
Stanek, O’Neill,
Rosen

The book you need to succeed!

VBScript, JScript, and PowerShell—
together in a single, comprehensive
guide!
With more than 300 sample scripts and an extensive
collection of library functions, this book is the most
thorough guide to scripting the Windows operating system
on the market. You’ll discover how scripting can double
your productivity by automating repetitive tasks—and
you’ll find pages of practical VBScript, JScript, and
PowerShell solutions together, chapter by chapter,
throughout the book. With all three powerhouse
programming tools in one comprehensive 800-page
resource, this is the scripting book you need to succeed.

s

Spine: 1.82"

Companion
Web Site
Visit the book’s Web site at
www.wiley.com/go/powershellbible
and find actual code for the samples
and examples discussed in the book.

Shelving Category:
COMPUTERS /
Programming Languages / General

Reader Level:
Beginning to Advanced

$49.99 USA
$59.99 Canada

www.wiley.com/compbooks

Tap the power of
automation with scripts

Master three scripting
tools with this one guide

Script in Windows and
revolutionize your job

William R. Stanek, James O’Neill, and Jeffrey RosenP
o

w
erS

h
ell, V

B
S

crip
t,

an
d

 JS
crip

t

C

• Automate tasks, such as the creation of user accounts or data retrieval,
with scripting

• Master the essentials of the VBScript, JScript, and PowerShell

• Schedule one-time and recurring tasks with network and directory
service scripting

• Work with files, the registry, event logging, ADSI, and more with PowerShell

• Tap into Windows scripting libraries for file, network, and system utilities

• Examine all related technologies, including ActiveX®, Active Directory®,
and Windows® Management Instrumentation

• Develop prototype applications or procedures rapidly and easily using scripts

Microsoft®

M
icro

so
ft

®

PowerShell,
VBScript,
and JScript

Companion Web Site
• Examples, script code, and moreCompanion

Web Site

86804ffirs.indd ii86804ffirs.indd ii 1/22/09 11:50:55 AM1/22/09 11:50:55 AM

Microsoft®
PowerShell, VBScript,

and JScript® Bible

86804ffirs.indd i86804ffirs.indd i 1/22/09 11:50:55 AM1/22/09 11:50:55 AM

86804ffirs.indd ii86804ffirs.indd ii 1/22/09 11:50:55 AM1/22/09 11:50:55 AM

Microsoft®
PowerShell, VBScript,

and JScript® Bible

William R. Stanek

James O’Neill

Jeffrey Rosen

86804ffirs.indd iii86804ffirs.indd iii 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

Microsoft® PowerShell, VBScript, and JScript® Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-38680-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or
the publisher endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Microsoft and
JScript are registered trademarks of Microsoft Corporation in the United States and/or other countries. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

86804ffirs.indd iv86804ffirs.indd iv 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

www.wiley.com

About the Authors
William R. Stanek (http://www.williamstanek.com/) has over 20 years of hands-on experi-
ence with advanced programming and development. He is a leading technology expert, an award-
winning author, and a pretty-darn-good instructional trainer. Over the years, his practical advice
has helped millions of technical professionals all over the world. He has written more than 75
books, including Microsoft Exchange Server 2007 Administrator’s Pocket Consultant, Microsoft
Windows Vista Administrator’s Pocket Consultant, Microsoft Windows Server 2008 Administrator’s
Pocket Consultant, and Windows Server 2008 Inside Out.

Mr. Stanek has been involved in the commercial Internet community since 1991. His core business
and technology experience comes from over 11 years of military service. He has substantial experi-
ence in developing server technology, encryption, and Internet solutions. He has written many
technical white papers and training courses on a wide variety of topics. He frequently serves as a
subject matter expert and consultant.

Mr. Stanek has an MS with distinction in information systems and a BS magna cum laude in com-
puter science. He is proud to have served in the Persian Gulf War as a combat crewmember on an
electronic warfare aircraft. He flew on numerous combat missions into Iraq and was awarded nine
medals for his wartime service, including one of the United States of America’s highest flying hon-
ors, the Air Force Distinguished Flying Cross. Currently, he resides in the Pacific Northwest with
his wife and children.

James O’Neill was born in 1965, used his first Microsoft product at the age of 13, and has scarcely
stopped since. He describes himself as a compulsive explainer, which led him to work as a techni-
cal trainer and run a small training company in the 1990s. He joined Microsoft Consulting
Services in 2000, and after six years there working with a wide variety of clients he moved back to
a role where he can explain more, becoming an evangelist, talking to IT professionals primarily
about Windows platform technologies. He is a veteran of every Microsoft operating system and
network technology since DOS 3.1 MS-Net and Windows 1.03, and has used a dozen or so pro-
gramming and scripting languages. Over the last two years, he has become increasingly evangeli-
cal about PowerShell, using it to write libraries that support Windows 2008 virtualization and
Office Communications Server. He lives near Oxford, England with his wife and two children, and
occasionally manages to find time for photography and scuba diving. He has a worrying tendency
to write about himself in the third person.

Jeffrey Rosen has a Masters of Business Administration from Case Western Reserve, Weatherhead
School of Management, specializing in Information Systems. He is a Microsoft Certified Architect,
an MCSE specializing in messaging and security, and a CISSP. He began his career working with
Microsoft Mail and Novell Netware. Since then, Jeffrey has worked for Microsoft Consulting
Services for nine years on large and complex Exchange deployments. He is a co-author of
Professional PowerShell for Exchange 2007 SP1.

86804ffirs.indd v86804ffirs.indd v 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

About the Technical Editor
Andrew Edney has been an IT professional for more than 12 years and has, over the course of his
career, worked for a range of high-tech companies, such as Microsoft, Hewlett-Packard, and Fujitsu
Services. He has a wide range of experience in virtually all aspects of Microsoft’s computing solu-
tions, having designed and architected large enterprise solutions for government and private-sector
customers. Over the years, Andrew has made a number of guest appearances at major industry
events, presenting on a wide range of information systems subjects, such as an appearance at the
annual Microsoft Exchange Conference in Nice where he addressed the Microsoft technical commu-
nity on mobility computing. Andrew is currently involved in numerous Microsoft beta programs,
including next-generation Windows operating systems and next-generation Microsoft Office prod-
ucts. He actively participates in all Windows Media Center beta programs and was heavily involved
in the Windows Home Server beta program. In addition, Andrew has written a number of books
including: Windows Home Server User’s Guide (2007), Pro LCS: Live Communications Server
Administration (2007), Getting More from Your Microsoft Xbox 360 (2006), How to Set Up Your
Home or Small Business Network (2006), Using Microsoft Windows XP Media Center 2005 (2006),
Windows Vista: An Ultimate Guide (2007), PowerPoint 2007 in Easy Steps (2007), Windows Vista
Media Center in Easy Steps (2007), and Using Ubuntu Linux (2007).

86804ffirs.indd vi86804ffirs.indd vi 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

Credits

Acquisitions Editor
Katie Mohr

Development Editor
Ed Connor

Technical Editor
Andrew Edney

Production Editor
Melissa Lopez

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefi eld

Production Manager
Tim Tate

Vice President and
Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Compositor
James D. Kramer, Happenstance Type-O-Rama

Proofreaders
Corina Copp and Sheilah Ledwidge

Indexer
Jack Lewis

Cover Image
Joyce Haughey

Cover Designer
Michael E. Trent

86804ffirs.indd vii86804ffirs.indd vii 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

viii

Writing PowerShell, VBScript, and JScript Bible took a lot of work and research. Much of the time
was spent searching for undocumented features, resolving problems with poorly documented
interfaces, and exploring uncharted areas of Windows. Then, I had to write about the hidden fea-
tures and the many interfaces I had discovered. I hope you’ll agree that the result was worth all of
the effort. The book contains over 300 code examples and dozens of working scripts, all designed
to provide a top-notch tutorial and reference.

PowerShell, VBScript, and JScript Bible wouldn’t have been possible without a lot of help from
others and, especially, the team at Wiley: Katie Mohr, the Acquisitions Editor, and Ed Connor,
the Development Editor.

A big thank you goes out to my close contacts and friends at Microsoft. Thanks also to Studio B
literary agency and my agents, David Rogelberg and Neil Salkind. Neil has a terrific knack for
helping me find projects that are both fun and challenging.

I hope I haven’t forgotten anyone, but if I have, it was an oversight. Honest. ;-)

William R. Stanek

There are a few people without whom I wouldn’t have been able to contribute to this book. Neil
Salkind at Studio B who asked is perhaps first in the queue to be thanked. Richard Siddaway,
who started the first PowerShell user group, is probably the person most responsible for the
depth of my interest in the subject. At Microsoft, I should mention Jeffrey Snover for his encour-
agement and Eileen Brown, my manager but also my friend, mentor, and when I least deserve it,
my advocate. She deserves far greater thanks than a mention here. And finally, my family: my
wife, Jackie, and my children, Lisa and Paul. Kids: the book in your hands is one of the reasons
why Daddy kept asking you to be quiet.

James O’Neill

To my wife, Christine, and our daughters, Madison and Isabel, I love you, and thanks for always
being there for me. Also, thanks to the authors, editors, and other invaluable staff that I’ve had
the pleasure of working with.

Jeffrey Rosen

86804ffirs.indd viii86804ffirs.indd viii 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

ix

 Acknowledgments

If you’ve purchased PowerShell, VBScript, and JScript Bible or are thumbing through the book in a
bookstore somewhere, you probably want to know how this book can help you. Our goal in writing
PowerShell, VBScript, and JScript Bible is to create the best resource available on scripting the
Windows operating system.

As you’ll learn in this book, Windows scripting involves many different technologies. These technol-
ogies include:

Windows operating systems■

Windows Script Host (WSH)■

Scripting languages, such as VBScript and JScript■

Windows PowerShell■

ActiveX and COM (Component Object Model) components■

Microsoft Active Directory■

ADSI (Active Directory Services Interfaces)■

WMI (Windows Management Instrumentation)■

We’ve tried to pack in as much information about these topics as possible, and to present the infor-
mation in a way that is both clear and concise. We’ve also tried to present Windows scripting in a
unique way, offering both VBScript and JScript solutions throughout the text and then discussing
how to accomplish similar tasks using PowerShell. In this way, you can learn exactly how VBScript,
JScript, and PowerShell can be used with Windows. With this approach, you gain insight into
unique scripting techniques necessary to implement solutions in VBScript, JScript, and PowerShell,
and, if you prefer one technique over the other, there’s no more guesswork.

86804ffirs.indd ix86804ffirs.indd ix 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

x

Introduction ..xxxi

Part I: Getting Started with Windows Scripting
Introducing Windows ScriptingChapter 1: ...3
VBScript EssentialsChapter 2: ...13
JScript EssentialsChapter 3: ..39
PowerShell FundamentalsChapter 4: ..57

Part II: Windows VBScript and JScript
Creating Scripts and Scripting FilesChapter 5: ... 91
VBScript and JScript Scripting BasicsChapter 6: ... 107
Input, Output, and Error Handling with VBScript and JScriptChapter 7: 129
Working with Files and Folders in VBScript and JScriptChapter 8: ..153
Reading and Writing FilesChapter 9: .. 181
Managing Drives and Printers with VBScript and JScriptChapter 10: 197
Confi guring Menus, Shortcuts, and Startup ApplicationsChapter 11: 211
Working with the Windows Registry and Event LogsChapter 12: .. 231

Part III: Network and Directory Service Scripting
Scheduling One-time and Recurring TasksChapter 13: ..265
Managing Computer and User ScriptsChapter 14: ..289
Introducing Active DirectoryChapter 15: Services Interfaces ...301
Using Schema to Master ADSIChapter 16: .. 331
Managing Local and Domain Resources with ADSIChapter 17: ..347
Service and Resource Administration with ADSIChapter 18: ..377
Maintaining Shared Directories, Printer Queues, and Print JobsChapter 19: 413
Managing Active Directory Domain ExtensionsChapter 20: ...439

Part IV: Windows PowerShell
Input, Output, and Error Handling in PowerShell Chapter 21: ...483
Working with Files and the Registry in PowerShellChapter 22: ..523
Event Logging, Services, and Process Monitoring with PowerShellChapter 23: 541
Working with Active Directory Using ADSI and PowerShellChapter 24: 557
Working with WMI in PowerShellChapter 25: ..581

86804ffirs.indd x86804ffirs.indd x 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

xi

 Contents at a Glance

Part V: Windows Scripting Libraries
Library: File-System UtilitiesChapter 26: ..607
Library: I/O UtilitiesChapter 27: ...629
Library: Network Resource UtilitiesChapter 28: ...639
Library: Account Management UtilitiesChapter 29: ..659
Library: Building a PowerShell LibraryChapter 30: ...685

Part VI: Appendixes
Windows Scripting APIAppendix A: ...733
Core ADSI ReferenceAppendix B: .. 747
Essential Command-Line Utilities for Use with WSHAppendix C: ...809

Index .. 851

86804ffirs.indd xi86804ffirs.indd xi 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

86804ffirs.indd xii86804ffirs.indd xii 1/22/09 11:50:56 AM1/22/09 11:50:56 AM

xiii

Introduction . xxxi

Part I: Getting Started with Windows Scripting

Introducing Windows ScriptingChapter 1: .3
Introducing Windows Scripting ...3

Taking a look at Windows Scripting ...4
Windows Script Host Architecture ...4

Getting Started with Windows Script Host ...4
Using and running scripts ..5
Core object model ...6
More on scripting hosts ..8
More on scripting engines ..8

Windows PowerShell Architecture ...10
Summary ..12

VBScript EssentialsChapter 2: . 13
Working with Variables ..13

Variable naming ..13
Declaring variables ... 14
Variable types ...15
Converting variable types ... 17

Working with Constants ..19
Using built-in constants ..19
Declaring constants ..20

Working with Arrays ..21
Initializing arrays ...21
Using arrays with multiple dimensions ..21
Sizing arrays ...21

VBScript Operators ..22
Arithmetic operators ...22
Comparison operators ..24
Performing operations on strings ..26

Conditional Statements ..26
Using If…Then ...26
Using Else and ElseIf ..27
Select Case ..28
Conditional controls and strings ..29

86804ftoc.indd xiii86804ftoc.indd xiii 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xiv

 Contents

Control Loops ...30
For Next looping ...30
For Each looping ... 31
Using Exit For ..32
Using Do While loops ...32
Using Do Until loops ..33
Using Exit Do ...34
While…WEnd loops ...34

Using Procedures ..34
Working with functions ..35
Working with subroutines ..37

Summary ..38

JScript EssentialsChapter 3: . 39
Variables and Data Types ..39

Variables and naming conventions ...39
Working with data types ..40

Using Strings .. 41
Concatenating strings ... 41
Converting to and from strings ...42

Using Comments ..42
Using Arrays ...42
JScript Operators ..44

Arithmetic operators ...44
Comparison operators ..45
Assignment operators ...47
Logical operators ..47
Bitwise operators ..49

Conditional Statements ..49
Using if ...49
Using if…else ..50

Control Flow with Looping ..50
Using for loops ..50
Using for in loops..50
Using while and do while loops ..51
Using continue and break statements ...52
Using switch case ...52

Using Functions ...53
Function structure ..54
Calling functions ..54

Summary ..55

PowerShell FundamentalsChapter 4: . 57
Shell Fundamentals ..57
PowerShell Aliases ..58

86804ftoc.indd xiv86804ftoc.indd xiv 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xv

 Contents

Cmdlets, Snap-ins, and Providers ...60
Functions and Filters ..62
Objects and Types and the PowerShell Pipe ...63
Exploring PowerShell Variables ..65
Richer Types and .NET Objects ..69
Arrays ...73
The PowerShell Pipe ... 74
Looping in PowerShell ..77
Conditions ..80
Scripts, Script Blocks, and Functions ...83
Scripts and Security ..85
Summary ..88

Part II: Windows VBScript and JScript

Creating Scripts and Scripting FilesChapter 5: . 91
Running Scripts .. 91

Starting a Script ..92
Setting script properties ..92
Command-line options for scripts ..93
Using drag and drop with scripts ...95

Creating Batch Scripts ..96
Identifying the job name ..97
Adding scripts and setting the scripting language ..98
Setting the script source ...98
Referencing external objects and type libraries ..100
Setting job properties .. 102
Setting parsing instructions .. 103
Documentation and Usage ..104

Summary ..106

VBScript and JScript Scripting BasicsChapter 6: . 107
Key WSH Objects ... 107
Displaying Text Strings ..109

Using Echo ...109
Running the Echo script ... 110

Examining Script Information .. 110
Getting script host information .. 110
Getting scripting information ... 113
Getting script arguments .. 115

Working with Environment Variables .. 117
Understanding environment variables .. 117
Accessing environment variables .. 118
Working with environment variables: An alternative ... 119

86804ftoc.indd xv86804ftoc.indd xv 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xvi

 Contents

Running Programs from Within Scripts ...121
Starting an application ..121
Passing arguments to an application ...122
Additional features for Run ...122

Running Scripts Remotely ..124
Combining JScript and VBScript ..126
Summary ..128

Input, Output, and Error Handling with VBScript and JScriptChapter 7: . . . 129
Input and Output Essentials ...129
Using Input Boxes .. 131

Input box basics .. 131
Setting default values for input boxes ...132
Positioning input boxes ..132
Converting input values ..132

Using Message Boxes ..133
Message box basics ...133
Adding buttons ...134
Adding icons ...135
Evaluating button clicks ...136
Help fi les for message boxes ...137
Using pop-up dialog boxes ...137

Error Detection and Handling .. 141
Handling runtime errors in VBScript ... 141

Preventing runtime errors from halting script execution 141
Checking for and catching errors in VBScript ...144
Manually generating runtime errors ...146

Handling runtime errors in JScript ... 147
Checking for and catching errors in JScript .. 147
Throwing errors ..148
Other error-handling techniques ..150

Summary ..152

Working with Files and Folders in VBScript and JScriptChapter 8: 153
Understanding the FileSystemObject ...153

FSO objects and collections ..154
FSO methods and properties ..154
Using the FileSystemObject ..156

Working with Folders ...156
Checking folder contents ..157
Examining folder properties ...159
Creating folders .. 163
Copying, moving, and deleting folders ...164
Issues for multiple folders ...164

Using DeleteFolder ..164
Using CopyFolder ... 165
Using MoveFolder ...166

86804ftoc.indd xvi86804ftoc.indd xvi 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xvii

 Contents

Issues for individual folders .. 167
Using Delete .. 167
Using Copy ... 167
Using Move ...168

Using Special Folders ...168
Working with Files ... 170

Examining fi le properties ... 170
Creating fi les ... 173
Copying, moving, and deleting fi les ... 175
Issues for multiple fi les ... 175

Using DeleteFile .. 176
Using CopyFile ... 176
Using MoveFile ... 177

Issues for individual fi les .. 178
Using Delete .. 178
Using Copy ... 179
Using Move ...180

Summary ..180

Reading and Writing FilesChapter 9: . 181
Opening Files ... 181

Using OpenTextFile ..182
Using OpenAsTextStream ...183

Reading Text Files ..184
Preparing to read ..184
Reading characters ..187
Reading lines ..188
Reading an entire fi le ..190

Skipping Lines in a File ..190
Skipping characters .. 191
Skipping lines ... 191

Writing to a File ...192
Preparing to write ...192
Writing characters ..194
Writing lines ...194
Writing blank lines ...194

Summary ..195

Managing Drives and Printers with VBScript and JScriptChapter 10: 197
Managing Drives ..197
Obtaining Drive Information..197

Checking for a drive ...198
Using the Drive object ..199
Examining all drives on a system ...202

Mapping Network Drives ...204
Connecting to a network share ...204
Disconnecting from a network share ..205

86804ftoc.indd xvii86804ftoc.indd xvii 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xviii

 Contents

Managing Network Printers ...206
Setting a default printer ..206
Adding printer connections ..206
Removing printer connections ..208

Summary ..209

Confi guring Menus, Shortcuts, and Startup ApplicationsChapter 11: 211
Working with Menus, Desktops, and Startup Applications ..212
Creating Shortcuts and Menu Options ...213

Obtaining a target folder for the shortcut ..213
Obtaining a shortcut object .. 214
Setting properties for link shortcuts ... 216

Setting shortcut arguments ... 216
Setting shortcut hotkeys .. 217
Setting icon locations .. 218
Setting working directories ... 219

Setting properties for URL shortcuts ...220
Managing Shortcuts and Menus ...220

Creating menus...220
Accessing and listing menu options ..221
Updating current shortcuts and menu options ...224
Deleting shortcuts and menu options ...225
Deleting menus ...226

Adding and Removing Startup Applications ...227
Adding startup options ...227
Removing startup options ...227
Moving startup options ..228

Summary ..229

Working with the Windows Registry and Event LogsChapter 12: 231
Working with the Windows Registry ... 231

Understanding the registry structure ..232
Reading registry keys and values ..233
Writing registry keys and values ..234
Creating new keys ..235
Deleting registry keys and values..236
Reconfi guring network services through the registry ...236

Managing WINS through Windows scripts ..237
Managing DHCP through Windows scripts ..239

Using Event Logs .. 242
Viewing event logs .. 242
Understanding event entries ... 243
Archiving event logs ...244

Writing to Event Logs ... 245
Event logging basics ... 245
Working with the LogEvent method ...246

86804ftoc.indd xviii86804ftoc.indd xviii 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xix

 Contents

Reading Event Logs ..248
Introducing Dumpel ...248
Using Dumpel ...249
Working with Dumpel in scripts ..251

Generating Event Log Reports ..253
Step 1: Creating the logs ...253
Step 2: Formatting the logs for viewing ..255

Summary ..261

Part III: Network and Directory Service Scripting

Scheduling One-time and Recurring TasksChapter 13: 265
Scheduling Local and Remote Jobs ...265

Scheduling basics ...265
Synchronizing the system time ...267
Scheduling utilities ...269

Using the Graphical Task Scheduler ...269
Running the wizard ..269
Viewing wizard tasks ..273
Changing task properties .. 274

Scheduling Jobs with AT .. 275
Using the AT Scheduler .. 275
Viewing scheduled AT jobs ... 276
Deleting scheduled AT jobs ..277

Scheduling with Scripts.. 278
Using AT in a script .. 278
Automated job creation ...280
Deleting jobs using scripts ..282
Creating a scheduling manager script ...283

Summary ..287

Managing Computer and User ScriptsChapter 14: . 289
Why Use Computer and User Scripts? ..289
Introducing Group Policies ...290

How are policies used?..290
When are policies applied? ...292
How are local group policies managed? ..292
How are global group policies managed? ..294
Using the policy consoles ...295

Working with Computer and User Scripts ...296
Managing startup and shutdown scripts ...296
Managing logon and logoff scripts ..298
Alternatives to group policy ..299

Summary ..300

86804ftoc.indd xix86804ftoc.indd xix 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xx

 Contents

Introducing Active DirectoryChapter 15: Services Interfaces 301
ADSI Essentials ..301

Understanding ADSI providers ...302
Understanding the ADSI architecture ...303
Binding ADSI objects ...303

Taking Advantage of ADSI ..306
Working with the ADSI LDAP provider ..306
Working with the ADSI WinNT provider ...309
Working with the ADSI NDS provider ... 312
Working with the ADSI NWCOMPAT provider.. 315

ADSI Provider Basics .. 317
Generic object binding ... 317
Handling authentication and security... 318
Accessing properties and updating objects ...322

Working with IADs Properties ..322
Working with IADs methods ..325

Summary ..329

Using Schema to Master ADSIChapter 16: . 331
Exploring ADSI Schema ... 331

The core WinNT object model ..332
The core LDAP object model...333

Working with Schema Class Objects ..336
Accessing an object’s schema class..336
Checking to see if an object is a container ..337
Examining mandatory and optional properties ..338

Viewing Property Syntax, Ranges, and Values ..341
Accessing the IADsProperty interface ...341
Examining object properties ...342

Summary ..346

Managing Local and Domain Resources with ADSIChapter 17: 347
Managing Domain Account Policies ...347

Working with domain objects ..348
Preparing to view and set account policies ...349
Viewing and setting account policies ..350

Using MinPasswordLength ...350
Using MinPasswordAge and MaxPasswordAge ...350
Using PasswordHistoryLength .. 351
Using MaxBadPasswordsAllowed, AutoUnlockInterval,

and LockoutObservationInterval ...352
Working with Local Computer Properties ..353
Creating and Modifying User Accounts ..356

User properties for WinNT ...356
Working with user account properties ...359
Managing user accounts with WinNT ..368

86804ftoc.indd xx86804ftoc.indd xx 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxi

 Contents

Creating user accounts with WinNT ..368
Deleting user accounts with WinNT...369
Setting and changing passwords ... 370
Checking group membership ... 370

Creating and Modifying Group Accounts ...372
Understanding Windows group types ..373
Creating groups with WinNT ...373
Checking group membership ... 374
Adding and removing group members ... 375

Summary .. 376

Service and Resource Administration with ADSIChapter 18: 377
Managing Windows Services ..377

Using and understanding Windows services ..377
Working with service objects..382
Using service object properties ...386

Checking Service Status and Dependencies ...390
Viewing and Setting Service Information ...395
Starting, Stopping, and Pausing Services ..396
Managing Open Resources and User Sessions ..402

Viewing open fi les and user sessions ..403
Viewing resources and sessions in scripts ..404
Working with Resource and Session objects ...407

Summary .. 411

Maintaining Shared Directories, Chapter 19:
Printer Queues, and Print Jobs . 413

Working with Shared Folders ... 413
Folder sharing essentials... 414
Examining shared folders and their properties ... 415
Creating and deleting shared folders .. 417

Managing Print Queues .. 418
Examining print queues ... 418
Using the PrintQueue object ...420

Using a banner page ..422
Working with general printer information ..423
Prioritizing print queues and print jobs .. 424
Scheduling print queue availability...425
Checking print queue status ...425

Managing print queues ...429
Controlling Print Jobs ..430

Examining print job properties ..430
Monitoring print job status ... 433
Pausing and resuming print jobs .. 437

Summary ..438

86804ftoc.indd xxi86804ftoc.indd xxi 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxii

 Contents

Managing Active Directory Domain ExtensionsChapter 20: 439
Working with Naming Contexts and the RootDSE Object ...439

Binding to a naming context ...439
Using RootDSE properties ..440

Accessing Active Directory Schema ..444
Installing and starting ADSI Edit ..444
Examining the domain-naming context ...445
Common Active Directory objects ..447

Managing Computer Objects with LDAP ...448
Active Directory computer object properties ..448
Creating and deleting computer accounts with LDAP .. 451
Moving and renaming computer accounts with LDAP ...452
Enabling and disabling computer accounts with LDAP ..454

Managing Contacts with LDAP .. 455
Managing Groups with LDAP ...459

Active Directory group object properties ..459
Creating groups with LDAP ..460
Deleting, moving, and renaming groups with LDAP ..462
Checking group membership with LDAP ...464
Adding and removing group members with LDAP ...465

Working with Organizational Units ...466
Examining organizational unit properties ..466
Creating organizational units ...467
Modifying organizational units ..468
Moving, renaming, and deleting organizational units ..469

Managing User Accounts with LDAP ... 470
Examining user object properties with LDAP ... 470
Creating user accounts with LDAP ... 474
Setting user account fl ags ... 476
Viewing group membership .. 478
Moving, renaming, and deleting user accounts with LDAP 478

Summary .. 479

Part IV: Windows PowerShell

Input, Output, and Error Handling in PowerShell Chapter 21: 483
Output to the Console ...483
A Little Diversion into Strings ...484
Implicit and Explicit Output ...490
Verbose and Debug Output ..492
Managing Different Outputs from Cmdlets ..494
More on Error Output ...496
Session Transcripts ...499

86804ftoc.indd xxii86804ftoc.indd xxii 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxiii

 Contents

Tracking Progress ...501
Taking More Control of Formatting..502
Sorting and Selecting Fields ..505
Changing How PowerShell Formats Objects ..509
Creating Custom Objects on Demand ..512
Techniques for Switching in Output ... 514
Additional Output Cmdlets ... 515
Outputting in Specifi c File Formats ... 516
Every Export Has a Corresponding Import .. 518
More on Selecting Text ...520
User Input ..521
Summary ..522

Working with Files and the Registry in PowerShellChapter 22: 523
Using PSDrives, Accessing the File System, Mapping Drives ..523

Changing (setting) locations ...526
Getting child items (a.k.a. getting a directory) and testing paths526
Copying, deleting and renaming fi les ..529
Creating and deleting directories ..530
File properties and attributes .. 531
Viewing and setting ACL permissions .. 531
Working with fi le items: reading their content, creating and adding to them533
Selecting strings and working with text data ..534
Parsing text ..536
Working with the Registry ...537

Summary ..539

Event Logging, Services, andChapter 23:
Process Monitoring with PowerShell . 541

Working with Services ...541
Starting, Stopping, Suspending, Resuming, and Restarting Services................................545

Stopping a service ..545
Starting a service ..546
Restarting a service ..546
Suspending and resuming services ...547
Confi guring services ..548

Working with Processes ...549
Starting, fi nding, and stopping processes ...549

Working with Event Logs ...552
Clearing an event log ..552
Exporting event logs ..553
Finding entries in the event log ..554

Summary ..556

86804ftoc.indd xxiii86804ftoc.indd xxiii 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxiv

 Contents

Working with Active Directory Using ADSI and PowerShellChapter 24: . . . 557
A Quick Introduction to Active Directory .. 557

Directory activities ...558
Caution ...558
PowerShell and ADSI ..559

Getting Entries from AD with [ADSI] ...559
Creating Objects ...563
Getting Directory Entries with the Searcher ...564

It’s a date Jim, but not as we know it ..567
LDAP fi lters ...568
Building a library of AD functions .. 570
Finding related entries in AD ..572

Operations on Directory Entries .. 574
Creating objects ... 574
Setting single-valued properties ..575

User Account Control flags ... 576
Setting passwords ...577
Setting group types ...577

Adding to (and deleting from) multivalued properties ..578
Moving and deleting objects ...578
Testing for the presence of an entry ..579

Summary ..579

Working with WMI in PowerShellChapter 25: . 581
Displaying WMI Information ...583
Querying WMI ...586

Choosing to how to write the query ...587
Finding WMI objects by association ..588
The WMI Type Accelerators ..592

Querying Across Computers ..594
Logging on to the remote computer ..595

Discovering WMI Objects ...596
WMI Object Properties...596
Updating WMI Objects ...597
WMI Object Methods ...599
A Case Study for WMI: Server 2008 Hyper-V ..600
Summary ..602

Part V: Windows Scripting Libraries

Library: File-System UtilitiesChapter 26: .607
Examining the File-System Utility Library ...607
Using the File-System Utility Library ... 618

Using GetSubFolders, GetFiles, and GetFolderContents ... 619
Using CheckExists ..620

86804ftoc.indd xxiv86804ftoc.indd xxiv 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxv

 Contents

Using GetInfo, GetSize, and GetType ...620
Setting and clearing fi le attributes ..620
Working with special folders, shortcuts, and menus .. 621
Managing menu options ...623
Adding to the desktop and Start menu ...625
Using NewFolder and NewFile ... 627
Using DeleteFile, DeleteFolder, and DeleteShortcut ..628

Summary ..628

Library: I/O UtilitiesChapter 27: . 629
Examining the I/O Utility Library ..629
Using the I/O Utility Library ..634

Handling fi le I/O with the utility library ..634
Handling other I/O tasks with the utility library ..636

Summary ..638

Library: Network Resource UtilitiesChapter 28: . 639
Examining the Network Resource Utility Library ..639
Using the Network Resource Utility Library ... 651

Using GetDriveInfo ... 651
Using CheckFreeSpace ...652
Using MapDrive ..653
Working with printers ..653
Viewing, checking, and managing services ..654
Using checkRS and viewDetailedRS ...656
Using viewShareInfo, createShare, and deleteShare ..657

Summary ..657

Library: Account Management UtilitiesChapter 29: 659
Building the Account Management Library ..659
Using the Account Management Utilities ...677

Confi guring domain account policies with the library utilities677
Managing groups with the library utilities ...678
Managing users with the library utilities ..680
Managing computers with the library utilities ..682
Functions for renaming and moving accounts ..684

Summary ..684

Library: Building a PowerShell LibraryChapter 30: 685
Customizing Your PowerShell Environment ...685

Exploring the PowerShell host ..687
The PowerShell Prompt ..689
Adding more to the environment ..689

A Generic “choose” Function ... 691
Network Utilities ..693

Finding Network adapters ..693

86804ftoc.indd xxv86804ftoc.indd xxv 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxvi

 Contents

Get-Ipconfi g ..697
Ping ..703

Clever Uses for Hash Tables ...704
COM Objects: A Firewall Tool ..705
Using .NET Objects to Access Mail and Web Services ... 711

Sending mail ... 711
Using the Web client object and XML .. 714

Regular Expressions ..718
More Advanced Text Processing — Discovering Script Dependencies 723
Scripts or Fuctions: Checking How a Script was Invoked ..727
Summary ..728

Part VI: Appendixes

Windows Scripting APIAppendix A: . 733
XML Elements ..733

<?XML ?> ..733
<runtime> ..733
<package> ...734
<job> ..734

getResource Static Method ...735
Usage: VBScript ..735
Usage: JScript ..735

Drives Collection ..735
Creating: VBScript ..735
Creating: JScript ...736
Properties ...736

Printers Collection ..736
Creating: VBScript ..736
Creating: JScript ...736
Properties ...736

StdIn Stream* ...736
Creating ..736
Methods ..736
Properties ...737

StdErr Stream* ...737
Creating ..737
Methods ..737

StdOut Stream* ..737
Creating ..737
Methods ..737

WshArguments Collection ...738
Creating ..738
Methods ..738
Properties ...738

86804ftoc.indd xxvi86804ftoc.indd xxvi 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxvii

 Contents

WshNamed Collection ..738
Creating ..738
Method ...738
Properties ...738

WshUnnamed Collection..738
Creating ..738
Method ...739
Properties ...739

Script.Signer Object..739
Creating ..739
Method ...739

WScript Object ...739
Creating ..739
Methods ..739
Properties ...740

WshController Object ...740
Creating ..740
Method ...740

WshEnvironment Object ..740
Creating: VBScript ..740
Creating: JScript ...740
Methods ..740
Properties ... 741

WshNetwork Object ... 741
Creating .. 741
Methods .. 741
Properties ... 741

WshRemote Object ... 742
Creating: VBScript .. 742
Creating: JScript ... 742
Methods .. 742
Properties ... 742
Events ... 742

WshRemoteError Object ... 742
Properties ... 742

WshScriptExec Object .. 743
Creating: VBScript .. 743
Creating: JScript ... 743
Methods .. 743
Properties ... 743

WshShell Object ... 743
Creating .. 743
Methods .. 743
Properties ...744

86804ftoc.indd xxvii86804ftoc.indd xxvii 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxviii

 Contents

WshShortcut Object ...744
Creating: VBScript ..744
Creating: JScript ...744
Methods ..744
Properties ...744

WshSpecialFolders Object .. 745
Creating: VBScript .. 745
Creating: JScript ... 745
Method ... 745
Properties ... 745

WshUrlShortcut Object .. 745
Creating: VBScript .. 745
Creating: JScript ... 745
Methods .. 745
Properties ... 745

Core ADSI ReferenceAppendix B: . 747
Using This Reference .. 747
ADSI Interfaces ... 748

IADs ... 748
IADsAcl ..750
IADsADSystemInfo ... 751
IADsBackLink ..752
IADsCaseIgnoreList ..753
IADsClass ...753
IADsCollection ... 755
IADsComputer..756
IADsComputerOperations ..758
IADsContainer ..759
IADsDeleteOps ...760
IADsDomain ...760
IADsEmail .. 762
IADsExtension .. 762
IADsFaxNumber... 762
IADsFileService .. 763
IADsFileServiceOperations ... 763
IADsFileShare ...764
IADsGroup ... 765
IADsHold ..766
IADsLargeInteger ..766
IADsLocality ... 767
IADsMembers ... 767
IADsNamespaces ..768
IADsNetAddress ...768
IADsO ..769

86804ftoc.indd xxviii86804ftoc.indd xxviii 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxix

 Contents

IADsObjectOptions ..770
IADsOctetList ...770
IADsOpenDSObject ..771
IADsOU ..771
IADsPath ..772
IADsPathname ..773
IADsPostalAddress ...775
IADsPrintJob ..775
IADsPrintJobOperations ...777
IADsPrintQueue ...778
IADsPrintQueueOperations..780
IADsProperty .. 781
IADsPropertyEntry ...782
IADsPropertyList ..783
IADsPropertyValue ...784
IADsPropertyValue2 ...786
IADsReplicaPointer ...787
IADsResource ...788
IADsSession ..788
IADsService ...789
IADsServiceOperations ..792
IADsSyntax ...793
IADsTimestamp ..793
IADsTypedName...794
IADsUser ..794
IDirectoryObject ...800
IDirectorySearch ...800

ADSI Error Codes ...800

Essential Command-Line Utilities for Use with WSHAppendix C: 809
ARP ..809
ASSOC ... 810
AT .. 811
ATTRIB .. 812
CACLS .. 813
CHKDSK ... 814
COMPACT .. 815
CONVERT .. 816
DATE .. 816
DRIVERQUERY .. 817
EXPAND ... 818
FC .. 819
FORMAT ..820
FTP ...821
FTYPE ..823

86804ftoc.indd xxix86804ftoc.indd xxix 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxx

 Contents

IPCONFIG ..824
NBTSTAT ...825
NET ACCOUNTS ...826
NET COMPUTER ...827
NET CONFIG SERVER ..828
NET CONFIG WORKSTATION ...829
NET CONTINUE ...829
NET FILE ...830
NET GROUP .. 831
NET LOCALGROUP .. 831
NET PAUSE ..832
NET PRINT ..833
NET SESSION ..834
NET SHARE ...834
NET START ..835
NET STATISTICS ...836
NET STOP ..837
NET TIME ..838
NET USE ..839
NET USER ..840
NET VIEW ...841
NETSTAT ...842
NSLOOKUP ...843
PATH ..844
PING ..845
RECOVER ..846
ROUTE ...847
SCHTASKS ...848
TIME ..849
TRACERT ...849

Index . 851

86804ftoc.indd xxx86804ftoc.indd xxx 1/22/09 11:53:41 AM1/22/09 11:53:41 AM

xxxi

PowerShell, VBScript, and JScript Bible is a work in progress, just like the Windows operating
system itself and the body of work that’s grown up around it. It is quite likely that errors
will make themselves apparent after this book has gone to press and found its way onto

your desktop. I very much appreciate the efforts of readers who go to the trouble of pointing out
mistakes in the text so I can fix them in future editions. Even more, I am grateful for readers who
offer their own hints, tricks, code, and ideas to me for inclusion in future editions of this book.

