As RFC 2866 prepared the

possibility of Accounting-Request messages with Acct-Status-Type ¼ Interim-Update, its

usage is defined in RFC 2869 with the appearance of a new Acct-Interim-Interval attribute

sent in Access-Accept messages.

This attribute is valued with the interval, expressed in seconds, that separates two interim

updates. Beyond simple indication of the frequency of update messages, it is also a hint

given by the server to the client to activate the interim update process. However, this

mechanism can also be statically configured on the client, and is defined to override the

value provided with the Access-Accept. This last point has been argued lately at the IETF,

since it is impossible remotely to provision a specific behavior for a restricted number of

end-users, as long as a general parameter is set up in the NAS. The last consensus tends to

change this behavior by allowing the Acct-Interim-Interval to override the general para-

meter, if the new value is bigger than the predefined one.

RFC 2869 requires that intervals between two interim updates must not be smaller than 60

seconds, and should be smaller than 600 seconds. These lower boundaries have been defined

to protect the server from bursts of accounting messages, but, in return, they prevent the

accounting server from getting a frequent session status. Changes of authorization might also

trigger the emission of an interim update towards the accounting server. However, this

behavior has not been fully adopted yet, and new standard definitions seem to privilege the

consecutive emission of Stop and Start messages.

Indicating session status changes is possible with consecutive Stop and Start messages

by using the Acct-Multi-Session-Id attribute as a unique identifier for all authorizations

granted during a session lifetime. It is important to note that this method requires

each authorization change to be seen as a session change. In addition to this, a new

Acct-Termination-Cause value would have to be defined in order to specify that there is no

session disruption. In the future, it will be acceptable to foresee that both Interim and

Stop/Start behaviors will coexist: even though the Stop/Start method is a clean way to

achieve accounting for a single session experiencing different authorization phases

through time, it is also predictable that it will have a strong impact on deployed servers

that might improperly process Stop messages, always interpreting it as an indication of

session termination. From this point of view, using interim update messages is less

aggressive.

One future extension of the interim update message can also come from the need for

instantaneous session status updates. ISPs may require the precise status of an end-user

session to be obtained for multiple reasons:

� ‘Ghostbusters’ processes, which are activated when a session is trying to connect as

another one using the same credentials is already online. This situation can occur

whenever an account has been robbed, or when the accounting Stop message of the

first session has been lost for some reason. Instantaneous querying of the session status is a

way to figure out exactly what is going on.

� Real-time consumption checking performed by the end-user, who might pay on a volume

basis, and who is encouraged to check his/her credit regularly in order to avoid

overconsumption penalties.

48 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Credit control mechanisms, which can have a dedicated behavior with end-users close to

their credit limit. By requesting more frequent updates from the RADIUS client, usage

measurement is accurately performed without requiring an important update frequency

from the NAS. This is also a way to go below the 60 seconds boundary required by RFC

2869.

3.2.3 Dynamic Authorization

The standardization effort has made RADIUS a particularly attractive protocol to dynami-

cally change authorization parameters for individual sessions. These possibilities are

described in RFC 3576 and have different forms: Disconnect-Request and Change-of-

Authorization (CoA) messages. The former is used to cease authorizations previously

granted to the end-user by invoking the NAS to disconnect the end-user immediately, and

the latter requests the NAS to change authorizations for the indicated session, without

disconnection. The usage of the Disconnect-Request message is inherently limited, and

therefore this section will be more focused on the CoA message.

The first characteristic of these two messages is their place in the protocol architecture.

The traditional client/server RADIUS model makes the NAS the client, whereas Disconnect-

Request and CoA are server-initiated, unsolicited messages. RADIUS clients have to listen

to the specific UDP port 3799 in order to receive these messages. Upon receipt of a

Disconnect-Request message, the client will send back a Disconnect-ACK or Disconnect-

NAK message with an indication of the possible error cause. In the same manner, the CoA-

Request message requires a CoA-ACK or CoA-NAK reply.

CoA messages can be used in two different modes in order to achieve dynamic

authorization changes:

� Push mode: the CoA-Request message directly embeds authorization parameters to be

enforced by the NAS.

� Pull mode: the CoA-Request is a hint sent to the client for the sole purpose of requesting a

new authorization from the RADIUS client. This mode has been defined to ease Diameter

translation.

3.2.3.1 Changing Authorization in Push Mode

This mode is the native mode of the Change-of-Authorization message, as described

in Figure 3.12. It is similar to the Access-Accept message, but used in an unsolicited

manner with some additional restrictions relative to embedded attributes that might not

have the same meaning. The authenticator field is valued with the same rules employed

for accounting messages, keeping in mind that the Authenticator Request does not

come from the client but from the server, and the Authenticator Response comes from the

client.

CoA-Request messages must embed at least one or more attribute precisely and uniquely

to identify the session on which change of authorization parameters will apply. These

attributes can be, among others, the User-Name, Framed-IP-Address or Acct-Session-Id, for

instance.

The RADIUS Protocol and its Extensions 49

All authorization-related attributes described in Section 3.1.3 are usable within CoA-

Request messages, and can be dynamically applied without requiring successive disconnec-

tion/connection to get authorizations for desired services. Upon successful application of

new authorization parameters, the NAS sends a CoA-ACK message to the server. The server

may be forced to rely upon this message to perform the corresponding billing operations, as

the standard does not specify any particular behavior for accounting. The RADIUS client is

not required to send any accounting information to the server. As mentioned in the previous

section, there are, however, two possibilities to alert the accounting server of the change of

authorization: sending an interim update accounting message, or sending successive

accounting Stop and Start messages.

If the NAS is not capable of changing the authorization parameters as requested, a CoA-

NAK message is sent back to the RADIUS server, with an Error-Cause attribute indicating

the cause of failure.

3.2.3.2 Changing Authorization in Pull Mode

This mode is used when the RADIUS server wants to change one session authorization by

means of a regular Access-Request/Access-Accept exchange. To do so, the server sends a

CoA-Request with a Service-Type attribute specifically set to Authorize-Only. Upon receipt

RADIUS Client RADIUS Server

Disconnect-Request

Disconnect-ACK/NAK

User Disconnection Triggered

If User Disconnected
(Disconnect-ACK)

Accounting-Request (Stop)

Accounting-Response

COA-Request

COA-ACK

CoA Triggered

Successful
Change of Authorization

Change of Authorization
Failed COA-NAK

Figure 3.12 Disconnect and CoA message exchanges

50 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

of this message, the client will acknowledge this request by sending back a CoA-NAK with

an Error-Cause attribute set to Request Initiated. Eventually, the NAS will send an Access-

Request message with a Service-Type ¼ Authorize-Only to the RADIUS server, which will

send an Access-Accept with the new authorization parameters in return. This is shown in

Figure 3.13.

If the new authorization parameters are not applicable by the NAS, the behavior is not

clearly described. One might expect the Access-Accept to be treated as an Access-Reject

message, which will terminate the ongoing session. We can also expect the Access-Accept to

be treated as an invalid message, and therefore silently discarded without any session

disruption (however, experts do not encourage this). The two opposite behaviors are

documented in standardization notes, and this may create potential problems as each

implementer will have its own interpretation. This is another source of interoperability

issues between implementations. An Accounting-Request message could provide an indica-

tion of whether or not authorization parameters have been applied, but the way to use it is not

precisely defined yet (see Section 3.2.2).

3.2.4 Using RADIUS for Assignment, Prioritization and Filtering with VLANs

Issued in 2006, RFC 4675 defines a set of attributes defined to support VLAN, priority and

filtering attributes. This RADIUS extension is intended to be used in a context where each user

has an IEEE-802 port assigned (either physical or ‘virtual’, as IEEE-802.11 allows). The

bridge to which the port belongs is then the RADIUS client, and may request from the AAA

server an instruction specifically to provision VLAN filtering and prioritization for each user. It

is therefore possible for network administrators to control end-user access to a restricted set of

VLANs, and possible to manage traffic prioritization between VLAN IDs.

RFC 3580 already allows provision of individual VLAN access control for an end-user

attached to an IEEE-802 port. In this case, the tunneling attributes are used, but they provide

a coarse precision of access control tuning. With RFC 4675, the method proposed in RFC

RADIUS Client RADIUS Server

CoA Triggered

Request Processed

COA-Request

(Authorize-Only)

COA-NAK
(Request Initiated)

Transmission of New
Authorization Parameters

Change of Authorization

Access-Request(Authorize-Only)

Access-Accept

+ authorization parameters

New Authorization
Procedure Starts

Figure 3.13 Changing authorization in pull mode

The RADIUS Protocol and its Extensions 51

3580 is not deprecated at all, but the new attributes described below are defined to provide

better accuracy in dynamic provisioning of subscribers when attached to a IEEE-802

network.

Four attributes are defined in RFC 4675:

� Egress-VLANID (code 56). The RADIUS server indicates in this attribute an egress VLAN

that is allowed to be accessed by the end-user. It is possible to enumerate a complete set of

authorized VLANs by sending consecutive Egress-VLANID attributes in the same

authorization packet. The attribute format proposes a tag field with which it is possible

to specify whether VLAN frames have to be tagged or not.

� Ingress-Filters (code 57). This attribute activates filtering for VLAN ID(s) specified in the

Egress-VLANID attribute(s), using a field indicating whether filtering is enabled or not.

When filtering is disabled, the end-user associated with the pertaining port has full access

to the desired VLAN.

� VLAN-Name (code 58). Similar to the Egress-VLANID attribute, it indicates authorized

VLAN by its name instead of its number.

� User-Priority-Table (code 59). This attribute is composed of an 8-byte encoded table that

determines a correspondence between the priority of frames received by a port with the

priority to be enforced for the end-user. Therefore, without modifying the priority

information conveyed within 802 frames, it is possible to assign a local and personalized

traffic prioritization. The format of the table is defined in IEEE-802.1d documents.

Among these four attributes, only Ingress-Filters and User-Priority-Table are considered

to be ‘pure authorization attributes’. Therefore, these two attributes are exclusively

transported within Access-Accept and Change-of-Authorization messages. Egress-VLANID

and VLAN-Name are also authorization attributes, but can also be used as a hint sent by the

NAS to the AAA server to provision access with maximum efficiency, when possible.

Using the VLAN filtering and prioritization mechanism in a network can be reported by

using accounting messages. Egress-VLANID, Ingress-Filters and VLAN-Name can be

inserted within Accounting-Request messages to log their usage and application on the NAS.

It is worth noting that these attributes can be used ‘as is’ by Diameter without any other

translation than those required by the protocol format.

3.2.5 Filtering IP Traffic

As seen in Section 3.1.3, it is possible dynamically to provision filter rules into a NAS, even

though it is not really convenient or reliable to be used across a large network, or to be used

across multiple networks. For instance, the Filter-Id attribute requires either filter rules to be

preprovisioned into the NAS or a specific filter rule interpreter to be implemented within

each NAS. With RFC 4005, Diameter does not suffer this problem: the NAS-Filter-Rule

attribute has been defined to convey complex filtering rules in a standardized format owing

to IPFilterRule syntax defined in RFC 3588. With RFC 4849 issued in April 2007, it is now

possible to use the same attribute with RADIUS.

One of the core features proposed is to provide a standardized way to provision specific

per-user filters on the NAS. Previously, this could be done by other means: using the Filter-

Id attribute, or by defining on-purpose Vendor-Specific attributes. Note that the Filter-Id

52 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

attribute may have an ambiguous meaning, since its value field has not been precisely

defined and could therefore embed a sequence of parameters to provide a complex semantic.

The RADIUS NAS-Filter-Rule (code 92) is defined to sweep away good and bad habits by

providing a unified attribute with a comprehensive and elaborate grammar to define filter

rules to be enforced by the NAS. The NAS-Filter-Rule is able to define rules to permit or

deny various traffic flows restricted to layer-3 and layer-4 IP protocols (see Section 4.4.2 for

details). The rules can be complex and may not fit the 253-byte string field limit imposed by

the RADIUS attribute format. In this case, multiple NAS-Filter-Rule attributes can be

inserted in the same message, the concatenation of all string fields giving the complete set of

rules to be interpreted (the string field is ASCII encoded, and the separator between filter

rules is the NULL byte). RFC 2865 mentions that multiple attributes of the same type must

not be reordered, even by proxies in the chain. This rule ensures that rules will be conveyed

without degradation along the AAA chain.

No accounting specific attribute has been defined to report the effective enforcement of a

filter on the NAS. It is the same NAS-Filter-Rule attribute that is used within Accounting-

Request messages. Whenever a filter is applied, either at session startup or during a session,

an accounting message must be sent with this attribute, indicating that it has been taken into

account. If the filter rule is not applicable, the session fails if it is still in its startup phase. If

the session is already up, the session’s authorizations remain unchanged and no accounting

message is sent.

With several methods to enforce filtering policies within an NAS, a rigorous consistency in

attribute usage is required. Firstly, it is not recommended to use the Filter-Id attribute and the

NAS-Filter-Rule attribute at the same time. Even though this is not prohibited, precedence has

not been defined to give priority to one attribute over the other. Therefore, it is likely that

behavior across a large network would not be consistent, especially if different NAS types

were used. The ongoing work at the IETF is preparing a new attribute for filtering traffic, more

powerful and versatile. This will be discussed in Section 3.2.6.1. Even though this new

attribute is not standardized yet, RFC 4849 explicitly mentions that the NAS-Filter-Rule

attribute will have to be ignored if both attributes are present in the same message.

As compatibility with Diameter is required for latest RADIUS attributes, translation

between the RADIUS NAS-Filter-Rule (code 92) and the Diameter NAS-Filter-Rule (code

400) will occur on concatenation and split procedures, to fit the limits of each protocol.

When the Diameter attribute is translated into RADIUS, the Diameter NAS-Filter-Rule string

field is split into 253-byte portions, which makes the same number of RADIUS NAS-Filter-

Rule attributes to be inserted, in the same order, within the equivalent RADIUS message. A

specific translation procedure applies from RADIUS to Diameter when multiple NAS-Filter-

Rule attributes are present. In this case, RADIUS attributes are concatenated into a single

string field which generates one Diameter NAS-Filter-Rule. It might be that translation is

impossible, especially if the 4096-byte RADIUS boundary is reached. In this case,

translation is considered to be unfeasible and an error message is generated.

3.2.6 Future Extensions

The IETF is still engaged in the standardization of new RADIUS extensions. Some proposals

are intended to clarify the usage of RADIUS, or to update some RFC documents to take into

account emerging operators’ needs. We will describe in this section some extensions that

The RADIUS Protocol and its Extensions 53

have a direct impact on end-user service provisioning, especially concerning features such as

traffic filtering, prepaid extensions and bandwidth management. Not all extensions presented

herein are integrated as official standardization working documents yet, and some of them

may not succeed in becoming a standard in the future. However, having a look at these works

will give the reader a better knowledge of the directions to be taken by RADIUS in the

coming years.

3.2.6.1 Extended Filtering Attributes

Throughout the different sections of this chapter we have already identified three different

ways to enforce specific filtering policies onto network access servers: Vendor-Specific

Attributes, Filter-Id and NAS-Filter-Rule. The latter combines the advantages of being

standardized and offering a decent level of sophistication. However, it is still limited to

layers 3 and 4 of the IP protocols, which can be a constraint when provisioning complex

policy rules for individual user access.

Specific work has been conducted to enrich the NAS-Filter-Rule, basically by extending

the RFC 3588 IPFilterRule syntax, using augmented BNF (ABNF) for syntax specifications

(RFC 2234). A new NAS-Traffic-Rule attribute is proposed, which spans from layer-2 to

layer-5 (HTTP) traffic. Moreover, this attribute also embeds actions in order to redirect

identified flows. The same concatenation rules used with NAS-Filter-Rule apply, and it is

likely that Diameter translation would work the same way. At this stage of the work, a

specific attribute is proposed for accounting (Acct-NAS-Traffic-Rule), but it will likely be

dropped following the same solution documented in RFC 4849 and RFC 4675, which

consists in using the same attribute number for authorization and accounting, since no

confusion can exist in the context of their usage.

If the definition of the NAS-Traffic-Rule succeeds in the future, its usage will probably

deprecate all other attributes defined for filtering. It is even possible that NAS-Filter-Rule

may never be used if NAS-Traffic-Rule shows up soon, since NAS and AAA server

implementation supporting the former would not yet be widely deployed. This situation is

even more likely since RFC 4849 explicitly specifies that NAS-Filter-Rule will have to yield

to NAS-Traffic-Rule if both attributes are present in the same message. Considering Filter-Id

and VSA attributes, they will still be used for a long time anyway, because they are already

used in specific situations, combined with a lack of will for additional investments in a chain

that already works and makes money.

3.2.6.2 Bandwidth Parameter Attributes

Besides attributes created to provide additional filtering capabilities such as those described

above, the ability to provision bandwidth limitations to the end-user session is presented in

Ref. [1]. As usually seen with RADIUS, this possibility is already available with most of the

devices available on the market, making use of Vendor-Specific attributes. The purpose of

this proposition is to define three new attributes to define the user’s bandwidth profile:

� The Ingress-Bandwidth attribute defines in its 32-bit value field the bandwidth available to

the user for ingress traffic, i.e. traffic going to the end-user. The bandwidth rate is

represented in the value field in kilobits per second.

54 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� The Egress-Bandwidth attribute has the same usage as Ingress-Bandwidth for traffic going

in the opposite direction (from the end-user).

� The Bandwidth-Profile-Id attribute provides an opened text field in which the adminis-

trator can designate a bandwidth profile reference to be applied to the corresponding end-

user. This attribute is similar to the Filter-Id attribute but is expected to be used from a

bandwidth management standpoint. It is not intended to be used in roaming environments,

where references are usually locally defined.

Ingress-Bandwidth and Egress-Bandwidth attributes can be used in Access-Request,

Access-Accept, CoA and Accounting-Request messages. In Access-Request messages,

these attributes are used as a hint to the authorization server to recommend a particular

bandwidth, considering the limitations of the NAS or possibly the user’s link. In Access-

Accept and CoA, these attributes are used by the NAS to provision available bandwidth for

the end-user; in Accounting-Request messages, these attributes are used to indicate to the

accounting chain the actual bandwidth applied for the session.

This proposition is not stabilized yet, and it is still unclear whether this proposal will be

standardized some day, even though there are obvious needs coming from network operators

who are continuously dealing with proprietary attributes and subsequent incompatibilities.

3.2.6.3 Prepaid Extensions for RADIUS

This proposition [2] is not an official standardization item yet, but it is in the scope and the

objectives of the RADIUS extension working group to provide a solution that can be usable

for credit control applications, as it has been defined within the Diameter credit control

application (RFC 4006). The purpose is to define additional attributes and usage guidelines

to support new charging models such as duration-based, volume-based and one-time-based

services. The prepaid solution defines a new method for provisioning various credits for the

end-user sessions, the NAS being in charge of managing and measuring the usage of these

credits in real time, reporting this usage to the prepaid server and requiring, if needed,

additional credits.

The ongoing work is far from being completed, and it is not even sure that this proposition

will become a plain standardization document; for this reason, we will not describe this

solution further. The lack of alternative propositions within the IETF makes it almost

impossible to rule on this proposition: the architectural consequences are definitely

important for the future of RADIUS, and it seems reasonable to have multiple solutions

proposed and reviewed by a college of experts.

3.2.7 RADIUS and its Future

Besides protocol mechanisms specified in RFC 2865, multiple RFCs have been written as

companion documents to describe precisely how RADIUS has to be used for particular

purposes. Table 3.2 shows what RFCs define the RADIUS protocol, its extensions and its

usage.

Beyond weaknesses inherited from the very first stages of its birth, RADIUS is still very

flexible. This property makes its use very adaptable for multiple purposes. In addition,

The RADIUS Protocol and its Extensions 55

Table 3.2 RADIUS standardization documents

Title RFC Status Comments

Remote Authentication 2058 Standards Made obsolete by RFC 2138.

Dial-In User Service Track Initial protocol definition

(RADIUS)

RADIUS Accounting 2059 Informational Made obsolete by RFC 2139.

Definition of accounting information

carried with RADIUS

Remote Authentication 2138 Standards Made RFC 2058 obsolete, but itself

Dial-In User Service Track madeobsoletebyRFC2865.Protocol

(RADIUS) definition

RADIUS Accounting 2139 Informational Made RFC 2059 obsolete, but itself

made obsolete by RFC 2866.

Definition of accounting information

carried with RADIUS

The Network Access 2486 Standards Made obsolete by RFC 4282.

Identifier Track Standardized method for user

identification, defines the syntax for

the network access identifier (user

identity presented by the client for

network authentication)

Microsoft Vendor-specific 2548 Informational This RFC gives an overview of

RADIUS Attributes vendor-specific attributes defined by

Microsoft for RADIUS

RADIUS Authentication 2618 Standards Made obsolete by RFC 4668. SNMP

Client MIB Track MIB definitions for RADIUS client

authentication functions

RADIUS Authentication 2619 Standards Made obsolete by RFC 4669. SNMP

Server MIB Track MIB definitions for RADIUS server

authentication functions

RADIUS Accounting 2620 Standards Made obsolete by RFC 4670. SNMP

Client MIB Track MIB definitions for RADIUS client

accounting functions

RADIUS Accounting 2621 Standards Made obsolete by RFC 4671. SNMP

Server MIB Track MIB definitions for RADIUS server

accounting functions

Implementation of L2TP 2809 Informational Discussion about implementation

Compulsory Tunneling issues when performing L2TP

via RADIUS compulsory tunneling using the

RADIUS protocol

Remote Authentication 2865 Standards Makes RFC 2138 obsolete. Base

Dial-In User Service Track protocol definition

(RADIUS)

RADIUS Accounting 2866 Informational Makes RFC 2139 obsolete. Definition

of accounting information carried

with RADIUS

56 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Table 3.2 ðContinuedÞ
Title RFC Status Comments

RADIUS Accounting 2867 Informational Updates RFC 2866 by defining new

Modifications for Tunnel accountingattributes, andbyaddingnew

Protocol Support values to the Acct-Status-Type attribute

RADIUS Attributes for 2868 Informational Definition of new attributes to support

Tunnel Protocol Support compulsory tunneling with RADIUS.

Does not update RFC 2809 which is

more specifically focused for L2TP

RADIUS Extensions 2869 Informational Definition of new attributes for various

purposes such as EAP, ARAP,

Accounting-Interim, Service-Type and

accounting attributes

Network Access Servers 2882 Informational Description of practices and

Requirements: Extended interpretations of implemented

RADIUS Practices RADIUS features

RADIUS and IPv6 3162 Standards Definition of new attributes to support

Track IPv6 characteristics

IANA Considerations for 3575 Standards Updates RFC 2865 about guidance to

RADIUS (Remote Track the IANA regarding registration of

Authentication Dial-In values related to the RADIUS

User Service) protocol

Dynamic Authorization 3576 Informational Definition of new messages to

Extensions to Remote the RADIUS protocol, in order

Authentication Dial-In fora RADIUSserver to orchangeof

UserService (RADIUS) authorizationnotification

RADIUS (Remote 3579 Informational Updates RFC 2869 for the rules to

Authentication Dial-In follow in interacting with EAP

User Service) Support For

Extensible Authentication

Protocol (EAP)

IEEE 802.1X Remote 3580 Informational Suggestions about the RADIUS

Authentication Dial-In protocol usage when used by 802.1X

User Service (RADIUS) authenticators

Usage Guidelines

Remote Authentication 4014 Standards Definition of a DHCP RADIUS

Dial-In User Service Track suboption that could be transmitted

(RADIUS) Attributes from the RADIUS server to the DHCP

Suboption for the Dynamic server through the DHCP relay agent

Host Configuration

Protocol (DHCP) Relay

Agent Information Option

The Network Access 4282 Standards Makes RFC 2486 obsolete.

Identifier Track Standardized method for user

identification, defines the syntax for

the network access identifier (user

identity presented by the client for

network authentication)

(continued)

The RADIUS Protocol and its Extensions 57

RADIUS is evolving within the RADEXT working group at the IETF to support new

features and to extend its usage. The protocol has the ability to carry new accounting

information, and has also evolved significantly to offer sophisticated authorization functions.

With its ability to designate every user context maintained in an NAS, RADIUS is a

privileged medium to enforce individualized policies during the authorization process.

In spite of its lack of reliability, it seems very unlikely that RADIUS will disappear from

the networks within the next 5 years. There are still a lot of functionalities to add (credit

control, extensible attribute definition, etc.), operators are still providing new requirements

and it is a good sign that the standardization process started again in 2004 to define

extensions to the protocol (even though IETF imposed a restricted margin of evolutions).

Even a second-generation evolution such as RFC 3576 for dynamic provisioning is being

reworked again for new improvement.

However, one can easily foresee the end of its evolution, because 3GPP and ETSI have

chosen Diameter for the IMS model, to achieve fixed–mobile convergence. Although

RADIUS was left without any real competitor for years, the growing popularity of Diameter

Table 3.2 ðContinuedÞ
Title RFC Status Comments

Chargeable User Identity 4372 Standards Defines new attributes to convey a

Track specific identity for roaming situations

RADIUS Extension for 4590 Standards Extension to support digest

Digest Authentication Track authentication for HTTP-style

protocols such as SIP

RADIUS Authentication 4668 Informational Makes RFC 2618 obsolete. IPv6 support

Client MIB for IPv6

RADIUS Authentication 4669 Informational Makes RFC 2619 obsolete. IPv6 support

Server MIB for IPv6

RADIUS Accounting 4670 Informational Makes RFC 2620 obsolete. IPv6 support

Client MIB for IPv6

RADIUS Accounting 4671 Informational Makes RFC 2621 obsolete. IPv6 support.

Server MIB for IPv6

RADIUS Dynamic 4672 Informational SNMP MIB definitions for RADIUS

Authorization Client MIB client authorization functions, when

RFC 3576 is used

RADIUS Dynamic 4673 Informational SNMP MIB definitions for RADIUS

Authorization Server MIB server authorization functions, when

RFC 3576 is used

RADIUS Attributes for 4675 Standards New attributes for filtering and

Virtual LAN and Priority Track prioritization to VLANs for IEEE-802

Support access

RADIUS Delegated-IPv6- 4818 Standards Defines a new attribute to convey an

Prefix Attribute Track IPv6 prefix to be delegated by the

NAS

RADIUS Filter Rule 4849 Standards Definition of a new RADIUS attribute

Attribute Track inherited from Diameter for IP traffic

filtering.

58 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

will likely push RADIUS aside in the next 3 years for new usages and new network AAA

chain deployments, of course depending on a wide adoption of IMS evolutions by telcos.

References

[1] Lior, A. et al., ‘Network Bandwidth Parameters for Remote Authentication Dial-In User Service

(RADIUS)’, draft-lior-radius-bandwidth-capability-01, July 2005.

[2] Lior, A. et al., ‘Prepaid Extensions to Remote Authentication Dial-In User Service (RADIUS)’,

draft-lior-radius-prepaid-extensions-08.txt, July 2005.

The RADIUS Protocol and its Extensions 59

4

The Diameter Protocol

As the IP protocol became the reference technology to build new networks, the need for a

very reliable AAA protocol was crucial. From the simple requirement of providing an

access on a remote access server in a secured manner, or a connection to the Internet or to

the company’s VPN, needs have strongly shifted to support a more sensitive and demanding

exploitation of networks. New phone access technologies have evolved to support

(and rely on) the IP technology, and therefore this IP technology had to provide an AAA

protocol with new capabilities that RADIUS was unable to offer. Firstly, 3GPP defined the IP

Multimedia Subsystem (IMS) as the architecture design guidelines for the mobile phone

network control plane. 3GPP decided to rely on the Diameter protocol to carry AAA

functions, and to have a role in provisioning appropriate resources in network equipment. In

the beginning, however, 3GPP needs were more oriented to RADIUS evolution of NASREQ

aspects. Next, ETSI/TISPAN decided to adopt the IMS architecture design for fixed

networks built upon IP, meaning that Diameter is now a central piece of technology to be

used in the core of new voice architectures, for both mobile and fixed networks, thus leading

to a real Next-Generation Network (NGN). Diameter is under the spotlight more than ever,

as historic network operators plan to replace the PSTN service with VoIP technologies,

owing to the IMS.

The next sections of this chapter aim to present the requirements that have defined the

Diameter protocol, followed by a presentation of the protocol itself, as well as some use

cases in different network environments, unfortunately not relying upon real-life experience

since operational usage of Diameter is really poor at the time of writing.

4.1 Learning from RADIUS Deficiencies

As seen in Chapter 3, RADIUS is a very powerful protocol, very flexible and easy to

deploy. But RADIUS also has a set of irretrievable drawbacks when the transport of AAA

messages has to be reliable, or when the whole architecture must span to different networks

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

in order to provide roaming users an identical connection service wherever they are.

The RADIUS standard is also very delicate to extend since its field size drastically

restricts the numbering space, although this is possible with non-standard proprietary

extensions.

From this standpoint, IETF realized that RADIUS would not be suitable for sophisticated

AAA operations to come, and decided to initiate a process to specify a new protocol, with

backward RADIUS compatibility (a restricted compatibility, of course, considering the

inherent drawbacks mentioned above). Requirements were edited from various standardiza-

tion working groups:

� NASREQ: specific requirements related to the network access server, in order to provide

at least the same level of service as provided by RADIUS;

� ROAMOPS: specific requirements related to roaming operations, as the new AAA

protocol is supposed to service roaming users;

� MOBILEIP: specific requirements related to the mobile IP technology, in order to provide

appropriate messages and features that could be usable for users connected to mobile IP.

The resulting set of requirements (RFC 2989 [1]) were eventually used to evaluate

candidate protocols proposed to fulfill evaluated AAA operations. These requirements

were classified in five distinct categories: general requirements, authentication require-

ments, authorization requirements, accounting requirements and specific mobile IP

requirements.

4.1.1 General Requirements

A set of 14 general protocol capabilities was listed, taking back what RADIUS was already

able to propose, but also including new features such as:

� Scalability. The new AAA protocol must be designed in order to support millions of

simultaneous users, thousands of requests and connected devices pertaining to the AAA

chain. Therefore, all fields must provide enough numbering space to make this possible.

� Fail-over. The protocol must include a mechanism to detect server failures and take

appropriate actions to connect to a backup node.

� Mutual authentication between client and server.

� Transmission level security. The protocol must provide hop-by-hop security at the

transmission layer, i.e. providing authentication, integrity and confidentiality of messages

exchanged between peers.

� Data object confidentiality. This requirement is the first part of the end-to-end security

the AAA protocol has to provide, in order to prevent intermediate nodes of the AAA chain

from analyzing the content of AAA exchanges.

� Data object integrity. This requirement is the second part of the end-to-end security the

AAA protocol has to provide, in order to prevent intermediate nodes of the AAA chain

from modifying data objects conveyed between a client and a server.

� Certificate transport. The protocol must provide the capability to convey certificates

between peers.

62 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Reliable AAA transport mechanism. This is a set of requirements representing a major step

forward compared with what RADIUS provides. Basically, each message has to be

explicitly acknowledged without any consideration of the meaning of this message; the

protocol application ensures retransmissions.

� Run over IPv4.

� Run over IPv6.

� Support of proxy and routing brokers. The AAA protocol must embed in its structure all

mechanisms to include third-party actors that may operate proxies or routing brokers not

located on the forwarding path but having the ability to redirect messages to the proper

entity.

� Auditability. The protocol must provide traces of the major actions done on AAA packets

over the traversed nodes.

� Ability to carry service-specific attributes. This requirement is also an important

improvement compared with the RADIUS capabilities. The AAA protocol has to provide

hooks for extensions that may be defined for any application that requires an AAA

function.

Besides classical AAA requirements, the AAA protocol has to propose specific features

for mobile IP support, such as an appropriate encoding of mobile IP registration messages,

an ability to cross proxy-firewalls without altering the quality of AAA exchanges and the

ability to permit the allocation of local home agents.

4.1.2 Authentication Requirements

Beyond general requirements, specific needs have to be taken into account, relative to specific

usage of the AAA protocol for authentication purposes. Firstly, the protocol must provide at

least the same level of functionalities as RADIUS natively embeds, as well as some additional

features that may ease the management of user sessions connected to a NAS:

� NAI support. The protocol must be able to manage network access identifiers that can be

used by users.

� CHAP support. CHAP is commonly used for PPP access and must therefore be supported

to allow a smooth transition, not impacting upon end-user terminal requirements.

� EAP support. EAP is becoming the standard authentication framework for all kinds of

access. The AAA protocol must support the EAP exchange framework.

� PAP support. Even though it is dangerous to use PAP as an authentication protocol,

there are still a large number of users employing it. The AAA protocol must be able to

support it.

� Re-authentication on demand. This requirement describes the ability of an AAA server to

trigger an authentication procedure the AAA client will have to initiate towards a

designated user.

� Authorization only. The protocol must not require user credentials to be transmitted during

the authorization phase.

The Diameter Protocol 63

4.1.3 Authorization Requirements

Besides authentication, there is also a complete set of authorization requirements:

� Static and dynamic IP address assignment. The authorization process of the AAA protocol

must be able to transport a static IPv4/v6 address (the server sends this address explicitly),

or to transport a hint for the AAA client dynamically to assign an IPv4/v6 address to the

end-user.

� RADIUS gateway compatibility. The AAA protocol must be compatible with RADIUS

attributes.

� Reject capability. This requirement makes it possible for an intermediate node such as a

proxy to take non-authorization decisions based on its own set of criteria, either by

blocking access requests or by blocking access authorization messages.

� Re-authorization on demand. This requirement refers to the ability of a server to update

authorization information on the AAA client for a specific end-user. This update can

be triggered either by the server itself or upon a specific request sent by the AAA

client.

� Support for access rules, filters and restrictions. This is an important requirement the

AAA protocol has to fulfill. The AAA protocol must provide means to convey

authorization parameters to enforce specific rules on the access device in order to control

the end-user activity or the quality of service provided to the end-user.

� State reconciliation. This imposes the requirement on the AAA protocol to provide means

to help in state registration of resource allocations for end-user specific authorizations.

� Unsolicited disconnect. This requirement makes the server able dynamically to trigger an

end-user disconnection.

4.1.4 Accounting Requirements

A set of specific accounting requirements has been edited as well:

� Real-time accounting. The AAA protocol must be able to report events simultaneously

with their appearance.

� Accounting record extensibility.

� Batch accounting. The ability to store an ensemble of accounting records to send them

simultaneously to the server;

� Guaranteed delivery. This requirement mandates the server explicitly to acknowledge

accounting messages, to notify the ability to take it into account.

� Accounting timestamps. Every accounting event should have the possibility to be sent with

a time hint.

� Dynamic accounting. This requirement makes accounting behavior compatible with

dynamic authorization. With dynamic accounting, any authorization state that dynami-

cally changes during an end-user session lifetime can be reported to the accounting server.

4.1.5 Diameter is Born

From the whole set of requirements listed above, multiple protocols were potential

candidates, expecting appropriately to answer to AAA challenges. Four protocols were

64 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

mentioned as potential candidates:

� SNMP (RFC 3411 [2]). This protocol was rejected because of the huge engineering work

that would be required to make it a serious AAA protocol, even though it was still

acceptable for accounting.

� COPS (RFC 2748 [3]). This very powerful protocol was seriously considered, taking into

consideration that only few changes would be required to make it a serious AAA protocol.

COPS was particularly appreciated for its data model.

� RADIUSþþ. An extension of the RADIUS protocol to make it compatible with AAA

protocol requirements could have been possible, but it would have required significant

engineering work. Moreover, the final work would likely result in a protocol comparable

with Diameter.

� Diameter (RFC 3588 [4]). However, some changes to the initial protocol specification

were needed to make it compatible with AAA protocol requirements.

Diameter has been considered as the best candidate to support AAA relationships. A

complete evaluation of each of these protocols is made in RFC 3127 [5].

4.2 Diameter: Main Characteristics

The Diameter base protocol (RFC 3588 [4]) has been conceived as a peer-to-peer protocol

that provides support for reliable exchange of information between Diameter nodes, whereas

RADIUS was built as a transactional protocol following a client–server model. The

Diameter base protocol provides the minimum set of functionalities required for any

AAA protocol, including support for accounting, while specific service information is

handled at the application level. Diameter is based upon TCP or SCTP running over IPv4 or

IPv6 (whereas RADIUS runs over UDP), using destination port 3868, thus ensuring a

reliable delivery of the message at the transport layer, even though acceptance of specific

messages requires an explicit applicative acknowledgment, especially for accounting

messages. A Diameter client is not required to support both transport protocols, but

intermediate nodes or servers are mandated to allow a connection with both protocols.

Using a reliable transport protocol also eases failover mechanisms, as a network failure can

be detected without having to wait for an applicative acknowledgment. Explicit applicative

acknowledgment is needed, however, since a network reliable delivery does not mean that

the Diameter process was able to treat the message. This is particularly crucial for

accounting messages that are directly linked to the billing system, and can lead to a loss

of revenue.

The use of TLS or IPSec is also required, in order to ensure security between nodes.

Even though TLS or IPSec is sufficient for hop-by-hop security, it is not a satisfactory

method for protecting the payload all over the AAA signaling path: a proxy-broker,

connected to the Diameter client of network A and to the Diameter server of

provider B, will be able to read sensible payload and correlate identity with resource

usage. The Diameter specification encourages the usage of an end-to-end security

mechanism.

The Diameter Protocol 65

4.2.1 Diameter Network Entities

The Diameter protocol describes three different categories of nodes:

� Diameter client. Designates the Diameter node in charge of providing access to a resource

for which Diameter messages have to be generated. The access device is likely to be a

Diameter client, but it can also be a service platform commanding a policy enforcer that

can control the transport plan.

� Diameter agent. Designates a large category of nodes implied in routing and treating

Diameter messages.

� Diameter server. Designates the terminal node in charge of final AAA operations.

Diameter agents can have various roles, depending on their location in the AAA chain (see

Figure 4.1):

� Relay agent. The relay agent is able to route Diameter messages towards the appropriate

node, depending on the targeted realm to which the message is destined. This routing

operation is realized using the Destination-Realm information embedded in Diameter

messages and the agent action notified inside the message. Therefore, the relay agent

alters the Diameter message by inserting or removing routing information.

� Proxy agent. The proxy agent performs an operation comparable with that of the relay

agent, except that the proxy Diameter is able to modify Diameter messages in order to

enforce a specific (and local) policy. This policy can be related to admission control,

provisioning or resource usage.

Diameter
Relay

Diameter
Relay

Diameter Server Diameter Server

example.net

example2.net

relay.example.net

server.example.net

relay.example2.net

server.example2.net

Diameter
Redirect Agent

redirect.example.net

example3.net

Diameter
Proxy

Diameter Server

proxy.example3.net

server.example3.net

Diameter
Client

client.example.net

Figure 4.1 Diameter chain example

66 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Redirect agent. The redirect agent is solicited by other agents to find the path towards the

targeted server. It is envisioned that active Diameter nodes in a network will not be able to

store all routing information for Diameter messages. Interrogating a redirect agent is a

way to dedicate a specific resource to keep route information, and to communicate it to

other Diameter agents.

� Translation agent. The translation agent role is to convert any AAA protocol already

existing (or to come) to Diameter. This is particularly true for RADIUS or TACACSþ
protocols, which are required to follow a specific translation to be compatible with

Diameter, even though this translation is eased by attribute compatibility.

4.2.2 Diameter Applications

One important feature of Diameter is to provide the support of different applications. A

Diameter application can be described as a set of messages, attributes and message treatment

rules that are defined to fulfill requirements for a specific usage. So far, five different

applications have been defined to extend Diameter: mobile IP (RFC 4004 [6]), NASREQ

(RFC 4005 [7]), credit control (RFC 4006 [8]), EAP (RFC 4072 [9]) and SIP (RFC 4740

[10]). Diameter also defines a new capability exchange possibility; nodes can advertise what

applications are supported during connection setup, thus ensuring that all nodes of a AAA

chain will support a common set of functionalities. A specific ‘wildcard’ application code

has been defined for relay agents, since relay agents are intended transparently to support all

current and future applications. The Diameter base protocol natively provides the accounting

application. However, it is possible that particular accounting messages do not exist, and

therefore additional accounting applications can be defined. Defining a new Diameter

application should not be abusively employed, and existing applications have to be reused

as often as possible. The Diameter base protocol also defines a set of generic commands that

are related to session management and connection management.

4.2.3 Sessions and Connections

Diameter introduces two important notions that could usually be employed indistinctively in

other circumstances, when talking about end-user connectivity management with RADIUS,

for instance. Diameter connections and sessions have been precisely defined and must be

carefully employed:

� Connection. A Diameter connection is the peering relationship that two Diameter nodes

maintain in order to exchange Diameter commands. A Diameter connection is built over

IPSec and TCP or SCTP as transport protocol. A Diameter connection is not required to

span the whole AAA chain from the client to the server; a connection has to be conceived

as the primary communication relationship between two nodes. It is foreseen that AAA

exchanges cross multiple Diameter connections.

� Session. A session can be understood in the same sense as end-user sessions when

connecting to a network access server. In the RADIUS case, the session is handled by the

RADIUS client for which it has to query a server to ensure authenticity, apply

authorization parameters and provide accounting. With Diameter, the session notion is

The Diameter Protocol 67

quite similar and its reference is unique along the AAA chain. Diameter provides more

reliable session management messages than RADIUS does, especially by separating

session aliveness monitoring from session accounting. Diameter defines specific messages

to manage user sessions that were also added to the RADIUS protocol within RFC 3576,

to change authorization parameters or dynamically disconnect end-users. But Diameter is

still better able to manipulate sessions, as session termination can be notified to the AAA

server without sending accounting information: RADIUS-based AAA chains still rely

upon Accounting-Request/Stop messages to determine whether a session is terminated

or not.

4.2.4 Diameter Routing

The elaborated routing capability is one of the most interesting features provided by

Diameter. It is possible to build a complex AAA chain topology over different networks,

and rely on an efficient forwarding intelligence to enable a Diameter client to reach the

appropriate server, as long as a Diameter path exists between them. As routers provide a

forwarding path over networks to exchange packets between them across multiple auton-

omous systems, Diameter provides the same idea for AAA message forwarding.

To route request messages, Diameter nodesmake use of two specificAVPs:Destination-Host

andDestination-Realm. TheDestination-HostAVP designates the Diameter server that must be

reached to answer the request. The Destination-Host address is encoded as a Fully Qualified

Domain Name (FQDN), such as ‘diameterserver.example.net’. Each Diameter peer maintains a

peer table in order to determine to which peer a Diameter message has to be sent depending on

theDestination-HostAVP content. If theDestination-Host is themachine onwhich themessage

has been received, the message is processed locally. If the Destination-Host is known, the peer

table is consulted and the message is forwarded to the corresponding peer. The peer table

comprises all nodes with which the Diameter node has established a connection. For each node

entry, the peer table maintains useful indications such as peer status, connection expiration time

and TLS activation, as shown in Figure 4.2.

When the Destination-Host AVP is not present in the message, or if the host is not present

in the peer table, the Diameter node has to use the Destination-Realm AVP to route the

message towards a node that will be able to take charge of the Diameter message towards its

final destination. This is possible through the realm-based routing table which defines how

messages have to be processed. If no realm seems able to route the message, the Diameter

message cannot be routed and an error is returned to the message initiator.

The realm-based routing table (Figure 4.3) provides some kind of superset indication of

the direction in which the Diameter message has to be sent. The realm-based routing table

Host Identity Status Static/Dynamic Exp. Time TLS
server.example.net

relay1.example.net

open

open

dynamic

static

1h20m01

12h40m05

disabled

disabled

Figure 4.2 Peer table example

68 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

makes a correspondence between a realm name that is expected to treat the message with a

set of Diameter nodes that are able to route the message in order to reach this Destination-

Realm. The realm information is initially extracted from the network address identifier

(NAI) that was initially used to identify the session requester. The NAI format is defined in

RFC 4282 [11] and usually follows a recognizable format such as ‘username@example.net’.

The realm part of the NAI (‘example.net’) is used by the Diameter client to fill the

Destination-Realm field. The realm-base routing table also provides an indication of the

application supported by the Diameter node to which the message will be sent. If this node is

a relay and not a server, the wildcard application ID will be used, signaling that any kind of

request can be routed through this node. It is important to note that the Diameter peer (server

identifier) indicated in the realm-based routing table has to be present in the peer table to be

valid. When it is time to forward the message to another peer, the peer table has to be

consulted to make sure that forwarding is possible.

The first request for a session is expected to be targeted towards a Destination-Realm

(using the Destination-Realm AVP), and not towards a specific destination (explicit server

address), except if there are specific security constraints. Using the realm to route

messages is a way for Diameter relays and proxies to perform load-balancing between

nodes, and also to determine the best server to use depending on the supported

application. If the Destination-Host is explicitly specified, it is possible to reach a

Diameter server that is unable to run the application requested to process the message.

However, as soon as a first exchange between a client and a server for a session is done,

the Destination-Host can be used in order to reach immediately the node initially

contacted during the first round-trip.

Figure 4.4 gives an example of Diameter message routing for two simple cases where:

� user@example.net wants to connect to his/her home network as s/he is already directly

connected to it;

� user@example2.net wants to connect to his/her home network as s/he is connected to a

foreign network.

In case 1, when user@example.net wants to connect to the network (1a), the B-RAS acts

as a Diameter client and determines how to treat the access request. Firstly, the realm name

is extracted from the user identity: example.net is the targeted realm. The Diameter client

checks its realm-based routing table, and a lookup in the realm-based routing table

(Figure 4.3) indicates that the message has to be directly forwarded to server.example.net,

as long as the request applies to the NASREQ case (which is the case in this example).

Afterwards, the Diameter client checks its peer table to get information on server.example.

net (Figure 4.2). Using the corresponding entry, the Diameter client is able to send the

appropriate message (1b) to the Diameter server.

Realm Name App. ID Local Action Exp. TimeStatic/Dynamic

example2.net
example.net static

12h10m51
5h47m33

Server Identifier

staticRELAY
RELAYNASREQ
RELAY relay1.example.net

server.example.net

Figure 4.3 Realm-based routing table

The Diameter Protocol 69

Case 2 is quite similar to case 1, but the realm name extracted from the user identity (2a)

is different from the local network. The Diameter client checks its realm-based routing table

and determines that requests targeted to example2.net have to be forwarded to relay1.

example.net, whatever the Diameter application. The peer table provides necessary informa-

tion to reach relay1.example.net, and the Diameter message is sent towards it (2b). When

relay1.example.net receives the message, it checks how to treat this message. The Destina-

tion-Realm AVP mentions that example2.net is the targeted domain, and a lookup in its own

realm-based routing table indicates that the message has to be forwarded (2c) towards

relay1.example2.net (following parameters indicated in its own peer table). When relay1.

example2.net receives the Diameter message, the Destination-Realm AVP has not changed

and is used again to find a corresponding entry in its own realm-based routing table. The

Diameter server ‘server.example2.net’ has to be reached to treat the message and is

forwarded accordingly (2d). Once the message arrives on server.example2.net, it is locally

processed. The response message has to follow the same way back to the diameter client (B-

RAS in this example), since every Diameter peer in the path keeps the state of routed

messages in order to ensure reliable delivery between the client and the server. Keeping

message states is particularly efficient for resending messages from intermediate nodes

without requiring specific action from termination nodes.

4.2.5 Peer Discovery

Static configuration of peer and realm tables is a rather fastidious task that network

administrators should get rid of by using DNS. Dynamic peer discovery is optional in

Diameter implementations, but interesting when the Diameter client needs to identify the

B-RAS

Diameter

Relay

Diameter

Relay

Diameter Server Diameter Server

example.net example2.net

client.example.net

user@example.net

user@example2.net

relay1.example.net

server.example.net

relay1.example2.net

server.example2.net

2a

2b

2c

2d

1a 1b

Figure 4.4 Complete example of message routing

70 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

peer to which it has to send its requests, and also when an agent needs to discover another

agent to handle a message that needs to be routed to a server. Dynamic discovery of

Diameter peers is not a preliminary action that is performed when a peer starts up: it has to

be performed when required, i.e. when a message has to be routed to another node and no

routing entries in the peer table or realm-based routing table can be used to forward the

message. In this case, a specific request can be sent to a DNS, for instance, to get the FQDN

of the Diameter peer to reach in order to forward the pending message.

4.2.6 Peer Connection Maintenance for Reliable Transmissions

One of the main distinctive approach characteristics of Diameter compared with RADIUS is

the appearance of a connected relationship between two peers that have directly to

communicate between each other. The RADIUS approach was to consider that consecutive

non-acknowledged messages might be considered as a peer failure. This led to an ensemble

of negative side effects: failure detection delay is bad since a peer has to realize several

tentatives to discover and react accordingly; there is an unclear meaning of protocol

messages since a protocol acknowledgement also has an applicative usage; actual useful

messages are used as hints to give a slight flavor of reliability to the protocol, accepting that

operational AAA messages are used for that purpose.

The Diameter approach is totally different: firstly it makes use of a connected IP

transport layer, and provides protocol-specific messages to acknowledge each request and

dedicated messages to test and maintain active connections between peers. This is

achieved owing to Device-Watchdog messages that are sent over the connection at regular

intervals, when no traffic is seen during the corresponding period. Device-Watchdog

messages are useless when AAA traffic is going through the connection, since other

messages avail themselves of transport failure procedures: requests are stored at each node

as long as the corresponding answer is not received. Thus, if the peer to which requests

have been sent is not responding, pending requests can be sent to another node, avoiding

message loss along the AAA path.

4.3 Protocol Details

This section will describe more precisely the message format used by Diameter, as well as

command codes used for the base application.

4.3.1 Diameter Header

The Diameter header format is built as shown in Figure 4.5.

The fields are as follows:

� Version. Indicates the version number of the Diameter protocol used (0x1).

� Message length. Total length of the message including all header fields.

� Command flags. Four flags have been defined:

– the (R)equest bit is used to indicate that the embedded command has to be interpreted

as a request (when this bit is not set, it is an answer);

The Diameter Protocol 71

– the (P)roxiable bit is an indication that the message can be relayed by a proxy or a

Diameter relay, without needing a local processing;

– the (E)rror bit is positioned on answer messages to indicate to the sender that it is

malformed (the corresponding message also contains an error code);

– the Re-(T)ransmission bit is positioned when a message is potentially a duplicate that is

sent when an error occurred during transmission of the original message.

� Command code. Indicates the command code giving the meaning of the present message.

Command code numbering is managed by the IANA.

� Application identifier. The application identifier is used by peers to determine the

Diameter application context into which the message requires to be processed.

� Hop-by-hop identifier. This identifier represents a unique numbering of the present

request, between two directly connected nodes. This identifier is kept between requests

and answers between two nodes: this eases the work of each node in mapping answers to

requests and identifying requests that have not been acknowledged.

� End-to-end identifier. This identifier is used to detect duplicates, using the Origin-Host

AVP to ensure uniqueness of this identifier between a Diameter client and a server. The

number is forged using time information in order to make the number unique when device

reboot occurs.

� AVP. Attribute value pairs used as parameters to complete the action determined with the

command code.

The construction of the Diameter header follows the same philosophy used for RADIUS,

i.e. a command code that determines the nature of the action to be performed, augmented by

pertinent attributes (AVP). This way, Diameter can claim some kind of compatibility with

other AAA protocols such as RADIUS, as it is easy to implement a translation agent that

just has to translate the command code and the Diameter header into RADIUS protocol, and

to move the attributes from one message to the other without (or with minimal) adaptation.

For that reason, the AVP numbers ranging from 1 to 255 are reserved for backward

compatibility with RADIUS, whereas AVP numbers starting from 256 are specific to

Diameter.

Version Message Length

Command Code

0 7 31

AVPs

r r r

Application Identifier

Hop-by-Hop Identifier

End-to-End Identifier

RPE T r

Figure 4.5 Diameter message header

72 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

4.3.2 AVP Format

AVPs are similar to attributes defined for RADIUS. Diameter AVPs are not stricto sensu

attribute value pairs formed with typical type/value fields, because the whole attribute is

augmented with an 8-bit bank, for which 3 bits are already defined in version 1 of Diameter,

and other bits can be defined by forthcoming Diameter applications (Figure 4.6). A Diameter

AVP size must align on a 32-bit block, even though this might require additional padding,

especially when the value transported is a string.

� AVP code. With a 32-bit encoded value, the AVP code identifies the attribute. As

mentioned above, AVP codes below 256 are reserved for RADIUS compatibility, and

other values are managed by the IANA. Having a large range of possible attribute codes is

a real advantage for further development, as standardization bodies will be less reluctant

or shy to assign forever a part of an almost unlimited resource.

� AVP length. Gives the total length of the AVP, including all fields, but excluding the

optional padding that could be added for the 32-bit alignment.

� Data. This is the field encoding the useful value that corresponds to the AVP code.

The AVP bits are used to help Diameter peers to handle AVPs properly:

� The (P)rotection bit indicates that the content is protected for end-to-end security.

However, considering the ongoing work at the IETF to update the Diameter base protocol,

this bit will likely disappear in the future (becoming a ‘reserved’ bit), since work on

solution for end-to-end security has never ended.

� The (M)andatory bit is used to indicate that the AVP must be supported by the node that

received it, with the exception of relay agents which are not supposed to interpret such

fields. Diameter nodes such as proxy, client or server must support the AVP transmitted

with the M-bit, or the message has to be rejected. Using the M-bit for an AVP is defined by

the application rule that makes use of the AVP. For interoperability reasons, an AVP sent

with the mandatory bit may not be accepted by the corresponding peer if the current

application does not require it. AVPs sent with the M-bit cleared are considered as

informational, and can be silently discarded if not supported.

AVP Code

AVP Length

0 7 31

Data

r r r

Vendor ID

rrP M V

Figure 4.6 Diameter AVP header

The Diameter Protocol 73

� The (V)endor-specific bit indicates whether the AVP is standardized (bit cleared) or

defined by a vendor for its specific usage (bit set). When the V-bit is set, the Vendor-

Specific field is present in the AVP format to indicate the official SMI company number

used by the vendor, in the same way as with RADIUS.

Diameter allows usage of grouped AVPs. A grouped AVP is an ensemble of multiple

AVPs that are concentrated into one AVP. For instance, this is particularly useful when it is

required to send multiple values corresponding to the same session: all AVPs included in the

group are therefore implicitly linked to each other. A grouped AVP is defined as such in an

application or in the base protocol. As an example, the Proxy-Info AVP is defined as a

grouped AVP of Proxy-Host AVP and Proxy-State AVP in the base protocol. AVPs included

in a grouped AVP are not defined as ‘sub-AVPs’: these are plain AVPs that can be used

alone. On the other hand, it is also possible to imagine several cascaded group layers within

the same AVP in a single message.

4.3.3 Command Codes

As we have seen above, Diameter messages are distinguished by two parameters: the

command code and the (R)equest bit. Formally, there are different messages for requests and

answers, but the Diameter protocol makes them share the same command code; the R-bit is

then used to differentiate a request from an answer.

The Diameter base protocol only defines seven different command codes, corresponding

to seven different kinds of request with their corresponding answer, for a total of 14 different

messages. Only a limited number of command codes have been defined in order to restrict

the base protocol to the very minimum features, i.e. Diameter connection management,

generic session operations and accounting.

(i) Diameter Connection Management

� Capabilities-Exchange-Request/Answer (CER/CEA, command code 257). These two

messages must be used as soon as the transport layer is brought up, in order for two directly

connected peers to exchange their capabilities, such as authentication and accounting

application identifiers, supported vendor attributes or security mechanisms, as well as some

specific parameters such as IP address to be used by each node to identify the source of each

message (which can be different from the IP interface address, especially when a loopback

address is used, for instance). If capabilities exchanged show that there is an incompatibility

between the peers, the connection cannot be effective and the transport layer is torn down.

Because of a scope limited to the connection, Capability-Exchange messages cannot be

forwarded in any manner through a Diameter agent to a remote peer.

� Device-Watchdog-Request/Answer (DWR/DWA, command code 280). These messages

have been defined to improve detection of transport connection failure. The more quickly

peers can react to a failure in the AAA chain, the more efficiently and transparently

failover procedures can be activated. Device-Watchdog messages act as periodic probes

sent over the connection to determine if the remote Diameter instance is still up (which

would not be detected by a traditional ICMP message) when no traffic has been monitored

over the connection for a while. These messages are used to monitor connections and

therefore cannot be routed through a Diameter agent.

74 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Disconnect-Peer-Request/Answer (DPR/DPA, command code 282). To improve peer

behavior if one of the nodes needs to shut down a connection, Disconnect-Peer messages

have been defined to give the opportunity to anticipate a foreseen Diameter service

disruption. A Disconnect-Peer-Request message is sent whenever a peer wants to inform

the other peer that the connection needs to be terminated. By doing so, the other peer can

anticipate this by setting up an alternative route to forward Diameter messages. A

Disconnect-Peer-Answer is therefore sent back to the requester to inform that the message

has been taken into account. This message is also useful for preventing disconnected peers

periodically to request a new connection if the service has been terminated for admin-

istrative or technical reasons (maintenance, overload, etc.). These messages are limited to

the scope of the local connection, and cannot be routed through a Diameter agent.

(ii) Generic Session Operations

� Abort-Session-Request/Answer (ASR/ASA, command code 274). Similar to the

Disconnect-Request message used in RADIUS (see Section 3.2.3), the Abort-Session-

Request is used by a Diameter server to trigger a session disconnection on the access

device. This kind of action can be performed, for instance, where authorization previously

granted is no longer valid. Upon receipt of this request, the access device responds with an

Abort-Session-Answer, including the status of the requested operation in the Result-Code

AVP, mentioning whether the action was a success or not. It is interesting to note that,

once the session is terminated, the access device has to issue a Session-Termination-

Request to the Diameter server that can also be followed by an Accounting-Request

message sent to the Diameter accounting server.

� Session-Termination-Request/Answer (STR/STA, command code 275). The Session-

Termination-Request message is used by an access device to notify the Diameter server

that the indicated session is no longer active. The Diameter server acknowledges this

message with a Session-Termination-Answer. This way to proceed is a real improvement

compared with how RADIUS works: each time a session is terminated, the authorization

server is notified of the event, not needing to rely upon a hypothetical accounting message

that could be received and treated by a dedicated non-real-time accounting server.

Moreover, it is possible that some sessions are not required to be accounted (even though

accounting is mandatory most of the time). By separating session management from

accounting messages, Diameter helps in resource management reliability.

� Re-Auth-Request/Answer (RAR/RAA, command code 258). The Re-Auth-Request mes-

sage is used by the service when it is required to ask for a targeted session to be re-

authenticated or re-authorized. However, not all access devices support dynamic user

re-auth, and these messages have to be specifically supported by applications that may

require their usage. By initiating a re-auth of the user, it is possible to refresh the user

authorizations and credits for service usage, from a service management initiative.

(iii) Accounting Messages

� Accounting-Request/Answer (ACR/ACA, command code 271). Accounting messages

have exactly the same meaning when used with RADIUS. The Accounting-Request

message is used by an access device to report accounting information towards a server,

and is acknowledged by an Accounting-Answer message.

The Diameter Protocol 75

To improve reliability in connection management, the Diameter protocol defines the

Origin-State-Id AVP that can be used as a hint sent by access devices to Diameter servers, in

order to determine whether an access device has restarted. The Origin-State-Id is set during

Diameter device startup with an incremental value that can be based upon the current time,

for instance, or upon another parameter as long as the value increases between reboots.

When this AVP is sent within a CER message, this can be a hint for the connected node to

determine whether the access device has lost its sessions, and if corresponding states

maintained have to be cleaned up. Since CERs are only sent one hop away, this can only be

used by proxies or a server directly attached to the access device. A Diameter server has to

wait until the first session request to infer that the access device has rebooted, and that

corresponding states can be deleted.

4.3.4 Accounting

Diameter accounting differs from RADIUS because of an additional record type EVENT

(using the Accounting-Record-Type AVP), besides usual START, STOP and INTERIM

records. An EVENT record is used to notify the accounting server of the completion of a

service that does not have a beginning or an end, but has to be billed as a whole. As a point

of comparison, an EVENTaccounting record can be seen as the concatenation of STARTand

STOP records sent in an atomic message. The EVENT record can also be used to notify a

session establishment failure to the accounting server.

The server also has means to change the access device accounting behavior in the case of

failure, using the Accounting-Realtime-Required AVP. This AVP can be sent by the

authorization server or by the accounting server in an Accounting-Answer message, and

has to be interpreted by the access device to define its behavior whenever a problem occurs

in sending accounting reports. Here is a list of the possible behaviors:

� Deliver and grant. If the accounting record cannot be properly sent immediately to an

accounting server, the access device has to stop the corresponding session.

� Grant and store. As long as the service accounting information can be stored in the access

device, the service can be granted to the session. Once the accounting service starts again,

accounting records are sent. If access device storage resources are exhausted, the service

cannot be granted anymore and corresponding sessions are terminated. This is the default

behavior recommended to be used with Diameter if the Accounting-Realtime-Required

AVP is not present in server messages.

� Grant and lose. In this case, accounting information is used by the server as a hint, and it

is not required to offer the service. The service is not affected by accounting server

connectivity problems.

4.4 Diameter Network Access Application (NASREQ)

The NASREQ application was one of the first reasons for the existence of Diameter, in

order to improve RADIUS for remote access management. As seen in Section 4.3.3,

command codes defined within the Diameter base protocol specification are not

sufficient for an access device to require a server to perform authentication and grant

76 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

related authorizations for a new session. The Diameter network access application

(NASREQ) (RFC 4005 [7]) defines only one new command code for this purpose:

Authentication-Authorization-Request/Answer (AAR/AAA, command code 265). This

new message is an equivalent of Access-Request/Access-Accept/Access-Reject

messages used in RADIUS, but also replaces Access-Challenge messages which are

used when multi-round authentication/authorization is required, with EAP for

instance.

Apart from the new AAR/AAA message, the NASREQ application relies upon the

following Diameter messages defined in the base protocol:

� Re-Auth-Request/Re-Auth-Answer;

� Session-Termination-Request/Session-Termination-Answer;

� Abort-Session-Request/Abort-Session-Answer;

� Accounting-Request/Accounting-Answer.

It is possible that some authentication protocols require a multi-round authentication: EAP

is a well-known example of this particularity, the number of round-trips between the end-

user (therefore the access device) and the authentication server being highly dependent on

the EAP method used (see Section 3.2.1). Doing multi-round authentication with RADIUS

requires a workaround making use of the Access-Challenge message that could be sent right

after an Access-Accept has been received from the server. Using the Access-Challenge

message was motivated by the interdiction of sending an Access-Request after an Access-

Accept message.

Diameter does not make use of Access-Challenge messages anymore, and instead makes

it possible to send an AA-Request message after an AA-Answer coming from the server.

As defined in the Diameter base protocol, the Result-Code AVP included in the latter

message thus indicates this property with a value code set to DIAMETER_MULTI_R-

OUND_AUTH.

4.4.1 AVP Usage for NASREQ

The NASREQ application is essentially focused on RADIUS compatibility and makes use of

the majority of RADIUS attributes (with an attribute value below 256), forbidding the use

of some of them, replacing others. Additional AVPs have been defined for the specific use of

Diameter:

� CHAP AVPs. CHAP-Auth (code 402), CHAP-Algorithm (code 403), CHAP-Ident (Code

404), CHAP-Response (code 405) are used when the end-user wants to authenticate using

the challenge authentication protocol (CHAP). The CHAP-Auth AVP is a grouped AVP

embedding the three aforementioned, and must replace the use of the RADIUS CHAP-

Password attribute.

� NAS authorization AVPs. NAS-Filter-Rule (code 400) and QoS-Filter-Rule (code 407) are

two very important AVPs that enrich authorization possibilities. These attributes are

described further in Section 4.4.2. The NAS-Filter-Rule attribute has been recently

standardized for RADIUS, and a similar effort is engaged for QoS management to extend

what already exists for Diameter and to make it available for RADIUS. These efforts are

carried on within the DIME working group (IETF).

The Diameter Protocol 77

� Tunneling AVP. The Tunneling AVP (code 401) is a grouped AVP that embeds all other

AVPs defined for tunnelling with RADIUS (defined in RFC 2868, see Chapter 3). This

grouped AVP can be seen as a replacement of the ‘tag’ field used in tunnel attributes: the

basic purpose of this field is to give the tag value to tunnel attributes that refer to the same

tunnel configuration. Therefore, a single message could convey multiple tunnel config-

uration attributes. Using multiple Tunneling AVP is a more consistent way to achieve the

same thing with Diameter.

� Accounting AVPs. Besides AVPs already defined in the Diameter base protocol and for

RADIUS, NASREQ provides a new Accounting-Auth-Method AVP (code 406) to

indicate in accounting messages the authentication method used by the end-user

(PAP, CHAP, EAP, etc.). Four new attributes are also defined to replace those used

with RADIUS to report data traffic usage: Accounting-Input-Octets (code 363),

Accounting-Output-Octets (code 364), Accounting-Input-Packets (code 365) and

Accounting-Output-Packets (code 366). These replacements are required because of

the field format change which is now unsigned 64 bits, instead of the 32-bit value

previously used. It is important to note that the Accounting-Record-Type (code

480) defined in the base protocol to identify the record type of the accounting

message (Start, Stop, Interim, Event) replaces the Acct-Status-Type used with

RADIUS.

4.4.2 Enhanced Authorization Parameters

The two new AVPs, NAS-Filter-Rule and QoS-Filter-Rule, have been defined to enforce

enhanced policies from the authorization server to the access device for a particular session.

It is recommended that usage of the Filter-Id RADIUS attribute be avoided in the NASREQ

context, because of its loose definition which makes it almost impossible to have a

deterministic behavior: each vendor is free to implement its own syntax. Other RADIUS

authorization parameters such as Session-Timeout are still present and usable with Diameter,

and will therefore not be described in this section.

Both NAS-Filter-Rule and QoS-Filter-Rule AVPs are defined in NASREQ, but the

attribute format is defined in the base protocol. The NAS-Filter-Rule AVP is interpreted

by the access device in order to apply traffic filters relative to the protocols transmitted on a

session, whereas the QoS-Filter-Rule is used to treat the user traffic by marking or metering

it, as defined in the DiffServ Architecture (RFC 2475 [12]). The format of these AVPs is

described below.

The value field of these AVPs must comply with the following syntax, but is interpreted

differently:

action dir proto from src to dst [options]

(i) NAS-Filter-Rule AVP

action: permit or deny.

dir: from the terminal (in) or to the terminal (out).

proto: IP protocol specified by its number, the ‘ip’ keyword can be used as a wildcard.

src and dst: specifies the address and netmask, as well as the port numbers, using the syntax

address[/bits_ masked]<address[/bits_masked]> [ports].

78 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

options:

� frag: the criteria is matched if the IP packet is not the first fragment of a datagram.

� ipoption <spec>: spec is used to identify the part of the IP packet header that may match

the filter. Spec can be ‘ssrr’ for strict source routing, ‘lsrr’ for loose source routing, ‘rr’ for

record route and ‘ts’ for timestamp. Multiple header options can be mentioned, separated

with commas.

� tcpoption <spec>: similar to ipoption, tcpoption is used to apply filters on specific TCP

fields of the IP datagram. Spec values can be ‘mss’ for maximum segment size, ‘window’

for TCP window advertisement, ‘sack’ for selective ACK, ‘ts’ for timestamp and ‘cc’ for

T/TCP connection count.

� established: filter matches TCP packets that have the RST or ACK bits positioned.

� setup: filter matches TCP packets that have the SYN bit positioned, but not the ACK bit.

� tcpflags <spec>: filter matches TCP packets that have positioned bits specified in spec:

fin, syn, rst, psh, ack, urg. The filter can also specify bits that must not be positioned by

prepending a ‘!’ before mentioning the bit reference.

� icmptypes <types>: filter matches ICMP packets that have the type(s) specified in types.

Multiple type values can be specified in a single filter, separated by commas. The type

values are: 0 (echo reply), 3 (destination unreachable), 4 (source quench), 5 (redirect), 8

(echo request), 9 (router advertisement), 10 (router solicitation), 11 (TTL exceeded), 12

(bad IP header), 13 (timestamp request), 14 (timestamp required), 15 (information

request), 16 (information reply), 17 (address mask request), 18 (address mask reply).

(ii) QoS-Filter-Rule AVP

action: tag or meter.

dir, proto, src and dst similar to the NAS-Filter-Rule.

options:

� The ‘DSCP <value>’ option has to be used with the tag action to change the DSCP field

of the header of IP packets that match the rule.

� The ‘metering <rate> <value_under> <value_over>’ option has to be used with the

meter action to change the DSCP field of the IP packet header to ‘value_under’ if the

traffic throughput is below the defined ‘rate’, or to ‘value_over’ if it goes beyond. It is

interesting to note that ‘value_over’ can explicitly mention a ‘drop’ action to destroy IP

packets without marking it.

Access devices have to behave the same way for filters provisioned through NAS-Filter-

Rule or QoS-Filter-Rule. The first filter entry that matches the inspected packet stops the

evaluation over the filter list. Comparison of packets with filters is done following the place

of each filter in the list. The place of a filter is determined by its order of installation within

the access device. If the last evaluated rule is a permit and no rules are matched, the packet is

dropped. On the other hand, if the last evaluated rule is a deny and no rules match, the packet

is forwarded. This behaviour is very similar to Access-List evaluation rules usually

configured in IP routers. A single authorization message can include multiple filter rules,

and this is foreseen to be the usual case. The place of each filter in the packet will determine

the place of the corresponding filter in the access device evaluation list.

The Diameter Protocol 79

4.4.3 Enhanced Authorization Examples

1. The example provided in Section 3.1.3.2 to offer different bandwidth profiles for end-

users can be provisioned using two QoS-Filter-Rule AVPs sent within an AA-Answer, for

instance. The purpose of this example is to set a bandwidth limit of 512 kbits/s for

download and 128 kbits/s for upload traffic. The way to achieve this is to use the meter

action of the QoS-Filter-Rule, and to drop packets that go beyond the specified limit.

Other packets can be marked with the default 000000 DSCP value, corresponding to the

best effort.

The rule for download traffic could be

Meter out ip from 0.0.0.0 to 0.0.0.0 metering 512 000000 drop

The rule for upload traffic could be

Meter in ip from 0.0.0.0 to 0.0.0.0 metering 128 000000 drop

However, using rules of this kind has some limits: it becomes impossible to enforce an

additional policy to the traffic because the traffic successfully evaluated over this rule will

stop the evaluation if there are remaining filters after. On the other hand, the rate limit will

not work if other rules are previously matched before evaluating this one. Finally, these

rules also override the DSCP field that could have been positioned by other equipment in

the forwarding chain. This might be a drawback if the NAS session is used to convey

traffic between two company premises that require prioritization. For this reason,

bandwidth limitation is still tricky to achieve even with Diameter, and using the Filter-

Id AVP may remain the most reliable way to achieve it, even though its usage is not

recommended. It is also possible to define Vendor-Specific attributes for that purpose, but

it is no more roaming friendly than the Filter-Id AVP.

2. The example below shows how to authorize only HTTP exchanges towards a single

service platform, to pay additional services that could further change the filtering options

and all kind of traffic for the end-user. The service platform is represented by the address

10.0.10.10, and the DNS address that must be reached by the end-user to get HTTP

redirection is 10.0.11.11. Once the end-user is connected and opens its web browser, the

first DNS request leads to the service platform whatever the URL. The user is constrained

to exchange traffic to these two addresses as long as other authorization parameters are

provisioned onto the access device. The HTTP traffic to the service platform is identified

by use of TCP (protocol number ¼ 6) and port 80.

The rules to open outgoing traffic to the DNS server and the service platform are:

Permit in 6 from 0.0.0.0 to 10.0.10.10 port 80

Permit in ip from 0.0.0.0 to 10.0.11.11

Permit out 6 from 10.0.10.10 to 0.0.0.0

Permit out ip from 10.0.11.11 to 0.0.0.0

Each packet that does not match any of these four rules will be dropped. To allow the

end-user to reach any address among the Internet space, and to prevent him/her from

sending packets to administrative IP addresses of network equipment using the

192.168.0.0/16 subnet, two solutions are possible:

80 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� A RAR message with a Re-Auth-Request-Type AVP set to ‘AUTHORIZE_ONLY’ is sent

by the authorization server (upon request of the service platform, most likely), including

new filters in the payload. The new rules will have to override already existing filters. This

way to proceed is, however, not specified in the Diameter base protocol or NASREQ.

� A RAR message is sent to the access device to trigger the creation of a new subsession

that will require a new AAR/AAA message for which new filters will apply.

It is important to note that temporary access authorization to network resources is far

better managed by using the Diameter credit control application (RFC 4006 [8]) that has

been defined for this purpose. NAS-Filter-Rule and QoS-Filter-Rule are better suited to be

applied when permanent traffic filtering is required. Bandwidth management, as in the

example shown above, is usually performed using application extensions. ETSI/TISPAN and

3GPP use new AVPs that have been defined for that purpose. Even though it is encouraged to

use existing messages and AVPs to realize a specific service, it is not always the most

suitable way to achieve it. Diameter extensibility is a real strength that operators must use

wisely: creating a specific application, or defining Vendor-Specific AVPs can be the best and

simplest solution, and should be even easier to do with Diameter than with RADIUS.

4.5 Diameter Credit Control Application

The credit control application (RFC 4006 [8]) is a very interesting application for Diameter.

However, its complexity and the study of all possibilities it offers would warrant a book

dedicated solely to this topic. Implementing a credit control feature in access devices and

AAA servers is the ultimate way to give a business face to provisioning in IP/MPLS

networks: the purpose of this application is not another way to provide fancy user traffic

management. Credit control ‘philosophy’ is based upon real-time service usage monitoring,

performed by the access device, for every end-user that has opened a session related to a

service that can be consumed with a control provided by the service provider through its

AAA server. On the service provider side, the AAA server has to provide, for each session

requiring it, a granted quota of credits that will be consumed at the access device. The access

device is in charge of monitoring this resource consumption, to request additional credits for

the end-user for service continuation, and to report unused credits that will be credited to the

end-user account. This can be seen as an alternative accounting method that has been

designed for real time, whereas usual accounting procedures as defined in the base protocol

are more likely to be used for batch processing.

Credit control is defined towork in two different modes: credit allocation and direct debiting.

When used in credit allocation mode, each credit control request will cause a reservation on

end-user credit resources. The actual debiting of the reserved credit is realized when the service

has been provided. When used in the direct debiting mode, the required credit is directly

calculated and debited from the user’s account. This mode is particularly suitable for one-time

services, which are paid as a whole and are immediately due without refunding policy.

The credit control application is agnostic to the type of service for which the end-user is

ready to pay, but both access device and credit server have to agree on which service the

network has to provide. The server must have the service knowledge to be able to calculate

the appropriate credit required by the access device to provide a decent service, and to make

The Diameter Protocol 81

its calculations based upon a rating that has been defined previously by the service provider.

The access device cannot perform this task, especially when the end-user is not connected to

its home network: the credit calculation must be realized by a centralized unit with a

consistent behavior over traversed networks. However, access device and server have to

share a similar vision of the service to provide, otherwise granted resources can exceed the

units corresponding to the paid service, or, even worse, the service may not be satisfactory

because of credit burning faster than expected.

Nor is the AAA server aware of the complexity of service to be provided: the access

device is in charge of providing the respective service, monitoring its usage and requesting

credit for end-user access. The credit control application may rely upon other Diameter

exchanges that might previously occur to make the service possible. For instance, credit

control can make use of AA-R and AA-A messages defined in NASREQ to credit specific

resources for the established session. But credit control can also be invoked after exchange

of SIP messages. Credit control Diameter exchanges are materialized by two new messages

(regrouped in one command code): Credit-Control-Request (CCR) and Credit-Control-

Answer (CCA) with command code 272.

Multiple services can be provided simultaneously for a single end-user by means of

subsessions. Each subsession will have its own credit control context (as well as its own

subsession context): sharing the available credit is the challenge of the credit server, which

has to split the resource with the appropriate granularity such that a service does not reserve

too many resources to the detriment of other services. On the other hand, splitting the credits

into too many small units might create an important credit management overhead because of

frequent credit updates.

The resources provided by the credit server to the access device is not only money, but more

generally one can talk about granted ‘units’. Units can be of different nature: they can be

money, but also remaining time, amount of data to be exchanged or any units that could be

defined for a particular purpose. Credit control is not only session based – it can also be event

driven, for instance upon receipt of an SIP message to signal emission of SMS: this service can

be achieved in a one-shot direct operation, not requiring a session context to be maintained.

It is important to note that credit control messages and AVPs as defined in RFC 4006 [8]

have been defined upon request of 3GPP for IMS. 3GPP as well as ETSI/TISPAN have

themselves added multiple AVPs to be used in the context of credit control to provide

conversational services within a fixed–mobile convergence framework.

4.6 Diameter in NGN/IMS Architecture for QoS Control

This section does not pretend to provide an exhaustive view of when and how the Diameter

protocol is used within NGN architectures – and accurate description of what next-

generation networks (NGNs) actually are would alone require more than one book. We

will start here with a simplified and overall view of what a NGN is, and we will focus on the

QoS control architecture as defined within ETSI/TISPAN.

4.6.1 What is an NGN?

Considering the extreme complexity of NGN architectures, one might question the purpose

of all this. The goal that NGN intends to achieve is to make networks, wherever in the world,

82 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

interoperable, for both data and voice (and actually all services), whatever the access method

(mobile or fixed lines), relying upon IP networks. Therefore, deploying NGN architectures is

the way to achieve fixed/mobile convergence.

Nowadays, NGN is often associated with IMS: this is true, but IMS is only a part of

the NGN architecture. IMS was first defined within the 3GPP (Third-Generation

Partnership Project), the standardization body in charge of defining the third generation

of mobile architectures. The purpose of the IMS is to provide a multiservice, multiaccess

architecture that is secure and reliable. IMS has been designed to be an enabler for

providers to propose real-time and non-real-time services, where the user is mobile and

wants to use multiple services simultaneously. The IMS blocks were firstly defined in

Release 5 of the 3GPP architecture. The next release (R6) issued in 2004 enhanced the

previous release of IMS by including dynamic policy control enhancements for end-to-

end QoS. One of the key characteristics of the IMS architecture is to be adaptable

whatever the transport network, as long as it works over IP. For this reason, IMS has

been adopted by ETSI to standardize NGN architecture for fixed lines (whereas 3GPP

focuses on mobile access), to define the TISPAN (Telecommunications and Internet

converged Services and Protocols for Advanced Networking) architecture. 3GPP IMS

blocks and interfaces are reused by ETSI/TISPAN, with adaptations to the context and

thus some changes in the naming of interfaces.

NGN functional architecture as defined within ETSI/TISPAN (see ETSI ES 282001 [13])

defines two fundamental distinct layers: the transport layer and the service layer. The service

layer consists of several components, IMS being one of them, designed to be in charge of

multimedia conversational services. Other components have already been defined, such as

the PSTN/ISDN emulation subsystem. The service layer model is open, and new compo-

nents can be defined as required (such as the content broadcasting subsystem, for instance).

Splitting NGN architecture into different layers helps in separating functions and mutualiz-

ing infrastructure to optimize investments. The goal is also to provide end-users with a

seamless view of subscribed services whatever the access mode. An overview of NGN

architecture elements is shown in Figure 4.7.

The service layer interacts with other layers and entities:

� user equipment;

� transport layer;

� other networks.

The transport layer itself comprises the three following components:

� Transfer functions. These take on all actions that can be applied to traffic coming from or

to users’ equipment and other networks. Several functions have been identified and

described within ETSI/TISPAN, with specific roles. For instance, the layer-2 termination

function (L2TF) is in charge of the layer-2 termination procedures at the edge of the

access network. Another important function is the border gateway function (BGF) which

is in charge, among other functionalities, of NAT/NAPT actions, packet marking, resource

allocation and bandwidth reservation.

� Network attachment subsystem (NASS). This component takes care of functionalities to

attach the terminal to the network. Among its functionalities we have: dynamic

The Diameter Protocol 83

provisioning of IP addresses (e.g. DHCP), authentication to access to the IP layer (distinct

from the service attachment/authentication), location management.

� Resource and admission control subsystem (RACS). This component provides function-

alities for admission control and gate control (such as NAT) by interworking with other

components of the network to check network resource availability and capabilities. This

entity will also check if the user’s profile is compatible with the requested resources. The

RACS is in charge of collecting resource requests from the service layer, and of pushing

the corresponding policies to the transfer equipment.

All these components are themselves composed of smaller parts, each assuming a subset

of standardized functionalities. The goal of standardization bodies, apart from describing

these blocks and their usage, is to define interfaces to make them interact appropriately

across entities, components and layers.

Transfer Functions

Applications

Network Attachment

Subsystem

Resource and Admission

Control Subsystem

User

Equipment

Other

Networks

Transport
Layer

Service
Layer

Other

SubsystemsPSTN
ISDN

Emulation

SubsystemCore
IMS

Figure 4.7 Overview of NGN Architecture in ETSI/TISPAN

Transport Layer

User
Equipment

P-CSCF I/S-CSCF

Application

Server

“Core IMS”

SIP SIP

SIP

Diameter

Figure 4.8 A simplified view of core IMS interactions with the user’s equipment and the transport

layer

84 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Talking about protocols, the session initiation protocol (SIP) (RFC 3261 [14]) is the

privileged protocol to be used within the ‘core IMS’ and by user equipment (see Figure 4.8).

SIP is preferred for the service layer, to control interactions between the user equipment

(UE) and the application server (AS). SIP messages cross several entities within the service

layer, such as the call session control function (CSCF). These entities are themselves able to

interact with other layers in the NGN architecture, but then SIP is not the protocol chosen to

interface entities, and Diameter is often privileged.

We will now focus on the QoS control architecture by describing interactions between

entities, implying Diameter.

4.6.2 QoS Control in ETSI/TISPAN Architecture

QoS control follows a very straightforward logic in NGN architecture (Figure 4.9).

The reader will note the appearance of a new component, the application function (AF).

This is the generic terminology used to designate the entity located in the service layer that is

in charge of interacting with the transport layer. In an IMS architecture, the AF would be the

P-CSCF (Proxy-Call Session Control Function), the role of which (among others) is to

extract from SIP messages the network capabilities required to provide the service, and to

ensure that these capabilities are present.

Here is an overall description of the procedure that applies to enforce QoS policies in the

network, in order to provide the service requested according to the network policy rules and

capabilities:

1. Network attachment. During this phase, the user equipment attaches itself to the network.

This includes authentication, authorization based on the user’s profile (including

provisioning of the IP address) and start of accounting related to network attachment.

It is important to understand that this phase is not related to any service whatsoever.

Attaching to the network and having an IP address to communicate is not considered as a

service per se, as it does not require any interaction with the service layer. During the

network attachment phase, the NASS can communicate to the RACS resource informa-

tion that is specific to the entity that has just connected.

NASS RACS

Transfer Functions

AF
Service
Layer

Transport
Layer

UE

1

2

3

1’

5

4

Transport
Control

Figure 4.9 QoS control mechanisms in NGN architecture

The Diameter Protocol 85

2. Service request. This phase occurs whenever the user equipment sends requests to get a

service from the network. The most common service might be thought to be placing a

phone call, using VoIP with IMS. This step consists in exchanges of SIP messages with

the service layer. In the case of IMS, the AF is the P-CSCF which is in charge of receiving

SIP messages from the UE, forwarding it to other entities of the service layer and,

depending on the result of the service request, interworking with the transport layer to

reserve resources.

3. RACS location. This phase is optional and consists in the AF getting information to

connect with the right equipment to connect to the RACS. For this, the AF just requires an

IP address or a FQDN, and this information can be provided to the AF by the NASS.

4. Resource request. Once the service application has performed the first verifications to

check if the end-user is entitled to use the requested service, the application function

requests from the RACS the appropriate network resources in order to get the corre-

sponding quality of service. The RACS will then check if the requested resource is

available. At this stage it is interesting to note that the RACS can ask the NASS for

specific information on the connected entity requesting the resource if this information is

not available during phase 1.

5. Policy provisioning. Once the RACS has verified that the network resource is available to

provide the service, it communicates with entities of the transfer plan within the transport

layer to push the policies. Once these steps have been successfully completed, the UE is

notified that the requested service is available, and it can start to use it.

The big picture provided above requires a little more description, in order to see the

protocols and interfaces that are involved in these phases. We will now look more thoroughly

into the RACS and the transfer functions.

Here is a brief description of the entities that appear in Figure 4.10:

� A- RACF (Access-Resource and Admission Control Function). This entity has two main

roles in the RACS:

– Firstly, it provides the admission control function by checking if the QoS resources are

available when a request is received by the SPDF for an access line. For instance, one

might consider that having simultaneous video calls depends on the characteristics of

the end-user’s access line (or subscription). In this case, the A-RACF will perform

admission control by granting or rejecting the service, because of resource scarcity. In

this role, the A-RACF is capable of installing some policies onto the RCEF and on the

access node.

– Secondly, the A-RACF has the role of network policy assembly (NPA). Multiple SPDF

can query a single A-RACF for admission control, and the role of the latter is to ensure the

consistency of all resource requests received, taking into consideration access network

policies that have to be applied on each access line. By combining all requests received for

an access line, the A-RACF ensures that a consistent quality of service will be maintained.

� SPDF (Service-based Policy Decision Function). This entity is the entry point for

application functions, for all the RACS functions. The AF queries the RACS through

the SPDF, and the SPDF applies a logical decision policy based on the network policies

that are stored within. Depending on the request, on who sends the request and on the

network policies, the SPDF may request admission control from the A-RACF. The SPDF

will then build the policies to be enforced on the BGF, and will push these policies. Being

86 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

responsible for the logic of the RACS, the SPDF is in charge of orchestrating event

sequences in order to give a consistent report to the AF, and to manage appropriately the

network resources.

� RCEF (Resource Control Enforcement Function). This entity placed in the transfer plan is

in charge of enforcing policies that have been pushed by the A-RACF. The possible

policies that the RCEF is able to apply are: opening or closing of gates in order to allow

user flows to be forwarded or not; marking of IP packets according to the rules defined by

the A-RACF; application of traffic bandwidth restriction for upstream and downstream

traffic, to remain within the authorized boundaries.

� BGF (Border Gateway Function). This entity is part of the transfer plan through which the

end-user traffic goes. The BGF is placed at the edge of the core network (it can be

combined with the IP edge where the RCEF is placed), and is in charge of forwarding the

user’s IP packets and to apply flow policies on it. The BGF is capable of working on

‘microflows’, i.e. flows generated by applications (following the 5-tuple IP source address,

IP destination address, IP source port, IP destination port, Protocol). The BGF is also the

functional entity capable of handling NAT.

Going back to the example provided in Figure 4.9 and applying it with the details of

Figure 4.10, we can now have a more thorough look at the event sequence that occurs within

the RACS between all these elements and their corresponding entities in the service layer

and those in charge of transfer functions (see Figure 4.11):

� Step 1. The AF sends a resource request to the RACS, and more specially to the SPDF

since it is its sole point of contact. The SPDF computes the AF request, and decides

whether or not to solicit the A-RACF for admission control.

Access
Node

RACS

NASS

AF

Transfer Functions

A-RACF SPDF

BGF

IP Edge
Core Border

Node

RCEF

UE
Core

Network

Transport Controle4

Ra Re Ia

Gq´

Rq

Figure 4.10 A view of the RACS and surrounding entities

The Diameter Protocol 87

� Step 2. If required, the SPDF sends an admission control request to the A-RACF.

� Step 20. If the A-RACF does not have access line information, it queries the NASS in order

to get it.

� Step 3. A-RACF pushes appropriate policies to the RCEF and access node, as the SPDF

pushes its policies to the BGF.

The decision of ‘what policy to push where’ basically depends on the type of policy to

apply, and on the location where the resources have to be granted in order to provide the

appropriate QoS for the service. This makes it possible to have multiple operators providing

services at their own level: as seen above, A-RACF and SPDF can be part of different

domains. Therefore, the network access operator will push appropriate policies to the

equipment it is in charge of (IP edge nodes, access nodes), whereas the core network

operator will push its own policies on its equipment (onto the BGF). Here is a summary of

what policies can be pushed to RCEF and BGF:

� RCEF: opening/closing gates, packet marking, policing for downlink and uplink traffic;

� BGF: opening/closing gates, packet marking, policing for downlink and uplink traffic, per-

flow resource allocation, NAT, hosted NAT traversal, usage metering.

To communicate between each other, interfaces have been defined between these entities,

with a specific role, and a protocol is associated with each of them. Here is a summary of the

RACS interface and the associated protocol:

� e4 (between NASS and A-RACF). This interface based on Diameter has been defined to

communicate connectivity information that is collected by the NASS [in the connectivity

location register function (CLF)], and to transmit it to the A-RACF for admission control.

Access
Node

RACS

NASS

AF

A-RACF SPDF

BGF

IP Edge
Core Border

Node

RCEF

UE
Core

Network

2´

1

2

3 33

Figure 4.11 QoS control mechanisms with RACS internal/external exchanges

88 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Gq0 (between AF and SPDF). This interface based on Diameter is used by the application

function to send resource requests to the RACS. Diameter is particularly well adapted for

this purpose, as it offers all the features required by entities that may not be in the same

domain.

� Rq (between SPDF and A-RACF). This interface based on Diameter is used by the SPDF

to send resource queries to the A-RACF. As for Gq’, Diameter is especially adapted to the

situation where SPDF and A-RACF are located in different domains.

� Re (between A-RACF and RCEF). This interface is used for the A-RACF to push policies

onto the IP edge node at the RCEF point. The protocol to be used for this interface has not

been chosen in Release 1 of ETSI/TISPAN.

� Ra (between A-RACF and access node). This interface is used for the A-RACF to push

policies into the access node. The protocol to be used for this interface has not been

chosen in Release 1 of ETSI/TISPAN.

� Ia (between SPDF and BGF). This interface is based on H.248.1 version 3 [15], also

known as Megaco (RFC 3525 [16]), and is used by the SPDF to push QoS policies onto

the BGF.

As seen above, three different interfaces of the RACS make use of the Diameter protocol.

It is worth noting that, even though Diameter is used for requesting resources, it is not the

protocol used to provision resources into the transfer plan. However, from a service layer

point of view, Diameter is the protocol to be used to interface with the transport layer,

through the Gq0 interface in ETSI/TISPAN architecture (defined in ETSI TS 183017 [17]) or

through the equivalent Gq interface in 3GPP architecture (defined in 3GPP TS 29209 [18],

from which Gq0 has been defined).

The open model adopted by Diameter made it easy for 3GPP and ETSI to use Diameter

their own way, without needing to ask IETF to work on that, by defining a specific

application or adapted AVPs. Instead, 3GPP defined a new Vendor-Specific application for

the Gq interface, which has been inherited by ETSI/TISPAN to build Gq0. ETSI TS 183017

[17] defined some particularities on how Diameter should be used, without violating RFC

3588 [4], but by using the offered possibilities for usage customization. Going through all

these attributes, specificities and their usage would be fastidious and is not relevant without

having the complete picture of interactions: the information given here is intended to give an

example of customization and appropriation work that is going around Diameter. Here is a

list of some NGN specificities when Diameter is used for the Gq0 interface in NGN

architectures:

� Whereas Diameter can be used over TCP or SCTP, Gq’ mandates to use SCTP only.

� The SPDF is the Diameter server, and the P-CSCF (AF) is the client.

� AF and SPDF will advertize their support of Gq in capability exchange messages (CER/

CEA) by using the application ID 16777222 (Auth-Application-Id AVP). However, this

AVP must be placed in the grouped AVP Vendor-Specific-Application-Id, along the

Vendor-Id set to 10415 (corresponding to 3GPP). Two Supported-Vendor-Id AVPs will

be included to mention the support of ETSI (vendor identifier 13019) and 3GPP (vendor

identifier 10415);

� The accounting messages offered in RFC 3588 [4] are not used.

The Diameter Protocol 89

� For the case of Gq’ (ETSI TS 183017 [17]), nine new AVPs are defined, and other AVPs

are imported from various specifications:

– 19 AVPs from the Gq interface (3GPP TS 29209 [18]);

– two AVPs from the e4 interface (ETSI ES 283034 [19]);

– 2 AVPs from NASREQ (RFC 4005 [7]).

There is now doubt at this time that Diameter promises to be widely used, as long as NGN

architectures as defined by 3GPP and ETSI/TISPAN are adopted by network operators.

References

[1] IETF RFC 2989: ‘Criteria for Evaluating AAA Protocols for Network Access’.

[2] IETF RFC 3411 (STD0062): ‘An Architecture for Describing Simple Network Management

Protocol (SNMP) Management Frameworks’.

[3] IETF RFC 2748: ‘The COPS (Common Open Policy Service) Protocol’.

[4] IETF RFC 3588: ‘Diameter Base Protocol’.

[5] IETF RFC 3127: ‘Authentication, Authorization, and Accounting: Protocol Evaluation’.

[6] IETF RFC 4004: ‘Diameter Mobile IPv4 Application’.

[7] IETF RFC 4005: ‘Diameter Network Access Server Application’.

[8] IETF RFC 4006: ‘Diameter Credit Control Application’.

[9] IETF RFC 4072: ‘Diameter Extensible Authentication Protocol (EAP) Application’.

[10] IETF RFC 4740: ‘Diameter Session Initiation Protocol (SIP) Application’.

[11] IETF RFC 4282: ‘The Network Access Identifier’.

[12] IETF RFC 2475: ‘An Architecture for Differentiated Services’.

[13] ETSI ES 282 001: ‘Telecommunications and Internet Converged Services and Protocols for

Advanced Networking (TISPAN); NGN Functional Architecture Release 1’.

[14] IETF RFC 3261: ‘SIP: Session Initiation Protocol’.

[15] ITU-T H.248-1: ‘Gateway Control Protocol’.

[16] IETF RFC 3525: ‘Gateway Control Protocol’.

[17] ETSI TS 183 017: ‘Resource and Admission Control: DIAMETER Protocol for Session Based

Policy Setup Information Exchange Between the Application Function (AF) and the Service Policy

Decision Function (SPDF); Protocol Specification’.

[18] 3GPP TS 29.209: ‘Policy Control over Gq Interface’.

[19] ETSI ES 283 034: ‘TISPAN; Network Attachment Sub-System (NASS); e4 Interface Based on the

DIAMETER protocol’.

90 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

5

The Common Open Policy Service
(COPS) Protocol

5.1 A New Scheme for Policy-based Admission Control

The Internet has become the privileged network infrastructure for the deployment and the

operation of a wide range of IP service offerings, ranging from basic Internet access to

advanced IPTV broadcast services. The dramatic evolution of such services through the

development of value-added capabilities such as quality of service features has given rise to

the need to accommodate the delivery of such services with the relevant levels of reliability,

availability, quality and security.

From this perspective, service providers should now be able to monitor and control the use

of the network and service resources they operate, according to a set of policies that would be

derived from criteria such as traffic/bandwidth requirements that would encourage the dynamic

enforcement of admission control policies adapted to the needs of customers and/or services.

Such policies would therefore consist in applying a set of rules to determine whether or

not access to a specific resource (whatever such a resource may be – a trunk, a router, an

access link, an optical wavelength, etc.) should be granted.

Within this context, the members of what used to be the resource allocation protocol

(RAP [1]) working group of the IETF have specified the common open policy

service (COPS) protocol (RFC 2748 [2], RFC 3084 [3]), which is described in detail in

this chapter.

The initial motivation that yielded the chartering of the rap working group was related to

the use of the resource reservation protocol (RSVP) (RFC 2750 [4]) as a means to dynamically

reserve network resources along the path towards a given destination, by soliciting the

participating routers that would be in charge of proceeding with the reservation requests and

maintaining the corresponding states during the lifetime of the reserved resources.

In a typical RSVP-based resource admission control scheme, RSVP routers are supposed

to make their own decisions according to their local vision of resource availability. Within

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

the context of a policy-based admission control as promoted by the rap WG, RSVP routers

would delegate the decision-making process to a central PDP. Delegating decisions to a

centralized PDP is commonly referred to as the ‘outsourcing’ mode.
This outsourcing approach, which yielded the specification of the COPS protocol, has

several advantages:

� The centralized PDP maintains a network-wide, global and systemic view of available and

unavailable resources, unlike RSVP routers.

� Policy-based admission control schemes facilitate the support for pre-emption, i.e. the

ability to dynamically remove a previously installed state so that a new admission control

request might be accepted.

� Policy-based admission control schemes also ease the monitoring of policy states and

resource usage because of the aforementioned global, network-wide view of in-use and

unused resources.

The COPS protocol has been designed to reliably convey the information that is

exchanged between the PEP capability embedded in the network devices and the PDP

capability entitled to make the policy decisions that will be applied by the corresponding

PEP-embedding devices. Details on the COPS protocol and its machinery come next.

5.2 A Client–Server Architecture

The COPS protocol relies upon a client–server model where the PEP sends requests

to the PDP and the PDP returns decisions back to the PEP. The PDP also has

the ability to send unsolicited messages to the PEP. The connection between the PEP

and the PDP is established over the transmission control protocol (TCP) (RFC 793 [5]),

hence using a reliable transport mode. Figure 5.1 depicts the relationship between the PEP

and PDP.

The PEP initiates the TCP connection with the PDP, and, once established, communica-

tion between the PEP and the PDP mostly consists of stateful requests and decision

forwarding. The COPS protocol is stateful mostly because:

PDP Policy

Repository

Policy server

COPS
PEP

LPDP

PIB

PEP-embedding Device

Figure 5.1 COPS client–server architecture

92 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Request and decision states are shared between the PEP and the PDP. This means that

requests from the (client) PEP are installed and maintained by the PDP until they are

explicitly deleted by the PEP. Likewise, decisions made by the (policy server) PDP can be

generated asynchronously (by means of unsolicited messages) for any given installed

request state.

� States that reflect various events (as request/decision pairs) may be interleaved. This

means that the PDP may respond to new queries differently because of previously

installed request/decision states that are related to the processing of the aforementioned

queries and that may affect the decision-making process accordingly.

In a typical outsourcing fashion, the PEP outsources the decision-making process to the

PDP. Although the PEP-embedding device can make local decisions with the LPDP, the final

decision is made by the PDP (unless the latter is not accessible). There are three different

types of outsourcing event that require a decision to be made by the PDP. Within the context

of an RSVP-based policy admission control scheme, Figure 5.2 depicts the basic COPS

chronology.

According to Figure 5.2:

� The RSVP incoming request is received by the PEP-enabled device A, which causes the

PEP to ask the PDP what the device should do with this incoming request (i.e. accept it or

reject it).

� Once processed by the PDP, the decision made by the PDP is sent back to the PEP B, and

the PEP will then apply the corresponding decision by allocating the appropriate

PDP

PEP

Resources

PIB

PEP-enabled Device

RSVP
Request

Figure 5.2 RSVP-based policy admission control scheme with COPS

The Common Open Policy Service (COPS) Protocol 93

resources C, which will in turn allow the forwarding of an outgoing message as per the

RSVP machinery.

5.3 The COPS Protocol

The COPS protocol has been designed so that COPS messages are self-identifying policy

objects that contain policy elements. These policy elements can be defined as elementary

pieces of information that depict the way policy rules need to be enforced. A single policy

element may carry a user or an application identifier, while another policy element may carry

user credentials.

By definition, policy elements are ‘protocol agnostic’, in the sense that they carry any kind

of policy-formatted information that may be derived from the activation of QoS signaling

protocols (such as RSVP), traffic engineering protocols (such as the path computation

element communication protocol (PCEP) [6]) or routing protocols, such as the open shortest

path first (OSPF) protocol (RFC 2328 [7]).

5.3.1 The COPS Header

COPS messages always begin with a common header, as depicted in Figure 5.3.

The corresponding fields of the COPS header message are defined as follows:

� The 4-bit encoded Version field provides information about the version of the COPS

protocol, which is version 1 for the time being.

� The 4-bit encoded Flags field is meant to indicate the nature of the COPS message. Value

0x1 of the Flags field has been defined so far, to indicate that the message is solicited by

another COPS message. This is the solicited message flag bit.

� The 8-bit encoded Op Code field denotes the nature of the COPS operation. Table 5.1

indicates the associated values.

� The 16-bit encoded Client Type field uniquely identifies the policy client, that is, the

COPS client that relates to the enforcement of a specific policy. As a consequence, there

will be as many client types as there are policies to enforce – quality of service, traffic

engineering, security, addressing, routing, etc. Thus, the interpretation of all encapsulated

objects is client type specific. Client types that set the most significant bit in the

corresponding field are said to be ‘enterprise specific’ (these client types are identified

within the 0x8000–0xFFFF range). For KA messages, the client type in the header is

always set to ‘0’, since the KA message is only used to check the COPS connection: this is

not a per-client type session assessment operation.

Figure 5.3 The COPS common header

94 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� The last field of the header is the Message Length 32-bit encoded field, which indicates

the size of the COPS message, expressed in bytes, taking into account the common header

as well as the following policy elements. COPS messages need to be aligned on 4-byte

intervals.

5.3.2 The COPS Message Objects

While the COPS header defines the nature of the COPS message [decision (DEC), request

(REQ), etc.], the message itself is composed of several policy elements that provide

information about the decisions that have been made by the PDP, among other information.

The presence of a COPS object depends on the nature of the COPS message. The header for

all COPS objects is depicted in Figure 5.4.

The corresponding fields of the COPS objects are defined as follows:

� The 16-bit encoded Length field indicates the number of bytes (header included) that

compose the object. If the length does not fall into a 32-bit word boundary, padding will

have to be added to the end of the object so that it is aligned with the next 32-bit word

boundary before the message can be sent. On the receiving side, a subsequent object

boundary can be located by rounding up the previous stated object length to the next 32-

bit word boundary.

� The 8-bit encoded C-Num field designates the class of information contained in the object,

while the 8-bit encoded C-Type field designates the subtype or version of the information

contained in the object. As an example, the identification of IPv4 and IPv6 interfaces will

Table 5.1 Op code values of COPS operations

Value COPS operation Abbreviated message

1 Request REQ

2 Decision DEC

3 Report State RPT

4 Delete Request State DRQ

5 Synchronize State Request SSQ

6 Client-Open OPN

7 Client-Accept CAT

8 Client-Close CC

9 Keep-Alive KA

10 Synchronization Complete SSC

Figure 5.4 Format of the COPS object

The Common Open Policy Service (COPS) Protocol 95

rely upon (1) C-Num fields valued at ‘3’ [or ‘4’, depending on the nature of the interface –

incoming (3) or outgoing (4)], and (2) a C-Type field valued at ‘1’ (for IPv4) and ‘2’ (for

IPv6).

Table 5.2 summarizes the possible values of C-Num that have been specified so far.

The content of a COPS-specific object is of variable length depending on both the C-Num

and C-Type fields. Messages exchanged between the PEP and the PDP are composed of such

objects, and the following section provides details about these messages.

Table 5.2 C-Num values of COPS-specific objects

C-Num Name Explanation

1 Handle The handle object encapsulates a unique value that identifies

an installed state. This identification is used by most COPS

operations.

2 Context Specifies the type of event(s) that triggered the query.

Required for request messages.

3 In Interface This object is used to identify the incoming interface on

which a particular request applies and the address where the

received message originated.

4 Out Interface This object is used to identify the outgoing interface to which

a specific request applies and the address for where the

forwarded message is to be sent.

5 Reason Code This object specifies the reason why the request state was

deleted. It appears in the delete request (DRQ) message.

6 Decision Decision made by the PDP. Appears in replies.

7 LPDP Decision Decision made by the PEP’s local policy decision point

(LPDP). May appear in requests.

8 Error This is used to identify a particular COPS protocol error.

9 Client Specific Info This contains client-type specific information, e.g. the

contents of RSVP pathmessage, if the client is RSVP.

10 Keep-Alive Timer Time given in seconds.

11 PEP Identification The PEP identification object is used to identify the PEP

client to the remote PDP.

12 Report Type The type of report on the request state associated with a

handle.

13 PDP Redirect Address A PDP when closing PEP session for a particular client-type

may optionally use this object to redirect the PEP to the

specified PDP server address and TCP port number.

14 Last PDP Address When a PEP sends a Client-Open message for a particular

client-type the PEP SHOULD specify the last PDP it has

successfully opened (meaning it received a Client-Accept)

since the PEP last rebooted.

15 Accounting Timer Optional timer value used to determine the minimum interval

between periodic accounting-type reports.

16 Message Integrity The integrity object includes a sequence number and a

message digest useful for authenticating and validating the

integrity of a COPS message.

96 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

5.4 COPS Messages

5.4.1 Client-Open (OPN)

The OPN message is sent by the PEP to the PDP. This message is used by the PEP to notify

the PDP about the client types the PEP supports, and may also provide information about the

PDP to which the PEP was last connected. The structure of the OPN message is depicted in

Figure 5.5.

The PEPID is the identifier of the PEP, which is unique within an administrative domain.

This identifier is encoded as an ASCII string and can be an IP address or a domain name

system (DNS) name. The last PDP address denotes the last PDP for which the PEP is still

caching decisions. The integrity object is used if security needs to be enforced, to make sure

the PEP is entitled to establish the connection with the PDP. Note that the PEP can also send

additional client-specific information by means of the client SI field.

5.4.2 Client-Accept (CAT)

The CAT message is sent by the PDP to the PEP as a response to an OPN message if the PDP

accepts the Client-Open request. The PDP will return a Keep-Alive (KA) timer value, which

indicates the maximum time interval between KA messages. Optionally, the PDP can send

information about the minimum allowed time interval between accounting report messages

sent by the PEP (ACCT timer). Figure 5.6 depicts the format of the CAT message.

5.4.3 Request (REQ)

The PEP establishes a Request State Client Handle for which the PDP may maintain state.

The handle corresponds to the identification means that is used by the PDP to communicate

with the PEP. Any change that is local to the PEP will yield a notification sent by the PEP to

the PDP. Figure 5.7 depicts the format of the REQ message.

<Client-Accept> ::= <Common Header>
<KA Timer>
[<ACCT Timer>]
[<Integrity>]

Figure 5.6 The Client-Accept message

<Client-Open> ::= <Common Header>
<PEPID>
[<ClientSI>]
[<LastPDPAddr>]
[<Integrity>]

Figure 5.5 The Client-Open message

The Common Open Policy Service (COPS) Protocol 97

The context object describes the context where all other objects must be interpreted. The

ClientSI information depicts the client-type-specific information, e.g. the contents of a

RSVP Request message. LPDPDecision refers to the decisions made by the embedded

LPDP, and which must be verified, completed or possibly overwritten by the PDP. Five

different kinds of LPDP decision have been identified:

� The Flags decision denotes the normal request/decision process.

� The Stateless Data decision refers to a local decision which does not affect the state of the

pending request.

� The Replacement Data decision replaces the existing data in a signaled message.

� The ClientSI Data decision is used to introduce additional decision types.

� The Named Data decision contains configuration information.

5.4.4 Decision (DEC)

Upon receipt of an REQ message, the PDP sends a DEC message back to the PEP. If the

PDP has not responded to the REQ message within a given time limit, the PEP will remove

the corresponding handle (see previous section) and create a new one – then try to get a

response from the PDP again. Figure 5.8 depicts the format of the DEC message.

The PDP can send several decisions back to the PEP, as well as error messages if anything

has gone wrong.

<Request Message> ::= <Common Header>
<Client Handle>
<Context>
[<IN-Int>]
[<OUT-Int>]
[<ClientSI(s)>]
[<LPDPDecision(s)>]
[<Integrity>]

<ClientSI(s)> ::= <ClientSI> | <ClientSI(s)> <ClientSI>

<LPDPDecision(s)> ::= <LPDPDecision> |
<LPDPDecision(s)> <LPDPDecision>

<LPDPDecision> ::= [<Context>]
<LPDPDecision: Flags>
[<LPDPDecision: Stateless Data>]
[<LPDPDecision: Replacement Data>]
[<LPDPDecision: ClientSI Data>]
[<LPDPDecision: Named Data>]

Figure 5.7 The Request message

98 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

5.4.5 Other COPS Messages

The previous sections elaborated on the most significant messages used by the COPS

machinery. This section provides a brief description of the other messages that can be used.

5.4.5.1 Report State (RPT)

RPT messages are sent by the PEP to the PDP, and are used under the following conditions:

� To report to the PDP about the result of an action performed by the PEP (success, failure),

as per a decision made by the PDP.

� To send unsolicited information to the PDP about accounting or state monitoring. Such

RPT messages may contain client-specific information.

5.4.5.2 Delete State Request (DRQ)

DRQ messages are sent by the PEP to the PDP to indicate that the handle specified in the

message is no longer applicable and must therefore be deleted. If the action is not performed

by the PEP, the handle will be maintained by the PDP until the COPS connection is closed or

the TCP connection is terminated.

DRQ messages contain a report object providing an indication of the reason for deletion,

which is client-specific by nature.

5.4.5.3 Synchronize State Request (SSQ)

SSQ messages are sent by the PDP to the PEP, so as to make the PEP send the states related to

the client type specified in the COPS header message to the PDP. This is a COPS

synchronization mechanism that relies upon the resending of the requests that relate to the

corresponding handle.

Whenever an unrecognized handle is specified in the SSQ message, the PEP must indicate

to the PDP that this handle should be deleted. Once synchronization is completed, a

Synchronization State Complete (SSC) message is sent by the PEP to the PDP.

<Decision Message> ::= <Common Header>
<Client Handle>
<Decision(s)> | <Error>
[<Integrity>]

<Decision(s)> ::= <Decision> | <Decision(s)> <Decision>

<Decision> ::= <Context>
<Decision: Flags>
[<Decision: Stateless Data>]
[<Decision: Replacement Data>]
[<Decision: ClientSI Data>]
[<Decision: Named Data>]

Figure 5.8 The Decision message

The Common Open Policy Service (COPS) Protocol 99

5.4.5.4 Synchronization State Complete (SSC)

As per the previous section, SSC messages are sent by the PEP to the PDP to indicate that

synchronization related to a specific handle (or all handles) is completed for the specified

client type depicted in the COPS message header.

5.4.5.5 Client-Close (CC)

CC messages are sent either by the PEP or by the PDP to indicate to each other that a client

type is no longer supported, the error object contained in the CC message providing an

explanation for the closure. If the CC message is sent by the PDP, it may contain the

identifier of another PDP that may support the client type specified in the message.

5.4.5.6 Keep-Alive (KA)

KA messages are sent either by the PEP or the PDP on a random basis (fractions of the

minimum KA timer as described in CAT messages) to check the state of the connection.

Upon receipt of a KA message by a PDP, the PDP must send back another KA message.

The Client Type field of the COPS common header associated with KA messages is set to

‘0’, since KA messages cover all the sessions that have been opened between the PEP and

the PDP. Note that, if connectionwith the PDP is lost, the PEP is supposed to reach another PDP.

5.5 Summary of COPS Operations

Table 5.3 reflects the possible combinations of COPS messages with COPS operations,

where ‘M’ denotes that the information must be provided in the message, while ‘O’ denotes

that the information may be provided in the message.

Table 5.3 Matrix of COPS messages and operations

REQ DEC RPT DRQ SSQ OPN CAT CC KA SSC

Handle M M M M O O

Context M

In-interface O

Out-interface O

Reason M

Decision M

LPDP decision O

Error M M

ClientSI O O O

KA timer M

PEP ID M

Report type M

PDP redirect O

address

Last PDP address O

ACCT timer O

Integrity O O O O O O O O O O

100 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

5.6 Use of COPS in Outsourcing Mode

RFC 2748 [2] introduces two models for COPS usage: the outsourcing model and

the configuration model. The latter has been further described in RFC 3084 [3] and will

be the subject of Section 5.7. In the outsourcing model, the PEP delegates the decision-

making process to the PDP, and thus most of the COPS operations are initiated by the PEP.

Within the context of the outsourcing mode, the following exchanges occur:

� The PEP sends an REQ message to the PDP with a specific handle, and the PDP reports

back its decision for this handle by means of the relevant DEC message. The PEP then

sends an RPT message back to the PDP that contains the result (success/failure) of the

application of the decision.

� The PEP may request the PDP to delete a specific handle.

� The PDP sends an SSQ message to the PEP for synchronization purposes.

5.7 Use of COPS in Provisioning Mode

RFC-3084 [3] details the provisioning mode of COPS, which is referred to as ‘COPS-PR’.

The basic motivation for this mode is to encourage the use of unsolicited messages sent

by the PDP to the PEP, to reflect the ability to initiate specific actions. As an example, the

ability to proactively intervene on the network has become of utmost importance for service

providers, as the deployment and the operation of QoS-demanding value-added IP

service offerings need to accommodate: (1) incoming customers’ QoS requirements,

which may be dynamically negotiated with the service provider by means of service level

specifications (SLS) [8]; (2) network planning policies, which aim to reflect the evolution of

the overall usage of network resources.

Thus, any event (such as the number of SLS instances to be processed over a short period

of time) may affect the way policies are defined by the PDP and then enforced by the PEP

embedded in the network devices. Within this context, COPS REQ messages sent by the PEP

refer rather to the capabilities that can be configured on the device that embeds the PEP than

to incoming requests that may yield the delegation of the decision-making process to the PDP.

Figure 5.9 summarizes the COPS provisioning model.

Network Device Policy Server
+--------------+ +-----------+ +-----------+
| | | | | External |
| | COPS | | | Events |
| +-----+ | REQ | +-----+ | +---+-------+
| | |----|----------|->| | | |
| | PEP | | | | PDP |<-|---------+
		<---	----------	--		
+-----+	COPS	+-----+				
	DEC					
+--------------+ +-----------+

Figure 5.9 The COPS provisioning model

The Common Open Policy Service (COPS) Protocol 101

5.7.1 On the Impact of Provisioning Mode on COPS Operations

COPS-PR introduces additional operations. These new objects are conveyed within the

COPS named client-specific information object and named decision data object. The format

of these new objects is defined in Figure 5.10.

According to the Figure 5.10:

� The S-Num and S-Type fields are similar to the C-Num and C-Type fields that are used in

the base COPS objects. The 8-bit encoded S-Num field identifies the purpose of the object,

while the 8-bit encoded S-Type field provides information about the encoding (namely

basic encoding rules (BERs), which is the encoding technique used for all of the COPS

objects so far).

� The 16-bit encoded Length field denotes the size of the object (header included),

expressed in bytes. Note that current technologies encourage the use of XML string-

based encodings [9].

� The content of the object is indexed by the S-Num value, as per Table 5.4.

The objects listed in Table 5.4 can be encapsulated in (1) the named ClientSI field of REQ

messages, (2) the named ClientSI field of RPT messages or (3) the named Decision Data

field of DEC messages.

S-Type S-Num Length
Content of the Object (32-bit unsigned integer)

Figure 5.10 Format of new COPS-PR objects

Table 5.4 S-Num values and new COPS-PR objects

S-Num Object

1 Provisioning instance identifier (PRID). Uniquely identifies a particular PIB instance.

2 Provisioning instance identifier prefix. Provides a prefix that can be used when all

PIB instances whose PRID begins with this prefix are associated with the same

operation (namely withdrawal of data).

3 Encoded provisioning instance data (EPD). Denotes the encoded value of the PIB

instance to which the operation applies.

4 Global provisioning error. This depicts general errors, and the format is similar to

the COPS error object: a 16-bit encoded error code provides indication of the

nature of the error, while a subsequent 16-bit encoded error subcode details the

nature of the error.

5 Provisioning class provisioning error. This denotes errors related to a specific

provisioning class (PRC) of the PIB. This assumes the presence of an error PRID

OBJECT.

6 Error PRID. Uniquely identifies the PIB instance that is affected by a particular

error.