I truly hope you find that PowerShell, VBScript and JScript Bible provides everything you need
to perform essential scripting tasks. You can contact me through e-mail at williamstanek@aol
.com. You’re always welcome to write me with ideas, suggestions, improvements, or questions.
If you provide an example that’s used in a future edition of this book, I’ll be especially grateful
for your help and will credit you in that edition. I also have a Web site, which contains support
material for this book, among other things. Point your browser to www.williamstanek.com/
scripting/ for corrections, enhancements, news, and additional thoughts. I’ll post the source
code from this book as well.

Thank you!

William R. Stanek
The best introduction to a book I ever saw was from Machiavelli’s The Discourses, where he says
something like, “I’m sending you something, and if it doesn’t meet the obligations I owe you, is at
any rate the best I can send. For in it I have set down all I know from long experience and con-
stant reading…you may perhaps lament my lack of skill should my narratives be thin and also
errors of judgment if I have made mistakes.”

The longer the piece that I write, the more likely I am to think of that. The experience I have in
PowerShell builds on decades of seeing different scenarios and using different tools: and that
experience has been gained working with people who don’t think of themselves as Programmers.
Graphical management tools make it easy to find how to do a one-off task, but some repetitive
tasks aren’t efficient with the GUI. Some information can’t be extracted easily from a graphical
tool: some tasks just weren’t anticipated by the Programmer who wrote it. UNIX system admin-
istrators have known for a long time that there is an area, which isn’t Programming in the custom-
ary sense, of creating a large beast, with considerations such as user interface design to be taken
into account. It produces something that a dictionary would define as a program—a sequence of
instructions to be followed by the computer. A script is a program but not a Program (the capi-
talization is deliberate). Scripts are written mostly by people who are not Programmers, but just
know the job they need to get done. And, usually a script will involve less time to create than a
“proper” Program and will pay back the time that went into it very quickly. Want to know which

86804flast.indd xxxi86804flast.indd xxxi 1/22/09 11:52:15 AM1/22/09 11:52:15 AM

xxxii

Introduction

of the servers you manage don’t have a key patch on them—without logging onto each one? It’s a
few lines of script; a system administrator can put it together in a couple of minutes. A Programmer
(capital P) won’t have fired up Visual Studio and roughed out the user interface in that time.

Better still for the Windows system administrator, most of the work has been done by someone else.
Want a list of your servers? A couple of lines of script will get it from Active Directory. Want the
installed patches on each of those servers? One line of PowerShell will get that. Most of the knowl-
edge needed isn’t of a programming or scripting language—whether you use PowerShell, VBScript,
or any other environment, it is a question of understanding the task and the objects that you can call
on from that environment. PowerShell has all of .NET, WMI, AD, and ActiveX/COM at its disposal.
It needs a whole bookshelf to explain all of those things, so what we do in this book is to try to equip
you, the reader, with the skills you need to use them—which is why I worry that my narratives may
be thin.

Who Should Read This Book
If you are someone who is interested in any of the previously mentioned technologies, PowerShell,
VBScript and JScript Bible is definitely a book you should read. This comes with several caveats.
This book is designed for:

Administrators who support Windows systems■

Developers who create scripts or programs for Windows systems■

Advanced users working with Windows systems■

To pack in as much information as possible, We had to assume that you have basic networking
skills, a basic understanding of Windows, and that Windows is already installed on your systems.
With this in mind, we don’t devote entire chapters to understanding, installing, or using Windows.
Beyond the introductory information in Chapters 1, 2, and 3, we don’t cover scripting basics either.
We do, however, cover every facet of Windows scripting, so if you want to learn Windows scripting
inside and out—including techniques not published elsewhere—you’ve come to the right source.

Although the book highlights the latest and greatest features of Windows Vista and Windows Server
2008, just about everything you learn in this book can also be applied to script Windows XP. Keep
in mind that if you are using a pre–Windows Vista system, however, you may need to check your
scripts to ensure they are fully compatible.

How This Book Is Organized
Learn the basics of what goes into Windows and you will be able to use all sorts of devices and com-
puters in the future. The book is organized in a way that enables you to start off at the very begin-
ning with Windows, but still grow to the point where you can get going with some powerful server
and programming features, if you care to.

86804flast.indd xxxii86804flast.indd xxxii 1/22/09 11:52:15 AM1/22/09 11:52:15 AM

xxxiii

 Introduction

Part I assumes that someone has set up a Windows system in front of you. After being introduced to
Windows script in Chapter 1, you learn the basics of how to:

VBScript Essentials (Chapter 2)■

JScript Essentials (Chapter 3)■

PowerShell Essentials (Chapter 4)■

In Part II, you learn how to:

Creating Scripts and Scripting Files (Chapter 5)■

VBScript and JScript Scripting Basics (Chapter 6)■

Input, Output, and Error Handling with VBScript and JScript (Chapter 7)■

Working with Files and Folders in VBscript and JScript (Chapter 8)■

Reading and Writing Files (Chapter 9)■

Managing Drives and Printers with VBScript and JScript (Chapter 10)■

Configuring Menus, Shortcusts, and Startup Applications (Chapter 11)■

Working with the Windows Registry and Event Logs (Chapter 12)■

In Part III, you learn network and directory service scripting:

Scheduling One-time and Recurring Tasks (Chapter 13)■

Managing Computer and User Scripts (Chapter 14)■

Introducing Active Directory Service Interfaces (Chapter 15)■

Using Schema to Master ADSI (Chapter 16)■

Managing Local and Domain Resources with ADSI (Chapter 17)■

Service and Resource Administration with ADSI (Chapter 18)■

Maintaining Shared Directories, Printer Queues, and Print Jobs (Chapter 19)■

Managing Active Directory Domain Extensions (Chapter 20)■

In Part IV, you learn Windows PowerShell:

Input, Output and Error Handling in PowerShell (Chapter 21)■

Working with Files and Registry in Powershell (Chapter 22)■

Event Logging, Services, and Process Monitoring with PowerShell (Chapter 23)■

Working with Active Directory Using ADSI and PowerShell (Chapter 24)■

Working with WMI and PowerShell (Chapter 25)■

86804flast.indd xxxiii86804flast.indd xxxiii 1/22/09 11:52:15 AM1/22/09 11:52:15 AM

xxxiv

Introduction

In Part V, you develop a set of programming libraries:

Library: File-System Utilities (Chapter 26)■

Library: I/O Utilities (Chapter 27)■

Library: Network Resource Utilities (Chapter 28)■

Library: Account Management Utilities (Chapter 29)■

Library: Building a PowerShell Library (Chapter 30)■

In Part VI, you’ll learn more about:

Windows Scripting API (Appendix A)■

Core ADSI Reference (Appendix B)■

Essential Command-Line Utilities for Use with WSH (Appendix C)■

Conventions and Features
As with most computer books, you’ll see that some text is highlighted by special formatting or with
special icons. Here’s a field guide to the things you’ll see.

Notes provide additional details and often contain information that you should read
before trying to implement a referenced technique.

Cross-references tell you where you can fi nd more information on a particular topic.

Tips inform you of little factoids that may be useful to you as you work with Windows
scripting. Tips provide helpful information that isn’t always essential to getting things to

work correctly. Rather, Tip material can be used to make things run better.

Cautions provide a specifi c warning about things you should watch out for, or things you
shouldn’t do. You should pay particular attention to Cautions when reading the text.

Source-Code Formatting
The text contains source-code listings as well as in-text references to objects, methods, properties,
and other source-code elements. In order to minimize line wrapping and formatting issues, we gen-
erally use in-line code lists for code examples. For example:

VBScript

Set fs = CreateObject (“Scripting.FileSystemObject”)
Set f = fs.OpenTextFile (aFile, ForAppending)
f.WriteLine theLine
f.Close

NOTENOTE

CROSS-REFCROSS-REF

TIPTIP

CAUTION CAUTION

86804flast.indd xxxiv86804flast.indd xxxiv 1/22/09 11:52:15 AM1/22/09 11:52:15 AM

xxxv

 Introduction

JScript

var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.OpenTextFile (aFile, ForAppending)
f.WriteLine(theLine)
f.Close()

In-text references to source-code elements are highlighted with a monospace font, as in the follow-
ing sentence. The OpenTextFile method is used to open text files. Don’t confuse monospace type
with in-text elements printed in bold. When you see bold text in the middle of a paragraph, it means
that this is something you should type in at the keyboard, such as, “Type cls at the command
prompt to clear the screen.”

What’s on the Companion Web site
On the companion Web site, you will find the following:

Sample code:■ Each chapter has its own subfolder on the Web site, and you will find all the
code output that was discussed in each chapter organized accordingly.

What You’ll Learn from This Book
Every how-to book is supposed to teach its readers how to do something, and in the process convey
some body of knowledge to the reader. PowerShell, VBScript and JScript Bible is no exception. This
book teaches you about Windows scripting and includes in-depth coverage of related technologies.

PowerShell, VBScript and JScript Bible isn’t meant to be a do-everything guide to scripting. Rather,
the book focuses on techniques you’ll use to script the Windows operating system. Chapter by chap-
ter, you learn how to create scripts. The detailed explanations provided are backed by hundreds of
hands-on examples and over 300 complete source-code listings. This book also develops extensive
utility libraries that you can use to quickly and efficiently perform complex tasks.

86804flast.indd xxxv86804flast.indd xxxv 1/22/09 11:52:15 AM1/22/09 11:52:15 AM

86804flast.indd xxxvi86804flast.indd xxxvi 1/22/09 11:52:15 AM1/22/09 11:52:15 AM

IN THIS PART
Chapter 1
Introducing Windows Scripting

Chapter 2
VBScript Essentials

Chapter 3
JScript Essentials

Chapter 4
PowerShell Fundamentals

Getting Started with
Windows Scripting

Part I of the PowerShell, VBScript, and JScript Bible intro-
duces you to the powerful administrative tool that is
Windows scripting. You’ll get an overview of Windows

scripting and its potential, and an introduction to three tech-
nologies you can use for Windows scripting: VBScript, JScript,
and PowerShell.

86804c01.indd 186804c01.indd 1 1/21/09 1:16:17 PM1/21/09 1:16:17 PM

86804c01.indd 286804c01.indd 2 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

3

W indows scripting gives everyday users and administrators the
ability to automate repetitive tasks, complete activities while
away from the computer, and perform many other time-saving

activities. Windows scripting accomplishes all of this by enabling you to
create tools to automate tasks that would otherwise be handled manually,
such as creating user accounts, generating log files, managing print queues,
or examining system information. By eliminating manual processes, you
can double, triple, or even quadruple your productivity and become more
effective and efficient at your job. Best of all, scripts are easy to create and
you can rapidly develop prototypes of applications, procedures, and utili-
ties; and then enhance these prototypes to get exactly what you need, or
just throw them away and begin again. This ease of use gives you the flex-
ibility to create the kinds of tools you need without a lot of fuss.

Introducing Windows Scripting
You’ve heard the claims about scripting and now you’re thinking, so what?
What’s in it for me? You may be an administrator rather than a developer.
Or maybe you’re a power user who helps other users from time to time.
Either way, scripting will prove useful to your situation and needs. So in
answer to the question, “What’s in it for me?” consider the following:

Introducing
Windows Scripting

IN THIS CHAPTER
Introducing Windows scripting

Why script Windows?

Getting to know
Windows Script Host

Understanding the Windows
scripting architecture

86804c01.indd 386804c01.indd 3 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

4

 Part I Getting Started with Windows Scripting

Would you like to have more free time? ■ Windows scripting frees you from mundane and
repetitive tasks, enabling you to focus on more interesting and challenging tasks.

Would you like to be able to analyze trends and be proactive rather than reactive?■ You
can use Windows scripting to extract and manipulate huge quantities of information and
turn out easy-to-use reports.

Would you like to be able to seize opportunities before they disappear?■ Windows
scripting enables you to take advantage of opportunities and be more effective. You can
solve problems quickly and efficiently.

Would you like to be a top performer and receive the praise you deserve? ■ Windows
scripting enables you to accomplish in hours or days what would otherwise take weeks or
months with traditional techniques. You’ll be more successful and more productive at work.

Would you like to be able to integrate activities and applications? ■ Windows scripting
enables you to integrate information from existing systems and applications, allowing you
to kick off a series of tasks simply by starting a script.

Would you like to have fun at work?■ Windows scripting can be fun, challenging, and
rewarding. Give it a try and you’ll see!

If Windows scripting can do so much, it must be terribly complex, right? On the contrary—it is its
simplicity that enables you to do so much, not complexity. Many Windows scripts are only a few
lines long and you can create them in a few minutes!

Taking a look at Windows Scripting
Two different architectures are used for scripting in Windows. The older one uses the Windows
Script Host and the newer one uses PowerShell. A lot of the tasks that can be carried out using the
VBScript in the Windows Scripting Host can be transferred to PowerShell. However not all the tasks
that can be run in PowerShell can be transferred to Windows Script Host scripts so easily. For a lot
of organizations using various derivatives of Visual Basic—in Web pages, Office applications,
Windows forms applications—makes a de-facto standard.

Windows Script Host Architecture
Windows Script Host (WSH) has been part of Windows since Windows NT4. Windows Script Host
provides architecture for building dynamic scripts that consist of a core object model, scripting
hosts, and scripting engines—each of which is discussed in the sections that follow.

Getting Started with Windows Script Host
Windows Script Host is a core component of the Windows operating system and, as such, is
installed by default when you install Windows. Like other components, Windows Script Host
can be uninstalled. It can also be upgraded through downloads or by installing service packs. To

86804c01.indd 486804c01.indd 4 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

5

 Introducing Windows Scripting 1

ensure that Windows Script Host is installed on your system, type cscript at a command prompt.
You should see version information for Windows Script Host as well as usage details. If you don’t
see this information, Windows Script Host may not be installed and you’ll need to install it as you
would any other Windows component.

The key components of Windows Script Host are as follows:

WScript:■ A Windows executable for the scripting host that is used when you execute
scripts from the desktop. This executable has GUI controls for displaying output in pop-up
dialog boxes.

CScript: ■ A command-line executable for the scripting host that is used when you
execute scripts from the command line. This executable displays standard output at the
command line.

WSH ActiveX Control:■ An ActiveX control that provides the core object model for the
scripting host.

Scripting Engines:■ Scripting engines provide the core functions, objects, and methods
for a particular scripting language. VBScript and JScript scripting engines are installed by
default on Windows.

A Windows script is a text file containing a series of commands. Unlike shell scripts, Windows
script commands don’t resemble commands that you’d type in at the keyboard. Instead, they follow
the syntax for the scripting language you are using, such as VBScript or JScript.

Windows scripts can be created in Notepad. When you finish creating the script, save it with an
extension appropriate for the scripting language (.vbs for VBScript, .js for JScript, or .wsf for batch
scripts that combine scripts with markup). Once you create a Windows script, you run it with
WScript or CScript.

Using and running scripts
Windows scripts can be run with either WScript or CScript, and most of the time the applica-
tion you use depends on your personal preference. However, you’ll find that WScript works best
for scripts that interact with users, especially if the script displays results as standard text output.
For tasks that you want to automate or run behind the scenes, you’ll probably prefer CScript, with
which you can suppress output and prompts for batch processing.

You can use WScript and CScript with scripts in several different ways. The easiest way is to set
WScript as the default application for scripts and then run scripts by clicking their file name in
Windows Explorer. Don’t worry—you don’t have to do anything fancy to set WScript as the default.
The first time you click a Windows script, you’ll be asked if you’d like to associate the file extension
with WScript. Click Yes. Alternatively, you may see an Open With dialog box that asks which pro-
gram you would like to use to open the file. Choose WScript, and then check the “Always use this
program to open this file” checkbox.

86804c01.indd 586804c01.indd 5 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

6

 Part I Getting Started with Windows Scripting

You can also set CScript as the default interface. When you do this, clicking a Windows script runs
CScript instead of WScript. Or, you could run scripts from the Run prompt just as you could when
WScript was the default. To run scripts with CScript from the command line, enter cscript followed
by the pathname of the script you want to execute. For now, don’t worry about the details; you’ll
find detailed instructions in Chapter 4.

Core object model
The core object model and scripting hosts are packaged with WSH for Windows. The core object
model is implemented in the WSH.ocx ActiveX control. WSH.ocx provides the key functionality
necessary for scripts to interact with the operating system. In WSH, objects are simply named con-
tainers that you’ll use to interact with operating system components. For example, you’ll use the
WshNetwork object to access and configure network resources, such as printers and drives.

Each object has properties and methods that are used to perform certain types of tasks. Properties
are attributes of an object that you can access. Methods are procedures that you’ll use to perform
operations. As with other object-based programming languages, you can work with objects in a vari-
ety of ways. You can use built-in objects, create new objects based on the built-in objects, or define
your own objects using unique methods and properties.

Table 1-1 provides a summary of the WSH object model. The WSH object hierarchy can be bro-
ken down into two broad categories: exposed objects and non-exposed objects. Exposed objects,
such as WScript, are the ones you’ll work with in your scripts. Non-exposed objects, such as
WshCollection, are accessed through the methods or properties of other objects. These objects
do the behind-the-scenes work.

TABLE 1-1

Core WSH Objects
Object Type Object Description

Exposed Object Script.Signer An object that allows you to sign scripts with a
digital signature and to verify signed scripts

WScript Top-level object that provides access to core
objects and other functionality such as object
creation

WScript.WshNetwork Automation object used to access and configure
network resources, such as printers and drives, also
provides user, domain, and computer information

WScript.WshShell Automation object that provides access to the
environment and file folders

86804c01.indd 686804c01.indd 6 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

7

 Introducing Windows Scripting 1

Object Type Object Description

WshController Automation object that provides the control
functions necessary for creating a remote script
process

Non-exposed Object WshArguments Accessed through the WScript.Arguments
property, obtains command-line arguments

WshCollection Accessed through WshNetwork.Enum Network
Drives or WshNetwork.EnumPrinter
Collection, used for iteration through a group
of items, such as printers or drives

WshEnvironment Accessed through the WshShell.Environment
property, allows you to work with environment
variables

WshNamed Accessed through the WScript.Arguments
.Named property, allows you to work with named
arguments passed to a script

WshRemote Accessed through the WshController
.WshRemote method, allows you to start, stop,
and track the status of remote scripts

WshRemote.Error Accessed through the WshRemote.Error
property, used to track runtime errors related to
remote scripts

WshScriptExec Accessed through the WshShell.Exec method,
allows you to track the status of program or scripts
started with the WshShell.Exec method, also
provides access to the related input, output, and
error streams

WshShortcut Accessed through the WshShell.CreateShortcut
method, used to create and manage file shortcuts

WshSpecialFolders Accessed through the WshShell.SpecialFolders
property, used to work with file folders

WshUnnamed Accessed through the WScript.Arguments
.Unnamed property, allows you to work with
unnamed arguments passed to a script

WshUrlShortcut Accessed through the WshShell.CreateShortcut
method, used to create and manage URL shortcuts

86804c01.indd 786804c01.indd 7 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

8

 Part I Getting Started with Windows Scripting

With the JScript scripting engine, the letter case for object, method, and property names
is important. The JScript engine doesn’t recognize an object unless you reference it prop-

erly. For example, with WScript, the JScript engine does not recognize Wscript. Because VBScript
really doesn’t care about letter case, either Wscript or WScript works just fi ne.

More on scripting hosts
To execute Windows scripts, you’ll use one of the two scripting hosts available, either WScript or
CScript. WScript has GUI controls for displaying output in pop-up dialog boxes and is used pri-
marily when you execute scripts from the desktop. CScript is the command-line executable for the
scripting host that is used when you execute scripts from the command line. Although you can work
with both of these hosts in much the same way, there are some features specific to each, which we
discuss later in Chapter 4. For now, let’s focus on how the scripting hosts work.

Several file extensions are mapped for use with the scripting hosts. These file extensions are:

.js: Designates scripts written in JScript■

.vbs: Designates scripts written in VBScript■

.wsf: Designates a Windows script file■

.wsh: Designates a WSH properties file■

A limitation of .js and .vbs files is that they can contain only JScript or VBScript statements, respec-
tively, and you cannot mix and match. This is where .wsf files come into the picture. You can use
.wsf files to create WSH jobs, or what I call batch scripts. These batch scripts can combine multiple
types of scripts and can also include type libraries containing constants.

Batch scripts contain markup tags that identify elements within the batch, such as individual jobs
and the scripting language being used. These markup tags are defined as XML (Extensible Markup
Language) elements. XML is structured much like HTML and uses plain-text characters. You can
use any text editor to create batch scripts and, because batch scripts contain XML, you can also use
an XML editor.

Windows scripts can also use .wsh files. These files contain default settings for scripts, such as
timeout values and script paths. Because of the introduction of .wsf files and direct in-script sup-
port for most script properties, .wsh files are rarely needed.

More on scripting engines
Scripting engines provide the core language functionality for Windows scripts and are packaged
separately from the Windows Script Host itself. You can obtain scripting engines for JScript, VBScript,
Perl, TCL, Python, and more. The official Microsoft scripting engines for VBScript and JScript are
standard components on Windows and are the focus of this book.

With Windows scripting, many of the features available for scripting with Internet Explorer and
the Web aren’t available. Functions needed for Web scripting simply aren’t needed for Windows

NOTENOTE

86804c01.indd 886804c01.indd 8 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

9

 Introducing Windows Scripting 1

scripting and vice versa. For example, in JScript, none of the window-related objects are available in
WSH because, in Windows, you normally don’t need to access documents, forms, frames, applets,
plug-ins, or any of those other browser-related features. The exception to this is if you create a script
that starts a browser session; within the browser session, you can use the browser-related objects as
much as you want.

Right now, you may be wondering what exactly is and isn’t supported by Windows scripts. In a
nutshell, the scripting engines support core language and language runtime environments. The core
language includes operators, statements, built-in objects, and built-in functions. Operators are used
to perform arithmetic, comparisons, and more. Statements are used to make assignments, to condi-
tionally execute code, and to control the flow within a script. For example, you can use for looping
to execute a section of code for a specific count. These types of statements are all defined in the core
language. Beyond this, the core language also defines the core functions and objects that perform
common operations such as evaluating expressions, manipulating strings, and managing data.

The runtime environment adds objects to the core object model. These objects are used to work with
the operating system and are available only with Windows Scripting. Table 1-2 provides a complete
list of the available VBScript objects. The list is organized according to where the objects originate,
either in the runtime environment or the core object model.

TABLE 1-2

VBScript Objects for Windows Scripting
Runtime Objects Core Objects

Dictionary object Class object

Drive object Debug object

Drives collection Dictionary object

File object Err object

Files collection FileSystemObject object

FileSystemObject object Match object

Folder object Matches collection

Folders collection RegExp object

TextStream object SubMatches collection

Table 1-3 provides a complete list of available JScript objects. Again, the list is organized according
to where the objects originate.

86804c01.indd 986804c01.indd 9 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

10

 Part I Getting Started with Windows Scripting

TABLE 1-3

JScript Objects for Windows Scripting
Runtime Objects Core Objects

Arguments Object ActiveXObject Object

Dictionary object Array object

Drive object Boolean object

Drives collection Date object

File object Debug object

Files collection Dictionary object

FileSystemObject object Enumerator object

Folder object Error object

Folders collection FileSystemObject object

TextStream object Function object

Global object

Math object

Number object

Object object

RegExp object

Regular Expression object

String object

VBArray object

Windows PowerShell Architecture
The name “PowerShell” explains the key architectural difference from the Windows Scripting Host.
PowerShell began life as a command-line shell—like Windows CMD.EXE, and you can interact with
it—so where VBScript or JScript programs are written in Notepad and run using the appropriate
language inside the scripting host, the lines of a PowerShell script might be tested at a command
prompt one by one and then gathered into a script.

86804c01.indd 1086804c01.indd 10 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

11

 Introducing Windows Scripting 1

As a shell, PowerShell can chain commands together using piping—that is, sending the output of
one command into another using the | symbol. Often, development consists of running a command,
checking its output, piping that output into something, checking that, and building up a long and
complex line.

One of the important things that sets PowerShell apart from CMD.EXE is that where a command
returns text to CMD, PowerShell’s commands return objects. The properties and methods of those
objects can be used by commands further along a pipeline.

Compared with the WSH languages, PowerShell’s use of objects is both broader and deeper. Its use
is deeper because .NET defines types such as text strings, and provides methods for working with
them. PowerShell does not need to write a function for getting a substring from a bigger string—that’s
inherited from .NET, as is PowerShell’s file handling, arithmetic, and so on (so PowerShell doesn’t
need to implement the core functions found in the WSH languages). PowerShell’s use of objects is
broader, because PowerShell has access to .NET objects, as well as COM ones and ready-made com-
mands for getting to WMI and Active Directory objects.

WMI objects provide management, configuration, and performance information for many server
applications and Windows components—indeed you could do a lot with just piping the output of
PowerShell’s Get-WMIObject command into its Format-Table command.

PowerShell was designed to be highly extensible. Not only can your own scripts become part of the
working environment, but also developers can write snap-ins that extend the environment with
compiled code. These add to the set of commands available inside PowerShell—the term “com-
mand” in PowerShell covers all the different things that can be invoked from the prompt: external
programs, scripts, functions loaded from scripts, and what PowerShell terms “CMDlets” from the
snap-ins. PowerShell provides five snap-ins by default.

TABLE 1-4

PowerShell Snap-ins
Snap-in Functions

Core Loads other snap-ins, provides access to command history, implements for loop, and
where functionality

Host Handles the console, manages transcripts

Management Provides the commands to manage Windows components

Security Handles credentials and secure strings

Utility Provides the commands to format and output data

Other products that run on Windows can provide their own snap-ins—for example, Exchange2007,
SQL Server 2008, and various members of the system center family provide their own snap-ins to

86804c01.indd 1186804c01.indd 11 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

12

 Part I Getting Started with Windows Scripting

allow PowerShell to be used as the scripting environment to manage them. At the time of this writ-
ing, Windows Server 2008 R2 has only just been announced: It will include an updated version of
PowerShell, and more Windows components will have snap-ins to manage them.

The CMDLets snap-ins can also implement providers. The Security snap-in loads a provider for the
Certificate store, so you can browse through it as if it were a file system. The Core snap-in has one
for the registry, so you can treat branches of the registry like folders on your hard disk. Again, addi-
tional snap-ins can add to the list of providers.

Although PowerShell is a shell, it is possible to use the engine from another program without loading
the “host”—the command Window that is wrapped around the engine. Increasingly it is expected
that management tools for Microsoft products will be written as PowerShell snap-ins and then the
GUI management tools will invoke CMDlets in these. This allows you to carry out a task in the GUI,
discover the script that would carry it out, and use that as the basis for your own scripts.

PowerShell scripts have a .ps1 file extension, but to avoid the dangers of PowerShell automatically
running a malicious script, the file type is not tied to the PowerShell executable. You can run
PowerShell.exe with a command line that is the name of a script. Or you can invoke the script
inside the shell. There is no equivalent to the choice between CScript and WScript.

Is there any need to learn anything other than PowerShell? That’s less of a point of argument
between the contributors of this book than you might imagine. It’s going to become harder to be a
properly rounded IT professional in a Microsoft environment without PowerShell, but the other
languages will be with us for many years. Few organizations will see sense in re-writing a perfectly
good VB or JScript script as a PowerShell one, and there are libraries and code samples that exist only
in those languages. Sometimes it will make sense to translate them into PowerShell (which requires
the ability to understand the script) and sometimes it will make sense to adapt an existing script in
its existing language.

Summary
Now that you have a taste of what Windows scripting is all about, it’s time to go to the next level.
Chapters 2, 3, and 4 provide essential scripting techniques for VBScript, JScript, and PowerShell,
respectively. Carefully study these chapters before proceeding as they describe the core mechanics
of scripting, covering variables, arrays, operators, conditional statements, control loops, procedures,
and more. Once we have covered these core mechanics, we won’t waste your time rehashing how
these features work with every future scripting example. Instead, we will trust that you’ve reviewed
and understand the core mechanics and want to focus on the new materials we are discussing in a
particular chapter. Even if you know some scripting basics, we recommend that you use these chap-
ters to brush up on your VBScript, JScript, and PowerShell knowledge.

86804c01.indd 1286804c01.indd 12 1/21/09 1:16:18 PM1/21/09 1:16:18 PM

13

Microsoft Visual Basic scripting edition (VBScript) has long been
the favorite scripting language of Microsoft developers and soon
it will be your favorite as well. VBScript is easy to learn and use,

making the language a great choice, especially if you don’t have a program-
ming background.

Working with Variables
Variables are a part of most scripting languages, and VBScript is no excep-
tion. A variable is simply a placeholder for a value you want to work with.

Variable naming
You can create a variable by assigning the variable a name, which you can
refer to in your code later. Variable names, like other VBScript structures,
follow standard naming conventions. These naming rules are as follows:

Names must begin with an alphabetic character.■

Names cannot contain periods.■

Names must be less than 256 characters in length.■

Variable names also have an additional property, which isn’t the case of
other structures in VBScript. They are case-sensitive, meaning value1,
Value1, and VALUE1 are all different variables. However, method,

VBScript Essentials

IN THIS CHAPTER
Variable naming and types

Using and sizing arrays

Working with conditional
statements

Using control loops

Understanding and using
procedures

86804c02.indd 1386804c02.indd 13 1/21/09 1:24:28 PM1/21/09 1:24:28 PM

14

 Part I Getting Started with Windows Scripting

function, and object references in VBScript are not case-sensitive. For example, you can echo to the
screen using any of the following commands:

wscript.echo “This is a test!”
Wscript.echo “This is a test!”
WScript.Echo “This is a test!”

But in reality, the correct capitalization for this reference is WScript.Echo.

Declaring variables
In VBScript, variables are declared either explicitly or implicitly. To declare a variable explicitly, use
the keyword Dim to tell VBScript that you are creating a variable and then specify the variable name,
such as:

Dim newString

You can then assign a value to the variable, such as:

newString = “I really love VBScript!”

You can also declare multiple variables at the same time. You do this by separating the variable
names with commas:

Dim firstName, lastName, middleInitial

To declare a variable implicitly, use the variable name without first declaring it; you don’t need to
use the Dim keyword. In this instance, VBScript creates the variable for you.

The problem with implicit variables is that any name is assumed to be valid, so you can mistakenly
assign values to the wrong variable and you won’t know it. Consider the following example, in which
you assign a value to theTotal and later assign a value to a variable called theTotals:

theTotal = sumA + sumB + sumC

‘working with the variable

‘now you need to increase the total
theTotals = theTotals + 1

Everything following a single quotation mark is interpreted as a comment. You can use
comments anywhere in a line of code.

In this example, we meant to increase theTotal, but increased theTotals instead. To avoid situ-
ations like this, set Option Explicit, which requires that all variables be declared explicitly with
the Dim keyword and also ensures the validity of your variables. This option should be placed at the
beginning of your script, as shown in Listing 2-1.

TIPTIP

86804c02.indd 1486804c02.indd 14 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

15

 VBScript Essentials 2

LISTING 2-1

Using Variables

vars.vbs

Option Explicit
‘Setting variables
Dim sumA, sumB, sumC
Dim theTotal

sumA = 100
sumB = 10*10
sumC = 1000/10

‘Get the total
theTotal = sumA + sumB + sumC

‘write total to command-line using WScript.Echo
wScript.Echo “Total = “, theTotal

Output

300

Variable types
VBScript assigns all variables to the variant data type. Variants can hold numeric or string data
and each is handled differently. The primary way in which VBScript determines if something is
a number or a string is through the use of double quotation marks. In the previous code sample,
sumA, sumB, and sumC are all handled as numbers. If you add double quotation marks to the val-
ues, they are treated as strings, as in the following example:

sumA = “100”
sumB = “10*10”
sumC = “1000/10”

The use of strings yields very different results when you add the values together, and as a result, the
value of theTotal is:

10010*101000/10

The reason for this is that while numbers are summed, strings are concatenated so you get the literal
sum of all characters in the string. To complicate things a bit more, VBScript also uses variable sub-
types. Variable subtypes are summarized in Table 2-1. Subtypes enable you to put certain types of

86804c02.indd 1586804c02.indd 15 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

16

 Part I Getting Started with Windows Scripting

information into categories, which allows for better handling of dates, floating-point numbers, inte-
gers, and other types of variables. For example, if you are working with dates and you need to add
two dates together, you wouldn’t want the result to be an integer. Instead, you’d want the dates to be
handled as dates and the result of any operations to be dates, which is exactly what subtypes offer.

TABLE 2-1

Variable Subtypes in VBScript
Subtype Description

Boolean A Boolean value that contains either True or False.

Byte An integer byte value in the range 0 to 255.

Currency A floating-point number in the range –922,337,203,685,477.5808 to
922,337,203,685,477.5807. Note the use of up to four decimal places.

Date (Time) A number that represents a date between January 1, 100 to December 31, 9999.

Double A double-precision, floating-point number in the range –1.79769313486232E308
to –4.94065645841247E–324 for negative values; 4.94065645841247E–324 to
1.79769313486232E308 for positive values.

Empty An uninitialized variant. Value is 0 for numeric variables or an empty string (“”) for
string variables.

Error An error number used with runtime errors.

Integer An integer in the range –32,768 to 32,767.

Long An integer in the range –2,147,483,648 to 2,147,483,647.

Null A variant set to NULL that contains no valid data.

Object An object reference.

Single A single-precision, floating-point number in the range –3.402823E38 to –1.401298E–45
for negative values; 1.401298E–45 to 3.402823E38 for positive values.

String A variable-length string.

Generally, if you use whole numbers, such as 3 or 5, with a variable, VBScript creates the variable
as an Integer. Variables with values that use decimal points, such as 3.125 or 5.7, are generally
assigned as Doubles, double-precision floating-point values. Variables with values entered with a
mixture of alphabetical and numeric characters, such as Yeah! and Q3, are created as Strings.

86804c02.indd 1686804c02.indd 16 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

17

 VBScript Essentials 2

Converting variable types
VBScript can automatically convert between some variable types, and this eliminates most variable
conflict. However, if you try to add a string variable to a numeric variable type, you will get an error.
Because of this, do not try to perform numeric calculations with alphanumeric data.

That said, VBScript includes many different functions for converting data from one subtype to
another. These functions are summarized in Table 2-2.

TABLE 2-2

Functions for Converting Variable Subtypes
Function Description

CBool(expression) Converts any valid expression to a Boolean value. Returns either True or False.

CByte(expression) Converts any valid expression to a Byte value.

CCur(expression) Converts any valid expression to a Currency value.

CDate(date) Converts any valid date string to a Date value. Returns a date value that can be
used when adding dates and times.

CDbl(expression) Converts any valid expression to a Double value.

CInt(expression) Converts any valid expression to an Integer value.

CLng(expression) Converts any valid expression to a Long value.

CSng(expression) Converts any valid expression to a Single value.

CStr(expression) Converts any valid expression to a String value.

Working with conversion functions is a lot easier than you may think. To convert a value, just pass
the value to the conversion function, as follows:

stringA = “42”
stringB = “37”

intA = CInt(stringA) ‘Set to integer value 42
intB = CInt(stringB) ‘Set to integer value 37

The CBool(), CDate(), and CString() functions deserve a special note because they return out-
put that is a bit different from what you might be used to. To learn more about these functions, take
a look at Listing 2-2.

86804c02.indd 1786804c02.indd 17 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

18

 Part I Getting Started with Windows Scripting

LISTING 2-2

Using Conversion Functions

changetype.vbs

sumA = 30: sumB = 15 ‘Initialize variables
wscript.echo “sumA: “ & TypeName(sumA)
wscript.echo “sumB: “ & TypeName(sumB)

Test = CBool(sumA = sumB) ‘Test contains false

sumB= sumB * 2 ‘Double value of sumB
Test = CBool(sumA = sumB) ‘Test contains true
wscript.echo “Test: “ & TypeName(Test)

dateStr = “December 10, 2005” ‘Define a date as a string
wscript.echo “dateStr: “ & TypeName(dateStr)

theDate = CDate(dateStr) ‘Convert to Date data type
wscript.echo “theDate: “ & TypeName(theDate)

timeStr = “8:25:10 AM” ‘Define a time as a string
theTime = CDate(timeStr) ‘Convert to Date data type
wscript.echo “timeStr: “ & TypeName(timeStr)
wscript.echo “theTime: “ & TypeName(theTime)

aDouble = 715.255 ‘Define a numeric value
aString = CStr(aDouble) ‘Convert to a string
wscript.echo “aDouble: “ & TypeName(aDouble)
wscript.echo “aString: “ & TypeName(aString)

This code produces the following output:

sumA: Integer
sumB: Integer
Test: Boolean
dateStr: String
theDate: Date
timeStr: String
theTime: Date
aDouble: Double
aString: String

86804c02.indd 1886804c02.indd 18 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

19

 VBScript Essentials 2

Working with Constants
Constants provide an easy way to use specific values without actually having to remember related
value codes or strings. By using constants, you make it easier to maintain your code should the value
of a constant ever change. You’ll also see constants referred to as literals. To help differentiate con-
stants from variables, you should use a unique prefix or formatting.

Using built-in constants
In VBScript, constants are either intrinsic (built-in) or declared explicitly. VBScript has many built-in
constants. Because built-in constants are already defined, you don’t need to explicitly declare them in
your scripts. All VBScript constants begin with the prefix vb.

Table 2-3 shows the available color constants. Table 2-4 shows the available date and time constants.
Many other constants are defined as well, and are referenced in the appropriate sections of this book.

TABLE 2-3

Color Constants
Constant Value Description

vbBlack &h00 Black

vbRed &hFF Red

vbGreen &hFF00 Green

vbYellow &hFFFF Yellow

vbBlue &hFF0000 Blue

vbMagenta &hFF00FF Magenta

vbCyan &hFFFF00 Cyan

vbWhite &hFFFFFF White

TABLE 2-4

Date and Time Constants
Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

continued

86804c02.indd 1986804c02.indd 19 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

20

 Part I Getting Started with Windows Scripting

Constant Value Description

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbUseSystemDayOfWeek 0 First day of the week specified in system settings

vbFirstJan1 1 Week in which January 1 occurs (default)

vbFirstFourDays 2 First week that has at least four days in the new year

vbFirstFullWeek 3 First full week of the year

Declaring constants
You declare a constant explicitly using the keyword Const to tell VBScript that you are creating a
constant, specify the constant name, and then assign a value to the constant, such as:

Const COMPANYID = “4876-54-32-87A”

Constant names don’t need to be in all caps. However, to give constants a unique format-
ting that differentiates them from variables, we decided to use all caps in the examples in
this section.

Here, you are declaring the COMPANYID constant and setting a string value of 4876-54-32-87A. With
string constants, the quotation marks are necessary to differentiate a string value from other types of
values.

When you declare a numeric constant, you don’t need to use quotation marks. The following exam-
ple declares a numeric constant:

Const PROJECTNUMBER = 789

Here, you are declaring the PROJECTNUMBER constant and setting a numeric value of 789.

You declare date and time constants by enclosing them in number signs (#), such as:

Const PROJECTSTARTDATE = #12-15-07#

TABLE 2-4 (continued)

NOTENOTE

86804c02.indd 2086804c02.indd 20 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

21

 VBScript Essentials 2

Working with Arrays
Using arrays, you can group related sets of data together. The most common type of array you’ll use
is one-dimensional, but you can create arrays with up to 60 dimensions if you want to. While a one-
dimensional array is like a column of tabular data, a two-dimensional array is like a spreadsheet
with rows and columns, and a three-dimensional array is like a 3D grid.

Initializing arrays
Arrays are declared much like regular variables except you follow the variable name with informa-
tion describing the size and dimensions of the array. You can initialize an array with ten data ele-
ments as follows:

Dim bookArray(9)

Values in an array always begin at 0 and end at the number of data points in the array minus 1. This
is the reason an array with 10 data points is initialized as bookArray(9). To access elements in an
array, reference the element’s index position within the array. For example, bookArray(0) refer-
ences the first element, bookArray(1) references the second element, and so on. Use the index
position to set values for the array as well, as in the following:

bookArray(0) = “A Tale Of Two Cities”
bookArray(1) = “Grapes Of Wrath”

Using arrays with multiple dimensions
Multiple dimensions are created by separating the size of each dimension with commas, such as
currentArray(3,3,3) or testArray(2,5,5,4). You can create a two-dimensional array with
five columns each with four rows of data points as follows:

Dim myArray(4,3)

Then, if you want to obtain the value of a specific cell in the spreadsheet, you can use the following:

theValue = arrayName(columns -1, rows -1)

in which columns is the column position of the cell and rows is the row position of the cell. Following
this, you can get the value of the cell in column 3, row 2 with this statement:

myValue = myArray(2,1)

Sizing arrays
Sizing arrays on-the-fly allows you to use input from users to drive the size of an array. You declare a
dynamic array without specifying its dimensions, as follows:

Dim userArray()

86804c02.indd 2186804c02.indd 21 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

22

 Part I Getting Started with Windows Scripting

Then size the array later using the ReDim function:

ReDim userArray(currValues - 1)

or

ReDim userArray(numColumns - 1, numRows - 1)

You can also use ReDim to change the size of an existing array. For example, you can increase the
size of an array from 10 elements to 20 elements. However, when you change the size of an exist-
ing array, the array’s data contents are destroyed. To prevent this, use the Preserve keyword, as
follows:

ReDim Preserve userArray(numColumns - 1, numRows - 1)

VBScript Operators
Operators are used to perform mathematical operations, to make assignments, and to compare val-
ues. The two key types of operators you’ll use in VBScript are arithmetic operators and comparison
operators. As you’ll see, VBScript supports fewer operators than the command line. While this may
seem limiting, VBScript makes up for this by allowing you to use floating-point values and integers
with high precision.

VBScript also has logical operators such as AND, NOT, OR, and XOR. With the exception of
NOT, these operators are rarely used.

Arithmetic operators
VBScript supports a standard set of arithmetic operators. These operators are summarized in Table 2-5.

TABLE 2-5

Arithmetic Operators in VBScript
Operator Operation

+ Addition

= Assignment

/ Division

^ Exponent

Mod Modulus

* Multiplication

- Subtraction/Negation

NOTENOTE

86804c02.indd 2286804c02.indd 22 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

23

 VBScript Essentials 2

As you can see in Table 2-5, there are few surprises when it comes to VBScript operators. Still, a few
standouts are worth mentioning. In VBScript, you determine remainders using the Mod function ver-
sus the % for the command line. But the syntax is essentially the same. With the expression:

Answer = 9 Mod 3

Answer is set to 0. With the expression:

Answer = 9 Mod 2

Answer is set to 1.

You can multiply by an exponent with the ^ operator. To achieve the same result as 8 *8 * 8 * 8,
you would use:

Answer = 8^4

You can negate a value using the – operator, such as:

Answer = -6 * 2

If you mix operators, VBScript performs calculations using the same precedence order you learned
in school. For example, multiplication and division in equations are carried out before subtraction
and addition, which means:

7 + 2 * 2 = 11

and

5 / 5 + 6 = 7

Table 2-6 shows the complete precedence order for operators. As the table shows, exponents have
the highest precedence order and are always calculated first.

TABLE 2-6

Operator Precedence in VBScript
Order Operation

1 Exponents (^)

2 Negation (–)

3 Multiplication (*) and Division (/)

4 Remainders (Mod)

5 Addition (+) and Subtraction (-)

86804c02.indd 2386804c02.indd 23 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

24

 Part I Getting Started with Windows Scripting

Comparison operators
When you perform comparisons, you check for certain conditions, such as whether A is greater than
B, or if A is equal to C. You primarily use comparison operators with conditional statements, such as
If Then and If Then Else. The available operators are summarized in Table 2-7.

TABLE 2-7

Comparison Operators in VBScript
Operator Description

= Equality; evaluates to True if the values are equal.

<> Inequality; evaluates to True if the values are not equal.

< Less than; evaluates to True if value1 is less than value2.

<= Less than or equal to; evaluates to True if value1 is less than or equal to value2.

> Greater than; evaluates to True if value1 is greater than value2.

>= Greater than or equal to; evaluates to True if value1 is greater than or equal to value2.

Listing 2-3 shows how you can use comparison operators in a script. Note that you can use these
operators to compare numbers as well as strings and that there is no set precedence order for com-
parisons. Comparisons are always performed from left to right.

LISTING 2-3

Scripting with Comparison Operators

checktotal.vbs

currTotal = 519
prevTotal = 321
if currTotal = 0 Then
 WScript.Echo “The total is zero.”
End If
if currTotal = prevTotal Then
 WScript.Echo “The totals are
 equal.”
End If
if currTotal <> 0 Then
 WScript.Echo “The total does NOT
 equal zero.”
End If
if currTotal <> prevTotal Then

86804c02.indd 2486804c02.indd 24 1/21/09 1:24:29 PM1/21/09 1:24:29 PM

25

 VBScript Essentials 2

 WScript.Echo “The totals are NOT
 equal.”
End If
if currTotal < 0 Then
 WScript.Echo “The total is less
 than zero.”
End If
if currTotal > 0 Then
 WScript.Echo “The total is
 greater than zero.”
End If
if currTotal <= prevTotal Then
 WScript.Echo “currTotal is less
 than or equal to prevTotal.”
End If
if currTotal >= 0 Then
 WScript.Echo “The total is
 greater than or equal to zero.”
End If

Output

The total does NOT equal zero.
The totals are NOT equal.
The total is greater than zero.
The total is greater than or equal

One other comparison operator you should learn about is the special operator Is. You use Is to
compare objects, such as buttons. If the objects are of the same type, the result of the comparison is
True. If the objects are not of the same type, the result of the comparison is False. You can test to
see if the object theButton references the VBScript object Button as follows:

Answer = theButton Is Button
If Answer = True Then
 WScript.Echo “theButton is equivalent to Button.”
Else
 WScript.Echo “theButton is NOT equivalent to Button.”
End If

You can also perform the comparison directly in an if statement:

If theButton Is Button Then
 WScript.Echo “theButton is equivalent to Button.”
Else
 WScript.Echo “theButton is NOT equivalent to Button.”
End If

86804c02.indd 2586804c02.indd 25 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

26

 Part I Getting Started with Windows Scripting

Performing operations on strings
The most common string operations you’ll want to perform are assignment and concatenation. You
assign values to strings using the equals sign, ensuring that the value is enclosed in double quota-
tion marks, such as:

aString = “This is a String.”

Concatenation is the technical term for adding strings together. Although you can use the + operator
to concatenate strings, the normal operator for string concatenation is the & operator. Using the &
operator, you can add strings together as follows:

custAddress = streetAdd & “ “ & cityState & “ “ & zipCode

Sometimes you may also want to display the value of a string in a message box. In such an instance,
you will use the & operator as well. For example:

aString = “I get it!”
WScript.Echo “The string value is: “ & aString

would display a dialog box with the message:

The string value is: I get it!

Conditional Statements
Traffic lights control the flow of traffic on the street. Conditional instructions control the flow of
instructions in your code.

Using If…Then
You use If statements to execute a set of instructions only when certain conditions are met. In
VBScript, If…Then structures follow this syntax:

If condition = True Then
 ‘Handle the condition
End If

or

If condition Then
 ‘Handle the condition
End If

86804c02.indd 2686804c02.indd 26 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

27

 VBScript Essentials 2

Note the use of the End If statement. This is what makes it possible to execute multiple commands
when a condition exists, such as:

If sum > 25 Then
 WScript.Echo “The sum exceeds the expected Result”
 ‘Reset sum to zero
 sum = 0
End If

You can control the execution of instructions based on a false condition as follows:

If condition = False Then
 ‘The condition is false
End If

or

If Not condition Then
 ‘The condition is false
End If

Using Else and ElseIf
You can extend the If…Then condition with Else statements. The Else statement provides an alter-
native when a condition that you specified is not met. The structure of an If…Then Else statement
is as follows:

If checkValue = “Yes” Then
 WScript.Echo “The condition has been met.”
Else
 WScript.Echo “The condition has not been met.”
End If

To add more conditions, you can use ElseIf statements. Each additional condition you add to the
code is then checked for validity. An example using ElseIf is shown in Listing 2-4.

LISTING 2-4

Working with ElseIf

testvalue.vbs

currValue = 5
If currValue < 0 Then
 WScript.Echo “The value is less than zero.”
ElseIf currValue = 0 Then
 WScript.Echo “The value is equal to zero.”

continued

86804c02.indd 2786804c02.indd 27 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

28

 Part I Getting Started with Windows Scripting

ElseIf currValue = 1 Then
 WScript.Echo “The value is equal to one.”
ElseIf currValue = 2 Then
 WScript.Echo “The value is equal to two.”
ElseIf currValue = 3 Then
 WScript.Echo “The value is equal to three.”
ElseIf currValue = 4 Then
 WScript.Echo “The value is equal to four.”
ElseIf currValue = 5 Then
 WScript.Echo “The value is equal to five.”
Else
 WScript.Echo “Value doesn’t match expected parameters.”
End If

Select Case
Checking for multiple conditions using ElseIf is a lot of work for you and for the VB interpreter.
To make things easier, use Select Case anytime you want to check more than three conditions.
Using Select Case, you can rewrite Listing 2-4 in a way that is clearer and easier to understand,
which you can see in Listing 2-5.

LISTING 2-5

Working with Select Case

multicond.vbs

currValue = 9
Select Case currValue
 Case currValue < 0
 WScript.Echo “The value is less than zero.”
 Case 0
 WScript.Echo “The value is equal to zero.”
 Case 1
 WScript.Echo “The value is equal to one.”
 Case 2
 WScript.Echo “The value is equal to two.”
 Case 3
 WScript.Echo “The value is equal to three.”
 Case 4
 WScript.Echo “The value is equal to four.”
 Case 5
 WScript.Echo “The value is equal to five.”
 Case Else

LISTING 2-4 (continued)

86804c02.indd 2886804c02.indd 28 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

29

 VBScript Essentials 2

 WScript.Echo “Value doesn’t match expected parameters.”
End Select

Output

Value doesn’t match expected parameters.

If you compare the ElseIf example and the Select Case example, you will see that the Select
Case example requires less code and has a simpler structure. You can apply this same structure
anytime you want to check for multiple conditions. Start the structure with the name of the variable
whose value you want to check. Here, you compare the value of userInput:

Select Case userInput

Afterward, you can check for specific conditions, such as:

Case < 0
 ‘less than zero
Case > 0
 ‘greater than zero
Case = 0
 ‘equal zero

or

Case “Yes”
 ‘value is yes
Case “No”
 ‘value is no

Use Case Else to specify statements that should be executed if no match is found in the specified
Case statements, such as:

Case Else
 WScript.Echo “Value doesn’t match expected parameters.”
 WScript.Echo “Please check your input again.”

Conditional controls and strings
When you perform string comparisons with conditional controls, pay particular attention to the let-
ter case. VBScript automatically performs case-sensitive comparisons. Because of this, a comparison
of “No” and “NO” returns False.

To avoid potential problems you should convert the string to upper- or lowercase for the compari-
son. Use lcase() to convert strings to lowercase. Use ucase() to convert strings to uppercase.
Listing 2-6 shows how these functions can be used with If…Then. You can also use these functions
with Select Case.

86804c02.indd 2986804c02.indd 29 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

30

 Part I Getting Started with Windows Scripting

LISTING 2-6

Changing the Case of a String

changecase.vbs

‘Setting variables
m = “No”
n = “NO”
If m = n Then
 WScript.Echo “Anything? Nope, I didn’t think so.”
End If
If lcase(m) = lcase(n) Then
 WScript.Echo “Values are equal when converted to lowercase.”
End If
if ucase(m) = ucase(n) Then
 WScript.Echo “Values are equal when converted to uppercase.”
End If

Output

Values are equal when converted to lowercase.
Values are equal when converted to uppercase.

Control Loops
Sometimes you want to repeatedly execute a section of code. In VBScript, you can do this in several
ways, including:

For Next■ looping

For Each■ looping

Do While■ looping

Do Until■ looping

While■ looping

For Next looping
VBScript For loops are very basic. You use VBScript For loops to execute a code segment for a spe-
cific count. The structure of For loops is as follows:

For Counter = startNum to endNum
 ‘add the code to repeat
Next

86804c02.indd 3086804c02.indd 30 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

31

 VBScript Essentials 2

The following example uses a For loop to initialize an array of 10 elements:

For i = 0 to 9
 myArray(i) = “Placeholder”
Next

After the For loop is executed, all 10 elements in the array are initialized to the value Placeholder.
Using the Step keyword, you can step through the counter at specific intervals. You can step by 2s
as follows:

For i = 0 to 20 Step 2
 myArray(i) = “Even”
Next

When you use a negative step value, you reverse the normal order of the counter. So instead of going
in ascending order, go in descending order, as in the following:

For i = 20 to 0 Step -1
 myArray(i) = “Unknown”
Next

For Each looping
With For Each loops, you iterate through each element in an object or array. For Each loops are
very similar to standard For loops. The key difference is that the number of elements in an object or
array determines the number of times you go through the loop. In Listing 2-7, you initialize an array
using a regular For loop and then display its values using a For Each loop.

LISTING 2-7

Using For Each Loops

foreach.vbs

‘initialize array
Dim myArray(9)

‘set array values
For i = 0 to 9
 myArray(i) = “Placeholder” & i
Next

‘display array values
For Each i IN myArray
 WScript.Echo i
Next

continued

86804c02.indd 3186804c02.indd 31 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

32

 Part I Getting Started with Windows Scripting

Output

Placeholder0
Placeholder1
Placeholder2
Placeholder3
Placeholder4
Placeholder5
Placeholder6
Placeholder7
Placeholder8
Placeholder9

As you can see, the basic syntax of a For Each loop is:

For Each element IN objArray
‘add code to repeat
Next

where element is the counter for the loop and objArray is the object or array you want to examine.

Using Exit For
With For and For Each loops, you’ll sometimes want to exit the loop before iterating through all of
the possible values. To exit a For loop ahead of schedule, you can use the Exit For statement. The
best place for this statement is within an If Then or If Then Else condition test, such as:

For Each i IN myArray
 WScript.Echo i

 If i = “Unknown” Then
 Exit For
 EndIf

Next

Using Do While loops
Sometimes you’ll want to execute a code segment while a condition is met. To do this, you will use
Do While looping. The structure of this loop is as follows:

Do While condition
 ‘add the code to repeat
Loop

LISTING 2-7 (continued)

86804c02.indd 3286804c02.indd 32 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

33

 VBScript Essentials 2

With Do While, the loop is executed as long as the condition is met. This means to break out of the
loop, you must change the condition at some point within the loop. Here is an example of a Do While
loop that changes the status of the condition:

Do While continue = True
 y = y + 1
 If y < 10 Then
 WScript.Echo “Y is less than 10.”
 ElseIf Y = 10 Then
 WScript.Echo “Y equals 10.”
 Else
 WScript.Echo “Exiting the loop.”
 continue = False
 EndIf
Loop

By placing the condition at the top of the loop, you ensure that the loop is only executed if the con-
dition is met. In the previous example, the loop won’t be executed at all if continue is set to False
beforehand. However, sometimes you want to execute the loop at least once before you check the
condition. To do this, you can place the condition test at the bottom of the loop, as in the following:

Do
 y = y + 1
 If y < 10 Then
 WScript.Echo “Y is less than 10.”
 ElseIf Y = 10 Then
 WScript.Echo “Y equals 10.”
 Else
 WScript.Echo “Exiting the loop.”
 continue = False
 EndIf

Loop While continue = True

Using Do Until loops
Another form of control loop is a Do Until loop. With Do Until, you execute a loop until a condi-
tion is met instead of while a condition is met. As with Do While, you can place the condition test at
the beginning or end of the loop. The following loop is executed zero or more times until the condi-
tion is met:

Do Until Answer = “No”
 ‘Add code to execute
 ‘Be sure to allow the condition to be changed
Loop

To ensure that the loop is executed at least once, use the following structure:

86804c02.indd 3386804c02.indd 33 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

34

 Part I Getting Started with Windows Scripting

Do
 ‘Add code to execute
 ‘Be sure to allow the condition to be changed
Loop Until Answer = “No”

Using Exit Do
Using Exit Do, you can exit a Do While and Do Until before a condition occurs. As with Exit For,
the best place for an Exit Do statement is within an If Then or If Then Else condition test, such as:

Do Until Answer = “No”
 ‘Add code to get answer
 ‘check to see if user wants to quit
 If Answer = “Quit” Then
 Exit Do
 End If
Loop

While…WEnd loops
The final type of control loop available in VBScript is a While…WEnd loop. With this type of loop,
you can execute a loop while a condition is met, as in the following:

While x < 10
 ‘Execute this code
 x = x+1
 WScript.Echo x
WEnd

With a While…WEnd loop, the condition can only be placed at the beginning of the loop.

Using Procedures
Procedures are used to handle routine operations. You can pass in arguments and return values. You
can even use Call to call a procedure if you want to. VBScript supports two types of procedures:

Functions:■ Procedures that return a value to the caller

Subroutines:■ Procedures that do not return a value to the caller

VBScript also supports a special type of subroutine called an event. Events occur when a
certain condition exists, such as when a key is pressed, and can also be simulated in the
code with method calls. We don’t discuss events in this book. You just don’t use them
much with Windows scripting.

TIPTIP

86804c02.indd 3486804c02.indd 34 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

35

 VBScript Essentials 2

Working with functions
Many different built-in functions are available in VBScript. In earlier examples, you’ve seen lcase(),
ucase(), and more. You can also create your own functions, which can perform many different
types of tasks. Yet all functions have one thing in common: They are designed to return a value.

The basic structure of a function declaration is:

Function functionName(arg1, arg2, …, argN)
 ‘Add your function code here.
End Function

As you can see, you declare the function, specify a name, and then set arguments that you want to
pass to the function. Afterward, you add statements the function should execute and then end the
function. When the function finishes executing, control returns to the caller and execution of the
script continues from there.

You can call a function using several different techniques. You can use the Call statement, such as:

Call getTotal()

You can call a function directly in an assignment, such as:

value = getTotal()

You can also call a function within a statement:

WScript.Echo “The name you entered is: “ & getUserName()

When there are no parameters to pass to the function, the parentheses are optional. This means you
can use the following:

userName = getUserName

To return a value from a function, assign a value to a variable with the same name as the function.
For example, if you create a function called getSum, you can return a value from the function as
follows:

Call getSum(3,4,2)
Function getSum(varA, varB, varC)
 total = varA + varB + varC
 getSum = total / 2
End Function

Typically, all variables initialized within functions are temporary and exist only within the scope
of the function. Thus, you can think of these variables as having a local scope. However, if you use
a variable that is initialized outside the function, that variable has global scope. In the following
example, you use a global variable in the function:

86804c02.indd 3586804c02.indd 35 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

36

 Part I Getting Started with Windows Scripting

sample = “Placeholder”
WScript.Echo test
Function test()
 test = sample
End Function

The output is:

Placeholder

Listing 2-8 creates a function called getName(). The function accepts no parameters and so none are
defined. A temporary variable called tempName is used to store input, and the function InputBox is
used to display an input prompt to users. Once the user enters a name, the Do While loop is exited
and the value the user entered is assigned to the function, allowing the value to be returned to the
calling statement. The result is that the user input is echoed after the text “You entered:”.

LISTING 2-8

Using Functions in a Script

testfunction.vbs

WScript.Echo “You entered: “ & getName()

Function getName()
 Dim tempName
 tempName = “”
 Do While tempName = “”
 tempName = InputBox(“Enter your name:”)
 Loop
 getName = tempName
End Function

When the script runs, the user is prompted with an input dialog box. If “William Stanek” is
entered, the output is:

You entered: William Stanek

InputBox is a built-in function for getting user input. VBScript also supports message
boxes with graphical buttons that can be selected. You learn about both of these fea-
tures in Chapter 7.

You can break out of a function and return to the caller using the Exit Function statement. This
statement is useful when a condition has been met and you want to return to the calling statement
without finishing the execution of the function.

NOTENOTE

86804c02.indd 3686804c02.indd 36 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

37

 VBScript Essentials 2

Working with subroutines
A subroutine is a procedure that does not return a value to the caller. Other than this, subroutines
behave almost exactly like functions. Variables initialized within subroutines have local scope. You
can call subroutines and pass in arguments. You can even exit the subroutine when a condition has
been met, and you do this with Exit Sub.

Following this procedure, the basic structure of a subroutine is:

Sub subroutineName(argument1, argument2, …, argumentN)
 ‘Add subroutine code here.
End Sub

You can use a subroutine in your code as follows:

Sub showError(errorMessage,title)
 MsgBox “Input Error: “ & errorMessage,, title
End Sub

MsgBox is listed as a function in most documentation, but it is actually a built-in subrou-
tine for displaying messages. Also, the double comma used in the example isn’t a mistake.
This is how you enter a null value for a parameter that you don’t want to use. You learn
about message boxes in Chapter 6.

In the example, showError is the name of the subroutine. The subroutine expects one parameter to
be passed in, and this parameter holds an error message to display to the user. You can call this sub-
routine in several different ways. You can use a Call statement, such as the following:

Call showError “Input is invalid.”,”Error”

or you can call the subroutine directly:

showError “Input is invalid.”,”Error”

When you call subroutines, you shouldn’t use parentheses to enclose parameters.
Parentheses are only used with functions.

When there are no parameters to pass to the subroutine, the parentheses are optional as well, such as:

Call mySub

However, subroutines cannot be used in expressions. For example, the following call causes an error:

test = showError()
Sub showError(errorMessage)
 MsgBox “Input Error: “ & errorMessage
End Sub

NOTENOTE

NOTENOTE

86804c02.indd 3786804c02.indd 37 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

38

 Part I Getting Started with Windows Scripting

Summary
As you’ve seen in this chapter, VBScript has much to offer programmers, administrators, and power
users. VBScript provides extensive functions, procedures, control flow statements, and expressions.
VBScript also provides top-notch array-handling capabilities and multidimensional arrays. Beyond
the basics, you’ll find good error-handling capabilities, routines for manipulating strings, and solid
support for standard mathematical functions. All of these features make VBScript a good choice as
your preferred scripting language.

86804c02.indd 3886804c02.indd 38 1/21/09 1:24:30 PM1/21/09 1:24:30 PM

39

JScript is Microsoft’s version of JavaScript. If you are familiar with Java
or JavaScript, you’ll be able to jump right into the swing of things with
JScript. Many advanced programmers prefer JScript to VBScript. JScript

 offers more features and more control over many elements of your
scripts. More features and controls also mean that, in some ways, JScript is
more complex than VBScript.

Variables and Data Types
Like VBScript, JScript allows you to work with constants and variables.
Constants are distinguished from variables in that their values do not
change within the program.

Variables and naming conventions
JScript variable names are case-sensitive, which means valueA, ValueA,
and VALUEA all refer to different variables. Variable names can include
alphabetic and numeric characters as well as the underscore (_) character,
but must begin with an alphabetic character or the underscore character.
Further, variable names cannot include spaces or punctuation characters.
Using these variable-naming rules, the following are all valid names for
variables:

myvar
user_name
_varA
theAnswer

JScript Essentials

IN THIS CHAPTER
Variable naming conventions
and data types

Using strings, comments,
and arrays

Working with operators

Using conditionals and
control loops

Creating and calling functions

86804c03.indd 3986804c03.indd 39 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

40

 Part I Getting Started with Windows Scripting

Unlike VBScript, the case-sensitivity rule applies to all objects in JScript. This means you can’t call
WScript using anything but WScript and that all of the following statements result in errors:

wscript.echo(“This is a test!”)
Wscript.echo(“This is a test!”)
WSCRIPT.echo(“This is a test!”)

As with VBScript, variables can have a global or local scope. By default, all variables have a global
scope, meaning they can be accessed anywhere in the script. Variables declared within a function,
however, cannot be accessed outside the function. This means the variables have a local scope.

In JScript, variables are generally initialized with the var keyword, such as:

var theAnswer = “Invalid”

But you don’t have to use the var keyword all the time. The var keyword is optional for global
variables but mandatory for local variables. We talk more about functions in the section “Using
Functions” later in this chapter.

Working with data types
Much like VBScript, JScript assigns a data type to variables based on their contents. This means you
don’t have to worry about assigning a specific data type. That said, you should learn how to use the
basic data types shown in Table 3-1.

TABLE 3-1

Data Types in JScript
Data Type Description Example

Undefined No value assigned; a variable that has been initialized but
doesn’t have a value has this data type.

Var resultA

Boolean A logical value; either true or false. aBool = true

Number An integer or floating-point value. theSum = 202.5

String Characters within single or double quotation marks. theString = “Yes!”

Null The value of an undefined variable. myVar = null

JScript automatically converts between data types whenever possible, which eliminates most variable
conflicts. However, if you try to add a string variable to a numeric variable type, you will usually have
problems. You will also have problems if JScript expects a string and you reference a numeric value.
You’ll find solutions for these problems in the next section “Using Strings”.

86804c03.indd 4086804c03.indd 40 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

41

 JScript Essentials 3

With numerical data, JScript supports base 8, base 10, and base 16. Numbers with a leading zero are
considered to be octal — base 8. Numbers with the 0x prefix are considered to be hexadecimal —
base 16. All other number formats are considered to be standard decimal numbers — base 10.
Examples of numbers in these formats include:

Decimal:■ 12, 126, 8

Octal:■ 032, 016, 061

Hexadecimal:■ 0x3D, 0xEE, 0xA2

JScript does not support base 2 (binary) but does support bitwise operators and functions
that can perform binary operations.

Using Strings
Because JScript automatically types variables, you do not need to declare a variable as a string. Yet in
order for JScript to recognize a variable as a string, you must use single or double quotation marks to
enclose the value associated with the variable, such as:

myString = “This is a String.”

When you work with strings, the two most common operations you’ll perform are concatenation
and conversion. These topics are covered in the sections that follow.

Concatenating strings
In your scripts, you will often need to add strings together. For example, if a user enters his or her full
name as three separate variables representing the first, middle, and last names, you may want to add
these strings together. To do this, you will use the + operator to concatenate the strings, such as:

userName = firstName + “ “ + middle + “ “ + lastName

Keep in mind that if you enclose numeric values within quotation marks, JScript still interprets the
value as a string. This can lead to strange results when you try to add values together. As shown in
the following example, if you add variables that contain strings, you will not get the desired results:

varA = “25”
varB = “32”
varC = 8
total1 = varA + varB //the result is “2532” not 57.
total2 = varB + varC //the result is “328” not 40.

Now that you know not to enclose numeric values in quotation marks, you probably will not have
problems with strings and variables in your code. However, this problem can also occur when you
accept user input and try to perform calculations based on user input, because user input is inter-
preted as a string unless you tell JScript otherwise by converting the string to a number.

NOTENOTE

86804c03.indd 4186804c03.indd 41 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

42

 Part I Getting Started with Windows Scripting

Converting to and from strings
As with VBScript, JScript supports built-in functionality for converting data types but this function-
ality isn’t implemented in the same way. In JScript, you use method calls more often than function
calls. Think of a method as a predefined function that is related to an object. Normally, to call a
method, you reference the object by name followed by a period, and then the name of the method
you are invoking. For example, to convert a number to a string, use the toString() method of a
variable or object, such as:

varA = 900
varB = varA.toString() // varB is set to a string value of “900”

However, some built-in methods don’t require an object reference. For example, to convert string val-
ues to numbers, you will use one of two built-in methods: parseInt() or parseFloat(). The par-
seInt() method converts a string to an integer. The parseFloat() method converts a string to a
floating-point number. These methods can be used without referencing an object, as in the following:

varA = “27.5”
varB = “15”
theFloat = parseFloat(varA) //theFloat is set to 27.5
theInt = parseInt(varB) //theInt is set to 15

Using Comments
JScript supports two types of comments:

Single-line comments that begin with a double slash (■ //):

//This is a comment

Multiple-line comments that begin with the ■ /* delimiter and end with the */ delimiter:

/* This is a comment */

If you have a begin-comment delimiter, you must have a matching end-comment delimiter. JScript
interprets everything between the begin- and end- comment tags as a comment.

Using Arrays
Compared to VBScript, JScript arrays are very simple. JScript arrays can be only a single dimension
and are initialized with the new Array() statement. As with VBScript, arrays always begin at 0 and
end at the number of data points in the array minus 1. Following this, an array with six data points
can be initialized as follows:

favBooks = new Array(5)

86804c03.indd 4286804c03.indd 42 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

43

 JScript Essentials 3

If the size of your array is determined by user input or otherwise subject to change, you can initial-
ize the array without specifying its size, such as:

theArray = new Array()

Unlike VBScript, however, you don’t have to set the size of the array before using it. You simply
assign values to the array.

After you initialize an array, you can insert values for elements in the array. The most basic way to
do this is with individual statements that reference the array element by its index. Listing 3-1 shows
an example of setting values for the cities array.

LISTING 3-1

Creating an Array and Assigning Values

testarray.js

favBooks = new Array(5)
favBooks[0] = “Grapes Of Wrath”
favBooks[1] = “All Over But The Shouting”
favBooks[2] = “On Walden’s Pond”
favBooks[3] = “Childhood’s End”
favBooks[4] = “Life On the Mississippi”
favBooks[5] = “Dune”

After you set values for array elements, you access those values by referencing the element’s index,
such as:

theValue = favBooks[2]

Here, theValue is set to On Walden’s Pond.

Another way to populate an array with values is to set the values directly in the array declaration.
Following is how you would do this for the favBooks array:

favBooks = new Array(“Grapes of Wrath”,
“All over But the Shouting”,
“On Walden’s Pond”,
“Childhood’s End”,
“Life on the Mississippi”,
“Dune”)

86804c03.indd 4386804c03.indd 43 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

44

 Part I Getting Started with Windows Scripting

JScript Operators
JScript supports many different types of operators. You’ll find arithmetic operators, comparison
operators, assignment operators, and bitwise operators. You’ll also find logical operators, such as
&& and ||.