102 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

5.7.2 On the Impact of Provisioning Mode on PEP–PDP Exchanges

COPS-PR messages are motivated by the (configuration) data stored and maintained in the

PIB. Within the context of the provisioning model:

� The PDP can force the PEP to issue a new REQ message.

� The PDP can force the PEP to issue a new DRQ message.

� The PDP can send unsolicited DEC messages to the PEP that aim at installing additional

PIB instances related to an existing request state.

Such new exchanges are summarized in Figure 5.11.

Upon receipt of the first REQ message, the PDP will provision the PEP back with the

corresponding handle-specific policies, as stored in the PIB. The PDP can later update or

remove some PIB instances that have been installed by the PEP as per the corresponding

DEC message, or send another DEC message so that the PEP can install additional PIB

instances. Such operations can be triggered by external events, as already discussed in

Section 5.7.

COPS-PR makes the PIB a key component of the dynamic policy enforcement scheme:

the PRC classes and PRI instances that are organized according to a tree structure (as

introduced in Chapter 2) within the PIB therefore represent the core of the information that

accurately depicts any given policy.

This implies that multiple yet independent PIB instances might be installed by the PEP,

hence representing the various policy-specific configuration data that will be derived into

(technology-specific) configuration information used by the network device to dynamically

enforce any given set of policy rules.

Figure 5.11 COPS-PR exchanges between a PEP and a PDP

The Common Open Policy Service (COPS) Protocol 103

5.8 Security of COPS Messages

OPN and CAT messages are used for security negotiation purposes if configured so. If the

PEP is configured to use the security capabilities of COPS, the very first OPN message

will include an integrity object that contains a 32-bit encoded Sequence Number field. This

PEP-valued field will contain the initial sequence number, which the PEP expects the PDP to

increment when the communication continues after the initial OPN/CAT message exchange,

hence facilitating the prevention of replay attacks.

The integrity object contains two other fields – the 32-bit encoded KeyID identifier and

the 96-bit encoded Keyed Message Digest. The KeyID field is used to identify the shared key

that will be used by both the PEP and the PDP, as well as the cryptographic algorithm to be

used by both entities, such as HMAC (Keyed-Hashing for Message Authentication) (RFC

2104 [10]). The digest is computed over every object and field of the message, with the

notable exception of the aforementioned Keyed Message Digest field. This is the reason why

the integrity object must always be the very last object contained in the COPS message.

References

[1] http://www.ieft.org/html.charters/OLD/rap-charter.html

[2] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja R. and Sastry A., ‘The COPS (Common Open

Policy Service) Protocol’, RFC 2748, Proposed Standard, January 2000.

[3] Ho Chan, K., Durham, D., Gai, S., Herzog, S., McLoghrie, K., Reichmeyer, F., Seligson, J., Smith,

A. and Yavatkar, R., ‘COPS Usage for Policy Provisioning (COPS-PR)’, RFC 3084, March 2001.

[4] Herzog, S., ‘RSVP Extensions for Policy Control’, RFC 2750, January 2000.

[5] Postel, J., ‘‘Transmission Control Protocol’’, RFC 793, September 1981.

[6] Vasseur, J.-P., Le Roux, J.-L. et al., ‘Path Computation Element (PCE) Communication Protocol

(PCEP)’, draft-ietf-pce-pcep-08.txt, Work in Progress, July 2007.

[7] Moy, J., ‘OSPF Version 2’, RFC 2328, April 1998.

[8] Goderis, D. et al., ‘Attributes of a Service Level Specification (SLS) Template’, draft-tequila-sls-

03.txt, Work in Progress, October 2003.

[9] World Wide Web Consortium (W3C), ‘Extensible Markup Language (XML)’,W3C Recommen-

dation, February 1998, http://www.w3.org/TR/1998/REC-xml-19980210.

[10] Krawczyk, H., Bellare, M. and Canetti, R., ‘HMAC: Keyed Hashing for Message Authentication’,

RFC 2104, February 1997.

104 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

6

The NETCONF Protocol

6.1 NETCONF at a Glance

6.1.1 Introduction

NETCONF (NETwork CONFiguration) protocol is a network management protocol through

which not only individual network devices but also networks can be managed. By networks

we mean a set of devices that are involved in the delivery of a given IP service offering. This

service offering can be an IP connectivity service (aka layer-3 services including config-

uration of IP routing protocols or IP/MPLS VPNs) or high-level service [such as voice-over

IP (VoIP)]. NETCONF is a building block that can be implemented within the context of an

automated configuration system. NETCONF can be used jointly with other techniques,

protocols and systems in order to offer a fully automated configuration solution. The

NETCONF protocol specifications do not explicitly document how this service automation

should be implemented, since it is up to protocol developers to design an overall automated

system. In this overall system, NETCONF can be used to implement the configuration

enforcement and reporting interface.

NETCONF protocol is structured functionally into several layers. Each layer is respon-

sible for a well-defined functional part of the protocol operations. Moreover, NETCONF

uses a remote procedure call (RPC) paradigm to exchange protocol messages between the

management application (also called the NETCONF client) and the managed device (also

called the NETCONF server). To avoid misusage of its operations, NETCONF protocol

distinguishes configuration data from state data and implements methods dedicated to treat

and manipulate each of these data types.

Communication between NETCONF clients and servers is performed through a request/

response scheme, where all exchanged messages are encoded in XML (eXtended Markup

Language). When enabling NETCONF between two peers, they can discover their

capabilities and thereby adapt their respective behavior in order to take advantage of

supported features.

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

Furthermore, NETCONF protocol is built above an underlying transport protocol which is

responsible for establishment of secure and connection-oriented sessions. Security and

reliability are managed by the underlying transport protocol and are not part of the

NETCONF protocol itself. Even if NETCONF is transport independent, all NETCONF

implementations must support at least secure shell (SSH) as a mandatory transport protocol.

NETCONF can also be (optionally) activated over blocks extensible exchange protocol

(BEEP) or over simple object access protocol (SOAP) since the IETF NETCONF working

group has specified mapping with the aforementioned protocols. Other transport protocols

can also be envisaged to convey NETCONF messages if and only if these protocols meet a

set of transport requirements, mainly security and reliability.

One of the important features of the NETCONF protocol is its openness. Indeed, the base

NETCONF protocol supports only a limited set of operations and additional operations and

functionalities can be defined, specified and implemented to complement the core NET-

CONF functionalities. Associated NETCONF capabilities should be advertized to remote

NETCONF peers so as to be used during a given NETCONF session. A template to define

these new capabilities is provided in NETCONF [1] where the reader may find more

information about this template.

This section aims to provide the reader with some preliminary information regarding the

essence of NETCONF initiative, motivation and context, before getting into NETCONF core

specification (i.e. supported functions, capabilities, etc.).

6.1.2 Motivations for Introducing NETCONF

Service providers, network providers, protocol designers and developers have gained

experience in implementing, deploying and manipulating a large set of protocols and

associated information required to manage networking infrastructure and services. Numer-

ous data models have also been defined for network management purposes. Thus, several

protocols have been standardized, such as the simple network management protocol

(SNMP) (RFC 3410 [2]), the common open policy service (COPS) (RFC 2748 [3]) and

COPS-PR (RFC 3084 [4]). Multiple data models have been defined and used by operators

such as the core information model (CIM) [5], the directory-enabled network (DEN), SMI

structure of management information (SMI) (RFC 2578 [6]), structure of policy provision-

ing information (SPPI) (RFC 3159 [7]), the management information base (MIB), and

policy information management (PIB).

In spite of this relatively important amount of invested standardization effort within

distinct standardization fora, some operators [both service providers (SPs) and network

providers (NPs)] and standardization bodies address a negative report about the capacity of

existing tools to deal with the operator’s requirements related to network management and

configuration operations. In order to understand these requirements, the Internet Architecture

Board (IAB) held a dedicated workshop about network management in June 2002. This

workshop was a continuation of the dialog initiated between some service providers,

network providers and protocol designers. One of the major purposes of this workshop

was to get feedback from the providers’ community, and to drive a set of pertinent guidelines

for future work in the network management field that would hopefully aim at addressing

106 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

these providers’ concerns. RFC 3535 [8] reflects the major discussions and conclusions of

that workshop. This RFC encloses a set of requirements that should be satisfied by

management protocols, such as:

� easiness of the management protocol (deployability, usability, etc.);

� implementation of a clear distinction between configuration data and state data;

� enabling operators to concentrate on the configuration of the network as a whole rather

than individual devices;

� minimization of the impact caused by configuration changes on the network.

This RFC also lists a set of recommendations agreed during that workshop. Thus: ‘The

workshop recommends, with strong consensus from both protocol developers and operators,

that the IETF focus resources on the standardization of configuration management mechan-

isms’ (RFC 3535 [8]). Just after this workshop, The NETCONF initiative was launched

within IETF.

6.1.3 NETCONF, an IETF Initiative

NETCONF protocol has been specified, designed and promoted within the NETCONF

working group, a member of the IETF Operations and Management Area. This work was

launched mid-2003 (the first NETONCF WG meeting was held at the 57th IETF meeting in

Vienna). The working group has adopted as a starting document a proposal, edited by R.

Enns from Juniper, suggesting the usage of XML as a means to encode configuration-related

operations and associated data models. That proposal was called XMLCONF (XML

CONFiguration). This document has been updated during the lifetime of the NETCONF

WG and has now become the base NETCONF specification. Note that, at the time of

launching this initiative, the RAP (resource allocation protocol) working group was active

and the link between the two initiatives was ambiguous.

6.1.4 Missions of the IETF NETCONF Working Group

The NETCONF working group has been chartered by the IETF, more precisely inside the

IETF Operations and Management Area, in order ‘‘to produce a protocol suitable for

network configuration, with the following characteristics:

� Provides retrieval mechanisms which can differentiate between configuration data and

non-configuration data.

� Is extensible enough that vendors will provide access to all configuration data on the

device using a single protocol.

� Has a programmatic interface (avoids screen scraping and formatting-related changes

between releases).

� Uses a textual data representation that can be easily manipulated using non-specialized

text manipulation tools.

The NETCONF Protocol 107

� Supports integration with existing user authentication methods.

� Supports integration with existing configuration database systems.

� Supports network wide configuration transactions (with features such as locking and

rollback capability).

� Is as transport-independent as possible.

� Specify the protocol syntax and semantics of a notification message.

� Specify or select a notification content information model.

� Specify a mechanism for controlling the delivery of notifications during a session.

� Specify a mechanism for selectively receiving a configurable subset of all possible

notification types.’’1

In order to meet its objective, the NETCONF working group has adopted as a starting

document the XMLCONF proposal. This document has been enhanced during the lifetime of

the working group. In the meantime, the working group has organized several interim

meetings to speed up the progress on other critical issues such as the selection of transport

protocol or the decision as to whether or not notification mechanisms should be part of the

base specification document. These discussions have led to the delivery of an open protocol

specification with a limited set of functionalities and methods. The protocol is simple and

relies on a basic exchange scheme between involved entities.

6.1.5 NETCONF-related Literature2

This section provides a non-exhaustive list of recommended documents for readers who

want to deeply understand NETCONF protocol and associated protocols, mainly SSH,

SOAP and BEEP.

� NETCONF base documents:

– NETCONF configuration protocol (RFC 4741 [1]);

– Using the NETCONF configuration protocol over secure shell (RFC 4742 [9]);

– Using the NETCONF protocol over blocks extensible exchange protocol (RFC 4744

[10]);

– Using the network configuration protocol over the simple object access protocol (RFC

4743 [11]);

– NETCONF event notifications (draft-ietf-netconf-notification);

– Reporting schema for NETCONF protocol (draft-adwankar-netconf-reporting);

– Data types for NETCONF data models (draft-romascanu-netconf-datatypes);

– NETCONF architecture model (draft-atarashi-netconfmodel-architecture);

– Requirements for efficient and automated configuration management (draft-boucadair-

netconf-req).

1Quoted from the NETCONF charter, available at URL: http://www.ietf.org/html.charters/netconf-charter.html

2Several NETCONF implementations have been released, such as YencaP which is a NETCONF agent for Linux

implemented in Python, distributed under GPL as part of the EnSuite (Extended NETCONF Suite) collection.

Available at URL: http://madynes.loria.fr/ensuite

108 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� SSH-related RFCs:

– The secure shell protocol assigned mumbers (RFC 4250 [12]);

– The secure shell protocol architecture (RFC 4251 [13]);

– The secure shell authentication protocol (RFC 4252 [14]);

– The secure shell transport layer protocol (RFC 4253 [15]);

– The secure shell connection protocol (RFC 4254 [16]);

– Using DNS to securely publish secure shell key fingerprints (RFC 4255 [17]);

– Generic message exchange authentication for the secure shell protocol (RFC 4256 [18]);

– The secure shell transport layer encryption modes (RFC 4344 [19]);

– Secure shell session channel break extension (RFC 4335 [20]).

� BEEP-related RFCs:

– BEEP core protocol definition (RFC 3080 [21]);

– BEEP core protocol mapping onto TCP (RFC 3081 [22]);

– On the design of application protocols (RFC 3117 [23]);

– Reliable delivery for syslog (RFC 3195 [24]);

– A definition to perform XML-RPC (RFC 3349 [25]);

– An application layer proxy for BEEP peers (RFC 3620 [26]);

– A protocol description to provide access to user security credentials (RFC 3767 [27]);

– Using the Internet registry information service over the blocks extensible exchange

protocol (RFC 3983 [28]);

– Using SOAP on top of BEEP (RFC 4227 [29]).

� List of SOAP-related recommendations:

– SOAP Version 1.2 Part 0: Primer;

– SOAP Version 1.2 Part 1: Messaging framework;

– SOAP Version 1.2 Part 2: Adjuncts;

– SOAP Version 1.2 Specification assertions and test collection;

– XML-binary optimized packaging;

– SOAP message transmission optimization mechanism;

– Resource representation SOAP header block.

6.1.6 What is In? What is Out?

The goal of the NETCONF section is not to describe XML, nor SSH, nor BEEP, nor SOAP,

but only to describe the NETCONF protocol. Readers who want more detailed information

about the aforementioned technologies are advised to refer to RFC 4254 [16], RFC 4253

[15], RFC 4252 [14], Gudgin et al. [30], RFC 3080 [21], RFC 3081 [22] and the references

provided in Section 6.1.5.

This chapter is not a specification document; protocol implementers are advised to refer to

base specification documents.

6.2 NETCONF Protocol Overview

This section describes an overview of NETCONF operations. Therefore, details about

NETCONF messages, transport protocol and communication channels are elaborated in this

section.

The NETCONF Protocol 109

6.2.1 Some Words about XML

This book assumes that the reader is familiar with XML language and terminology.

Nevertheless, we provide a brief description of some useful notions in order to ease the

understanding of NETCONF protocol. For more information, it is recommended that the

reader refer to the XML literature [31].

XML Document
XML (Extensible Markup Language) describes a class of data objects called XML

documents and describes the behavior of applications that process them. An XML document

contains several XML elements, which define the structure of the XML document. To

illustrate this basic notion, Table 6.1 provides an example of an XML document that

encloses <RIB>, <Routes> and <Route> elements.

XML Tag
An XML tag denotes what is enclosed between ‘<’ and ‘>’ in an XML document. An

opening tag looks like <tag>, while a closing tag has a slash that is placed before the name

of an XML element and looks like </tag>. Information belonging to an element is

contained between the opening and closing tags of an element. For instance, in the above

example, <RIB>, <Routes> and <Route> are opening tags and </RIB>,</Routes>
and </Route> are closing ones.

XML Attribute
XML attributes are used to specify additional information related to a given XML element.

In the example provided above, IPADDR, NETMASK and NEXTHOP are attributes of the

<Route> element. These attributes provide information about the <Route> element

(respectively the destination IP address, the network mask and the next hop to which

packets destined for the IP address specified in the IPADDR tag are to be sent).

XML Comments
XML comments are included in an XML document to add a note or to provide explanation

information outside the XML code. Comments are inserted in XML code to guide XML

document readers (or viewers) and ease the comprehension of the XML documents. An XML

comment is identified by a ‘!’ character (this syntax is similar to HTML comment syntax). Two

examples of comments embedded in an XML document are given in Tables 6.2 and 6.3.

XML Namespace
An XML namespace is a set of names that are used in XML documents as element types and

attribute names. An XML namespace is identified by a uniform resource identifier (URI) as

defined in RFC 2396 [32]. XML namespaces are used to avoid confusion and to make sure

that the same data are unambiguously interpreted by all XML-enabled applications.

For a better understanding of the issue that motivated the introduction of namespaces, let

us consider an XML document that contains the following elements.

The first element, called <RIB>, encloses information about the open shortest path first

(OSPF) route information base entries as provided in Table 6.4.

The second element, also called <RIB>, encloses information about the border gateway

protocol (BGP) routes as illustrated in Table 6.5.

110 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Table 6.1 Example of XML elements

<RIB>
<Routes>
<Route>
<IPADDR>12.12.3.44</IPADDR>
<NETMASK>24</NETMASK>
<NEXTHOP>31.54.67.8</NEXTHOP>

<Route>
<Route>
<IPADDR>1.2.3.4</IPADDR>
<NETMASK>24</NETMASK>
<NEXTHOP>123.6.6.7</NEXTHOP>

</Route>
<Route>
<IPADDR>51.15.26.96</IPADDR>
<NETMASK>24</NETMASK>
<NEXTHOP>123.6.6.7</NEXTHOP>

</Route>
</Routes>

</RIB>

Table 6.2 Example of XML comments outside XML tags

<!–
Structure of the RIB
–>
<RIB>

<Routes>
<Route>
<IPADDR>12.12.3.44</IPADDR>
<NETMASK>24</NETMASK>
<NEXTHOP>31.54.67.8</NEXTHOP>

<Route>
<Route>
<IPADDR>1.2.3.4</IPADDR>
<NETMASK>24</NETMASK>
<NEXTHOP>123.6.6.7</NEXTHOP>

</Route>
<Route>

<IPADDR>51.15.26.96</IPADDR>
<NETMASK>24</NETMASK>
<NEXTHOP>123.6.6.7</NEXTHOP>

</Route>
</Routes>
</RIB>

The NETCONF Protocol 111

The above XML codes enclose an element called <RIB>. Nevertheless, the definition of

this element is not the same for the two pieces of XML code. The first XML code refers to an

OSPF RIB and the second one refers to a BGP RIB (for readers who are familiar with OSPF

and BGP, these RIBs are not formal descriptions of OSPF and BGP tables but only a

lightweight version of these tables). If these two codes are inserted together in the same

document, it would induce a conflict because both documents contain the <RIB> element

and XML parsers would not know which <RIB> schema to use: OSPF or BGP.

<RIB>
<!– List of routes installed in the RIB –>
<Routes>
<!–
First route entry in the RIB
–>

<Route>
<IPADDR>12.12.3.44</IPADDR>
<NETMASK>24</NETMASK>
<NEXTHOP>31.54.67.8</NEXTHOP>

<Route>
<!–
Second route entry in the RIB
–>

<Route>
<IPADDR>1.2.3.4</IPADDR>
<NETMASK>24</NETMASK>
<NEXTHOP>123.6.6.7</NEXTHOP>

</Route>
<!–
Third route entry in the RIB
–>

<Route>
<IPADDR>51.15.26.96</IPADDR>
<NETMASK>24</NETMASK>
<NEXTHOP>123.6.6.7</NEXTHOP>

</Route>
</Routes>

</RIB>

Table 6.3 Example of XML comments inside XML tags

Table 6.4 OSPF <RIB> element

<RIB>
<OSPF>
<Area_ID>5</Area_ID>
<Route_ID>2</Route_ID>

</OSPF>
</RIB>

112 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

In order to resolve this conflict, it is recommended that a reference be added to the

namespace where these tables are defined.

If OSPF elements are differentiated fromBGP elements by defining two distinct namespaces,

http://serviceauto.org/routing/ospf and http://serviceauto.org/
routing/bgp, then the previous two XML codes become as shown in Tables 6.6 and 6.7.

These two <RIB> elements are distinct (even if they have the same name) since they are

not declared in the same namespace. As a consequence, there is no conflict anymore between

these elements when quoted in the same XML document. Therefore, the XML document

shown in Table 6.8 will be parsed unambiguously.

Table 6.5 BGP <RIB> element

<RIB>
<BGP>
<Local_AS>5511</Local_AS>
<Prefix>132.12.34.5</Prefix>
<Next_Hop>21.12.34.5</Next_Hop>

</BGP>
</RIB>

Table 6.6 Updated OSPF RIB element

<!–
the XML namespace is identified by the URI:
http://serviceauto.org/routing/ospf

–>
<RIB xmlns¼"http://serviceauto.org/routing/ospf">

<OSPF>
<Area_ID>5</Area_ID>
<Route_ID>2</Route_ID>

</OSPF>
</RIB>

Table 6.7 Updated BGP RIB element

<!–
the XML namespace is identified by the URI:
http://serviceauto.org/routing/bgp

–>
<RIB xmlns¼"http://serviceauto.org/routing/bgp">

<BGP>
<Local_AS>5511</Local_AS>
<Prefix>132.12.34.5</Prefix>
<Next_Hop>21.12.34.5</Next_Hop>

</BGP>
</RIB>

The NETCONF Protocol 113

6.2.2 NETCONF Terminology

The following terms are used within this chapter:

� Management application/application management: denotes an application that is

NETCONF enabled and that performs/enforces NETCONF operations on a managed

device. It is also denoted as NETCONF client or client.

� Managed device denotes a node that implements NETCONF protocol and has access to

management instrumentation [33]. This is also known as NETCONF server (denoted only

as server) or managed entity.

6.2.3 NETCONF Layer Model

As specified by the NETCONF working group, the NETCONF protocol can be partitioned

functionally into several layers. At least four layers can be conceptually distinguished in the

NETCONF model. Note that the usage of ‘layer’ terminology within NETCONF is

misleading since it should be read as ‘sublayer of OSI application layer’. This term should

not be confused with OSI layers. For instance, the ‘transport layer’ should not be understood

to mean the same as that of the OSI model. In the rest of this section, the terms ‘layer’ and

‘sublayer’ are used interchangeably.

NETCONF layers are defined below and illustrated in Figure 6.1.

� Transport layer. Within the context of NETCONF, this layer provides the required

functions for enabling communication between a client (aka configuration client) and a

server (aka configuration server). NETCONF can use any transport protocol satisfying the

set of requirements listed in Section 6.4.1. At the current stage of NETCONF specifica-

tions, only secure shell (SSH) (RFC 4254 [16], RFC 4253 [15], RFC 4252 [14]) transport

protocol is mandatory to be supported by any NETCONF implementation. In addition,

two other alternatives, the blocks extensible exchange protocol (BEEP) (RFC 3080 [21],

RFC 3081 [22]) and the simple object access protocol (SOAP) [30] have been identified,

Table 6.8 Merged <RIB>

<RIB xmlns¼"http://serviceauto.org/routing/ospf">
<OSPF>
<Area_ID>5</Area_ID>
<Route_ID>2</Route_ID>

</OSPF>
</RIB>
<RIB xmlns¼"http://serviceauto.org/routing/bgp">
<BGP>
<Local_AS>5511</Local_AS>
<Prefix>132.12.34.5</Prefix>
<Next_Hop>21.12.34.5</Next_Hop>

</BGP>
</RIB>

114 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

and the mappings have been adopted as NETCONF working group documents (these

documents have also been adopted by the IETF in the standard track and not in the

informational track). Section 6.4.2 provides more information regarding how to activate

NETCONF over BEEP [10], SSH [9] or SOAP [11].

� RPC layer. This layer provides a transport-independent mechanism (note that ‘transport’

is to be understood as the ‘NETCONF transport layer’) for encoding and decoding RPC

messages such as <rpc> and <rpc-reply> elements. These elements are used to

convey requests to the managed device, or to acknowledge the correct processing of a

NETCONF request, by issuing an <rpc-reply> element. The RPC layer elements are

used as framing means for NETCONF requests such as <get> and <copy-config>,
since NETCONF operations are enclosed in RPC elements. Because of this close

relationship, the RPC layer can be merged with the ‘operations layer’ and forms only

one functional layer responsible for the framing of NETCONF methods.

� Operations layer. This layer groups a limited set of basic NETCONF operations. These

operations are also called RPC methods. The encoding of these operations follows strict

XML schemas as defined in NETCONF specifications. As an example of these operations,

the <get> method can be invoked to retrieve the whole or only a portion of the

configuration data, the <copy-config> method can be invoked to copy a part or the

whole configuration data and <delete-config> can be invoked to delete configuration

data. These methods and additional ones are described in Section 6.2.8. NETCONF

protocol allows new methods and their associated (new) capabilities to be defined.

� Content layer. This layer is used to denote the configuration data manipulated using RPC

methods, members of the NETCONF operations layer. This layer is clearly identified

Figure 6.1 NETCONF layered model

The NETCONF Protocol 115

outside the scope of the current charter of the NETCONF working group. Some initiatives

have been launched in order to promote NETCONF data models, especially the

NETCONF data model Birds Of a Feather (NETMOD BOF) held at the 60th IETF

meeting. An Internet draft has also been edited in order to enumerate issues related to the

NETCONF data model as captured in NETMOD [34].

6.2.4 NETCONF Communication Phases

When enabling NETCONF between two peers (i.e. management application and

managed device), a NETCONF session is composed of four main phases as illustrated

in Figure 6.2:

� First phase. During this phase, transport channels are established between the two

NETCONF peers (for instance, SSH sessions). During this phase, authentication and

key exchange are performed.

� Second phase. Just after the success of establishing a transport session, NETCONF peers

exchange simultaneously their NETCONF capabilities, advertizing to their peer their

capabilities and implicitly the supported methods and NETCONF behavior with regards to

basic NETCONF operations. Section 6.2.5 provides more information about capability

exchange.

� Third phase. Whencapabilities are exchanged,NETCONFpeers can send theirRPCmethods

and issue NETCONF operations such as <get> or <copy-config> methods.

� Fourth phase. The NETCONF session can be terminated by sending appropriate

NETCONF methods such as <kill-session> or <close-session>.

Figure 6.2 Main NETCONF steps

116 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

6.2.5 NETCONF Data

6.2.5.1 Configuration Data and State Data

The NETCONF protocol manipulates two types of data that can be enforced or retrieved

from NETCONF-enabled devices such as routers, switches or any other device embedding a

NETCONF stack:

� Configuration data. This category of data groups all writable data that contribute to

transforming a given system from one state into another state (or its current state). These

data can be conveyed to a NETCONF-enabled device either to be enforced on or be

retrieved from this device in order to have more information about its status. NETCONF

protocol introduces dedicated methods for manipulating data of this type (such as <get-
config>, refer to Section 6.3 for more information about NETCONF operations).

� State data. The set of non-configuration data. These data can be, for instance, read-only,

like status information such as accounting or reporting information. Data of this type can

be retrieved by invoking dedicated NETCONF methods like <get>, to be notified by the

managed entity like notification events introduced in Chisholm et al. [33]. As defined by

Chisholm et al. [33], an event is ‘something’ that happens and that interests the

management application (e.g. a configuration change, a fault, a status change, crossing

a threshold, etc.). Several classes of events can be distinguished as listed below:

1. Fault events. These events are generated when an error or a warning occurs. This can

lead the managed device to generate alarms that are of several types, such as communi-

cations alarms, a processing error alarm, a quality of service (QoS) alarm or a threshold

crossing event.

2. Configuration events. These events are used to notify the management application that

a configuration change has occurred (e.g. add/delete hardware, create/modify/delete a

service, etc.). Events of this type can be notified, for instance, when invoking copy

configuration, delete configuration, or the edit configuration operations (refer to

Section 6.3 for more information about these NETCONF operations).

3. Audit events. These events indicate that some specific actions have been performed by

a given managed device.

4. Data dump events. This class of events covers asynchronous events containing

information about a given managed device in terms of its configuration, its state and

other appropriate information.

5. Maintenance events. These events inform the management application about the

processing or the termination of an action executed on a given managed device.

6. Metrics events. These events contain the performance metrics related to a given

managed device.

7. Heartbeat events. These events are sent periodically to evaluate/check/assess the status of

the communications channel between the application manager and the managed device.

Because of their read-only characteristic, manipulating state data can induce some

problems. An example of these problems is trying to write ‘read-only’ data. In order to

avoid problems of this kind, NETCONF has defined two methods: the <get-config>
operation responsible for retrieving exclusively configuration data, and the <get> method

responsible for retrieving both configuration and state data.

The NETCONF Protocol 117

6.2.5.2 NETCONF Configuration Datastores

Within the context of NETCONF, a configuration datastore is a set of configuration data that

is enforced to get a device from a given state to a different one. Configuration datastores

should not contain any state data. Several configuration datastores can be distinguished:

� Running datastore. This datastore is the complete configuration currently active on a given

managed device. This type of datastore is always present, and only one configuration

running datastore exists on a given NETCONF managed device. The running configura-

tion datastore is the unique datastore present in the base NETCONF model. Additional

configuration datastores may be defined. In the remaining part of this chapter, we refer to

this datastore as the <running> element.

� Candidate datastore. This datastore is used as the workplace for creating and manipulat-

ing, i.e. modifying, deleting and adding, configuration data without impacting upon the

current configuration of the managed device. This latter, if it supports this type of

datastore, should advertize the :candidate capability (refer to Section 6.5 for more

information about NETCONF capabilities) to its NETCONF peers. In the remaining part

of this chapter, we refer to this datastore as <candidate>.
� Startup datastore: The startup configuration datastore contains the enforced configuration

during the initialisation of a given Managed Device. This configuration datastore can be

distinct from running configuration datastores. A Managed Device supporting this type of

datastores should advertize the :startup capability (refer to Section 6.5 for more

information about NETCONF capabilities) to its NETCONF peers. Within the NETCONF

context, operations executed on the running configuration will not affect the startup

configuration unless an explicit NETCONF operation, e.g. <copy-config> (see Section

6.3 for more information about this method), is invoked. In the remaining part of this

chapter, we refer to this datastore as <startup>.

6.2.6 NETCONF Capability Exchange

After establishing a transport session, NETCONF peers proceed to exchange their respective

capabilities. This section details this procedure.

6.2.6.1 NETCONF XML Namespace

For the correct parsing and interpretation of XML data, NETCONF protocol uses a dedicated

namespace that must be declared in all NETCONF XML documents. The base NETCONF

namespace is defined by the following URN: urn:ietf:params:xml:ns:netconf:
base:1.0. Additional namespaces can be declared in a NETCONF document if new

capabilities and methods are introduced (refer to Section 6.2.6.2 for more namespace URNs)

6.2.6.2 Capability Exchange Framework

In order to discover the capabilities of a NETCONF node, either a client or a server,

NETCONF protocol introduces a capability exchange procedure that aims to advertize to a

remote NETCONF peer the capabilities supported by the local node. Owing to this

118 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

procedure, a NETCONF node is aware of the methods supported by its remote peers. When

receiving a set of capabilities from a remote peer, only the set of capabilities supported by

the local peer are taken into account and may be used in the future for NETCONF purposes.

However, the capabilities that are not understood by the local peer are ignored.

NETCONF capabilities are enclosed in a dedicated element called <hello>. This

message is exchanged just after the NETCONF session is opened and must be sent by

both communication parties as illustrated in Figure 6.3. No recommendation regarding the

order of issuing this message is specified by NETCONF.

Within the context of NETCONF, capabilities are defined as URN references and should

follow the format urn:ietf:params:netconf:capability:{name}:1.0, where
{name} is the name of the corresponding capability. In the remaining part of this chapter,

we use interchangeably :{name} or <name> to refer to a given NETCONF capability.

Table 6.9 lists the capabilities introduced by NETCONF protocol (these capabilities are

described in Section 6.5). Additional capabilities can be defined in the future by other

extension documents.

NETCONF protocol demands that each peer send the base NETCONF capability identified

by the URN (urn:ietf:params:netconf:base:1.0) to its NETCONF peers.

The example in Figure 6.4 shows a client advertizing the base NETCONF capability,

the :startup capability, which is defined in the base NETCONF specification, and a

server advertizing to the client the base NETCONF capability, the :startup and the

:candidate capabilities which are defined in the base NETCONF protocol. This

Figure 6.3 NETCONF capability exchange

The NETCONF Protocol 119

process will lead both peers to use :startup capability only. :candidate
capability will be ignored by the client.

The format of the <hello> message sent by the NETCONF server is slightly different

from the one issued by the client since it encloses an additional attribute called the

session-id attribute. This attribute identifies the transport session established between

the client and the server. Such an attribute is not present in the <hello> message issued by

a NETCONF client.

6.2.7 RPC Layer

Once the capability exchange process has been achieved, NETCONF peers may issue RPC

methods. These methods carry NETCONF operations and associated answers. At least two

types of RPC can be defined: one-way RPCs and two-way RPCs.

6.2.7.1 One-way RPC

NETCONF messages are generally two-way. However, in the context of some applications,

only messages to be generated from the server side or only from the client side are required.

In order to support this model, NETCONF WG introduced the concept of the one-way RPC

message represented as an <rpc-one-way> element. The one-way RPC message is

similar to the two-way RPC message, except that no response is expected to the enclosed

method, as illustrated in Figure 6.5.

For instance, in the context of event notifications, RPCs will be originated from the

NETCONF server and not from the NETCONF client. Figure 6.6 shows an example of usage

of this RPC.

Table 6.9 List of NETCONF capability namespaces

Index Capability Identifier

:writable-running urn:ietf:params:netconf:capability:writable-
running:1.0

:candidate urn:ietf:params:netconf:capability:candi-
date:1.0

:confirmed-commit urn:ietf:params:netconf:capability:confirmed-
commit:1.0

:rollback-on-error urn:ietf:params:netconf:capability:rollback-
on-error:1.0

:validate urn:ietf:params:netconf:capability:vali-
date:1.0

:startup urn:ietf:params:netconf:capability:start-
up:1.0

:url urn:ietf:params:netconf:capability:url:1.0
:xpath urn:ietf:params:netconf:capability:xpath:1.0
:notification urn:ietf:params:netconf:capability:notifica-

tion:1.0

120 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Figure 6.4 NETCONF capability exchange – hello XML format

Figure 6.5 One-way RPC

The NETCONF Protocol 121

Figure 6.6 illustrates an example of the content and the format of an <rpc-one-way>
element. In this example, the server sends to the client an event message enclosed in an

<rpc-one-way> element to notify that a configuration task has been enforced. Additional

information on the structure of event notifications is provided in Section 6.3.13.

6.2.7.2 Two-way RPC

NETCONF-enabled nodes use dedicated methods to provide transport-protocol-independent

framing for NETCONF requests and responses between clients and servers. This procedure

is commonly denoted within NETCONF terminology as the RPC communication model.

RPC methods allow NETCONF protocol to be independent of the underlying transport

protocol used to convey communication messages.

The base NETCONF specification documents make use of an RPC scheme that is two-

way, i.e. an RPC request must be answered by an RPC response, as shown in Figure 6.7.

In such a model, two RPC methods can be invoked:

� <rpc>. This method (also referred to as element) is used to carry a NETCONF request

issued from a NETCONF client (also denoted as NETCONF manager) and destined for a

server (also denoted as managed device).

� <rpc-reply>. This element is generated by themanaged device as an answer to a recei ved

<rpc> element. Two categories of RPC response are defined in NETCONF protocol:

– <rpc-error>: this element is enclosed in an <rpc-reply> element and is sent

back to the NETCONF manager if an error or a warning has occurred when processing

an <rpc> element or when enforcing required actions by the managed device;

Figure 6.6 One-way RPC generated by the NETCONF server

122 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

– <ok>: this element is enclosed in an <rpc-reply> element and is sent back to the

client if no errors and no warnings have occurred during the processing of a received

<rpc> element and during the enforcement of required actions by the managed device.

More information about these elements and their usage provided below through several

examples.

6.2.7.3 <rpc> element

An <rpc> element is used to carry a NETCONF request generated by a client and destined

for its attached server. This element, i.e. <rpc>, encloses at least the message-id
attribute. The value of this attribute is an arbitrary string assigned by the client. Usually, this

value is a monotonically increasing integer. The XML schema of the message-id attribute

is provided in Table 6.10.

Figure 6.7 provides an example of the content of a basic <rpc> element and its XML

format. The RPC request indicates the URN of the supported NETCONF namespace; in this

example this is indicated by the xmlns line: xmlns¼"urn:ietf:params:xml:ns:
netconf:base:1.0".

In this example (Table 6.11), the <rpc> element has a message-id equal to ‘8’. Only

one method is contained in this element. The core of this method is empty. For readers

unfamiliar with XML notations, the ‘!’ symbol is used at the beginning of an XML line to

identify comments. These comments are not part of the definition of the elements, nor are

they considered as attributes, but they provide clarifications and additional useful informa-

tion for the reader of XML documents.

Figure 6.7 Two-way RPC

Table 6.10 XML schema of the message-id attribute

<xs:simpleType name¼"messageIdType">
<xs:restriction base¼"xs:string">
<xs:maxLength value¼"4095"/>

</xs:restriction>
</xs:simpleType>

The NETCONF Protocol 123

6.2.7.4 <rpc-reply> element

Upon receipt of an <rpc> element, the server saves the value of the message-id attribute

and uses the corresponding value in any <rpc-reply> message generated as a response to

the received <rpc> element. In addition, if other attributes are present in an <rpc> element, a

NETCONF server returns them in the resulting <rpc-reply> elements without any

modifications, i.e. the values of these attributes are copied by the server and returned back

to the requesting client. If several <rpc> elements have been received by a NETCONF server,

the server processes them serially. Then, the server sends <rpc-reply> elements in the

order the requests were received.

An example of an <rpc-reply> element is shown in Table 6.12.

The <data> tag identifies the part of the <rpc-reply> that contains the data requested

by the method enclosed in a request received by the server. An <rpc-reply> element can

also contain other elements, mainly the <ok> or <rpc-error> elements. These elements

are described in the subsections below.

Table 6.11 Example of an <rpc> element

<rpc message-id¼"8" xmlns¼"urn:ietf:params:xml:ns:netconf:
base:1.0">
<method-example>
<!–
List of method-example's parameters

–>
<!– Parameter 1 –>
<!– Parameter 2 –>
<!– Parameter 3 –>
<!– Parameter 4 –>

. . .

. . .
<!– Parameter i –>
<!– Parameter iþ1–>

</ method-example >
</rpc>

Table 6.12 Example of an <rpc-reply> element

<rpc-reply message-id¼"8" xmlns¼"urn:ietf:params:xml:ns:netconf:
base:1.0">
<data>
<!– Body of data enclosed in the rpc-reply –>
<tag1>value1</tag1>
<tag2>value2</tag2>
<tag3>value3</tag3>

</data>
</rpc-reply>

124 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

<ok> Element
In order to inform a remote peer (i.e. one with which a NETCONF session has been

established) that no errors or no warnings have occurred during the processing of a received

<rpc> request, a NETCONF server issues an <ok> element. Table 6.13 provides an

example of the content of an <ok> element.

<rpc-error> Element
When an error (or a warning in some NETCONF implementations) has occurred during the

processing of a received <rpc> request, a NETCONF server issues an <rpc-reply>
element enclosing an <rpc-error> element. If multiple errors have been encountered by

the server during the processing of the <rpc> request, the server can enclose one or several

<rpc-error> elements in the same <rpc-reply> element. NETCONF implementa-

tions could opt not to send any <rpc-error> element if one or many warnings have

occurred during the processing of the request.

An <rpc-error> element may include the attributes listed in Table 6.14. Optional

attributes can be omitted.

Table 6.15 lists NETCONF errors as defined in the base NETCONF document. For all these

errors, the error severity attribute value is equal to ‘error’ (the corresponding error column is

not represented in the table). Only mandatory attributes are described in Table 6.15.

Tables 6.16 and 6.17 provide two examples illustrating the format of issued <rpc-
error> elements. The first example (Table 6.16) illustrates the response sent by the server

in the case where the <rpc> element does not enclose a message-id attribute.

The second example (Table 6.17) shows an <rpc-error> element indicating that the

IP address assigned by the client to one of the server’s interfaces is not valid.

Table 6.13 Example of <ok> element

<rpc-reply message-id¼"8" xmlns¼"urn:ietf:params:xml:ns:netconf:
base:1.0">

<ok/>
</rpc-reply>

Table 6.14 <rpc-error> attributes

error-type Indicates the type of error that has occurred. The following values

can be set: TRANSPORT, RPC, PROTOCOL or APPLICATION.

error-tag A string identifying the error condition.

error-severity Contains a string identifying the error severity, as determined by the

device. This can take the values: error or warning.

error-app-tag Contains a string identifying the data-model-specific or implementation-

specific error condition. This attribute is optional.

error-path Contains an identification of the element path to the node that is

associated with the error being reported in a particular <rpc-error>.
This attribute is optional.

error-message This attribute describes the error condition.

error-info Contains protocol-specific or data-model-specific error content.

The NETCONF Protocol 125

Table 6.15 List of NETCONF errors

Error-tag Error-type Error-info Description

IN_USE . PROTOCOL None. The request requires a resource

. APPLICATION None. that is already in use.
INVALID_VALUE . PROTOCOL None. The request specifies an

. APPLICATION unacceptable value for
at least one parameter.

TOO_BIG . TRANSPORT
. RPC None. The request or response

. PROTOCOL is too large.

. APPLICATION
MISSING_ATTRIBUTE . RPC . <bad-attribute>: name of An expected attribute is

the missing attribute; missing.

. PROTOCOL . <bad-element>: name of the

element that should contain

. APPLICATION the missing attribute.

BAD_ATTRIBUTE . RPC . <bad-attribute>: name of the An attribute value is not

attribute with the bad value; correct.

. PROTOCOL . <bad-element>: name of the

element that contains the

. APPLICATION attribute with the bad value.

UNKNOWN_ATTRIBUTE . RPC . <bad-attribute>: name of the An unexpected attribute

unexpected attribute; is present.

. PROTOCOL . <bad-element>: name of the

element that contains the

. APPLICATION unexpected attribute.

MISSING_ELEMENT . RPC <bad-element>: name of the. An expected element is

. PROTOCOL missing element missing.

. APPLICATION

BAD_ELEMENT . RPC . <bad-element>: name of . An element value is

. PROTOCOL the element not correct.

. APPLICATION

UNKNOWN_ELEMENT . RPC . <bad-element>: name of An unexpected element

. PROTOCOL the unexpected element. is present.

. APPLICATION

UNKNOWN_NAMESPACE . RPC Name of the unexpected An unexpected namespace

. PROTOCOL namespace. is present.

. APPLICATION

ACCESS_DENIED . RPC None. Access to the requested RPC,

. PROTOCOL protocol operation or data

. APPLICATION model is denied because
of authorization failure.

LOCK_DENIED PROTOCOL . <session-id>: session ID of the Access to the requested lock

session holding the requested lock, is denied because it is currently

or zero to indicate a non-NETCONF held by another NETCONF

entity holding the lock. entity.

RESOURCE_DENIED . TRANSPORT None. Request could not be completed

. RPC because of insufficient resources.

. PROTOCOL

. APPLICATION

ROLLBACK_FAILED . PROTOCOL None. Request to roll back some

. APPLICATION configuration change was
not completed for some
reason.

DATA_EXISTS . APPLICATION None. Request could not be completed

because the relevant data model

content already exists.

DATA_MISSING . APPLICATION None. Request could not be completed

because the relevant data model

content does not exist.

(Continued)

OPERATION_NOT_SUPPORTED . RPC None. Request could not be completed

. PROTOCOL because the requested operation
is not supported by this

. APPLICATION implementation.

OPERATION_FAILED . RPC None. Request could not be completed

. PROTOCOL because the requested operation
failed for some reason not covered
by any other error condition.

. APPLICATION
PARTIAL_OPERATION APPLICATION . <ok-element>: identifies an

element in the data model

for which the requested operation

has been completed for that node

and all its child nodes; Some part of the requested

. <err-element>: identifies an operation failed.
element in the data model for
which the requested operation
has failed for that node and all
its child nodes;

. <noop-element>: identifies an
element in the data model for
which the requested operation
was not attempted for that node
and all its child nodes.

Table 6.15 (Continued)

Error-tag Error-type Error-info Description

6.2.8 NETCONF Filtering

6.2.8.1 Terminology

NETCONF protocol allows an application manager to specify which portion of the

configuration and/or state data, as maintained by the managed evice, to be included in a

given <rpc-reply> element. This feature is termed XML subtree filtering and allows

more flexibility to manipulate configuration data (Table 6.18).

NETCONF introduced the following terminology to denote the components that may be

present in a given subtree filter:

Table 6.17 Second example of an <rpc-error>

<rpc-reply message-id ¼``8'' xmlns¼``urn:ietf:params:xml:ns:netconf:
base:1.0''>
<rpc-error>

<error-type>rpc</error-type>
<error-tag>INVALID_VALUE</error-tag>
<error-severity>error</error-severity>
<error-message>Invalid IP Address</error-message>

</rpc-error>
</rpc-reply>

Table 6.16 First example of an <rpc-error>

<rpc-reply message-id ¼``8'' xmlns¼``urn:ietf:params:xml:ns:netconf:
base:1.0''>

<error-type>rpc</error-type>
<error-tag>MISSING_ATTRIBUTE</error-tag>
<error-severity>error</error-severity>
<error-info>
<bad-attribute>message-id</bad-attribute>
<bad-element>rpc</bad-element>

</error-info>
</rpc-error>
</rpc-reply>

Table 6.18 Example of an XML subtree filter

<filter type¼``subtree''>
<network xmlns¼``http://serviceauto.org/filters/''>
<routers/>

</network>
</filter>

The NETCONF Protocol 129

� Namespace selection. The output when applying this filter is the list of all nodes

defined within the specified namespace. Note that at least one node must be specified

when enclosing this filter in a given NETCONF request. All child nodes will be listed

in the response to be sent back to the application manager. In the example in Table

6.18, all child elements of <network> defined in the namespace http://
serviceauto.org/filters/ must be listed in a response to a request enclosing

this filter.

� Containment node. A containment node is a node that contains child elements within a

filter. A containment node can also contain other containment nodes, etc. When only one

containment node is specified in a given filter included in a NETCONF request, all child

nodes must be listed in the response. In the example in Table 6.18, <network> is a

containment node. A request including this filter should be answered by a response

containing all <routers> data.

� Selection node. A leaf element of a subtree filter is called a selection node. In the example

in Table 6.18, the <routers> element is a selection node. When specifying this filter in

a given NETCONF request, the corresponding reply should include all <routers>
data.

� Content match node. Any leaf element with simple type content is called a content match

node. More concretely, in the following example, <routerID> is a content match node.

The response to this filter must include only data related to a router with an identifier equal

to ASBR_157485.

6.2.8.2 Examples

In order to illustrate the usage of filters within NETCONF, this section lists numerous

examples (Tables 6.20 and 6.21) and related output when applying the corresponding filter

to a given configuration. The XML document in Table 6.20 is used for all listed examples.

Note that the data model used for these examples is not part of the NETCONF specification

itself.

Table 6.19 Content match node

<filter type¼``subtree''>
<network xmlns¼``http://serviceauto.org/filters/''>
<routers>
<router>
<routerID>ASBR_157485<routerID>

</router>
</routers>

</network>
</filter>

130 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

6.3 NETCONF Protocol Operations

The NETCONF base protocol specifies nine operations. These operations are invoked to

retrieve, install or modify configuration data of a given managed device. These basic

operations are as follows:

� <get>. This method is invoked in order to retrieve both configuration and state data from

a managed device.

� <get-config>. This method is similar to the <get> operation. However, it is used to

retrieve configuration data only.

Table 6.20 Example of an XML configuration

<data>
<network xmlns¼``http://serviceauto.org/filters/''>
<routers>
<router>
<routerID<ASBR_157485
<interfaces>
<interface>
<interfaceName<Eth0>/interfaceName>
<interfaceBW<100M>/interfaceBW>

</interface>
<interface>
<interfaceName<Eth1>/interfaceName>
<interfaceBW<10M>/interfaceBW>

</interface>
<interface>
<interfaceName<Eth3>/interfaceName>
<interfaceBW<100M>/interfaceBW>

</interface>
</interfaces>

</router>
<router>
<routerID<ASBR_787878
<interfaces>
<interface>
<interfaceName<Eth0>/interfaceName>
<interfaceBW<10M>/interfaceBW>

</interface>
<interface>
<interfaceName<Eth1>/interfaceName>
<interfaceBW<10M>/interfaceBW>

</interface>
</interfaces>

</router>
</routers>

The NETCONF Protocol 131

Table 6.21 Filter examples

(Continued)

Table 6.21 (Continued)

� <copy-config>. This operation is invoked in order to create or to replace all or portion

of the configuration data.

� <edit-config>. This operation is invoked to load all or portions of the configuration data.

� <delete-config>. This method is invoked to delete a configuration datastore.

� <lock> This method is invoked in order to lock a configuration datastore so as to avoid

misconfiguration and inconsistent operations.

� <unlock>. This method is invoked to release locks hold by a NETCONF client on a

configuration datastore.

� <close-session>. This method is used to close gracefully a NETCONF session.

� <kill-session>. This method forces the termination of a NETCONF session.

In addition to the base NETCONF protocol operations, NETCONF peers can invoke

additional methods if appropriate capabilities are supported:

� <validate>. This method is invoked to validate the contents of the specified configuration.

� <commit>. This method is invoked by a client to instruct a server to implement the

candidate configuration data.

� <discard-changes>. This operation is invoked by a NETCONF client if the

candidate configuration should not be committed.

And finally, NETCONF methods introduced in Chisholm et al. [33] in order to support

notification events can also be invoked by NETCONF speakers:

� <subscribe-notification>. This method is issued when a management application

wants to subscribe to a NETCONF notification service.

� <notification>. This method is sent to a management application by a server to

enclose events of interest to the management application.

For each operation, a definition table is provided with the following information:

� Parameters: describes input of the NETCONF method, such as source, target or filter;

� Positive response: describes the output of the NETCONF method to acknowledge the

correct processing of the request;

� Negative response: describes the output of the NETCONF method to indicate that an error

has occurred during the processing of the request.

6.3.1 Retrieve Configuration Data

To retrieve the whole or only part of the configuration datastore of a given managed device,

NETCONF protocol defines a dedicated method called <get-config>. This method is issued

by a management application to the managed device. More information about this method is

captured in Table 6.22.

To illustrate the usage of this method, the example in Figure 6.8 shows a NETCONF

exchange that occurs between a client and a server when retrieving configuration information.

In this example, the client issues a <get-config> operation embedded in an <rpc>
element and destined for the managed device. The core body of this operation encloses a

filter specifiying which portion of the configuration data is to be retrieved from the managed

The NETCONF Protocol 135

device. Indeed, the embedded filter, shown in this example, selects retrieving all configured

interfaces in the router (i.e. server).

As a response to this RPC request, the managed device generates an <rpc-reply>
response carrying the whole list of configured interfaces. For all listed interfaces, all leaf

Figure 6.8 Example of the <get-config> operation

Table 6.22 <get-config> method

Parameter: source The source element specifies the name of the configuration datastore being

queried.

Filter The filter element identifies the portions of the managed device configuration

to retrieve. If no filter is specified, the entire configuration is returned.

Positive response If the device can satisfy the request, the server sends an <rpc-reply>
element containing a <data> element with the results of the query.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request

by the managed device.

136 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

configuration elements, such as interface name (interfaceName) and interface band-

width (interfaceBW), are also retrieved from the managed device. Three interfaces

(eth0, eth1 and eth3) are configured in the managed device. Interfaces eth0 and eth3
are 100 MB/s Ethernet cards, and eth1 is a 10 MB/s Ethernet card.

6.3.2 Get

Unlike the previous method, the <get> operation is used to retrieve both running

configuration and device state data. <get> and <get-config> have been introduced by

NETCONF to avoid potential problems that can arise when trying to enforce some

unhallowed operation such as writing ‘read-only’ data. Table 6.23 gives more information

about the <get> method.

Figure 6.9 provides an example illustrating the invocation of the <get> method.

Therefore, the client issues an <rpc> element including the <get> method. A filter is

also specified in this request to select the portion of the configuration and state data to be

retrieved from the managed device (server). Within this example, the enclosed filter requests

retrieving information related to the interface whose interfaceName is equal to Eth0.
As a response to his request, the server issues an <rpc-reply> element embedding data

related to the interface Eth0. Therefore, the client is notified that Eth0 has a capacity of

100 MB/s. Moreover, this interface has received 155 456 bytes of traffic and sent 871 423

bytes of traffic, and 45 bytes have been dropped.

6.3.3 Delete Configuration Data

In order to delete a configuration datastore, except the <running> configuration one, a

NETCONF client can issue the <delete-config> method. This method is characterized

as in Table 6.24.

To illustrate the usage of the <delete-config> operation, the example in Fig-

ure 6.10 shows the invocation of this method by the client to delete the <startup/>
datastore.

As shown in Figure 6.10, the client sends an <rpc> element specifying the datastore to

delete as indicated inside the <target> tag. Upon receipt of this request, the server

enforces appropriate actions so as to delete the <startup/> datastore. A positive answer is

then sent to the client to notify the successful enforcement of the requested action, using the

<ok> method.

Table 6.23 Definition of the <get> operation

Filter This parameter specifies the portion of the managed device configuration

and state data to retrieve. If this parameter is empty, all configuration

and state data are returned.

Positive response If the device can satisfy the request, the server sends an <rpc-reply>
element containing a <data> element with the results of the query.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request

by the managed device.

The NETCONF Protocol 137

6.3.4 Copy Configuration

The <copy-config> operation is invoked to create or to replace an entire configuration

datastore, specified as a target, with another one, specified as a source. If no configuration

datastore exists, the device creates a new one when invoking the <copy-config> method.

Table 6.25 provides more information about the <copy-config> operation.

Figure 6.11 shows a second example of the <copy-config> operation where the

<running> datastore is replaced by a file located in a given URL. The source file is

Figure 6.9 Example of the <get> operation

Table 6.24 <delete-config definition

Target Target element specifies the name of the configuration datastore to delete.

Positive response If the device was able to satisfy the request, an <rpc-reply> including

an <ok> element is sent to the application manager.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request

by the managed device.

138 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

specified in the <source/> element and the target datastore is enclosed in the <target/>
element, as shown in Figure 6.11. This operation is embedded in an <rpc> element issued by

the client to the managed device. Upon receipt of this request, and once the operation is

successfully enforced by the server, the latter sends back a positive answer to the client by

invoking the <ok> method which is embedded in an <rpc-reply> element.

6.3.5 Edit Configuration Data

The <edit-config> method is responsible for loading all or portions of the configuration

data. The retrieved configuration data are identified by the <config> attribute. Several

operations can be performed on the specified configuration data as listed below:

Figure 6.10 Example of the <delete-config> operation

Table 6.25 Definition of the <copy-config> operation

Target This element specifies the name of the configuration datastore to use as the

destination of the copy operation.

Source This element specifies the name of the configuration datastore to use as

thesource of the copy operation or the <config> element containing

theconfiguration subtree to copy.

Positive response If the device was able to satisfy the request, an <rpc-reply> including

an <ok> element is sent to the application manager.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request

by the managed device.

The NETCONF Protocol 139

� Merge. The configuration data are merged with the configuration at the corresponding

level in the configuration datastore identified by the target parameter (the target parameter

is defined in Table 6.26).

� Replace. The configuration data replace any related configuration in the configuration

datastore identified by the target parameter. Unlike a <copy-config> operation, which

replaces the entire target configuration, only the configuration actually present in the

<config> parameter is affected.

� Create. The configuration data are added to the configuration if and only if the

configuration data do not already exist on the managed device.

� Delete. The configuration data are deleted in the configuration datastore identified by the

target parameter.

Note that the default behavior is the ‘merge’ operation.

Table 6.26 provides additional information about the <edit-config> method.

Figure 6.12 shows an example of the <edit-config>method with the default operation

merge. The management application sends an <edit-config>message so as to set the IP

address of the Eth0 interface to 1.2.3.4. Upon receipt of this message, the managed

device enforces the new configuration and proceeds to setting the IP address of the Eth0
interface to the new assigned IP address by the management application. Once all related

actions are enforced, the managed device issues a response to the management application,

acknowledging that the new configuration changes have been taken into account and are

successfully enforced.

Figure 6.11 Example of the <copy-config> operation

140 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Table 6.26 Definition of the <edit-config operation

Name of the configuration datastore to use as the destination

Parameters Target of the copy operation.

Default operation Selects the default operation for the

<edit-config> request. The

default value for the default operation

parameter is ‘merge’.

Test option The test option element may be specified

only if the device advertizes the :validate
capability. The test option element has

one of the following values:

. test-then-set: perform a validation test

before attempting to set. If validation

errors occur, do not perform the

<edit-config> operation. This

is the default test option;

. set: perform a set without a validation test.

Error option The error option element can take one of

the following values:

. stop-on-error: abort the <edit-config>
operation on first error. This is the default

error option.

. continue-on-error: continue to process configuration

data on error. The error is recorded and a negative

response is generated if any errors occur.

. rollback-on-error: if an error occurs, the server

will stop processing the <edit-config>
operation and restore the specified configuration

to its complete stateat the start of this

<edit-config> operation. This option requires

the managed device to support the

:rollback-on-error capability.

Config A hierarchy of configuration data as defined by one of

the managed device’s data models.

Positive response If the device was able to satisfy the request, an

<rpc-reply> including an <ok> element is

sent to the application manager.

Negative response An <rpc-error> element is included in the

<rpc-reply> errors, or problems have

been encountered when processing the request

by the managed device.

The NETCONF Protocol 141

6.3.6 Close a NETCONF Session

The method <close-session> is invoked in order to terminate gracefully a NETCONF

session. Upon receipt of a <close-session> request by a NETCONF server, the latter

releases all existing locks and resources associated with the corresponding session. This

method is defined in Table 6.27.

Figure 6.13 provides an example of the usage of the <close-session> method.