Arithmetic operators
JScript’s arithmetic operators are summarized in Table 3-2. The syntax is nearly identical in every case
to VBScript, so there are few surprises.

TABLE 3-2

Arithmetic Operators
Operator Operation

* Multiplication

/ Division

+ Addition

- Subtraction

% Modulus

= Assignment

++ Increment

-- Decrement

You must pay special attention to the ++ and -- operators, which are called unary operators.
Typically, if you want to increment a value by one, you can write out the statement as follows:

A = A + 1

Alternately, you can use the increment operator (++), as follows:

++A

The result of the previous statement is that A is incremented by one. Similarly, you can decrease the
value of A using the decrement operator (--), such as:

--A

86804c03.indd 4486804c03.indd 44 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

45

 JScript Essentials 3

When using the increment or decrement operator in a statement, the placement of the operator is
extremely important. The result of this statement is that A and B are set to 6:

B = 5
A = ++B

The JScript interpreter reads the statement as “add 1 to B and store the result in A.” If you change the
position of the increment operator as follows:

A = B++

the JScript interpreter reads the statement as “set A equal to B, and then add 1 to B.” The result is that
A is set to 5 and B is incremented to 6.

Table 3-3 lists the precedence order for operators in JScript. As the table shows, negation operators
have the highest precedence order and are always calculated first.

TABLE 3-3

Precedence of Arithmetic Operators
Order Operation

1 Negation (–)

2 Multiplication (*) and Division (/)

3 Modulus (%)

4 Addition (+) and Subtraction (-)

Comparison operators
Comparison operators are used to check for certain conditions, such as whether A is equal to B.
Generally, you will use a control flow, such as conditional looping, in conjunction with your com-
parison. For example, if A is equal to B, then you will perform a specific task. If A is not equal to B,
then you will perform a different task.

When performing comparisons, you are often comparing objects as well as numeric and textual data.
To see if a variable is equal to another variable, you will use the comparison operator (==). This oper-
ator returns a result that is true if the objects are equivalent, false if they are not equivalent. Here is
an example of code that checks for equality:

if (aValue == varA) {
 //The variables are equal
}

86804c03.indd 4586804c03.indd 45 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

46

 Part I Getting Started with Windows Scripting

To see if variables are not equal, use the inequality operator. Here is an example of code that checks
for inequality:

if (aValue != varA) {
 //The variables are not equal
}

To see if one variable is less than or greater than another variable, use the less than and greater than
operators. You can check for values greater than or less than a variable as follows:

if (aValue < varA) {
 //aValue is less than varA
}
if (aValue > varA) {
 //aValue is greater than varA
}

Another type of comparison you can perform will tell you whether a variable is less than or equal to a
value. Likewise, you can see whether a variable is greater than or equal to a value. Here is an example
of this type of comparison:

if (theValue <= varA) {
 //theValue is less than or equal to varA
}
if (theValue >= 0) {
 //theValue is greater than or equal to varA
}

Table 3-4 summarizes the comparison operators available in JScript. As you’ve seen from the exam-
ples in this section, JScript and VBScript support a slightly different set of comparison operators.
JScript uses a separate equality operator (==) and also has a different inequality operator (!=).

TABLE 3-4

Comparison Operators in JScript
Operator Description

== Equality; evaluates to true if the values or objects are equal.

!= Inequality; evaluates to true if the values or objects are not equal.

< Less than; evaluates to true if value1 is less than value2.

<= Less than or equal to; evaluates to true if value1 is less than or equal to value2.

> Greater than; evaluates to true if value1 is greater than value2.

>= Greater than or equal to; evaluates to true if value1 is greater than or equal to value2.

86804c03.indd 4686804c03.indd 46 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

47

 JScript Essentials 3

Assignment operators
Assignment operators are useful for assigning a value to a named variable. Some assignment operators,
such as the equals sign (=), are used in just about every statement you will write. Other assignment
operators, such as divide by value, are used rarely — if at all.

Like the increment and decrement operators, you can use assignment operators to save some typing.
Instead of typing

a = a +3

you can type

a += 3

Although both statements perform the same operation, the second statement does so with less typ-
ing. Saving a few keystrokes becomes increasingly important in long scripts and in a series of repeti-
tive statements. Assignment operators are summarized in Table 3-5.

TABLE 3-5

Assignment Operators
Operator Descriptions

+= Increments (adds and assigns value)

-= Decrements (subtracts and assigns value)

*= Multiplies and assigns value

/= Divides and assigns value

%= Performs modulus arithmetic and assigns value

Logical operators
Logical operators are great for performing several comparisons within a control flow. For example, if
you want to check whether A is greater than B, and C is less than B before you perform a calculation,
you can use a logical operator.

Like comparison operators, logical operators return either true or false. Generally, if the operation
returns true, you can perform a set of statements. Otherwise, you can skip the statements or per-
form other statements.

The most commonly used logical operators are logical And (&&) and logical Or (||). These operators
compare two Boolean expressions, the results of comparison operators, or other logical expressions
to produce a Boolean value, which can be true or false. The logical And returns a true value only

86804c03.indd 4786804c03.indd 47 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

48

 Part I Getting Started with Windows Scripting

when both expressions being compared return a true value. The logical Or returns a true value
when either or both expressions return a true value.

Another logical operator available in JScript is Not (!). You will use the Not operator just as you do
the keyword Not in VBScript. Listing 3-2 shows how logical operators can be used in your scripts.

LISTING 3-2

Using Logical Operators

compare.js

varA = 12
varB = 5
varC = 6
varD = 2

if (varA > varC && varB < varD) {
 //evaluates when the results of both tests are true
 WScript.Echo(“Both tests are true.”)
}
if (varA > varB || varC < varB) {
 //evaluates when at least one side is true
 WScript.Echo(“At least one side is true.”)
}
if (!(varA <= varB)) {
 //evaluates when varB is less than varA
 WScript.Echo(“Less than.”)
}

OutPut

At least one side is true.
Less than.

Table 3-6 summarizes the available logical operators.

TABLE 3-6

Logical Operators
Operator Operation

&& Logical And

|| Logical Or

! Logical Not

86804c03.indd 4886804c03.indd 48 1/21/09 1:24:45 PM1/21/09 1:24:45 PM

49

 JScript Essentials 3

Bitwise operators
Bitwise operators are used to perform binary math. There is little use for binary math in JScript and
you will probably never need to use JScript’s bitwise operators. Just in case, however, the bitwise
operators are summarized in Table 3-7.

TABLE 3-7

Bitwise Operators
Operator Description

& Bitwise And; returns 1 if both bits compared are 1.

| Bitwise Or; returns 1 if either bit compared is 1.

^ Bitwise Or; returns 1 only if one bit is 1.

~ Bitwise Not; turns zeros to ones and ones to zeros.

<< Shift Left; shifts the values left the number of positions specified by the operand on the right.

>> Shift Right; shifts the values right the number of positions specified by the operand on the right.

>>> Zero Fill Shift Right; shifts the values right; fills the bits with zeros from the left.

Conditional Statements
When you want to execute a set of instructions only if a certain condition is met, you can use if or
if…else structures. Unlike VBScript, JScript does not support elseif statements.

Using if
You can use if statements to control execution based on a true or false condition. The syntax for
JScript if statements is a bit different than you are used to. Note the use of parentheses and curly
brackets in the following example that tests for a true condition:

if (choice = “Y”) {
 //then condition is true and choice equals Y
 //execute these statements
}

You can also control the execution of instructions based on a false condition. To do this, use the !
operator and add an extra set of parentheses, such as:

if (!(choice = “Y”)) {
 //then condition is false and choice doesn’t equal Y
 //execute these statements
}

86804c03.indd 4986804c03.indd 49 1/21/09 1:24:46 PM1/21/09 1:24:46 PM

50

 Part I Getting Started with Windows Scripting

Using if…else
You can extend if statements with the else statement. The else statement provides an alternative
when a condition you specified is not met. The structure of an if…else condition is as follows:

if (choice=”Y”) {
 //condition is true and choice equals Y
 //execute these statements
}
else {
 //condition is false and choice doesn’t equal Y
 //execute these statements
}

Control Flow with Looping
Sometimes you want to repeatedly execute a section of code. You can do this several ways in JScript.
You can use:

for■ and for in

while■ and do while

switch■ case

Using for loops
Using for loops in your code is easy. The following example uses this structure to initialize an array
of ten elements:

for (x = 0; x < 10; x++) {
 myArray(x) = “Test”
}

This for loop initializes a counter to zero, and then sets the condition that the loop should continue
as long as x is less than 10. During each iteration of the loop, the counter is incremented by 1. When
the loop finishes, all ten elements in the array are initialized to the value Placeholder. The struc-
ture of a for loop in JScript is as follows:

for (initialize counter; condition; update counter) {
 code to repeat
}

Using for in loops
JScript’s for in loops work much like VBScript’s For Each loops. Both looping techniques are
designed to iterate through each element in an object or array. They differ only in the syntax used.

86804c03.indd 5086804c03.indd 50 1/21/09 1:24:46 PM1/21/09 1:24:46 PM

51

 JScript Essentials 3

Listing 3-3 shows how you can examine the elements in an array using a for in loop. Note that
with JScript, you have to index into the array even when you are in the for in loop.

LISTING 3-3

Checking Values in an Array

arrayvalues.js

currArray = new Array()

for (x = 0; x < 10; x++) {
 currArray[x] = “Initial”
}

counter = 0
for (i in currArray) {
 WScript.Echo(“Value “ + counter + “
 equals: “ + currArray[i])
 counter++

}

Output

Value 0 equals: Initial
Value 1 equals: Initial
Value 2 equals: Initial
Value 3 equals: Initial
Value 4 equals: Initial
Value 5 equals: Initial
Value 6 equals: Initial
Value 7 equals: Initial
Value 8 equals: Initial
Value 9 equals: Initial

Using while and do while loops
JScript’s while loops are used much like the While loops in VBScript. To execute a code segment
while a condition is met, you will use while looping. The structure of a loop that checks for a true
condition is as follows:

while (condition) {
 //add code to repeat
}

The structure of a loop that checks for a false condition is as follows:

while (!condition) {
 /add code to repeat
}

As long as the condition is met, the loop is executed. This means to break out of the loop, you must
change the condition at some point within the loop.

You can put the condition check at the bottom of the loop using a do while construct, such as the
following:

do {
 //add code to repeat
} while (condition)

86804c03.indd 5186804c03.indd 51 1/21/09 1:24:46 PM1/21/09 1:24:46 PM

52

 Part I Getting Started with Windows Scripting

Using continue and break statements
When you are working with conditional looping, you will often want to break out of a loop or con-
tinue with the next iteration of the loop. In JScript, the break statement enables you to end the exe-
cution of a loop, and the continue statement enables you to begin the next iteration of a loop
without executing subsequent statements. Whenever your script begins the next iteration of the
loop, the condition is checked and the counter is updated as necessary in for loops.

Using switch case
JScript’s switch case is the functional equivalent of VBScript’s Select Case. To see how similar
the structures are, compare Listing 3-4 with Listing 2-5. As you’ll see, these listings check for simi-
lar information. However, JScript doesn’t support the less-than operation used with VBScript, so we
omitted this from the example. JScript doesn’t support any other case either, such as VBScript’s
Case Else. Instead, JScript supports a default case.

LISTING 3-4

Working with Switch Case

case1.js

currValue = 5
switch (currValue) {
 case 0 :
 WScript.Echo(“The value is equal to zero.”)
 case 1 :
 WScript.Echo(“The value is equal to one.”)
 case 2 :
 WScript.Echo(“The value is equal to two.”)
 case 3 :
 WScript.Echo(“The value is equal to three.”)
 case 4 :
 WScript.Echo(“The value is equal to four.”)
 case 5 :
 WScript.Echo(“The value is equal to five.”)
 default :
 WScript.Echo(“Value doesn’t match expected parameters.”)
}

Output

The value is equal to five.
Value doesn’t match expected parameters.

86804c03.indd 5286804c03.indd 52 1/21/09 1:24:46 PM1/21/09 1:24:46 PM

53

 JScript Essentials 3

If you run Listing 3-4, you learn another interesting fact concerning switch case — JScript can
execute multiple case statements. In this case, the script executes case 5 and the default. To pre-
vent JScript from executing multiple case statements, you need to exit the switch case using the
break keyword, as shown in Listing 3-5.

LISTING 3-5

Revised Switch Case Example

case2.js

currValue = 5
switch (currValue) {
 case 0 :
 WScript.Echo(“The value is equal to zero.”)
 break
 case 1 :
 WScript.Echo(“The value is equal to one.”)
 break
 case 2 :
 WScript.Echo(“The value is equal to two.”)
 break
 case 3 :
 WScript.Echo(“The value is equal to three.”)
 break
 case 4 :
 WScript.Echo(“The value is equal to four.”)
 break
 case 5 :
 WScript.Echo(“The value is equal to five.”)
 break
 default :
 WScript.Echo(“Value doesn’t match expected
 parameters.”)
}

Output

The value is equal to five.

Using Functions
In JScript, functions are the key structure you use to create customizable procedures. JScript doesn’t
support subroutines or goto. As you will quickly discover, JScript functions work much like
VBScript functions and, again, the main difference is syntax.

86804c03.indd 5386804c03.indd 53 1/21/09 1:24:46 PM1/21/09 1:24:46 PM

54

 Part I Getting Started with Windows Scripting

Function structure
In JScript, the basic structure of a function is:

function functionName(parameter1, parameter2, …, parameterN) {
 //Insert function code here.
}

You can use functions in your code as follows:

function getInput() {
 var userInput
 var timeOut = 10; // set wait time
 var title = “Getting Input”; // set title
 var button = 4; // Yes/No
 // create object
 var wshell = WScript.CreateObject(“WScript.Shell”);
 userInput = wshell.Popup (“Do you want to continue?”,
 timeOut,title,button)

 return userInput
}

Note the use of Popup() in the example. Unlike VBScript, none of the standard JScript
dialog or input boxes are available in Windows Script Host and as a result, Popup() is the
only way to display messages and get user input. For more information on Popup()s, see
Chapter 6.

In the example, getInput is the name of the function. Because the function accepts no parameters,
none are defined after the function name. A temporary local variable called userInput is created to
store the user’s input. Once the user enters a value, the while loop is exited. This value is then
returned to the calling statement. Generally, all functions return one or more values using the
return statement.

Calling functions
Calling a function in JScript is just like calling a function in VBScript. You can call a function as
follows:

getInput()

or

Input = getInput()

When you call a function, you can pass in parameters as well. To better understand how parame-
ters are used, we’ll create a function that converts a time entry to seconds. This function, called
numSeconds(), accepts four parameters: xYears, xDays, xHours, and xMinutes. Because these

NOTENOTE

86804c03.indd 5486804c03.indd 54 1/21/09 1:24:46 PM1/21/09 1:24:46 PM

55

 JScript Essentials 3

parameters are passed directly to the function, you do not need to create temporary variables to
hold their values within the function. The code for the function numSeconds () is as follows:

function numSeconds(xYears, xDays, xHours, xMinutes) {
 var count
 tempSeconds = ((365 * xYears + xDays) * 24 + xHours) * 3600 + 60@@lb
 * xMinutes
 return count
}

When you call this function, the parameters are expected and must be entered in the order defined.
Here is a statement that calls the numSeconds() function:

theSeconds = numSeconds(5,25,10,30)

Summary
JScript provides an alternative to VBScript that is often preferred by people with a background in
programming. In JScript, you’ll find numerous functions, procedures, and control flow statements.
You’ll also find good support for arrays with access to multidimensional arrays through VBScript;
extensive sets of ready-to-use objects with methods, properties, and events; strong support for math-
ematical functions (with many more functions supported than in VBScript); and a very dynamic
framework for handling errors.

86804c03.indd 5586804c03.indd 55 1/21/09 1:24:46 PM1/21/09 1:24:46 PM

86804c03.indd 5686804c03.indd 56 1/21/09 1:24:46 PM1/21/09 1:24:46 PM

57

L et’s start by getting the obvious thing about PowerShell out of the
way. It is a shell. The UNIX world has had a number of shells (the C
shell, Korn shell, BASH, and so on), but the Microsoft world has a

single shell, COMMAND.COM in the DOS-based operating systems, and its
successor CMD.EXE in the NT-based ones. The term “shell” refers to a piece
of software that wraps around the operating system kernel. The shell is an
environment where commands can be entered to run other programs and
text output from those programs can be displayed. Some basic tasks might
be built into the shell itself—such as getting a listing of files in the current
directory, copying and deleting files, and so on. With the Microsoft shells,
it is sometimes difficult to know which commands are built into the shell
(such as copy) and which are separate utility programs (such as Xcopy).

Shell Fundamentals
Most shells include some kind of scripting language; at their simplest, these
are simply lists of commands that could have been typed in the interactive
shell, but are executed as a batch task. The Microsoft shells have had batch
files from the early days of DOS and although each new release has added
some features, the language has remained largely unchanged for more than
20 years. PowerShell aims to give Windows a modern shell.

The final feature of most shells is the capability to link commands
together—the mechanism is normally called a “pipe”. Unix uses the | sign
to link the output of one to the input of the next. It might be more accurate
to say that DOS copied the idea of “standard output”—the Console screen
by default, and the > symbol redirected standard output to a file. Both DOS
and UNIX also had the idea of standard input—the Console keyboard by

PowerShell Fundamentals

IN THIS CHAPTER
Introducing the structure of
PowerShell, and how it can be
extended

Understanding the different
kinds of PowerShell commands

Using PowerShell variables

Working with Objects in
PowerShell

Using Loops and control flow
in PowerShell

86804c04.indd 5786804c04.indd 57 1/21/09 1:24:59 PM1/21/09 1:24:59 PM

58

 Part I Getting Started with Windows Scripting

default, and the < symbol redirected input from a file. When DOS first implemented the pipe it was
simply in the form:

Command1 > ~number.tmp
Command2 < ~number.tmp

The most commonly used pipe command in COMMAND.COM, and probably in CMD.EXE
was ¦ more.

This was commonly used in the form:

Type filename ¦ more

although the form:

More < filename

would have been more efficient and needed less typing.

You will see later in this chapter how PowerShell exploits the pipe to a much greater degree than
other shells, and in later chapters you will see the things you can do with scripts. The first experi-
ence most people will have with PowerShell is entering simple commands. As you would expect,
you can start a shell and enter:

Notepad myFile.Txt

You can use familiar commands to start editing a text file, or to manipulate files and folders, for
example: MD, Copy, Del, Dir, Type. If you come from a UNIX background you’ll find commands
such as ls, cat, and cp also work, and you shall see how it is that PowerShell supports multiple
names for the same task.

PowerShell Aliases
PowerShell understands several different kinds of commands:

External programs, such as Format, Xcopy, Notepad, and so on■

Scripts, analogous to batch files, VBScript files, or UNIX shell scripts■

Cmdlets■

Functions and filters■

Aliases■

Let’s deal with aliases first.

86804c04.indd 5886804c04.indd 58 1/21/09 1:24:59 PM1/21/09 1:24:59 PM

59

 PowerShell Fundamentals 4

In PowerShell, if you enter the command Get-Alias it will list about 100 predefined aliases, most
of which are alternative names for Cmdlets. This shows that some familiar commands from CMD or
from UNIX are aliased into PowerShell Cmdlets.

Aliases Definitions

Copy, CP Copy-Item

Dir, ls Get-ChildItem

Cat, type Get-Content

Move Move-Item

Rm, rmdir, erase, del ,rd Remove-Item

Chdir, Cd Set-Location

There are several things to note here. First, PowerShell Cmdlets are usually in the form:

Verb-Noun

Another PowerShell command, Get-Command, takes –Verb or –noun switches, so the command:

Get-Command –verb get

will give a list of all the commands that start with get-.

This is important because it enforces consistency. If you think about different ways in Windows that
you might get information or stop something you’ll understand that there is a lot of vocabulary to
memorize. Stopping a service might use the Net command with a stop parameter, stopping a process
uses the TaskKill command, and stopping a computer uses the shutdown command. PowerShell
tries to use standard verbs throughout.

Another thing to note is that you can define your own aliases. For example, if you use notepad.exe
to edit your files, you could define an alias N for notepad like this:

Set-Alias –Name N –value notepad

There is nothing to stop you from redefining aliases; for example, you could delete the alias for CD
and re-create it as an alias for Push-Location. So each CD operation stacks the previous direc-
tory. Another alias, say CD-, could be defined for Pop-Location, taking you back to the previous
directory.

Finally, aliases are very useful at the command line to save typing. For example the percent (%) sign
is an alias for the Cmdlet ForEach-Object, and the Set-Alias Cmdlet has its own alias SAL. But
when you write scripts, using aliases does make them harder to maintain, so try to use the full com-
mand names where possible. Similarly the parameters passed at the command line do not need to be
specified in full; Cmdlets (and user written functions and filters) can accept parameters by position

86804c04.indd 5986804c04.indd 59 1/21/09 1:24:59 PM1/21/09 1:24:59 PM

60

 Part I Getting Started with Windows Scripting

as well as by name, and when names are specified they only need to be long enough to be unambigu-
ous. The Set-Alias command can be re-written as:

SAL n notepad

The second way of writing the command needs a better understanding of PowerShell than the first.
As a best practice when writing code that you will have to go back to or others will need to read, use
the full name and name the parameters.

It’s also worth noting at this early stage that while older command-line tools use a mixture of the /
and - signs to indicate parameters and switches, PowerShell uses the – sign throughout.

Cmdlets, Snap-ins, and Providers
At the beginning of the last section, you saw that PowerShell commands divide up into external pro-
grams, aliases, user-written commands, and Cmdlets.

Cmdlets are analogous to the built-in commands in CMD.EXE or COMMAND.COM. There, the func-
tionality of DIR, for example, is provided by code in the command processor itself. By contrast,
PowerShell can be broken down into multiple parts. Commands do not need to be run in the
PowerShell command window—the PowerShell engine can be invoked separately from the host
window so that, for example, the management console for Microsoft Exchange or a tool such as
Quest’s Power Gui (see www.powerGUI.org) can invoke the engine without ever showing the com-
mand-line host. PowerShell takes this modularity a stage further because the Cmdlets are not built
into the engine, but are provided in a series of snap-ins. PowerShell V1 provides five snap-ins:

Microsoft.PowerShell.Core■

Microsoft.PowerShell.Host■

Microsoft.PowerShell.Management■

Microsoft.PowerShell.Security■

Microsoft.PowerShell.Utility■

The previews of PowerShell V2 have included additional snap-ins.

Snap-ins are .NET DLL files that have been registered with the system. You can check which snap-
ins are registered but not loaded with the following command:

Get-PSSnapin -Registered

It is worth noting that some install routines register their snap-in only for the 32 bit or for the 64 bit
version of PowerShell; if you need to register the DLL manually, it is a one-off task that you can do
with the commands:

C:\Windows\Microsoft.NET\Framework\v2.0.50727\InstallUtil.exe “<PathToDll>”
C:\Windows\Microsoft.NET\Framework64\v2.0.50727\InstallUtil.exe “<PathToDll>”

86804c04.indd 6086804c04.indd 60 1/21/09 1:24:59 PM1/21/09 1:24:59 PM

61

 PowerShell Fundamentals 4

The snap-ins’ design means that the set of Cmdlets in PowerShell is completely extensible. For exam-
ple, PowerShell V1 does not have a Cmdlet to send mail. However, when a group of PowerShell users
put together the PowerShell Community Extensions (www.codePlex.com/PSCX) one of the Cmdlets
in their DLL was Send-SMTPmail. Similarly PowerShell doesn’t have any built-in understanding of
Exchange 2007—the Exchange group in Microsoft provided the snap-in support for their product,
and other teams have followed. Snap-ins follow a simple template, which developers can download
from MSDN, and so it is easy to take existing code for a task and re-package it as one or more
Cmdlets that can be loaded from a snap-in.

PowerShell encourages developers to be consistent. Not only are parameters always prefixed with
the – sign but the format Verb-Noun is standardized, with developers encouraged to stick to the
existing verbs (for example, using NEW rather adding Create). In addition, it defines a standard way
for all snap-ins to provide help, so that help maintains the same format as the range of Cmdlets is
extended. New-PsDrive -? or Del -? will return help, as will Get-Help newPsDrive or
Get-Help Del.

Get-Help * will provide a list of help topics.

PowerShell’s startup files determine which snap-ins are loaded, and these are covered in detail later.

Snap-ins do more than add Cmdlets. They can also add providers. Providers allow PowerShell to see
drives so, for example, there is a file system provider that enables PowerShell to see the first hard
disk partition as C: and so on. This idea is extended with additional providers that give access to
aliases, environment variables, PowerShell variables, functions, the registry, and the Certificate store
as though they were drives. All of these providers are implemented in the Microsoft.PowerShell
.Core snap-in, except for the Certificate one, which is implanted in the Microsoft.PowerShell
.Security snap-in. Each of the providers enables one or more drives so you can set the current
location to the HKEY_CURRENT_USER branch of the registry with the command:

CD HKCU:

 (Remember that CD is an alias for Set-Location.) Then you can manipulate registry items in the
same way that you would manipulate other files.

Similarly, to see the functions that are currently defined in PowerShell you can use:

Dir Function:

Or, to delete the CD alias before re-defining it you can use the following:

Del Alias:CD

The PowerShell command Get-PsDrive shows a list of the drives that have been defined and the
provider used. And New-PsDrive allows new ones to be defined, like this:

New-PSDrive -Name HOME -PSProvider filesystem -Root “C:\users\administrator”

After this, a HOME: drive will exist, and it can be treated in the same way as C: or Function.

86804c04.indd 6186804c04.indd 61 1/21/09 1:24:59 PM1/21/09 1:24:59 PM

62

 Part I Getting Started with Windows Scripting

Functions and Filters
Providers and Cmdlets in snap-ins are not the only way that PowerShell can be expanded.

The simplest way to add a command to PowerShell is to write a function or filter. For all practical
purposes, the two are the same except in the way they handle input from the pipe.

When you looked at aliases, you saw that commands such as CD were simply substituted for the
PowerShell Cmdlet Set-Location. PowerShell doesn’t have a “make directory” command (MD or
MKDIR). It has New-Item, which takes switches –Type and –Path. Simply aliasing MD to New-Item
won’t work because you need to include the command-line switch to set the type to Directory. An
alias can’t specify the switch.

Earlier, you saw that one of PowerShell’s providers gives you a FUNCTION: drive so you can see the
available functions using the command:

Dir Function:

If you try this, you will see there are functions MD and MKDIR; you can see the content of the func-
tion by using any of the three following commands:

Type Function:md
Cat Function:Md
Get-Content Function:md

The first two work because Type and cat are aliases for Get-Content.

The function is:

param($paths); New-Item -type directory -path $paths

This is pretty easy to follow. First, the function takes a parameter named “$Paths”—PowerShell
Variable names are usually written with a $ sign—which you can read as the value of. The semico-
lon (;) separates commands on the same line, and then the New-Item Cmdlet creates a directory
item, using $paths to specify the Path. Here you can see another thing about PowerShell’s consis-
tency: the nouns used in commands and their switches are written in the singular New-Item, not
New-Items, and –Path not –Paths, but in many cases they will accept multiple values, separated
by commas. So, to create three directories one can use the following command:

MD sub1,sub2,sub3

This is why the variable name is $Paths (in the plural). You will see later in this chapter that
PowerShell does not require you to declare formally that $Paths is a text string, or an array of
strings, and it copes well with converting between types. You’ll also have a look at writing your
own functions and filters.

86804c04.indd 6286804c04.indd 62 1/21/09 1:24:59 PM1/21/09 1:24:59 PM

63

 PowerShell Fundamentals 4

Objects and Types and the PowerShell Pipe
At the start of this chapter, you saw several core aspects of a shell. The last of these to look at is the
facility to pipe commands together. And this is the area where PowerShell differs radically from what
has gone before.

Do you ever wonder about the stupidity of faxing word-processed documents—faxing is great for
handwritten stuff or pre-existing documents, but why send a picture of the document instead of
sending the document itself by e-mail? The way we handle information from a lot of sources in older
shells is like fax to PowerShell’s e-mail: these shells have to output a view of the information, not
the information itself. Consider getting a list of files: ls in the UNIX world or DIR in the Microsoft
world. In each case, the command returns a block of text with one line for each file or subdirectory.
That text can be re-directed to a file with the > operator or sent into another command with ¦ but
it is always text. Just as you can use optical character recognition to turn a fax back into a document,
you can write code to parse the text and try to extract the file size or date stamp but the process is
long winded and may fail. Similarly, trying to isolate an individual item from a list is hard. So let’s
try a couple of lines of PowerShell and see how it’s different. If you start PowerShell and enter the
command DIR, it will list the contents of the current directory.

PS C:\Users\Administrator> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Administrator

Mode LastWriteTime Length Name
---- ------------- ------ ----
d-r-- 14/07/2008 21:25 Contacts
d-r-- 16/07/2008 19:26 Desktop
d-r-- 17/07/2008 18:18 Documents
d-r-- 15/07/2008 07:50 Downloads
d-r-- 15/07/2008 08:28 Favorites
d-r-- 14/07/2008 21:25 Links
d-r-- 16/07/2008 19:20 Pictures
d-r-- 14/07/2008 21:25 Saved Games
d-r-- 14/07/2008 21:25 Searches
d---- 17/07/2008 09:54 sub1
d---- 17/07/2008 09:54 sub2
d---- 17/07/2008 09:54 sub3
d-r-- 14/07/2008 21:25 Videos
-a--- 18/08/2006 00:39 9564507 bar.wmv
-a--- 10/04/2007 14:48 2983995 Prev_ver.wmv
-a--- 10/04/2007 15:00 1627967 Prev_ver2.wmv

86804c04.indd 6386804c04.indd 63 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

64

 Part I Getting Started with Windows Scripting

One thing to point out is that the Directory line at the top shows the full path in the form SNAPIN\
Provider::Path so doing a directory of a certificate store will tell you than it is a directory-based
on a different snap-in and provider; for example:

PS C:\Users\Administrator> dir cert:\LocalMachine\CA

 Directory: Microsoft.PowerShell.Security\Certificate::LocalMachine\CA

Thumbprint Subject
---------- -------
FEE449EE0E3965A5246F000E87FDE2A065FD89D4 CN=Root Agency
8B24CD8D8B58C6DA72ACE097C7B1E3CEA4DC3DC6 OU=www.verisign.com/CPS Incorp.by...
7B02312BACC59EC388FEAE12FD277F6A9FB4FAC1 CN=VeriSign Class 2 CA - Individua...
12519AE9CD777A560184F1FBD54215222E95E71F CN=VeriSign Class 1 CA Individual...
109F1CAED645BB78B3EA2B94C0697C740733031C CN=Microsoft Windows Hardware Comp...

Although PowerShell doesn’t enforce the use of data types on you, it still understands them so you
can test to see if dir returns an array, and if it does, you can have a look at items in the array and
their types, as follows:

PS C:\Users\Administrator> (dir) -is [array]
True
PS C:\Users\Administrator> (dir).count
16
PS C:\Users\Administrator> (dir)[0]

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Administrator

Mode LastWriteTime Length Name
---- ------------- ------ ----
d-r-- 14/07/2008 21:25 Contacts

PS C:\Users\Administrator> (dir)[-1]

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Administrator

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/04/2007 15:00 1627967 Prev_ver2.wmv

PS C:\Users\Administrator> (dir)[-1].gettype()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True FileInfo System.IO.FileSys...

PS C:\Users\Administrator> (dir cert:\LocalMachine\CA)[0].GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False X509Certificate2 System.Security.C...

86804c04.indd 6486804c04.indd 64 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

65

 PowerShell Fundamentals 4

So Dir returns an array—it is, after all, an alias for a function that Gets a set of Child Items. You can
see a count property for the array and you can access its items with [index]. PowerShell arrays
start from 0, and negative indices work back from the last item toward the beginning.

Everything in PowerShell has a data type and you can discover this with Get-Type(). Directories
accessed via the FileSystem provider contain FileInfo and DirectoryInfo objects and those
accessed through the Certificate provider contain X509Certificate2 objects.

This is the beginning of understanding the power of PowerShell. Everything it returns as a result,
stores as a variable, or passes as a parameter is an object. For example, you can try the following:

PS C:\Users\Administrator> [system.math]::pi
3.14159265358979
PS C:\Users\Administrator> [system.math]::pi.gettype()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Double System.ValueType

PS C:\Users\Administrator> “hello world”
hello world
PS C:\Users\Administrator> “Hello World”.getType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

The first two commands show that you can get the value of PI from the System.Math .NET library
(you’ll see more on using .NET later), and it is a Double Precision Floating Point number.

These examples reinforce something that has been implied in what you have seen so far. Given an
object and not told to redirect it or pipe it, or save it in variable PowerShell, outputs it to the Host
console. So the “Hello World” program for PowerShell is simply “Hello World”. Incidentally, if
you work with editors that like to use smart quotes, “hello world” written using straight quotes
and “Hello World” written using smart quotes are treated identically by PowerShell. Calling its
GetType()method shows “Hello World” is a text-string.

Exploring PowerShell Variables
In the older command shells, it is possible to hold text information in environment variables—in
every Microsoft operating system from the early DOS through to the present you have been able to
use SET to create an environment variable and refer back to it with %name%, so %comspec% holds
the name of the command processor, %userProfile% holds the users home directory, and so on.
But environment variables are always text and PowerShell—as you have just seen—understands

86804c04.indd 6586804c04.indd 65 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

66

 Part I Getting Started with Windows Scripting

a richer set of variable types. PowerShell also has variables—a value can be assigned to a variable
like this:

$username = “James”

It is easiest to think of the $ sign in this as the value of so the first line reads “the value of username
becomes James.” Note that we say becomes for the equals sign. PowerShell uses operators –lt, -eq,
and –gt for “is less than,” “is equal to,” and “is greater than.” The symbols < and > are reserved for
redirecting input and output, and the = sign is only used for “becomes equal to.”

You also saw earlier that PowerShell has providers for its own variables and for Environment vari-
ables. You can refer to the contents of the variable you have just declared, as $username (again
read the $ as the value of). As it happens, there is a username environment variable and you can refer
to that as $Env:username. You never need to explicitly specify $variable:, but if a PowerShell
variable name is the same as an Environment variable name, you can refer to it explicitly as
$variable:username in order to avoid misunderstanding when someone else reads your script.

PowerShell also has scopes, and these have a similar notation. You can also refer to this variable as
$Global:Username, because it is available in all scripts and functions, and at the prompt. If you try
to set $UserName in a script or a function, that change applies only in the script unless you specify
the global: scope. This is easier to see with an example:

> function scope-test
 { “ Local:var is initially $local:var “
 “ var is initially $var”
 “Global:var is intitally $global:var”
 “now we will set VAR “
 $var = 1
 “ Local:var is now $local:var “
 “ var is now $var”
 “Global:var is now $Global:var”
 }
>$var = 99
> Scope-test
 Local:var is initially
 var is initially 99
Global:var is intitally 99
now we will set VAR
 Local:var is now 1
 var is now 1
Global:var is now 99
> $var
99

86804c04.indd 6686804c04.indd 66 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

67

 PowerShell Fundamentals 4

So you can see that:

$local:var■ is empty until $var is set in the function.

$var■ will return $local:var if it exists, or $global:var otherwise.

Setting ■ $var creates a $local:var, and the global $var is unaffected.

So you can see what type of information that username variable contains, as follows:

> $username.getType().name
String

In some programming languages, variables are given a type when they are first used. PowerShell
variables are much looser—when the value “James” was assigned to the variable, PowerShell fig-
ured out that it was a string so $username contains a string. If you now change $username to
something else, its type might change; for example:

> $username=[system.math]::pi
> $username.getType()name
Double
>$username * 4
12.5663706143592

As you can see, assigning PI to the $username changed the variable from holding a text string to
holding a double precision floating point number, and you can do calculations with that number.

You can force the variable to be a text string if you declare it like this:

> [string]$username=”james”
> $username.getType().name
string
> $username=[system.math]::pi
> $username.getType().name
String

So $username still contains a string—it’s the text “3.14159265358979,” which looks like a number
but when you try to process it, PowerShell knows it is a string. If you try to multiply it—which
worked in the previous example—you get this:

> $username * 4
3.141592653589793.141592653589793.141592653589793.14159265358979

Generally, it is better to let PowerShell make the decisions about types, rather than to force a vari-
able to a particular type, but sometimes you want an error to be generated if you assign the wrong
kind of thing to a variable. Let’s reverse the case discussed previously and explicitly say that a vari-
able p holds the value of pi and is a double-precision floating-point number.

> [double]$p=[system.math]::pi
> $P*4
12.5663706143592

86804c04.indd 6786804c04.indd 67 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

68

 Part I Getting Started with Windows Scripting

Notice that PowerShell variable names are case-insensitive. You can use $p and $P interchangeably.
Now what happens if you try to store text in p?

> $p=”james”
Cannot convert value “james” to type “System.Double”.
 Error: “Input string was not in a correct format.”
At line:1 char:3

PowerShell tried to convert the text to a number but it couldn’t do it, and generated an error.

Left to its own devices, PowerShell will examine numbers and, if they have a fraction part, it will use
the Double (double precision floating point number) type; if they don’t have a fraction it will use the
INT32 (32 bit, signed integer) type. There are two ways of presenting PowerShell with a text string.
Some languages use single quotes and some use double quotes. PowerShell will expand variables in
a double quoted string and not in a single quoted one so in the example earlier:

 “Global:var is now $Global:var”

returned:

Global:var is now 99

If you had used single quotes, it would have returned the literal text $Global:var instead of substi-
tuting 99 in its place. You can “escape” characters in a string with the ` (back quote) character. Used
on its own, the backquote acts as a continuation character, allowing one line of PowerShell to be typed
as two—the ` at the end of the line telling the parser that there is more to come.

Inside a string, ` is used to indicate special characters, so writing:

“Global:var is now `$Global:var”

would also cause the literal text to be output. There are a few escape characters listed in the PowerShell
documentation, the most useful of which is probably `n for newline.

One other useful trick PowerShell has is that it can take a sequence of numbers written in the form
1..10 or 456..789 and convert them into an array of integers; for example:

>1..5
1
2
3
4
5

PowerShell uses the [TypeName] syntax in other places as well as setting the type for a variable. For
example, in addition to the string type, PowerShell understands the Char (single character) type,
so you can convert an ASCII value into a character, as follows:

>[Char]65
A

86804c04.indd 6886804c04.indd 68 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

69

 PowerShell Fundamentals 4

If you try to convert a string to a single character you will get an error:

> [char]”hello”
Cannot convert value “hello” to type “System.Char”.
 Error: “String must be exactly one character long.”

You need to convert to an array of characters, which you can write as [Char[]], which breaks the
string down into its characters like this:

> [char[]]”Hello”
H
e
l
l
o

You can convert the array of characters into an array of bytes (8 bit unsigned integers) to give the
ASCII values of the characters.

> [byte[]][char[]]”Hello”
72
101
108
108
111

You can’t convert from a string directly to an array of bytes, even if it contains only a single charac-
ter. Converting a string to bytes is beyond its limitations.

Richer Types and .NET Objects
So far, the only variable things you have touched in the examples have been files and text and numeric
variables—and that was about as far as other shells went. These shells understood the world as strings
of text and files, and perhaps some arithmetical types. PowerShell understands the much richer world
of objects.

It is often difficult to explain the concept of objects to people who are new to the subject. An object
defines something in terms of its properties and methods. Properties tell us something about the
object and methods are things you can do with it or do to it. Even the numbers, characters, and text
strings you’ve looked at so far are implemented in PowerShell as .NET objects. If you’ve worked in
older versions of basic, you might be used to using functions such as Len(S) to return the length of
a string S. In an object-based world, length is a property of a string, so in PowerShell we refer to
$S.length. In a non-object world, if you wanted to convert a string to all uppercase, it was the job
of the programming language to provide an UpCase function so you could say U=Upcase(s); in the
object world, converting to uppercase is something you can do with or to a string, so strings have a
toUpper method and you would write $U=$S.toUpper().

86804c04.indd 6986804c04.indd 69 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

70

 Part I Getting Started with Windows Scripting

Superficially, this looks like just a change of syntax. If you have a variable of an arbitrary type—let’s
call it a widget—and you can carry out an arbitrary action on a widget, say fettling then instead of
writing Fettle(widget,parameter), you write widget.fettle (parameter). And it would
be just a change of syntax if it weren’t for the fact that object-oriented environments such as
PowerShell can use objects that their designers had never even imagined.

If someone asks you to create a Virtual Machine on Server 2008 using a batch file, you can’t do it
because batch files understand the world of files and text strings. In PowerShell, you can ask for a
virtual system management object, which includes a method of defineVirtualSystem(). Some
other executable implements the object: neither you nor PowerShell need to know what happens
when a new VM is defined. Under the surface, PowerShell (or any object-oriented environment)
knows how to access the executables that implement the objects you want and get them to do your
bidding. And there are thousands of such objects out there at your beck and call.

This is good news for system administrators because they know the things they want to work
with—user accounts, virtual machines, processes, and so on (these are objects). They know the
things they do with them—resetting passwords, starting VMs, stopping processes (these are meth-
ods), and they know that there are things they can see or change about them. User accounts have a
full name, virtual machines have connected hard disks, and processes have a CPU time used, (these
are properties). Instead of having to learn a lot of PowerShell, administrators only need to know
enough to manipulate the objects, and they’ve already got an understanding of what the objects do.

Taken together, properties and methods are known as members of an object; one of the most used
Cmdlets when developing in PowerShell is Get-Member, which lists the available properties and
methods for an object.

Remember that all the PowerShell commands that you have seen return objects, so let’s look at
members of the objects you have seen before by redirecting them into Get-member.

PS C:\Users\Administrator> [system.math]::pi | get-member

 TypeName: System.Double
Name MemberType Definition
---- ---------- ----------
CompareTo Method System.Int32 CompareTo(Object value
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
ToString Method System.String ToString()

86804c04.indd 7086804c04.indd 70 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

71

 PowerShell Fundamentals 4

PS C:\Users\Administrator> “Hello, world” | get-member

 TypeName: System.String
Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method System.Int32 CompareTo(Object value),...
Contains Method System.Boolean Contains(String value)
CopyTo Method System.Void CopyTo(Int32 sourceIndex,...
EndsWith Method System.Boolean EndsWith(String value)...
Equals Method System.Boolean Equals(Object obj), Sy...
GetEnumerator Method System.CharEnumerator GetEnumerator()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
IndexOf Method System.Int32 IndexOf(Char value, Int3...
IndexOfAny Method System.Int32 IndexOfAny(Char[] anyOf,...
Insert Method System.String Insert(Int32 startIndex...
IsNormalized Method System.Boolean IsNormalized(), System...
LastIndexOf Method System.Int32 LastIndexOf(Char value, ...
LastIndexOfAny Method System.Int32 LastIndexOfAny(Char[] an...
Normalize Method System.String Normalize(), System.Str...
PadLeft Method System.String PadLeft(Int32 totalWidt...
PadRight Method System.String PadRight(Int32 totalWid...
Remove Method System.String Remove(Int32 startIndex...
Replace Method System.String Replace(Char oldChar, C...
Split Method System.String[] Split(Params Char[] s...
StartsWith Method System.Boolean StartsWith(String valu...
Substring Method System.String Substring(Int32 startIn...
ToCharArray Method System.Char[] ToCharArray(), System.C...
ToLower Method System.String ToLower(), System.Strin...
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System.Stri...
ToUpper Method System.String ToUpper(), System.Strin...
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[] trim...
TrimEnd Method System.String TrimEnd(Params Char[] t...
TrimStart Method System.String TrimStart(Params Char[]...
Chars ParameterizedProperty System.Char Chars(Int32 index) {get;}
Length Property System.Int32 Length {get;}

As you can see, numbers have only a core set of methods so that they can be turned into text strings
for output, compared, and have their type checked. Every type in PowerShell supports the GetType()
method, which was shown before. Notice that when you invoke a method of an object, its parameters
are enclosed in brackets—even if there are none! If you omit the brackets, PowerShell assumes you are
asking for information about the GetType member—so it tells you it is a method of the object.

86804c04.indd 7186804c04.indd 71 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

72

 Part I Getting Started with Windows Scripting

Text strings have many more methods than numbers; they allow them to be cut and sliced, or the con-
tents to be checked or parts of them to be changed. Strings also have a length property (12 for “Hello,
World”) and a chars property, which takes a parameter “Hello, world”.chars(0) is returns H.

Not surprisingly, FileInfo objects have even more properties and methods, as you can see in the
code that follows:

PS C:\Users\Administrator> dir *.wmv | Get-Member

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Mode CodeProperty System.String Mode{get=Mode;}
AppendText Method System.IO.StreamWriter AppendText()
CopyTo Method System.IO.FileInfo CopyTo(String de...
Create Method System.IO.FileStream Create()
CreateObjRef Method System.Runtime.Remoting.ObjRef Crea...
CreateText Method System.IO.StreamWriter CreateText()
Decrypt Method System.Void Decrypt()
Delete Method System.Void Delete()
Encrypt Method System.Void Encrypt()
Equals Method System.Boolean Equals(Object obj)
GetAccessControl Method System.Security.AccessControl.FileS...
GetHashCode Method System.Int32 GetHashCode()
GetLifetimeService Method System.Object GetLifetimeService()
GetObjectData Method System.Void GetObjectData(Serializa...
GetType Method System.Type GetType()
InitializeLifetimeService Method System.Object InitializeLifetimeSer...
MoveTo Method System.Void MoveTo(String destFileN...
Open Method System.IO.FileStream Open(FileMode ...
OpenRead Method System.IO.FileStream OpenRead()
OpenText Method System.IO.StreamReader OpenText()
OpenWrite Method System.IO.FileStream OpenWrite()
Refresh Method System.Void Refresh()
Replace Method System.IO.FileInfo Replace(String d...
SetAccessControl Method System.Void SetAccessControl(FileSe...
ToString Method System.String ToString()
PSChildName NoteProperty System.String PSChildName=bar.wmv
PSDrive NoteProperty System.Management.Automation.PSDriv...
PSIsContainer NoteProperty System.Boolean PSIsContainer=False
PSParentPath NoteProperty System.String PSParentPath=Microsof...
PSPath NoteProperty System.String PSPath=Microsoft.Powe...
PSProvider NoteProperty System.Management.Automation.Provid...
Attributes Property System.IO.FileAttributes Attributes...
CreationTime Property System.DateTime CreationTime {get;s...
CreationTimeUtc Property System.DateTime CreationTimeUtc {ge...
Directory Property System.IO.DirectoryInfo Directory {...

86804c04.indd 7286804c04.indd 72 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

73

 PowerShell Fundamentals 4

DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get...
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {...
LastWriteTime Property System.DateTime LastWriteTime {get;...
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {g...
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}
BaseName ScriptProperty System.Object BaseName {get=if ($th...
VersionInfo ScriptProperty System.Object VersionInfo {get=[Sys...

Because all of these properties are available to anything that uses the object, it is easy to write a
command where two Cmdlets are piped together and the second uses properties of the objects
found in the first.

Arrays
We have already referred to arrays. PowerShell handles arrays slightly differently from other envi-
ronments. Usually an array is a collection of identical objects, but PowerShell arrays can be collec-
tions of dissimilar objects. But in some senses an array is just another variable. An array can be
declared with the following syntax:

$a=@(“a” , 3.14, (dir *.jpg))

In fact, the third item of the array is itself an array.

As you will see shortly, it is possible to process each of the items in an array with the ForEach-object
Cmdlet, and you index into arrays by using a number. Array indexes start at zero, and PowerShell allows
negative numbers to be used in indexes: –1 represents the last item, –2 the second to last, and so on. For
example, strings have a Last index of function and a Substring function, but there is no Substring after the
last index of. So if you want to check if a string contains a file name ending in .jpg you could write:

 if ($f.substring($f.lastindexof(“.”)) –eq “.jpg”) { some action

or you could write:

if ($f.split(“.”)[-1] –eq “jpg”) {some action}

One of the guiding principles in PowerShell is that commands should not force parameters to be sin-
gle items, if it is possible to take multiple ones. Typically, if a command is called once with an array
as a parameter, it will carry out the same actions as being called multiple times—once for each
member of the array.

86804c04.indd 7386804c04.indd 73 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

74

 Part I Getting Started with Windows Scripting

For example, the following code:

Get-WmiObject –class Win32_QuickfixEngineering –Server Srv1,Srv2,Srv3

is the same as calling:

Get-WmiObject –class Win32_QuickfixEngineering –Server Srv1
Get-WmiObject –class Win32_QuickfixEngineering –Server Srv2
Get-WmiObject –class Win32_QuickfixEngineering –Server Srv3

You may be used to separating unnamed parameters on a command line with commas, but this can
cause unexpected results because the parser in PowerShell will treat a list separated by commas as a
single array, not multiple items.

There is a second kind of array, which is different from the first; PowerShell documentation usually
calls it an associative array but if you test for its type with GetType(), a variable of this type reports
it is a HashTable, which is how most people know it.

In an associative array, there are two columns: keys and values. A normal array has keys—they are
0, 1, 2, and so on up to whatever the upper bound of the array is. In an associative array, the key can
be anything, so here is a declaration of an associative array:

$BootMedia= @{“Floppy”=0 ; “CD”=1 ; “IDE”=2 ; “NET”=3 }

You can refer to the elements of the associative array in the same way as you would refer to elements
in a conventional array as follows:

$bootMedia[“floppy”]

Or you can use the following syntax to handle them as if they were properties:

$bootMedia.floppy

This is useful in this case because instead of a script making references to setting a boot device to 0
and needing to then discover what 0 actually means, you have something that contains all the values
in one line rather than having to declare four separate constants. This also works well for decoding
error response codes, which might appear more than once in a script. For example, you might define
an associative array like this one:

$ReturnCode= @{0=”OK” ; 4096=”Job Started” ; 32768=”Failed”;
 32769=”Access Denied”; 32770=”Not Supported”; 32771=”Unknown” }

Then, elsewhere in the script, you can report what happened by using the following:

Write-host “Result was “ + $returncode[$result]

86804c04.indd 7486804c04.indd 74 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

75

 PowerShell Fundamentals 4

The PowerShell Pipe
You saw in the last section that the Get-ChildItem Cmdlet—called using its alias DIR—can out-
put an array of FileInfo objects. Depending on which directory it is looking at, it may return a mix-
ture of FileInfo and DirectoryInfo objects, or Sertificate objects, Registry key objects, and so on.
These objects, which have numerous methods and properties, including DirectoryName, Name,
and Extension, as well as FullName, which is the three combined. You also saw that the output of
DIR can be sent into another command, using the ¦ symbol—a process known as piping.

When DIR in CMD.EXE (or the old COMMAND.COM) is piped into another command, that command
has only text to work with. In PowerShell, the next command in the pipe will have access to all the
object’s properties and methods. So, PowerShell’s Sort-object Cmdlet can be told which of the
properties of the FileInfo objects handed to it is the sorting key. For example, the following:

Dir | sort-object –property Name

will sort objects according to their name (without the file extension).

One of the PowerShell Cmdlets that saves a lot of scripting work is Format-Table. It, too, has a
property parameter and this tells it which properties of the object that was passed to it should be
displayed in tabular format. To display your own style of directory you could use the following:

Dir | Format-table –property name, length, mode –autosize

And frequently you need to filter objects so you might use:

Dir -Recurse | where-object {$_.length -gt 8mb}

Here, the -recurse switch causes dir to get child items from subdirectories; but the syntax of
where-object takes a moment to understand.

Where-object looks at each item passed to it and evaluates the Scriptblock in the braces. If the
Scriptblock evaluates to true the object is passed on to the next step, and if it evaluates to false,
the object is discarded. PowerShell uses script blocks in lots of places, and they are just blocks of
script—one or more commands that are executed, and in almost every situation they are surrounded
by braces. User-defined functions and filters are just stored script blocks, and many Cmdlets take a
script block as a parameter.

Inside the braces, $_ means The current object, so $_.length is the file size. The -gt operator is
“is greater than,” and PowerShell understands KB, MB, GB, and TB suffixes, so you don’t need to write
8*1024*1024 when you can’t remember exactly how many bytes there are in 1MB. So the clause
selects items greater than 8MB in size.

Of course there is nothing to stop all three commands from being linked together:

Dir -Recurse | where-object {$_.length -gt 8mb} | sort-object -property Name |
 Format-table –property name, length, mode autosize

86804c04.indd 7586804c04.indd 75 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

76

 Part I Getting Started with Windows Scripting

As you’ve seen already, this command can be reduced in size using aliases and by not being so
explicit with the switches—giving this:

Dir -R | ? {$_.length -gt 8mb} | sort Name | Ft name, length, mode –a

It is worth noting that PowerShell has Tab Expansion. In the newer versions of CMD the [tab] key
allows you to type part of a path or file name and then expand it to the full version. If there is more
than one match, pressing Tab repeatedly cycles through the possible choices. PowerShell has a cus-
tomizable tab-expansion function, which will do more sophisticated things: get-ch[tab] will
expand to get-childItem (get-C [tab] will cycle through Get-Command, Get-Credential,
and so on). If you aren’t sure what you can do with an item, you can type *Item [tab] and
PowerShell will cycle through Clear-Item, Clear-ItemProperty, Copy-Item, and so on.

Tab expansion by default won’t expand aliases and expands Cmdlets only once the - sign has been
typed. However it does recognize aliases as well as the canonical names when expanding parame-
ters, so once DIR is entered, -R [Tab] will expand to -Recurse, and once FormatTable or FT is
entered, -a [Tab] will expand to Autosize. If you are unsure what options are available, you can
just type -[Tab] to cycle through all of them.

The Where-object Cmdlet has two aliases—the question mark (?) and where, and it looks at each
object in turn. Sometimes it is necessary to explicitly tell PowerShell to process a scriptblock for each
object that is passed along the pipe. For example, the following command will take a collection of
image files from a digital camera and return only their names:

dir _igp* | foreach-object {$_.name}

You cannot write dir _igp* | $_.name because the $_.name isn’t a command that can receive
input from the pipe, so you need to be explicit and pass that information to ForEach-Object,
which can. PowerShell will pass the output of any command into the next command and it is the
responsibility of each command to see if there is piped input for it. You can write your own func-
tions and filters that can be executed at any point in the pipeline even if they ignore what the previ-
ous command is trying to pass.

As with the preceding example, which uses where-object, the code block in the braces after
ForEach-Object is evaluated for each object that is passed down the pipe. In this example,
PowerShell gets the item’s name property, and having nothing else to do with it, prints it out in the
host console. Let’s make it do something a little more sophisticated:

dir _igp* | foreach-object {$_.name.replace (“_IGP”,”Party”) }

The Name Property is a text string, and as you saw previously, strings have a Replace() method.
Calling that method means this command replaces the “_IGP”, which the camera used at the start
of all the image-file names with something more descriptive of the picture—while preserving the
serial number the camera gave each image.

86804c04.indd 7686804c04.indd 76 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

77

 PowerShell Fundamentals 4

You can probably guess that the next step is to change the name of the files. PowerShell has a
Rename-Item Cmdlet (with an alias Ren so it works like its CMD equivalent), so to rename the
files, that line evolves into:

dir _igp* | foreach-object { rename-item -path $_.Fullname -newname
 $_.name.replace(“_IGP”,”Party”) }

In fact, rename-item is a Cmdlet that accepts a set of files from the pipe and processes each one,
so it doesn’t need to be called using foreachobject or by specifying the path to the object. The
command can be simplified to:

dir _igp* | rename-item -newname {$_.name.replace(“_IGP”,”Party”) }

Notice that one little quirk of PowerShell syntax is that you need to enclose the section where the
passed object’s name is evaluated in braces.

As before, this could be shortened for typing at the command line. Renname-item can become ren
and the –newname switch can become, simply, -n. However, more important than how to enter the
command with the smallest number of keystrokes, you may be more concerned with renaming files
to something nonsensical. Fortunately, PowerShell has a standard switch on many Cmdlets: WhatIf
tells the Cmdlet to show what it would do without actually doing it, like this:

> dir _igp* | rename-item -newname {$_.name.replace(“_IGP”,”Party”) } -whatif

What if: Performing operation “Rename File” on Target
 “Item: C:\Pictures\Image dump_IGP5499.JPG
 Destination: C:\Pictures\Image dump\Party5499.JPG”.
What if: Performing operation “Rename File” on Target
 “Item: C:\Pictures\Image dump_IGP5510.JPG
 Destination: C:\Pictures\Image dump\Party5510.JPG”.
What if: Performing operation “Rename File” on Target
 “Item: C:\Pictures\Image dump_IGP5511.JPG
 Destination: C:\Pictures\Image dump\Party5511.JPG”.
What if: Performing operation “Rename File” on Target
 “Item: C:\Pictures\Image dump_IGP5512.JPG
 Destination: C:\Pictures\Image dump\Party5512.JPG”.
What if: Performing operation “Rename File” on Target
 “Item: C:\Pictures\Image dump_IGP5513.JPG
 Destination: C:\Pictures\Image dump\Party5513.JPG”.

Having proved that the command does what you want it to do, you can remove the –WhatIf switch
and run it for real.

Looping in PowerShell
You have already seen how PowerShell can loop through all the items in an array. PowerShell pro-
vides three kinds of looping construction: For, ForEach-Object, and while.

86804c04.indd 7786804c04.indd 77 1/21/09 1:25:00 PM1/21/09 1:25:00 PM

78

 Part I Getting Started with Windows Scripting

The while statement is the simplest of the three. The syntax is While (condition) {script block}.
It tests to see if a condition evaluates to true; if it does, it executes the script block. Then it tests the con-
dition again; if it is still true, it executes the script block again, and it keeps repeating the process until
the condition is no longer true. The script block won’t execute at all if the condition initially returns false.
For example, this code is used to suspend a script as long as a job is running: 4 indicates running.

while ($job.jobstate -eq 4)
{Start-Sleep -seconds 1
 $Job.PSBase.Get() }

It may sound obvious, but it is important that something happen in the script block that causes the
condition to change. Sooner or later, you will write something that loops forever. Fortunately, when
you do that, PowerShell traps the [Ctrl]+[c] key to break out.

This version of while will not run the script block at if the condition is false. Sometimes it is use-
ful to put the test at the end, which runs the script block at least once. The syntax for this is
Do {scriptblock} while (condition).

The For statement is a C-style loop, and may seem a little unfriendly to the people who have come
from other languages. Typically in those languages you might write:

For x = 0 to 100 step 10
Do something with x
Next X

A PowerShell for is written like this:

For ($x=0; x –lt 100 , $x += 10) {do something with x}

Inside the brackets are an initialization statement, a condition, and a repeated statement. The first
thing to be executed is the initialization statement, which sets $x to 0. Next, if the condition—$x is
less than 100—is true, the script block in the braces will be executed. Each time the script block
completes, the repeated statement—adding 10 to $x—is run. If the condition is still true the script
block is run again followed by the repeated statement and so on, until eventually the condition
ceases to be true.

Each of the three blocks is optional and there is no reason why they have to deal with incrementing
a counter. For example, the initialization statement could fetch records from a database, the condi-
tion could be that the current record doesn’t contain a particular value in a particular field, and the
repeated statement could move to the next record—this would return a the desired record in the set
without needing a script block at all.

You might also have noticed that the for loop could be rewritten as a while loop.

$x=0
While ($x –lt 100) {
Do something with x
$x += 10
}

86804c04.indd 7886804c04.indd 78 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

79

 PowerShell Fundamentals 4

Because the initialize, condition, and repeat parts of the for are all optional, any while can also be
written as a for.

for(; $job.jobstate -eq 4 ;)
{Start-Sleep -seconds 1
 $Job.PSBase.Get() }

Or better:

for(; $job.jobstate -eq 4 ; $Job.PSBase.Get())
{Start-Sleep -seconds 1 }

The command to get the job object could be inserted as the initialize part:

for($job=[wmi]$jobID; $job.jobstate -eq 4 ; $Job.PSBase.Get())
 {Start-Sleep -seconds 1 }

ForEach-object is a Cmdlet you have seen already.

Without ForEach-object, you would have to write a for loop to work through each item in an
array. In the renaming example, you would need to do something like this:

$Files = (dir *.jpg)
For (I = 0; I –lt files.count ; i++) {
 rename-item $files[i] –newName $files[i].name.replace(“img_”, “party”) }

Most people think of for each as a construction which was introduced by Microsoft Visual Basic, but
in fact the language in COMMAND.COM and later had for...do, which achieved the same effect.
In CMD.EXE you can write:

for %f in (*.JPG) do if exist ..\%f del %f

This looks at all the files with a .JPG extension in the current folder, and if a file with the same name
exists in the parent folder, the copy in the current folder is removed.

ForEach-Object has two aliases—foreach and %—and can be used with more than one syntax;
you have already seen it used receiving objects via the pipe. In that form, you could enter the follow-
ing at the command prompt to replicate the preceding duplicate removal line:

dir *.jpg | % {if (test-path “..\$($_.name)”) {del $_ } }

As well as the Cmdlet, PowerShell has a ForEach Statement, which specifies what is being looped
through, like this:

Foreach ($f in (dir *.jpg)) {if (test-path “..\$($f.name)”)
 {del $f -verbose} }

This could also be written as:

$files=(dir *.jpg)
Foreach ($f in $files) {if (test-path “..\$($f.name)”) {del $f -verbose} }

86804c04.indd 7986804c04.indd 79 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

80

 Part I Getting Started with Windows Scripting

Earlier, you saw that PowerShell understands 1..10 to mean an array of integers and this can be used
to make forEach behave like a simple for loop. For example, the following will return the squares
of numbers from 1 to 10:

1..10 | ForEach-object {$_ * $_ }

Foreach-object has one more trick worth noting: It can run three code blocks, not just one. These
are named process, begin, and –end. If only one block is supplied, it is assumed to be process.
It is the only one that is required. begin and end blocks are optional: they allow you to do in one
command something that would otherwise need to be divided into two or three. For example, you
could count the number of duplicate files deleted by initializing a counter, incrementing it with each
deletion, and then outputting it at the end.

dir *.jpg | % -begin {$c=0} `
 –process {if (test-path “..\$($_.name)”) {del $_ ; $C ++}} `
 –end {“Removed $c duplicates”}

Conditions
You have already seen that PowerShell makes decisions on what to do next based on certain condi-
tions. In the previous section, you saw conditions used in if statements, for statements, and while
statements, and before that you saw them used in where statements.

Although you’ve seen conditions in use, they haven’t been formally described. A PowerShell if
statement is written in the form:

If (condition) {script block to execute if the condition evaluates to true}
Else {script block to execute if the condition evaluates to false}

Conditions can be built up from subconditions using the Boolean operators –and, –or, and –not.
Consider the following:

(-not (subCondition)) Returns true if the subcondition is false and false if it is true

((subCondition a) –and
(subConditionb))

Returns true only if the subConditions are both true and
false if either or both are false

((subcondition a) –or
(subcondition b))

Returns true if either or both of the conditions are true and
false only if both are false

A condition (or a subcondition) can be a variable or an expression that returns something. PowerShell
has two special variables—$true and $false—and these can be assigned to a variable. Otherwise,
any non-empty, non-zero result is treated as True. Some languages have special ways to handle empty,
or null, objects. PowerShell treats them as false, and the condition of being empty can be tested for
by comparing with a special variable, $null:

> $notDefined1 -eq $null
True

86804c04.indd 8086804c04.indd 80 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

81

 PowerShell Fundamentals 4

> $notDefined2 -eq $null
True
$notDefined1 -eq $notDefined2
True

The last one of these causes some issues in environments that say an empty argument can’t be equal
to anything because it has no content. (This is a bit like the old zero divided by zero paradox. Any
number divided by itself is 1. Any number divided by zero is infinity, and zero divided by anything
is zero. So what is zero divided by zero?) PowerShell is quite happy to treat null as just another
value.

Most commonly, a condition will be two terms linked by one of the comparison operators. PowerShell
has quite a full set of comparison operators, of which the most commonly used are shown in
Table 4-01 that follows:

TABLE 4-01

PowerShell Comparison Operators

-eq Is equal to

-ne Is not equal to

-ge Is greater than or equal to

-gt Is greater than

-lt Is less than

-le Is less than or equal to

-like Wildcard comparison

-notlike Wildcard comparison

-match Regular expression comparison

-notmatch Regular expression comparison

-contains Containment operator

-notcontains Containment operator

The first few of these are obvious: greater than and less than, equal to, and combinations of them.
The question of string comparison does arise: Will PowerShell return True or False if you ask it to
evaluate:

“THIS” –eq “this”

86804c04.indd 8186804c04.indd 81 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

82

 Part I Getting Started with Windows Scripting

The answer is that PowerShell returns True. By default, all the comparison operators are case insen-
sitive, but they all have case-sensitive versions, which are prefixed with a C. Although redundant,
PowerShell provides additional versions that are case insensitive, prefixed with an i, so if you want
to be emphatic that a comparison is case insensitive, you could write the previous comparison as:

“THIS” –ieq “this”

The -like, -match, and -contains operators cause some confusion. Contains checks to see if an
array has a member, so the following is an incorrect use of the operator:

“this” -contains “t”

In the preceding line of code, “this” is a string, not an array, so it can’t have an array member “t”.
Strings do have a method to convert them to an array of characters so this would be a valid test:

$s.ToCharArray() -contains “t”

Any kind of array can appear on the left of the -contains operator so you can test to see if $x is a
value between 1 and 10 with the following:

1..10 –contains $x

You should be careful about using this, however—it might save a little typing but it takes more com-
putation to evaluate than test for ($x –gte 1) –and ($x –lte 10).

like is a wildcard operator so that a simple test for a string containing t could be written as follows:

“this” –like “*t*”

The * sign in a –like comparison stands for “any number of characters including none.” A question
mark (?) stands for “any single character” so if you evaluate each of the following:

“this” –like “*t*”
“this” -like “th*”
“that” -like “th*”
“these” -like “th*”
“this” -like “th??”
“these” -like “th??”
“this” -like “th?”

all but the last two will return true.

like has one other test you can apply and that is to test for one of a set of characters: –like
“*[aeiou]*” will test for any of the vowels, and –like “*[a-e]*” will test for any of the
letters a–e.

This begins to overlap with the more complex regular expression operator –match. We will look at
regular expressions in detail in Chapter 30. However it is important not to confuse –match and
like. “A*” in a –like means “beginning with A” and in a –match means “containing any number
of As” including 0. This will match everything.

86804c04.indd 8286804c04.indd 82 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

83

 PowerShell Fundamentals 4

Scripts, Script Blocks, and Functions
At the beginning of this chapter, we explained that PowerShell commands included built-in Cmdlets,
Aliases, Functions, Filters, Scripts, and external programs.

Script blocks have been referred to in several places already. A script block is nothing more than a
collection of commands (of any of the types listed above) enclosed in a set of braces. Script blocks
can be nested—for example, you saw the following script in the section about loops:

dir *.jpg | % -begin {$c=0} `
 –process {if (test-path “..\$($_.name)”) {del $_ ; $C ++}} `
 –end {“Removed $c duplicates”}

This contains four script blocks, one for each of the begin, process, and end stages, and one inside
the process block to run if the test-path Cmdlet returns true.

Script blocks can be stored—either in an active instance of PowerShell or in a script—and called up
later. Inside PowerShell are two very similar constructions—Functions and Filters—that are com-
monly used. In fact, a Function is very little more than a named code block accessible under the
Function: drive, as you saw earlier for MKDIR.

Functions can take arguments and although it is possible to reference everything on the command
line passed to the function, it is usual to use a set of named parameters, declared using a param
statement.

For example, in the preceding section on loops there was a script , which removed duplicates. This
could be made into a function to remove duplicates of any given extension, which you could write as
follows:

Function Remove-Duplicates
{Param ($fileExt)
dir “*.$fileExt” | % -begin {$c=0} `
 –process {if (test-path “..\$($_.name)”)
 {del $_ ; $C ++}}`
 –end {“Removed $c duplicates”}
}

Parameters can be given a type like any other variable and also assigned a default value. For
example:

Param ([string]$fileExt=”.jpg”)

The default value can also be used to produce an error if no value is provided:

Param ([string]$fileExt= $(throw “error”))

As before $ sign is used for the “the value of”. Throw is a core Statement. not a Cmdlet and state-
ments must be explicitly evaluated before they can be stored. Syntactically this tells PowerShell the
default is the value of throwing an error.

86804c04.indd 8386804c04.indd 83 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

84

 Part I Getting Started with Windows Scripting

When the function is called, parameters can be passed to it by position—i.e., by the sequence in
which they appear in the Param statement—or they can be passed by name, and the name used
need only be long enough to be unambiguous; so this function could be invoked using any of the
following:

Remove-Duplicates –fileExt “JPG”
Remove-Duplicates –f “JPG”
Remove-Duplicates “JPG”

This function can be stored in a script file—simply by removing the function definition from the top
and the opening and closing braces, and saving with a .ps1 extension. If the script was on the path
and named Remove-Duplicates.ps1, the same command lines would be used to invoke it.

Functions and filters differ in only one regard and that is how they are treated when they are included in
the pipeline. Filters work better here because each item passed in via the pipe is available in the default
variable $_. Under the surface, both functions and filters can have the same -Begin, -Process, and
End-Blocks that you saw in ForEach-Object. If they have only one block, a filter treats it as the
Process-Block and a function treats it as an End-Block; explicitly declaring the blocks allows you to
cancel out this difference. With functions, all the input is passed in an automatically created variable,
$input. With filters, it is in $_.

If you use the remove-duplicates function as an example, you might want to use some more
options to select the files so rather than finding the files in the function, you might want to have a
remove-duplicates filter into which you can pipe files:

Filter Remove-Duplicates
{if (test-path “..\$($_.name)”) {del $_ }}

So now you can issue a command like this:

Dir *.jpg –recurse | remove-duplicates

Obviously, when you have created functions, filters, and useful variable declarations you will want
to use them again. It’s a good idea to add comments to scripts so other people can understand what
you did—in fact, when you come back to your scripts months after writing them, you are effectively
someone else so you can do it for your own benefit.

Anything following a # sign is taken to be a comment.

Also critical when using functions and filters again are saving and loading them from a script. A
script can do anything you can do at the prompt including defining functions, but, by default, any
functions and variables created are only in scope while the script is running. To keep anything that
is set by the script, it needs to be dot sourced, as PowerShell terms it. This is a fancy name for putting
a dot (.) in the command line before the name of the script.

86804c04.indd 8486804c04.indd 84 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

85

 PowerShell Fundamentals 4

This will load a library of functions to manage Windows server Hyper-V.

. .\hyper-v.ps1

In contrast, the following is little more than a syntax check:

.\hyper-v.ps1

Scripts and Security
So, knowing that PowerShell allows commands to be stored in script files, you might choose to test
it out with a very simple script. If you create a file in Notepad containing a single command—Dir,
for example—and save it using the name test.ps1 you might expect to be able to run it just by
entering the command TEST at the PowerShell prompt, but doing so will generate an error:

PS C:\Users\Administrator> notepad test.ps1
PS C:\Users\Administrator> test
The term ‘test’ is not recognized as a cmdlet, function,
 operable program, or script file. Verify the term and try again.
At line:1 char:5
+ test <<<<

Unlike CMD.EXE and COMMAND.COM, PowerShell doesn’t treat the current folder as part of the path.
So you need to specify .\test.ps1. On a newly installed copy of PowerShell, this will still generate
an error:

PS C:\Users\Administrator> .\test
File C:\Users\Administrator\test.ps1 cannot be loaded because
 the execution of scripts is disabled on this system. Please
 see “get-help about_signing” for more details.
At line:1 char:7
+ .\test <<<<

You can see from the error that PowerShell initially deploys in a secure state. PowerShell’s online
help tells you that you need to set an execution policy and, by default, this is set to Restricted—no
scripts run. You can tell PowerShell to run only signed scripts, or to run all scripts, or to require a
signature on downloaded scripts but not locally authored ones.

Figure 4-1 shows the file properties dialog for a downloaded file—the blocking attribute can be
manually removed if the script is trusted.