Within this example, the client sends an <rpc> element requesting the closure of

NETCONF communication between the managed device and the server. Upon receipt of this

request, the server gracefully closes all alive sessions between the server and client and

releases associated resources. All received NETCONF messages, after treating the

<close-session> operation, are ignored by the server.

Figure 6.12 Example of the <edit-config> operation

Table 6.27 Definition of the <close-session> operation

Parameters None.

Positive response If the device was able to satisfy the request, an <rpc-reply> including

an <ok> element is sent to the application manager.

Negative response An <rpc-error> element is included in the <rpc-reply> errors, or

problems have been encountered when processing the request by the

managed device.

142 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

6.3.7 Kill a Session

The method <kill-session> is used to force terminate a NETCONF session. Upon

receipt of a <kill-session> request by a NETCONF peer, the later will abort any

running operation and will release all existing locks and resources associated with this

session. This method is defined in Table 6.28.

If a NETCONF server receives a <kill-session> request while processing a

confirmed commit, it restores the configuration to its state before the confirmed commit

was issued. Figure 6.14 illustrates how a session can be closed by using the <kill-
session> method.

The example in Figure 6.14 shows a client issuing an <rpc> element embedding a

<kill-session> operation. The purpose of this operation is to kill the session identified

by a session-id equal to 15. Upon receipt of this request, the server proceeds to

appropriate actions to handle this request. An <rpc-reply> element is sent back to the

client to notify that no problems have been encountered when processing this request.

Figure 6.13 Example of the <close-session> operation

Table 6.28 Definition of the <kill-session> method

Parameters Session identifier of the NETCONF session to be terminated. If this value is

equal to the current session ID, an ‘invalid value’ error is returned.

Positive response If the device was able to satisfy the request, an <rpc-reply> including

an <ok> element is sent to the application manager.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request

by the managed device.

The NETCONF Protocol 143

6.3.8 Lock NETCONF Sessions

NETCONF protocol uses the <lock> operation in order to lock a configuration datastore

and deny the modification of the configuration to other NETCONF clients. A server

accepting a lock operation should allow only the client holding the lock to modify the

configuration data and should send back appropriate error messages to clients trying to

modify the locked configuration datastore.

Table 6.29 provides more information about the definition of this method.

A first example illustrating the usage of the <lock> operation is provided in Figure 6.15.

This method is carried inside an <rpc> element issued by the client and destined for the

managed device. This request specifies the datastore to be locked. Upon receipt of this

request, the server checks if the <candidate> datastore is not locked by another client. In

this example, the <running> datastore is not locked; therefore, the server accepts the

request, proceeds to enforcing appropriate actions to lock the <running> datastore and

Table 6.29 Definition of the <lock> operation

Target This element specifies the name of the configuration datastore to lock.

Positive response If the device was able to satisfy the request, an <rpc-reply> including

an <ok> element is sent to the application manager.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request by the

managed device. If the lock is already held by another client, the

<error-tag> element will be set to ‘lock denied’, and the

<error-info> element will include the <session-id> of the

lock owner. If the lock is held by a non-NETCONF entity, a

<session-id> of 0 is included.

Figure 6.14 Example of the <kill-session> operation

144 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

assigns the lock to the requesting client. An <rpc-reply> including an <ok> element is

then sent to the client.

A second example (Figure 6.16) provides an overview of the NETCONF exchange that

occurs when errors are encountered when processing a lock request. Upon receipt of the

request by the server, the latter proceeds to appropriate checking regarding the locks

associated with the <candidate> datastore. In this example, the <running> datastore is

already locked by another client. Therefore, the server issues an rpc-reply> with an

appropriate error message to notify the client that its request is denied.

6.3.9 Unlock NETCONF Sessions

In order to release a configuration lock, the <unlock> operation can be invoked by a given

management application. A client is only allowed to unlock a configuration datastore it has

previously locked.

Table 6.30 provides additional information about the <unlock> operation.

A first example illustrating a successful <unlock> operation is shown in Figure 6.17. In

this example, the client issues a request including an <unlock> operation together with the

targeted datastore. This request is received by the server. The latter handles the received

request by enforcing appropriate actions and checking operation. After verifying that this

client holds a lock on the <running> datastore, the server releases this lock and sends back

an <rpc-reply> embedding an <ok> method to notify the client about the successful

handling of its request. Consequently, the <running> datastore is no longer locked and is a

candidate to be locked by any other management application.

The second example (Figure 6.18) illustrates the exchange of NETCONF messages that

occurs when a client tries to unlock a configuration datastore that has been locked by another

NETCONF client. The server notifies the client about the failure of its request and lists the

reasons for its failure in the response embedded in a <rpc-reply> element.

Figure 6.15 Example of the <lock> operation

The NETCONF Protocol 145

6.3.10 Validate Configuration Data

To validate the content of a given configuration, a managed application can issue the

<validate> method specifying the targeted configuration datastore to be validate. This

method is defined in Table 6.31.

Figure 6.19 provides an example illustrating the usage of the <validate> operation. In

this example, the client sends an <rpc> request containing a <validate> operation. The

target datastore is the candidate configuration one. Upon receipt of this request, the server

proceeds to appropriate actions and enforces them so as to validate the candidate config-

uration. Once these actions are successfully enforced, the server issues an <rpc-reply>
element destined for the client, including an <ok> method. This response acknowledges to

the client that validation-related actions have been executed on the candidate configuration

datastore.

Figure 6.16 Example of the <lock> operation with an error message

Table 6.30 Definition of the <unlock> operation

Target This element specifies the name of the configuration datastore to unlock.

Positive response If the device was able to satisfy the request, an <rpc-reply> including

an <ok> element is sent to the application manager.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request

by the managed device.

146 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Figure 6.17 Example of the <unlock> operation

Figure 6.18 Example of the <unlock> operation with errors

The NETCONF Protocol 147

6.3.11 Commit Configuration Changes

A NETCONF client instructs a server to implement the candidate configuration data by

invoking the <commit> method. This method is allowed only if the :candidate
capability is supported by both NETCONF peers. The running configuration datastore

must remain unchanged if the NETCONF managed device was unable to commit all the

changes in the candidate configuration datastore.

Table 6.32 defines the <commit> operation.

Figure 6.20 shows an example of the usage of the <commit> method. This method is

enclosed in an <rpc> element sent by the client to the server. Once this request is received

by the server, the latter implements the changes that have been added to the candidate

configuration and issues a response to the client acknowledging that all commit-related

operations have been achieved and changes implemented with the managed device.

Table 6.31 Definition of <validate> operation

Source This element specifies the name of the configuration datastore being

validated.

Positive response If the device was able to satisfy the request, an <rpc-reply> including

an <ok> element is sent to the application manager.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request

by the managed device. A <validate> operation can fail for

any of the following reasons:

� syntax errors;

� missing parameters;

� references to undefined configuration data.

Figure 6.19 Example of the <validate> operation

148 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

6.3.12 Discard Changes of Configuration Data

A <discard-changes> method can be invoked by a given NETCONF client if the

candidate configuration should not be committed. Therefore, the candidate configuration is

reverted to the current running configuration. This operation discards any uncommitted

changes by resetting the candidate configuration with the content of the running configura-

tion. This method is only invoked when the :candidate capability is supported by both

NETCONF peers (i.e. management application and managed device).

Figure 6.21 provides an example of the usage of the <discard-changes> method.

Once the <discard-changes> method is received by the server, the latter will proceed

to revert the content of the candidate configuration to the content of the running configura-

tion datastore. An <rpc-reply> response including an <ok> method is then sent to the

client as illustrated in Figure 6.21.

6.3.13 NETCONF Notification Procedure

Within the NETCONF architecture, managed devices can send notification messages when

requested by NETCONF management applications. The NETCONF notification procedure

is illustrated in Figure 6.22.

Table 6.32 Definition of the <commit> operation

Parameters None.

Positive response If the device was able to satisfy the request, an <rpc-reply> including

an <ok> element is sent to the application manager.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request

by the managed device.

Figure 6.20 Example of the <comit> operation

The NETCONF Protocol 149

Firstly, the transport session is established and capabilities are exchanged between two

NETCONF peers. Then, the client sends a <create-subscription> to the server to

specify the event class of interest. When an event belonging to the class to which the client

has subscribed occurs, the server sends <notification> messages to the client. These

Figure 6.21 Example of the <discard-changes> operation

Figure 6.22 Notification procedure

150 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

notification messages enclose information about the occurring event. In the first version of

the document [33], notification subscriptions can be modified during the lifetime of a

NETCONF session owing to the invocation of a <modify-subscription> method.

This feature has been dropped in the latest version of that document.

6.3.13.1 Subscribing to Event Notifications

In order to subscribe to an event notification, which consists in receiving asynchronous event

notifications from the server, a NETCONF client sends a <create-subscription>
method to a managed device. The client indicates to the server the type of event notification

it wishes to receive through the ‘stream’ attribute.

This method is defined in Table 6.33.

Figure 6.23 shows the format of a <create-subscription> method. In this

example, the client sends a subscription request to be notified of events belonging to a

given event class. The server accepts the request and sends an <ok> element to the client to

indicate that the subscription is accepted.

Table 6.33 Definition of the <create-subscription> operation

Stream Indicates which event classes are of interest to the client. If not present,

events of all classes will be sent to the client.

Positive response If the device was able to satisfy the request, an <rpc-reply> including

an <ok> element is sent to the application manager.

Negative response An <rpc-error> element is included in the <rpc-reply> errors,

or problems have been encountered when processing the request

by the managed device.

Figure 6.23 Example of <create-subscription>

The NETCONF Protocol 151

6.3.13.2 Sending an Event Notification

Once a management application has subscribed to event classes of interest, the managed

device sends asynchronously notification messages, denoted as <notification>, to that

management application. Notification messages are one-way RPCs and do not require any

response from the management application. In order to retrieve available event classes as

supported by the managed device, the management application has to issue a <get> method

as illustrated in Figure 6.24.

In this example, the management application issues a <get> operation enclosing a filter

specifying the portion of data to be retrieved from the managed device. This filter specifies

showing the list of event streams as supported by the managed device. As a response to this

request, the managed device sends back to the management application an <rpc-reply>
containing two event classe. The first class, the default one, is called NETCONF. This class

supports the notification replay feature. The second event class is called SNMP. This second

class does not support notification replay because the tag is set to false.

6.3.13.3 Terminating a Notification Subscription

To terminate a subscription to an event notification, a management application should issue a

<kill-session> method or terminate the transport session. Under normal condition, i.e.

Figure 6.24 Retrival of event classes

152 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

the NETCONF session is active, the subscription notification terminates when the ‘stop

time’ as indicated in the <create-subscription> message is reached.

6.4 NETCONF Transport Protocol

6.4.1 NETCONF as Transport-independent Protocol

NETCONF protocol is a transport-independent protocol. Therefore it can be activated using

any transport protocol that satisfies a set of requirements, which are listed below:

� Connection oriented transport protocol. NETCONF is connection oriented, requiring a

persistent connection between NETCONF peers.

� Authentication and integrity mechanisms should be supported by the transport protocol.

NETCONF protocol requires secure channels to convey sensitive data and means to

validate the identity of the remote NETCONF peer. NETCONF protocol recommends the

support of RADIUS the remote access dial-in user server (RADIUS) (RFC 2865 [35]),

transport layer security (TLS) (RFC 2246 [36]) and SSH.

Nevertheless, NETCONF requires that any NETCONF implementation must support

the SSH transport protocol mapping as a transport protocol. NETCONF implementa-

tions can support any additional transport protocol that meets the aforementioned

requirements.

In Section 6.4.2, we provide more information about the mapping of using BEEP, SSH

and SOAP as NETCONF transport protocols. Note that the purpose of this section is not to

provide technical details about SSH, BEEP and SOAP but only to describe how NETCONF

is invoked over these transport protocols.

6.4.2 Transport Protocol Alternatives

6.4.2.1 SSH3

This section describes how NETCONF is mapped to the SSH connection protocol (RFC

4254 [16]) over the SSH transport protocol (RFC 4253 [15]). We assume that the reader is

familiar with the SSH system. For readers who want to have detailed knowledge about SSH,

please refer to Refs [9], [12] and [14] to [16].

Where is Secure Shell Being Standardized?
The first version of SSH (aka SSH1) protocol was released in 1995. This first version

provides secure means for interactive applications such as Telnet, RSH, REXEC or

RLOGIN. This version has been updated within the IETF on account of some security

failures. This work has been conducted by the SECSH working group (http://www.ietf.org/

html.charters/secsh-charter.html). Several RFCs have been edited by this working group,

especially the second version of SSH (aka SSH2).

3The reference SSH website is available at www.openssh.org

The NETCONF Protocol 153

The RFCs published by the SECSH working group are listed below:

� The secure shell protocol assigned numbers (RFC 4250 [12]);

� The secure shell protocol architecture (RFC 4251 [13]);

� The secure shell authentication protocol (RFC 4252 [14]);

� The secure shell transport layer protocol (RFC 4253 [15]);

� The secure shell connection protocol (RFC 4254 [16]);

� Using DNS to securely publish secure shell key fingerprints (RFC 4255 [17]);

� Generic message exchange authentication for the secure shell protocol (RFC 4256 [18]);

� The secure shell transport layer encryption modes (RFC 4344 [19]);

� Secure shell session channel break extension (RFC 4335 [20]).

The following IETF Drafts has been adopted by the SECSH working group:

� SSH file transfer protocol (draft-ietf-secsh-filexfer);

� GSSAPI authentication and key exchange for the secure shell protocol (draft-ietf-secsh-

gsskeyex);

� SSH public key file format (draft-ietf-secsh-publickeyfile);

� Diffie–Hellman group exchange for the SSH transport layer protocol (draft-ietf-secsh-dh-

group-exchange);

� Uniform resource identifier scheme for secure file transfer protocol (SFTP) and secure

shell (draft-ietf-secsh-scp-sftp-ssh-uri);

� Secure shell public-key subsystem (draft-ietf-secsh-publickey-subsystem);

� X.509 authentication in SSH (draft-ietf-secsh-x509).

What is SSH?
SSH is a security protocol used for secure remote login over a public/shared network. The

SSH system is structured as follows:

� The transport layer. This layer provides server authentication, confidentiality and

integrity. The transport layer is usually used over TCP. An example of SSH transport

message exchange is provided in Figure 6.25. The main steps that occur during an SSH

transport session are:

– TCP connection setup. The client initiates the connection to the server which listens on

port 22.

– SSH version string exchange. Both sides send a version string. The current SSH

protocol version is 2.0. This negotiation is used to indicate the capabilities of an

implementation and to trigger compatibility extensions.

– SSH key exchange. The encryption algorithm is negotiated. SSH2 supports several

algorithms such as 3des-cbc, blowfish-cbc, twofish256-cbc, twofish128-
cbc, aes192-cbc and serpent192-cbc. Note that the encryption algorithm can

be different for each direction.

– After this stage, SSH data can be exchanged between two SSH peers.

– SSH sessions can be closed by invoking appropriate SSH messages.

� User authentication protocol. This protocol is responsible for authenticating the client to

the server. It runs over the transport layer protocol. An example of user authentication

154 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

message exchange is provided in Figure 6.26. Definitions of these functions are not

provided in this book; for more information about the content of exchanged SSH

messages, please refer to SSH base documents. This service is also denoted as ssh
userauth.

� The connection protocol. This protocol multiplexes the encrypted tunnel into several

logical channels. This layer runs over the user authentication protocol. Note that channels

are identified by channel numbers at both ends of the connection and that channel numbers

for the same channel at the client and server sides may differ.

Figure 6.25 SSH Transport connection setup

Figure 6.26 SSH user authentication protocol

The NETCONF Protocol 155

Initiating NETCONF Sessions over SSH
To run NETCONF over SSH, the following steps should be followed:

1. The NETCONF client establishes an SSH transport connection using the SSH transport

protocol.

2. The NETCONF client and NETCONF server exchange keys for message integrity and

encryption purposes.

3. The NETCONF server invokes the ssh userauth service to authenticate the client.

4. The NETCONF client invokes the SSH connection protocol (this step is also denoted as

the ssh-connection service).

5. After the ssh-connection service is established, the client opens a channel that will

result in a SSH session.

6. Once the SSH session has been established, the user will invoke NETCONF as an SSH

subsystem.

Exchanging NETCONF Methods over SSH
Once a NETCONF session over SSH has been established, NETCONF methods can be

exchanged between NETCONF peers as described in previous sections. Nevertheless, the

special character sequence ‘]]<]]>’ is sent by the client and the server after each XML

document. This character sequence is used to identify the end of an XML document. The

motivation behind the use of this ‘illegal’ XML character is to ease synchronisation of the

client and the server in the case of an error.

Figures 6.27 and 6.28 provide two examples of NETCONF exchange messages. In the first

example, Figure 6.27 illustrates the capability exchange that occurs after NETCONF session

establishment. The second example (Figure 6.28) provides an example of a NETCONF

operation (in this example the <copy-config> method) sent over SSH. These NETCONF

elements are ended by ‘]]<]]>’ characters.

6.4.2.2 BEEP

Where was BEEP Designed?4

The BEEP protocol was specified within the BEEP working group, which disbanded in

March 2002. The main goal of that working group was to develop a standards-track

application protocol framework for connection-oriented, asynchronous request/response

interactions. The challenge of this protocol design was that the designed framework had

4Several implementations of BEEP protocol are available. Examples of these implementations are as follows:

� wodBeep: an ActiveX implementation of the BEEP protocol;

� beepcore-c: C/C++ implementation of RFC 3080 [21] and RFC 3081 [22];

� beepcore-java: Java implementation of RFC 3080 [21] and RFC 3081 [22];

� beepcore-tcl: Tcl implementation of RFC 3080 [21] and RFC 3081 [22];

� BEEPy: a python implementation of RFC 3080 [21] and RFC 3081 [22];

� IBM BeepLite: BEEP implementation written in Java;

� Net::BEEP::Lite: a Perl BEEP implementation;

� PermaBEEP-Java: a toolkit for writing Java-based applications that use the BEEP framework;

� RoadRunner BEEP Framework: open source BEEP implementation written in C;

� JsBEEP: JavaScript implementation of the BEEP protocol.

156 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

to permit multiplexing of independent request/response streams over a single transport

connection and had to support both textual and binary messages. The BEEP working group

produced two RFCs:

� The blocks extensible exchange protocol core (RFC 3080 [21]);

� Mapping the BEEP core onto TCP (RFC 3081 [22]).

We also recommend reading the following RFC, which is not an output of the BEEP WG

but provides much more information about application protocols:

� On the design of application protocols (RFC 3117 [23]).

Figure 6.27 Example of capability exchange over SSH

The NETCONF Protocol 157

What is BEEP?5

BEEP is a framing mechanism allowing simultaneous and independent exchanges of

messages between two nodes. BEEP defines the concept of channel where all exchanges,

such as transport security, user authentication and data exchange, occur.

BEEP supports the mechanisms shown in Table 6.34.

Figure 6.28 Example of the <copy-confing> operation over SSH

5The original name of the BEEP protocol was BXXP (the Blocks eXtensible eXchange Protocol).

Table 6.34 BEEP mechanisms

Mechanism BEEP

Framing Counting with a trailer

Encoding MIME or text/xml

Reporting Three-digit and localized textual diagnostic

Asynchrony Channels

Authentication SASL (RFC 2222 [37])

Privacy SASL or TLS (RFC 2246 [36])

158 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

BEEP defines the following messages:

� MSG. This message is used to send a request asking the server to perform a given task.

� RPY. This message is sent back by the server to inform the client that the requested task

has been completed.

� ERR. This message is sent back by the server to inform the client that an error has

occurred during the execution of the requested task.

NETCONF over BEEP
To enable NETCONF over BEEP, the following steps should be followed (see Figure 6.29):

1. A BEEP session is established between the NETCONF client and the server.

2. The NETCONF client advertizes the NETCONF profile to the server, as illustrated in

Figure 6.30.

3. NETCONF capabilities are exchanged between the client and the server, as illustrated in

Figure 6.31. Each NETCONF peer sends its capabilities, which should be positively

acknowledged by the remote peer.

4. Once capabilities are exchanged, the NETCONF client can send NETCONF methods to

the server. These methods are encoded in RPC elements.

For more information about BEEP-related messages, refer to the BEEP base specifica-

tions.

6.4.2.3 SOAP

Where is SOAP Standardized?
SOAP is a recommendation of W3C (World Wide Web Consortium, URL: http://www.w3.

org). W3C initiated the SOAP initiative in 1999. When the SOAP 1.0 version was released, it

Figure 6.29 NETCONF over BEEP

The NETCONF Protocol 159

Figure 6.30 NETCONF over BEEP: starting a BEEP channel

Figure 6.31 NETCONF over BEEP: exchange of capabilities

160 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

was based only on HTTP. However, in May 2000, SOAP 1.1 was released and included other

transport protocols. Then, the first draft of SOAP 1.2 was presented in July 2001 and

promoted to a ‘recommendation’. The following URLs provide a list of literature about

SOAP and XML-related effort:

� http://www.w3.org/TR/soap12-part0/;

� http://www.w3.org/TR/soap12-part1/;

� http://www.w3.org/TR/soap12-part2/;

� http://www.w3.org/2000/09/XML-Protocol-Charter;

� http://www.w3.org/2002/ws/Activity.html;

� http://www.w3.org/TR/xmlp-reqs/;

� http://www.w3.org/TR/xmlp-am/;

� http://www.w3.org/TR/xmlp-scenarios/.

What is SOAP?
SOAP provides means for exchanging XML-encoded information. It defines a framework

for messages that can be exchanged over a variety of underlying protocols such as HTTP or

BEEP. The format of SOAP messages is shown in Figure 6.32.

Figure 6.32 Format of SOAP message

The NETCONF Protocol 161

Table 6.35 provides an example of the content of a SOAP message.

NETCONF over SOAP
Two alternatives can be taken into account in order to initiate a NETCONF session over

SOAP:

� If SOAP is used with HTTP, then the client sends a POST method to the NETCONF server

identified by an URI.

� If SOAP is used over BEEP, then the SOAP profile should be advertized over a BEEP

session as specified in the above BEEP section. Then the NETCONF can be initiated.

Once a NETCONF session is established, capabilities can be exchanged between the

client and the server. In the case of SOAP over HTTP, the client must send its <hello>
message first. Figure 6.33 provides an example of the capability exchange that occurs.

After the capability exchange phase, the client can send a NETCONF request to the

server. These requests are encoded in RPC and enclosed in a SOAP message.

6.5 NETCONF Capabilities

As mentioned in Section 6.2.6, the NETCONF protocol defines a set of capabilities that can

be supported by a NETCONF speaker, either a client or a server. The implementation of

these capabilities is optional, and, if supported, a NETCONF node should advertize them to

its NETCONF peers. Upon receipt of this advertisement, a remote NETCONF peer uses only

the capabilities it understands and ignores the ones it does not. In this section, a list of

capabilities and their definitions are provided.

For each capability presented, the following information is provided:

� Dependencies: indicates if the support of a capability depends on the support of another

capability;

� Capability identifier: provides the identifier of the capability;

Table 6.35 Example of a SOAP message

<env:Envelope xmlns:env¼"http://www.w3.org/2003/05/soap-envelope">
<env:Header>
<n:alertcontrol xmlns:n¼"http://example.org/alertcontrol">
<n:priority>1</n:priority>
<n:expires>2025-12-21T03:34:34-05:00</n:expires>
</n:alertcontrol>
</env:Header>
<env:Body>
<m:alert xmlns:m¼"http://example.org/alert">
<m:msg>EXAMPLE EXAMPLE EXAMPLE EXAMPLE
</m:alert>
</env:Body>
</env:Envelope>

162 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Modifications to existing operations: lists the modifications to NETCONF operations

when the capability is supported.

6.5.1 URL Capability

A NETCONF device advertizing the support of :url capability has the ability to accept the

<url> element in <source> and target> parameters. The capability is identified by URL

Figure 6.33 Example of capabilities exchange over SOAP

The NETCONF Protocol 163

arguments indicating the supported URL schemes such as the file transfer protocol (FTP),

the hypertext transfer protocol (HTTP), the trivial file transfer protocol (TFTP), etc.

The :url capability is characterized as described in Table 6.36.

The example illustrated in Figure 6.34 showsshows the usage of the <url> element

inside a <copy-config> operation. In this example, the managed device is asked to replace

Table 6.36 URL capability

Dependencies None.

Capability identifier urn:ietf:params:netconf:capability:url:1.0?
scheme¼{name,...}where the ‘scheme’ argument is assigned to

a comma-separated list of scheme names supported by the NETCONF

peer such as ftp, http, etc.

Modifications to . <edit-config> can accept the <url> element as an alternative

existing operations to the <config> parameter. If the <url> element is specified,

then it should identify a local configuration file;

. can accept the <url> element as the value of the <source>
and the <target> parameters;

. can accept the <url> element as the value of the <target>
parameters. If this parameter contains an URL, then it should

identify a local configuration file;

. <validate> can accept the <url> element as the value of the

<source> parameter.

Figure 6.34 Example of <copy-config> with <url> element

164 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

its running configuration datastore with the content of the file located in the indicated

URL.

6.5.2 XPath Capability

A NETCONF device advertising the support of :xpath capability ensures its ability to

accept the use of XPath expression [38] in the filter element. The XPath expression is

evaluated in a context where the context node is the root node, and the set of namespace

declarations are those in scope of the filter element, including the default namespace.

This capability is described in Table 6.37.

The following example shows an example of usage of the XPath expression in the filter

element of the <get> operation. The example illustrated in Figure 6.35 captures a

NETCONF call flow between a client and a server. The server is asked to retrieve both

state and configuration data related to the session initiation protocol (SIP) channel as

Table 6.37 XPath capability

Dependencies None.

Capability identifier urn:ietf:params:netconf:capability:xpath:1.0
Modifications to <get-config> and <get> can accept the value xpath in the

existing operations type attribute of the filter element. When the type attribute is set to

xpath, the contents of the filter element will be treated as an

XPath expression and used to filter the returned data.

Figure 6.35 Example of <get> with Xpath in the filter element

The NETCONF Protocol 165

configured in an asterisk VoIP server (www.asterisk.org). The managed device returns the

content of the ‘SIP.conf’ file and associated state data related to the SIP channel.

6.5.3 Writable-Running Capability

A NETCONF device can advertize its support of :writable-running capability if this

device supports ‘write’ operations on the <running> configuration datastore.

Table 6.38 provides more information about this capability.

As indicated in Table 6.38, a device that supports the :writable-running capability

can invoke the <edit-config> and <copy-config> operations with <running>
configuration as target (e.g. see Figure 6.36 see which illustrates an example of

the <edit-config> operation invoked with <running> as a target configuration

datastore).

Table 6.38 Writable-running capability

Dependencies None.

Capability identifier urn:ietf:params:netconf:capability:
writable-running:1.0

Modifications to <edit-config> and <copy-config> operations can accept the

existing operations <running> element as a <target>.

Figure 6.36 Example of <copy-config> with <running> as a target

166 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

6.5.4 Candidate Configuration Capability

A NETCONF device can advertize that it supports the :candidate capability if a

<candidate> configuration datastore is available on this device. NETCONF operations

can be invoked with the <candidate> configuration datastore as <target> or

<source> elements. A <commit> operation may be performed in order to set the

device’s running configuration to the value of the candidate configuration. The client can

discard any uncommitted changes to the candidate configuration by executing the <dis-
card-changes> operation. Note that a <candidate> configuration datastore may be

shared among several NETCONF sessions. However, it is suitable for a client to lock the

<candidate> configuration datastore before modifying it.

Table 6.39 provides more information about this capability.

Figure 6.37 provides an example of the usage of <candidate> as a target for <lock>
and <unlock> operations.

6.5.5 Confirmed Commit Capability

The :confirmed-commit capability indicates that the server supports the <confirmed>
and <confirm-timeout> parameters which can be enclosed in a <commit> operation.

The timeout period can be adjusted with the <confirm-timeout> element. The default

value of this timeout is 600 seconds.

The NETCONF server must restore the configuration to its state before the confirmed

commit was issued in the following cases:

� The session issuing the confirmed commit is terminated before the confirm timeout

expires.

� The managed device reboots for any reason before the confirm timeout expires.

� A confirming commit is not issued.

Table 6.40 provides more precise details about this capability.

Figure 6.38 shows an example of usage of the <commit> operation. In this example, the

management application sends an <rpc> request in order to set the commit timeout to 300

seconds.

Table 6.39 Candidate capability

Dependencies The : confirmed-commit capability is only relevant if the :candidate

capability is also supported.

Capability identifier urn:ietf:params:netconf:capability:
candidate:1.0

Modifications to . The candidate configuration can be used as a source or target of any

existing operations <get-config>, <edit-config>, <copy-config> or

<validate> operations.

. The candidate configuration can be locked or unlocked using the

<lock>/<unlock> operation with the <candidate>
element as the <target> parameter.

The NETCONF Protocol 167

6.5.6 Validate Capability

The support of the :validate capability means that a NETCONF node can perform

checking operations on a candidate configuration for syntactical and semantic errors before

the enforcement of the configuration. If this capability is supported, the device supports the

<validate> operation and checks at least for syntax errors.

Table 6.41 provides more precise details about this capability.

Refer to Section 6.3 for an example of the usage of the <validate> operation.

Figure 6.37 Example of <lock> and <unlock> operations with <candidate> as a target

Table 6.40 Confirmed commit capability

Dependencies The :confirmed-commit capability is only relevant if the :
candidate capability is also supported.

Capability identifier urn:ietf:params:netconf:capability:
confirmed-commit:1.0

Modifications to The :confirmed-commit capability allows two additional

existing operations parameters to the <commit> operation:

. confirmed: perform a confirmed commit operation;

. confirm timeout: timeout period for confirmed commit, in seconds.

If unspecified, the confirm timeout defaults to 600 seconds.

168 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

6.5.7 Distinct Startup Capability

ANETCONF device can advertize that it supports the :startup capability if a <startup>
configuration datastore is available on this device. In order to update the <startup>
configuration datastore to the current <running> configuration, a <copy-config> opera-

tion must be issued. Table 6.42 provides more information about this capability.

Figure 6.38 Example of <commit> with <confirm-timeout> as a target

Table 6.41 Validate capability

Dependencies None.

Capability identifier urn:ietf:params:netconf:capability:
validate:1.0

Modifications to None.

existing operations

Table 6.42 Distinct startup capability

Dependencies None.

Capability identifier urn:ietf:params:netconf:capability:startup:1.0
Modifications to The :startup capability adds the <startup/> configuration

existing operations datastore to arguments of several NETCONF operations. The server

must support <startup> being used as a <source> parameter for

<get-config> and also for <validate> if :validate capability is

supported, as <target> for <lock> and <unlock> and as both

<source> and <target> for <copy-config>.

The NETCONF Protocol 169

Figure 6.39 provides an example of invoking a <copy-config> method to update the

content of the <startup> configuration with the content of the running configuration.

6.5.8 Rollback on Error Capability

A NETCONF device advertizing the support of :rollback-on-error capability can

indicate a rollback-on-error value in the <error-option> parameter response to

received <edit-config> operations.

Table 6.43 provides some information about this capability.

Figure 6.39 Example of <copy-config> with <startup> as a target

Table 6.43 Rollback on error capability

Dependencies None.

Capability identifier urn:ietf:params:netconf:capability:
rollback-on-error:1.0

Modifications to <edit-config> can have a rollback-on-error value to

existing the <error-option> parameter

170 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

6.5.9 Notification Capability

The support of notification capability by a given managed device denotes its ability to send

event information, statistical data and other changes to applications that subscribed to this

service. Other criteria may be enclosed in the notification subscription in order to select

event classes of interest to the management application.

Table 6.44 provides some information about this capability.

6.6 Configuring a Network Device

This section provides some guidelines when configuring a network device. It also

describes NETCONF operations that should be invoked for correct configuration beha-

viors. Figure 6.40 presents a NETCONF client communicating with a network device via

a NETCONF channel over one of the available transport protocols (SSH, BEEP or SOAP).

In order to configure this network device, the following tasks should be performed by the

management application, in this order:

1. Acquiring the configuration lock. In order to avoid configuration inconsistency, it is

recommended, for a NETCONF client desiring to configure a network device, to acquire

the lock on the configuration datastore. This is achieved by invoking the <lock>
method, as illustrated in example 1 presented in Figure 6.41.

2. Loading the update. Then the new configuration can be loaded onto the network device,

as illustrated in example 2 of Figure 6.41. If the :candidate capability is supported, it

is recommended that the candidate datastore be used as a target parameter of NETCONF

operations, as illustrated in example 1 of Figure 6.42.

3. Validating the incoming configuration. When the configuration is loaded or the candidate

datastore is modified, the client is invited to invoke the <validate> method, as

illustrated in example 3 of Figure 6.41 or in example 2 of Figure 6.42.

Table 6.44 Notificiation capability

Dependencies None.

Capability identifier urn:ietf:params:netconf:capability:
notification:1.0

Modifications to <subscribe-notification> and <notification>
existing operations are supported by the managed device.

Figure 6.40 Configuration use case

The NETCONF Protocol 171

4. Saving the running configuration. In order to avoid misconfiguration, it is recommended

that the running datastore be saved before enforcing the new configuration so as to be able

to regress to the previous device operating state. This operation can be achieved by

invoking the <copy-config> method, as illustrated in example 4 of Figure 6.41.

Figure 6.41 Set of NETCONF operations to configure a network device (:candidate and :
confirmed-commit capabilities are not supported)

Figure 6.42 Set of NETCONF operations to configure a network device

172 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

5. Changing the running configuration. Once the running configuration datastore is saved,

the client is invited to invoke the <edit-config> so as to apply the new configuration

or to promote the candidate datastore to the running datastore via a <commit> method.

See example 5 in Figure 6.41 or example 3 in Figure 6.42.

6. Testing the new configuration. When the new configuration is promoted to running state,

the manager should test the behavior of the device and conclude if the new configuration

is valid or not.

7. Making the change permanent. When performed tests have confirmed that the behavior of

the device is as expected, the running datastore is copied to the startup datastore, as

shown in example 7 in Figure 6.41 or in example 4 in Figure 6.42.

8. Releasing the configuration lock. Once all configuration tasks have been performed, the

lock should be released. See example 8 in Figure 6.41.

6.7 NETCONF Content Layer

The NETCONF protocol separates protocol operations from data models. Data model design

is clearly beyond the scope of the NETCONF working group (at least the current charter of

the WG). The design of data models that will be conveyed in NETCONF messages should be

developed by application developers themselves. Within the IETF, an initiative to promote

NETCONF data models has been launched. At least two NETMOD BOF have been held

during previous IETF meetings so as to gather the community interest and to argue the need

for clear definitions of data models, but no working group has been created yet.

References

[1] Enns, R. et al., ‘NETCONF Configuration Protocol’, RFC 4741, December 2006.

[2] Case, J. et al., ‘Introduction and Applicability Statements for Internet Standard Management

Framework’, RFC 3410, December 2002.

[3] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja, R. and Sastry, A., ‘The COPS (Common Open

Policy Service) Protocol’, RFC 2748, January 2000.

[4] Chan, K. et al., ‘COPS Usage for Policy Provisioning (COPS-PR)’, RFC 3084, March 2001.

[5] Distributed Management Task Force, ‘Common Information Model (CIM) Specification Version

2.2’, DSP 0004, June 1999.

[6] McCloghrie, K., Perkins, D. and Schoenwaelder J., ‘Structure of Management Information Version

2 (SMIv2)’, STD 58, RFC 2578, April 1999.

[7] McCloghrie, K., Fine, M., Seligson, J., Chan, K., Hahn, S., Sahita, R., Smith, A. and Reichmeyer,

F., ‘Structure of Policy Provisioning Information (SPPI)’, RFC 3159, August 2001.

[8] Schoenwaelder, J., ‘Overview of the 2002 IAB Network Management Workshop’, May 2003.

[9] Wasserman, M. and Goddard, T., ‘Using the NETCONF Configuration Protocol over Secure Shell

(SSH)’, RFC 4742, December 2006.

[10] Lear, E. and Crozier, K., ‘Using the NETCONF Protocol over Blocks Extensible Exchange

Protocol (BEEP)’, RFC 4744, December 2006.

[11] Goddard, T., ‘Using the Network Configuration Protocol (NETCONF) over the Simple Object

Access Protocol (SOAP)’, RFC 4743, December 2006.

[12] Lehtinen, S. and Lonvick, C., ‘The Secure Shell (SSH) Protocol Assigned Numbers’, RFC 4250,

January 2006.

The NETCONF Protocol 173

[13] Lonvick, C. et al., ‘The Secure Shell (SSH) Protocol Architecture’, RFC 4251, January 2006.

[14] Ylonen,T.andLonvick,C., ‘TheSecureShell (SSH)AuthenticationProtocol’,RFC4252, January2006.

[15] Ylonen, T. and Lonvick, C., ‘The Secure Shell (SSH) Transport Layer Protocol’, RFC 4253,

January 2006.

[16] Ylonen, T. andLonvick, C., ‘The Secure Shell (SSH)ConnectionProtocol’, RFC4254, January 2006.

[17] Schlyter, J. and Griffin, W., ‘Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints’,

RFC 4255, January 2006.

[18] Cusack, F. and Forssen, M., ‘Generic Message Exchange Authentication for the Secure Shell

Protocol (SSH)’, RFC 4256, January 2006.

[19] Bellare, M., Kohno, T. and Namprempre, C., ‘The Secure Shell (SSH) Transport Layer Encryption

Modes’, RFC 4344, January 2006.

[20] Galbraith, J. and Remaker, P., ‘The Secure Shell (SSH) Session Channel Break Extension’, RFC

4335, January 2006.

[21] Rose, M., ‘The Blocks Extensible Exchange Protocol Core’, RFC 3080, March 2001.

[22] Rose, M., ‘Mapping the BEEP Core onto TCP’, RFC 3081, March 2001.

[23] Rose, M., ‘On the Design of Application Protocols’, RFC 3117, November 2001.

[24] New, D. and Rose, M., ‘Reliable Delivery for syslog’, RFC 3195, November 2001.

[25] Rose, M., ‘A Transient Prefix for Identifying Profiles under Development by the Working Groups

of the Internet Engineering Task Force’, RFC 3349, July 2002.

[26] New, D., ‘The TUNNEL profile’, RFC 3620, October 2003.

[27] Farrell, S. et al., ‘Securely Available Credentials Protocol’, RFC 3767, June 2004.

[28] Newton, A. and Sanz, M., ‘Using the Internet Registry Information Service (IRIS) over the Blocks

Extensible Exchange Protocol (BEEP)’, RFC 3983, January 2005.

[29] O’Tuathail and Rose, M., ‘Using the Simple Object Access Protocol (SOAP) in Blocks Extensible

Exchange Protocol (BEEP), RFC 4227, January 2006.

[30] Gudgin, M., Hadley, M., Moreau, J.J. and Nielsen, H., ‘SOAP Version 1.2 Part 1: Messaging

Framework’, W3C Recommendation REC-soap12-part1-20030624, June 2002, http://www.w3.

org/TR/soap12-part1/.

[31] Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C.M. and Maler, E., ‘Extensible Markup

Language (XML) 1.0 (Third Edition)’, W3C Recommendation, 4 February 2004.

[32] Berners-Lee, T., Fielding, R. and Masinter, L., ‘Uniform Resource Identifiers (URI): Generic

Syntax’, RFC 2396, August 1998.

[33] Chisholm, S. et al., ‘NETCONF Event Notifications’, draft-ietf-netconf-notification-08.txt, July

2007 (work in progress).

[34] Chisholm, S. and Adwankar, S., ‘Framework for NETCONF Data Models’, ID draft-chisholm-

netconf-model-06, January 2007.

[35] Rigney, C., Willens, S., Rubens, A. and Simpson, W., ‘Remote Authentication Dial-In User Service

(RADIUS)’, RFC 2865, June 2000.

[36] Dierks, T. and Allen, C., ‘The TLS Protocol Version 1.0’, RFC 2246, January 1999.

[37] Myers, J., ‘Simple Authentication and Security Layer (SASL)’, RFC 2222, October 1997.

[38] Clark, J. and DeRose, S., ‘XML Path Language (XPath) Version, 1.0’, W3C REC REC-xpath-

19991116, November 1999.

174 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

7

Control and Provisioning
of Wireless Access Points
(CAPWAP)

In recent years, radio access technologies have rapidly evolved, often deprecating the well-

known RJ45-cable widely used to access companies’ network first, or to reach the Internet

gateway at home. Another usage of radio technology has also emerged: extending network

access infrastructure for network operators, to provide Internet access to roaming and mobile

users. Control and provisioning of wireless access points (CAPWAP) intends to address

access point management challenges, especially when massive deployment of this equip-

ment exists. So far, home access is not affected, but enterprises and network operators have

to deal with the difficulties of a well-managed, secured, wireless access infrastructure

composed of hundreds or thousands of access points. Whereas one might only think of the

widespread 802.11 ‘WiFi’ technology, CAPWAP is also open to the 802.16 ‘WiMax’

standard, taking into consideration that 802.11 might not be suitable for network operators to

provide an acceptable coverage in public areas without a considerable investment effort to

deploy access points.

At the time of writing this book, CAPWAP is not a standardized protocol yet, and the

ongoing work for standardizing this protocol reflects the efforts done on management,

control and provisioning of access points (APs), aiming to have interoperating APs

developed from various vendors. The main goal of CAPWAP is to provide an interoperable

solution to centralize authentication and policy enforcement functions. This effort is part of

the IETF, coordinating with IEEE 802 on this specific task.

This chapter will present wireless LAN (WLAN) operational challenges as identified by

CAPWAP, as well as specific CAPWAP concepts and terminology. CAPWAP objectives will

then be presented, followed by a brief presentation of candidate protocols that have been

reviewed to address CAPWAP requirements, and a more detailed review of the lightweight

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

access point protocol (LWAPP), which has been chosen and modified to be the CAPWAP

protocol, and renamed accordingly.

7.1 CAPWAP to Address Access Point Provisioning Challenges

As a matter of fact, WLAN access technologies bring along a set of new issues that have to

be addressed specifically. These issues are presented in RFC 3990 [1] and are the foundation

of CAPWAP developments which will be detailed later in this chapter. Basically, four major

problems have been identified in managing wireless access devices:

� The limited coverage of radio technology used (especially with 802.11) requires a massive

deployment of access points. All these devices are network elements that require

monitoring, management and control, on a large scale. Often, device configurations are

equivalent but not always identical: the problem lies in the need for a very rigorous

management framework.

� The large number of APs deployed by a network administrator makes its job very difficult

during the configuration phase: maintaining a consistent configuration among all access

points constituting the access infrastructure is a challenge. Beyond the time required for

configuration (often implying service disruption), the network remains in an inconsistent

state for a certain period of time.

� The WLAN technology being used is very sensitive and often requires specific tweaks

depending on the AP location: there may be radio interferences, or too many users sharing

the same AP. All these difficulties require a specific consideration of each network access

point. Periodic and rigorous monitoring is required, as well as time and competences to

manage the access infrastructure properly.

� Securing the network is essential: access points are supposed to be deployed in every

public place, and it is important for a network administrator to prevent malicious users

from plugging in to install a rogue access point, or to steal security parameters that would

have been configured in the access device.

These problems are well known for network operators and access point vendors. Of

course, proprietary solutions and implementations already exist to address these issues. But

here comes the fifth and transversal management challenge: interoperability. It is nowadays

impossible for network administrators to have a plain and consistent view of their wireless

access infrastructure, except if all devices are provided by the same vendor.

7.2 CAPWAP Concepts and Terminology

One of the first CAPWAP tasks was to provide an architecture taxonomy of various WLAN

accesses, in order to give a structure and a common vocabulary to concepts that would be

manipulated to build an interoperable management system for access points. This work is

documented in RFC 4118 [2] and proposes the grouping of concepts adopted by AP vendors,

extracted from a survey conducted among a dozen of them. Furthermore, this document

provides a specific terminology related to the developed concepts.

WLAN architectures are composed of various elements (see Figure 7.1): stations (STA)

and access points (APs) are elements that any network engineer can easily figure out. Other

concepts have a specific designation, such as the Basic Service Set (BSS), usually identified

176 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

in station configuration wizards as the SSID. The Extended Service Set (ESS) represents a

common BSS usage made by a set of APs connected by the Distribution System (DS). The

DS provides network resources for several APs to communicate between each other. Using

these communication facilities, APs and the DS make a wide wireless network identified as a

large BSS: the ESS.

The AP by itself is an important concept used in CAPWAP. It is not only a network

element that enables a station to reach a network, it also breaks down into functional

elements that may be spread at different places within the DS, depending on the architecture:

� The Wireless Termination Point (WTP) is the physical device in charge of transmitting

data from and to the station.

� The Access Controller (AC) (also called the WLAN controller) implements WLAN

logical functions. More generally, it is the equipment that centralizes authentication and

policy enforcement functions for wireless networks.

CAPWAP introduces the notion of CAPWAP functions and 802.11 functions. 802.11

functions can be defined as mechanisms used to make possible ‘over-the-air’ communica-

tions between two entities. Among the numerous 802.11 functions, one can mention

association and authentication phases, but also 802 frame transmission and retransmission

WTP

WTP

AC

STA1

DS

BSS x

WTP AC

AP

ESS a

STA2

STA3

WTP

WTP

AC

BSS y

STA6

STA5

STA4

Figure 7.1 CAPWAP concepts and terminology

Control and Provisioning of Wireless Access Points (CAPWAP) 177

machinery. CAPWAP functions are defined to centralize authentication and policy

enforcement, and are focused on radio management, configuration and monitoring, WTP

or AC configuration or firmware upgrade, for instance. This distinction is essential to

understand the difference between the level of ‘control’ functions: some control functions

are exclusively related to the 802.11 transmission layer, whereas other management and

provisioning functions of WLAN equipment are CAPWAP control functions.

From the logical separation of WTP and AC network functions, three distinct types of

architecture have been identified in vendor solutions analyzed within the RFC 4118 survey [2]:

� Autonomous WLAN architecture. This architecture is formed by one or a set of stand-alone

APs that embed both WTP and AC functions. This kind of AP is often used in home

environments as well as in companies, usually manageable through a web interface or

SNMP. This type of architecture does not provide any resource sharing, as each access

point is completely autonomous.

� Centralized WLAN architecture. This architecture is hierarchical in the sense that multiple

WTPs are connected to a centralized access controller that controls and manages WTPs,

but also may be in the data path to achieve layer-2 or layer-3 treatment over the traffic

coming from and to WTPs. In this kind of architecture, network administrators can

manage WTPs by accessing to the centralized access controller. The centralized WLAN

architecture itself has three variants:

– split MAC architecture: some time-sensitive 802.11 management frames are processed

in the WTP, whereas other management frames are transmitted and treated by the AC

(see Figure 7.2);

– remote MAC architecture: no 802.11 management frames are processed by the WTP, all

frames are processed at the AC level. The WTP only ensures 802.11 PHY functions

(see Figure 7.3);

– local MAC architecture: most 802.11 management frames are handled by the WTP, the

whole MAC function is local to the WTP (see Figure 7.4).

AC

WTP

Non real-time

802.11 MAC

802.11 PHY

Real-Time

802.11 MAC

CAPWAP

functions

Figure 7.2 Function repartition with split MAC architecture

178 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Distributed WLAN architecture. In this architecture, all wireless nodes are potentially part

of the network infrastructure. Nodes are interconnected to each other through a 802.11

link, or wired link, and thus form a distributed and meshed network of wireless nodes.

It is interesting to note that CAPWAP does not intend to take into account the remote

MAC subarchitecture described above for the CAPWAP protocol definition: the WTP is

acting as a simple data transfer pass-through, and it is foreseen that CAPWAP will not

provide any help to manage this kind of equipment. Therefore, the CAPWAP framework

stays essentially focused on the centralized WLAN architecture in its split MAC and local

MAC designs.

AC

WTP

802.11 MAC

802.11 PHY

CAPWAP

functions

Figure 7.3 Function repartition with remote MAC architecture

AC

WTP

802.11 MAC

802.11 PHY

CAPWAP

functions

Figure 7.4 Function repartition with local MAC architecture

Control and Provisioning of Wireless Access Points (CAPWAP) 179

Connectivity between WTP and AC is realized over a ‘switching segment’ and can be

achieved in different modes: directly connected, connected over a layer-2 (switch) element

or connected over a router. The CAPWAP protocol is designed to work between WTPs and

ACs over the switching segment, but does not define inter-AC communication. Direct

communication between WTPs is not considered either.

7.3 Objectives: What do we Expect from CAPWAP?

Based upon the list of identified problems and already available solutions and architectures,

CAPWAP proposed a set of requirements that the CAPWAP protocol has to meet in order to

provide satisfactory solutions for network administrators in terms of security, operation and

architecture, and more generally to follow network operators’ needs, as documented in

RFC 4564 [3]. The CAPWAP protocol is intended to work within the CAPWAP framework,

i.e. in split MAC and local MAC architecture designs, in an interoperable and scalable

manner.

The CAPWAP protocol has to follow a list of requirements, from mandatory to desirable,

in the different aforementioned categories, namely general, security, operation and archi-

tecture:

� Logical groups (architecture, mandatory). A logical group can be defined by the

concurrent usage of a physical WTP that can be used for different SSIDs. By using a

single physical infrastructure, the network administrator is able to create multiple logical

networks (virtual APs). The CAPWAP protocol must be compatible with this usage, by

enabling management of separated logical groups over a single physical network.

� Support for traffic separation (operations, mandatory). As the CAPWAP protocol

addresses communications between WTPs and ACs, data and control traffic have to be

separated. This is important since it is usual to deploy logical groups, and therefore traffic

separation is required for security reasons. Traffic separation also gives the opportunity to

prioritize data and control traffic differently in the case of congestion, for instance.

� Wireless terminal transparency (operations, mandatory). Using the CAPWAP protocol

must not have any compatibility issues with wireless terminals (stations), considering that

CAPWAP communications only occur between ACs and WTPs.

� Configuration consistency (operations, mandatory). A large number of WTPs can be

managed by a single AC, and it is required for the latter to have a consistent view of the

current WTP configurations and states. The CAPWAP protocol must propose a mechan-

ism to provide regular WTP monitoring data coming to the attached AC.

� Firmware trigger (operations, mandatory). The firmware update is usually a crucial

administrative operation that needs to be performed in a reliable and fast manner, in order

to ensure a plain WLAN consistency. The CAPWAP protocol must provide a trigger to

start a WTP firmware update. It is important to note that the firmware transfer operation

itself is not a requirement of the CAPWAP protocol, even though it can be supported.

� Monitoring and exchange of a system-wide resource state (operations, mandatory). The

wireless environment of both WTP and AC has to be monitored as well, and has to be

available for these devices. The CAPWAP protocol must provide a mechanism to allow

bidirectional exchange of monitoring information regarding the wireless environment

(such as the wireless medium status and the switched segment status).

180 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Resource control (operations, mandatory). The quality of service provided to the end-user

is directly related to the parameters applied at both the wireless medium and the switched

segment. By nature, QoS parameters are different for these two types of environment. The

CAPWAP protocol must be able to provide AC and WTP QoS parameters corresponding

to each medium constraint (e.g. providing 802.11e QoS parameters for the WLAN

segment), and with appropriate adaptation in order to ensure coordination of QoS policies

on both segments. Other IEEE 802 network resource parameters (still under definition)

can also be applied to enhance user experience: the CAPWAP protocol must be able to

adapt itself to these new parameters.

� Protocol security (security, mandatory). Owing to the sensitive nature of the WTP/AC

exchanges, it is required for the CAPWAP protocol to provide a mechanism that allows

mutual authentication between entities (in order to prevent a rogue WTP from connecting

to the AC, compromising the whole WLAN infrastructure), as well as mechanisms to

secure exchanges occurring between these entities. CAPWAP protocol must provide

message integrity, authenticity and confidentiality.

� System-wide security (security, mandatory). Security threats are likely to come from the

wireless segment, in addition to the switched segment mentioned above. The CAPWAP

protocol has to be designed in a way that the centralized architecture cannot be

compromised by attacks coming from malicious external (wireless) terminals.

� IEEE 802.11i considerations (operations, mandatory). Authentication and data encryption

are obviously widely used in wireless environments. Usually, the stand-alone AP ensures

the whole IEEE 802.11i operations, being both authenticator and encryption point. Since

the centralized WLAN architecture splits the AP into two distinct parts (WTP and AC),

applying 802.11i security is definitely a challenge. Depending on the subarchitecture used

(local MAC or split MAC), the same security mechanisms can be applied in different

equipment. The authenticator function is usually provided by the AC, but the encryption

can be performed either by the AC (local MAC) or by the WTP (split MAC). When the

WTP is in charge of encryption, the AC must provide appropriate keys to the WTP. In

general, the CAPWAP protocol must be able to determine the exact role of each device in

802.11i security mechanisms, and provide appropriate transfer methods to provide keys

whenever the WTP is the encryption point.

� Interoperability (architecture, mandatory). An access controller can be compatible with

both split MAC and local MAC subarchitectures. Therefore, the CAPWAP protocol must

provide mechanisms that enable the AC to determine actual WTP capabilities, in order to

run different kinds of hardware on a single WLAN infrastructure. The required capability

exchange mechanism must accommodate different modes of the split MAC case: MAC

functions are split into two different pieces of equipment, but precise MAC functions have

to be determined in order for WTP and AC to interoperate properly. The definition and

denomination of each MAC function is provided by the IEEE 802.11 AP Functionality

Ad-Hoc Committee.

� NAT traversal (general, mandatory). It is possible that, in some circumstances, the access

controller and WTP can reach each other through a NAT gateway. In this case, the

CAPWAP protocol must still operate as long as the NAT configuration is known from the

parties.

� Multiple authentication mechanisms (architecture, desirable). The use of multiple logical

groups may require different kinds of authentication procedure: one logical group may

Control and Provisioning of Wireless Access Points (CAPWAP) 181

adopt 802.11i, and another may choose to authenticate with PANA, or any other

authentication protocol. The CAPWAP protocol should provide enough flexibility to

configure logical groups with different authentication mechanisms.

� Support for future wireless technologies (architecture, desirable). Even though 802.11

access technology is widely available in public areas, it is also very likely that other

technologies will be largely deployed in the future, trying to overcome WiFi drawbacks.

One can think of WiMAX (IEEE 802.16), but there should not be any limitations in the

access technology used for CAPWAP to work properly.

� Support for new IEEE requirements (architecture, desirable). IEEE 802.11 committees

are still very active, and enhancements to the standards are regularly proposed. The

CAPWAP protocol should remain compatible with these enhancements, considering that

minor adaptation may be required to the protocol to integrate it.

� Interconnection (architecture, desirable). CAPWAP is an IP protocol, and therefore is

intended to work over IPv4 and IPv6. This is the most efficient way to ensure

interconnection compatibility between ACs and WTPs. In general, CAPWAP must not

be dependent on the transport method chosen by the network administrator.

� Access control (operations, desirable). Additional information may be required by the AC

to determine the exact nature of wireless terminal access or WTP access. For instance, the

initial attachment of a WLAN terminal is different from a secondary attachment required

in mobility situations.

The CAPWAP protocol also has to answer to more general requirements, such as vendor

independence or vendor flexibility, where CAPWAP must not stick to any vendor architecture

solution implementation but should be flexible enough to provide ways for vendors to provide

specific enhancements to a basic set of features. A specific operator need is also taken into

consideration, especially in what concerns the AP fast handoff: in mobility scenarios, the

CAPWAP protocol must not affect the delay of fast handoff procedures. However CAPWAP

may support optimizations that help to provide fast handoff.

7.4 CAPWAP Candidate Protocols

Many protocols have been put forward as candidates for the CAPWAP protocol. All these

protocols have been evaluated in RFC 4565 [4] through a complete list of objectives which

are mostly described above:

� CAPWAP tunneling protocol (CTP) [5];

� secure light access point protocol (SLAPP);

� wireless LAN control protocol (WICOP);

� lightweight access point protocol (LWAPP) [6].

The LWAPP protocol was chosen to be the CAPWAP protocol, as it complied with all

requirements. Other candidates were not that far behind LWAPP in this evaluation: for

example, SLAPP offered only partial compliance to three objectives, but CTP and WICOP

failed to comply with security requirements.

Only the CAPWAP protocol (ex-LWAPP) will be described in the following section,

as other candidate protocols will likely disappear in the future. Since CAPWAP

182 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

modified large pieces of LWAPP, the latter will follow its own standardization path from

now on.

7.5 The CAPWAP Protocol

Although the CAPWAP protocol (based on LWAPP) is not 100 % finished yet, the most

important parts are present, and have already been discussed for years. Some implementa-

tions are already available, and major actors of the WLAN world have stated their intent to

adopt this protocol in the future. There is no doubt that the CAPWAP protocol has a very

promising future as a WLAN management protocol.

The LWAPP protocol was first designed in the context of seamless mobility at the IETF, in

the SEAMOBY working group which was disbanded in fall 2004. Most of the SEAMOBY

discussions have shifted to the MOBOPTS research group of the IRTF, but the provisioning

part of the SEAMOBY activities found its second breathe within CAPWAP. LWAPP was

adapted to CAPWAP objectives, specifically to support the local MAC architecture, since

only split MAC was supported at first. For IETF, having the LWAPP protocol was a real

opportunity to go ahead at a fast pace, meeting its requirements almost perfectly.

CAPWAP [7] is an extensible protocol that defines a protocol machinery and a set of

messages intended to provide answers to CAPWAP objectives. Some CAPWAP messages

are seen as generic, since they can be used in every environment making use of WTP and AC

concepts. These messages are not technology specific, and are defined to orchestrate

management exchanges between WTP and AC. CAPWAP also leaves space for specific

messages that are more tied to the WLAN technology used: these messages define the

‘binding’ of CAPWAP to a specific WLAN technology. These bindings are not defined

within the CAPWAP protocol specification, but rather in companion documents: the binding

for 802.11 is defined in [8], and other bindings that will be needed in the future for other

technologies such as 802.16 should be specified in the future. In order to do so, CAPWAP

has been defined to make possible protocol extensions by extending the predefined set of

messages and the pertaining content.

Even though the CAPWAP protocol is based upon LWAPP, some adaptations were

required completely to fulfill CAPWAP objectives. As LWAPP continues its own life and

evolution in the standardization process, CAPWAP imposes the use of DTLS (RFC 4347 [9])

for securing the communications between WTP and AC (inherited from the SLAPP security

framework), and suppresses the possibility offered by LWAPP to convey frames from one

entity to the other using its proprietary L2 encapsulation. DTLS encryption is only

mandatory for control packets, and is optional for data frames. DTLS session establishment

between WTP and AC is tightly bound to the CAPWAP state machine, and replaces the

proprietary solution developed for LWAPP.

A CAPWAP key characteristic is to convey 802.11 frames from the WTP to the AC, using

UDP/IPv4 or UDP-Lite/IPv6 as transport technology, and thereby complying with the

connectivity modes shown in Figure 7.5. In split MAC mode, all 802.11 data and CAPWAP

management frames are transmitted to the AC, whereas the local MAC mode makes it

possible to tunnel management frames to the AC, and to bridge data frames locally or tunnel

them in 802.3 frames to the AC.

CAPWAP data frames and control packets can easily be distinguished from each other

since they make use of different UDP ports. Each CAPWAP packet embeds a specific

Control and Provisioning of Wireless Access Points (CAPWAP) 183

CAPWAP header which is followed by a payload, constituting either a control header

(followed by specific control messages) or the 802 data frame coming from the wireless

terminal. All CAPWAP control packets are themselves encapsulated within a DTLS packet,

except for discovery packets since DTLS session establishment is not performed yet at this

stage. In order to optimize detection between DTLS-encrypted and unsecured CAPWAP

packets, a common preamble has been defined, indicating the type of CAPWAP packet

(DTLS or not). A view of the different types of possible CAPWAP packet is shown in

Figure 7.6.

In spite of its use of UDP, the CAPWAP protocol has been designed to provide a reliable

transportation for control messages. Firstly, each message conveying important provisioning

information has a corresponding and explicit acknowledgment message. Secondly, a ‘keep-

alive’ mechanism sends messages regularly between WTP and AC to ensure connectivity

aliveness. Finally, CAPWAP defines several timers that must be used in order to coordinate

WTP to AC exchanges, detect connectivity failure and ensure a proper backup procedure. It

is important to note that CAPWAP messages are not ordered, except for fragmentation

purposes: user data traffic ordering should be performed by upper layers (using the TCP/IP

layer, for instance), and CAPWAP control messages have no specific need for that. A

sequencing mechanism is defined in order to match each response message to the

corresponding request. This way, multiple requests can be sent concurrently, but the protocol

WTPs

Router

Switch

AC

Figure 7.5 Possible connections between WTPs and an AC

184 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

is not defined to use this sequence number as a hint to order control messages. When massive

management data have to be sent between WTP and AC (e.g. firmware download, debug

info, etc.), each control message used for this is specifically acknowledged before the next to

come. While this way to operate can be seen as an inefficient way to transfer a large amount

of data, it has the advantage of simplifying the protocol machinery by avoiding sophisticated

features only used for exceptional events.

CAPWAP control messages are themselves composed of ‘message elements’, which are

equivalent to attributes in other protocols (RADIUS, Diameter) and are transmitted using the

TLV format. Control elements are defined following the required information that has to be

sent between WTP and AC, in adapted control messages.

CAPWAP operations are separated in distinct phases that have to be performed

successively:

� Discovery phase. During this phase, wireless termination points run a discovery mechan-

ism in order to gain knowledge of reachable access controllers with which it will be

possible to establish a DTLS session.

� DTLS session establishment phase. The WTP and the AC start an exchange to establish a

DTLS session that will be used to authenticate the messages and to encrypt them. After

this phase, communication between the WTP and the AC is encrypted and authenticated.

� Joining phase. Once the DTLS session is established between the WTP and the AC, the

WTP initiates the joining phase to check whether the image version present on the WTP is

up-to-date.

IP UDP
CAPWAP
Header

Control
Header

Message elements

IP UDP
CAPWAP
Header

Control
Header

Message elementsDTLS
Header

CAPWAP DTLS
Header

DTLS
Trlr

Authenticated

Encrypted

CAPWAP Control Message (Discovery messages, no DTLS)

CAPWAP Control Message (DTLS)

IP UDP
CAPWAP
Header

Wireless payload

IP UDP
CAPWAP
Header

DTLS
Header

CAPWAP DTLS
Header

DTLS
Trlr

Authenticated

Encrypted

CAPWAP Data Message (no DTLS)

CAPWAP Data Message (DTLS)

Wireless payload

Figure 7.6 CAPWAP packets

Control and Provisioning of Wireless Access Points (CAPWAP) 185

� Configuration phase. During the configuration phase, the WTP will send its global

configuration parameters, as well as specific parameters related to its WLAN technology

binding. Depending on the WTP configuration state, the AC sends to the attached WTP

the proper configuration to run.

� Running phase. Once in running phase, the WTP is operational. Other configuration steps

can be needed on a dynamic basis, depending on the AC decision. The WTP can also

initiate from this phase a special discovery and joining phase when a predefined – and

preferred – AC is available.

7.6 CAPWAP Future

All concepts developed within CAPWAP will likely be used in the future, even though

technical solutions are not yet ready. The CAPWAP protocol still requires some work to be

properly defined at this time, and some consistency issues in the protocol definition still

remain. However, its large review among the Internet community (especially on security

issues), its wide support among WLAN vendors and the availability of partial implementa-

tion within products on sale are very promising factors for the future.

References

[1] O’Hara, B. et al., ‘Configuration and Provisioning for Wireless Access Points (CAPWAP) Problem

Statement’, RFC 3990, February 2005.

[2] Yang, L. et al., ‘Architecture Taxonomy for Control and Provisioning of Wireless Access Points

(CAPWAP)’, RFC 4118, June 2005.

[3] Govindan, S. et al., ‘Objectives for Control and Provisioning of Wireless Access Points’, RFC

4564, July 2006.

[4] Loher, D. et al., ‘Evaluation of Candidate Control and Provisioning of Wireless Access Points

(CAPWAP) Protocols’, RFC 4565, July 2006.

[5] Singh, I. et al., ‘CAPWAP Tunneling Protocol (CTP)’, draft-singh-capwap-ctp-02.txt, June 2005.

[6] Calhoun, P. et al., ‘Lightweight Access Point Protocol’, draft-ohara-capwap-lwapp-04.txt, March

2007.

[7] Calhoun, P. et al., ‘CAPWAP Protocol Specification’, draft-ietf-capwap-protocol-specification-07,

June 2007.

[8] Calhoun, P. et al., ‘CAPWAP Protocol Binding for IEEE 802.11’, draft-ietf-capwap-protocol-

binding-ieee80211-04, June 2007.

[9] Rescorta, E. and Modadugu, N., ‘Datagram Transport Layer Security’, RFC 4347, April 2006.

186 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Part II

Application Examples of

Service Automation and

Dynamic Resource

Provisioning Techniques

8

Dynamic Enforcement of QoS
Policies

8.1 Introduction

Undoubtedly, quality of service has been the most important fuel for investigating dynamic

policy provisioning and enforcement schemes. The common open policy service (COPS)

(RFC 2748 [1], RFC 3084 [2]) protocol has been primarily designed for resource admission

control policy enforcement, while QoS rapidly became a major concern not only for service

providers but also for customers who rightly expect that the service to which they have

subscribed will be delivered with the relevant level of quality.

8.1.1 What is Quality of Service, Anyway?

Quality of service is a very generic term that is sometimes misused, especially when applied

to IP/MPLS environments. In this document, the design and the enforcement of a QoS policy

within IP/MPLS environments basically rely upon the following dimensions:

� A forwarding dimension, which consists in making a given router behave differently,

depending on the kind of traffic it has to process (and forward, in particular). This gives

rise to the need for traffic identification and classification, and possibly the activation of

traffic conditioning, policing, scheduling and even discarding mechanisms. The forward-

ing dimension of a QoS policy is a notion that is local to a router (i.e. presumably

independent of the (hopefully expected) behaviors of the other routers of the domain). The

DiffServ (Differentiated Services, as described in RFC 2475 [3]) architecture is generally

seen as the cornerstone of the forwarding dimension, introducing the notion of classes of

service as well as behavior aggregates (BAs).

� A routing dimension, which consists in enforcing a traffic engineering policy at the scale

of a DiffServ domain. Traffic engineering is a set of capabilities that allow the

(hopefully dynamic) computation and selection of paths that will be used to convey

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

different kinds of traffic, depending on the (QoS) characteristics of such paths, which are

supposed to comply with the QoS requirements that are related to the deployment of

some value-added service offerings, and/or which may have been expressed and

negotiated with customers. The traffic engineering capabilities of MPLS are a practical

example of such a dimension.

� A monitoring dimension, which basically consists in qualifying the efficiency of a QoS

policy on the basis of the use and the measurement of well-defined indicators. Such

indicators include (but may not be limited to) the one-way transit delay, the interpacket

delay variation (sometimes called the jitter), the packet loss rate or any combination of

such indicators (RFC 2679 [4], RFC 2680 [5], RFC 2681 [6], RFC 3393 [7]).

8.1.1.1 DiffServ-based Forwarding Schemes

DiffServ-based forwarding relies upon the activation of a set of elementary capabilities, as

defined in RFC 3290 [8]. Such activation reflects the actual enforcement of a QoS policy at

the scale of a router, since the DiffServ architecture relies upon per-hop behaviors (PHBs)

which indicate to the router how to process the incoming traffic according to some specific

parameters that may possibly include (but are not limited to) the DiffServ code point (DSCP)

marking.

The latter indication is usually associated with the notion of ‘class of service’ or ‘behavior

aggregate’, whereas IP datagrams are gathered into these macroflows which are processed

according to the PHBs that have been configured on the routers. Standardization has

currently defined the ‘assured forwarding’ (AF) (RFC 2597 [9]) and the ‘expedited

forwarding’ (EF) (RFC 3246 [10]) PHBs, in addition to the best effort PHB.

Each of these PHBs may or may not rely upon a set of elementary functions that include:

� traffic conditioning capabilities, based upon algorithms such as token buckets, and

which often consist in indicating to the router what to do with the incoming traffic,

depending on its envelope (whether or not there are enough tokens left in the bucket to

process the traffic will yield different kinds of action taken by the router – simply

forward in-profile traffic while out-of-profile traffic will be dropped, or remark out-of-

profile traffic, etc.);

� scheduling capabilities, based upon queuing algorithms such as weighted fair queuing

(WFQ) or class-based queuing (CBQ), and which often consist in indicating to the router

what kind of outgoing traffic will be forwarded first, depending on the congestion

occurrences as perceived by the router;

� discarding capabilities, based upon probabilistic algorithms such as random early

detection (RED), and which consist in indicating to the router what kind(s) of traffic(s)

should be discarded first, considering the average queue length and the congestion

occurrences as perceived by the routers.

All of the aforementioned capabilities imply the need for traffic classification and

recognition, and hence the use of criteria such as DSCP marking, but also the {source

address, destination address} pair, the TCP/UDP protocol identifiers, etc.

190 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

8.1.1.2 About Traffic Engineering

Traffic engineering can be defined as a set of path computation techniques that help service

providers in selecting specific routes whose characteristics will comply with requirements

(e.g. QoS requirements defined in a service level specification contractually negotiated and

invoked between a customer and a service provider) and constraints (e.g. the enforcement of

the network planning policy that has been designed by the operator).

This means that a routing policy is implicitly a traffic engineering policy, at least for the

traffic that needs to be forwarded to a given set of destination prefixes by using paths that are

computed by the BGP protocol, owing to the manipulation of attributes that indicate, for

example, the use of a specific exit point or a neighboring AS to reach the destinations

mentioned in the BGP UPDATE messages. This is also true for IGP-based routing policies,

whereas the use of OSPF-based shortcut ABR capabilities can dramatically enhance the

convergence times within a domain.

Nevertheless, it is generally admitted that traffic engineering policies are designed with a

flow granularity, where a flow is a set of IP datagrams that share at least one common

characteristic, such as the destination address field. The use of MPLS as the switching

technique is often seen as the cornerstone for the deployment of traffic engineering

capabilities within a domain, based upon the use of a constraint-based shortest path first

(CSPF) algorithm for the dynamic computation and selection of traffic-engineered paths that

will be entitled to convey different kinds of traffic, depending on the QoS requirements

associated with such flows.

Such requirements may include not only a set of indicators such as the one-way transit

delay or the packet loss rate but also restoration capabilities in case of a link or a node

failure. This section focuses on the use of MPLS-inferred traffic engineering capabilities

(MPLS TE), but the reader should keep in mind that other (or complementary) options to

MPLS-TE exist {the aforementioned routing policies, the use of multitopology capabilities

(RFC 4915 [11], for example) given an efficient forwarding scheme, the use of the IPv6 flow

label, etc.} and should deserve the appropriate investigation, depending on the requirements

and/or the constraints of the service provider.

8.1.1.3 About Monitoring

Monitoring is the privileged means to qualify how efficient a QoS policy enforcement is, and

how compliant it is with the QoS requirements that may have been contractually negotiated

with customers. Monitoring relies upon a set of QoS indicators or metrics that include (but

may not be limited to):

� the interpacket delay variation (sometimes called the ‘jitter’), as defined in RFC 3393 [7],

which is one of the key indicators reflecting the level of quality associated with the

deployment of multimedia services, like VoIP and TV broadcasting;

� the one-way packet loss rate, as defined in RFC 2680 [5];

� the one-way transit delay, as defined in RFC 2679 [4], which is one of the indicators often

used to reflect the quality of VPN service offerings, for example;

� the round-trip delay metric, as defined in RFC 2681 [6].

Dynamic Enforcement of QoS Policies 191

Service level specification (SLS) templates [12] can be instantiated with additional

indicators, such as the overall network availability (NA), sometimes defined as NA ¼ 1 �
Sditi/DT, where di is the bandwidth that has been affected during the ti epoch, andD is the total

amount of bandwidth assigned to the provisioning of a given service that is managed during the

contractual T period (e.g. 24/24, 7/7).

The efficiency of the aforementioned metrics is obviously conditioned by the availability

of reliable measurement methods, which are also defined and sometimes negotiated between

customers and service providers. Such measurement techniques can rely upon probe

technologies, which can be used either in passive mode (live traffic is captured by the

probe which provides statistical information based upon such captures) or in active mode,

where the probe sends test traffic on the network to qualify its performance according to one

or a set of the aforementioned metrics.

8.1.2 The Need for Service Level Specifications

The deployment of value-added IP service offerings over the Internet has yielded a

tremendous effort for the definition, the specification and possibly the standardization of

the notion of quality of service (QoS), which generally encompasses a wide set of

elementary parameters, such as the maximum transit delay, the interpacket delay variation

or the packet loss rate.

Because the subscription to an IP service offering implies the definition of a contractual

agreement between the customer and the corresponding IP service provider (ISP), the level

of quality that will be associated with the deployment of such service will be based upon a

set of the aforementioned parameters upon which both parties will have to agree.

The differentiated services specification effort has yielded the identification of a set of

elementary functions and concepts, the respective interactions of which can be depicted

according to a layered approach, as per Figure 8.1.

+--+
| Service Level Agreement (SLA) |
| * Administrative terms and conditions |
+--+
| Service Level Specification (SLS) |
| * QoS guarantees |
| * Performance indicators |
| * IP traffic characteristics |
+--+
| Per Domain Behaviors (PDB) |
| * QoS capabilities of the DiffServ domain |
| * Edge-to-edge DiffServ aggregates |
+--+
| Per Hop Behaviors (PHB) |
| * QoS capabilities of DiffServ-enabled routers |
+--+
| DiffServ-inferred QoS Functions (implementation-specific)|
| * Schedulers |
| * Algorithmic droppers |
| * Markers |
| * Policers |
+--+

Figure 8.1 A layered model of DiffServ

192 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

In Figure 8.1, each layer displays its own QoS capabilities. According to the definition of

a per-domain behavior (PDB) (RFC 3662 [13]), the specification of such PDBs should

include the reference to the (lower-layer) PHB(s) upon which the PDB ‘layer’ relies.

8.2 An Example

The enforcement of a DiffServ-based policy is primarily justified by the identification of

potential traffic bottlenecks that may jeopardize the level of quality associated with a given

(set of) service offerings. As far as the core region of the IP/MPLS backbones is concerned,

operators have often decided to enforce an overdimensioning policy, which is designed to

absorb traffic peaks with presumably no impact on the overall throughput.

With the use of the Internet as a privileged underlying infrastructure to deploy value-

added yet QoS-demanding service offerings, and also because of cost considerations that

may affect the enforcement of the aforementioned overdimensioning policy, it is generally

admitted that a DiffServ-based policy might be worthwhile in both the aggregation and

access regions of the IP/MPLS backbone, where traffic congestion is likely to happen with

the development of services such as TV broadcasting.

Table 8.1 provides examples of classes of service (CoS) that help in classifying the traffic

according to the DSCP marking of the IP datagrams.

In addition, a set of QoS-based services that elaborate on the QoS configuration

parameters associated with the PHBs and other class selectors are illustrated in Table 8.2.

8.3 Enforcing QoS Policies in Heterogeneous Environments

8.3.1 SLS-inferred QoS Policy Enforcement Schemes

One of the key challenges that have to be addressed when considering the dynamic

enforcement of QoS policies in heterogeneous environments is that these policies must

dynamically align the resource allocation schemes to optimize the resource usage but also to

address the requirements as they have been expressed by customers by means of negotiated

SLS templates. The architecture that has been investigated and validated by the TEQUILA

(Traffic Engineering for Quality of Service in the Internet at Large Scale) project [14] is a

Table 8.1 Examples of traffic classes with associated DSCP marking

Traffic classes DSCP (decimal) DiffServ PHB Binary PF/EXP

D3 – in profile 10 AF11 001010 1

D3 –out of profile 12 AF12 001100 1

D2 – in profile 16 CS2 010000 2

D2 – in profile 18 AF21 010010 2

D2 – out of profile 20 AF22 010100 2

D1 – in profile 26 AF31 011010 3

D1 – out of profile 28 AF32 011100 3

Real-time video 34 AF41 100010 4

Real-time voice 46 EF 101110 5

Dynamic Enforcement of QoS Policies 193

Table 8.2 Examples of IP (QoS-based) service types

SLS

IP service type CoS RTD LOSS JITTER DSCP CoS implementation on PE

SILVER D2 – 100 % of IP BW 18 N/A

GOLD3 D1 – 60 % of IP BW
p p

26 (D1 – InP) LLQ: CB BW 60 % þ WRED

28(D1 – OOP)

D2 – 30 % of IP BW
p

18 (D2 – InP) LLQ: CB BW 30 % þ WRED

20 (D2 – OOP)

D3 – 10 % of IP BW 10 (D3 – InP) LLQ: CB BW 9 % þ WRED

12 (D3 – OOP)

GOLD2 D1 – 66% of IP BW
p p

26 (D1 – InP) LLQ: CB BW 60 % þ WRED

28 (D1 – OOP)

D2 – 33% of IP BW
p

18 (D2 – InP) LLQ: CB BW 30 % þ WRED

20 (D2 – OOP)

GOLD1 D2 – 100% of IP BW
p

18 (D2 – InP) LLQ: CB BW 99 % þ WRED

20 (D2 – OOP)

PLATINUM3 RT – maximum 75 %
p p p

46 LLQ: PQ

(IP BW � 128 kbit/s) of IP BW

D1 – 60 % of remaining
p p

26 (D1 – InP) . LLQ: CB BW x % þ WRED [x ¼ 60 %

data IP BW 28 (D1 – OOP) * (remaining data IP BW/IP BW)]

. FRF12 (for access speed � 768 kbit/s)

D2 – 30 % of remaining
p

18 (D2 – InP) 20 . LLQ: CB BW y % þ WRED [y ¼ 30 %

data IP BW (D2 – OOP) * (remaining data IP BW/IP BW)]

. FRF12 (for access speed � 768 kbit/s)

D3 – 10 % of remaining 10 (D3 – InP) . LLQ: CB BW z % þ WRED [z ¼ 10 %

data IP BW 12 (D3 – OOP) * (remaining data IP BW/IP BW)]

. FRF12 (for access speed � 768 kbit/s)

PLATINUM2) RTD – maximum 75 %
p p p

46 LLQ: PQ

(IP BW � 128 kbit/s of IP BW

D1 – 66 % of remaining
p p

26 (D1 – InP) . LLQ: CB BW x % þ WRED [x ¼ 66 %

data IP BW 28 (D1 – OOP) * (remaining data IP BW/IP BW)]

. FRF12 (for access speed � 768 kbit/s)

D2 – 33 % of remaining
p

18 (D2 – InP) . LLQ: CB BW y % þ WRED [y ¼ 33 %

data IP BW 20 (D2 – OOP) * (remaining data IP BW/IP BW)]

. FRF12 (for access speed � 768 kbit/s)

PLATINUM1 RT – maximum 75 %
p p p

46 . LLQ: PQ . cRTP (for IP BW ¼ 128 kbit/s)

(IP BW � 128 kbit/s) of IP BW

D2 – 100 % of remaining
p

18 (D2 – InP) . LLQ: CB BW y % þ WRED [y ¼ 99 %

data IP BW 20 (D2 – OOP) * (remaining data IP BW/IP BW)]

. FRF12 (for access speed � 768 kbit/s)

PLATINUM5 RT – maximum 75 %
p p p

46 LLQ: PQ

(IP BW <128 kbit/s) of IP BW

D1 – 100 % of
p p

26 (D1 – InP) . LLQ: CB BW x % þ WRED [x ¼ 99 %

remaining data IP BW 28 (D1 – OOP) * (remaining data IP BW/IP BW)]

. FRF12

PLATINUM4 RT – maximum 75 %
p p p

46 LLQ: PQ

(IP BW <128 kbit/s) of IP BW

D2 – 100 % of
p

18 (D2 – InP) . LLQ: CB BW y % þ WRED [y ¼ 99 %

remaining data IP BW 20 (D2 – OOP) * (remaining data IP BW/IP BW)]

. FRF12

FLEXIBLE RT – maximum 75 %
p p p

46 LLQ: PQ

of IP BW

RT-VI – w % (maximum 75 %)
p p p

of remaining IP BW 34 LLQ: CB BW w %

. FRF12 (for IP BW � 768 kbit/s)

D1 – x % of remaining
p p

26 (D1 – InP) . LLQ: CB BW x % þ WRED

IP BW 28 (D1 – OOP) . FRF12 (for IP BW � 768 kbit/s)

D2 – y % of remaining
p

18 (D2 – InP) . LLQ: CB BW y % þ WRED

IP BW 20 (D2 – OOP) . FRF12 (for IP BW � 768 kbit/s)

D3 – z % of remaining 10 (D3 – InP) . LLQ: CB BW z % þ WRED

IP BW 12 (D3 – OOP) . FRF12 (for IP BW � 768 kbit/s)

possible response to such challenges. This architecture relies upon a set of functional blocks

that not only take care about the processing of incoming SLS templates but also deal with

network planning and traffic forecast considerations, as outlined in Figure 8.2.

In accordance with Figure 8.2:

� SLS subscription is responsible for the permission/rejection of new/modified long-term

SLS subscriptions. This is based on administrative policies and available spare resources.

� SLS subscription computes the available spare resources for new SLS subscription

requests. Roughly speaking, one has:

Long-term spare resources ¼ network configuration – long-term traffic load

� Network configuration parameters include (but are not necessarily limited to):

– per QoS class and per ingress/egress pair;

– source/destination (ingress/egress) route set (in the case of multipath routing, for

example);

– route capacity (in terms of bandwidth usage, traffic identification, etc.);

– QoS parameters such as the maximum transfer delay from ingress to egress.

In fact, the network configuration parameters have a similar structure to the traffic forecast

(TF) matrix. However, the network configuration gives the resources that are actually

allocated, while the TF matrix is a prediction of the load.

NW-Dimensioning

Traffic Forecast

SLS subscription

A.C. / SLS

Invocation

[Traffic Matrix]

[SLS repository]

[NW config]

[Traffic Matrix]

[NW config]

Network

Monitoring

[current network load]

[SLS policies]

Network

Monitoring

Oversubscription

policies

planning

[aggregate NW load] [oversubscription Indexes]

[physical resources]

[topology]

Figure 8.2 SLS management, traffic forecast and network dimensioning of the TEQUILA architecture

196 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Figure 8.3 provides an example of a sequence chart depicting message flows during the

bootstrap phase associated with a QoS policy enforcement scheme.

The SLS subscription process itself distinguishes three phases:

1. Retrieve the necessary information that will be processed by the SLS subscription block,

enabling the permission or refusal of (new or changed) SLS subscription requests. This

information will be stored and maintained in the QoS policy repository, which will be fed

by the network dimensioning component, among other sources of information.

2. The actual SLS subscription process.

3. The SLS invocation process, where actions are triggered by the permission of a new (or

changed) SLS subscription. Information is transmitted to admission control for handling

SLS invocations. Information is also transmitted to the traffic forecast module.

8.3.2 Policy Rules for Configuring DiffServ Elements

RFC 3317 [15] provides an example of a DiffServ policy information base, which is directly

derived from RFC 3290 [8], which specifies the model of a DiffServ router. Functional

elements of such routers are described in RFC 3317 [15] through a set of provisioning

Dynamic
Resource Route

Management

Bootstrapping Phase

Repositories Scheduling
Forwarding Routing Traffic

Conditioning
Network

DimensioningMonitoring
Traffic

Forecasting
Management

SLS
Subscription

Admission
Control

Interdomain
SLS

Requestor

NEs SLS Management

Request Topology

Request Anticipated Traffic Matrix

Request Policies

Verification Test

Request Policies, Interdomain SLSs

Configure Traffic Conditioning

Component InitializationComponent Activation

Request Topology, SLS Types, Policies, Interdomain SLSs, Anticipated Traffic Matrix

Configure Routing

Configure Scheduling/Forwarding Download Bandwidth Sharing Constraints and/or Scheduling Parameters

Download Routing Constraints and/or Explicit Routes

Download SLS
Admission Constraints

and Parameters

Figure 8.3 Possible message sequence chart (bootstrap phase) of a QoS policy enforcement scheme

(NEs stands for network elements)

Dynamic Enforcement of QoS Policies 197

classes (PRCs) that include: Data Path, Classifier, Classifier Element, Meter, Token Bucket

Parameter, DSCP Mark Action, Algorithmic Dropper, Random Dropper.

The proposed approach enables the network administrator flexibly to define generic policy

types that can be applied to any kind of DiffServ device (a router, a bridge, a gateway, etc.),

and that can then be instantiated (PRI) with device-specific parameters.

When DiffServ elements enforce a QoS policy, the policy actions are those provided by

the (COPS) management interface of the data path capabilities that compose a given PHB

[16].

References

[1] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja R. and Sastry A., ‘The COPS (Common Open

Policy Service) Protocol’, RFC 2748, Proposed Standard, January 2000.

[2] Ho Chan, K., Durham, D., Gai, S., Herzog, S., McLoghrie, K., Reichmeyer, F., Seligson, J., Smith,

A. and Yavatkar, R., ‘COPS Usage for Policy Provisioning (COPS-PR)’, RFC 3084, March 2001.

[3] Blake, S. et al., ‘An Architecture for Differentiated Services’, RFC 2475, December 1998.

[4] Almes, G. et al., ‘A One-way Delay Metric for IPPM’, RFC 2679, September 1999.

[5] Almes, G. et al., ‘A One-way Packet Loss Metric for IPPM’, RFC 2680, September 1999.

[6] Almes, G. et al., ‘A Round-trip Delay Metric for IPPM’, RFC 2681, September 1999.

[7] Demichelis, C. and Chimento, P., ‘IP Packet Delay Variation Metric for IP Performance Metrics

(IPPM)’, RFC 3393, November 2002.

[8] Bernet, Y. et al., ‘An Informal Management Model for Diffserv Routers’, RFC 3290, May 2002.

[9] Heinanen, J. et al., ‘Assured Forwarding PHB Group’, RFC 2597, June 1999.

[10] Davie, B. et al., ‘An Expedited Forwarding PHB (Per-Hop Behavior)’, RFC 3246, March 2002.

[11] Psenak, P. et al., ‘Multi-Topology (MT) Routing in OSPF’, RFC 4915, June 2007.

[12] Goderis, D. et al., ‘Attributes of a Service Level Specification (SLS) Template’, draft-tequila-sls-

03.txt, Work in Progress, October 2003.

[13] Bless, R. et al., ‘A Lower Effect Per-Domain Behavior (PDB) for Differentiated Services’, RFC

3662, December 2003.

[14] Goderis, D. et al., ‘D1.1: Functional Architecture and Top Level Design’, September 2000. See

also http://www.ist-tequila.org.

[15] Chan, K. et al., ‘Differentiated Services Quality of Service Policy Information Base’, RFC 3317,

March 2003.

[16] Lymberopoulos, L., Lupu, E. and Sloman, M., ‘An Adapative Policy Based Management

Framework for Differentiated Services Networks’, in Proc. 3rd IEEE Workshop on Policies for

Distributed Systems and Networks, Washington, DC, June 2002, pp. 147–158.

198 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

9

Dynamic Enforcement of IP
Traffic Engineering Policies

9.1 Introduction

The deployment of value-added IP services (such as quality-of-service-based IP virtual

private networks) over the Internet has become one of the greatest challenges for service

providers, as well as a complex technical issue, from a (dynamic) resource provisioning

perspective.

From this perspective, the COPS protocol (RFC 2748 [1]) and its usage for the support of

policy provisioning (RFC 3084 [2]) have been designed to help service providers by

introducing a high level of automation for the dynamic production of a wide range of

services, including dynamic capabilities for the enforcement of service-specific policies.

Such policies include routing and traffic engineering policies, and their aim is to

appropriately provision, allocate/deallocate and use the switching and the transmission

resources of an IP network (i.e. the routers and the links that connect these routers

respectively) according to a set of constraints such as quality of service (QoS) requirements

(e.g. rate, one-way delay, interpacket delay variation, etc.) that have been possibly negotiated

between the customers and the service providers, as well as routing metrics, which can

reflect the network conditions.

Within the context of this chapter, the actual enforcement of IP routing and traffic

engineering policies is primarily based upon the activation of both intra- and interdomain

routing protocols that will be activated in the network adequately to compute, select, install,

maintain and possibly withdraw routes that will comply with the aforementioned QoS

requirements and/or specific routing constraints, depending on the type of traffic that will be

conveyed along these routes.

It is therefore necessary to provide the route selection processes with the information that

will depict the routing policies that are to be enforced within a domain and, whenever

appropriate, the aforementioned constraints and metrics, given that the dynamic routing

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

protocols actually support traffic engineering capabilities for the calculation and the

selection of such routes.

These capabilities have been specified in RFC 3630 [3] and RFC 3784 [4] for the open

shortest path first (OSPF) (RFC 2328 [5]) and the intermediate system to intermediate

system (IS–IS) (ISO 8473 [6]) interior routing protocols respectively, while there is an

equivalent specification effort for the border gateway protocol, version 4 (BGP-4), as

described in Refs [7] and [8], for example.

To provide the routers that will participate in the dynamic enforcement of an IP routing

and/or traffic engineering policy with the appropriate configuration information (such as the

values of metrics), one option is to use the COPS protocol for policy provisioning purposes.

To do so, a new COPS client-type is required, called the ‘IP traffic engineering’ (IP TE)

client-type.

9.2 Terminology Considerations

The enforcement of an IP routing/TE policy is based upon the processing of configuration

information that reflects the characteristics of the metric values of these policies e.g. the

values of the BGP attributes, the QoS requirements and/or constraints, etc.

This information is called the ‘QoS-related’ information within the context of this chapter.

Then, this QoS-related information must be taken into account by the routing processes

that will participate in the calculation, the selection, the installation and the maintenance of

the routes that will comply with the aforementioned requirements. The algorithms invoked

by the routing processes include the cost metrics (whose corresponding values can possibly

be inferred by a DiffServ code point (DSCP) value (RFC 2474 [9]) that has been assigned by

the network administrators.

This metric-related information is called the ‘IP TE’-related information within the

context of this chapter.

Thus, there is a distinction between QoS-related information and IP TE-related informa-

tion, where:

� QoS-related information is negotiated between customers and service providers;

� IP TE-related configuration information is dynamically provided to routers, and is

exchanged between routers so that they can compute, select, install and maintain the

(traffic-engineered) routes accordingly.

From this perspective, QoS-related information provides information about the traffic to

be forwarded in the network (such as source address, destination address, protocol

identification, DSCP marking, etc.), whereas IP TE-related information provides information

for the routing processes that will indicate to the routers of the network how to forward the

aforementioned traffic, i.e. compute and select the routes that will convey such traffic.

Given these basic assumptions, a COPS-based IP TE client-type has the following

characteristics:

� The IP TE client-type is supported by the policy enforcement point (PEP) capability

which allows a router to enforce a collection of policies owing to a COPS communication

that has been established between the PEP and the PDP.

200 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� The actual enforcement of an IP routing/TE policy is based upon the TE-related

configuration information that will be exchanged between the PDP and the PEP, and

that will be used by the router for selecting, installing, maintaining and possibly

withdrawing IP TE routes.

9.3 Reference Model

The use of the COPS protocol for dynamically enforcing an IP routing/TE policy yields the

generic model depicted in Figure 9.1.

As depicted in Figure 9.1, the routers embed the following components:

� A PEP capability, which supports the IP TE client-type. The support of the IP TE client-

type is notified by the PEP to the PDP, and is unique for the area covered by the IP routing/

traffic engineering policy, so that the PEP can treat all the COPS client-types it supports as

non-overlapping and independent namespaces.

� A local policy decision point (LPDP), which can be assimilated to the routing processes

that have been activated in the router. The LPDP will therefore contribute to the

computation and the selection of the IP routes.

� Several instances of routing information bases (RIBs), according to the different

(unicast and multicast) routing processes that have been activated – one can easily

assume the activation of at least one interior gateway protocol ((IGP), like OSPF) and

BGP-4.

� Conceptually, one forwarding information base (FIB), which will store the routes that

have been selected by the routing processes, but within this section we do not make any

PEP

LPDP

R
IB

R
IB

R
IB

FIB

IP Router

PDP IP TE PIB
COPS-PR

PEP

LPDP

R
IB

R
IB

R
IB

FIB

IP Router

PDP IP TE PIB
COPS-PR

Figure 9.1 Reference model of an IP routing/traffic engineering policy enforcement scheme

Dynamic Enforcement of IP Traffic Engineering Policies 201

assumption about the number of FIBs that can be supported by a router [e.g. within the

context of an IP virtual private network (VPN) service offering].

As suggested in Ref. [10], the enforcement of an IP routing/traffic engineering policy is

based upon the use of a policy server (the PDP in Figure 9.1) that sends IP TE-related

information to the PEP capability embedded in the IP router.

The IP TE-related information is stored and maintained in an IP TE policy information

base [11], which will be accessed by the PDP to retrieve and update the IP TE-related

information whenever necessary.

The IP TE-related information is conveyed between the PDP and the PEP owing to the

establishment of a COPS-PR connection between these two entities. The COPS-PR protocol

assumes a named data structure (the PIB) so as to identify the type and purpose of the policy

information that is sent by the PDP to the PEP for the provisioning of a given policy.

The data structure of the PIB refers to the IP routing/TE policy which is described in the

PIB as a collection of provisioning classes (PRCs). Furthermore, these classes contain

attributes that actually describe the IP TE-related policy provisioning data that will be sent

by the PDP to the PEP. Some of these attributes consist of the link and traffic engineering

metrics that will be manipulated by the routing processes being activated in the routers to

compute the IP routes.

The IP TE classes are instantiated as multiple provisioning instance (PRI) instances, each

of which are identified by a provisioning instance identifier (PRID). A given PRI specifies

the data content carried in the IP TE client-specific objects. An IP TE PRI typically contains

a value for each attribute that has been defined for the IP TE PRC.

Currently, the IP TE PIB has identified a per-DSCP IP TE PRC instantiation scheme,

because the DSCP value conveyed in each IP datagram that will be processed by the routers

is one of the key criteria to make forwarding decisions within the context of a QoS-based

routing scheme. Such a routing scheme aims to reflect the IP routing/TE policies that have

been defined by a service provider, assuming a restricted number of DSCP-identified classes

of service that will service the customers’ requirements.

9.4 COPS Message Content

9.4.1 Request Messages (REQ)

The COPS REQ message is sent by the IP TE client-type to issue a configuration request to

the PDP, as specified in the COPS context object. The REQ message includes the current

configuration information related to the enforcement of an IP routing/TE policy.

Such configuration information is encoded according to the ClientSI format that is

defined for the named ClientSI object of the REQ message.
The configuration information is encoded as a collection of bindings that associate a PRID

object and encoded provisioning instance data (EPD).

Such information may consist of:

� The identification information of the router, e.g. the identification information that is

conveyed in OSPF link state advertisement (LSA) type 1 messages. The use of a loopback

202 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

interface IP address is highly recommended for the instantiation of the corresponding

EPD.

� The link metric values that have been currently assigned to each (physical/logical)

interface of the router, as described in RFC 2328 [5], for example. Such values may

vary with an associated DSCP value, i.e. the link metric assigned to an interface is a

function of the DSCP value encoded in each IP datagram that this router may have to

forward.

� The traffic engineering metric values that specify the link metric values for traffic

engineering purposes, as defined in RFC 3630 [3], for example. These values may be

different from the above-mentioned link metric values, and they may also vary according

to DSCP values.

9.4.2 Decision Messages (DEC)

The DEC messages are used by the PDP to send IP TE policy provisioning data to the IP TE

client-type. DEC messages are sent in response to a REQ message received from the PEP, or
they can be unsolicited, e.g. subsequent DEC messages can be sent at any time to supply the
PEP with additional or updated IP TE policy configuration information without the solicited
message flag set in the COPS message header, since such messages correspond to unsolicited
decisions.

DEC messages typically consist of install and/or remove decisions, and, when there is

no Decision Flags set, the DEC message includes the named decision data (provisioning)
object.

Apart from the aforementioned identification information, and according to the kind of

(PRID, EPD) bindings that may be processed by the PEP, DEC messages may refer to the

following decision examples:

� Assign new link/traffic engineering metric values each time a new interface is installed/

created on the router. These new values will obviously yield the generation of LSA

messages in the case of the activation of the OSPF protocol, and/or the generation of BGP-

4 UPDATE messages {e.g. in the case of a new instantiation of the MULTI_EXIT_DISC

(MED) attribute (RFC 4271 [12])}. This will in turn yield the computation of (new) IP

routes that may be installed in the router’s FIB.
� Modify previously assigned metric values, owing to a remove/install decision procedure

(obviously, this may yield a modification of the router’s FIB as well).

� Remove assigned metric values, e.g. the corresponding interfaces may not be taken into

consideration by the routing algorithms anymore (or during a specific period of time, e.g.

for maintenance purposes).

9.4.3 Report Messages (RPT)

The report message allows the PEP to notify the PDP with a particular set of IP routing/TE

policy provisioning instances that have been successfully or unsuccessfully installed/

removed.

Dynamic Enforcement of IP Traffic Engineering Policies 203

When the PEP receives a DEC message from the PDP, it sends back a RPT message to the
PDP. The RPT message will contain one of the following report-types:

� Failure. Notification of errors that occurred during the processing of the (PRID, EPD)

bindings contained in the DEC message. Such a notification procedure can include a

failure report in assigning an updated value of a given metric, for example.

� Success. Notification of the successful assignment of metric values and/or successful

installation of IP routes in the router’s FIB. From this perspective there may be routes that

will be installed in the router’s FIB without any explicit decision sent by the PDP to the

PEP with respect to the calculation/installation of the aforementioned route. This typically

reflects a normal dynamic routing procedure, whenever route advertisement messages are

received by the router, including messages related to a topology change. In any case (i.e.

whatever the effect that yielded the installation of a route in the router’s FIB), an RPT
message is sent by the PEP to the PDP to notify such an event, so that the IP TE PIB will

be updated by the PDP accordingly.

� Accounting. The accounting RPT message will carry statistical information related to the

traffic that will transit through the router. This statistical information may be used by the

PDP possibly to modify the metric values that have been assigned when thresholds have

been crossed; for example, if the RPT message reports that x % of the available rate
associated with a given interface has been reached, then the PDP may send an unsolicited
DEC message in return, so that potential bottlenecks can be avoided.

9.5 COPS-PR Usage of the IP TE Client-Type

After having opened a COPS connection with the PDP, the PEP sends a REQ message to the

PDP that will contain a ‘client handle’. The ‘client handle’ is used to identify a specific

request state associated with the IP TE client-type supported by the PEP. The REQ message
will contain a ‘configuration request’ context object.

This REQ message will also carry the named client specific information [including the

(default) configuration information]. Default configuration information includes the infor-

mation available during the bootstrap procedures of the routers.

The routes that have been installed in the router’s FIB may be conveyed in specific (PRID,

EPD) bindings in the REQ message as well.

Upon receipt of the REQ message, the PDP will send back a DEC message towards the
PEP. This DEC message will carry an IP TE named decision data object that will convey all
the appropriate installation/removal of (PRID, EPD). One of the basic goals of this named
decision object consists in making the routers enforce a given IP routing/TE policy.

Upon receipt of a DEC message, the IP TE-capable PEP will (try to) apply the cor-

responding decisions by making the network device (and its associated implementation-

specific command line interface, if necessary) and install the named IP TE policy data (e.g.

assign a metric value to a recently installed interface).
Then, the PEP will notify the PDP about the actual enforcement of the named IP TE

policy decision data by sending the appropriate RPT message back to the PDP. Depending on

the report-type that will be carried in the RPT message, the contents of the message may
include:

204 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Successfully/unsuccessfully assigned new/updated metric values.

� Successfully installed routes from the router’s FIB. Note that the notion of ‘unsuccessfully

installed routes’ is meaningless.

� Successfully/unsuccessfully withdrawn routes from the router’s FIB. Route withdrawal

is subject not only to the normal IGP and BGP-4 procedures (thus yielding the generation

of the corresponding advertisement messages) but also to named IP TE policy decision

data (carried in a specific DEC message), such as those data related to the lifetime of a

service.

The RPT message may also carry the ‘accounting’ report-type.

9.6 Scalability Considerations

The use of the COPS-PR protocol for the dynamic enforcement of an IP traffic engineering

policy raises some scalability issues as far as the volume of configuration information that

will be exchanged not only between the routers themselves (because of the OSPF machinery,

for example) but also between the PEP components embedded in the routers and the PDP

with which they communicate is concerned.

While the concern strictly related to the design of a routing policy is outside the scope of

this book, the dynamic provisioning of metric values as well as the reports related to the

actual enforcement of decisions taken by the PDP deserves some elaboration.

9.6.1 A Tentative Metric Taxonomy

The metrics that will be taken into account by the shortest path first (SPF) algorithms for IP

TE route calculation can be classified into two basic categories:

� Metrics assigned on a long-term basis, which basically consist of the ‘usual’ cost metrics,

like those defined in RFC 2328 [5]. These metrics are those that are assigned on a (logical)

interface basis, and they aim to reflect the link quality to which the corresponding

interface is attached.

� Metrics assigned on a (very) short-term basis, which may consist of the following

information:

– the available bandwidth [e.g. based upon the information provided by simple network

management protocol (SNMP) (RFC 1157 [13]) counters like ifInOctets and

ifOutOctets];
– the amount of bandwidth that can be reserved;

– the amount of reserved bandwidth.

While ‘long-term’ metric values should not change frequently by definition, the ‘short-

term’ metric values may vary like the ongoing usage of the resources of the network.
Therefore, the performance of short-term metric value processing should remain compar-

able with SPF computation, since newly assigned values yield the spontaneous generation of

link state update (LSU) messages. Thus, the traffic generated by the IP traffic engineering

provisioning data should be minimized according to precomputation engineering recom-

mendations like those described in RFC 2676 [14].

Dynamic Enforcement of IP Traffic Engineering Policies 205

9.6.2 Reporting the Enforcement of an IP Traffic Engineering Policy

Likewise, the actual enforcement of policy decisions implies the activation of a reporting

mechanism, as described in the COPS-PR specification.

From this perspective, within this section we assume that the corresponding reports sent

by the PEP components of the routers to the PDP should include the ‘traffic-engineered’

routes that have been computed by the routers, at least for network planning purposes: the

service subscription requests will be negotiated according to the knowledge of the network

resources that are actually available, and this information includes the routes that could very

well service the aforementioned requirements, without any extra computation.

Therefore, the volume of traffic generated by the notification reports of the installed routes

should remain comparable with the volume of traffic generated by the route announcement

procedures of the IP routing protocol machineries (like OSPF), and it is assumed that the

volume of the corresponding COPS-PR traffic is also highly dependent on the precomputa-

tion engineering recommendations that have been mentioned earlier.

In other words, scalability issues that may be encountered by network operators when

considering the dynamic enforcement of an IP traffic engineering policy are the results of an

inefficient design, not because of the activation of the COPS-PR protocol as a means to

convey the corresponding IP TE provisioning data.

9.7 IP TE PIB Overview

The dynamic enforcement of an IP traffic engineering policy relies on the activation of intra-

and interdomain routing protocols that will have the ability to take into account traffic-

engineering-related information for the computation and the selection of routes that will

comply as much as possible with the QoS requirements that have been contractually defined

between customers and service providers.

This traffic-engineering-related information is basically composed of metric values that

will aim to reflect an IP TE policy, as well as the result of the enforcement of such a policy,

so that customers and providers can check anytime that the IP service is provisioned with the

appropriate (and contractual) levels of quality (which can be expressed in terms of service

availability, for example).

Therefore, the IP TE PIB mainly aims to:

� store and maintain the configuration information that will be used by the routers to

compute and select the routes that will comply with a collection of QoS requirements,

such as the one-way maximum transit delay, or the maximum interpacket delay variation;

� store and maintain the information related to the traffic-engineered routes that have been

installed in the routers’ forwarding information bases, so that the service providers have

the permanent knowledge of the network’s resource availability

From this perspective, the IP TE PIB is organized into the following provisioning classes:

� The forwarding classes (ipTeFwClasses). The information contained in these classes

is meant to provide a detailed description of the traffic-engineered routes. Only one table

is defined, the IP TE route table, which describes the information related to TE routes that

have been installed by the routers in their FIBs.

206 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� The metrics classes (ipTeMetricsClasses). The information stored in the tables of

this class is meant to provide a description of the metric values that will be taken into

account by intra- and interdomain routing protocols for the computation and the selection

of traffic-engineered routes. So far, two groups have been identified: the first group is

based upon the traffic engineering extensions of intradomain routing protocols; the second

group is related to QoS-related information that can be conveyed in BGP-4 messages.

� The statistics classes (ipTeStatsClasses). The information contained in these

classes is meant to provide statistics on the enforcement of the TE policies.

The detailed description of the IP TE PIB can be found in Appendix 3.

9.8 COPS Usage for IP TE Accounting Purposes

Traffic engineering is one of the possible means for solving congestion problems and

permitting efficient use of the network resources. Several tools have been proposed to achieve

this goal. Nevertheless, only a few solutions introduce a high level of automation for the

allocation of resources and the configuration operations. This section provides some insights

into a candidate solution making use of COPS and its capacity to manipulate and retrieve

accounting data related to IP TE usage. This solution is documented in Boucadair [15].

The design of an IP Traffic Engineering (IP TE) policy implies the manipulation of a large

amount of configuration information that includes routing considerations, traffic forecast,

available resources, etc. These parameters are provisioned as configuration information to the

network devices (such as routers) by means of a COPS-based communication scheme, owing

to the use of a specific client-type as described in Section 9.1.2. However, there remains the

choice of the appropriate parameters to meet network constraints as well as quality of service

(QoS) requirements, and also to observe the impact of such a choice/decision on the stability of

the network. From this standpoint, several methods can be adopted: use either statistical data

based on mathematical models or data resulting from measurements. The advantage of the

second method is that it allows for real-time statistics.
To implement the dynamic mode in a COPS environment, the actual enforcement of a

traffic engineering policy requires a feedback mechanism to qualify not only the efficiency

of such enforcement but also the impact of future decisions made by the policy decision

point (PDP) and installed by the PDP at the policy enforcement point (PEP)-embedded

devices. Figure 9.2 illustrates that the actual enforcement of an IP TE policy is conditioned

by the manipulation of information such as traffic forecast (according to customers’ requests,

for example [16]) and traffic load calculation.
This section introduces a set of IP TE accounting usage policy rule classes (PRCs) that will be

monitored, recorded and/or reported by the PEP [15]. Those PRCs complement the PRC classes

that have been defined in the framework of COPS-PR PIB for policy usage (RFC 3483 [17]).

Within the context of this book and for illustration purposes, the data recorded, monitored

and/or reported by the PEP are the results of the activation of dynamic routing processes [e.

g. open shortest path first (OSPF) and border gateway protocol version 4 (BGP-4)].
The IP TE report classes are instantiated as multiple provisioning instances (PRIs), each

of which is identified by a provisioning instance identifier (PRID). These classes contain

attributes that actually describe the accounting IP TE-related information collected in the

network. The PIB defined within the context of IP traffic engineering for accounting

Dynamic Enforcement of IP Traffic Engineering Policies 207

purposes has the goal of completing the whole COPS TE reporting machinery. This PIB

contains the following tables:

� ospfTeRouterUsageTable. This class defines the usage attributes to be reported, which are

related to the router identified by the Router-Id.

� ospfTeUsageTable. This class defines the usage attributes to use for OSPF TE purposes.

� isisTeUsageTable. This class defines the usage attributes to use for IS-IS TE purposes.

� bgpTeTable. This table contains a set of accounting information related to the activation of

the BGP process, enabling exchange of QoS information.

� ospfTeThresholdTable. This class defines the threshold attributes corresponding to OSPF

TE usage attributes specified in ospfTeUsageTable.
� isisTeThresholdTable. This class defines the threshold attributes corresponding to IS-IS TE

usage attributes specified in isisTeUsageTable.
� bgpTeThresholdTable. This class defines the threshold attributes corresponding to BGP

usage attributes specified in bgpTeUsageTable.

The detailed description of the IP TE accounting PIB can be found in Appendix 4.

References

[1] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja R. and Sastry A., ‘The COPS (Common Open

Policy Service) Protocol’, RFC 2748, Proposed Standard, January 2000.

[2] Ho Chan, K., Durham, D., Gai, S., Herzog, S., McLoghrie, K., Reichmeyer, F., Seligson, J., Smith,

A. and Yavatkar, R., ‘COPS Usage for Policy Provisioning (COPS-PR)’, RFC 3084, March 2001.

[3] Katz, D., Yeung, D. and Kompella, K., ‘Traffic Engineering Extensions to OSPF’, RFC 3630, Work

in Progress, September 2003.

PEP

Report Process

• Monitoring

• Recording

• Reporting

IP TE Client

PDP

Decision-making

Process

PDP

IP TE Report

IP TE Forcast

Block

Other External

System

Figure 9.2 IP TE reporting mechanism

208 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

[4] Smit, H. and Li, T., ‘IS-IS Extensions for Traffic Engineering’, RFC 3784, June 2004.

[5] Moy, J., ‘OSPF Version 2’, RFC 2328, April 1998.

[6] ISO/IEC 10589, ‘Intermediate System to Intermediate System, Intra-Domain Routing Exchange

Protocol for use in Conjunction with the Protocol for Providing the Connectionless-mode Network

Service (ISO 8473)’, June 1992.

[7] Jacquenet, C., ‘Providing Quality of Service Indication by the BGP-4 Protocol: the QOS_NLRI

Attribute’, draft-jacquenet-qos-nrli-04.txt, Work in Progress, March 2002.

[8] Boucadair, M., ‘QoS-Enhanced Border Gateway Protocol’, Internet-Draft, draft-boucadair-qos-

bgp-spec, Work in progress.

[9] Nichols, K., Blake, S., Baker, F. and Black, D., ‘Definition of the Differentiated Services Field (DS

Field) in the IPv4 and IPv6 Headers’, RFC 2474, December 1998.

[10] Apostopoulos, G., Guerin, R., Kamat, S. and Tripathi, S.K., ‘Server Based QOS Routing’,

Proceedings of the 1999 GLOBCOMM Conference.

[11] Boucadair, M. and Jacquenet, C., ‘An IP Forwarding Policy Information Base’, draft-jacquenet-ip-

fwd-pib-00.txt, Work in Progress, January 2003.

[12] Rekhter, Y. and Li, T., ‘A Border Gateway Protocol 4 (BGP-4)’, RFC 4271, January 2006.

[13] Case, J. et al., ‘A Simple Network Management Protocol’, RFC 1157, May 1990.

[14] Guerin, R. et al., ‘QoS Routing Mechanisms and OSPF Extensions’, RFC 2676, August 1999.

[15] Boucadair, M., ‘An IP Traffic Engineering PIB for Accounting purposes’, draft-boucadair-ipte-

acct-pib-02.txt, June 2003.

[16] Goderis, D. et al., ‘Attributes of a Service Level Specification (SLS) Template’, draft-tequila-sls-

03.txt, Work in Progress, October 2003.

[17] Rawlins, D. et al., ‘Framework for Policy Usage Feedback for Common Open Policy Service with

Policy Provisioning (COPS-PR)’, RFC 3483, March 2003.

Dynamic Enforcement of IP Traffic Engineering Policies 209

10

Automated Production
of BGP/MPLS-based
VPN Networks

10.1 Introduction

An IP virtual private network (IP VPN) can be defined as a collection of switching and

transmission resources that will be used by a dedicated set of authorized users to exchange

information over a public IP infrastructure, like the Internet.

IP VPN networks may use different and complex technologies, thus giving rise to the need

for a high level of automation to dynamically provision such networks. To do so, the network

resources that will be involved in the forwarding of the traffic for a given IP VPN will have

to process quite a large amount of configuration information, which includes (but is not

necessarily limited to):

� topology information (e.g. location of the sites that will be interconnected via the IP

VPN);

� addressing information (e.g. identification of the IP networks and hosts that will access the

IP VPN facility);

� routing information (e.g. definition of a routing policy within the IP VPN, and how the

Internet can be accessed through the IP VPN);

� security information (e.g. establishment and activation of filters);

� quality of service (QoS) information related to the service offering (e.g. the QoS

parameters that will be conveyed in a particular service level specification (SLS) template

[1] and that will be (dynamically) negotiated and invoked between the customer and the

service provider, like the bandwidth, the one-way delay and the interpacket delay variation

(RFC 2678 [2]).

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

The end result of IP VPN configuration tasks is to align the network elements to provide

consistent treatment of the corresponding IP VPN traffic. The network elements will require

a combination of capabilities depending largely on their location in the topology and the

technology being used.

In addition, the IP VPN policy information model can help in defining a standard interface

to VPN facilities supported by an IP network. This interface is useful for dynamic and

customizable definition of provided VPN services based upon customer needs.

Therefore, the motivation for an IP VPN policy information model basically consists in

providing a common understanding of how the corresponding IP VPN service is to be

deployed over the network according to instances of the above information, from the IP VPN

service level to the network element level involved in the design, the deployment and the

operation of an IP VPN service offering.

BGP/MPLS-based VPN services (RFC 2917 [3], RFC 4364 [4]) may be delivered

between premises of the same company, or between different companies. BGP/MPLS-

based VPN services are deployed and operated by the combined activation of a set of

elementary capabilities, which can be classified according to the following taxonomy:

� Topological considerations. These capabilities correspond to the information needed for

the deployment of BGP/MPLS-based VPN topologies. This information includes, but is

not limited to, the identification of the endpoints that will be interconnected via the VPN,

the VPN-specific forwarding and routing policies to be enforced by the participating

network devices and the topology of VPN membership.

� Quality of service considerations. These capabilities correspond to the information that

characterizes the level of quality provided with the VPN service offering. QoS parameters

include, but are not limited to, VPN traffic classification and marking capabilities, traffic

conditioning and scheduling capabilities, as well as VPN traffic engineering capabilities.

� Security considerations. Any BGP/MPLS-based VPN that is deployed and operated across

multiple domains [or autonomous systems (ASs)] (RFC 1772 [5]) may also encourage the

need for identification, authentication and, potentially, VPN traffic encryption capabilities.

This includes the possible identification and authentication of the resources that partici-

pate in the establishment and operation of a VPN, as well as the ability to check the

integrity of VPN route announcements exchanged between ASs.

� Management considerations. It is assumed that the operation of QoS-based BGP/MPLS-

based VPN services is part of the management tasks performed by service providers

within their own ASs. Additional operational tasks are, however, needed in order to enable

the management of VPN services across multiple ASs.

� Measurement and monitoring considerations. the ability to measure and monitor service

delivery is of paramount importance, especially when such services span multiple ASs.

10.2 Approach

The IP VPN information model aims to provide a common understanding of how the

corresponding IP VPN service is to be deployed over the network. This objective is achieved

by identifying the various kinds of configuration information that need to be provided for

defining, deploying and operating an IP VPN. Figure 10.1 provides a graphical view of

212 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

where the information model fits in, with respect to the service goals and the device

configuration.

The dynamic provisioning of the appropriate configuration information to the devices

involved in the deployment and the operation of the IP VPN has significant advantages. It

will introduce a high level of automation into the actual provisioning of the IP VPN service

offering. It will provide some guarantees as far as the consistency of such configuration

information is concerned.

The IP VPN information model includes policy components and topology components.

The policies make references to the physical topology components. The provisioning system

creates a virtual topology to meet the requirements captured in the policies.

The information required for the provisioning of an IP VPN service offering are captured

in the form of rules. The rules reflect the customer requirements at the service level,

translated into network requirements. The device configuration information is generated

using these rules.

The device configuration information results in the creation of a virtual topology over

the physical topology. The physical topology identifies policy targets for IP VPN

deployment. The virtual topology is used by the provisioning system to track the current

status of the network resource allocation owing to the previous IP VPN-related

configuration.