86804c04.indd 8586804c04.indd 85 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

86

 Part I Getting Started with Windows Scripting

FIGURE 4-1

The file properties dialog for a downloaded file

If you are running PowerShell as a user other than the built-in Administrator account on Windows
Vista or Server 2008, you will need to explicitly run PowerShell as Administrator in order to make
the change:

PS C:\Users\Administrator> Get-ExecutionPolicy
Restricted
PS C:\Users\Administrator> Set-ExecutionPolicy remoteSigned
PS C:\Users\Administrator> .\test

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\Administrator

Mode LastWriteTime Length Name
---- ------------- ------ ----
d-r-- 14/07/2008 21:25 Contacts
d-r-- 16/07/2008 19:26 Desktop
d-r-- 18/07/2008 18:10 Documents

If signing is not required, then PowerShell doesn’t even look at the signature block in the script. If
the policy is set to all signed or the script was downloaded and the policy is set to remote signed then
trying to run a script with no signature generates an error:

File C:\Users\Administrator\test.ps1 cannot be loaded. The file C:\Users\
Administrator\test.ps1 is not digitally signed. The script will not execute
on the system. Please see “get-help about_signing” for more details.

There are three main ways to get a certificate to sign your scripts. The first is to create a local certifi-
cate—the PowerShell online help refers to the MAKECERT utility, which is part of the Windows
Software Development Kits. Microsoft Office includes a rather more user friendly tool for signing
macros. If you run this, it creates a certificate and installs it into the personal certificates folder.

Here you can use PowerShell’s certificate provider to find the certificate, the following will show
codeSigning certificates:

dir cert:\CurrentUser\my –codesigning

If there is only one certificate, you can store it in a variable with:

$myCodeCert= dir cert:\CurrentUser\my –codesigning

86804c04.indd 8686804c04.indd 86 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

87

 PowerShell Fundamentals 4

If you have more than one you can index to the one you want—using 0 for the first one. For example:

$myCodeCert= (dir cert:\CurrentUser\my –codesigning)[0]

Then the certificate can be used to sign a file. For example:

> Set-AuthenticodeSignature .\test.ps1 $MyCodeCert

 Directory: C:\Users\Administrator
SignerCertificate Status Path
----------------- ------ ----
3EB59EF3815C43071149710E48F7127D5EF45BC9 Valid test.ps1

And the certificate on a file can be checked with Get-AuthenticodeSignature. In this case it
returns the following:

 Directory: C:\Users\Administrator
SignerCertificate Status Path
----------------- ------ ----
3EB59EF3815C43071149710E48F7127D5EF45BC9 UnknownError test.ps1

That doesn’t look right—now the status column has changed from “Valid” to “Unknown error,”
which doesn’t bode well for running the script.

> .\test
File C:\Users\Administrator\test.ps1 cannot be loaded. A certificate chain
processed, but terminated in a root certificate which is not trusted by the
trust provider.

Oh dear. This is actually expected behavior because the certificate is not listed as a trusted certifi-
cate provider so you have to copy the certificate into the trusted certificate provider’s folder. This is
done via the GUI. (PowerShell’s certificate provider doesn’t support copying certificates from one
store to another.) To do this is to start the Microsoft Management console (run MMC.EXE) and load
the certificates MMC snap-in. Then you can copy the certificate from the user’s personal certificates
to the trusted Root Certification authorities’ folder. Figure 4-2 shows the process of copying the cer-
tificate. You can copy the certificate from one store and paste into another using the MMC.

Now running Get-AuthenticodeSignature again will show the file has a valid signature.

However, PowerShell still wants reassurance that you mean to trust this publisher:

> .\test.ps1
Do you want to run software from this untrusted publisher?
File: C:\Users\Administrator\test.ps1 is published by CN=James Test-Cert and
is not trusted on your system. Only run scripts from trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help
(default is “D”):

This is not the clearest of PowerShell’s messages because you would think it is asking you about this
script. It is actually asking about all scripts from this publisher.

86804c04.indd 8786804c04.indd 87 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

88

 Part I Getting Started with Windows Scripting

FIGURE 4-2

Copying the certificate

These certificates to help developers sign their code are helpful, but anything that involves adding a
random publisher to your list of trusted Root CAs is to be regarded with suspicion. It is far better to
use a corporate PKI to issue signing certificates. All the managed computers within an organization
can have the corporate CA’s certificate pushed to them and those charged with managing the servers
can ensure that they trust only appropriate certificates, which are then used to sign scripts that run
on those servers. The person who signs the scripts does not need to be the author of the scripts but
becomes the change control authority for putting those scripts into a production environment.

Summary
In this chapter, you have seen that PowerShell is a modern shell for Windows—it understands rich
objects and data types. PowerShell commands are aliased to their equivalents in other shells. New
Cmdlets and providers can be added to PowerShell using snap-ins, making it a general-purpose
tool. PowerShell users can extend the set of commands available by writing their own functions
and defining aliases. PowerShell helps discoverability with consistent help, tab expansion, the
widespread use of the –WhatIf switch, and the Get-Member function. -WhatIf and script restric-
tions help PowerShell to be safer than other shells. A lot of the power of PowerShell comes from
being able to return objects from functions’ Cmdlets, and pipe those objects into other functions
and Cmdlets. PowerShell doesn’t need to explicitly echo things to the console—anything not piped
somewhere else goes to the console.

Although we have not looked at the details of what you can do in PowerShell, you have seen that it
has functions such as Format-table, which shorten the amount of script needed for common
tasks. You will see more examples of this in the coming chapters.

86804c04.indd 8886804c04.indd 88 1/21/09 1:25:01 PM1/21/09 1:25:01 PM

IN THIS PART
Chapter 5
Creating Scripts and
Scripting Files

Chapter 6
Scripting Basics

Chapter 7
Input, Output, and Error Handling

Chapter 8
Working with Files and Folders

Chapter 9
Reading and Writing Files

Chapter 10
Managing Drives and Printers

Chapter 11
Configuring Menus, Shortcuts,
and Startup Applications

Chapter 12
Working with the Windows
Registry and Event Logs

Windows VBScript
and JScript

Part II gets you into the nuts and bolts of scripting: the
Windows Script Host and the basic commands you can
use in scripts. Part II also shows you how to run scripts,

perform input and output, and handle errors. You’ll learn how
to work with the most common objects you can control with
scripts: files and folders, drives and printers, and the applica-
tions themselves. Finally, you’ll learn how to use scripts to
work with the Windows Registry and event logs.

86804c05.indd 8986804c05.indd 89 1/21/09 1:25:16 PM1/21/09 1:25:16 PM

86804c05.indd 9086804c05.indd 90 1/21/09 1:25:16 PM1/21/09 1:25:16 PM

91

Windows Script Host (WSH) provides several different ways to
work with Windows scripts. The easiest technique is to create
scripts using only a single scripting language and then save the

script using the appropriate extension for the scripting engine. If you use
VBScript, you save the script with the .vbs extension. If you use JScript,
you save the script with the .js extension. Unlike script files used with Web
pages, WSH script files don’t need to contain any special markup or any
kind of instructions.

You can also combine multiple types of scripts in a batch script. With batch
scripts, you can use a single file and save it with the .wsf file extension.
Because batch scripts can use scripts written in multiple scripting languages,
you must somehow identify the type of scripts you are using and other
important aspects of these scripts. You do this using markup tags written
in XML (Extensible Markup Language). Don’t worry — you don’t need to
become an XML or HTML expert to work with batch scripts. However, you
do need to learn a bit about the markup tags available for use with WSH.

Running Scripts
You run scripts using the scripting hosts provided by WSH. These scripting
hosts are:

WScript:■ WScript is a scripting host with GUI controls for dis-
playing output in pop-up dialog boxes and is used primarily
when you execute scripts from the desktop. The related execut-
able is WScript.exe and it isn’t related to the WScript object that
is a part of the core object model.

Creating Scripts and
Scripting Files

IN THIS CHAPTER
Running scripts

XML and Windows Script files

Working with batch scripts

Creating jobs and packages

Debugging and error handling

86804c05.indd 9186804c05.indd 91 1/21/09 1:25:17 PM1/21/09 1:25:17 PM

92

 Part II Windows VBScript and JScript

CScript:■ CScript is the command-line version of the scripting host. All output from CScript
is displayed at the Windows command prompt unless you specify otherwise by using a
pop-up box or dialog box. The related executable for CScript is CScript.exe.

The techniques you use to work with WScript and CScript are the same regardless of whether you
are working with standard script files or batch script files.

Starting a Script
When you install WSH and the scripting engines on a system, several file types are mapped for use
with the scripting hosts. These mappings allow you to run scripts like any other executable program.
You can run scripts using any of the following techniques:

Start Windows Explorer, and then browse until you find a script. Double-click on the script.■

Double-click on a desktop shortcut to a script.■

Enter a script name at the Run command on the Start menu. Be sure to enter the full file ■

extension, and path if necessary, such as C:\scripts\myscript.vbs.

At the command-line prompt, type ■ wscript followed by a script name, such as:

wscript myscript.vbs

At the command-line prompt, type ■ cscript followed by a script name, such as:

cscript myscript.js

Setting script properties
You can set script properties for Wscript in Windows Explorer, or when you run scripts at the com-
mand line. If you want to set properties for scripts in Windows Explorer, follow these steps:

 1. Right-click a script file in Windows Explorer.

 2. Select Properties on the shortcut menu.

 3. Choose the Script tab, as shown in Figure 5-1.

 4. You can now set the default timeout value and determine whether a scripting logo is dis-
played when you execute WScript from the command line. Use the timeout value to stop
execution of a script that has been running too long and to possibly prevent a runaway
process from using up precious processor time.

 5. Choose OK or Apply.

As we stated, you can also set script properties at the command line. You can do this only when you
execute a script using CScript. We show you how to do this in the next section.

86804c05.indd 9286804c05.indd 92 1/21/09 1:25:17 PM1/21/09 1:25:17 PM

93

 Creating Scripts and Scripting Files 5

FIGURE 5-1

You can set script properties through the Script tab in Windows Explorer.

Command-line options for scripts
When you run scripts from the desktop or Windows Explorer, property settings can be applied
as outlined in the previous section. These settings are for WScript. CScript, on the other hand,
is a command-line executable, and like most command-line programs, can be configured using
switches and modifiers.

The command-line syntax for Cscript is:

cscript [host_options] [script_name] [script_args]

in which host_options are options to set for CScript, script_name is the name of the script, and
script_args are arguments to pass in to the script. The script name must include the file exten-
sion and any necessary path information, as in the following:

cscript copyfiles.js
cscript c:\scripts\copyfiles.js
cscript c:\”my scripts”\copyfiles.js

Table 5-1 shows the available options for CScript. As you can see, options and arguments are differ-
entiated using slashes. Host options are preceded with two slashes (//) and script arguments don’t

86804c05.indd 9386804c05.indd 93 1/21/09 1:25:17 PM1/21/09 1:25:17 PM

94

 Part II Windows VBScript and JScript

use slashes. For example, you can set a timeout for a script and pass in the script parameter “basic”
as follows:

cscript //t:45 logon.vbs basic

TABLE 5-1

Options for CScript
Option Description

//? Shows command usage.

//b Sets batch mode, which suppresses command-line display of user prompts and
script errors. (Opposite of //i.)

//d Turns on the debugger.

//e:engine Runs the script with the specified scripting engine.

//h:Cscript Registers Cscript.exe as the default application for running scripts.

//h:Wscript Registers Wscript.exe as the default application for running scripts. If not specified,
Wscript.exe is assumed to be the default.

//i Sets interactive mode for scripts, which allows display of user prompts and
script errors. Interactive mode is the default.

//Job:”Job Name” Runs the specified job from a WSC file.

//logo Displays CScript logo at runtime. This is the default setting.

//nologo Turns off display of the CScript logo at runtime.

//s Saves the current command-line options for the user logged on to the system.

//t:nn Sets a timeout for the script, which is the maximum number of seconds (nn) the
script can run. By default, scripts have no limit.

//x Executes the program in the debugger.

As you can see from the table, scripts can be run in interactive mode or batch mode. In batch
mode, scripts don’t display prompts or errors, and this behavior is very useful when you want to
schedule scripts to run with the Task Scheduler service. For example, if you want to run a Windows
script every weekday at midnight, you would probably want to run in batch mode. For example:

AT 00:00 /every:M,T,W,Th,F “cscript //b backupdata.js”

Whether you run scripts from the command line or via the Task Scheduler, you’ll often want to set
more than one option. Having to retype scripting options each time you use a script isn’t fun, which
is why the //s option is provided. With this option, you can set default options to use each time
you run CScript. For example, if you enter the following command:

86804c05.indd 9486804c05.indd 94 1/21/09 1:25:17 PM1/21/09 1:25:17 PM

95

 Creating Scripts and Scripting Files 5

cscript //b //nologo //t:30 //d //s

CScript is set to use batch mode, no logo, a timeout of 30 seconds, and debugging whenever you run
scripts. The only way to override the default setup is to save a different set of options, like this:

cscript //i //s

As you work with WScript and CScript, you may find that you prefer one over the other. Don’t
worry, you can switch the default scripting host at any time. To use CScript as the default, enter the
following command:

cscript //h:CScript

To use WScript as the default, enter:

cscript //h:WScript

Using drag and drop with scripts
Windows Script Host supports drag and drop. Drag and drop allows you to drag one or more files
onto a script file. The script is then automatically executed with the files as arguments.

When you drag files onto a WSH script, the filenames are translated into arguments on the command
line. These filenames can be managed just like any other script arguments. The number of files you
can drag onto a script is limited by the maximum command-line length your computer allows. If the
total number of characters in all filenames (including the spaces added between filenames) exceeds
this limit, the drag-and-drop operation will fail.

To give drag and drop a test run, create the script shown as Listing 5-1; then save the file to the
Windows desktop. Afterward, start Windows Explorer. In Windows Explorer, select several files
and then, while holding down the right mouse button, drag the files onto the script. The script dis-
plays the filenames in separate pop-up dialog boxes.

LISTING 5-1

Using Drag and Drop

echoargs.vbs

Set objArgs = WScript.Arguments
For I = 0 to objArgs.Count - 1
 WScript.Echo “File “ + CStr(I) + “: “ + objArgs(I)
Next

86804c05.indd 9586804c05.indd 95 1/21/09 1:25:17 PM1/21/09 1:25:17 PM

96

 Part II Windows VBScript and JScript

Creating Batch Scripts
Batch scripts allow you to combine multiple scripts in a single file. These scripts can use the same
scripting language or different scripting languages — it doesn’t matter. The advantage of batch scripts
is that they make it possible for scripts to interact. You can pass values back and forth between scripts.
You can even call functions of scripts that aren’t included in the file directly, which is the technique
you’ll use if you create utility libraries like those discussed in Part V of this book.

Batch scripts are saved in files with the .wsf file extension and make use of XML markup tags to
tell the scripting host how to handle the batch scripts. As with HTML (Hypertext Markup Language),
most XML markup tags have a begin tag and an end tag that, together, specify an element. An
element that you may already be familiar with is script. The script element is used to specify
the start and end of scripts in Web pages, as well as to specify information needed to locate and
interpret scripts.

The scripting hosts support a special set of XML tags. These tags include:

<?job ?>■ : Sets special instructions for all scripts in the batch

<?XML ?>■ : Sets special instructions for parsing file as XML

<description>■ : Marks the descriptive text shown when the user runs ShowUsage() or
runs the script with the /? command line switch

<example>■ : Provides an example of usage when the ShowUsage method is called

<named>■ : Describes a named argument for the script

<package>■ : Encloses multiple job definitions

<job>■ : Identifies the job (or script name)

<object>■ : Exposes objects for use in scripts

<reference>■ : References an external-type library

<resource>■ : Sets text or numeric data that should not be hard coded into a script

<runtime>■ : Creates a set of runtime arguments for a script

<unnamed>■ : Describes an unnamed argument for the script

<usage>■ : Allows the user to override the default usage display

<script>■ : Identifies the scripting language and source

The sections that follow examine each of these tags in turn. If you’ve never worked with markup
tags before, don’t worry — you don’t need to know anything about XML or HTML, I promise.

86804c05.indd 9686804c05.indd 96 1/21/09 1:25:17 PM1/21/09 1:25:17 PM

97

 Creating Scripts and Scripting Files 5

Identifying the job name
Batch scripts are really designed to help administrators create scripting libraries with functions that
can be easily accessed. Because you can potentially have dozens of scripts in a single library, you
may need a container to be able to reference the script you want to run. You do this with the job
element. As with most elements, the job element has a pair of markup tags associated with it. The
<job> tag marks the beginning of the job element, and the </job> tag marks the end of the job
element, like this:

<job>
 Insert body of job here
</job>

To identify the name of the job, you use the id attribute. An attribute is simply a property of an ele-
ment that can be used to set values. Using the id attribute, you set the job name as follows:

<job id=”WriteLogs”>
</job>

The job element is a top-level element that can contain zero or more occurrences of these other ele-
ments: object, reference, and script. The job element itself can also be used more than once
in a .wsf file, provided that you enclose the jobs within a package element. Enclosing multiple jobs
is the only purpose of the package element and its use is mandatory when you have two or more
jobs in a .wsf file.

When you use multiple jobs, you shouldn’t nest job elements within job elements. Instead, you
should start one job, end it, and then start another, as shown in Listing 5-2.

LISTING 5-2

Using multiple jobs

multijobs.wsf

<package>
<job id=”WriteLogs”>
 Insert body of job here
</job>
<job id=”DeleteOldLogs”>
 Insert body of job here
</job>
<job id=”PublishLogs”>
 Insert body of job here
</job>
</package>

86804c05.indd 9786804c05.indd 97 1/21/09 1:25:17 PM1/21/09 1:25:17 PM

98

 Part II Windows VBScript and JScript

Adding scripts and setting the scripting language
When you add scripts to the batch, you need to tell the scripting hosts about the script you are
using. You do this with the script element. The <script> tag marks the beginning of a script
and the </script> tag marks the end of a script. You always use the script element within a
job element, like this:

<job id=”WriteLogs”>
<script>
 Insert script here
</script>
</job>

The scripting host also needs to know which language you are using. You specify the scripting language
with the language attribute. Valid values for the language attribute include VBScript, JScript,
JavaScript, and PerlScript. You can set the scripting language to VBScript as follows:

<script language=”VBScript”>
 ‘Insert VBScript here
</script>

WSH jobs can contain multiple scripts. When they do contain multiple scripts, you need to insert
additional script elements. In Listing 5-3, the job uses scripts written in VBScript and JScript.

LISTING 5-3

Using Multiple Scripts within a Single Job

multiscripts.wsf

<job id=”WriteLogs”>
<script language=”VBScript”>
 ‘Insert VBScript here
</script>
<script language=”JScript”>
 ‘Insert JScript here
</script>
</job>

Setting the script source
The source code for scripts doesn’t have to be in the batch file. You can store the source code in
separate .js, .vbs, and .pl files, and then reference the source file from within the batch. Source files
that aren’t located in the batch are referred to as external scripts, and their location is set with the
src attribute.

86804c05.indd 9886804c05.indd 98 1/21/09 1:25:18 PM1/21/09 1:25:18 PM

99

 Creating Scripts and Scripting Files 5

The src attribute expects you to reference source locations using URLs (Universal Resource
Locators). URLs are what you use when you browse the Web. However, while a typical Web URL
looks like this: http://www.centraldrive.com/index.html, a typical file URL looks like this:
file://c:\working\myscript.vbs. where http: identifies the Hypertext Transfer Protocol
used on the Web, and file: identifies the file protocol used with file systems.

Source files can be referenced with relative file paths or absolute file paths. You access local files —
files on your local system — using a relative file path. URLs with relative file paths generally do not
name a protocol. When you use a relative path to locate a file, you locate the file in relation to the
current batch script. You can use relative file paths in the following three key ways:

To access a file in the current directory, such as:■

<script language=”JScript” src=”test.js” />

To access a file in a parent directory of the current directory, such as:■

<script language=”JScript” src=”../test.js” />

To access a file in a subdirectory of the current directory, such as:■

<script language=”JScript” src=”scripts/test.js” />

Another way to access files is directly. You do this by specifying the complete path to the file you
want to access, such as:

<script language=”JScript” src=”file://c:\scripts/test.js” />

As shown in the previous examples, you don’t use an end script tag when you specify a script
source. Instead, you tell the scripting host to end the element with the /> designator. A more com-
plete example of using external scripts is shown in Listing 5-4.

LISTING 5-4

Working with Multiple Jobs and External Source Files

multijobs2.wsf

<package>
<job id=”WriteLogs”>
 <script language=”VBScript” src=”fget.vbs” />
 <script language=”JScript” src=”fcreate.js” />
</job>
<job id=”DeleteOldLogs”>
 <script LANGUAGE=”VBScript” src=”testfolder.vbs” />
 <script LANGUAGE=”VBScript” src=”delcreate.vbs” />
</job>
<job id=”PublishLogs”>
<script LANGUAGE=”VBScript”>
 ‘Insert VBScript here
</script>

86804c05.indd 9986804c05.indd 99 1/21/09 1:25:18 PM1/21/09 1:25:18 PM

100

 Part II Windows VBScript and JScript

<script language=”JScript”>
 ‘Insert JScript here
</script>
</job>
</package>

One of the primary reasons for placing multiple scripts in the same file is the ability to take advan-
tage of the strengths of a particular scripting language. For example, VBScript features extensive
support for arrays, while JScript doesn’t. You can create a script that makes use of VBScript’s arrays
and then pass this information back to JScript where you can then take advantage of JScript’s exten-
sive mathematical functions to manipulate the data in the arrays.

You’ll fi nd specifi c examples of combining scripting languages throughout this book. For
specifi c pointers and helpful tips, see “Combining JScript and VBScript” in Chapter 6.

Referencing external objects and type libraries
External objects and type libraries enable you to extend the functionality of Windows scripts. With
external objects, you can gain additional features. With type libraries, you can define sets of con-
stants to use with scripts.

Windows scripts can use external objects and type libraries as long as those objects and libraries are
defined appropriately for use with WSH. External objects must be defined as ActiveX objects and
installed on the system that is running the script. Type libraries must be accessible for external calls
and saved as .tlb, .olb, or .dll files.

When you use external objects in scripts, you need a way to tell your system about an object. You do
this with the classid attribute of the object element. The classid attribute is a reference to the
globally unique identifier (GUID) for the ActiveX object you want to use. Each ActiveX object has a
GUID, and when the object is installed on a system, this value is stored in the Windows Registry. An
ActiveX object has the same GUID on your system as it does on any other system.

The value {0002DF01-0000-0000-C000-000000000046} is the GUID for Internet Explorer. This
value is also referred to as the CLSID or class ID for Internet Explorer. Your system accesses the appro-
priate object by looking up the class ID in the Windows Registry. Using the classid attribute, you
reference controls by their CLSID value, such as:

<object classid=”clsid:0002DF01-0000-0000-C000-000000000046” />

In the previous example, the curly braces are removed from the CLSID. You must remove
the curly braces from all CLSIDs before referencing them.

You are probably wondering how to obtain such a monstrous CLSID value. The easiest way to obtain
the CLSID value is through the Registry Editor. You can run the Registry Editor by starting regedit.exe
(or regedt32.exe).

NOTENOTE

NOTENOTE

86804c05.indd 10086804c05.indd 100 1/21/09 1:25:18 PM1/21/09 1:25:18 PM

101

 Creating Scripts and Scripting Files 5

As shown in Figure 5-2, the Registry Editor files entries by category into directories. For OLE and
ActiveX objects, the directory you want to use is the HKEY_CLASSES_ROOT directory. Although
the Registry Editor features a Find function under the Edit menu, this feature is useful only if you
know the exact name of the object for which you are searching. Therefore, you will probably want
to browse for the object you are looking for. To do this, select HKEY_CLASSES_ROOT on the local
machine from the Window menu. With the HKEY_CLASSES_ROOT folder open, you will see folders
for each registered item. Entries are listed by file extension, name, and GUID. The named entries are
what you are looking for. Many ActiveX objects are filed beginning with the keyword “Internet.”

FIGURE 5-2

Working with the Windows Registry

When you find the entry you are looking for, click in its folder to view subfolders associated with the
entry. The CLSID subfolder contains the CLSID you need, so click on the CLSID subfolder associ-
ated with the entry. Now, in the right pane of the Registry Editor, you should see the CLSID associ-
ated with the entry.

Double-click on the CLSID entry in the right pane to display the Edit String dialog box. With the
CLSID highlighted, you can press Ctrl+C to copy the CLSID to the clipboard. When you are ready to
use the CLSID, paste the value from the clipboard using Ctrl+V.

Before you can use the object, you need to create a reference to it. You do this by giving the object an
identifier, such as IE for Internet Explorer. This identifier is assigned with the id attribute, such as:

<job id=”WorkwithIE”>
 <object ID=”IE”
 classid=”clsid:0002DF01-0000-0000-C000-000000000046” />
 <script language=”VBScript” src=”useie.vbs” />
</job>

86804c05.indd 10186804c05.indd 101 1/21/09 1:25:18 PM1/21/09 1:25:18 PM

102

 Part II Windows VBScript and JScript

Once you create an object reference, you can work with the object’s methods and properties as you
would any other object. The object is also available to multiple scripts associated with the current job.

The Reference element can also use CLSIDs to reference type libraries containing constants that you
want to use in your scripts. With the Reference element, you set the CLSID with the guid attri-
bute and should also specify the library version with the version attribute. If you do not specify a
version, version 1.0 is assumed. Because you are referencing a GUID directly, you do not need the
CLSID: prefix and you can use these attributes as follows:

<job id=”WorkwithTypeLib”>
 <reference guid=”0002DF01-0000-0000-C000-000000000046”
 version=1.2/>
 <script language=”VBScript” src=”uselib.vbs” />
</job>

Rather than specifying the guid and version, you can specify a file location for the type library
using the url attribute. When you do this, you set the relative or absolute location of the library
file. In the source code, you must then create instances of the object class or classes that the
library contains.

If using CLSIDs and the Registry seems like a lot of work, that’s because it is. In practice,
you’ll probably want to create instances of objects within scripts rather than reference
external objects. To do this, you’ll use the CreateObject() method of the WScript
object. You learn more about CreateObject() in Chapter 6.

Setting job properties
Another element you may want to work with in a batch script is <?job ?>. This element sets error-
handling instructions for the scripting host on a per-job basis. Each job in a .wsf file can have a
separate <?job ?> element. The basic syntax for <?job ?> is:

<?job error=”flag”
 debug=”flag” ?>

where flag is a Boolean value, such as True or False. You can use the error and debug attributes
as follows:

error■ : Set to true to allow error messages for syntax or runtime errors. Default is false.

debug■ : Set to true to enable debugging. When enabled, you can start the script debugger.
Default is false. (This assumes a debugger is configured.)

Listing 5-5 shows an example of using error-handling in a script. Note that each job has a separate
instruction.

CROSS-REFCROSS-REF

86804c05.indd 10286804c05.indd 102 1/21/09 1:25:18 PM1/21/09 1:25:18 PM

103

 Creating Scripts and Scripting Files 5

LISTING 5-5

Setting Special Instructions in a Batch Script

errorhandling.wsf

<package>
<job id=”Backup”>
<?job error=”true” ?>
 <reference URL=”file:c:\components\comp.lib”>
 <script language=”VBScript” src=”backupset1.vbs” />
 <script language=”VBScript” src=”backupset2.vbs” />
 <script language=”VBScript” src=”backupset3.vbs” />
</job>
<job id=”Restore”>
<?job error=”true” ?>
 <reference url=”file:c:\components\comp.lib”>
 <script language=”VBScript” src=”restore.vbs” />
</job>
</package>

Setting parsing instructions
The <?XML ?> element enables you to set parsing instructions for the .wsf file. If you use this element,
the batch script is parsed as XML. The element has two attributes: version and standalone.

You use the version attribute to set the version of the XML specification to which the file conforms,
such as 1.0. You use the standalone attribute to specify whether the file includes a reference to an
external Document Type Definition (DTD). Normally, you want to set the value of standalone to Yes,
which indicates that the batch script is a standalone document that does not use an external DTD.

If used, parsing instructions are set on the first line of the .wsf file; for example:

<?XML version=”1.0” standalone=”yes” ?>
<package>
<job id=”job1”>
</job>
<job id=”job2”>
</job>
</package>

Each file should have only one parsing instruction.

86804c05.indd 10386804c05.indd 103 1/21/09 1:25:18 PM1/21/09 1:25:18 PM

104

 Part II Windows VBScript and JScript

Documentation and Usage
Several elements are used for providing instructions to a user on how to execute the script. The
tags <description>, <example>, <named>, <unnamed>, and <usage> are all grouped together
within a <runtime> element.

For example, Listing 5-6 shows the use of the <runtime> along with other elements to provide
usage instructions for the script.

LISTING 5-6

Runtime Documentation

runtimedemo.wsf

<job>
 <runtime>
<description>This script demonstrates the documentation elements</description>
 <named
 name=”globalcatalog”
 helpstring=”A global catalog server to run the script against”
 type=”string”
 required=”true”
 />
<unnamed
 name=”object”
 helpstring=”the objects in the global catalog”
 many=”true”
 required=”2”
/>

<example>Example: RuntimeDemo /globalcatalog:GCServer1 userAccount1 group1
 </example>
 </runtime>
 <script language=”JScript”>
 if (!WScript.Arguments.Named.Exists(“globalcatalog”))
 {
 WScript.Arguments.ShowUsage();
 }
 // …do an interesting script here…
 </script>
</job>

Output

This script demonstrates the documentation elements
Usage: runtimedemo.wsf /globalcatalog:value object1 object2 [object3…]

86804c05.indd 10486804c05.indd 104 1/21/09 1:25:18 PM1/21/09 1:25:18 PM

105

 Creating Scripts and Scripting Files 5

Options:

globalcatalog : A global catalog server to run the script against
object : the objects in the global catalog
Example: RuntimeDemo /globalcatalog:GCServer1 userAccount1 group1

The <usage> element overrides all other elements in the <runtime> XML block. It is called in the
same way as the other elements. For example, adding the <usage> element to the runtimedemo.wsf
in Listing 5-6:

 <runtime>
<usage>
This overrides the other elements.
</usage>
<description>This script demonstrates the documentation elements
 </description>
 <named
 name=”globalcatalog”
 helpstring=”A global catalog server to run the script
 against”
 type=”string”
 required=”true”
 />
<unnamed
 name=”object”
 helpstring=”the objects in the global catalog”
 many=”true”
 required=”2”
/>

produces the following output:

This overrides the other elements.

Finally, the <resource> element allows the developer a way to make strings or textual data more
flexible to reference in the script. This is an easy way to provide strings that can be used for localiza-
tion, as in the following example:

<job>
<resource id=”localizedWelcome”>
 Bonjour World!
</resource>
<script language=”VBScript”>

86804c05.indd 10586804c05.indd 105 1/21/09 1:25:18 PM1/21/09 1:25:18 PM

106

 Part II Windows VBScript and JScript

 localString=getResource(“localizedWelcome”)
 wscript.echo localString

</script>
</job>

This code produces the following output:

Bonjour World!

Summary
As you’ve seen in this chapter, the Windows Script Host provides a versatile environment for work-
ing with scripts. You can execute scripts from the command line, from the Windows desktop, and
from Windows Explorer. WSH also supports drag and drop. Both CScript and WScript support batch
script files as well. With batch script files, you can combine multiple types of scripts in a single file.

86804c05.indd 10686804c05.indd 106 1/21/09 1:25:18 PM1/21/09 1:25:18 PM

107

Now that you know a bit about creating script files and running
scripts, you are ready to start working with the features Windows
Script Host has to offer. You’ll find that WSH structures are sur-

prisingly powerful. You can perform many advanced tasks with only a few
basic commands.

Key WSH Objects
As you learned in Chapter 1, the WSH object model contains exposed and
unexposed objects. Exposed objects are the ones you can access directly in
your scripts and include WScript, WScript.WshNetwork, and WScript.
WshShell. In this chapter, you work with basic methods and properties of
each of these objects.

Table 6-1 lists the methods and properties of WScript.

VBScript and JScript
Scripting Basics

IN THIS CHAPTER
Displaying text strings

Examining script information

Accessing environment variables

Running programs from
within scripts

Combining JScript and VBScript

TABLE 6-1

WScript Methods and Properties
Methods Properties

CreateObject Application

DisconnectObject Arguments

Echo FullName

GetObject Name

Quit Path

continued

86804c06.indd 10786804c06.indd 107 1/21/09 1:25:30 PM1/21/09 1:25:30 PM

108

 Part II Windows VBScript and JScript

Methods Properties

Sleep ScriptFullName

ScriptName

Version

WScript.WshNetwork is the object you’ll use to manage network resources such as printers and
network drives. The methods and properties of this object are listed in Table 6-2.

TABLE 6-2

WScript.WshNetwork Methods and Properties
Methods Properties

AddPrinterConnection ComputerName

EnumNetworkDrives UserDomain

EnumPrinterConnection UserName

MapNetworkDrive

RemoveNetworkDrive

RemovePrinterConnection

SetDefaultPrinter

Another important object is WScript.WshShell. You’ll use this object to work with the environ-
ment and the operating system. Table 6-3 lists the methods and properties of this object.

TABLE 6-3

WScript.WshShell Methods and Properties
Methods Properties

CreateShortcut Environment

ExpandEnvironmentStrings SpecialFolders

LogEvent

Popup

TABLE 6-1 (continued)

86804c06.indd 10886804c06.indd 108 1/21/09 1:25:30 PM1/21/09 1:25:30 PM

109

 VBScript and JScript Scripting Basics 6

Methods Properties

RegDelete

RegRead

RegWrite

Run

Displaying Text Strings
The first command you are going to learn about is Echo. You call Echo as a method of the WScript
object. If you are using CScript and are in interactive mode, output from Echo is written to the com-
mand line. If you are using WScript and are in interactive mode, output from Echo is displayed in a
pop-up dialog box.

Using Echo
You can use Echo in VBScript and JScript as shown in Listing 6-1. Note the difference in syntax
between the two. With VBScript, you pass Echo strings and can use the standard concatenation rules
to add strings together. You can also pass values in a comma-separated list. In JScript, you must use
parentheses and can only pass values in a comma-separated list, which is then concatenated for you.

LISTING 6-1

Using Echo in VBScript and JScript

VBScript
echo.vbs

theAnswer = “Yes”
WScript.Echo 1, 2, 3
WScript.Echo “Run, run, run!”
WScript.Echo “1: “ + theAnswer

JScript
echo.js

theAnswer = “Yes”
WScript.Echo(1, 2, 3)
WScript.Echo(“Run, run, run!”)
WScript.Echo(“1: “, theAnswer)

86804c06.indd 10986804c06.indd 109 1/21/09 1:25:30 PM1/21/09 1:25:30 PM

110

 Part II Windows VBScript and JScript

Running the Echo script
You can run these scripts from the command line or from Windows Explorer. At the command line,
change to the directory containing the scripts and then type:

cscript echo.vbs

or

cscript echo.js

The following output is then written to the command line:

1 2 3
Run, run, run!
1: Yes

With Windows Explorer, you access the directory containing the scripts and then double-click the
script you want to run. Each call to Echo produces a separate pop-up dialog box. The first dialog
box displays 1 2 3. When you click OK to close the first dialog box, a second dialog box displays
Run, run, run!. When you click OK to close the second pop-up, a third dialog box displays 1:
Yes. Click OK again and then the script completes execution.

Examining Script Information
To accommodate a variety of user environments, your scripts will often need to test for version infor-
mation before running. For example, if the user system is running the version 4 script engines, you
don’t want to try to run a version 5 script on the system because doing so could have unpredictable
results. To prevent problems, you should at least check the script host version and the script engine
version. Other scripting information you may want to check includes the location of the script hosts
on the user’s system, arguments passed in to the script at startup, and environment variables set on
the system.

Last, with user scripts, you also may want to run other applications from within a script. For exam-
ple, you may want to create a logon script that provides a menu for selecting the type of applications
the user may want to start, such as Development Tools or Productivity Tools. Then, based on the
response, you would start the related set of applications.