This section provides an overview of the IP VPN policy information model. Subsequent

sections will elaborate on the components of the IP VPN policy information model identified

in this section.

The topology information model seizes the network status from a dual standpoint: the

physical and the virtual. Physical topology classes represent the physical structure of the

network that supports the IP VPN service offering. The IP VPN policy information model

uses them in order to identify policy targets for the IP VPN deployment. The end result of

such deployment is the creation of a virtual topology. The latter is captured by the virtual

topology classes.

This model assumes that the IP VPN is provisioned over a provider network as depicted in

RFC 2764 [6], and according to the ‘customer premises equipment (CPE)-based’/‘Network-

based’ taxonomy.

This is summarized by the reference models in Figure 10.2.

The IP VPN policy information model supports both network-based and CPE-based types

of IP VPN network. In order to have a single model for both types, the following

 | Service Level | --> SLS capture customer requirement/service goals

 <>---------> Service goal to network policy translation

 | Network Level | --> IP VPN policies capture network requirements

 <>---------> Network policy to devices configuration information

 | Device Level | --> Device specific configuration information

Figure 10.1 Dynamic VPN provisioning model, from SLS negotiation to VPN device configuration

Automated Production of BGP/MPLS-based VPN Networks 213

generalization has been adopted: as far as IP VPNs are concerned, devices can be divided

into IP VPN-aware nodes and IP VPN-unaware nodes. The former are grouped as ‘edge

nodes’, while the latter are grouped as ‘core nodes’, irrespective of where devices physically

reside (be they located at a provider network border or at customer premises).

10.3 Use of Policies to Define Rules

There are different ways of defining rules. The rule definition approach described in this

chapter is based upon policies defined in RFC 3060 [7]. The core classes address common

rule definition requirements, such as prioritization, and reuse of rule building blocks, such as

conditions and actions.

The core classes have been extended to address the requirements that are specific to the IP

VPN domain. The storage and distribution recommendations in RFC 2753 [8] can be applied

to the storage and distribution of IP VPN policies. The corresponding lightweight directory

access protocol (LDAP) (RFC 4510 [9]) implementations could be built on the basis of the

‘policy core LDAP schema’ (RFC 3703 [10]) and the ‘Policy QoS information model’ (RFC

3644 [11]) implementations.

The IP VPN policy information model also references QoS (RFC 2475 [12]), IP-secure

(IPsec) (RFC 2401 [13], RFC 4301 [14]) and MPLS (RFC 3031 [15]) classes where

appropriate. Some of the work in this area is directed at device configuration. The IP VPN

policy information model, however, aims to capture the network requirements for deploying

IP VPN networks, whereas the generation of the device configuration information is

delegated to policy servers.

10.4 Instantiation of IP VPN Information Model Classes

The IP VPN provisioning system can instantiate the required classes to capture the network

requirements for an IP VPN. The provisioning system needs to take into account the

customer requirements and the physical topology to instantiate the classes with the

appropriate values, as depicted in Figure 10.3.

 Network-based : CPE-based
 :
 +---------+ +------------ : ------------+ +---------+
 | | | : | | |
 | | | : | | |
 | +------+ +-----+ : +-----+ +------+ +------+
 +----+ | EN | | C N | : | C N | | CN | | EN |
 | CE |---:--| |========== : =======================| |
 +----+ | (PE) | | (P) | : | (P) | | (PE) | | (CE) |
 | +------+ +-----+ : +-----+ +------+ +------+
 | | | : | | |
 +---------+ +------------ : ------------+ +---------+
 :
 | Access | | Provider | | Provider | | Access |
 | network | | network | | network | | network |

Figure 10.2 Reference models for IP VPN

214 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

10.5 Policy Components of an IP VPN Information Model

The IP VPN information model consists of a set of IP VPN configuration action classes that

are combined together with the rule and condition classes defined in RFC 3060 [7] and RFC

3460 [16] in order to obtain the IP VPN provisioning rules (Figure 10.4).

 Customer Requirements
 |
 |
 Physical Topology V
 Information +----------------------------+
 --------------> |IP VPN Provisioning System |
 IP VPN Information +----------------------------+
 Model Classes |
 |
 V
 IP VPN Information Model Instances/Network Policies

Figure 10.3 Instantiation of IP VPN information model classes

 +-------------+
 | PolicyGroup |
 +-------------+
 |
 |1..n
 +--------------+
 | PolicyRule |
 +--------------+
 | |
 | |
 +---------------+ +---------------+
 |PolicyCondition| | PolicyAction |
 +---------------+ +---------------+
 | |
 +--------------+ | | +----------------------------+
 |PolicyVariable|-+ +--------------|ipvpnPolicyVFICreationAction|
 +--------------+ | | +----------------------------+
 +-----------+ | | +----------------------------------+
 |PolicyValue|----+ +--------|ipvpnPolicyRouteDistributionAction|
 +-----------+ | +----------------------------------+
 | | +---------------------------------------+
 | +---|ipvpnPolicyVPNTopologyDescriptionAction|
 | | +---------------------------------------+
 | | +--------------------+
 | +----------------------|ipvpnPolicyNATAction|
 | | +--------------------+
 | | +-----------------------------+
 | +-------------|ipvpnPolicyTrafficTrunkAction|
 | | +-----------------------------+
 | | +-------------------------+
 | +-----------------|ipvpnPolicyFirewallAction|
 | | +-------------------------+
 | | +---------------------------+
 | +---------------|ipvpnPolicyEncryptionAction|
 | +---------------------------+
 |
 | +------------------------------+
 +---|ipvpnApplicationSignatureValue|
 +------------------------------+

Figure 10.4 Policy components of an IP VPN information model

Automated Production of BGP/MPLS-based VPN Networks 215

The important classes to be highlighted in Figure 10.4 are:

� The ipvpnPolicyVFICreationAction specifies the virtual forwarding instance (VFI) to be

created on the edge nodes if the chosen IP VPN implementation is compliant with RFC

4364 [4].

� The ipvpnPolicyRouteDistributionAction specifies the connectivity between the edge

nodes in the IP VPN and enables the IP VPN to be implemented as specified in RFC

4364 [4].

� The ipvpnPolicyVPNTopologyDescriptionAction provides a description of the IP VPN

topology according to the connectivity requirements of the IP VPN service and enables

CE-based IP VPNs to be implemented with IPsec, as described in RFC 4111 [17].

� The ipvpnPolicyNATAction enables the network address translation (NAT) (RFC 2663

[18]) requirements of an IP VPN to be captured.

� The ipvpnPolicyTrafficTrunkAction aggregates the requirements for the traffic trunks that

can be used to transport the IP VPN traffic over the provider network.

� The ipvpnPolicyFirewallAction enables the firewall requirements of an IP VPN to be

captured.

� The ipvpnPolicyEncryptionAction enables the encryption requirements of an IP VPN to be

captured.

� The ipvpnApplicationSignatureValue specifies the layer-4 to layer-7 characteristics of an

IP VPN packet. This class enables the policies to capture the application layer require-

ments of the customer with regards to treatment for specific VPN traffic.

The policy components make references to physical topology components which are

defined as part of the complete set of topology components which are classified into physical

topology components and virtual topology components, as further elaborated in Sections

10.5.1 and 10.5.2.

10.5.1 Physical Components of an IP VPN Information Model

The physical topology components are used to capture the physical topology of the network,

as shown in Figure 10.5.

 (a) 1 +-----------+ 1 (b)
 +------------| Partition |-----------+
 | +-----------+ |
 | |
 | |
 | 2..* 0..* |
 +---------------+ 1 +---------------+
 | Edge Node |o-------+ | Core Node |
 +---------------+ | +---------------+
 1 o | o 1
 | (d)| |
 |(C) | (e)|
 1..* | | | 2..*
 +-------------------+ | +-------------------+
 +----| Access End Point | +--| Core End Point |----+
 | 1 +-------------------+ 1..* +-------------------+ 1 |
 (f)| | 1 1 | |(g)
 +---------+ +--------+

Figure 10.5 Overview of physical topology classes and relationships

216 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

In Figure 10.5 the relationships are labeled as follows:

(a) EdgeNodeInPartition;

(b) CoreNodeInPartition;

(c) AccessEndPointInEdgeNode;

(d) CoreEndPointInEdgeNode;

(e) CoreEndPointInCoreNode;

(f) AccessLink;

(g) CoreLink.

Network nodes are classified as core nodes (P or PE) and edge nodes (PE or CE). Edge

nodes provide IP VPN connectivity to customers by means of one or more AccessEndPoints.

The set of AccessEndPoints represents the set of interfaces towards IP VPN customers;

interfaces can be either virtual or physical.

Note that the term ‘interface’ does not refer to physical adapters. Edge nodes are also

associated with a second set of interfaces, called core endpoints, which represent the

attachment points to the core network (note that ‘core’ is defined with respect to the IP VPN

service).

On the other hand, core nodes are associated with core interfaces only (see the aggregation

labeled as (e) in Figure 10.5). Core interfaces are represented by instances of the core

endpoint class. Core interfaces are interconnected by core links, which represent the

transmission resources that interconnect routers.

These physical topology classes are referenced by the different policy action classes

defined in this information model. These classes are described in further detail in subsequent

sections under topology class definitions.

10.5.2 Virtual Components of an IP VPN Information Model

The configuration generated as a result of the enforcement of IP VPN policies will result in a

virtual topology, which can be modeled using the classes and relationships described in this

section.

Figure 10.6 depicts the class diagram of virtual topology entities.

In Figure 10.6 the relationships are labeled as follows:

(h) EdgeProviderNodeInIPVPN;

(i) VirtualEndPointInEdgeProviderNode;

(l) VFIInEdgeProviderNode;

(m) VirtualLink;

(n) AccessEndPointInVFI;

(o) VirtualEndPointInVFI.

An IP VPN is identified as a set of edge nodes (ENs) that participate in the interconnection

of IP VPN sites. As far as the IP VPN service is concerned, the role of an EN is to forward IP

VPN traffic from access links to the correct paths, and vice versa. A virtual forwarding

instance can be defined to accomplish this task, if the chosen implementation of IP VPN is

Automated Production of BGP/MPLS-based VPN Networks 217

compliant with RFC 4364 [4]. Hence, VFI instances can be activated on access and virtual

endpoints.

10.5.3 Inheritance Hierarchy

The inheritance hierarchy shows the various classes used to define the IP VPN policy

information model. This information model is policy driven, so we start with the classes

derived from the policy base class.

10.5.3.1 Inheritance Hierarchy for Policy Classes

The tree structure depicted in Figure 10.7 reflects the inheritance relationships between the

generic policy classes as defined in RFC 3060 [7], RFC 3460 [16] and RFC 3644 [11] and

those policy classes that are specific to an IP VPN service offering.

The new classes introduced by the IP VPN information model are as follows:

� The ipvpnPolicyVFICreationAction specifies the VFI to be created on the edge nodes if

the chosen IP VPN implementation is compliant with RFC 4364 [4].

� The ipvpnPolicyRouteDistributionAction specifies the connectivity between the edge

nodes in the IP VPN and enables the IP VPN to be implemented as specified in RFC

4364 [4].

� The ipvpnPolicyVPNTopologyDescriptionAction provides a description of the IP VPN

topology according to the connectivity requirements of the IP VPN service and enables

CE-based IP VPNs to be implemented with IPsec (RFC 4111 [17]).

� The ipvpnPolicyNATAction enables the NAT requirements of an IP VPN to be captured.

 +--------+
 | IP VPN |
 +--------+
 0..* o
 |
 |(h)
 2..* |
 (c) +-----------+ (i)
 +--------o| Edge Node |o---------+
 | 1 +-----------+ 1 |
 | o 1 |
 | | |
 1..* | | | 0..*
 +------------------+ | +-------------------+
 +----| Access EndPoint | | | Virtual EndPoint |----+
 | 1 +------------------+ | +-------------------+ 1 |
 | 1 | 1..* | (l)| | 1..* | 1 |(m)
 +---------+ |(n) | (o)| +--------+
 (f) | | |
 1 | | 0..* | 1
 +-----------------------------+
 | Virtual Forwarding Instance |
 +-----------------------------+

Figure 10.6 Overview of virtual topology classes and relationships

218 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

 Policy
 |
 +----PolicyGroup [RFC3060]
 | |
 | +-------PolicyGroup [RFC3460]
 |
 +----PolicyRule [RFC3060]
 | |
 | +-------PolicyRule [RFC3460]
 |
 +----PolicyConditionInPolicyRule [RFC3060]
 |
 +----PolicyCondition [RFC3060]
 | |
 | +-------PolicyTimePeriodCondition [RFC3060]
 | |
 | +-------VendorPolicyCondition [RFC3060]
 | |
 | +-------PolicySimpleCondition [RFC3460]
 | |
 | +-------PolicyCompoundCondition [RFC3460]
 |
 +----qoSPolicyTokenBucketTrfcProf [RFC3644]
 |
 +----PolicyVariable [RFC3460]
 |
 +----PolicyValue [RFC3460]
 | |
 | +-------PolicyIPv4AddrValue [RFC3460]
 | |
 | +-------PolicyIPv6AddrValue [RFC3460]
 | |
 | +-------ipvpnApplicationSignatureValue
 |
 +----PolicyActionInPolicyRule [RFC3060]
 |
 +----PolicyAction [RFC3060]
 |
 +-------VendorPolicyAction [RFC3060]
 |
 +-------ipvpnPolicyVFICreationAction
 |
 +-------ipvpnPolicyRouteDistributionAction
 |
 +-------ipvpnPolicyVPNTopologyDescriptionAction
 |
 +-------ipvpnPolicyNATAction
 |
 +-------ipvpnPolicyTrafficTrunkAction
 |
 +-------ipvpnPolicyFirewallAction
 |
 +-------ipvpnPolicyEncryptionAction
 |
 +-------qoSPolicyPRAction [RFC3644]
 |
 +-------qoSPolicyRSVPAction [RFC3644]
 |
 +-------qoSPolicyRSVPAdmissionAction [RFC3644]

Figure 10.7 Inheritance hierarchy for policy components

Automated Production of BGP/MPLS-based VPN Networks 219

� The ipvpnPolicyTrafficTrunkAction aggregates the requirements for the traffic trunks that

can be used to transport the IP VPN traffic over the provider network.

� The ipvpnPolicyFirewallAction enables the firewall requirements of an IP VPN to be

captured.

� The ipvpnPolicyEncryptionAction enables the encryption requirements of an IP VPN to be

captured.

� The ipvpnApplicationSignatureValue specifies the layer-4 to layer-7 characteristics of the

packet. This class enables the policies to capture the application layer requirements of the

customer with regards to treatment for specific IP traffic.

10.5.3.2 Inheritance Tree for Policy Classes

Classes related to the topology model are shown in Figure 10.8. They are derived from the

classes mentioned on the DMTF website [19].

 ManagedSystemElement
 |
 +----LogicalElement
 | |
 | +----System [DMTF]
 | | |
 | | +----ComputerSystem
 | | |
 | | +----Node
 | | |
 | | +----CoreNode
 | | |
 | | +----EdgeNode
 | |
 | +----ServiceAccessPoint
 | | |
 | | +----ProtocolEndPoint
 | | |
 | | +----AccessEndPoint
 | | |
 | | +----CoreEndPoint
 | | |
 | | +----VirtualEndPoint
 | |
 | +----Service
 | |
 | +----NetworkService
 | |
 | +----VirtualForwardingInstance
 |
 +----Collection [DMTF]
 |
 +----CollectionOfMSEs
 |
 +----LogicalNetwork
 |
 +----Partition
 |
 +----IP VPN

Figure 10.8 Class inheritance for topology components

220 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

The inheritance hierarchy (Figure 10.9) shows the various classes used to define relation-

ships between topology classes.

A detailed description of the IP VPN-specific classes that have been introduced in Section

10.5 can be found in Appendix 5.

10.6 Dynamic Production of IP VPN Services

The physical topology reflects the physical layout of the devices and their interfaces. They

are referenced by the policy action classes defined in the IP VPN information model. The

role of the policy server in the policy management framework is detailed in RFC 2753 [8].

The policy servers use this information to generate the configuration information that will be

processed by the IP VPN participating devices.

The topology of an IP VPN is an implicit result of the (device) configuration information,

i.e. the topology is displayed/described once the devices have been configured accordingly,

 [unrooted]
 |
 +----Dependency
 | |
 | +----Link
 | | |
 | | +----VirtualLink
 | | |
 | | +----CoreLink
 | | |
 | | +----AccessLink
 | |
 | +----NodeInPartition
 | | |
 | | +----EdgeNodeInPartition
 | | |
 | | +----CoreNodeInPartition
 | |
 | +----AccessEndPointInVFI
 | |
 | +----VirtualEndPointInVFI
 |
 +----Component [DMTF]
 |
 +----ProtocolEndPointInNode
 | |
 | +----AccessEndPointInEdgeNode
 | |
 | +----CoreEndPointInEdgeNode
 | |
 | +----CoreEndPointInCoreNode
 | |
 | +----VirtualEndPointInEdgeNode
 |
 +----VFIInEdgeNode
 |
 +----EdgeNodeInIPVPN

Figure 10.9 Association inheritance for topology components

Automated Production of BGP/MPLS-based VPN Networks 221

in terms of architecture, QoS, security and management, as per a ‘global’ IP VPN

deployment policy.

The network devices involved in the forwarding of the IP VPN traffic as well as the virtual

links generated by the configuration represent the IP VPN topology.

10.7 Context of a Multidomain Environment

10.7.1 A Bit of Terminology

Some of the terminology used in this chapter is taken from RFC 4026 [20] and RFC 4031

[21]. ‘VPN’ in the context of this document refers specifically to BGP/MPLS-based VPN

services. In order to clarify the requirements listed in this document, it is necessary further to

define and introduce new terminology specific to multiprovider VPN services.

10.7.1.1 Agent

For the purposes of this chapter, an agent is a VPN service provider (VSP) who is

responsible for the management of multiparty business processes, negotiations and fulfill-

ment that allow the multiprovider VPN to function. The agent manages this responsibility by

either operationally complying with or coordinating policies across all parties involved in

delivering their customer’s end-to-end service. Policy compliance or multiparty policy

coordination is achieved either in a distributed or in a centralized manner:

� For distributed policy enforcement, cooperating VSPs agree upon the enforcement of

consistent policies for VPN service provisioning purposes. In this case, end-to-end policy

enforcement is distributed across multiple VSPs, each of which is a stakeholder in the

supply and enforcement of a fixed set of policies within the shared multi-AS environment.

AVPN customer defines its VPN service requirements with an agent who then maps these

requirements to the set of policies that may have been predefined by the VSP, and possibly

negotiated with the customer, then adapted to the customer’s specific requirements.

� For centralized policy enforcement, the agent coordinates, per customer, a set of policies

related to the management of the customer’s VPN service. In contrast to a shared multi-

AS environment, where policy enforcement is distributed across multiple VSPs, this agent

will coordinate policies and integrate VPN services per customer, thereby creating a

customer-specific environment that is dedicated to the agent’s customers only. The agent

may independently agree and manage service level specification (SLS) with each partner

VSP and offer an aggregated end-to-end SLS to their customer’s.

10.7.1.2 Multidomain Environment (MDE)

Two or more autonomous systems that may or may not be owned by separate administrative

authorities, and which are used to interconnect service endpoints (sites) of one or more VPNs.

10.7.1.3 VPN Peering Location (VPL)

A VPL is a physical location where VPN services delivered by one or more VSPs are

interconnected. Examples of VPLs include VSP central offices, a collocation facility or any

222 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

building common to one or more VSPs. A VPL could be operated by a single VSP, a

consortium of VSPs or a neutral third party.

10.7.1.4 VPN Service Provider (VSP)

A VSP is an operator who participates in the delivery of a single domain or multidomain

(MDE-wide) VPN service. In delivering the VPN service, the VSP may own a subset or all

of the participating network elements. Examples of VSPs include network service providers

(NSPs), systems integrators (SIs), network integrator (NIs), mobile operators (MOs) and

virtual network operators (VNOs).

10.7.2 Reference Model

Figure 10.10 shows a generic reference model for a multidomain environment. It shows the

relationships that exist between the various parties involved in the establishment of VPN

services that span multiple VSP-administered networks.

The MDE consists of sites interconnected via ASs. ASs are then interconnected via VPLs,

within the context of delivering VPN service offerings. There is potentially a one-to-many

relationship between VSPs and ASs, similarly there is potentially a one-to-many relationship

between VPL operators and VPLs. Note that VSPs may be remotely interconnected, that is,

VSPs do not necessarily need to be directly connected to each other through a given VPL.

With reference to Figure 10.10, the following sections detail examples of the coordination

of the various parties in the enforcement of a set of policies. These policies relate to the

provisioning of an MDE-wide VPN service and include (but are not limited to) addressing,

routing, QoS and security.

Agent

VSP 1 VPL 1 VSP 2

Customer

Site 1 Site 2

AS #1 AS #2

Figure 10.10 The MDE reference model

Automated Production of BGP/MPLS-based VPN Networks 223

10.7.2.1 Distributed Policy Enforcement Scheme

The customer’s agent is a single VSP (VSP1 in this example). VSP1 manages the relation-

ship with the customer, which includes the specification, instantiation, possible negotiation

and invocation of the customer’s SLS.

Cooperating VSPs, VSP1 and VSP2, have preagreed an enforced set of policies, including

the management of VPL1. The customer’s requirements are mapped by VSP1 to the

preagreed policies of VSP1 and VSP2.

10.7.2.2 Centralized Policy Enforcement Scheme

The customer’s agent is a systems integrator (SI). The SI does not own the network

infrastructure (the VPN networking elements), but manages the VPLs, as well as the

processes involved in connecting the VPLs with each relevant VSP-owned AS.

VSP1 and VSP2 independently provide customer-specific VPN services and associated

SLS instantiated templates to the SI who is then responsible for integrating each VSP’s VPN

service components and negotiating/invoking an end-to-end SLS with/for their customer.

10.8 Possible Extensions of the VPN Model

The IP VPN policy information model describes the IP VPN basic features – namely

connectivity, security and QoS. The IP VPN policy information model can be extended to

support new requirements generated as a result of new functions for the deployment of

value-added IP VPN services, like the integration of IP multicast transmission schemes

within the IP VPN.

References

[1] Goderis, D., T’Joens, Y., Jacquenet, C., Memenios, G., Pavlou, G., Egan, R., Griffin, D.,

Georgatsos, P. and Georgiadis L., ‘Attributes of a Service Level Specification (SLS) Template’,

draft-tequila-sls-03.txt, Work in Progress, October 2003.

[2] Mahdavi, J. and Paxson, V., ‘IPPM Metrics for Measuring Connectivity’, RFC 2678, September

1999.

[3] Muthukrishnan, K. and Malis, A., ‘A Core MPLS IP VPN Architecture’, RFC 2917, September

2000.

[4] Rosen, E. and Rekhter, Y., ‘BGP/MPLS IP Virtual Private Networks (VPNs)’, RFC 4364, February

2006.

[5] Rekhter, Y. et al., ‘Application of the Border Gateway Protocol in the Internet’, RFC 1772, March

1995.

[6] Gleeson, B. et al., ‘A Framework for IP Based Virtual Private Networks’, RFC 2764, February

2000.

[7] Moore, B. et al., ‘Policy Core Information Model – Version 1 Specification’, RFC 3060, February

2001.

[8] Yavatkar, R. et al., ‘A Framework for Policy-based Admission Control’, RFC 2753, January 2000.

[9] Zeilenga, K. et al., ‘Lightweight Directory Access Protocol (LDAP): Technical Specification Road

Map’, RFC 4510, June 2006.

[10] Strassner, J. et al., ‘Policy Core LDAP Schema’, RFC 3703, February 2004.

224 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

[11] Snir, Y. et al., ‘Policy Quality of Service (QoS) Information Model’, RFC 3644, November 2003.

[12] Blake, S. et al., ‘An Architecture for Differentiated Services’, RFC 2475, December 1998.

[13] Kent, S. and Atkinson, R. ‘Security Architecture for the Internet Protocol’, RFC 2401, November

1998.

[14] Kent, S. and Seo, K., ‘Security Architecture for the Internet Protocol’, RFC 4301, December 2005.

[15] Rosen, E. et al., ‘Multiprotocol Label Switching Architecture’, RFC 3031, January 2001.

[16] Moore, B. et al., ‘Policy Core Information Model Extensions’, RFC 3460, January 2003.

[17] Fang, L. et al., ‘Security Framework for Provider-Provisioned Virtual Private Networks

(PPVPNs)’, RFC 4111, July 2005.

[18] Srisuresh, P. and Holdredge, M., ‘IP Network Address Translator (NAT) Terminology and

Considerations’, RFC 2663, August 1999.

[19] Distributed Management Task Force, Inc., ‘DMTF Technologies: CIM Standards CIM Schema:

Version 2.5’, available via links on the following DMTF web page: http://www.dmtf.org/spec/

cim_schema_v25.html.

[20] Andersson, L. and Madsen, T., ‘Provider-Provisioned Virtual Private Network (VPN) Terminol-

ogy’, RFC 4026, March 2005.

[21] Carugi, M. et al., ‘Service Requirements for Layer 3 Provider Provisioned Virtual Private

Networks (PPVPNs)’, RFC 4031, April 2005.

Automated Production of BGP/MPLS-based VPN Networks 225

11

Dynamic Enforcement
of Security Policies
in IP/MPLS Environments

Enforcing security policies in an IP/MPLS network usually involves the AAA chain.

However, it is worthwhile describing a little bit further what we define here as a security

policy. The most basic definition of a security policy is to define the ability of an end-user to

get IP connectivity from the network. This binary approach can be extended to the notion of

network resource; for instance, granting or not granting access to a VPN, to the Internet or to

multicast flows. In this section, we will focus on security policies attached to this definition,

even though network resources can take much more sophisticated aspects.

Through two different application examples extracted from real network architecture

scenarios, this section intends to provide the reader with an overview of various ways

dynamically to enforce security policies in networks:

� Wi-Fi access control through a web-based captive portal;

� company network access control using 802.1X.

11.1 Enforcing Security Policies for Web-based Access Control

Web-based access control is something often used for Wi-Fi access or line access in nomadic

situations (hotels, for instance). The scenario is simple: the end-user connects his/her

terminal to a public wire or activates his/her Wi-Fi connection. Putting aside the layer-2

connectivity (especially for Wi-Fi access), the terminal gets an IP address through a public

DHCP server. After opening his/her browser, the user requests an URL that is automatically

redirected to a captive portal, asking for a login and password, or another credential (room

number for billing in hotels, magic number printed on scratch cards, etc.). If the security test

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

is passed, the user can access the network service (Internet access, VPN, etc.), depending on

his/her authorization profile.

A lot of solutions exist in the market to put in place such scenarios. From very simple

solutions that are free to be used by individuals or SMEs who are interested in offering a

prepaid Internet access (like Chillispot) to the most complex and scalable solutions sized for

operators or major players with a consequent customer base [like Cisco subscriber access

and management (SAM)]. In this example, we will focus on the industrial solution proposed

by Cisco – the SAM.

The SAM is actually a package of two elements, the SSG service selection gateway (SSG)

and the subscriber edge services manager (SESM):

� The SSG is the gateway through which all IP traffic from and to the subscriber has to go.

This equipment is dedicated to subscriber connection aggregation, and to enforcement of

policies. The SSG will redirect user’s traffic to the SESM as long as the requested service

is not authorized and activated. The SSG is in charge of enforcing policies according to

the subscriber and service profiles managed by the AAA server and the SESM. It acts as

proxy-RADIUS for all authentication/authorization messages exchanged between the

AAA server and the SESM. The SSG is typically an edge router from the Cisco 7200,

7400 or 7600 series, for instance, at least running IOS 12.2(2)B.

� The SESM is the portal with which the subscriber interacts for authentication and service

selection. Actually, the SESM is not only an HTTP server capable of interacting with the

SSG, it is also a set of applications that are able to manage customer and service profiles,

depending on the degree of complexity in which it is used. The SESM communicates with

the SSG and the AAA server with the RADIUS protocol. For simplicity, here we will

consider the SESM in a simple configuration. The SESM can be hosted in a single

machine running Linux, Windows or Solaris.

Figure 11.1 shows how SESM and SSG are integrated in a web-based access control

architecture for Wi-Fi.

The SESM and the SSG use RADIUS to communicate to the AAA server. This AAA

server holds user profiles and service profiles: user profiles contain basic elements (login,

password, etc.) but also the list of services allowed for this user. The service profile is a

description of the services, with the technical parameters that are required to achieve each

service. The services can be grouped into ‘service groups’, to ease service management for

user subscriptions to bundles of services: a user profile can mention a set of service groups.

Firstly, here is the sequence of events occurring between the subscriber and the network in

order to get the service:

1. The subscriber turns on his/her terminal and activates Wi-Fi.

2. The user’s terminal attaches itself to the access point.

3. The user’s terminal requests an IP address through DHCP.

4. The user opens his/her web browser, and the traffic is redirected to the SESM at the first

URL request.

5. The browser displays the captive portal HTTPS page pushed by the SESM, requiring a

login and a password to connect.

228 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

6. The user enters his/her login and password through HTTPS.

7. The browser displays an SESM page with the services available for the user to select.

8. The user selects the service on this page.

9. The browser displays an SESM page indicating that the service is active.

10. The user can now use the network service.

From this simple event sequence, multiple actions and messages are exchanged between

the terminal, the SESM, the SSG and the AAA server. We consider here that layer-2

association as well as DHCP sequence has already occurred.

Two authorization phases are performed before the user can use his/her service:

� The user authentication and authorization phase, where the network authenticates the user

and identifies the services to which he/she has subscribed.

� The service activation and authorization phase, where the user selects the services s/he

wants to use, and where the network authorizes the selected service and enforces the

associated policies.

The user authentication phase corresponds to steps 4 to 6 in the event user sequence

listed above. The RADIUS messages that are exchanged in this scenario are shown in

Figure 11.2:

� Phase a (layer-2 attachment and DHCP exchanges are already done). The user sends a

request to the network to reach a URL through HTTP. The request is intercepted by the

SSG, which has a default policy rule to redirect HTTP traffic to the SESM when the IP

address is not authorized for available services. The HTTP request is redirected to the

Figure 11.1 SSG and SESM in a web-based access control architecture for Wi-Fi

Dynamic Enforcement of Security Policies in IP/MPLS Environments 229

SESM, which sends the user its portal login page to ask the user for authentication

(login/password). The user sends his/her login/password to the SESM using the HTTPS

protocol. The SESM has the user’s credentials and begins the user authentication and

authorization phase.

� Phase b. The SESM sends a request to the SSG to get the user’s status, i.e. if a service is

already activated or not (and which one), based on the IP address of the subscriber. The

SSG answers to the SESM indicated that the user is not logged on.

� Phase c. The SESM sends a RADIUS Access-Request with the login/password entered by

the subscriber. The request is sent to the SSG which proxies the request to the AAA server.

The SESM can use either PAP or CHAP for authentication. The AAA server successfully

authenticates the user and sends back, embedded in an Access-Accept message, the user

profile with the list of authorized services. This message is proxied to the SESM by the

SSG.

� Phase d. As soon as the SSG proxies the connection acceptation message to the SESM, it

sends an accounting message to the AAA server notifying that the connection is now up.

The AAA server acknowledges this message, but the time in which this acknowledgment

is received does not influence the sequence of the following phases.

� Phase e. Once again, the SESM queries the SSG to get the status of the end-user session,

in order to consolidate its own state, and by ensuring the SSG has created the end-user

context for the next exchanges.

� Phase f. After the synchronization phase that occurred in phase e, the SESM is able to

push a personalized web page to the end-user, notifying him/her of the successful

authentication phase, and proposing a set of services that are available. The end-user

has to select one service among the list proposed, and the choice is sent to the SESM.

Terminal AAA ServerSESMSSG

RequestHTTP Redirected HTTP Request

HTTP Portal Login
HTTP Portal Login

HTTP Login/Password

RADIUS Access-Rq

a

RADIUS Access-Accept

Proxied RADIUS Access-Rq

RADIUS Access-Rq

RADIUS Access-Accept

Access-Accept

b

c
RADIUS

RADIUS Accounting-Rq/Start

RADIUS Accounting-Resp

RADIUS Access-Rq

RADIUS Access-Accept

d

e
HTTP Portal – Service Selection

HTTP Service Selected f

Figure 11.2 Protocol exchanges between the SSG, the SESM and the AAA server, from access

control to service selection

230 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Then comes the service authorization phase, which really enforces service policies into

the SSG. The protocol sequence that follows is shown in Figure 11.3, corresponding to steps

6 to 10 in the event user sequence listed above:

� Phase g. Once the service has been selected by the end-user, the SESM queries the AAA

server to get service details. This is the only case where the SESM is in direct contact with

the AAA server without being proxied by the SSG. This phase is optional since the service

description can still be in SESM memory from the previous choice of another user.

� Phase h. Following answers and possibly following guidelines imposed by locally defined

policies, the SESM requests from the AAA server the authorization for the end-user to get

the selected service. The AAA requests are exchanged through the SSG. The service

description embedded in the reply message (Access-Accept) is then used by the SSG to

enforce the policy to be applied on the user’s traffic.

� Phase i. After receipt of the Access-Accept message from the AAA server (through the

SSG), the SESM queries the SSG to make sure the policy is enforced and the service is

available for the end-user. The SSG answers with a ‘logged on’ message including the

active service applied.

� Phase j. The SSG starts the accounting for the service as soon as it is activated. The

Accounting-Request message Start is thus sent to the AAA server which acknowledges it.

� Phase k. The SESM pushes a web page to the end-user, indicating that the selected service

is now available to be used. The traffic sent and received by the end-user goes through the

SSG as long as the policies are enforced in the SSG.

The way Cisco uses RADIUS in this example is quite interesting. The AAA protocol

is not just used to convey authentication data, accounting data and service policies to

Terminal AAA ServerSESMSSG

HTTP Portal – Service Selection

HTTP Service Selected

RADIUS Access-Accept

RADIUS Access-Rq

RADIUS Access-Rq

f

g

Proxied RADIUS Access-Rq

RADIUS Access-Accept

RADIUS Access-Accept

RADIUS Access-Rq

Access-Accept

h

RADIUS Accounting-Resp

RADIUS Accounting-Rq/Start

RADIUSi

j
Service ActivationHTTP Portal –

Service traffic
k

Figure 11.3 Protocol exchanges between the SSG, the SESM and the AAA server for service

selection to policy enforcement

Dynamic Enforcement of Security Policies in IP/MPLS Environments 231

enforce on the SSG. RADIUS is also used here between the SESM and the SSG as a

query/response protocol to get the status of the end-user. In steps b, e and i, the SESM

queries the SSG to get the status of the end-user, in order to synchronize HTTP pages to

be presented to him/her. This is a very specific way of using this protocol, and Cisco uses

specific AVPs with proprietary codes for this purpose. These queries are considered as

part of the whole solution, and no compatibility with other vendors is required, nor

compatibility between operators since the SESM and SSG are managed by the same

administrative entity.

Note that two accounting exchanges take place for service activation. Firstly, there is a

connection accounting that is triggered as soon as the subscriber is authenticated.

Secondly, a service accounting is activated as soon as the service is enforced in the

SSG. The SSG is in charge of sending accounting information to the AAA server

because the SSG is aware of service usage (traffic exchanged), not the SESM.

Once the subscriber wants to end his/her session, s/he has to notify the SESM that s/he

wants to log out; otherwise, the service will still be active. There are two possible ways to

avoid keeping a service session up while the terminal is no longer connected: either

configuring a maximum session timeout after which the subscriber is forced to reconnect to

the service through SESM, or a maximum idle timeout specifying the maximum delay of

inactivity after which the subscriber is automatically logged out by the system. These

parameters are sent with the user profile during phase c. This mechanism is particularly

useful for this case where there is no notion of session, apart from the DHCP lease time

allowed during connection establishment to the network. In the case of network failure, this

helps to free unused resources, but it is also helpful if the service is billed on the basis of the

time spent, either prepaid or post-paid. In our example shown in Figure 11.4, we consider

that the subscriber manually logs out from the service by hitting a disconnect button

available on the SESM portal web page

Terminal AAA ServerSESMSSG

trafficService

Log OffHTTP Portal – l

RADIUS Access-Acceptm
RADIUS Access-Rq

RADIUS Access-Acceptn
RADIUS Access-Rq

RADIUS Accounting-Rq/Start

RADIUS Accounting-Resp o

RADIUS Accounting-Resp

RADIUS Accounting-Rq/Start

p
RADIUS Access-Rq

RADIUS Access-Acceptq

Figure 11.4 Protocol exchanges between the SSG, the SESM and the AAA server when the service is

stopped

232 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� Phase l. The subscriber goes to the SESM web page portal to log out. Logging out also

means that the service activated in the context of his/her connection will be terminated.

� Phase m. The SESM queries the SSG to get information about the user’s session. The SSG

replies back by indicating that the user is connected to the system, with a mention of the

service activated.

� Phase n. The SESM sends a request to disconnect the subscriber from the SSG. It is

interesting to note that this request uses Access-Request/Access-Accept messages

instead of Disconnect-Request/Disconnect-Response messages defined in RFC 3576

(see Chapter 3) for this purpose. Once again, this choice is due to multiple factors:

SESM/SSG is a Cisco proprietary solution without any requirement to interoperate, and

the IETF standard was not yet ready when the system was conceived.

� Phase o. The SSG stops the connection of the subscriber, and restores the default policies

for the subscriber’s IP address. The SSG first notifies the AAA server that the service

activated for this user is terminated.

� Phase p. The SSG then sends the accounting message notifying the AAA server that

the connection is terminated for this user. We must understand here that ‘connection’

refers to the relationship maintained between the terminal and the SESM. It must not

be understood as the connectivity that is established with the access nodes (APs): at

this stage, the subscriber still has his/her Wi-Fi connectivity as well as his/her IP

address.

� Phase q. The SESM queries the SSG to consolidate the states on both pieces of equipment,

to make sure that the context pertaining to the subscriber has been released on the SSG as

well.

Once these steps are over, the default security policy is enforced back for the subscriber IP

address, meaning that all HTTP traffic issued by the subscriber will be redirected to the

SESM.

To enforce policies on the SSG, it is interesting to focus on some of the attributes sent

by the AAA server when transmitting the user profile in step c as well as the service

profile in steps g and h. Along with standard attributes that are used for traditional

authentication, five Cisco-specific sub-AVPs are used, which, for some of them, are split

into subactions:

� Cisco-AVPair (AVP 26, vendor ID 9, subattribute ID 1). This AVP is used to convey

general parameters that are used in different Cisco solutions. Cisco defined its own syntax

to discriminate between the different actions. The most interesting parameters are the

access control lists (ACLs), downstream or upstream, that can be associated with the

subscriber. It is possible to use this sub-AVP to define ACLs related to a user profile (if

there is a specific policy for this user), or related to a service profile (when all subscribers

attached to a service must have the same set of ACLs applied).

� Cisco-SSG-Account-Info (AVP 26, vendor ID 9, subattribute ID 250). This AVP can

be used for five different usages specifically dedicated to describe the user profile or

the service group profile. We will focus a little bit more on this AVP later.

� Cisco-SSG-Service-Info (AVP 26, vendor ID 9, subattribute ID 251). This AVP can be

used for 14 different usages specifically dedicated to describe the service. This does

not mean that the service will only be described by this AVP, however.

Dynamic Enforcement of Security Policies in IP/MPLS Environments 233

� Cisco-SSG-Command-Code (AVP 26, vendor ID 9, subattribute ID 252). This AVP is

used for specific exchanges between the SESM and SSG for specific queries and actions

(user status, subscriber log out).

� Cisco-SSG-Control-Info (AVP 26, vendor ID 9, subattribute ID 253). This AVP is used

to help in designating and defining next hop entries.

Taking as an example of how the SSG is able to create a user context by interpreting

RADIUS attributes sent by the AAA server, we will focus on the Cisco-SSG-Account-Info

attribute used to define the user’s profile. Five meanings are possible for this AVP by

following a specific syntax of the type: <command>value. The <command> is a letter
that gives the meaning of the attribute:

� A for Auto Service indicates the service name the SSG has to enforce by default.

� I for Service Group Description gives a description of a service group in plain text, to be

displayed to the subscriber by the SESM, for instance.

� H or U indicates the default URL to which the subscriber wishes to be connected.

� G for Service Group indicates the name of a service group that is attached to the

subscriber.

� N indicates a Service Name that is attached to the subscriber.

Let’s take the example of the profile of user 1, who is eligible to Internet access and to the

Company’s VPN access (ACME). If we consider that user 1 wants to be connected by

default (without service selection phase) to the Internet, the user’s profile held in the AAA

server (Free RADIUS format) will look like this:

User1 Password ¼ ‘‘userpwd’’,
Session-Timeout ¼ 3600,

Account-Info ¼ ‘‘Ninternet’’,
Account-Info ¼ ‘‘Nacme-vpn’’,
Account-Info ¼ ‘‘Ainternet’’

In the same manner, the services ‘internet’ and ‘acme-vpn’ will be described by using

attributes embedded in Cisco-SSG-Service-Info, following a close syntax but with other

possible actions.

In conclusion, it is important to mention that this kind of architecture for a Wi-Fi

access has some drawbacks, especially in terms of security. Firstly, the communications

are not encrypted by this system. This means that the user will have to activate a specific

VPN client on his/her terminal if s/he wants to secure his/her traffic to a specific

endpoint (such as a company’s VPN gateway). Everyone within the 802.11 radio range

will be able to inspect the user’s traffic. The second security drawback of this solution is

the risk of the connectivity being stolen by a malicious user: it is still possible to ‘kick

out’ a terminal from its Wi-Fi connection and to take its place by spoofing its MAC

address. It is important to note that, at this time, 802.11i [1], Wi-Fi protected access

(WPA) or WPA2 remains the most secure way to connect to a wireless access point.

However, these technologies are not user friendly (it is often necessary to install

certificates on the terminal and to set up complex security infrastructures), which

234 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

explains why web-based security access is so popular nowadays. The bottom line is

always to keep in mind the degree of security required considering the usage of the

network infrastructure by the end-users. For a wireless ISP it is clear that security

considerations have to be taken into account, not from a subscriber perspective, but from

a business perspective, by protecting itself from attacks and service theft. For a company

that wants to provide access to its VPN through Wi-Fi, the security requirements are

much greater and must take into account user integrity as well. The example provided

here is definitely not suitable in this case.

11.2 Enforcing Security Policies in Companies with 802.1X

One usual drawback encountered by companies is to secure their LAN access. In order to do

this, IEEE 802.1X has been defined to secure the LAN by only allowing terminals that are

able to present known and verifiable credentials to the network. In the context of IP/MPLS

networks, one might wonder why 802.1X, exclusively defined for layer-2 connectivity, is

helpful. Actually, several items of layer-2 equipment available on the market are also

capable of layer-3/4 treatments, so it is just moving one step forward to take the opportunity

to use the AAA exchanges performed during the 802.1X authentication phase to convey

additional policies to be enforced at the IP level. Of course, this is not the way the IEEE

standardized access control, but it is an efficient way to enforce customized policies

transparently for the end-user.

To illustrate this, we will take the example of the ACME company which wants to offer

two levels of security in its internal network: the first security level is accessible to everyone

who is employed by the company, whereas the second level is reserved for the high

management of the company who have access to sensitive applications and databases (see

Figure 11.5). The advantage of treating the security aspect on the IP level rather than the

layer-2 level is to dissociate the right to access to resources from the VLAN aspect (not

always possible when the company has multiple sites interconnected through an L3 VPN).

It is also possible to apply security rules in equipment placed on the path used to access the

servers needing protection, based on the IP address of the terminal requesting access. In the

latter case, the solution would consist in assigning a specific IP address to terminals that are

allowed to access resources, by placing firewall rules to stop packets coming from non-

authorized IP addresses. This way to proceed can become burdensome, as it requires

managing several pools of addresses, with the risk of a security breach when the access lists

and the IP pools are not consistent. Moreover, the process of address assignment, usually

performed through DHCP, relies on the MAC address: this address can easily be forged;

DHCP user databases have to be refreshed as soon as a user changes his/her terminal

hardware. Finally, this method relies on the assumption that MAC addresses are unique

worldwide, which has long been proven to be false because of the casual process followed

by some Ethernet card vendors.

The solution proposed here makes use of the filtering capabilities of L2/L3 switches in

order to block IP packets generated by terminals that are not allowed access to some parts of

the network. This way to proceed is the most efficient way to enforce network IP security

policies directly bound to the credentials presented by the terminal. It is not linked to the

hardware of the terminal, it is not linked to the port to which the terminal is connected and it

Dynamic Enforcement of Security Policies in IP/MPLS Environments 235

is not linked to the IP address obtained by the terminal from the DHCP server. The elements

of the solution are as follows:

� terminals embedding an 802.1X module, with address assignment either done dynami-

cally through DHCP or statically configured;

� an L2/L3 switch connected to the company’s network backbone, activating the 802.1X

authenticator role with remote authentication through RADIUS;

� an AAA server that stores the individual security policy to be enforced, running RADIUS

and EAP methods enforced by the company.

The choice of the L2/L3 switch brand can be crucial here: it is possible to use a vendor-

specific solution (which usually is the easiest way to proceed, even though it is a drawback

for network evolution), or to configure each switch in the network with the policy to be

enforced, the user profile making reference to this profile. It is a matter of fact that the latter

is not the preferred solution, as it requires reconfiguring all switches if there is a change in IP

address filters. Even with an automated update of managed equipment through SNMP MIBs,

the risk is higher than transferring IP policies dynamically from a centralized point.

In this example, we will make use of Cisco Catalyst 3550 equipment, which is capable

of assuming L2 connectivity, an 802.1X authenticator and an ACL for layer-3 filtering.

Figure 11.5 Network architecture for dynamic security enforcement

236 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

This equipment is also capable of applying individual filters using the two methods

mentioned above: either by using the RADIUS Filter-Id attribute (see Section 3.2.5), or

by using the vendor-specific AVP Cisco-AVPair attribute embedding the proper extended

access lists (either inbound or outbound), as used in the previous example (Section 11.1).

The general architecture of our company’s network is shown in Figure 11.5.

Figure 11.6 (applying the diagram presented in Section 3.2.1.2) shows the message

exchange that takes place between the terminal and the switch (using EAPoL, as

specified in 802.1X [2]), and between the switch and the AAA server holding the

security policy to be applied for this user. This user is considered as a regular employee

and therefore is not allowed to access subnet 10.0.1.0/24. The corresponding ACL can be

statically configured in the switch with the following command line:

Switch (config) # access-list 101 deny ip any any 10.0.1.0 0.0.0.255

The sequence of messages is detailed in Section 3.2.1.2. The Access-Accept message sent

by the RADIUS server in 8a to the switch embeds a specific AVP, the Cisco-AVPair, which

contains the filter to apply in order to block access to the 10.0.1.0/24 subnet, which is

reserved to managers. The following line has to be added to the user profile (formatting the

aforementioned ACL into the Cisco-AVPair attribute):

Cisco-AVPair ¼ ‘‘ip:inacl#101¼deny ip any any 10.0.1.0 0.0.0.255’’

Cisco Catalyst 3550
(authenticator)

AAA Server
(RADIUS Server)User Terminal

Steps 4 to 7 repeated
until success or failure:

Access Granted,
Transmission of
Security Policies

ACL enforcement

OK

Figure 11.6 EAP exchanges for dynamic provisioning of individual security policy

Dynamic Enforcement of Security Policies in IP/MPLS Environments 237

The example given here is suitable not only for wired Ethernet access but also when a

WLAN access is provided to access the company’s VPN. In such a situation, the

authentication phase is more complex and requires using 802.11i, WPA or WPA2 (Wi-Fi

protected access, adopted by the Wi-Fi Alliance and based on 802.1X work). Policy security

provisioning would be realized the same way as described here (conveyed in the RADIUS

Access-Accept message).

References

[1] IEEE 802.11i – Medium Access Control (MAC) Security Enhancements, Amendment 6 to IEEE

Standard for Information technology – Telecommunications and Information Exchange Between

Systems – Local and Metropolitan Area Networks – Specific Requirements – Part 11: Wireless

Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] IEEE Standard 802.1X-2001. IEEE Standard for Local and Metropolitan Area Networks – Port-

Based Network Access Control.

238 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

12

Future Challenges

12.1 Introduction

In today’s Internet, configuration procedures are achieved by technical personnel who are

required to have an ever-growing level of expertise because of the various technologies and

features that need to be used, configured and activated to deploy a wide range of IP service

offerings. This level of expertise has become mandatory as each equipment manufacturer has

developed its own interfaces and configuration schemes. In addition, as IP services may rely

upon the activation of a set of sophisticated yet complex features, the time needed to

adequately provision such services is also increasing.

As a consequence, the specification and the use of standardized protocol (for conveying

configuration information) and interfaces should dramatically help in facilitating, if not

automating, the configuration process and the operational production of a wide range of IP

services.

12.1.1 Current Issues with Configuration Procedures

This section aims to list issues that should be carefully studied when dealing with

configuration tasks. The items below should be taken into account when designing a

protocol for configuration purposes.

12.1.1.1 Protocol Diversity

The production of a whole set of IP yet complex services relies upon the activation of a set of

capabilities in the participating devices. In particular, a large set of protocols need to be

configured, such as routing protocols, management protocols and security protocols, not to

mention capabilities that relate to addressing scheme management, QoS policy enforcement,

etc.

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

Such a diversity of features and protocols may increase the risk of inconsistencies.

Therefore, the configuration information that is forwarded to the whole set of participating

devices for producing a given service or a set of services should be consistent, whatever the

number of features/services to be activated/deployed in the network.

12.1.1.2 Topology Discovery

Network operators should have means to dynamically discover the topology of their

network. This topology information should be as elaborate as possible, including details

like the links that connect network devices, including information about their capacity, such

as the total bandwidth, the available bandwidth, the bandwidth that can be reserved, etc.

12.1.1.3 Scalability

As far as scalability is concerned, adequate indicators should be specified in order to qualify

the ability of a given technical means to support a large number of configuration processes.

The maintenance of these processes should not impact on the performance of a given system

(a system is a set of elements that compose the key fundamentals of an architecture that aims

to deliver configuration data).

Therefore, configuration operations should be qualified with performance indicators in

order to check whether the architecture designed for configuration management is scalable in

terms of:

� the volume of configuration data to be processed per unit of time and according to the

number of capabilities and devices that need to be configured;

� the volume of information generated by any reporting mechanism that may be associated

with a configuration process;

� the number of processes that are created in order to achieve specific configuration

operations.

12.1.2 Towards Service-driven Configuration Policies

Current configuration practice basically focuses on elementary functions, i.e. configuration

management for a given service offering breaks down into a set of elementary tasks. Thus,

the consistency of configuration operations for producing IP services must be checked by

any means appropriate, while current configuration methods can, at best, only check if

provisioning decisions are correctly enforced by a single device.

A network device should be seen as a means to deploy a service and not just as a

component of such a service. Thus, service configuration and production techniques should

not focus on a set of devices taken one by one, but on the service itself, which will rely upon

a set of features that need to be configured and activated in various regions of the network

that supports that service.

Service providers could dedicate centralized entities that would be responsible for the

provisioning and the management of participating devices. The main function of these

centralized entities would be to make appropriate decisions and generate convenient

240 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

configuration data that would be delivered to the participating devices. In addition, these

centralized entities would make sure of the consistency of the decisions that are taken to

produce the service, as per a dynamic configuration policy enforcement scheme.

Service-oriented configuration should rely upon the following requirements:

� The data models must be service driven.

� The configuration protocol(s) should reuse existing data and information models.

� The configuration protocol(s) should be flexible enough for further enhancement and

addition of new functionalities that in the future could prove to be a must.

� The configuration protocol(s) should provide means to assess the consistency of the

configuration tasks and to check the validity (or correctness) of the configuration of the

service before its operation.

12.2 Towards the Standardization of Dynamic Service Subscription
and Negotiation Techniques

The previous chapters of this book have discussed the various issues and solutions related to

automated deployment and operation of services over IP/MPLS network infrastructures by

means of dynamic policy enforcement techniques. In the past 2 years, investigation in the

field of dynamic service subscription and negotiation techniques has dramatically progressed

by forming a community of vendors and operators who have decided to initiate the

standardization of the architectural framework where such techniques would naturally

serve as a cornerstone.

Within a multiple-play service environment, this community, which has been named the

IPsphere Forum (IPSF) [1] is currently addressing the following very basic questions from a

standardization standpoint:

� What if customers had the ability to dynamically subscribe to a wide range of service

offerings and even negotiate the level of quality associated with such services?

� What if service providers had the ability to automate the service production process,

whether such a service can be deployed at the scale of the Internet or its access limited to

the provider’s own domain?

12.2.1 Basic Motivation

The IPSF aims to enhance the commercial framework for IP services to provide a win–

win scenario for all stakeholders, where buyers of network-facilitated services can enjoy

an expanding and evolving set of potential experiences, where sellers are able to offer an

increasingly richer array of valued services and where collaborating service providers

have a clear economic incentive for contributing their network, IT and associated

resources.

12.2.2 Commercial Framework

The IPsphere framework [2] specifies mechanisms by which the next generation of IP

services, and their associated market and revenue potential, can be realized. These

Future Challenges 241

mechanisms create a commercial framework by which resource improvements that add

value to service delivery (e.g. dynamic provisioning techniques, automated service produc-

tion procedures) can be offered.

The major high-level design goals of the IPsphere framework are as follows:

� First and foremost, all providers can present whatever contribution they care to make to a

service mix at whatever price they find compelling, allowing customers to select the best

deal overall.

� The investments of any provider in a service’s underlying infrastructure must be protected.

� Business relationships are able to be flexibly established via a loosely coupled, network-

technology-agnostic business layer, called the service structuring stratum (SSS) in the

IPSF reference model.

� Services can be composed from a provider’s own resource capabilities and – where

desired or required – from the offerings of other providers, assuming agreements between

such providers that can be contractually defined through the use of the aforementioned

SSS layer capabilities.

� Providers need only publish the service–business relationships that they are willing to

allow others to select from.

� Service publication can be tailored to give different views to various potential buyers/

partners.

Any conceivable business model can be tried, and so the best model is likely to be

available for selection over time, thereby creating an optimum market.

12.2.3 A Service-oriented Architecture

The IPsphere technical framework is based upon the service-oriented architecture (SOA)

composition model. As shown in Figure 12.1, this approach provides for the connection of

the functional units of an application, called ‘services’ (or ‘elements’ in the IPsphere

Figure 12.1 The IPSF model

242 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

vernacular), through well-defined interfaces [namely the customer-to-network Interface

(CNI), which to some degree can be compared with user-to-network interfaces (UNIs) in

other environments, and the intercarrier interface (ICI), which to some degree can be

compared with network-to-network Interfaces (NNIs) in other environments].

The generic identification of network management systems (NMSs) in Figure 12.1 reflects

the need for storing, maintaining and updating the various policies (routing, traffic

engineering, security, etc.) that will be derived from the SSS-based negotiations, and that

will be enforced by the network resources involved in the deployment and the management

of the IPSF-inferred services.

SOA also emphasizes loose coupling between services. Loose coupling precludes

undocumented interactions between services, for example through shared data, and it also

supports the independent evolution of interfaces and IPsphere elements.

SOA also has the advantage that an element’s interface is defined in a way that is

independent of the hardware platform, the operating system, the hosting middleware and the

programming language used to implement the element. This allows elements, built on a

variety of systems, to interact with each other in a uniform and universal manner. In addition,

the applications’ interfaces and elements are expressed using business terms and concepts –

they are not technology focused.

The benefit of a loosely coupled system is in its agility – the ability to accommodate

changes in the structure and implementation of the internals of an element. By contrast, tight

coupling means that the interfaces between the different components of an application are

dependent on the form of implementation, making the system brittle when changes are made

to components.

The agile nature of loosely coupled systems serves the need of a business to adapt rapidly

to changes in policies, the business environment, product offerings, partnerships and

regulatory requirements.

12.2.4 Publishing and Accessing Services

The IPsphere framework is made up of a federation of providers who share a service

structuring stratum connection for business coordination. The interconnected networks use

standard packet protocols for service signaling, but at key points in and between network

jurisdictions there are ‘IPsphere interface points’ where business relationship management

must be structured (Figure 12.2).

Figure 12.2 A pan-provider environment

Future Challenges 243

The policy and control stratum is to some degree equivalent to the control and manage-

ment planes in classical representations, while the traffic handling stratum can be easily

compared with the capabilities that are activated at the data plane.

A provider makes an explicit business decision to participate in a pan-provider

service, and that decision is communicated by publishing a list of ‘elements’ represent-

ing service offers the provider is willing to make and the commercial conditions under

which the offer is valid. These are combined with elements from other providers to

create services.

Figure 12.3 further elaborates on the role of the SSS layer in the service publication and

composition processes.

12.2.5 Example of Automated IP VPN Service Composition

12.2.5.1 VPN Service Subscription Phase

This is where the SSS layer steps in by:

� presenting the available services for the customer’s selection;

Figure 12.3 Role of the IPsphere’s service structuring stratum in the dynamic service publication and

composition processes

244 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

� providing receiver access control capabilities that will be solicited for receiver identifica-

tion and authentication purposes;

� providing means for electronic payment.

12.2.5.2 VPN Service Negotiation Phase

The delivery of pan-provider VPN services is conditioned by several contexts, which include

(but are not necessarily limited to):

� The access capabilities of each VPN site. These may possibly influence traffic encoding

schemes (yielding access-inferred adaptive capabilities that should be supported by the

source, based upon dynamic notification capabilities of the SSS or the PCS layers) as well

as the traffic forwarding policies (yielding DiffServ-based encoding schemes and dynamic

per-hop behavior (PHB) enforcement through the use of the PCS layer).

� The network conditions. These may yield the design and the enforcement of VPN-specific

traffic engineering policies, hence soliciting the PCS layer on the basis of the number of

instantiated service level specification templates being processed by the SSS layer in a

given period of time.