Getting script host information
When you want to examine information related to the script hosts (WScript or CScript), you use
these properties of the WScript object:

WScript.Fullname■ : Returns the full path to the current script host, such as:

C:\WIN2000\System32\cscript.exe

86804c06.indd 11086804c06.indd 110 1/21/09 1:25:30 PM1/21/09 1:25:30 PM

111

 VBScript and JScript Scripting Basics 6

WScript.Path■ : Returns the path to the script host, such as:

C:\WIN2000\System32

WScript.Version■ : Returns the script host version, such as:

5.1

You can use these properties in VBScript and JScript as shown in Listing 6-2. Note the If Else con-
dition used to call main() and error() functions. If the version is greater than or equal to 5, the
main() function is executed. Otherwise, the error() function is executed.

LISTING 6-2

Validating Script Host Information

VBScript
wshinfo.vbs

vs = WScript.Version

If vs >= 5 Then
 main()
Else
 error()
End If

Function main
 WScript.Echo “Starting execution…”
End Function

Function error
 WScript.Echo “WSH version error!”
End Function

JScript
wsinfo.js

vs = WScript.Version

if (vs >= 5) {
main()
}
else {
error()
}

continued

86804c06.indd 11186804c06.indd 111 1/21/09 1:25:30 PM1/21/09 1:25:30 PM

112

 Part II Windows VBScript and JScript

function main() {
 WScript.Echo(“Starting execution…”)
}

function error() {
 WScript.Echo(“WSH version error!”)
}

If you use script host information to determine whether to run a script, you may want to use the
Quit method. The Quit method quits execution of a script and returns an error code. For example,
if you wanted to return an error code of 1 you would use:

VBScript

WScript.Quit 1

JScript

WScript.Quit(1)

Listing 6-3 shows how to rewrite the previous example using the Quit method. Here, you elimi-
nate the error() method and replace the check for a version greater than or equal to 5 with a
check for a version less than 5. If the version is less than 5, the script quits executing and returns
an error code of 1. So, Listing 6-3 should execute the main() function because the version of
WSH is greater than 5.

LISTING 6-3

Ending Script Execution with an Error Code

VBScript
wshquit.vbs

vs = WScript.Version

If vs < 5 Then
 WScript.Quit 1
End If

main()

Function main
WScript.Echo “Starting execution…”
End Function

LISTING 6-2 (continued)

86804c06.indd 11286804c06.indd 112 1/21/09 1:25:30 PM1/21/09 1:25:30 PM

113

 VBScript and JScript Scripting Basics 6

JScript
wshquit.js

vs = WScript.Version

if (vs < 5) {
 WScript.Quit(1)
}

main()
function main() {
WScript.Echo(“Starting execution…”)
}

Getting scripting information
Just as you can examine information related to the script host, you can also examine information
related to the script engine and the current script. To examine properties of the script engine, you
use built-in functions available in VBScript and JScript. To examine script properties, you use prop-
erties of the WScript object. Following is a list of these functions and properties:

ScriptEngine()■ : A built-in function that returns the script engine language, such as
VBScript or JScript.

ScriptEngineMajorVersion()■ : A built-in function that returns the script engine ver-
sion, such as 5 or 6.

ScriptEngineMinorVersion()■ : A built-in function that returns the revision number of
the script engine, such as 1 or 2.

ScriptEngineBuildVersion()■ : A built-in function that returns the build version of the
script engine, such as 3715.

ScriptFullName■ : A property of WScript that returns the full path to the current script,
such as c:\scripts\createspreadsheet.vbs.

ScriptName■ A property of WScript that returns the file name of the current script, such
as createspreadsheet.vbs.

Listing 6-4 shows an example of how you can use these functions and properties in a script.
The listing builds the script information using two functions: GetSEInfo and GetScript. The
GetSEInfo function returns script engine information. The GetScript function returns script
path and name information.

86804c06.indd 11386804c06.indd 113 1/21/09 1:25:30 PM1/21/09 1:25:30 PM

114

 Part II Windows VBScript and JScript

LISTING 6-4

Getting Script Information

VBScript
scriptinfo.vbs

WScript.Echo GetSEInfo()

WScript.Echo GetScript()

Function GetSEInfo
 Dim info
 info = “”
 info = ScriptEngine & “ Version “
 info = info & ScriptEngineMajorVersion & “.”
 info = info & ScriptEngineMinorVersion & “.”
 info = info & ScriptEngineBuildVersion
 GetSEInfo = info
End Function

Function GetScript
 Dim info
 scr = “Name: “
 scr = WScript.ScriptName & “ Full path: “
 scr = scr & WScript.ScriptFullName
 GetScript = scr
End Function

JScript
scriptinfo.js

se = GetSEInfo()
WScript.Echo(se)

sc = GetScript()
WScript.Echo(sc)

function GetSEInfo()
{
 var info;
 info = “”;
 info += ScriptEngine() + “ Version”;
 info += ScriptEngineMajorVersion() + “.”;
 info += ScriptEngineMinorVersion() + “.”;
 info += ScriptEngineBuildVersion();
 return(info);

86804c06.indd 11486804c06.indd 114 1/21/09 1:25:30 PM1/21/09 1:25:30 PM

115

 VBScript and JScript Scripting Basics 6

}
function GetScript()
{
 var scr;
 scr = “Name: “;
 scr += WScript.ScriptName + “ Full path: “;
 scr += WScript.ScriptFullName;
 return(scr);
}

Getting script arguments
Arguments set information needed by the script at runtime and are often needed with Windows scripts.
WSH interprets any text following the script name as arguments. For example, in the following code:

cscript testarg.vbs Test Code 52

the first argument is Test, the second is Code, and the third is 52. As you can see, spaces are used
to determine where one argument ends and another begins. This can cause some problems if you
want to enter multiple words as a single argument. The workaround is to enclose the argument in
double quotation marks, as follows:

cscript testarg.vbs “Test Code 52”

Now the first argument is interpreted as Test Code 52.

Script arguments are placed in a container object called WshArguments. You can think of container
objects as arrays with properties that are used to work with elements in the array. You need to cre-
ate an instance of WshArguments before you can work with it. You do this with the WScript.
Arguments property. For example:

VBScript

Set theArgs = WScript.Arguments

JScript

var theArgs = WScript.Arguments

Note the use of Set and var in the example. In VBScript, you assign an object reference
to a variable with the Set statement. In JScript, you do so with the var statement.

After you create the object instance, you can use the Item property of the WshArguments object to
access arguments passed to a script according to their index position in the WshArguments object.

NOTENOTE

86804c06.indd 11586804c06.indd 115 1/21/09 1:25:30 PM1/21/09 1:25:30 PM

116

 Part II Windows VBScript and JScript

The first script argument is at index position 0, the second at 1, and so on. You can assign argument
1 to a variable as follows:

VBScript

arg1 = theArgs.Item(0)

JScript

arg1 = theArgs.Item(0)

Both VBScript and JScript support a property for determining how many arguments were passed in as
well. In VBScript, you use the Count property. In JScript, you use the corresponding Count() method
or the Length property. If two arguments were passed to a script, these statements would return 2:

VBScript

numArgs = theArgs.Count

JScript

numArgs = theArgs.Length
numArgs = theArgs.Count()

You can also use For loops to examine each argument in turn. When you do this, use the argument
count to determine how many times to loop while examining the WshArguments object. Then use
the Item() method to examine or display the value of each argument. An example of this technique
is shown in Listing 6-5.

LISTING 6-5

Examining Script Arguments Using a Loop

VBScript
getargs.vbs

Set theArgs = WScript.Arguments
For I = 0 to theArgs.Count - 1
 WScript.Echo theArgs(I)
Next
For Each i IN theArgs
 WScript.Echo i
Next

JScript
getargs.js

var theArgs = WScript.Arguments
for (x = 0; x < theArgs.Length; x++)

86804c06.indd 11686804c06.indd 116 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

117

 VBScript and JScript Scripting Basics 6

{
 WScript.Echo(theArgs.Item(x))
}

Working with Environment Variables
Environment variables play an important role in Windows scripting. In Windows scripts, you can
access environment variables is several ways. In this section, we focus on two techniques. The first
technique is one that you can rely on time and again, rather than the other technique, which may
cause problems in your scripts.

Understanding environment variables
Environment variables come from many different sources. Just as you can look around and
describe your personal surroundings, Windows looks around and describes what it sees in terms
of processors, users, paths, and so on. Some variables are built into the operating system or derived
from the system hardware during startup. These variables are called built-in system variables and
are available to all Windows processes regardless of whether anyone is logged in interactively.
System variables can also come from the Windows Registry. These variables are stored in the
Registry’s HKEY_LOCAL_MACHINE hive and are set when the system boots.

Other variables are set during logon and are called built-in user variables. The built-in user variables
available are the same no matter who is logged on at the computer and, as you might expect, are only
valid during an actual logon session. Because of this, shell scripts executed with the AT command
cannot rely on user variables to be available. User variables can also come from the Windows NT
Registry where they are stored in the Registry’s HKEY_CURRENT_USER hive and are set during user
login. These user variables are valid only for the current user and are not available for other users.

Table 6-4 lists the key built-in system and user variables you may want to work with in shell scripts.
Additional variables can be created by users and the operating system.

TABLE 6-4

Built-in System and User Variables
Variable Name Description Sample Value

ALLUSERS
PROFILE

Default profile for users F:\Documents and Settings\
All Users

APPDATA Location of the current user’s
application data

F:\Documents and Settings\
wrstanek\Application Data

continued

86804c06.indd 11786804c06.indd 117 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

118

 Part II Windows VBScript and JScript

Variable Name Description Sample Value

COMMON
PROGRAMFILES

Location of common program files on
the computer

F:\Program Files\Common Files

COMPUTERNAME Computer account name Pluto

COMSPEC Complete path to the current instance
of CMD.EXE

C:\WIN2000\system32\cmd.exe

HOMEDRIVE Drive name on which the current
user’s profile resides

C:

HOMEPATH Location of the root directory on the
home drive

\

LOGONSERVER UNC name of the logon domain
controller

\\Sun

NUMBER_OF
_PROCESSORS

Number of CPUs on the system 3

OS Operating system name Windows_NT

PATH Executable path used by Windows Path=C:\;C:\WIN2000system32;C:\
WIN2000

PATHEXT File name extensions for executable files .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;
.VBE;.WSF;.WSH

PROCESSOR
_ARCHITECTURE

Architecture of the processors X86

PROMPT Command prompt settings on the
current machine

PG

SYSTEMDRIVE Drive name on which the operating
system resides

C:

SYSTEMROOT Path to the operating system C:\WIN2000

USERDOMAIN Name of the logon domain WEBONE

USERNAME Username of the current user WRSTANEK

USERPROFILE Path to the current user’s user profile F:\Documents and Settings\
WRSTANEK

Accessing environment variables
Environment variables are accessed via the WScript.WshShell object, so you need to create an
instance of WScript.WshShell before you can work with environment variables. Unfortunately,

TABLE 6-4 (continued)

86804c06.indd 11886804c06.indd 118 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

119

 VBScript and JScript Scripting Basics 6

there isn’t a property of the WScript object that you can use to return the WScript.WshShell
object. Because of this, you must create the object instance yourself. You can do this with the
CreateObject method of the WScript object. For example:

VBScript

Set ws = WScript .CreateObject(“WScript.Shell”)

JScript

var ws = WScript .CreateObject(“WScript.Shell”);

Next, as shown in Listing 6-6, use the ExpandEnvironmentStrings() method of WScript.Shell
to specify the environment variable you want to work with. All of the environment variables described
previously in Table 6-4 are available. You can use the paths returned by ExpandEvironment
Strings() to set file and directory locations.

LISTING 6-6

Using Environment Variables

VBScript
envar.vbs

Set WshShell = WScript.CreateObject(“WScript.Shell”)
WScript.Echo WshShell.ExpandEnvironmentStrings(“%PATH%”)
WScript.Echo WshShell.ExpandEnvironmentStrings(“%COMPUTERNAME%”)

JScript
envar.js

var WshShell = WScript.CreateObject(“WScript.Shell”)
WScript.Echo(WshShell.ExpandEnvironmentStrings(“%PATH%”))
WScript.Echo(WshShell.ExpandEnvironmentStrings(“%COMPUTERNAME%”))

Working with environment variables: An alternative
In Windows scripts, you can access environment variables in several ways. In the previous section,
we examined a technique that you can rely on time and again to get the job done. In this section, we
examine an alternative technique that may or may not work in your particular circumstance.

With this technique, you access environment variables through WshEnvironment; then you use the
WshShell.Environment method to specify which type of environment variables to work with.
Environment variables, broken down into four possible classes, are as follows:

System■ : Refers to system environment variables

User■ : Refers to user environment variables

86804c06.indd 11986804c06.indd 119 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

120

 Part II Windows VBScript and JScript

Volatile■ : Refers to temporary environment variables

Process■ : Refers to process variables

You specify the type of environment variable you want to work with as follows:

VBScript

Set ws = WScript.CreateObject (“WScript.Shell”)
Set sysEnv = ws.Environment(“SYSTEM”)

JScript

var ws = WScript.CreateObject (“WScript.Shell”);
var sysEnv = ws.Environment(“SYSTEM”)

Afterward, you can work with individual environment variables, as shown in Listing 6-7. As you work
with the environment variable classes, you’ll often find that a variable you want to use isn’t available in
a particular class. If this happens, you’ll have to use a different class. Rather than learning which vari-
ables are used with which classes, we recommend using the technique outlined in the previous section.

LISTING 6-7

Working with Environment Variable Classes

VBScript
sysenv.vbs

Set WshShell = WScript.CreateObject (“WScript.Shell”)

Set sysEnv = WshShell.Environment (“SYSTEM”)
os = sysEnv(“OS”)
thePath = sysEnv(“PATH”)
Set usrEnv = WshShell.Environment (“USER”)
inc = usrEnv(“INCLUDE”)
theLib = usrEnv(“LIB”)

Set usrEnv = WshShell.Environment (“VOLATILE”)
lsvr = usrEnv(“LOGONSERVER”)

JScript
sysenv.js

var WshShell = WScript.CreateObject (“WScript.Shell”);

var sysEnv = WshShell.Environment (“SYSTEM”)
os = sysEnv(“OS”)
thePath = sysEnv(“PATH”)
var usrEnv = WshShell.Environment (“USER”)
inc = usrEnv(“INCLUDE”)

86804c06.indd 12086804c06.indd 120 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

121

 VBScript and JScript Scripting Basics 6

theLib = usrEnv(“LIB”)

var usrEnv = WshShell.Environment (“VOLATILE”)
lsvr = usrEnv (“LOGONSERVER”)

Running Programs from Within Scripts
The Run() method of the WScript.Shell object lets you run programs. You can:

Start Windows applications, such as Microsoft Word, Excel, or PowerPoint■

Run command-line programs, such as shutdown.exe or regedt32.exe■

Run command shell scripts■

Not only can you run programs, you can also pass in arguments and keystrokes. You can
activate program windows and pause programs temporarily as well.

Starting an application
To use the Run() method, create an instance of WScript.Shell and then access Run(). The fol-
lowing example starts the Windows Notepad in VBScript and JScript:

VBScript

Set ws = WScript.CreateObject (“WScript.Shell”)
ws.Run(“notepad”)

JScript

var ws = WScript.CreateObject (“WScript.Shell”);
ws.Run(“notepad”)

The file path you pass to Run() is parsed by WSH. This allows you to use any available environment
variable in the file path. However, you must tell WSH that you are using an environment variable
that has a path that needs to be expanded. Do so by enclosing the variable name in percent signs
(%). You can use %SystemRoot% for the SystemRoot environment variable, shown as follows:

VBScript

Set ws = WScript.CreateObject (“WScript.Shell”)
ws.Run(“%SystemRoot%\system32\notepad”)

JScript

var ws = WScript.CreateObject (“WScript.Shell”);
ws.Run(“%SystemRoot%\\system32\\notepad”)

TIPTIP

86804c06.indd 12186804c06.indd 121 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

122

 Part II Windows VBScript and JScript

As you can see in the example, JScript fi le paths are referenced in a slightly different way
than they are in VBScript. The reason is that JScript treats the slash character as a special
character and, as a result, you must escape it with another slash character.

Passing arguments to an application
You can also pass in arguments to command-shell programs and to Windows applications that sup-
port command-line parameters. Simply follow the application name with the parameters you want to
use. Be sure to add a space between the application name and the parameters. The following exam-
ple starts Notepad with the active script accessed for editing:

VBScript

Set ws = WScript.CreateObject (“WScript.Shell”)
ws.Run(“notepad “ & WScript .ScriptFullName)

JScript

var ws = WScript.CreateObject (“WScript.Shell”);
ws.Run(“notepad “ + WScript .ScriptFullName)
WScript.ScriptFullName)

Additional features for Run
The Run() method has more features than you’ll probably ever use; but just in case, you can set
additional features using the following syntax:

object.Run (“command”, [winStyle], [“waitOnReturn”])

in which command is the program or shell script you want to run, winStyle is the window style, and
waitOnReturn specifies whether the script should wait or continue execution. If waitOnReturn is
not specified or set to False, the script continues execution without waiting on process termination.
If waitOnReturn is set to True, script execution pauses until the application stops running or is
exited — at which time, the Run() method returns any error code returned by the application,
and script execution resumes.

If you want to track error codes, assign Run() to a variable and then check the error code returned
by the application. Generally, a non-zero error code indicates an error of some kind. Listing 6-8
shows how you can run a shell script and check the error code the script returned. In this example,
note that VBScript allows you to evaluate the error code as a number, but JScript treats the error
code as a string.

Note if you try to run the scripts in Listing 6-8, you will get a “fi le not found error”
because the example illustrates how to call a fi le, in this case log.bat, and we have not
actually created this fi le.

TIPTIP

NOTENOTE

86804c06.indd 12286804c06.indd 122 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

123

 VBScript and JScript Scripting Basics 6

LISTING 6-8

Checking for Run Errors

VBScript
runerrors.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“log.bat”,0,”TRUE”)
If ret = 0 Then
 WScript.Echo “No error”
Else
 WScript.Echo “Error”
End If

JScript
runerrors.js

var ws =
 WScript.CreateObject
 (“WScript.Shell”);
ret = ws.Run(“log.bat”,0,”TRUE”)
if (ret=”0”) {
 WScript.Echo(“No error”)
} else {
 WScript.Echo(“Error”)
}

If you specify an invalid program or script name, WSH won’t report an error and an error
code won’t be set. In this case, ret would be a null string.

Table 6-5 shows the options you can use for window style. The most useful styles are 0 for running
programs and scripts in the background, and 1 for displaying the window normally. You can use the
other options to minimize or maximize the application.

TABLE 6-5

Window Style Options
Option Description

0 Runs a program or script in the background

1 Runs a program or script normally and displays a window if necessary; generally, use this option
before options 2–10.

2 Activates a program and displays it as a minimized window

TIPTIP

continued

86804c06.indd 12386804c06.indd 123 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

124

 Part II Windows VBScript and JScript

Option Description

3 Activates a program and displays it as a maximized window

4 Activates a program and displays it in its most recent size and position

5 Activates a program and displays it in its current size and position

6 Minimizes the specified window and activates the next top-level window in the Z order

7 Minimizes the program window without activating it

8 Displays the program window in its current state but doesn’t activate it

9 Activates and restores the window; if the window is minimized or maximized, the system
restores it to its original size and position.

10 Sets the display state based on the state of the Windows script

Running Scripts Remotely
Windows Script Host version 5.6 introduced the ability to remotely execute scripts. This is achieved
with the new WshController object. The remote script can be any one of the valid script file types,
such as .vbs, .js, .wsh, and so on. It’s even possible to load scripts onto multiple remote computers
and start them all simultaneously.

The WshController object has one method called CreateScript. The method takes the path to the script
to be executed, and specifies the remote machine to run the script on. The file path can even be
located on a file share.

Before the scripts can be executed on the remote computer, security must be configured to allow
remote script execution. You can do this by by editing the registry. Add a new REG_SZ subkey to
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Script Host\Settings.

Setting the key to a value of 1 enables remote execution, and a value of 0 or removing the key
disables remote execution. You will also need to add your account to the remote machine’s Local
Administrators group. It is not possible to use alternate credentials when executing remote scripts.
Let’s now take a look at an example shown in Listing 6-9: a controller script, remotecaller, which
executes the script callme. If successful, the callme script will create a text file called helloworld.txt.

TABLE 6-5 (continued)

86804c06.indd 12486804c06.indd 124 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

125

 VBScript and JScript Scripting Basics 6

LISTING 6-9

Remote Execution

VBScript
remotecaller.vbs

dim oController, oRemoteScript
set oController = createobject(“WSHController”)
set oRemoteScript = oController.CreateScript(“C:\temp\callme.vbs”,”client”)
wscript.connectObject oRemoteScript, “remote_”
oRemoteScript.Execute
do while oRemoteScript.Status <> 2
 wscript.sleep 100
loop
Sub remote_Error
 dim theError
 set theError = oRemoteScript.Error
 wscript.echo “Error “ & theError.Number & “ - Line: “ & theError.Line & “,
 Char: “ & theError.Character & vbCrLf\
end sub

Callme.vbs

set fso = CreateObject(“Scripting.FileSystemObject”)
set fout = fso.CreateTextFile(“C:\temp\helloworld.txt”,true)
fout.WriteLine Now
fout.Close

JScript
remotecaller.js

var oController = WScript.CreateObject(“WSHController”);
var oRemoteScript = oController.CreateScript(“C:\\temp\\callme.js”,”client”);
WScript.ConnectObject(oRemoteScript, “remote_”)
oRemoteScript.Execute();

while (oRemoteScript.Status != 2) {
 WScript.Sleep(100);
}

function remote_Error()
{
 var theError = oRemoteScript.Error;
 WScript.Echo(“Error “ + theError.Number + “ - Line: “ + theError.Line + “,
 Char: “ + theError.Character)
}

continued

86804c06.indd 12586804c06.indd 125 1/21/09 1:25:31 PM1/21/09 1:25:31 PM

126

 Part II Windows VBScript and JScript

Callme.js

var fso = new ActiveXObject(“Scripting.FileSystemObject”);
var fout = fso.CreateTextFile(“C:\\temp\\helloworld.txt”,true);
fout.WriteLine(new Date);
fout.Close();

There are some interesting things to note from these scripts. First, the loop in remotecaller monitors
the status of the remote script. The possible status values are:

0:■ The remote script has not yet started to run.

1:■ The remote script is running.

2:■ The remote script has finished running.

Also, the remotecaller script implements error checking with the WshRemoteError object. The error
handler function is called on an error event from the connection established in the connectObject
method. There are two other events that can also be hooked Start and _End. To use these events,
simply add the corresponding functions similar to the Error function in Listing 6-9.

Combining JScript and VBScript
You’ll often encounter situations in which you implement a script in one scripting language and then
wish you could use features of another scripting language in the same script. Well, when you use batch
scripts (.WSF files), you can combine scripts written in JScript and scripts written in VBScript in the
same file. You can then call functions in one script from another script and return values to the caller.

In VBScript, you can:

Call JScript functions and return values■

In JScript, you can:

Call VBScript subroutines to execute a section of code■

Call VBScript functions and return values■

When the function or subroutine you’ve called finishes executing, control returns to the caller and
execution of the original script continues from there. Listing 6-10 provides a detailed example of
calling VBScript and JScript functions. You can use this technique in your own scripts as well.

LISTING 6-9 (continued)

86804c06.indd 12686804c06.indd 126 1/21/09 1:25:32 PM1/21/09 1:25:32 PM

127

 VBScript and JScript Scripting Basics 6

LISTING 6-10

Combining Functions of Multiple Scripting Languages

cfunctions.wsf

<!-- Author: William R. Stanek -->
<!-- Descr: Combined example for JScript and VBScript -->

<Job ID=”MyJob”>
<Script LANGUAGE=”JSCript”>
function GetInfoJS()
{
 var info;
 info = “”;
 info += ScriptEngine() + “ Version “;
 info += ScriptEngineMajorVersion() + “.”;
 info += ScriptEngineMinorVersion() + “.”;
 info += ScriptEngineBuildVersion();
 return(info);
}

</Script>
<Script LANGUAGE=”VBSCript”>
Function GetInfoVB
 Dim info
 info = “”
 info = ScriptEngine & “ Version “
 info = info & ScriptEngineMajorVersion & “.”
 info = info & ScriptEngineMinorVersion & “.”
 info = info & ScriptEngineBuildVersion
 GetInfoVB = info
End Function
</Script>

<Script LANGUAGE=”VBSCript”>
WScript.Echo “VB2VB: “ + GetInfoVB()
WScript.Echo “VB2JS: “ + GetInfoJS()
</Script>

<Script LANGUAGE=”JSCript”>
versionVB = GetInfoVB()
WScript.Echo(“JS2VB: “, versionVB)

versionJS = GetInfoJS()
WScript.Echo(“JS2JS: “, versionJS)
</Script>
</Job>

continued

86804c06.indd 12786804c06.indd 127 1/21/09 1:25:32 PM1/21/09 1:25:32 PM

128

 Part II Windows VBScript and JScript

Output

VB2VB: VBScript Version 5.7.18068
VB2JS: JScript Version 5.7.18068
JS2VB: VBScript Version 5.7.18068
JS2JS: JScript Version 5.7.18068

You’ll find additional examples of combining VBScript and JScript throughout this book. In particu-
lar, examine Part V, “Windows Scripting Libraries” where you’ll find many advanced examples of
working with multiple scripting languages.

Summary
In this chapter, you learned scripting basics such as displaying text strings and examining script
information. You also learned how to access environment variables and run programs from within
scripts. As you’ve seen, both VBScript and JScript can be used to perform these actions — although
each scripting language has a different syntax. As we explore more of the features of Windows Script
Host, we’ll point out many additional areas where VBScript and JScript differ. If you are interested in
using both scripting languages, be sure to keep track of these differences.

LISTING 6-10 (continued)

86804c06.indd 12886804c06.indd 128 1/21/09 1:25:32 PM1/21/09 1:25:32 PM

129

Displaying output to readers using WScript.Echo is useful but you
often need to implement more powerful techniques in your scripts.
For example, you may want to display a dialog box that allows users

to make a selection, or you may want users to input a file path or directory
name. In either case, you need to display a prompt that enables users to pass
information to a script. This prompt can be an input box that allows users
to type in text, a message box with clickable buttons, or a pop-up dialog box
with clickable buttons.

As you work with input and output, you’ll also need to learn error-handling
techniques. If a user enters the wrong information, the script should handle
the error appropriately. Some error-handling techniques are very basic,
such as using control loops to ensure that users enter information. Other
error-handling techniques are more advanced and usually involve the
built-in error-detection capabilities of VBScript and JScript.

Input and Output Essentials
Chapter 6 discusses how you can use WScript.Arguments to access argu-
ments passed to a script, and how you can display output with WScript
.Echo. What that chapter doesn’t discuss, however, is how Windows Script
Host handles these standard input and output mechanisms. Basic I/O is
handled through the standard input and standard output streams — much
like I/O is handled in most programming languages. Errors are written to
the standard error stream.

Input, Output, and
Error Handling with
VBScript and JScript

IN THIS CHAPTER
Understanding input and output

Using input boxes, message
boxes, and pop-up dialog boxes

Standard input and output

Detecting and handling errors

86804c07.indd 12986804c07.indd 129 1/21/09 1:25:43 PM1/21/09 1:25:43 PM

130

 Part II Windows VBScript and JScript

The WScript object has three special properties for working with the input, output, and error
streams. These special properties are:

StdIn■ : A read-only input stream

StdOut■ : A write-only output stream

StdErr■ : A write-only error stream

These properties return text stream objects. These objects are similar to the FileSystemObject
.TextStream object, discussed in Chapter 9. The properties and methods for these streams are
listed in Table 7-1.

TABLE 7-1

Methods and Properties of Input, Output, and Error Streams
Methods Properties

StdIn Stream

WScript.StdIn.Close() WScript.StdIn.AtEndOfLine

WScript.StdIn.Read() WScript.StdIn.AtEndOfStream

WScript.StdIn.ReadAll() WScript.StdIn.Column

WScript.StdIn.ReadLine() WScript.StdIn.Line

WScript.StdIn.Skip()

WScript.StdIn.SkipLine()

StdErr Stream

WScript.StdErr.Close()

WScript.StdErr.Write()

WScript.StdErr.WriteBlankLines()

WScript.StdErr.WriteLine()

StdOut Stream

WScript.StdOut.Close()

WScript.StdOut.Write()

WScript.StdOut.WriteBlankLines()

WScript.StdOut.WriteLine()

86804c07.indd 13086804c07.indd 130 1/21/09 1:25:43 PM1/21/09 1:25:43 PM

131

 Input, Output, and Error Handling with VBScript and JScript 7

Windows Script Host exposes these streams whenever you run scripts using the command-line script
host, CScript. Because of this, you can use the StdIn, StdOut, and StdErr streams in scripts that
you intend to run from the command line. You cannot, however, use these streams in scripts that
you run with the graphical script host, WScript.

You’ll fi nd examples that use streams in Chapters 17, 18, and 19.

Using Input Boxes
Input boxes are available in VBScript only. You can think of input boxes as customizable dialog boxes
that you can use to get input from users. This input can be any kind of text, such as a file path, the
user’s login name, or a response to a question.

Input box basics
To create input boxes, use the InputBox() function and add a prompt and title as necessary. In the
example shown in Figure 7-1, InputBox() sets a display prompt and a title for the input box using
the following statement:

Input = InputBox(“Please enter the logon ID:”,”Setup Script”)

Here, the Input variable holds the value of the user’s response and can be used later in the script to
test the validity of the input. As shown, the prompt and title you want to use are strings enclosed in
double quotation marks and separated with a comma.

FIGURE 7-1

Input boxes are used to get user input. They can have titles and display prompts.

The order of elements in an input box must be exact. You cannot enter a title without entering a
prompt — even if the prompt used is just an empty string, such as:

Input = InputBox(“”,”Setup Script”)

Input boxes have an OK button and a Cancel button. If the user types a value and then clicks OK,
or types a value and then presses Enter on the keyboard, the value is returned by the input function.
The user can click OK or Cancel without entering a value, which will cause the function to return an
empty string. To ensure the user enters text, you can use a control loop to examine the value entered.

CROSS-REFCROSS-REF

86804c07.indd 13186804c07.indd 131 1/21/09 1:25:43 PM1/21/09 1:25:43 PM

132

 Part II Windows VBScript and JScript

In the following example, the script continues to loop until the user enters a value:

Do
 theInput = InputBox(“Enter your name:”,”Test Script”)
Loop While theInput = “”

Setting default values for input boxes
If necessary, you can follow the prompt and the title with a default value for the input. This value is
then used when the user clicks OK without entering a value. For example, with the logon example,
you might want to set the default user to anonymous, like this:

Input = InputBox(“Please enter the logon ID:”,”Setup
Script”,”anonymous”)

As stated before, the quotes around the default value aren’t necessary when you use numeric values,
though the order of input parameters is important. If you don’t use a prompt or title, you must insert
placeholder values; for example:

Input = InputBox(“Please enter the logon ID:”, “”,”anonymous”)

Positioning input boxes
By default, input boxes are centered on the screen, but if you want, you can specify where you want
it displayed as well. You do this by specifying the x/y coordinate for the upper-left corner of the input
box. The x coordinate sets the horizontal distance in pixels from the left edge of the screen. The y
coordinate sets the vertical distance in pixels from the top of the screen. The x and y coordinates fol-
low the prompt and title in sequence. For example:

Input = InputBox(“Please enter your login name:”,”Setup
Script”,,300,300)

If you position an input box, you must always set both coordinates. In the examples for this section,
the basic syntax for input boxes is:

varA = InputBox(“prompt”,”title”,defaultValue,X,Y)

where prompt is the text to display in the input box, title is the title for the input box, and
defaultValue is the value to use when no input is entered.

Converting input values
Values entered into an input box are interpreted as strings provided they contain alphanumeric char-
acters. If the value entered is a number, the value can be handled as a numeric value. This means you
can perform arithmetic operations on the input; for example:

Dim theTotal: theTotal=0
For i = 1 to 3
 theTotal = theTotal + InputBox(“Enter value “ & i, “Compute Average”)

86804c07.indd 13286804c07.indd 132 1/21/09 1:25:43 PM1/21/09 1:25:43 PM

133

 Input, Output, and Error Handling with VBScript and JScript 7

Next
theAvg = theTotal/3
WScript.Echo theAvg

If you are looking for a particular type of numeric value such as an integer versus a real number, you
can convert the value as necessary. In this example, the user could enter a value such as 1.8 or 2.2,
which you handle by converting the input to an integer:

Do
 theValue = InputBox(“Enter a value 1 to 100:”,”Setup Script”,,300,300)
Loop While (theValue < 1 OR theValue > 100)
theValue = CInt(theValue)

Other conversion functions could also be used, such as CDbl() or CCur(). Conversion functions are
listed in Chapter 2.

Using Message Boxes
Message boxes are available in VBScript only. You use message boxes to display information and to
allow users to make selections. Because message boxes can have customized buttons and icons, they
are a bit more complex than input boxes.

Constant Value Description

vbCr Chr(13) Carriage return

vbCrLf Chr(13) & Chr(10) Carriage return–linefeed combination

vbFormFeed Chr(12) Form feed; not useful in Microsoft Windows

vbLf Chr(10) Line feed

vbNewLine Chr(13) & Chr(10) or Chr(10) Platform-specific newline character; whatever is
appropriate for the platform

vbNullChar Chr(0) Character having the value 0

vbNullString String having value 0 Not the same as a zero-length string (“”); used for
calling external procedures

vbTab Chr(9) Horizontal tab

vbVerticalTab Chr(11) Vertical tab; not useful in Microsoft Windows

Message box basics
The most basic type of message box is one that calls the Msgbox function and displays a message,
such as this:

Msgbox “Time to run the scripts…”

86804c07.indd 13386804c07.indd 133 1/21/09 1:25:43 PM1/21/09 1:25:43 PM

134

 Part II Windows VBScript and JScript

When you use a basic message box, you get a plain dialog box with an OK button. To add pizzazz to
message boxes, you can customize the dialog box with titles, icons, and multiple button styles. To
add these elements to message boxes, use the following syntax:

Msgbox “Message to display”, buttonType + iconType,”Message box title”

As with input boxes, message box parameters must be used in the order specified and you can’t skip
parameters. For example, if you want to add a title to a message box without specifying a button or
icon type, you can use the following command:

Msgbox “Time to run the scripts…”,,”User Alert!”

Adding buttons
As stated previously, the OK button is the default button for all message boxes. However, you can
use many different buttons including Yes, No, Cancel, Retry, Ignore, and Abort. Use the following
code to add Yes, No, and Cancel buttons to a message box:

dim vbYesNoCancel
vbYesNoCancel = 3
Msgbox “Do you want to continue?”, vbYesNoCancel

In the preceding code, vbYesNoCancel represents the button types you want to add and 3 is the
parameter value for this type of button. A message box with the Yes, No, and Cancel buttons is
shown in Figure 7-2.

FIGURE 7-2

Message boxes can use Yes, No, and Cancel buttons. They can also use OK, Retry, Ignore, and Abort buttons.

If you want to, you can specify other types of buttons to use as well, such as vbOkCancel or
vbAbortRetryIgnore. These button types are constants, which are variables whose values don’t
change. Because the script engine knows these values, you don’t actually have to use the constant and
you can refer to the value directly in the call to Msgbox. However, if you do this, you lose the advan-
tage of being able to tell, at a glance, what types of buttons are used with a particular message box.

Table 7-2 provides a complete list of constants you can use to set button types and their correspond-
ing values. These constants represent all of the available button combinations.

86804c07.indd 13486804c07.indd 134 1/21/09 1:25:43 PM1/21/09 1:25:43 PM

135

 Input, Output, and Error Handling with VBScript and JScript 7

TABLE 7-2

Buttons for Message Boxes
Constant Description Value

VbOkOnly Displays the OK button 0

VbOkCancel Displays OK and Cancel buttons 1

VbAbortRetryIgnore Displays Abort, Retry, and Ignore buttons 2

VbYesNoCancel Displays Yes, No, and Cancel buttons 3

VbYesNo Displays Yes and No buttons 4

VbRetryCancel Displays Retry and Cancel buttons 5

Adding icons
By default, message boxes use an information icon, but you can change this icon if you want to.
Adding a unique icon to a message box is easy. Just keep in mind that buttons and icons are part of
the same parameter, which is why you use the plus sign to separate the button types from the icon
type. Following is an example message box with an icon:

Dim vbYesNo: vbYesNo=4
Dim vbQuestion: vbQuestion=32
Msgbox “Would you like to continue?”, vbYesNo + vbQuestion

In this example, we’ve combined the initialization of the value with the actual declaration that sets
the value. You can rewrite these statements on separate lines as follows:

Dim vbYesNo
vbYesNo=4
Dim vbQuestion
vbQuestion=32
Msgbox “Would you like to continue?”, vbYesNo + vbQuestion

If you don’t want to use constants to represent the numerical values you want to use, you can rewrite
these statements as follows:

Msgbox “Error writing to disk”, 36

where 36 is the sum of 4 + 32.