� Time considerations. The service to be accessed by the users might be available for a

limited period of time only (working hours, for example). From this standpoint, the

corresponding information should be explicitly described in the SLS to be processed by

the SSS layer, possibly yielding the activation of specific resource provisioning cycles

through the PCS layer.

12.2.5.3 VPN Service Operation

Once the subscription and negotiation phases are completed (including the completion of

the transactional payment procedure, if any), the VPN service must be delivered to the

customer. This means that all the relevant configuration information must have been

provided to all the devices that are involved in the provisioning of the service up to the

customer.

The corresponding configuration policy will be instantiated by means of PCS capabilities,

based upon the SLS-formatted information that has been processed by the SSS layer. And it

will be enforced by some policy enforcement point (PEP)-equivalent capabilities to be

embedded in the aforementioned participating devices, including the support of monitoring

capabilities that should help in assessing how efficient such a policy enforcement is, and how

compliant the service is, as far as the customer’s requirements (QoS, security, management,

etc.) are concerned.

12.2.5.4 VPN Communication Flows

Figure 12.4 depicts the communication flows between a customer and a VPN service

provider.

Future Challenges 245

12.3 Introducing Self-organizing Networks

12.3.1 What is a Self-organizing Network?

The deployment and the operation of a wide range of service offerings in highly volatile,

dynamic environments (such as wireless mesh networks) is the next challenge that service

providers will have to address. Such a challenge relates to the so-called ATAWAD (Any

Time, Any Where, Any Device) paradigm, which basically suggests that any kind of service

offering should be accessed whatever the access technology (fixed or mobile), whatever the

terminal device technology (cell phone, PC, TV set, etc.) and whether the customer is in

motion or not. In addition, access to the service may sometimes yield the establishment of

environment-constrained intermittent communications, hence questioning the level of

quality associated with the delivery of the service.

These environmental issues have encouraged investigation in the field of self-organizing

networks (SONs) [3], where self-organization means that a functional structure appears and

maintains itself spontaneously: a self-organized system is a system that evolves towards an

organized form autonomously. Self-organization can be found in physics, biology or

economics. As an example, a flock of seagulls will behave similarly at a collective level.

Point of

‘Service Consumption’

Point of

‘Service Egress’

Access /

Projection

Transport /

Connection

Access/

Projection

Point of

‘Service Ingress’

Out-of-Band Service Order (to customer’s own carrier)

Setup Start (FT SLS)

Setup Negotiate (optional) (SLS)

Setup Complete (SLS)

Activate Start (Network SLS)

Activate Negotiate (optional) (SLS)

Activate Complete (SLS, VPNID)

Setup

(Reservation)

Activate

(Execution)

In-Life Start (SLS/VPNID)

In-Life ALERT (VPNID, Event Code)

In-Life Complete (VPNID)

In-Life

(Assurance)

Point of

‘Service Creation’

Figure 12.4 Communication flows of VPN service composition and deployment

246 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

A self-organizing system can further be defined as a system that organizes itself by means

of local interactions. This implicitly assumes that such a system is organized without any

central control as far as the global behavior of the system is concerned. From this

perspective, a SON network is deployed with no preconfigured support for interconnecting

the SON devices.

SON networks are essentially highly dynamic: while ‘classical’ networks are

designed according to a network planning policy that will affect the importance of

the mesh and the dimensioning of both the transmission and the switching resources,

SON devices organize themselves into a network architecture and deal with the

networking processes (forwarding, routing) by themselves at runtime, intelligently

and autonomously.

In a SON network, traffic may very well modify the behavior of the SON devices: a

typical example is mobile ad hoc networks (MANETs) [4], where mobile devices (laptops,

cell phones, etc.) communicate with each other over a wireless infrastructure in a distributed

manner, so as to provide the relevant forwarding capabilities in the absence of a fixed

infrastructure. Therefore, the forwarding policy enforced by MANET routers will evolve

according to the motion of the users.

12.3.2 Characteristics of SON Networks and Devices

Generally speaking, networks consist of resources (processing, bandwidth and memory) and

constraints (power and latency). Although SON networks do require power and memory

(because of the support of autonomic capabilities), they optimize the resource/constraint

ratio; for example, active caching uses processing and memory to reduce bandwidth usage

and latency, yielding the deployment of cache servers in points of presence (POP) locations

that are as close to the users as possible.

SON nodes collect the information about the network state (congestion occurrences,

moving users, etc.) and will use this information better to address the following issues:

� dynamic location of contents, taking into account the location of the user as well as his/her

access conditions (whether the user is in motion or not, how the access rate can

dynamically influence the way the traffic will be encoded/delivered/engineered to the

user as per his/her request, how a user in motion may trigger a relocation process of the

information to be retrieved, etc.);

� dynamic publishing of a range of services that may be accessed by a user, based upon his/

her profile, and/or his/her location (at home, at work, in motion, etc.) and/or his/her

interests (e.g. dynamically informing the user about flight delays while he/she is

approaching the airport), etc.;

� dynamic (re)configuration of network devices, depending on the traffic load conditions,

the provisioning of additional content servers, etc.;

� dynamic notification of users about the efficiency of a quality of service (QoS) and/or

security policy, possibly based upon the dynamic activation of monitoring capabilities in

network devices that will facilitate the accounting and invoicing of the services subscribed

to by the user, etc.

Future Challenges 247

12.3.3 On Self-management

SON nodes manage and control themselves and can be operated in a stand-alone

fashion. Management actions can be coordinated for the sake of consistency, hence

not excluding a mix of centralized and distributed management architectures, as

depicted in Figure 12.5.

12.3.4 SON Algorithms and How to Use Them for Enhancing
Dynamic Policy Enforcement Schemes

SON nodes organize themselves according to four phases:

� Discovery. Each SON node identifies its set of neighbors and defines the radius of data

transmission so as to cope with scalability constraints.

� Organization. Each SON node computes, maintains and distributes its forwarding table

according to the information exchanged during the discovery phase. Once this phase is

completed, the network is said to be organized.

� Maintenance. SON nodes notify their neighbors about their presence, and about any

change in the topology that may have affected their own forwarding decision process.

SON nodes update their forwarding tables accordingly, including the connectivity graph

which is derived from such tables.

� Reorganization. Whenever an event affects the information maintained by the SON nodes

(link/node failures, for example).

Figure 12.5 SON management architectures

248 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

Such advanced capabilities could be used for dynamic policy enforcement purposes in

highly volatile, dynamic environments, where the quality of services is likely to be degraded

because of the constraints of such environments (like still receiving a TV content with no

perception of degraded quality when jumping on a bus that enters a tunnel).

In that case, SON techniques would be part of the policy enforcement design scheme,

where:

� Local rules that achieve global properties are enforced, e.g. ‘access-aware’ multicast-

enabled SON nodes to forward IPTV traffic with the required level of quality;

� implicit coordination is exploited, e.g. hello mechanisms are used for maintaining

connectivity graph information beyond SON node discovery;

� long-lived state information is minimized, e.g. to accommodate zapping behaviors of

IPTV customers (in motion);

� dynamically adaptive protocols are preferred, e.g. to notify cluster nodes about any

topology change and enforce (updated) forwarding policies accordingly.

12.3.5 SON-inferred Business Opportunities

SON techniques are often seen as key drivers for addressing the aforementioned ATAWAD

paradigm. Context-aware SON techniques can be seen as a means to develop business, e.g.

by employing user location information as an advanced routing metric to accelerate the

development and the production of user-centric services, such as interactive TV. The

automated production of complex, QoS-demanding services in highly dynamic environ-

ments can also be facilitated by SON capabilities.

References

[1] http://www.ipsphereforum.org

[2] Alateras, J. et al., ‘IPsphere Framework Technical Specification (Release 1)’, June 2007.

[3] Nakano, T. and Suda, T., ‘Self-organizing Network Services with Evolutionary Adaptation’, IEEE

Transactions on Neural Networks, 16(5), September 2005, 1269–1278,

[4] Hoebeke, H. et al., ‘An Overview of Mobile Ad-Hoc Networks: Applications and Challenges’,

Proceedings of the 43rd European Telecommunication Congress, Ghent, Belgium, November

2004, pp. 60–66.

Future Challenges 249

Appendices

APPENDIX 1

XML schema for NETCONF
RPCs and Operations

<?xml version¼‘‘1.0’’ encoding¼‘‘UTF-8’’?>
<xs:schema xmlns:xs¼‘‘http://www.w3.org/2001/XMLSchema’’

xmlns¼‘‘urn:ietf:params:xml:ns:netconf:base:1.0’’
targetNamespace¼‘‘urn:ietf:params:xml:ns:netconf:
base:1.0’’
elementFormDefault¼‘‘qualified’’
attributeFormDefault¼‘‘unqualified’’
xml:lang¼‘‘en’’>

<!- -
import standard XML definitions

- ->

<xs:import namespace¼‘‘http://www.w3.org/XML/1998/namespace’’
schemaLocation¼‘‘http://www.w3.org/2001/xml.xsd’’>

</xs:import>

<!- -
message-id attribute

- ->

<xs:simpleType name¼‘‘messageIdType’’>
<xs:restriction base¼‘‘xs:string’’>

<xs:maxLength value¼‘‘4095’’/>
</xs:restriction>

</xs:simpleType>

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

<!- -
Types used for session-id

- ->

<xs:simpleType name¼‘‘SessionId’’>
<xs:restriction base¼‘‘xs:unsignedInt’’>

<xs:minInclusive value¼‘‘1’’/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name¼‘‘SessionIdOrZero’’>

<xs:restriction base¼‘‘xs:unsignedInt’’/>
</xs:simpleType>

<!- -
<rpc> element
- ->

<xs:complexType name¼ ‘‘rpcType’’>
<xs:sequence>

<xs:element ref¼‘‘rpcOperation’’/>
</xs:sequence>
<xs:attribute name¼‘‘message-id’’ type¼‘‘messageIdType’’

use¼‘‘required’’/>

<!- -
Arbitrary attributes can be supplied with element
- ->

<xs:anyAttribute processContents¼‘‘lax’’/>
</xs:complexType>
<xs:element name¼‘‘rpc’’ type¼‘‘rpcType’’/>

<!- -
data types and elements used to construct rpc-errors
- ->

<xs:simpleType name¼‘‘ErrorType’’>
<xs:restriction base¼‘‘xs:string’’>

<xs:enumeration value¼‘‘transport’’/>
<xs:enumeration value¼‘‘rpc’’/>
<xs:enumeration value¼‘‘protocol’’/>
<xs:enumeration value¼‘‘application’’/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name¼‘‘ErrorTag’’>

254 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

<xs:restriction base¼‘‘xs:string’’>
<xs:enumeration value¼‘‘in-use’’/>
<xs:enumeration value¼‘‘invalid-value’’/>
<xs:enumeration value¼‘‘too-big’’/>
<xs:enumeration value¼‘‘missing-attribute’’/>
<xs:enumeration value¼‘‘bad-attribute’’/>
<xs:enumeration value¼‘‘unknown-attribute’’/>
<xs:enumeration value¼‘‘missing-element’’/>
<xs:enumeration value¼‘‘bad-element’’/>
<xs:enumeration value¼‘‘unknown-element’’/>
<xs:enumeration value¼‘‘unknown-namespace’’/>
<xs:enumeration value¼‘‘access-denied’’/>
<xs:enumeration value¼‘‘lock-denied’’/>
<xs:enumeration value¼‘‘resource-denied’’/>
<xs:enumeration value¼‘‘rollback-failed’’/>
<xs:enumeration value¼‘‘data-exists’’/>
<xs:enumeration value¼‘‘data-missing’’/>
<xs:enumeration value¼‘‘operation-not-supported’’/>
<xs:enumeration value¼‘‘operation-failed’’/>
<xs:enumeration value¼‘‘partial-operation’’/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name¼‘‘ErrorSeverity’’>

<xs:restriction base¼‘‘xs:string’’>
<xs:enumeration value¼‘‘error’’/>
<xs:enumeration value¼‘‘warning’’/>

</xs:restriction>
</xs:simpleType>
<xs:complexType name¼‘‘errorInfoType’’>

<xs:sequence>
<xs:choice>

<xs:element name¼‘‘session-id’’ type¼‘‘SessionId
OrZero’’/>

<xs:sequence minOccurs¼‘‘0’’ maxOccurs¼‘‘unbounded’’>
<xs:sequence>

<xs:element name¼‘‘bad-attribute’’ type¼‘‘xs:QName’’
minOccurs¼‘‘0’’ maxOccurs¼‘‘1’’/>

<xs:element name¼‘‘bad-element’’ type¼‘‘xs:QName’’
minOccurs¼‘‘0’’ maxOccurs¼‘‘1’’/>

<xs:element name¼‘‘ok-element’’ type¼‘‘xs:QName’’
minOccurs¼‘‘0’’ maxOccurs¼‘‘1’’/>

<xs:element name¼‘‘err-element’’ type¼‘‘xs:QName’’
minOccurs¼‘‘0’’ maxOccurs¼‘‘1’’/>

Appendix 1: XML schema for NETCONF RPCs and Operations 255

<xs:element name¼‘‘noop-element’’ type¼‘‘xs:QName’’
minOccurs¼‘‘0’’ maxOccurs¼‘‘1’’/>

<xs:element name¼‘‘bad-namespace’’ type¼‘‘xs:QName’’
minOccurs¼‘‘0’’ maxOccurs¼‘‘1’’/>

</xs:sequence>
</xs:sequence>

</xs:choice>

<!- - Elements from any other namespace are also allowed
to follow the NETCONF elements

- ->

<xs:any namespace¼‘‘##other’’
minOccurs¼‘‘0’’ maxOccurs¼‘‘unbounded’’/>

</xs:sequence>
</xs:complexType>
<xs:complexType name¼‘‘rpcErrorType’’>

<xs:sequence>
<xs:element name¼‘‘error-type’’ type¼‘‘ErrorType’’/>
<xs:element name¼‘‘error-tag’’ type¼‘‘ErrorTag’’/>
<xs:element name¼‘‘error-severity’’ type¼‘‘ErrorSever-

ity’’/>
<xs:element name¼‘‘error-app-tag’’ type¼‘‘xs:string’’

minOccurs¼‘‘0’’/>
<xs:element name¼‘‘error-path’’ type¼‘‘xs:string’’ min-

Occurs¼‘‘0’’/>
<xs:element name¼‘‘error-message’’ minOccurs¼‘‘0’’>

<xs:complexType>
<xs:simpleContent>

<xs:extension base¼‘‘xs:string’’>
<xs:attribute ref¼‘‘xml:lang’’ use¼‘‘optional’’/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name¼‘‘error-info’’ type¼‘‘errorInfoType’’

minOccurs¼‘‘0’’/>
</xs:sequence>

</xs:complexType>

<!- -
<rpc-reply> element
- ->

256 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

<xs:complexType name¼‘‘rpcReplyType’’>
<xs:choice>

<xs:element name¼‘‘ok’’/>
<xs:group ref¼‘‘rpcResponse’’/>

</xs:choice>
<xs:attribute name¼‘‘message-id’’ type¼‘‘messageIdType’’

use¼‘‘optional’’/>

<!- -
Any attributes supplied with <rpc> element must be returned
on <rpc-reply>

- ->
<xs:anyAttribute processContents¼‘‘lax’’/>

</xs:complexType>
<xs:group name¼‘‘rpcResponse’’>

<xs:sequence>
<xs:element name¼‘‘rpc-error’’ type¼‘‘rpcErrorType’’

minOccurs¼‘‘0’’ maxOccurs¼‘‘unbounded’’/>
<xs:element name¼‘‘data’’ type¼‘‘dataInlineType’’

minOcc urs¼‘‘0’’/>
</xs:sequence>

</xs:group>
<xs:element name¼‘‘rpc-reply’’ type¼‘‘rpcReplyType’’/>

<!- -
Type for <test-option> parameter to <edit-config>
- ->

<xs:simpleType name¼‘‘testOptionType’’>
<xs:restriction base¼‘‘xs:string’’>

<xs:enumeration value¼‘‘test-then-set’’/>
<xs:enumeration value¼‘‘set’’/>

</xs:restriction>
</xs:simpleType>

<!- -
Type for <error-option> parameter to <edit-config>
- ->

<xs:simpleType name¼‘‘errorOptionType’’>
<xs:restriction base¼‘‘xs:string’’>

<xs:annotation>
<xs:documentation>

Use of the rollback-on-error value requires
the: rollback-on-error capability.

Appendix 1: XML schema for NETCONF RPCs and Operations 257

</xs:documentation>
</xs:annotation>
<xs:enumeration value¼‘‘stop-on-error’’/>
<xs:enumeration value¼‘‘continue-on-error’’/>
<xs:enumeration value¼‘‘rollback-on-error’’/>

</xs:restriction>
</xs:simpleType>

<!- -
rpcOperationType: used as a base type for all
NETCONF operations
- ->

<xs:complexType name¼‘‘rpcOperationType’’/>
<xs:element name¼‘‘rpcOperation’’

type¼‘‘rpcOperationType’’ abstract¼‘‘true’’/>

<!- -
Type for <config> element
- ->

<xs:complexType name¼‘‘configInlineType’’>
<xs:complexContent>

<xs:extension base¼‘‘xs:anyType’’/>
</xs:complexContent>

</xs:complexType>

<!- -
Type for <data> element
- ->

<xs:complexType name¼‘‘dataInlineType’’>
<xs:complexContent>

<xs:extension base¼‘‘xs:anyType’’/>
</xs:complexContent>

</xs:complexType>

<!- -
Type for <filter> element
- ->

<xs:simpleType name¼‘‘FilterType’’>
<xs:restriction base¼‘‘xs:string’’>

<xs:annotation>
<xs:documentation>

Use of the xpath value requires the '':xpath`` capability.

258 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

</xs:documentation>
</xs:annotation>
<xs:enumeration value¼‘‘subtree’’/>
<xs:enumeration value¼‘‘xpath’’/>

</xs:restriction>
</xs:simpleType>
<xs:complexType name¼‘‘filterInlineType’’>

<xs:complexContent>
<xs:extension base¼‘‘xs:anyType’’>

<xs:attribute name¼‘‘type’’
type¼‘‘FilterType’’ default¼‘‘subtree’’/>

<!- - if type¼‘‘xpath’’, the xpath expression
appears in the select element –>
<xs:attribute name¼‘‘select’’/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<!- -
configuration datastore names
- ->

<xs:annotation>
<xs:documentation>

The startup datastore can be used only if the ‘‘:startup’’
capability is advertized. The candidate datastore can
be used only if the: candidate datastore is advertized.

</xs:documentation>
</xs:annotation>
<xs:complexType name¼‘‘configNameType’’/>
<xs:element name¼‘‘config-name’’

type¼‘‘configNameType’’ abstract¼‘‘true’’/>
<xs:element name¼‘‘startup’’ type¼‘‘configNameType’’

substitutionGroup¼‘‘config-name’’/>
<xs:element name¼‘‘candidate’’ type¼‘‘configNameType’’

substitutionGroup¼‘‘config-name’’/>
<xs:element name¼‘‘running’’ type¼‘‘configNameType’’

substitutionGroup¼‘‘config-name’’/>

<!- -
operation attribute used in <edit-config>
- ->

<xs:simpleType name¼‘‘editOperationType’’>
<xs:restriction base¼‘‘xs:string’’>

Appendix 1: XML schema for NETCONF RPCs and Operations 259

<xs:enumeration value¼‘‘merge’’/>
<xs:enumeration value¼‘‘replace’’/>
<xs:enumeration value¼‘‘create’’/>
<xs:enumeration value¼‘‘delete’’/>

</xs:restriction>
</xs:simpleType>
<xs:attribute name¼‘‘operation’’

type¼‘‘editOperationType’’ default¼‘‘merge’’/>

<!- -
<default-operation> element
- ->

<xs:simpleType name¼‘‘defaultOperationType’’>
<xs:restriction base¼‘‘xs:string’’>

<xs:enumeration value¼‘‘merge’’/>
<xs:enumeration value¼‘‘replace’’/>
<xs:enumeration value¼‘‘none’’/>

</xs:restriction>
</xs:simpleType>

<!- -
<url> element
- ->

<xs:complexType name¼‘‘configURIType’’>
<xs:annotation>

<xs:documentation>
Use of the url element requires the ‘‘:url’’ capability.

</xs:documentation>
</xs:annotation>
<xs:simpleContent>

<xs:extension base¼‘‘xs:anyURI’’/>
</xs:simpleContent>

</xs:complexType>

<!- -
Type for element (except <get-config>)
- ->

<xs:complexType name¼‘‘rpcOperationSourceType’’>
<xs:choice>

<xs:element name¼‘‘config’’ type¼‘‘configInlineType’’/>
<xs:element ref¼‘‘config-name’’/>
<xs:element name¼‘‘url’’ type¼‘‘configURIType’’/>

</xs:choice>
</xs:complexType>

260 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

<!- -
Type for <source> element in <get-config>
- ->

<xs:complexType name¼‘‘getConfigSourceType’’>
<xs:choice>

<xs:element ref¼‘‘config-name’’/>
<xs:element name¼‘‘url’’ type¼‘‘configURIType’’/>

</xs:choice>
</xs:complexType>

<!- -
Type for <target> element
- ->

<xs:complexType name¼‘‘rpcOperationTargetType’’>
<xs:choice>

<xs:element ref¼‘‘config-name’’/>
<xs:element name¼‘‘url’’ type¼‘‘configURIType’’/>

</xs:choice>
</xs:complexType>

<!- -
<get-config> operation
- ->

<xs:complexType name¼‘‘getConfigType’’>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:element name¼‘‘source’’
type¼‘‘getConfigSourceType’’/>

<xs:element name¼‘‘filter’’
type¼‘‘filterInlineType’’ minOccurs¼‘‘0’’/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘get-config’’ type¼‘‘getConfigType’’

substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<edit-config> operation
- ->

Appendix 1: XML schema for NETCONF RPCs and Operations 261

<xs:complexType name¼‘‘editConfigType’’>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:annotation>
<xs:documentation>

Use of the test-option element requires the
‘‘:validate’’ capability. Use of the url element
requires the ‘‘:url’’ capability.

</xs:documentation>
</xs:annotation>
<xs:element name¼‘‘target’’

type¼‘‘rpcOperationTargetType’’/>
<xs:element name¼‘‘default-operation’’

type¼‘‘defaultOperationType’’
minOccurs¼‘‘0’’/>

<xs:element name¼‘‘test-option’’
type¼‘‘testOptionType’’
minOccurs¼‘‘0’’/>

<xs:element name¼‘‘error-option’’
type¼‘‘errorOptionType’’
minOccurs¼‘‘0’’/>

<xs:choice>
<xs:element name¼‘‘config’’

type¼‘‘configInlineType’’/>
<xs:element name¼‘‘url’’

type¼‘‘configURIType’’/>
</xs:choice>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘edit-config’’ type¼‘‘editConfigType’’

substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<copy-config> operation
- ->

<xs:complexType name¼‘‘copyConfigType’’>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:element name¼‘‘target’’ type¼‘‘rpcOperationTarget-
Type’’/>

262 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

<xs:element name¼‘‘source’’ type¼‘‘rpcOperationSource-
Type’’/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘copy-config’’ type¼‘‘copyConfigType’’

substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<delete-config> operation
- ->

<xs:complexType name¼‘‘deleteConfigType’’>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:element name¼‘‘target’’ type¼‘‘rpcOperationTarget-
Type’’/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘delete-config’’ type¼‘‘deleteConfigType’’

substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<get> operation
- ->

<xs:complexType name¼‘‘getType’’>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:element name¼‘‘filter’’
type¼‘‘filterInlineType’’ minOccurs¼‘‘0’’/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘get’’ type¼‘‘getType’’

substitutionGroup¼‘‘rpcOperation’’/>
<!- -

<lock> operation
- ->

Appendix 1: XML schema for NETCONF RPCs and Operations 263

<xs:complexType name¼‘‘lockType’’>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:element name¼‘‘target’’
type¼‘‘rpcOperationTargetType’’/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘lock’’ type¼‘‘lockType’’

substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<unlock> operation
- ->

<xs:complexType name¼‘‘unlockType’’>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:element name¼‘‘target’’ type¼‘‘rpcOperationTarget-
Type’’/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘unlock’’ type¼‘‘unlockType’’

substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<validate> operation
- ->

<xs:complexType name¼‘‘validateType’’>
<xs:annotation>

<xs:documentation>
The validate operation requires the ‘‘:validate’’ capability.
</xs:documentation>

</xs:annotation>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:element name¼‘‘source’’ type¼‘‘rpcOperationSource-
Type’’/>

264 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘validate’’ type¼‘‘validateType’’

substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<commit> operation
- ->

<xs:simpleType name¼‘‘confirmTimeoutType’’>
<xs:restriction base¼‘‘xs:unsignedInt’’>

<xs:minInclusive value¼‘‘1’’/>
</xs:restriction>

</xs:simpleType>
<xs:complexType name¼‘‘commitType’’>

<xs:annotation>
<xs:documentation>
The commit operation requires the ‘‘:candidate’’ capability.

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:annotation>
<xs:documentation>
Use of the confirmed and confirm-timeout elements
requires the ‘‘:confirmed-commit’’ capability.

</xs:documentation>
</xs:annotation>
<xs:element name¼‘‘confirmed’’ minOccurs¼‘‘0’’/>
<xs:element name¼‘‘confirm-timeout’’

type¼‘‘confirmTimeoutType’’
minOccurs¼‘‘0’’/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘commit’’ type¼‘‘commitType’’

substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<discard-changes> operation
- ->

Appendix 1: XML schema for NETCONF RPCs and Operations 265

<xs:complexType name¼‘‘discardChangesType’’>
<xs:annotation>

<xs:documentation>
The discard-changes operation requires the
‘‘:candidate’’ capability.

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’/>
</xs:complexContent>

</xs:complexType>
<xs:element name¼‘‘discard-changes’’

type¼‘‘discardChangesType’’
substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<close-session> operation
- ->

<xs:complexType name¼‘‘closeSessionType’’>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’/>
</xs:complexContent>

</xs:complexType>
<xs:element name¼‘‘close-session’’ type¼‘‘closeSessionType’’

substitutionGroup¼‘‘rpcOperation’’/>

<!- -
<kill-session> operation

- ->

<xs:complexType name¼‘‘killSessionType’’>
<xs:complexContent>

<xs:extension base¼‘‘rpcOperationType’’>
<xs:sequence>

<xs:element name¼‘‘session-id’’
type¼‘‘SessionId’’ minOccurs¼‘‘1’’/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:element name¼‘‘kill-session’’ type¼‘‘killSessionType’’

substitutionGroup¼‘‘rpcOperation’’/>
<!- -

<hello> element
- ->

266 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

<xs:element name¼‘‘hello’’>
<xs:complexType>

<xs:sequence>
<xs:element name¼‘‘capabilities’’>

<xs:complexType>
<xs:sequence>

<xs:element name¼‘‘capability’’ type¼‘‘xs:any
URI’’ maxOccurs¼‘‘unbounded’’/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name¼‘‘session-id’’

type¼‘‘SessionId’’ minOccurs¼‘‘0’’/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Appendix 1: XML schema for NETCONF RPCs and Operations 267

APPENDIX 2

XML Schema for NETCONF
Notifications

?xml version¼‘‘1.0’’ encoding¼‘‘UTF-8’’?>
<xs:schema xmlns:xs¼‘‘http://www.w3.org/2001/XMLSchema’’

xmlns¼‘‘urn:ietf:params:netconf:capability:notification:1.0’’
xmlns:netconf¼‘‘urn:ietf:params:xml:ns:netconf:base:1.0’’
targetNamespace¼

‘‘urn:ietf:params:netconf:capability:notification:1.0’’
elementFormDefault¼‘‘qualified’’
attributeFormDefault¼‘‘unqualified’’
xml:lang¼‘‘en’’>

<!- -
import standard XML definitions

- ->

<xs:import namespace¼‘‘http://www.w3.org/XML/1998/namespace’’
schemaLocation¼‘‘http://www.w3.org/2001/xml.xsd’’>

</xs:import>

<!- -
import base netconf definitions
- ->

<xs:import namespace¼‘‘urn:ietf:params:xml:ns:netconf:
base:1.0’’

schemaLocation¼

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

C. Jacquenet, G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

‘‘http://www.iana.org/assignments/xml-registry/schema/netconf.
xsd’’/>

<!- -
Symmetrical Operations
- ->

<!- -
<create-subscription> operation
- ->

<xs:complexType name¼‘‘createSubscriptionType’’>
<xs:complexContent>

<xs:extension base¼‘‘netconf:rpcOperationType’’>
<xs:sequence>

<xs:element name¼‘‘stream’’
type¼‘‘streamNameType minOccurs¼‘‘0’’>
<xs:annotation>

<xs:documentation>
An optional parameter that indicates
which stream of events is of interest. If
not present, then events in the default
NETCONF stream will be
sent.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name¼‘‘filter’’

type¼‘‘netconf:filterInlineType’’
minOccurs¼‘‘0’’>
<xs:annotation>

<xs:documentation>
An optional parameter that indicates
which subset of all possible events
are of interest. The format of this
parameter is the same as that of the
filter parameter in the
NETCONF
protocol operations. If not present,
all events not precluded by other
parameters will be sent.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name¼‘‘startTime’’ type¼‘‘xs:dateTime’’

minOccurs¼‘‘0’’ >

270 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

<xs:annotation>
<xs:documentation>

A parameter used to trigger the replay
feature that indicates that the replay
should start at the time specified. If
start time is not present, this is not a
replay subscription.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name¼‘‘stopTime’’ type¼‘‘xs:dateTime’’

minOccurs¼‘‘0’’ >
<xs:annotation>

<xs:documentation>
An optional parameter used with the
optional replay feature to indicate the
newest notifications of interest. If
stop time is not present, the
notifications will continue until the
subscription is terminated. Must be used
with ‘‘startTime’’.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:simpleType name¼‘‘streamNameType’’>
<xs:annotation>

<xs:documentation>
The name of an event stream.

</xs:documentation>
</xs:annotation>
<xs:restriction base¼‘‘xs:string’’/>

</xs:simpleType>

<xs:element name¼‘‘create-subscription’’
type¼‘‘createSubscriptionType’’
substitutionGroup¼‘‘netconf:rpcOperation’’>
<xs:annotation>

<xs:documentation>
The command to create a notification subscription. It
takes as argument the name of the notification stream
and filter or profile information. All of those options

Appendix 2: XML Schema for NETCONF Notifications 271

limit the content of the subscription. In addition,
there are two time-related parameters ‘‘startTime’’
and ‘‘stopTime’’ which can be used to select the time
interval of interest.

</xs:documentation>
</xs:annotation>

</xs:element>

<!- -
One-way operations

- ->

<!- -
<Notification> operation

- ->

<xs:complexType name¼‘‘NotificationContentType’’/>

<xs:element name¼‘‘notificationContent’’
type¼‘‘NotificationContentType’’ abstract¼‘‘true’’/>

<xs:complexType name¼‘‘NotificationType’’>
<xs:sequence>

<xs:element ref¼‘‘notificationContent’’/>
</xs:sequence>

</xs:complexType>

<xs:element name¼‘‘notification’’ type¼‘‘NotificationType’’/>
</xs:schema>

272 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

APPENDIX 3

Example of an IP Traffic
Engineering Policy Information
Base (IP TE PIB)

IP-TE-PIB PIB-DEFINITIONS: :¼ BEGIN

IMPORTS
Unsigned32, Integer32, MODULE-IDENTITY,
MODULE-COMPLIANCE, OBJECT-TYPE, OBJECT-GROUP

FROM COPS-PR-SPPI
InstanceId, ReferenceId, Prid, TagId

FROM COPS-PR-SPPI-TC
InetAddress, InetAddressType

FROM INET-ADDRESS-MIB
Count, TEXTUAL-CONVENTION

FROM ACCT-FR-PIB-TC
TruthValue, TEXTUAL-CONVENTION

FROM SNMPv2-TC
RoleCombination, PrcIdentifier

FROM FRAMEWORK-ROLE-PIB
SnmpAdminString

FROM SNMP-FRAMEWORK-MIB;

ipTePib MODULE-IDENTITY

SUBJECT-CATEGORIES { tbd } - - IP TE client-type to be

- - assigned by IANA

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

LAST-UPDATED ‘‘200709280900Z’’
ORGANIZATION ‘‘Your_Organization’’
CONTACT-INFO ‘‘

Christian Jacquenet
Address
Phone:
E-Mail: christian.jacquenet@gmail.com’’

DESCRIPTION
‘‘The PIB module containing a set of policy rule classes

that describe IP traffic engineering policies to be
enforced within and between domains.’’

REVISION ‘‘200710011600Z’’
DESCRIPTION

‘‘Initial version.’’

: :¼ { pib tbd } – tbd to be assigned by IANA

ipTeFwdClasses OBJECT IDENTIFIER : :¼ { ipTePib 1 }
ipTeMetricsClasses OBJECT IDENTIFIER : :¼ { ipTePib 2 }
ipTeStatsClasses OBJECT IDENTIFIER : :¼ { ipTePib 3 }

- -
- - Forwarding classes. The information contained in these

classes
- - is meant to provide a detailed description of the traffic-
- - engineered routes. One table has been specified so far, but

there
- - is room for depicting specific kinds of routes, like MPLS LSP
- - paths, for example.
- -
- -
- -
- - The ipTeRouteTable
- -

ipTeRouteTable OBJECT-TYPE

SYNTAX SEQUENCE OF ipTeRouteEntry
PIB-ACCESS notify
STATUS current
DESCRIPTION

‘‘This table describes the traffic-engineered routes
that are installed in the forwarding tables of the
routers.’’

274 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

: :¼ { ipTeFwdClasses 1 }

ipTeRouteEntry OBJECT-TYPE

SYNTAX ipTeRouteEntry
STATUS current
DESCRIPTION

‘‘A particular traffic-engineered route to a particular
destination.’’

PIB-INDEX { ipTeRoutePrid }
UNIQUENESS { ipTeRouteDest,

ipTeRouteMask,
ipTeRoutePhbId,
ipTeRouteNextHopAddress

ipTeRouteNextHopMask
ipTeRouteIfIndex }

: :¼ { ipTeRouteTable 1 }

ipTeRouteEntry: :¼ SEQUENCE {
ipTeRoutePrid InstanceId,
ipTeRouteDestAddrType InetAddressType,
ipTeRouteDest InetAddress,
ipTeRouteMask Unsigned32,
ipTeRouteNextHopAddrType InetAddressType,
ipTeRouteNextHopAddress InetAddress,
ipTeRouteNextHopMask Unsigned32,
ipTeRoutePhbId Integer32,
ipTeRouteOrigin Integer32,
ipTeRouteIfIndex Unsigned32

}

ipTeRoutePrid OBJECT-TYPE

SYNTAX InstanceId
STATUS current
DESCRIPTION

‘‘An integer index that uniquely identifies this
route entry among all the route entries.’’

: :¼ { ipTeRouteEntry 1 }

ipTeRouteDestAddrType OBJECT-TYPE

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 275

SYNTAX InetAddressType
STATUS current
DESCRIPTION

‘‘The address type enumeration value used to specify
the type of a route's destination IP address.’’

: :¼ { ipTeRouteEntry 2 }

ipTeRouteDest OBJECT-TYPE

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘The IP address to match against the packet's
destination address.’’

: :¼ { ipTeRouteEntry 3 }

ipTeRouteMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

‘‘Indicates the length of a mask for the matching of the
destination IP address. Masks are constructed by setting
bits in sequence from the most significant bit
downwards for ipTeRouteMask bits length. All other bits
in the mask, up to the number needed to fill the length
of the address ipTeRouteDest, are cleared to zero. A
zero bit in the mask then means that the corresponding
bit in the address always matches.’’

: :¼ { ipTeRouteEntry 4 }

ipTeRouteNextHopAddrType OBJECT-TYPE

SYNTAX InetAddressType
STATUS current
DESCRIPTION

‘‘The address type enumeration value used to specify the
type of the next hop's IP address.’’

: :¼ { ipTeRouteEntry 5 }

ipTeRouteNextHopAddress OBJECT-TYPE

276 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘On remote routes, the address of the next router en
route; Otherwise, 0.0.0.0.’’

: :¼ { ipTeRouteEntry 6 }

ipTeRouteNextHopMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

‘‘Indicates the length of a mask for the matching of the
next hop's IP address. Masks are constructed by setting
bits in sequence from the most significant bit
downwards for ipTeRouteNextHopMask bits length. All
other bits in the mask, up to the number needed to fill
the length of the address ipTeRouteNextHop, are
cleared to zero. A zero bit in the mask then means that
the corresponding bit in the address always matches.’’

: :¼ { ipTeRouteEntry 7 }

ipTeRoutePhbId OBJECT-TYPE

SYNTAX Integer32 (-1 j 0..63)
STATUS current
DESCRIPTION

‘‘The binary encoding that uniquely identifies a per-hop
behaviour (PHB) or a set of PHBs associated with the
DiffServ Code Point (DSCP) marking of the IP
datagrams that will be conveyed along this traffic-
engineered route. A value of -1 indicates that a
specific PHB ID value has not been defined, and thus
all PHB ID values are considered a match.’’

: :¼ { ipTeRouteEntry 8 }

ipTeRouteOrigin OBJECT-TYPE

SYNTAX INTEGER {
OSPF (0)
IS-IS (1)
BGP (2)
STATIC (3)

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 277

OTHER (4)
}

STATUS current
DESCRIPTION

‘‘The value indicates the origin of the route. Either
the route has been computed by OSPF, by IS-IS,
announced by BGP-4, is static, or else.’’

: :¼ { ipTeRouteEntry 9 }

ipTeRouteIfIndex OBJECT-TYPE
SYNTAX Unsigned32 (0..65535)
STATUS current
DESCRIPTION

‘‘The ifIndex value that identifies the local interface
through which the next hop of this route is
accessible.’’

: :¼ { ipTeRouteEntry 10 }

- -
- -
- - Traffic engineering metrics classes.
- -
- - The information stored in the following tables is meant to

provide
- - the description of the metric values that will be taken into
- - account by intra- and interdomain routing protocols for the
- - computation and the selection of traffic-engineered routes. So
- - far, two tables have been identified: one that is based upon the

traffic engineering extensions of OSPF, another that is based
- - upon the contents of a specific BGP-4 attribute.
- -
- -
igpTeGroup OBJECT IDENTIFIER : :¼ { ipTeMetricsClasses 1 }
bgpTeGroup OBJECT IDENTIFIER : :¼ { ipTeMetricsClasses 2 }

- -
- - The ospfTeMetricsTable
- -

ospfTeMetricsTable OBJECT-TYPE

SYNTAX SEQUENCE OF ospfTeMetricsEntry
PIB-ACCESS install-notify
STATUS current

278 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

DESCRIPTION
‘‘This class describes the link and traffic engineering
metrics that will be used by OSPF for TE route
calculation purposes.’’

: :¼ { igpTeGroup 1 }

ospfTeMetricsEntry OBJECT-TYPE

SYNTAX ospfTeMetricsEntry
STATUS current
DESCRIPTION

‘‘The collection of OSPF metrics assigned to the router
on a per interface and per DSCP basis.’’

PIB-INDEX { ospfTeMetricsPrid }
UNIQUENESS { ospfTeMetricsLinkMetricValue,

ospfTeMetricsDscpValue,
ospfTeMetricSubTlvLinkType,
ospfTeMetricSubTlvLinkId,
ospfTeMetricSubTlvLocalIfAddress,
ospfTeMetricSubTlvRemoteIfAddress,
ospfTeMetricSubTlvTeMetric,
ospfTeMetricSubTlvMaxBandwidth,
ospfTeMetricSubTlvMaxRsvBandwidth,
ospfTeMetricSubTlvUnRsvBandwidth,
ospfTeMetricIfIndex }

: :¼ { ospfTeMetricsTable 1 }

ospfTeMetricsEntry: :¼ SEQUENCE {

ospfTeMetricsPrid InstanceId,
ospfTeMetricsIfMetricValue Unsigned32,
ospfTeMetricsDscpValue Integer32,
ospfTeMetricsTopTlvAddressType InetAddressType,
ospfTeMetricsTopTlvRouterAddress InetAddress,
ospfTeMetricsTopTlvRouterAddrMask Unsigned32,
ospfTeMetricsSubTlvLinkType Unsigned32,
ospfTeMetricsSubTlvLinkIdAddressType InetAddressType,
ospfTeMetricsSubTlvLinkId InetAddress,
ospfTeMetricsSubTlvLinkIdMask Unsigned32,
ospfTeMetricsSubTlvLocalIfAddressType InetAddressType,
ospfTeMetricsSubTlvLocalIfAddress InetAddress,
ospfTeMetricsSubTlvLocalIfAddrMask Unsigned32,
ospfTeMetricsSubTlvRemoteIfAddressType InetAddressType,

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 279

ospfTeMetricsSubTlvRemoteIfAddress InetAddress,
ospfTeMetricsSubTlvRemoteIfAddrMask Unsigned32,
ospfTeMetricsSubTlvTeMetric Unsigned32,
ospfTeMetricsSubTlvMaxBandwidth Unsigned32,
ospfTeMetricsSubTlvMaxRsvBandwidth Unsigned32,
ospfTeMetricsSubTlvUnrsvBandwidth Unsigned32,
ospfTeMetricsSubTlvResourceClass Unsigned32,
ospfTeMetricsIfIndex Unsigned32

}
ospfTeMetricsPrid OBJECT-TYPE

SYNTAX InstanceId
STATUS current
DESCRIPTION

‘‘An integer index that uniquely identifies this
instance of the ospfTeMetrics class.’’

: :¼ { ospfTeMetricsEntry 1 }

ospfTeMetricsIfMetricValue OBJECT-TYPE

SYNTAX Unsigned32 (1..65535)
STATUS current
DESCRIPTION

‘‘The link metric assigned on a per-DSCP and per-
interface basis, as defined in this instance of the
ospfTeMetricsTable.’’

: :¼ { ospfTeMetricsEntry 2 }

ospfTeMetricsDscpValue OBJECT-TYPE

SYNTAX Integer32 (-1 j 0..63)
STATUS current
DESCRIPTION

‘‘The DSCP value associated with the link metric
value, as defined in the ospfTeMetricsIfMetricValue
object. A value of -1 indicates that a specific DSCP
value has not been defined and thus all DSCP values are
considered a match.’’

: :¼ { ospfTeMetricsEntry 3 }

ospfTeMetricsTopTlvAddressType OBJECT-TYPE

SYNTAX InetAddressType
STATUS current

280 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

DESCRIPTION
‘‘The address type enumeration value used to specify
the IP address of the advertizing router. This IP
address is always reachable, and is typically imple-
mented as a ‘‘loopback’’ address.’’

: :¼ { ospfTeMetricsEntry 4 }

ospfTeMetricsTopTlvRouterAddress OBJECT-TYPE
SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘The IP address (typically a ‘‘loopback’’ address)
of the advertising router.’’

: :¼ { ospfTeMetricsEntry 5 }

ospfTeMetricsTopTlvRouterAddrMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

‘‘Indicates the length of a mask for the matching of
the advertizing router's IP address. Masks are
constructed by setting bits in sequence from the most
significant bit downwards for ospfTeMetricsTopTlv-
RouterAddrMask bits length. All other bits in the
mask, up to the number needed to fill the length of the
address ospfTeMetricsTopTlvRouterAddress,are cle-
ared to zero. A zero bit in the mask then means that the
corresponding bit in the address always matches.’’

: :¼ { ospfTeMetricsEntry 6 }

ospfTeMetricsSubTlvLinkType OBJECT-TYPE

SYNTAX INTEGER {
Point-to-Point (1)
Multiaccess (2)

}
STATUS current
DESCRIPTION

‘‘The type of the link, either point-to-point or
multi-access.’’

: :¼ { ospfTeMetricsEntry 7 }

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 281

ospfTeMetricsSubTlvLinkIdAddressType OBJECT-TYPE

SYNTAX InetAddressType
STATUS current
DESCRIPTION

‘‘The address type enumeration value used to identify
the other end of the link, described as an IP address.’’

: :¼ { ospfTeMetricsEntry 8 }

ospfTeMetricsSubTlvLinkId OBJECT-TYPE

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘The identification of the other end of the link,
described as an IP address.’’

: :¼ { ospfTeMetricsEntry 9 }

ospfTeMetricsSubTlvLinkMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

‘‘Indicates the length of a mask for the matching of the
other end of the link, described as an IP address. Masks
are constructed by setting bits in sequence from the
most significant bit downwards for ospfTeMetrics-
SubTlvLinkMask bits length. All other bits in the mask,
up to the number needed to fill the length of the address
ospfTeMetricsSubTlvLinkId, are cleared to zero. A zero
but in the mask then means that the corresponding bit in
the address always matches.’’

: :¼ { ospfTeMetricsEntry 10 }

ospfTeMetricsSubTlvLocalIfAddressType OBJECT-TYPE

SYNTAX InetAddressType
STATUS current
DESCRIPTION

‘‘The address type enumeration value used to specify
the IP address of the interface corresponding to this
instance of the ospfTeMetricsSubTlvLinkType object.’’

: :¼ { ospfTeMetricsEntry 11 }
ospfTeMetricsSubTlvLocalIfAddress OBJECT-TYPE

282 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘Specifies the IP address of the interface of the
advertizing router that is connected to the link
described as an instance of the ospfTeMetricsSubTlv-
LinkType object.’’

: :¼ { ospfTeMetricsEntry 12 }

ospfTeMetricsSubTlvLocalIfAddrMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

‘‘Indicates the length of a mask for the matching of
the IP address of the interface corresponding to this
instance of the ospfTeMetricsSubTlvLinkType object.
Masks are constructed by setting bits in sequence
from the most significant bit downwards for
ospfTeMetricsSubTlvLocalIfAddrMask bits length.
All other bits in the mask, up to the number needed to
fill the lenth of the address ospfTeMetricsSubTlvLo-
calIfAddress, are cleared to zero. A zero bit in the
mask then means that the corresponding bit in the
address always matches.’’

: :¼ { ospfTeMetricsEntry 13 }

ospfTeMetricsSubTlvRemoteIfAddressType OBJECT-TYPE

SYNTAX InetAddressType
STATUS current
DESCRIPTION

‘‘The address type enumeration value used to specify
the IP address(es) of the neighbor's interface cor-
responding to this instance of the ospfTeMetrics-
SubTlvLinkType object.’’

: :¼ { ospfTeMetricsEntry 14 }

ospfTeMetricSubTlvRemoteIfAddress OBJECT-TYPE

SYNTAX InetAddress
STATUS current

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 283

DESCRIPTION
‘‘Specifies the IP address of the neighbor's interface
that is attached to this instance of the
ospfTeMetricsSubTlvLinkType object.’’

: :¼ { ospfTeMetricsEntry 15 }

ospfTeMetricSubTlvRemoteIfAddrMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

‘‘Indicates the length of a mask for the matching of the IP
address of the neighbor's interface corresponding to this
instance of the ospfTeMetricsSubTlvLinkType object. Masks
are constructed by setting bits in sequence from the most
significant bit downwards for
ospfTeMetricSubTlvRemoteIfAddrMask bits length. All other
bits in the mask, up to the number needed to fill the length
of the address ospfTeMetricSubTlvRemoteIfAddress, are
cleared to zero. A zero bit in the mask then means that the
corresponding bit in the address always matches.’’

: :¼ { ospfTeMetricsEntry 16 }

ospfTeMetricSubTlvTeMetric OBJECT-TYPE

SYNTAX Unsigned32 (1..65535)
STATUS current
DESCRIPTION

‘‘The link metric that has been assigned for traffic
engineering purposes. This metric may be different from the
ospfTeMetricsLinkMetricValue object of the ospfTeMetrics
class.’’

: :¼ { ospfTeMetricsEntry 17 }

ospfTeMetricSubTlvBandwidthType OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘bytes per second’’
STATUS current
DESCRIPTION

‘‘Specifies the maximum bandwidth that can be used on this
instance of the ospfTeMetricsSubTlvLinkType object in this
direction (from the advertizing router), expressed in bytes
per second.’’

284 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

: :¼ { ospfpTeMetricsEntry 18 }

ospfTeMetricSubTlvMaxRsvBandwidth OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘bytes per second’’
STATUS current
DESCRIPTION

‘‘Specifies the maximum bandwidth that may be reserved on
this instance of the ospfTeMetricsSubTlvLinkType object in
this direction (from the advertizing router), expressed in
bytes per second.’’

: :¼ { ospfTeMetricsEntry 19 }

ospfTeMetricSubTlvUnrsvBandwidth OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘bytes per second’’
STATUS current
DESCRIPTION

‘‘Specifies the amount of bandwidth that has not been
reserved on this instance of the ospfTeMetricsSubTlvLink-
Type object in this direction yet (from the advertizing
router), expressed in bytes per second.’’

: :¼ { ospfTeMetricsEntry 20 }

ospfTeMetricSubTlvResourceClass OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
STATUS current
DESCRIPTION

‘‘Specifies administrative group membership for the link in
terms of a bit mask.’’

: :¼ { ospfTeMetricsEntry 21 }

ospfTeMetricIfIndex OBJECT-TYPE

SYNTAX Unsigned32 (0..65535)
STATUS current
DESCRIPTION

‘‘The ifIndex value that identifies the local interface that
has been assigned a (set of) metrics.’’

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 285

: :¼ { ospfTeMetricsEntry 22 }

- -
- - The isisTeMetricsTable
- -

isisTeMetricsTable OBJECT-TYPE

SYNTAX SEQUENCE OF isisTeMetricsEntry
PIB-ACCESS install-notify
STATUS current
DESCRIPTION

‘‘This class describes the link and traffic engineering
metrics that will be used by IS-IS for TE route computation
purposes.’’

: :¼ { igpTeGroup 2 }

isisTeMetricsEntry OBJECT-TYPE

SYNTAX isisTeMetricsEntry
STATUS current
DESCRIPTION
‘‘The collection of IS-IS metrics assigned to the router on a
per interface basis.’’

PIB-INDEX { isisTeMetricsPrid }
UNIQUENESS {

isisTeMetricsSubTlvIfAddr,
isisTeMetricsSubTlvNbrAddr,

isisTeMetricSubTlvTeMetric,
isisTeMetricsSubTlvMaxLinkBwth,
isisTeMetricsSubTlvMaxRsvLinkBwth,
isisTeMetricsPriority,
isisTeMetricsSubTlvUnRsvBwth,

isisTeMetricsIfIndex }

: :¼ { isisTeMetricsTable 1 }

isisTeMetricsEntry: :¼ SEQUENCE {

isisTeMetricsPrid InstanceId,
isisTeMetricsTlvTeRouterID InetAddress,

isisTeMetricsSubTlvIfAddrType InetAddressType,
isisTeMetricsSubTlvIfAddr InetAddress,

286 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

isisTeMetricsSubTlvIfAddrMask Unsigned32,
isisTeMetricsSubTlvNbrAddType InetAddressType,
isisTeMetricsSubTlvNbrAddr InetAddress,
isisTeMetricsSubTlvNbrMask Unsigned32,
isisTeMetricsSubTlvTeMetric Unsigned32,
isisTeMetricsSubTlvMaxLinkBwth Unsigned32,
isisTeMetricsSubTlvMaxRsvLinkBwth Unsigned32,
isisTeMetricsPriority Integer32,
isisTeMetricsSubTlvUnRsvBwth Unsigned32,
isisTeMetricsIfIndex Unsigned32

}

isisTeMetricsPrid OBJECT-TYPE

SYNTAX InstanceId
STATUS current
DESCRIPTION

‘‘An integer index that uniquely identifies this instance of
the isisTeMetrics class.’’

: :¼ { isisTeMetricsEntry 1 }

isisTeMetricsTlvTeRouterID OBJECT-TYPE

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘Specifies the router ID.’’

: :¼ { isisTeMetricsEntry 2 }

isisTeMetricsSubTlvIfAddrType OBJECT-TYPE

SYNTAX InetAddressType
STATUS current
DESCRIPTION

‘‘The address type enumeration value used to specify the
type of the interface IP address.’’

: :¼ { isisTeMetricsEntry 3 }

isisTeMetricsSubTlvIfAddr OBJECT-TYPE

SYNTAX InetAddress
STATUS current
DESCRIPTION

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 287

‘‘Specifies the IP address of the interface.’’

: :¼ { isisTeMetricsEntry 4 }

isisTeMetricsSubTlvIfAddrMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

‘‘Indicates the length of a mask for the matching of the IP
address of the neighboring router. Masks are constructed by
setting bits in sequence from the most significant bit
downwards for isisTeMetricsSubTlvIfAddrMask bits length.
All other bits in the mask, up to the number needed to fill the
length of the address isisTeMetricsSubTlvIfAddr, are cle-
ared to zero. A zero bit in the mask then means that the
corresponding bit in the address always matches.’’

: :¼ { isisTeMetricsEntry 5 }

isisTeMetricsSubTlvNbrAddrType OBJECT-TYPE

SYNTAX InetAddressType
STATUS current
DESCRIPTION

‘‘The address type enumeration value used to specify the
type of the neighboring router's IP address.’’

: :¼ { isisTeMetricsEntry 6 }

isisTeMetricsSubTlvNbrAddr OBJECT-TYPE

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘Specifies the IP address of the neighboring router on the
link to which the corresponding interface (defined by the
ifIndex) is attached.’’

: :¼ { isisTeMetricsEntry 7 }

isisTeMetricsSubTlvNbrMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

288 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

‘‘Indicates the length of a mask for the matching of the IP
address of the neighboring router. Masks are constructed by
setting bits in sequence from the most significant bit
downwards for isisTeMetricsSubTlvNbrMask bits length. All
other bits in the mask, up to the number needed to fill the
length of the address isisTeMetricsSubTlvNbrAddr, are
cleared to zero. A zero bit in the mask then means that the
corresponding bit in the address always matches.’’

: :¼ { isisTeMetricsEntry 8 }

isisTeMetricsSubTlvTeMetric OBJECT-TYPE

SYNTAX Unsigned32 (1..65535)
STATUS current

DESCRIPTION
‘‘The traffic engineering default metric is used to present a
differently weighted topology to TE-based SPF computa-
tions.’’

: :¼ { isisTeMetricsEntry 9 }

isisTeMetricsSubTlvMaxLinkBwth OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘bytes per second’’
STATUS current
DESCRIPTION

‘‘This metric specifies the maximum bandwidth that can be
used on this link in this direction.’’

: :¼ { isisTeMetricsEntry 10 }

isisTeMetricsSubTlvMaxRsvLinkBwth OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘bytes per second’’
STATUS current
DESCRIPTION

‘‘Specifies the maximum bandwidth that may be reserved on
this link in this direction, expressed in bytes per sec-
ond.’’

: :¼ { isisTeMetricsEntry 11 }

isisTeMetricsPriority OBJECT-TYPE

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 289

SYNTAX Integer32 (0..7)
STATUS current
DESCRIPTION
‘‘Specifies one of the eight priority levels, possible values
ranging from 0 to 7.’’

: :¼ { isisTeMetricsEntry 12}

isisTeMetricsSubTlvUnRsvBwth OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘bytes per second’’
STATUS current
DESCRIPTION

‘‘Specifies the amount of bandwidth that has not been
reserved on this link in this direction and having the
priority isisTeMetricsPriority, expressed in bytes per
second.’’

: :¼ { isisTeMetricsEntry 13 }

isisTeMetricsIfIndex OBJECT-TYPE

SYNTAX Unsigned32 (0..65535)
STATUS current
DESCRIPTION

‘‘The ifIndex value that uniquely identifies the interface
that has been assigned a (set of) metrics.’’

: :¼ { isisTeMetricsEntry 14 }

- -
- - The bgpTeTable
- -

bgpTeTable OBJECT-TYPE
SYNTAX SEQUENCE OF bgpTeEntry
PIB-ACCESS install-notify
STATUS current
DESCRIPTION

‘‘This class describes the QoS information that MAY be
conveyed in BGP-4 UPDATE messages for the purpose of
enforcing an interdomain traffic engineering policy.’’

290 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

: :¼ { bgpTeGroup 1 }

bgpTeEntry OBJECT-TYPE
SYNTAX bgpTeEntry
STATUS current
DESCRIPTION

‘‘The collection of QoS information to be exchanged by
BGP peers, as far as the announcement of traffic-
engineered routes between domains is concerned.’’

PIB-INDEX { bgpTePrid }
UNIQUENESS { bgpTeNlriAddress,

bgpTeNextHopAddress,
bgpTeReservedRate,
bgpTeAvailableRate,
bgpTeLossRate,
bgpTePhbId,
bgpTeMinOneWayDelay,
bgpTeMaxOneWayDelay,
bgpTeAverageOneWayDelay,
bgpTeInterPacketDelay }

: :¼ { bgpTeTable 1 }

bgpTeEntry: :¼ SEQUENCE {

bgpTePrid InstanceId,
bgpTeNlriAddressType InetAddressType,
bgpTeNlriAddress InetAddress,
bgpTeNlriAddressMask Unsigned32,
bgpTeNextHopAddressType InetAddressType,
bgpTeNextHopAddress InetAddress,
bgpTeNextHopMask Unsigned32,
bgpTeReservedRate Unsigned32,
bgpTeAvailableRate Unsigned32,
bgpTeLossRate Unsigned32,
bgpTePhbId Integer32,
bgpTeMinOneWayDelay Unsigned32,
bgpTeMaxOneWayDelay Unsigned32,
bgpTeAverageOneWayDelay Unsigned32,
bgpTeInterPacketDelay Unsigned32

}

bgpTePrid OBJECT-TYPE

SYNTAX InstanceId

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 291

STATUS current
DESCRIPTION

‘‘An integer index that uniquely identifies this instance of
the bgpTeTable class.’’

: :¼ { bgpTeEntry 1 }

bgpTeNlriAddressType OBJECT-TYPE

SYNTAX InetAddressType
STATUS current
DESCRIPTION

‘‘The address type enumeration value used to specify the
type of a route's destination IP address.’’

: :¼ { bgpTeEntry 2 }

bgpTeNlriAddress OBJECT-TYPE

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘The IP address to match against the NLRI field of the
QOS_NLRI attribute of the BGP-4 UPDATE message.’’

: :¼ { bgpTeEntry 3 }

bgpTeNlriAddressMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

‘‘Indicates the length of a mask for the matching of the
NLRI field of the QOS_NLRI attribute of the BGP-4 UPDATE
message. Masks are constructed by setting bits in sequence
from the most significant bit downwards for bgpTeNlriMask
bits length. All other bits in the mask, up to the number
needed to fill the length of the address bgpTeNlri, are
cleared to zero. A zero bit in the mask then means that
the corresponding bit in the address always matches.’’

: :¼ { bgpTeEntry 4 }

bgpTeNextHopAddressType OBJECT-TYPE

SYNTAX InetAddressType

292 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

STATUS current
DESCRIPTION

‘‘The address type enumeration value used to specify the
type of the next hop's IP address.’’

: :¼ { bgpTeEntry 5 }

bgpTeNextHopAddress OBJECT-TYPE

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘On remote routes, the address of the next router en
route; Otherwise, 0.0.0.0.’’

: :¼ { bgpTeEntry 6 }

bgpTeNextHopMask OBJECT-TYPE

SYNTAX Unsigned32 (0..128)
STATUS current
DESCRIPTION

‘‘Indicates the length of a mask for the matching of the
next hop's IP address. Masks are constructed by setting
bits in sequence from the most significant bit downwards
for bgpTeNextHopMask bits length. All other bits in the
mask, up to the number needed to fill the length of the
address bgpTeNextHopAddress, are cleared to zero. A zero
bit in the mask then means that the corresponding bit in
the address always matches.’’

: :¼ { bgpTeEntry 7 }

bgpTeReservedRate OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘kilobits per second’’
STATUS current
DESCRIPTION

‘‘Specifies the reserved rate that cannot be used on this
instance of the bgpTeNlriAddress object in this direc-
tion (from the advertizing BGP peer), expressed in kilo-
bits per second.’’

: :¼ { bgpTeEntry 8 }

bgpTeAvailableRate OBJECT-TYPE

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 293

SYNTAX Unsigned32 (0..4294967295)
UNITS ``kilobits per second''
STATUS current
DESCRIPTION

‘‘Specifies the available rate that may be reserved on
this instance of the bgpTeNlriAddress object in this
direction (from the advertizing BGP peer), expressed in
kilobits per second.’’

: :¼ { bgpTeEntry 9 }

bgpTeLossRate OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
STATUS current
DESCRIPTION

‘‘Specifies the packet loss ratio that has been observed
on this route instantiated by the bgpTeNlriAddress
object.’’

: :¼ { bgpTeEntry 10 }

bgpTePhbId OBJECT-TYPE

SYNTAX Integer32 (-1 j 0..63)
STATUS current
DESCRIPTION

‘‘The binary encoding that uniquely identifies a per-hop
behavior (PHB) or a set of PHBs associated with the
DiffServ code point marking of the IP datagrams that are
to be conveyed along this traffic-engineered route. A
value of -1 indicates that a specific PHB ID value has not
been defined, and thus all PHB ID values are considered a
match.’’

: :¼ { bgpTeEntry 11 }

bgpTeMinOneWayDelay OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘milliseconds’’
STATUS current
DESCRIPTION

‘‘Specifies the minimum one-way delay that has been
observed on this route instantiated by the bgpTeNlriAd-
dress object, expressed in milliseconds.’’

294 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

: :¼ { bgpTeEntry 12 }
bgpTeMaxOneWayDelay OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘milliseconds’’
STATUS current
DESCRIPTION

‘‘Specifies the maximum one-way delay that has been
observed on this route instantiated by the bgpTeNlriAd-
dress object, expressed in milliseconds.’’

: :¼ { bgpTeEntry 13 }

bgpTeAverageOneWayDelay OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘milliseconds’’
STATUS current
DESCRIPTION

‘‘Specifies the average one-way delay that has been
observed on this route instantiated by the bgpTeNlriAd-
dress object, expressed in milliseconds.’’

: :¼ { bgpTeEntry 14 }

bgpTeInterPacketDelay OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)
UNITS ‘‘milliseconds’’
STATUS current
DESCRIPTION

‘‘Specifies the interpacket delay variation that has been
observed on this route instantiated by the bgpTeNlriAd-
dress object.’’

: :¼ { bgpTeEntry 15 }

- -
- - Traffic engineering statistics classes. The information

contained
- - in the yet-to-be defined tables aim to report statistics about
- - COPS control traffic, engineered traffic and potential errors.
- -
- -
END

Appendix 3: Example of an IP Traffic Engineering Policy Information Base (IP TE PIB) 295

APPENDIX 4

Example of an IP TE Accounting
PIB

- -
- - The PIB defined within the context of IP traffic engineering
- - for accounting purposes has the goal of completing the whole
- - COPS TE reporting system.
- -
IPTE-ACCOUNTING-PIB PIB-DEFINITIONS: :¼ BEGIN

IMPORTS
ExtUTCTime, Unsigned32, Unsigned64,
Integer32, MODULE-IDENTITY, OBJECT-TYPE

FROM COPS-PR-SPPI
TruthValue, TEXTUAL-CONVENTION

FROM SNMPv2-TC
PolicyInstanceId, PolicyReferenceId

FROM COPS-PR-SPPI-TC;
RoleCombination

FROM POLICY-DEVICE-AUX-MIB;
Counter64

FROM SNMPv2-SMI;

ipTeAccountingPib MODULE-IDENTITY

SUBJECT-CATEGORIES {tbd}
LAST-UPDATED ‘‘200201250900Z’’

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

ORGANIZATION ‘‘France Telecom R&D’’
CONTACT-INFO ‘‘

Mohamed Boucadair
Adresse: 42, rue des Coutures
BP 6243
14066 Caen Cedex
Email: mohamed.boucadair@francetele-

com. com’’

DESCRIPTION
‘‘The PIB module that contains classes
describing the parameters to be monitored,
recorded and/or reported by the PEP for Traffic
Engineering accounting purposes.’’

: :¼ {tbd}

- -
- - The ipTe Accounting Class
- -

ipTeAccountingClasses
OBJECT IDENTIFIER: :¼ { ipTeAccountingPib 1 }

- -
- - The MPLS TE Accounting Class
- -

- - This class defines tables related to MPLS TE
- - To be done later

lspTeAccountingClasses
OBJECT IDENTIFIER: :¼ { ipTeAccountingPib 2 }

- -
- - ospfTeRouterUsageTable
- -

ospfTeRouterUsageTable OBJECT-TYPE

SYNTAX SEQUENCE OF ospfTeRouterUsageEntry
PIB-ACCESS report-only
STATUS current
DESCRIPTION

298 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

‘‘This class defines the usage attributes to be
reported, and which are related to the router
identified by the Router-Id.’’

::¼ { ipTeAccountingClasses 1}

ospfTeRouterUsageEntry OBJECT-TYPE

SYNTAX ospfTeUsageRouterEntry
STATUS current
DESCRIPTION

‘‘An entry for the ospfTeRouterUsageTable.’’
PIB-INDEX { ospfTeRouterUsagePrid}
UNIQUENESS { ospfTeRouterUsageLinkPrid,

ospfTeUsageIfActif}

::¼ {ospfTeRouterUsageTable 1}

ospfTeRouterUsageEntry: :¼ SEQUENCE {
ospfTeRouterUsagePrid InstanceID,
ospfTeRouterUsageLinkPrid Prid,
ospfTeRouterUsageIfActif Counter64 }

ospfTeRouterUsagePrid OBJECT-TYPE

SYNTAX Prid
STATUS current
DESCRIPTION

‘‘An integer index that uniquely identifies this
instance of the ospfTeRouterUsage class.’’

::¼ { ospfTeRouterUsageEntry 1 }

ospfTeRouterUsageLinkPrid OBJECT-TYPE
SYNTAX Prid
STATUS current
DESCRIPTION

‘‘The PRID of the linkage policy instance used
to refer this usage policy instance.’’

::¼ { ospfTeRouterUsageEntry 2 }

ospfTeRouterUsageIfActif OBJECT-TYPE

SYNTAX Counter64

Appendix 4: Example of an IP TE Accounting PIB 299

STATUS current
DESCRIPTION

‘‘The number of interfaces that are involved in
an OSPF-TE route computation in the router
identified by Router-Id.’’

::¼ { ospfTeRouterUsageEntry 3 }

- -
- - ospfTeUsageTable
- -
ospfTeUsageTable OBJECT-TYPE

SYNTAX SEQUENCE OF ospfTeUsageEntry
PIB-ACCESS report-only
STATUS current
DESCRIPTION

‘‘This class defines the usage attributes to use
for OSPF TE purposes.’’

::¼ { ipTeAccountingClasses 2 }

ospfTeUsageEntry OBJECT-TYPE

SYNTAX ospfTeUsageEntry
STATUS current
DESCRIPTION

‘‘An entry for the ospfTeUsageTable.’’

PIB-INDEX { ospfTeUsagePrid}
UNIQUENESS { ospfTeUsageLinkPrid,

OspfTeUsageLinkDelay }

::¼ {ospfTeUsageTable 1 }

ospfTeUsageEntry : :¼ SEQUENCE { ospfTeUsagePrid InstanceID,
ospfTeUsageLinkPrid Prid,

ospfTeUsageLinkDelay Unsigned32 }

ospfTeUsagePrid OBJECT-TYPE

SYNTAX Prid
STATUS current
DESCRIPTION

300 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

‘‘An integer index that uniquely identifies this
instance of the ospfTeUsage class.’’

::¼ { ospfTeUsageEntry 1 }

ospfTeUsageLinkPrid OBJECT-TYPE

SYNTAX Prid
STATUS current
DESCRIPTION

‘‘The PRID of the linkage policy instance used
to refer this usage policy instance.’’

::¼ { ospfTeUsageEntry 2 }

ospfTeUsageLinkDelay OBJECT-TYPE

SYNTAX Unsigned32
STATUS current
DESCRIPTION

‘‘The one-way delay that has been observed on
this route.’’

::¼ { ospfTeUsageEntry 3 }

- -
- - isisTeUsageTable
- -

isisTeUsageTable OBJECT-TYPE

SYNTAX SEQUENCE OF isisTeUsageEntry
PIB-ACCESS report-only
STATUS current
DESCRIPTION

‘‘This class defines the usage attributes to use
for IS-IS TE purposes.’’

::¼ { ipTeAccountingClasses 3 }

isisTeUsageEntry OBJECT-TYPE

SYNTAX isisTeUsageEntry
STATUS current
DESCRIPTION

‘‘An entry for the isisTeUsageTable.’’

Appendix 4: Example of an IP TE Accounting PIB 301

PIB-INDEX { isisTeUsagePrid}
UNIQUENESS { isisTeUsageLinkPrid,

isisTeUsageLinkDelay }

::¼ {isisTeUsageTable 1 }

isisTeUsageEntry: :¼ SEQUENCE {
isisTeUsagePrid InstanceID,
isisTeUsageLinkPrid Prid,

isisTeUsageLinkDelay Unsigned32 }

isisTeUsagePrid OBJECT-TYPE
SYNTAX Prid
STATUS current
DESCRIPTION

‘‘An integer index that uniquely identifies this
instance of the isisTeUsage class.’’

::¼ { isisTeUsageEntry 1 }

isisTeUsageLinkPrid OBJECT-TYPE

SYNTAX Prid
STATUS current
DESCRIPTION

‘‘The PRID of the linkage policy instance used
to refer this usage policy instance.’’

::¼ { isisTeUsageEntry 2 }

isisTeUsageLinkDelay OBJECT-TYPE

SYNTAX Unsigned32
STATUS current
DESCRIPTION

‘‘The one-way delay that has been observed on
this route.’’

::¼ { isisTeUsageEntry 3 }

- -
- - bgpTeUsageTable
- -

bgpTeTable OBJECT-TYPE

302 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

SYNTAX SEQUENCE OF bgpTeUsageEntry
PIB-ACCESS report-only
STATUS current
DESCRIPTION

‘‘This table contains a set of accounting
information related to the activation of BGP
process enabling exchange of QoS information.’’

: :¼ { ipTeAccountingClasses 4 }

bgpTeUsageEntry OBJECT-TYPE

SYNTAX bgpTeUsageEntry
STATUS current
DESCRIPTION

‘‘An entry to bgpTeUsage Class.’’

PIB-INDEX { bgpTeUsagePrid }
UNIQUENESS { bgpTeUsageLinkPrid,

bgpTeUsageActIf,
bgpTeUsageOneWayDelay }

::¼ { bgpTeUsageTable 1 }

bgpTeUsageEntry: :¼ SEQUENCE {
bgpTeUsagePrid InstanceId,
bgpTeUsageLinkPrid Prid,

bgpTeUsageActIf Counter64,
bgpTeUsageOneWayDelay Unsigned32 }

bgpTeUsagePrid OBJECT-TYPE

SYNTAX InstanceId
STATUS current
DESCRIPTION

‘‘An integer index that uniquely identifies this
instance of the bgpTeUsage class.’’

: :¼ { bgpTeUsageEntry 1 }

bgpTeUsageLinkPrid OBJECT-TYPE

SYNTAX Prid
STATUS current

Appendix 4: Example of an IP TE Accounting PIB 303

DESCRIPTION
‘‘The PRID of the linkage policy instance used
to base this usage policy instance upon.’’

: :¼ { bgpTeUsageEntry 2 }

bgpTeUsageActIf OBJECT-TYPE

SYNTAX Counter64
STATUS current
DESCRIPTION

‘‘Specifies the number of interfaces that are
involved in the BGP route computation process.’’

: :¼ { bgpTeUsageEntry 3 }

bgpTeUsageOneWayDelay OBJECT-TYPE

SYNTAX Unsigned32
STATUS current
DESCRIPTION

‘‘Specifies the one-way delay that has been
observed on this route.’’

: :¼ { bgpTeUsageEntry 4 }

- -
- - The Threshold class that accompanies the OSPF and BGP usage
- - tables
- -

- -
- - OSPF threshold attributes
- -

ospfTeThresholdTable OBJECT-TYPE

SYNTAX SEQUENCE OF ospfThresholdEntry
PIB-ACCESS Install
STATUS current
DESCRIPTION

‘‘This class defines the threshold attributes
corresponding to OSPF TE usage attributes
specified in ospfTeUsageTable.’’

: :¼ { ipTeAccountingClasses 5 }

304 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

ospfTeThresholdEntry OBJECT-TYPE

SYNTAX ospfTeThresholdEntry
STATUS current
DESCRIPTION

‘‘Defines the attributes to hold threshold values.’’

PIB-INDEX { ospfTeThresholdId }

: :¼ { ospfTeThresholdId 1 }

ospfTeThresholdEntry::¼ SEQUENCE {
ospfTeThresholdId InstanceID,
ospfTeThresholdBwThresholds Integer64,
ospfTeThresholdRsvBwThresholds Integer64 }

ospfTeThresholdId OBJECT-TYPE

SYNTAX InstanceId
STATUS current
DESCRIPTION

‘‘Arbitrary integer index that uniquely
identifies an instance of the class.’’

: :¼ { ospfTeThresholdEntry 1 }

ospfTeThresholdBwThresholds OBJECT-TYPE

SYNTAX Integer64
STATUS current
DESCRIPTION

‘‘The threshold the used bandwidth on the link
shouldn't exceed.’’

: :¼ { ospfTeThresholdEntry 2 }

ospfTeThresholdRsvBwThresholds OBJECT-TYPE

SYNTAX Integer64
STATUS current
DESCRIPTION

‘‘The threshold the reserved bandwidth on the
link shouldn't exceed.’’

Appendix 4: Example of an IP TE Accounting PIB 305

: :¼ { ospfTeThresholdEntry 3 }

- -
- - ISIS Threshold attributes
- -

isisTeThresholdTable OBJECT-TYPE

SYNTAX SEQUENCE OF isisThresholdEntry
PIB-ACCESS Install
STATUS current
DESCRIPTION

‘‘This class defines the threshold attributes
corresponding to ISIS TE usage attributes
specified in isisTeUsageTable.’’

: :¼ { ipTeAccountingClasses 6 }

isisTeThresholdEntry OBJECT-TYPE

SYNTAX isisTeThresholdEntry
STATUS current
DESCRIPTION

‘‘Defines the attributes to hold threshold
values.’’

PIB-INDEX { isisTeThresholdId }

: :¼ { isisTeThresholdId 1 }

isisTeThresholdEntry::¼ SEQUENCE {
isisTeThresholdId InstanceID,
isisTeThresholdBwThresholds Integer64,
isisTeThresholdRsvBwThresholds Integer64 }

isisTeThresholdId OBJECT-TYPE

SYNTAX InstanceId
STATUS current
DESCRIPTION

‘‘Arbitrary integer index that uniquely
identifies an instance of the class.’’

: :¼ { isisTeThresholdEntry 1 }

306 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

isisTeThresholdBwThresholds OBJECT-TYPE

SYNTAX Integer64
STATUS current
DESCRIPTION

‘‘The threshold the used bandwidth on the link
shouldn't exceed.’’

: :¼ { isisTeThresholdEntry 2 }
isisTeThresholdRsvBwThresholds OBJECT-TYPE

SYNTAX Integer64
STATUS current
DESCRIPTION

‘‘The threshold the reserved bandwidth on the
link shouldn't exceed.’’

: :¼ { isisTeThresholdEntry 3 }

- -
- - BGP threshold attributes
- -

bgpTeThresholdTableOBJECT-TYPE

SYNTAX SEQUENCE OF bgpThresholdEntry
PIB-ACCESS Install
STATUS current
DESCRIPTION

‘‘This class defines the threshold attributes
corresponding to BGP usage attributes specified
in bgpTeUsageTable.’’

: :¼ { ipTeAccountingClasses 7 }

bgpTeThresholdEntry OBJECT-TYPE

SYNTAX bgpTeThresholdEntry
STATUS current
DESCRIPTION

‘‘Defines the attributes to hold threshold
values.’’

PIB-INDEX { bgpTeThresholdPrid }

Appendix 4: Example of an IP TE Accounting PIB 307

: :¼ { bgpTeThresholdId 1 }

bgpTeThresholdEntry: :¼ SEQUENCE {
bgpTeThresholdId InstanceID,

bgpTeThresholdNlriAddress InetAddress,
bgpTeThresholdNextHopAddress InetAddress,

bgpTeThresholdOneWayDelayThreshold Integer64,
bgpTeThresholdInterPacketDelayThreshold

Integer64,
bgpTeThresholdLossRateThreshold Integer64 }

bgpTeThresholdId OBJECT-TYPE

SYNTAX InstanceId
STATUS current
DESCRIPTION

‘‘Arbitrary integer index that uniquely
identifies an instance of the class.’’

: :¼ { bgpTeThresholdEntry 1 }

bgpTeThresholdNlriAddress OBJECT-TYPE

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘The IP address to match against the NLRI field
of QoS_NLRI attribute of the BGP-4 UPDATE
message introduced in RFC 1771.’’

: :¼ { bgpTeThresholdEntry 2 }

bgpTeThresholdNextHopAddress OBJECT-TYPE

SYNTAX InetAddress
STATUS current
DESCRIPTION

‘‘The address of the next router.’’

: :¼ { bgpTeThresholdEntry 3 }

bgpTeThresholdOneWayDelayThreshold OBJECT-TYPE

SYNTAX Integer64
STATUS current

308 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

DESCRIPTION
‘‘The threshold of the one-way delay that will
trigger a report in the next reporting interval
when exceeded.’’

: :¼ { bgpTeThresholdEntry 4 }

bgpTeThresholdInterPacketDelayThreshold OBJECT-TYPE

SYNTAX Integer64
STATUS current
DESCRIPTION

‘‘The threshold of the interpacket delay
variation that will trigger a report in
the next reporting interval when exceeded.’’

: :¼ { bgpTeThresholdEntry 5 }

bgpTeThresholdLossRateThreshold OBJECT-TYPE

SYNTAX Integer64
STATUS current
DESCRIPTION

‘‘The threshold, in terms of loss rate, that
will trigger a report in the next reporting
interval when exceeded.’’

: :¼ { bgpTeThresholdEntry 6 }

END

Appendix 4: Example of an IP TE Accounting PIB 309

APPENDIX 5

Description of Classes of an IP
VPN Information Model

A5.1 Introduction

This appendix is the companion document of Chapter 10 ‘Automated Production of BGP/

MPLS-based VPNs’. It details the IP VPN-specific classes of an IP VPN information model

that can be used for the dynamic enforcement of IP VPN-specific policies.

A5.2 Policy Class Definitions

The class ipvpnPolicyVFICreationAction

This class specifies the VFI to be created in order dynamically to
deploy a BGP/MPLS VPN.

NAME ipvpnPolicyVFICreationAction
DESCRIPTION

The class for specifying the VFI to be created.
DERIVED FROM PolicyAction
ABSTRACT FALSE
PROPERTIES AttachedInterface [ref AccessEndPoint [1..n]]

The reference AttachedInterface
This is a reference to one or several objects of class
AccessEndPoint.

The class ipvpnPolicyRouteDistributionAction
This action represents the route distribution process of an IP VPN
routing table that is implemented by means of RouteTarget and
results in the definition of routes with/without RouteDistingu-
isher.

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

C. Jacquenet, G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

This action is intended to be used to implement RFC4364-compliant
IP VPNs.

NAME ipvpnPolicyRouteDistributionAction
DESCRIPTION

The class for representing the route
distribution actions. The distribution actions
should support point-to-point, hub-and-spoke,
full mesh and partial mesh topology
requirements.

DERIVED FROM PolicyAction
ABSTRACT FALSE
PROPERTIES DistributionSource [ref AccessEndPoint[1]]

DistributionDestination [ref AccessEndPoint
[1]]
DistributionMandatoryHops [ref
AccessEndPoint[0..n]]

The reference DistributionSource

This is a reference to an object of class AccessEndPoint.

The reference DistributionDestination

This is a reference to an object of class AccessEndPoint.

The reference DistributionMandatoryHops

This is a reference to zero or more objects, which points to
mandatory hops to be used for the traffic flowing from the
DistributionSource to the DistributionDestination. The objects
referenced are instances of the class AccessEndPoint.

The class ipvpnPolicyVPNTopologyDescriptionAction

This class specifies the IP VPN service topology and reachability
and is intended to be used for configuring an IP VPN database for
implementing IP VPNs.

NAME ipvpnPolicyVPNTopologyDescriptionAction
DESCRIPTION The class for representing the topology and

reachability description actions. The actions
should support point-to-point, hub-and-spoke,
full mesh and partial mesh topology
requirements.

DERIVED FROM PolicyAction
ABSTRACT FALSE
PROPERTIES RoutingSource [ref AccessEndPoint [1]]

RoutingDestination [ref AccessEndPoint [1]]
RoutingMandatoryHops [ref EdgeNode [2..n]]

The reference RoutingSource

This is a reference to an object of type AccessEndPoint.

312 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

The reference RoutingDestination

This is a reference to an object of type AccessEndPoint.

The reference RoutingMandatoryHops

This is a reference to zero or more objects, which points to
mandatory hops to be used for the traffic flowing from the
ipvpnPolicyRoutingSource to the ipvpnPolicyRoutingDestination.
The objects referenced are instance(s) of EdgeNode.

The class ipvpnPolicyNATAction
This class specifies which source addresses need to be translated
and what should be the results of this translation.

NAME ipvpnPolicyNATAction
DESCRIPTION The class that represents the network address

translation action of the "If Condition then
Action" semantics associated with a policy
rule.

DERIVED FROM PolicyAction
ABSTRACT FALSE
PROPERTIES TranslateFromIPv4Address

TranslateToIPv4Address

The property TranslateFromIPv4Address

Specifies the original set of IPv4 addresses that needs to be
translated.

NAME TranslateFromIPv4Address
DESCRIPTION The original IPv4 address that needs to be

translated.
SYNTAX PolicyIPv4AddrValue

The property TranslateToIPv4Address
Specifies the final set of IPv4 addresses that needs to be
translated to.

NAME TranslateToIPv4Address
DESCRIPTION The final IPv4 address that needs to be

translated to.
SYNTAX PolicyIPv4AddrValue

The class ipvpnPolicyTrafficTrunkAction

This class indicates the requirements on the traffic trunk to be
used to transport the IP VPN traffic.

NAME ipvpnPolicyTrafficTrunkAction
DESCRIPTION The class for representing the requirements of

the traffic trunk to be used to transport the
VPN traffic

DERIVED FROM PolicyAction

Appendix 5: Description of Classes of an IP VPN Information Model 313

ABSTRACT FALSE
PROPERTIES Ingress [ref EdgeNode]

Egress [ref EdgeNode]
Priority [Integer]
Preemption [Integer (1-4)]
Resilience [boolean]
TrafficProfile [QosPolicyTokenBucketTrfcProf]

The reference Ingress

This attribute references the Edge Node, which will be the ingress
node for the trunk.

The reference Egress

This attribute references the Edge Node, which will be the egress
node for the trunk.

The property Priority

This attribute indicates the priority requirement for the trunk.

NAME Priority
DESCRIPTION The priority requirement for the trunk.
SYNTAX Integer

The property Preemption

This attribute indicates the preemption requirement for the
trunk.
The preemption is related to whether the trunk can be preempted to
accommodate a new higher priority trunk.

NAME Preemption
DESCRIPTION The preemption requirement for the trunk.
SYNTAX Integer(1-4)

The property Resilience
This attribute indicates the resilience requirement for the
trunk.

NAME Resilience
DESCRIPTION The resilience requirement for the trunk.
SYNTAX boolean

The property TrafficProfile

This attribute indicates the traffic profile requirement for the
trunk.

NAME TrafficProfile
DESCRIPTION The Traffic Profile requirement for the trunk.
SYNTAX QoSPolicyTokenBucketTrfcProf

314 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

The class ipvpnPolicyFirewallAction
Specifies the firewall action to be enforced such as "drop", "pass",
"log", "alert", etc. The list of possible actions is limited by the
attributes in the action object.

NAME ipvpnPolicyFirewallAction
DESCRIPTION The class for representing the firewall action

of the "If Condition then Action" semantics
associated with a policy rule.

DERIVED FROM PolicyAction
ABSTRACT FALSE
PROPERTIES Action

The property Action

The action defines the type of firewall action to be enforced.

NAME Action
DESCRIPTION The firewall action to be enforced
SYNTAX INTEGER
VALUES The action can take the following values

0 ¼ Allow
1 ¼ Allow and Log
2 ¼ Allow and Alarm
3 ¼ Deny
4 ¼ Deny and Log
5 ¼ Deny and Alarm

The class ipvpnEncryptionAction

The encryption standard is assumed to be IPsec. This class provides
the IPSec parameters that will be used to set up the security
association required to handle the encryption and decryption of
packets.

NAME ipvpnEncryptionAction
DESCRIPTION The class for representing the encryption

action of the "If Condition then Action"
semantics associated with a policy rule.

DERIVED FROM PolicyAction
ABSTRACT TRUE
PROPERTIES IkeAuthentication

IkeEncryption
IkeDHGroup
IkeTimeout
IkeTrafficBasedExpiry
IpsecAuthentication
IpsecEncryption
IpsecDHGroup

Appendix 5: Description of Classes of an IP VPN Information Model 315

IpsecTimeout
IpsecTrafficBasedExpiry
IkePeerAuthenticationMethod

The property IkeAuthentication

The property specifies the authentication algorithm to be used. The
IkeAuthentication parameters can be used to generate the
corresponding ISA key management protocol (ISAKMP) parameters in
cases where ISAKMP is still being used. This draft does not des-
cribe a separate set of parameters for ISAKMP. It is left to the
policy servers generating the configuration to handle the corres-
ponding translation.

NAME IkeAuthentication
DESCRIPTION The property that specifies the authentication

algorithm.
SYNTAX String

The property IkeEncryption

The property specifies the encryption algorithm to be used.

NAME IkeEncryption
DESCRIPTION The property that specifies the encryption

algorithm.
SYNTAX String

The property IkeDHGroup

The property specifies the DHGroup to be used during IKE negotia-
tions.

NAME IkeDHGroup
DESCRIPTION The property that specifies the DHGroup to be

used during IKE negotiations.
SYNTAX String

The property IkeTimeout

The property specifies the IKE timeout to be used.

NAME IkeTimeout
DESCRIPTION The property that specifies the IKE timeout.
SYNTAX Integer

The property IkeTrafficBasedExpiry

The property specifies the IKE traffic-based expiry to be used.

NAME IkeTrafficBasedExpiry
DESCRIPTION The property that specifies the IKE traffic-

based expiry to be used.
SYNTAX Integer

316 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

The property IPSECAuthentication

The property specifies the authentication algorithm to be used.

NAME IPSECAuthentication
DESCRIPTION The property that specifies the authentication

algorithm.
SYNTAX String

The property IPSECEncryption

The property specifies the encryption algorithm to be used.

NAME IPSECEncryption
DESCRIPTION The property that specifies the encryption

algorithm.
SYNTAX String

The property IPSECDHGroup
The property specifies the DHGroup to be used during IPsec negotia-
tions.

NAME IPSECDHGroup
DESCRIPTION The property that specifies the DHGroup to be

used during the IKE phase II negotiations.
SYNTAX String

The property IPSECTimeout

The property specifies the IPsec key timeout to be used.

NAME IPSECTimeout
DESCRIPTION ThepropertythatspecifiestheIPSECkeytimeout.
SYNTAX Integer

The property IPSECTrafficBasedExpiry

The property specifies the IPsec traffic-based key expiry to be
used.

NAME IPSECTrafficBasedExpiry
DESCRIPTION The property that specifies the IPsec traffic-

based key expiry to be used.
SYNTAX Integer

The property IkePeerAuthenticationMethod

The IKE peers are the IKE processes that are at the two ends of a
control channel related to encryption of traffic at the data layer.
The method used by the Internet key exchange (IKE) peers to
authenticate each other. The IKE peers are running on the IP VPN
nodes.

NAME IkePeerAuthenticationMethod

Appendix 5: Description of Classes of an IP VPN Information Model 317

DESCRIPTION The property that specifies the method used by
the IKE peers to authenticate each other.

SYNTAX Unsigned 16-bit integer
VALUE The possible values are listed below.

0 ¼ ProposalList is to be used (see below)
1 ¼ Preshared key
2 ¼ DSS (D S S) signatures
3 ¼ RSA (R S A) signatures
4 ¼ Encryption with RSA
5 ¼ Revised encryption with RSA
6 ¼ Kerberos (has this number been assigned???)
A value of 0 is a special value that indicates
that this particular proposal should be
repeated once for each authentication method
that corresponds to the credentials installed
on the machine. For example, if the system has
a preshared key and a certificate, a proposal
list could be constructed that includes a
proposal that specifies preshared key and
proposals for any of the public-key
authentication methods.
DSS and RSA are encryption algorithms that are
explained in several encryption specific books
such as "Applied Cryptography".

The class ipvpnApplicaionSignatureValue

Specifies the layer-4 to layer-7 characteristics of the packet,
including application level decodes that require stateful
inspection of the packet, e.g. HTTP, FTP, SMTP, TELNET, etc. This
class enables the policies to capture the application layer
requirements of the customer with regards to treatment for spe-
cific IP traffic.

NAME ipvpnApplicationSignatureValue
DESCRIPTION The class for representing application

signature to be matched against the traffic
DERIVED FROM qoSPolicyValue
ABSTRACT FALSE
PROPERTIES applicationSignature

This class can have several subclasses, which reflect the
application protocol classification granularity.

The property applicationSignature

NAME applicationSignature
DESCRIPTION The property that provides a signature used to

identify the application by examining the
payload of the protocol data unit (PDU).

318 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

SYNTAX String

Topology class definitions

The abstract class "Node"

The abstract class Node is a representation of a generic network
node. The class definition is as follows:

NAME Node
DESCRIPTION An abstract class representing a network node

entity.
DERIVED FROM ComputerSystem
ABSTRACT TRUE
PROPERTIES PEPID
The PEPID single-valued property corresponds to the node ident-
ifier. It is a globally unique identifier. The property definition is
as follows:

NAME PEPID
DESCRIPTION A user-friendly name (e.g. DNS name or primary

IP public address) of a node object.
SYNTAX String

The class "CoreNode"

The class CoreNode is a representation of a router residing at the
network core (with respect to the IP VPN service). The class
definition is as follows:

NAME CoreNode
DESCRIPTION A class representing a network core router.
DERIVED FROM Node
ABSTRACT FALSE
PROPERTIES NONE

The class "EdgeNode"

The class EdgeNode is a representation of a router residing at the
network edge (with respect to the IP VPN service). The class
definition is as follows:

NAME EdgeNode
DESCRIPTION A class representing a network edge router.
DERIVED FROM Node
ABSTRACT FALSE
PROPERTIES NONE

The class "LogicalNetwork"

The class LogicalNetwork is defined by DMTF. It is reported here for
convenience. A LogicalNetwork groups together a set of

Appendix 5: Description of Classes of an IP VPN Information Model 319

ProtocolEndpoints of a given type that are able to communicate
with each other directly. A LogicalNetwork represents the ability
to send and/or receive data over a network. The class definition is
as follows:

NAME LogicalNetwork
DESCRIPTION A class representing a logical network.
DERIVED FROM CollectionOfMSEs
ABSTRACT FALSE
PROPERTIES NetworkType

The NetworkType single-valued property provides additional
information that can be used to help categorize and classify
different instances of this class. The property takes values from
an enumeration. Some possible values are "Unknown", "Other",
"IPv4", "IPv6", "IPX", etc. The property definition is as follows:

NAME NetworkType
DESCRIPTION Specify the network type.
SYNTAX String

The class "Partition"

The provider network is partitioned into domains called
"partitions". A partition is an administrative entity. The class
definition is as follows:

NAME Partition
DESCRIPTION An class representing a (logical) partition.
DERIVED FROM LogicalNetwork
ABSTRACT FALSE
PROPERTIES PartitionID

The PartitionID single-valued property corresponds to the parti-
tion identifier. It is unique within the scope of a provider domain.
The property definition is as follows:
NAME PartitionID
DESCRIPTION A user-friendly name of a partition object.
SYNTAX String

The class "IP VPN"

The class IP VPN represents an IP virtual private network deployed
within the provider network. The class definition is as follows:

NAME IP VPN
DESCRIPTION A class representing an IP VPN.
DERIVED FROM LogicalNetwork
ABSTRACT FALSE
PROPERTIES VPNID

320 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

The VPNID single-valued property corresponds to the globally
unique VPN identifier as defined by IETF. The property definition is
as follows:

NAME VPNID
DESCRIPTION The standard VPNID.
SYNTAX Octet

The class "ProtocolEndPoint"

The class ProtocolEndPoint is defined by DMTF. It is reported here
for convenience. The class represents a communication point from
which data may be sent or received. ProtocolEndPoints link router
interfaces and switch ports to LogicalNetworks. The class defini-
tion is as follows:

NAME ProtocolEndPoint
DESCRIPTION A communication point.
DERIVED FROM ServiceAccessPoint
ABSTRACT FALSE
PROPERTIES ProtocolType

The ProtocolType single-valued property provides additional
information that can be used to help categorize and classify
different instances of this class. The property takes values from
an enumeration. Some possible values are "Unknown", "Other",
"IPv4", "IPv6", "IPX", etc. The property definition is as follows:

NAME ProtocolType
DESCRIPTION Specify the protocol of endpoint.
SYNTAX String

The class "AccessEndPoint"

The class AccessEndPoint represents an access IP interface. The
class definition is as follows:

NAME AccessEndPoint
DESCRIPTION A class representing an access interface.
DERIVED FROM ProtocolEndPoint
ABSTRACT FALSE
PROPERTIES NONE

The class "CoreEndPoint"

The class CoreEndPoint represents a core IP interface. The class
definition is as follows:

NAME CoreEndPoint
DESCRIPTION A class representing a core interface.
DERIVED FROM ProtocolEndPoint
ABSTRACT FALSE

Appendix 5: Description of Classes of an IP VPN Information Model 321

PROPERTIES IPAddress

The class "VirtualEndPoint"

The class VirtualEndPoint represents a virtual interface (e.g. a
tunnel endpoint). The class definition is as follows:

NAME VirtualEndPoint
DESCRIPTION A class representing a virtual interface.
DERIVED FROM ProtocolEndPoint
ABSTRACT FALSE
PROPERTIES NONE

The abstract class "NetworkService"

The class NetworkService is defined by DMTF. It is reported here for
convenience. This is an abstract base class. It serves as the root
of the network hierarchy. Network services represent generic
functions that are available from the network that configure and/
or modify the traffic being sent. The class definition is as follows:

NAME NetworkService
DESCRIPTION A class representing a base network service.
DERIVED FROM Service
ABSTRACT TRUE
PROPERTIES NONE

//string StartupConditions []
//string StartupParameters []

The class "VirtualForwardingInstance"

This class represents a VFI. A VFI is a dedicated forwarding
process that runs on a border router (i.e. a PE or a CE). VFI forwa-
rds customer traffic of a given IP VPN to the virtual links, and vice
versa. Hence a VFI is associated with a subset of the access
interfaces and virtual interfaces of a border node. The class
definition is as follows:

NAME VirtualForwardingInstance
DESCRIPTION A class representing a VFI.
DERIVED FROM NetworkService
ABSTRACT FALSE
PROPERTIES VPNID

The following classes define the "associations" that belong to the
topology model.

The abstract association "Link"

This abstract association is used to represent a bidirectional
link. The class definition for the association is as follows:

322 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

NAME Link
DESCRIPTION A generic association used to establish a one-

to-one bidirectional relationship between the
subclasses of ProtocolEndPoint.

DERIVED FROM Dependency
ABSTRACT TRUE
PROPERTIES Antecedent [ref ProtocolEndPoint [1..1]]

Dependent [ref ProtocolEndPoint [1..1]]

This abstract association inherits two object references from a
higher-level CIM association class, Dependency. It overrides
these object references to make them references to instances of
the class ProtocolEndPoint. Subclasses of Link then override
these object references again, to make them references to concr-
rete "interface" classes.
Note that the semantic of dependent and antecedent properties is
changed. These properties just represent a pair of unordered
association ends. The [1..1] cardinality indicates that a pair of
ProtocolEndpoints can be connected by exactly one Link.

The association "CoreLink"

This association is used to represent a direct reachability bet-
ween two core interfaces. Interfaces can belong to either ENs or
CNs. The class definition for the association is as follows:

NAME CoreLink
DESCRIPTION A logical representation of a one-hop

reachability between two nodes.
DERIVED FROM Link
ABSTRACT FALSE
PROPERTIES Antecedent [ref CoreEndPoint[1..1]]

Dependent [ref CoreEndPoint [1..1]]

This association is a concrete class and can be instantiated. It
inherits two object references from the Link class and overrides
these object references to make them references to instances of
the class CoreEndPoint.

The association "AccessLink"

This association is used to represent a direct reachability bet-
ween two access interfaces. The class definition for the associat-
ion is as follows:

NAME AccessLink
DESCRIPTION A logical representation of a one-hop

reachability between a border node and a
customer node.

DERIVED FROM Link

Appendix 5: Description of Classes of an IP VPN Information Model 323

ABSTRACT FALSE
PROPERTIES Antecedent [ref AccessEndPoint [1..1]]

Dependent [ref AccessEndPoint [1..1]]

This association is a concrete class. It inherits two object
references from the Link class and overrides these object refer-
ences to make them references to instances of the class AccessEnd-
Point.

The association "VirtualLink"

This association is used to represent a virtual one-hop reach-
ability (e.g. a tunnel or a MPLS LSP) between two virtual inter-
faces. The class definition for the association is as follows:

NAME VirtualLink
DESCRIPTION A logical representation of a virtual

connection traversing the core network.
DERIVED FROM Link
ABSTRACT FALSE
PROPERTIES Antecedent [ref VirtualEndPoint [1..1]]

Dependent [ref VirtualEndPoint [1..1]]

This association inherits two object references from the Link
class. It overrides these object references to make them refer-
ences to instances of the class VirtualEndPoint.

The abstract association "NodeInPartition"

The class definition for the association is as follows:

NAME NodeInPartition
DESCRIPTION A generic association used to establish a

relationship between a generic node and its
pertaining partition.

DERIVED FROM Dependency
ABSTRACT TRUE
PROPERTIES Antecedent [ref Node [0..*]]

Dependent [ref Partition [1..1]]

This abstract association inherits two object references from a
higher-levelCIMassociationclass,Dependency.Itoverridesthese
object references to make them references to instances of the
class Node and Partition. Subclasses of NodeInPartition then
override the antecedent references again, to make them references
to concrete subclasses of Node.

The association "EdgeNodeInPartition"

The class definition for the association is as follows:

NAME EdgeNodeInPartition
DESCRIPTION The association represents the relationship

324 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

between an EdgeNode and its pertaining
Partition.

DERIVED FROM NodeInPartition
ABSTRACT FALSE
PROPERTIES Antecedent [ref EdgeNode [2..*]]

The association "CoreNodeInPartition"

The class definition for the association is as follows:

NAME CoreNodeInPartition
DESCRIPTION The association represents the relationship

between a CoreNode and its pertaining
Partition.

DERIVED FROM NodeInPartition
ABSTRACT FALSE
PROPERTIES Antecedent [ref CoreNode [0..*]]

The association "AccessEndPointInVFI"

The class definition for the association is as follows:

NAME AccessEndPointInVFI
DESCRIPTION An association used to establish a relationship

between a VFI and the access interfaces it
serves.

DERIVED FROM Dependency
ABSTRACT FALSE
PROPERTIES Antecedent [ref AccessEndPoint [1..*]]

Dependent [ref VirtualForwardingInstance
[1..1]]

This association inherits two object references from a higher-
level CIM association class, Dependency. It overrides these obj-
ect references to make them references to instances of the classes
AccessEndPoint and VirtualForwardingInstance.

The association "VirtualEndPointInVFI"

The class definition for the association is as follows:

NAME VirtualEndPointInVFI
DESCRIPTION A generic association used to establish a

relationship between a VFI and the virtual
interfaces it works on.

DERIVED FROM Dependency
ABSTRACT FALSE
PROPERTIES Antecedent [ref VirtualEndPoint [1..*]]

Dependent [ref VirtualForwardingInstance [1..1]]

This association inherits two object references from a higher-
level CIM association class, Dependency. It overrides these obj-
ect references to make them references to instances of the classes

Appendix 5: Description of Classes of an IP VPN Information Model 325

VirtualEndPoint and VirtualForwardingInstance.

The abstract aggregation "ProtocolEndPointInNode"

This abstract aggregation defines two object references that will
be overridden in each of five subclasses, to become references to
the subclasses of Node and ProtocolEndPoint. From a general view-
point, this aggregation expresses what interfaces (physical or
virtual) belong to a given node. The class definition for the aggre-
gation is as follows:

NAME ProtocolEndPointInNode
DESCRIPTION A generic association used to establish a

relationship between a generic node and its
interfaces.

DERIVED FROM Component
ABSTRACT TRUE
PROPERTIES GroupComponent [ref Node [0..*]]

PartComponent [ref ProtocolEndPoint [0..*]]

The aggregation "AccessEndPointInEdgeNode"

The AccessEndPointInEdgeNode aggregation enables access inter-
faces to be assigned to a given EN. The class definition for the
aggregation is as follows:

NAME AccessEndPointInEdgeNode
DESCRIPTION A class representing the aggregation of access

interfaces by ENs.
DERIVED FROM ProtocolEndPointInNode
ABSTRACT FALSE
PROPERTIES GroupComponent [ref EdgeNode [1..1]]

PartComponent [ref AccessEndPoint [1..*]]

The aggregation "CoreEndPointInEdgeNode"

The CoreEndPointInEdgeNode aggregation enables core interfaces
to be assigned to a given EN. The class definition for the aggrega-
tion is as follows:

NAME CoreEndPointInEdgeNode
DESCRIPTION A class representing the aggregation of core

interfaces by ENs.
DERIVED FROM ProtocolEndPointInNode
ABSTRACT FALSE
PROPERTIES GroupComponent [ref EdgeNode [1..1]]

PartComponent [ref CoreEndPoint [1..*]]

The aggregation "CoreEndPointInCoreNode"

The CoreEndPointInCoreNode aggregation enables core interfaces
to be assigned to a given core router. The class definition for the

326 Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments

aggregation is as follows:

NAME CoreEndPointInCoreNode
DESCRIPTION A class representing the aggregation of core

interfaces by CNs.
DERIVED FROM ProtocolEndPointInNode
ABSTRACT FALSE
PROPERTIES GroupComponent [ref CoreNode [1..1]]

PartComponent [ref CoreEndPoint [2..*]]

The aggregation "VirtualEndPointInEdgeNode"

The VirtualEndPointInEdgeNode aggregation enables virtual int-
erfaces to be assigned to a given EN. The class definition for the
aggregation is as follows:

NAME VirtualEndPointInEdgeNode
DESCRIPTION A class representing the aggregation of virtual

interfaces by PEs.
DERIVED FROM ProtocolEndPointInNode
ABSTRACT FALSE
PROPERTIES GroupComponent [ref EdgeNode [1..1]]

PartComponent [ref VirtualEndPoint [0..*]]

The aggregation "VFIInEdgeNode"

Each VFI works in an EN. This class associates VFIs with corres-
ponding border routers. The class definition for the aggregation
is as follows:

NAME VFIInEdgeNode
DESCRIPTION Aggregation between a VFI and an EN.
DERIVED FROM Component
ABSTRACT FALSE
PROPERTIES GroupComponent [ref EdgeNode [1..1]]

PartComponent [ref
VirtualForwardingInstance [0..*]]

The aggregation "EdgeNodeInIPVPN"

This association identifies which border routers are serving an IP
VPN. The class definition for the aggregation is as follows:

NAME EdgeNodeInIPVPN
DESCRIPTION Aggregation between an EN and an IP VPN.
DERIVED FROM Component
ABSTRACT FALSE
PROPERTIES GroupComponent [ref IP VPN [1..1]]

PartComponent [ref EdgeNode [2..*]]

Appendix 5: Description of Classes of an IP VPN Information Model 327

Index

3GPP, 27, 58, 61, 81, 82, 83, 89

802.11i, 27, 234

802.1X, 235, 236, 237, 238

Abort-Session-Request/Answer, 75, 77

Access-Accept, 28, 29, 30, 31, 33, 34, 35, 37, 39,

40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 52, 55,

77, 230, 231, 233, 237, 238

Access-Challenge, 29, 30, 31, 34, 35, 38, 41, 45,

46, 77

Access Controller (AC), 177, 178, 179, 180, 181,

182, 183, 184, 185, 186

Access-List (ACL), 236, 237

Access Network, 214

Access Point (AP), 176, 177, 181, 182

Access-Reject, 28, 29, 30, 31, 34, 35, 36, 45, 46,

47, 51, 77)

Access-Request, 28, 29, 30, 31, 34, 35, 36, 38,

39, 46, 50, 51, 55, 77, 230, 233

Access-Resource and Admission Control

Function (A-RACF), 86, 87, 88, 89

Accounting-Auth-Method, 78

Accounting-Input-Octets, 78

Accounting-Input-Packets, 78

Accounting-Off, 31, 38

Accounting-On, 31, 38

Accounting-Output-Octets, 78

Accounting-Output-Packets, 78

Accounting-Realtime-Required, 76

Accounting-Record-Type, 76, 78

Accounting-Request (RADIUS), 29, 30, 31,

38, 47, 48, 50, 51, 52, 53, 55, 231

Accounting-Request/Answer (Diameter), 68,

75, 77

Accounting-Response (RADIUS), 29, 31, 35, 47

Accounting start, 31, 38, 47, 48, 50

Accounting stop, 31, 47, 48, 50

Acct-Interim-Interval, 48

Acct-Multi-Session-Id, 48

Acct-NAS-Traffic-Rule, 54

Acct-Session-Id, 49

Acct-Status-Type, 31, 47, 48, 57

Acct-Termination-Cause, 48

Application function (AF), 85, 86, 87, 89

Application identifier, 72

Application server (AS), 85

Audit events, 117

Authentication methods, 108

Automation, 15

Autonomous WLAN architecture, 178

Bandwidth-Profile-Id, 55

Basic Service Set (BSS), 177

BEEP, 106, 108, 109, 114, 153

BGP, 4, 9, 211

Border Gateway Function (BGF), 83, 86, 87,

88, 89

Callback-Number, 40

Call session control function (CSCF), 85

Candidate datastore, 118, 144, 171

Capabilities-Exchange-Request/Answer, 74

Capability, 116, 118, 162

Captive portal, 227, 228, 230, 232, 233

Centralized WLAN architecture, 178

Change-of-Authorization, 41, 49, 52

CHAP-Algorithm, 77

CHAP-Auth, 77

CHAP-Ident, 77

CHAP-Password, 32

CHAP-Response, 77

Chillispot, 228

Service Automation and Dynamic Provisioning Techniques in IP/MPLS Environments C. Jacquenet,

G. Bourdon and M. Boucadair

2008 John Wiley & Sons Ltd

CIM, 106

Cisco-AVPair, 233, 237

Cisco-SSG-Account-Info, 233, 234

Cisco-SSG-Command-Code, 234

Cisco-SSG-Control-Info, 234

Cisco-SSG-Service-Info, 233, 234

Class, 23, 103, 220

Client-Type, 92, 204

C-Num, 95

CoA, 49, 55

CoA-ACK, 49, 50

CoA-NAK, 49, 51

Command code, 72

Command flags, 71

Configuration data, 117

Configuration events, 117

Containment node, 130

Content layer, 115

Content match node, 130

COPS, 91, 106

messages, 95, 97

COPS-PR, 101

Core IMS, 85

Credit control, 38, 48, 49, 55, 58, 67, 81, 82

Credit-Control-Request/Answer, 82

CTP, 182

Datastores, 118

DEN, 106

Destination-Host, 68, 69

Destination-Realm, 66, 68, 69, 70

Device-Watchdog-Request/Answer, 74

Diameter agent, 66, 74, 75

Diameter client, 65, 66, 68, 69, 70, 72

Diameter connection, 67

Diameter proxy agent, 66

Diameter redirect agent, 67

Diameter relay agent, 66

Diameter server, 65, 66, 68, 69, 70, 75, 76, 89

Diameter session, 67

Diameter translation agent, 67, 72

DiffServ, 190, 192

Disconnect-ACK, 49

Disconnect-NAK, 49

Disconnect-Peer-Request/Answer, 74

Disconnect-Request, 49, 23

Disconnect-Response, 233

Distance vector, 6, 7

Distributed WLAN architecture, 178

Distribution System (DS), 177

DSCP, 190

DTLS, 183, 184, 185

EAP, 28, 31, 44, 45, 46, 47, 57

EAP Failure, 45, 47

EAP-Message, 44, 45, 46

EAPoL, 28, 237

EAP Request, 45, 46

EAP Response, 45, 46

EAP Success, 45, 46

EGP, 5

Egress-Bandwidth, 55

Egress-VLANID, 52

End-to-End Identifier, 72

Enterprise code, 33, 42, 43

EPD, 102

ETSI/TISPAN, 61, 81, 82, 83, 85, 89

EVENT Record, 76

Extended Service Set (ESS), 177

Extensible Markup Language, 110

Fault events, 117

FIB, 4, 201

Filter, 129, 130, 135, 152, 165

Filter-Id, 33, 40, 41, 42, 43, 44, 52, 53, 54, 55,

80, 237

Feltering, 129

Framed-Compression, 40

Framed-IP-Address, 33, 39, 40, 49

Framed-IP-Netmask, 33, 40

Framed-MTU, 40

Framed-Protocol, 39

Framed-Route, 40

Framed-Routing, 40

Heartbeat events, 117

Hop-by-Hop Identifier, 72

HTML, 111

Idle-Timeout, 40

IETF, 106, 107, 115

IGP, 4, 5

IMS, 58, 59, 61, 82, 83, 85, 86

Ingress-Bandwidth, 54

Ingress-Filters, 52

Inheritance, 220

interface e4, 88

interface Gq, 89, 90

interface Ia, 89

interface Ra, 89

330 Index

interface Re, 89

interface Rq, 89

Interim accounting update, 47

INTERIM records, 76

Interim-Update, 31, 37, 38, 48

Internet Architecture Board, 106

IP, 3, 199, 211

filter rule, 52

sphere forum, 242

Keep-alive, 36

Label, 11

LDAP, 214

Link state, 6, 7

Local MAC, 178, 179, 180, 181, 183

LPDP, 92, 201

LWAPP, 176, 182, 183

Maintenance events, 117

Managed device, 105, 114, 115, 116

Managed entity, 114

Management application, 114, 116, 117

Message length, 71

Message types, 30

Message-Authenticator, 45, 46

Metric, 4, 205

events, 117

MIB, 106

MOBILEIP, 62

Model, 215

MPLS, 10, 105, 199, 211

Namespace, 111

selection, 130

NAS-Filter-Rule (Diameter), 77, 78, 79, 81

NAS-Filter-Rule (RADIUS), 52, 53, 54

NAS-IP-Address, 32

NAS-Port, 32

NASREQ, 61, 62, 67, 69, 76, 77, 78, 81, 82, 90

NAS-Traffic-Rule, 54

Negative response, 135

NETCONF, 105, 106

client, 105

data, 117

device, 163

NETMOD, 116, 173

Network, 4, 214

providers, 106

Network access identifier, 32, 56, 57

Network Address Identifier (NAI),

63, 69

Network attachment subsystem (NASS), 83, 85,

86, 88

NGN, 61, 82, 83, 85, 89

Notification, 108, 117, 135, 149

One way RPC, 120

Operations and Management Area, 106

Operations Layer, 115

Origin-State-Id, 76

Outsourcing mode, 100

PCEP, 94

PDP, 22, 92, 101, 201

Peer table, 68

PEP, 23, 92, 101, 201

PIB, 106, 23, 206

Policy, 14, 19, 193, 199, 213

Port-Limit, 40

Positive response, 135

PRC, 23, 103

PRI, 23, 103

PRID, 23, 203

Provider network, 214

Provisioning mode, 101

Proxy CSCF (P-CSCF), 85, 86, 89

Pull Mode, 49, 50

Push Mode, 49

QoS, 189

QoS-Filter-Rule, 77, 78, 79, 80, 81

RADIUS authenticator field, 29, 30, 31, 32, 44,

45, 46, 49

RADIUS client, 28, 31, 32, 33, 35, 36, 37, 38,

39, 41, 45, 46, 47, 49, 50, 51, 56

RADIUS exchanges, 34

RADIUS identifier field, 29, 31, 36

RADIUS length field, 29, 34

RADIUS message code field, 29, 31, 33, 34

RADIUS Retransmission Rules, 36

RADIUS server, 27, 30, 34, 35, 36, 37, 38, 39,

41, 42, 45, 46, 47, 50, 51, 52, 56, 57

RAP, 107

Realm-based routing table, 68

Re-Auth-Request/Answer, 75, 77, 81

Remote MAC, 178, 179

Reply-message, 41

REQ, 97, 202

Index 331

Resource and admission control subsystem

(RACS), 84, 85, 86, 87, 88, 89

Resource Control Enforcement Function

(RCEF), 86, 87, 88, 89

Retrieval mechanisms, 107

RIB, 4, 201

RFC, 106

ROAMOPS, 62

Rollback capability, 108

Router, 3

RPC, 115

layer, 115

RPT, 97, 203

Rule, 19, 197, 214

Running datastore, 118

Selection node, 130

Self-Organizing Networks, 248

Service, 14

providers, 106

Service-based Policy Decision Function (SPDF),

86, 87, 88, 89

Service selection gateway (SSG), 228, 229, 230,

231, 232, 233, 234

Service-Type, 39, 50, 51, 57

Session, 116, 118, 142

Session initiation protocol (SIP), 67, 82, 85, 86

Session-Termination-Request/Answer, 75, 77

SLAPP, 182, 183

SLS, 192, 196, 213

S-Num, 102

SOA, 242

SOAP, 109

SON, 248

Split MAC, 178, 179, 180, 181, 183

SSH, 109

SSS, 242

START record, 76

Startup datastore, 118

State data, 117

STOP record, 76

S-Type, 102

Subscriber edge services manager (SESM), 228,

229, 230, 231, 232, 233, 234

Subtree filtering, 129

TEQUILA, 196

Termination-Action, 40

Traffic engineering, 191, 199

Transfer functions, 83

Transport layer, 114

Tunneling, 78

Two way RPC, 120

URN, 118

User-Name, 32, 49

User-Password, 32

User-Priority-Table, 52

Vendor-Specific Attribute (VSA), 32, 33, 35, 40,

41, 42, 43, 52, 54, 56, 80

Version field, 71

VLAN-Name, 52

VoIP, 105

VPN, 105

WICOP, 182

Wi-Fi, 175, 182, 227, 228, 233, 234,

235, 238

Wireless Termination Point (WTP), 177, 178,

179, 180, 181, 182, 183, 184, 185, 186

WLAN, 175, 176, 177, 178, 179, 180, 181, 182,

183, 186

WPA/WPA2, 234, 238

XML attributes, 110

XML comment, 111

XMLCONF, 108

XML document, 110

XML tag, 110

<close-session>, 116, 135, 142

<commit>, 135, 148, 149, 167

<copy-config>, 115, 131, 138

<delete-config>, 115, 131, 137

<discard-changes>, 135, 149

<edit-config>, 131, 139, 140

<get>, 115, 117, 131

<get-config>, 117, 135, 136

<kill-session>, 116, 135, 143

<lock>, 131, 144, 145

<notification>, 135, 150, 171

<ok>, 123, 124, 125

<rpc>, 115

<rpc-error>, 122, 124

<rpc-reply>, 115, 122

<subscribe-notification>, 135, 171

<unlock>, 135, 145

<validate>, 135, 146, 164

332 Index