Table 7-3 shows a complete list of icons you can add to message boxes. As with buttons, the use of a
constant is optional but a constant makes it easier to work with the script.

86804c07.indd 13586804c07.indd 135 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

136

 Part II Windows VBScript and JScript

TABLE 7-3

Icons for Messages Boxes
Constant Description Value

VbCritical Displays an icon with an X, used for critical errors 16

VbQuestion Displays an icon with a question mark, used for questions 32

VbExclamation Displays an icon with an exclamation point, used for minor
errors, cautions, and warnings

48

VbInformation Displays an icon with an I, used for informational messages
(this is the default)

64

Evaluating button clicks
When you present users with multiple options, such as Yes/No or Retry/Cancel, you need a way to
determine which button the user selected. You do this by storing the return value from MsgBox in a
variable, like this:

returnValue = Msgbox (“Message to display”, buttonType + iconType,
“Message box title.”)

Note that the syntax has changed. You must now use parentheses after the function name.

Table 7-4 provides a summary of the status codes returned when message box buttons are pressed.
Once you assign a variable to store the returned status code, you can use an If Then or Select
Case structure to perform actions in response to the button click.

TABLE 7-4

Button Status Codes
Button Constant Return Value

OK VbOk 1

Cancel VbCancel 2

Abort VbAbort 3

Retry VbRetry 4

Ignore VbIgnore 5

Yes VbYes 6

No VbNo 7

86804c07.indd 13686804c07.indd 136 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

137

 Input, Output, and Error Handling with VBScript and JScript 7

A script that evaluates button clicks in message boxes and then handles the result is shown in
Listing 7-1. While the example uses an If Then loop to evaluate the button click, you can easily
use a Select Case structure as well.

LISTING 7-1

Determining Button Selection in a Script

checkbuttons.vbs

Dim vbYesNoCancel: vbYesNoCancel=3
Dim vbQuestion: vbQuestion=32
Dim vbYes: vbYes=6
Dim vbNo: vbNo=7
Dim vbCancel: vbCancel=2

retry = Msgbox (“Write to log failed. Try again?”,vbYesNoCancel + VBQuestion)

If retry = vbYes Then
 WScript.Echo “Yes”
ElseIf retry = vbNo Then
 WScript.Echo “No”
Else
 WScript.Echo “Cancel”
End If

Help files for message boxes
Windows help files can be used with message boxes. To do this, you need to specify the name of the
help file to use as an additional parameter. Following the help file name, you can add a context iden-
tifier, which is a numerical value that points to a specific location in the help file. To specify a help
file and context identifier, use the following syntax:

Msgbox “Message to display”, buttonType + iconType,
 “Message box title”, “helpFile”, helpContextID

Here’s an example:

Msgbox “Continue?”, 4, “”, “windows.hlp”, 0

This message box will be displayed with Yes, No, and Help buttons. The Help button is added to
allow users to access the Windows help files.

Using pop-up dialog boxes
JScript doesn’t support InputBox() or Msgbox(). In the browser implementation of JScript, dialog
and input boxes are associated with the window object. Unfortunately, the window object is not

86804c07.indd 13786804c07.indd 137 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

138

 Part II Windows VBScript and JScript

available in WSH (unless you start a browser instance). To work around this problem, the developers
of WSH created the Popup() function. Popup() is essentially an implementation of the VBScript
Msgbox() function that is available in both JScript and VBScript.

Everything you’ve learned about VBScript message boxes applies to pop-up dialog boxes. The only
real difference is that these dialog boxes are accessed through the Popup() method of the Shell
object and they have a timeout mechanism. The basic syntax for Popup() is:

VBScript

answ = object.Popup(“msg”,
 [“title”],
 [wait],
 [type])

JScript

answ = object.Popup(msg,
 [wait],
 [“title”],
 [type])

These options are used in the following ways:

msg■ : The message you want to display

wait■ : The number of seconds to wait before closing the pop-up

title■ : The title for the pop-up

type■ : The value representing the button and icon types to use; these values are the same as
those listed previously in Tables 7-1 and 7-2.

Because the Popup() method is accessed through the Shell object, you must create an instance of
Shell and then reference the Popup() method of this object. You create instances of objects using
the CreateObject method of the WScript object. Creating an object instance is a bit different in
VBScript and JScript. In VBScript, you create an object reference using the Set keyword. In JScript,
you create an object reference using the var keyword. The object reference is then used in the code
to access methods and properties of the object you instantiated.

The following code creates an object instance in both VBScript and JScript:

VBScript

Set w = WScript.CreateObject (“WScript.Shell”)

JScript

var w = WScript.CreateObject (“WScript.Shell”);

86804c07.indd 13886804c07.indd 138 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

139

 Input, Output, and Error Handling with VBScript and JScript 7

Listing 7-2 shows how you can use CreateObject() and Popup() in a script. As discussed, you
create an instance of Shell and then reference its Popup() method. Note that the value for the
buttons (4) comes from Table 7-1. You can also set icons for the pop-up using values in Table 7-2.
When you use both icons and buttons, you add the values together and then assign this value in
the type property.

LISTING 7-2

Displaying a Pop-up Dialog Box

VBScript
popup.vbs

answer = getResponse()

function getResponse()
Dim answ
timeOut = 10
title = “Error!”
button = 2
‘create object
Set w = WScript.CreateObject (“WScript.Shell”)
getResponse = w.Popup (“Write failure. Try again?”,timeOut,title,button)

End Function

JScript
popup.js

answer = getResponse()

function getResponse() {
 var answ
 var timeOut = 10;
 var title = “Error!”
 var button = 2
 //create object
 var w = WScript.CreateObject (“WScript.Shell”);
 answ = w.Popup (“Write failure. Try again?”, timeOut, title, button)
 return answ
}

The return value from Popup tells you which button the user selected. Return values are the same as
those listed previously in Table 7-3, but with one important addition. If the user doesn’t press a but-
ton and the timeout interval elapses, the method returns –1.

86804c07.indd 13986804c07.indd 139 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

140

 Part II Windows VBScript and JScript

Listing 7-3 shows how you can handle user selections and errors in both VBScript and JScript. Note
that the primary difference between the two is syntax.

LISTING 7-3

Checking the User Selection and Handling a Timeout Error

VBScript
usersel.vbs

function getInput()
Dim answ
timeOut = 30
title = “Write Failure!”
btype = 2
‘create object
Set w = WScript.CreateObject(“WScript.Shell”)

getInput = w.Popup (“Error writing to the drive. Try again?”,timeOut,title,btype)

End Function

answer = getInput()
Select Case answer
 Case 3
 WScript.Echo “You selected Abort.”

 Case 4
 WScript.Echo “You selected Retry.”

 Case 5
 WScript.Echo “You selected Ignore.”

 Case Else
 WScript.Echo “No selection in the time allowed. “

End Select

JScript
usersel.js

function getInput() {
 var answ;
 var timeOut = 30;
 var title = “Write Failure!”;
 var type = 2;
 //create object
 var w =
WScript.CreateObject(“WScript.Shell”);

86804c07.indd 14086804c07.indd 140 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

141

 Input, Output, and Error Handling with VBScript and JScript 7

 answ = w.Popup (“Error writing to the drive. Try again?”,timeOut,title,type);
 return answ;
}

answer = getInput()
switch (answer) {
 case 3 :
 WScript.Echo(“You selected Abort.”)
 break
 case 4 :
 WScript.Echo(“You selected Retry.”)
 break
 case 5 :
 WScript.Echo(“You selected Ignore.”)

 break
 default :
WScript.Echo(“No selection in the time allowed.”)
 break
}

Error Detection and Handling
Errors can occur for a variety of reasons. The user may have entered the wrong type of value, or the
script may not be able to find a necessary file, directory, or drive. In previous examples, we’ve han-
dled errors using basic techniques, such as control loops. Now let’s look at the error detection and
handling functionality that’s built into VBScript and JScript.

Handling runtime errors in VBScript
The most common type of error you’ll encounter is a runtime error. Runtime errors occur while
a script is running and is the result of the script trying to perform an invalid operation, such as
dividing by zero. The sections that follow examine techniques you can use to handle runtime
errors in VBScript.

Preventing runtime errors from halting script execution
In VBScript, any runtime error that occurs is fatal. This means that an error message is displayed
and execution of the script stops. To prevent runtime errors from halting script execution, you need
to add an On Error Resume Next statement to the script. This statement tells VBScript that execu-
tion should continue with the statement that immediately follows the statement that causes an error.

To see how On Error Resume Next works, consider the example shown in Listing 7-4. The user
is asked to enter the number of values to total. If the user doesn’t enter a value or enters zero, a “Type
Mismatch Error” occurs on line 5 but script execution isn’t halted. Instead, an error number, its
description, and source are pushed onto the current error stack and script execution continues on

86804c07.indd 14186804c07.indd 141 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

142

 Part II Windows VBScript and JScript

line 6. Line 7 will again generate a “Type Mismatch Error.” The related error number, its description,
and source are pushed onto the error stack. This error replaces the previous error and script execu-
tion continues. Line 8 generates a “For Loop Not Initialized Error” and then line 9 generates a “Type
Mismatch Error.”

LISTING 7-4

Computing the Average Value

resume.vbs

On Error Resume Next
Dim theTotal: theTotal=0
Dim vals: vals=0
vals = InputBox(“Number of values to total:”,” Average”)
vals = CInt(vals)
For i = 1 to vals
 theTotal = theTotal + InputBox(“Enter value “ & i,” Average”)
Next
theAvg = theTotal/vals
WScript.Echo theAvg

Table 7-5 shows other common runtime errors that you may see. These errors are listed by error
number and description. Both error values are set by the runtime environment.

TABLE 7-5

Common Runtime Errors in VBScript
Error Number Error Description

5 Invalid procedure call or argument

6 Overflow

7 Out of memory

9 Subscript out of range

10 Array fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

28 Out of stack space

86804c07.indd 14286804c07.indd 142 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

143

 Input, Output, and Error Handling with VBScript and JScript 7

Error Number Error Description

35 Sub or Function not defined

48 Error in loading DLL

51 Internal error

53 File not found

57 Device I/O error

58 File already exists

61 Disk full

67 Too many files

70 Permission denied

75 Path/File access error

76 Path not found

91 Object variable or With block variable not set

92 For loop not initialized

94 Invalid use of Null

322 Can’t create necessary temporary file

424 Object required

429 ActiveX component can’t create object

438 Object doesn’t support this property or method

440 Automation error

445 Object doesn’t support this action

446 Object doesn’t support named arguments

447 Object doesn’t support current locale setting

448 Named argument not found

449 Argument not optional

450 Wrong number of arguments or invalid property assignment

451 Object not a collection

500 Variable is undefined

501 Illegal assignment

86804c07.indd 14386804c07.indd 143 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

144

 Part II Windows VBScript and JScript

Checking for and catching errors in VBScript
While the On Error Resume Next statement prevents VBScript from halting execution on an
error, it doesn’t actually handle the error. To handle the error, you need to add statements to the
script that check for an error condition and then handle an error if it occurs. Generally, you’ll want
to check for errors at key places within your code. For example, in Listing 7-5 you would check for
errors after line 4 and line 8. These are places where the user enters values that can affect the execu-
tion of the code.

You may also be thinking that you could have prevented an error by checking to see if the user
entered a value or by checking for a range of values, as you see in Listing 7-5.

LISTING 7-5

Computing the Average Value

alternative1.vbs

On Error Resume Next
Dim theTotal: theTotal=0
Dim vals: vals=0
Do
 vals = InputBox(“Number of values to total:”,” Average”)
Loop While vals = “”
vals = CInt(vals)
For i = 1 to vals
 Do
 theTotal = theTotal + InputBox(“Enter value “ & i,” Average”)
 Loop While theTotal = 0
Next
theAvg = theTotal/vals
WScript.Echo theAvg

Unfortunately, you can’t always predict the values users may enter or the results of operations that
are based on user input. The previous example assumes that the user enters numerical values and
this may not be the case. The example also has a logic flaw in that it allows the user to enter no
value on the second and subsequent iterations of the For loop.

Obviously, you need basic controls such as those provided in Listing 7-6. You also need to look at
other ways to manage errors; this is where the Err object comes into the picture. The Err object has
methods and properties for displaying and setting information about the current error. These meth-
ods and properties are listed in Table 7-6.

86804c07.indd 14486804c07.indd 144 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

145

 Input, Output, and Error Handling with VBScript and JScript 7

TABLE 7-6

Methods and Properties of the Err Object
Methods Properties

Clear Description

Raise HelpContext

HelpFile

Number

Source

The error number is your most valuable tool in determining if an error has occurred. When a
script is executing normally, the error number is set to zero. This means that no error has occurred.
When a runtime error occurs, the runtime environment sets a nonzero error number, description,
and source. The source of a runtime error is set as “Microsoft VBScript runtime error” instead of
“Microsoft VBScript compilation error.”

One way to detect an error is to use an If Then conditional that checks for an error number other
than zero, such as this:

If Err.Number <> 0 Then
 ‘An error has occurred.
 WScript.Echo Err.Number & “ “ & Err.Description & “ “ & Err.Source
End If

As you’ve seen, the error number, description, and source are set automatically. Values that you can
configure when an error occurs are the name of a Windows help file and the context identifier within
the help file, that can be used to provide detailed help for the user. You set the file name of a help file
with the HelpFile property and the context identifier with the HelpContext property, like this:

Err.Helpfile = “myHelpFile.hlp”
Err.HelpContext = 0

After handling an error, you should clear the error from the error stack using the Clear method.
The Clear method resets the error code, description, and source to allow normal execution to con-
tinue. If you want to catch each individual error, you’ll need to add error detection and handling
code wherever errors may occur in the code.

Listing 7-6 shows how you can use the Clear method and some other techniques discussed in
this section to handle an error. If a runtime error occurs, a message box similar to the one shown in
Figure 7-3 is displayed. Note that a Help button is displayed to enable users to access online help
files, as well as the additional parameters specified for the message box in the script.

86804c07.indd 14586804c07.indd 145 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

146

 Part II Windows VBScript and JScript

LISTING 7-6

Detecting and Handling Errors

alternative2.vbs

On Error Resume Next
Dim Msg
Err.HelpFile = “myHelpFile.hlp”
Err.HelpContext = 0

Dim theTotal: theTotal=0
Dim vals: vals=0
Do
 vals = InputBox(“Number of values to total:”,” Average”)
Loop While vals = “”

vals = CInt(vals)
For i = 1 to vals
 Do
 theTotal = theTotal + InputBox(“Enter value “ & i,” Average”)
 Loop While theTotal = 0
Next
theAvg = theTotal/vals
WScript.Echo theAvg
If Err.Number <> 0 Then
 Msg = “Press F1 or click Help to view a help file.”
 MsgBox Msg,1, Err.Description, Err.Helpfile, Err.HelpContext
 Err.Clear
End If

FIGURE 7-3

Message boxes have a special format and syntax for Windows help.

Manually generating runtime errors
In advanced scripts, there are times when you may want to generate a runtime error. For example, a
user enters a file path and your script checks the file path before using it. If the file path isn’t valid,
the script generates a runtime error and displays a message box that enables the user to access help
on setting file paths.

86804c07.indd 14686804c07.indd 146 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

147

 Input, Output, and Error Handling with VBScript and JScript 7

You can use the Raise method of the Err object to generate runtime errors. The complete syntax
for the method is:

Err.Raise(number, “source”, “description”, “helpfile”, helpcontext)

The arguments for the Raise method are used much like the related property values for the Err
object. If you wanted to generate a “Path Not Found error,” you could use the following code:

On Error Resume Next
Err.Raise 76
MsgBox “Error “ & Err.Number & “: “ & Err.Description
Err.Clear

You can also set custom errors. When you do this, you should use an error code above 50,000, which
is the range set aside for user-defined errors. This example sets a custom error designated as error
number 50001:

On Error Resume Next
Err.Raise 50001,,”Not a valid choice”
MsgBox “Error “ & Err.Number & “: “ & Err.Description
Err.Clear

You can also generate an error with an associated help file, like this:

On Error Resume Next
Dim Msg
Err.Raise 50001,,”Not a valid choice”,”usage.hlp”,0
Msg = “Error “ & Err.Number & “: “ & Err.Description
MsgBox Msg,1, Err.Description, Err.Helpfile, Err.HelpContext
Err.Clear

Handling runtime errors in JScript
JScript takes a different approach to error handling. In many ways, this approach is more intuitive
and more powerful than the VBScript approach, so let’s take a look.

Checking for and catching errors in JScript
The core mechanisms for error handling are try…catch statements. Use a try statement to iden-
tify a section of code where an error may occur and a catch statement to handle any resulting
errors. The basic syntax for try catch is:

try {
 //code where an error might occur
}
catch(exception) {
 //catch errors that may occur
}

86804c07.indd 14786804c07.indd 147 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

148

 Part II Windows VBScript and JScript

If an error occurs within the try statement, control is passed to the catch statement and the value
of exception is set to the value of the error that occurred. You may be wondering why the develop-
ers of JScript decided to use the keywords try catch rather than detect handle or something
else. Primarily this is because errors that occur in scripts are said to be thrown by the runtime envi-
ronment and thus, the catch statement catches them so they don’t cause problems in the script.

As with VBScript, errors can be generated both automatically and manually. For example, if you call
a function that doesn’t exist, an object error occurs which you can handle in the following way:

try {
 nosuchfunction()
}
catch(e) {
 if (e == “[object Error]”)
 WScript.Echo(e)
}

If you want to manually set error values, you can throw errors as well, which we will discuss next.

Throwing errors
You manually generate errors using the throw statement. The throw statement expects a single
argument, which is an expression that yields a string, number, or object. This argument sets the
error value. If you pass throw the following string:

throw “division by zero”

the error value is set to:

division by zero

You can use throw with try and catch as follows:

try {
 if (x < 0)
 throw “value less than zero”;
 else if (x == 0)
 throw “value equals zero”;
 }
 catch(e) {
 WScript.Echo(“Error: “ + e)
}

This example sets error values based on the value of x. If x is less than zero, the error value is set to
“value less than zero.” If x equals zero, the error value is set to “value equals zero.” The catch state-
ment is used to detect and handle an error if it occurs. If an error occurs, the script displays an error
statement.

86804c07.indd 14886804c07.indd 148 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

149

 Input, Output, and Error Handling with VBScript and JScript 7

So far, we’ve been looking at how you can handle localized errors directly. Unfortunately, you may
not want to handle errors directly. Instead, you may want to detect one or more errors locally and
then pass unresolved errors to a higher context to handle them globally, like this:

try {
 if (x < 0)
 throw “value less than zero”;
 else if (x == 0)
 throw “value equals zero”;
 }
 catch(e) {
 if (e == “value less than zero”)
 return(“Error handled locally.”);
 else
 throw e; //error not handled locally, pass exception on.
 }

Listing 7-7 shows a more complete example of handling errors locally and globally. The first call
to the tryTest function passes in a value of –1, causing the script to throw an exception and set
the error value to “value less than zero.” The catch statement uses If Else to determine whether
to handle the error. Here, the error value matches the value expected by the If statement, and the
error is handled locally. The subsequent call to tryTest, however, sets x to 0, and this error isn’t
handled locally. Instead, the error is thrown to a higher context and then handled globally.

LISTING 7-7

Throwing an Error

throwerror.js

function tryTest(x)
{
 try {
 if (x < 0)
 throw “value less than zero”;
 else if (x == 0)
 throw “value equals zero”;
 }
 catch(e) {
 if (e == “value less than zero”)
 return(“Error handled locally.”);
 else
 throw e;
 }
}

86804c07.indd 14986804c07.indd 149 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

150

 Part II Windows VBScript and JScript

try {
 WScript.Echo(“Result A: “ + tryTest(-1))
}
catch(e) {
 WScript.Echo(“Error passed to higher context. Handled globally.”);
}
try {
 WScript.Echo(“Result B: “ + tryTest(0))
}
catch(e) {
 WScript.Echo(“Error passed to higher context. Handled globally.”);
}

Output

Result A: Error handled locally.
Error passed to higher context. Handled globally.

Other error-handling techniques
As with VBScript, you can examine error codes and descriptions in JScript. Table 7-7 shows the
common errors by error code and description.

TABLE 7-7

Common Runtime Errors in JScript
Error Code Error Description

5 Invalid procedure call or argument

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

17 Can’t perform requested operation

28 Out of stack space

86804c07.indd 15086804c07.indd 150 1/21/09 1:25:44 PM1/21/09 1:25:44 PM

151

 Input, Output, and Error Handling with VBScript and JScript 7

Error Code Error Description

35 Sub or Function not defined

48 Error in loading DLL

51 Internal error

52 Bad file name or number

53 File not found

54 Bad file mode

55 File already open

57 Device I/O error

58 File already exists

61 Disk full

62 Input past end of file

67 Too many files

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can’t rename with different drive

75 Path/File access error

76 Path not found

91 Object variable or With block variable not set

92 For loop not initialized

93 Invalid pattern string

94 Invalid use of Null

322 Can’t create necessary temporary file

424 Object required

To access the error code and description, use the Error object. The Error object is created
automatically by the catch statement and has two properties: Description and Number. The
Description property returns or sets the error message. The Number property returns or sets the
error number associated with the error.

86804c07.indd 15186804c07.indd 151 1/21/09 1:25:45 PM1/21/09 1:25:45 PM

152

 Part II Windows VBScript and JScript

You access the Description property directly through the Error object, like this:

try {
 nosuchfunction()
}
catch(e) {
 WScript.Echo(e.description)
}

On the other hand, the Number property is accessed through a 32-bit value. The upper 16-bit word
from this value is a facility code, which you won’t use in most cases. The lower 16-bit word is the
actual error code. You can examine both codes as follows:

try {
 nosuchfunction()
}
catch(e) {
 WScript.Echo(“Facility Code: “ + e.number>>16 & 0x1FFF)
 WScript.Echo(“Error Code: “ + e.number & 0xFFFF)
}

Again, the error code is the value you’ll want to use in your scripts.

Summary
Input, output, and error handling are important parts of any script. The most common techniques
for displaying output and gathering input are dialog boxes. In the runtime environment, three types
of dialog boxes are available: input boxes, message boxes, and pop-up dialog boxes. While VBScript
supports all three types of dialog boxes, JScript only supports pop-ups. This support for VBScript
and JScript is different from what you may be used to if you’ve worked with browser-based scripting,
and it is something you should keep in mind whenever you work with Windows scripts.

86804c07.indd 15286804c07.indd 152 1/21/09 1:25:45 PM1/21/09 1:25:45 PM

153

The file system is one of the most important parts of any operating
system and Windows is no exception. Your scripts will often need
to manage files and folders. For example, before you can extract

information from a log file you must learn how to find files, how to check
for a file’s existence, and how to read files. This chapter examines high-
level techniques for working with files and folders. You’ll learn how to cre-
ate files and folders, how to examine file and folder properties, and how to
move and delete files and folders. Reading and writing files is the subject
of Chapter 9.

Whenever you work with files or folders in protected locations, such as
those used by the operating system, you’ll want to ensure you use an
elevated command prompt with administrator privileges, in order to have
the appropriate permissions to work with files and folders. When you are
working with files and folders on remote computers, keep in mind that
the remote script is copied to the temporary directory of the account that
accesses the remote computer and runs with the security settings for the
remote computer and the temporary directory.

Some of the scripts in this chapter are not fully working examples.
The scripts may highlight only the syntax of how the commands

could be used in a complete script. Also, you may need to replace fi les and fi le
paths with your own if you are trying the examples on your own computer.

Understanding the FileSystemObject
The top-level object for working with the Windows desktop and file sys-
tems is the FileSystem Object (FSO). It is through FSO that you access
most of the other file system-related objects. Because this object is so

NOTENOTE

Working with Files and
Folders in VBScript

and JScript

IN THIS CHAPTER
Accessing the file system

Creating folders and files

Managing folders and files

Using special folders

86804c08.indd 15386804c08.indd 153 1/21/09 1:25:57 PM1/21/09 1:25:57 PM

154

 Part II Windows VBScript and JScript

complex, let’s take a step-by-step look at its components including related objects, methods, and
properties.

FSO objects and collections
The FileSystemObject is implemented in the scripting runtime library (Scrrun.dll) and as such,
it is an extension of the JScript and VBScript scripting engines rather than a part of the Windows
Script Host object model. This distinction is important if you plan to use Windows Script Host with
other scripting engines. For example, if you plan to use the PerlScript scripting engine, you will use
PerlScript’s file system objects, or you can define file system functions in VBScript and JScript and
access them from PerlScript as part of a batch script job.

Many different objects and collections are accessed through the FileSystemObject. These elements
are summarized in Table 8-1. As you already know, objects are containers for related sets of methods
and properties. Collections, on the other hand, may be new to you. Collections are containers for
groups of related items, such as the Drives collection that contains references for all the drives on a
particular system. Normally, collections are accessed through the properties and methods of other
objects. For example, to examine drives on a system, you’ll use the Drives property of the
FileSystemObject.

TABLE 8-1

Objects and Collections Accessed Through FileSystemObject
Object/Collection Description

Drive Object Used to examine information on storage devices, including disk drives, CD-ROM
drives, RAM disks, and network drives

Drives Collection Provides a list of physical and logical drives on the system

File Object Used to examine and manipulate files

Files Collection Provides a list of files in a folder

Folder Object Used to examine and manipulate folders

Folders Collection Provides a list of subfolders in a folder

TextStream Object Used to read and write text files

FSO methods and properties
As shown in Table 8-2, the FileSystemObject provides many different methods for working with
file systems. These methods sometimes provide the same functionality as the methods of lower-level
objects. For example, the FileSystemObject’s CopyFile method is identical to the File object’s
Copy method. They both expect the same arguments and have the same syntax.

86804c08.indd 15486804c08.indd 154 1/21/09 1:25:57 PM1/21/09 1:25:57 PM

155

 Working with Files and Folders in VBScript and JScript 8

TABLE 8-2

Methods of FileSystemObject
Method Description

BuildPath Appends file path information to an existing file path

CopyFile Copies files from one location to another

CopyFolder Copies folders and their contents from one location to another

CreateFolder Creates a folder

CreateTextFile Creates a text file and returns a TextStream object

DeleteFile Deletes a file

DeleteFolder Deletes a folder and all of its contents

DriveExists Determines if a drive exists

FileExists Determines if a file exists

FolderExists Determines if a folder exists

GetAbsolutePathName Returns the full path to a file or folder

GetBaseName Returns the base name of a file or folder

GetDrive Returns a Drive object

GetDriveName Returns a drive name

GetExtensionName Returns a file extension from a path

GetFile Returns a File object

GetFileName Returns a file name from a path

GetFolder Returns a Folder object

GetParentFolderName Returns the parent folder name from a path

GetSpecialFolder Returns an object pointer to a special folder

GetTempName Returns a randomly generated file or folder name that can be used with
CreateTextFile

MoveFile Moves files from one location to another

MoveFolder Moves folders and their contents from one location to another

OpenTextFile Opens an existing text file and returns a TextStream object

86804c08.indd 15586804c08.indd 155 1/21/09 1:25:57 PM1/21/09 1:25:57 PM

156

 Part II Windows VBScript and JScript

The only property of the FileSystemObject is Drives. This property returns a Drives collection
that contains a list of all physical and logical drives on the system.

Using the FileSystemObject
As stated earlier, the FileSystemObject isn’t a part of the Windows Script Host object model and
is instead a part of the scripting type library. Because of this, you access the FileSystemObject
via the Scripting object, like this:

VBScript

Set fs = WScript.CreateObject (“Scripting.FileSystemObject”)

JScript

fs = new ActiveXObject(“Scripting .FileSystemObject”);

In these examples, note that you create the FileSystemObject in JScript using the ActiveXObject
method rather than the CreateObject method. ActiveXObject is a JScript method designed to
return references to ActiveX Automation objects.

Once you create an instance of the FileSystemObject you can use its objects, methods, and prop-
erties. You need only one instance of the FileSystemObject in a script, and when you are finished
using it, you may want to destroy the object instance and free up the memory it uses. To do this, you
can set the reference variable to null, like this:

VBScript

Set fs = Nothing

JScript

fs = “”

Nothing is a reserved keyword in VBScript. You use Nothing in an assignment to null
the object (free the memory associated with the object).

Working with Folders
Folders are an important part of the file system, and whether you want to access existing folders or
create new folders, you can use Windows scripts to get the job done. Often, the way you work with
folders depends on the tasks you want to perform. For example, if you want to examine folder prop-
erties, you first need to create a Folder object and then you can work with the Folder object. The
sections that follow examine key folder administration tasks, including:

Viewing folder contents■

Examining and working with folder properties■

NOTENOTE

86804c08.indd 15686804c08.indd 156 1/21/09 1:25:57 PM1/21/09 1:25:57 PM

157

 Working with Files and Folders in VBScript and JScript 8

Checking for and creating folders■

Deleting, copying, and moving folders■

Working with special folders■

Checking folder contents
Before you can view the contents of a folder, you must create a reference to the folder. This is done
with the GetFolder method of the FileSystemObject. Pass the GetFolder method the path of
the folder, and the method returns a Folder object. Once you have this Folder object, you can use
it in your scripts. The following example shows how you can call GetFolder:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFolder(“C:\Windows”)

JScript

fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFolder(“C:\\WINDOWS”)

Don’t forget that you must use escaped directory paths in JScript. If you forget to use
double slashes, your scripts may not work.

After calling GetFolder, you can use the Subfolders and Files properties of the File object to
examine the elements contained in the specified folder. These properties return Folder and File
collections respectively, which you can iterate through with a For loop.

Listing 8-1 shows an example using GetFolder. The example displays a pop-up dialog box that
contains a list of all subfolders under the C:\WINDOWS directory.

LISTING 8-1

Examining Collections of Subfolders and Files

VBScript
viewfolder.vbs

Set w = WScript.CreateObject(“WScript.Shell”)
w.Popup ShowFolders(“C:\WINDOWS”)
Function ShowFolders(folderName)

Dim fs, f, f1, fc, s
s = “”
Set fs = CreateObject(“Scripting.FileSystemObject”)

Set f = fs.GetFolder(folderName)

TIPTIP

continued

86804c08.indd 15786804c08.indd 157 1/21/09 1:25:57 PM1/21/09 1:25:57 PM

158

 Part II Windows VBScript and JScript

Set fc = f.SubFolders
For Each f1 in fc
 s = s & f1.name
 s = s & (Chr(13) & Chr(10))
Next
 ShowFolders = s
End Function

JScript
viewfolder.js

var w = WScript.CreateObject(“WScript.Shell”);
w.Popup (ShowFolders(“C:\\WINDOWS”))

function ShowFolders(folderName)
{
 var fs, f, fc, s;
 s = “”
 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderName);
 fc = new Enumerator(f.SubFolders);
 for (; !fc.atEnd();fc.moveNext())
 {
 s += fc.item();
 s += “\r\n”;
 }
 return(s);
}

As Listing 8-1 shows, the techniques you use to examine collections in VBScript and JScript differ.
In VBScript, you can use a simple For Each structure to examine the contents of the collection. The
structure of the For Each loop isn’t really any different from structures we’ve used in past examples.
You start out by obtaining a Folder object:

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFolder(folderName)

Next, you obtain the SubFolders collection within the folder:

Set fc = f.SubFolders

Then, you examine each item in the collection using a For Each loop:

For Each f1 in fc
s = s & f1.name

LISTING 8-1 (continued)

86804c08.indd 15886804c08.indd 158 1/21/09 1:25:57 PM1/21/09 1:25:57 PM

159

 Working with Files and Folders in VBScript and JScript 8

s = s & (Chr(13) & Chr(10))
Next

You use the s variable to hold the list of folder names, placing the names on separate lines by com-
bining Chr(13) and Chr(10). Chr(13) is a carriage return and Chr(10) is a line feed.

With JScript, on the other hand, accessing collections requires some new techniques. You start out
by obtaining a pointer to a Folder object:

fs = new ActiveXObject(“Scripting.FileSystemObject”);
f = fs.GetFolder(folderName);

Next, because the items in a collection aren’t directly accessible in JScript, you use the
Enumerator() method to obtain the SubFolders collection within the specified folder:

fc = new Enumerator(f.SubFolders);

Enumerator() provides access to special methods for working with collections. These methods are:

atEnd■ : Returns True if the current item is the last in the collection. Otherwise, returns
False.

item■ : Returns an item in a collection.

moveFirst■ : Resets the collection pointer to the beginning of the collection. Returns unde-
fined if there aren’t any items.

moveNext■ : Advances to the next item in the collection. Returns undefined if the pointer is
at the end of the collection.

In the example below, these methods are used to move through the collection. The following For
loop iterates through the available items:

for (; !fc.atEnd(); fc.moveNext())
 {
 s += fc.item();
 s += “\r\n”
 }

You use the s variable to hold the list of folder names, placing the names on separate lines by com-
bining \r and \n. The special character \r is a carriage return and \n is a line feed.

Examining folder properties
When you work with folders, you often want to examine their properties, such as the creation date or
the date last modified. You can use these properties to view folder attributes, to display folder infor-
mation to users, and more. Before you can examine folder properties, you must reference the folder

86804c08.indd 15986804c08.indd 159 1/21/09 1:25:57 PM1/21/09 1:25:57 PM

160

 Part II Windows VBScript and JScript

through its Folder object. You can then work with any of the folder properties available. The fol-
lowing example shows how you can examine the creation date of a specified folder:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFolder(“C:\WINDOWS”)
creDate = f.DateCreated
wscript.echo creDate

JScript

fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.GetFolder(“C:\\WINDOWS”)
creDate = f.DateCreated
WScript.echo(creDate);

A complete list of folder properties is shown in Table 8-3. All folder properties are read-only, except for
the Attributes property. This means you can read the properties but you can’t change their values.

TABLE 8-3

Properties of the Folder Object
Property Description Sample Return Value

Attributes Sets or returns folder properties; see the section,
“Examining and Working with File Properties” for
complete details.

16

DateCreated Returns the folder creation date and time 10/15/10 6:11:21 PM

DateLastAccessed Returns the date the folder was last accessed 10/21/10

DateLastModified Returns the date and time the folder was last modified 10/21/10 6:52:12 PM

Drive Returns the drive letter on which the folder resides C:

Files Returns a Files collection -

IsRootFolder Returns 1 (True) if the folder is the root folder, such as
C:\ or D:\; otherwise, returns zero.

0

Name Returns the folder name Windows

ParentFolder Returns the Folder object of the parent folder C:\

Path Returns the path to the folder C:\WINDOWS

ShortName Returns the MS DOS–compliant name of the folder Windows

ShortPath Returns the MS DOS–compliant path to the folder C:\WINDOWS

86804c08.indd 16086804c08.indd 160 1/21/09 1:25:57 PM1/21/09 1:25:57 PM

161

 Working with Files and Folders in VBScript and JScript 8

Property Description Sample Return Value

Size Returns the byte size of all files and subfolders in
the folder

1576524

SubFolders Returns a SubFolders collection -

Type Returns the folder type File Folder

Most of the folder properties have fairly obvious uses. For example, you use the CreationDate
property when you want to display the folder’s creation date to a user, or perform a calculation
based on the creation date.

Some properties are more useful than you might imagine. For example, you can use IsRootFolder
and ParentFolder to move through directory structures. You create an instance of a folder and set
it to a path, like this: C:\WINDOWS\System32\LogFiles. Then use the ParentFolder property to
move through each of the parent folders, stopping when you reach the root folder C:\. An example
that uses this technique is shown in Listing 8-2.

LISTING 8-2

Using IsRootFolder and ParentFolder

VBScript
checkfolder.vbs

folderP = CheckFolders(“C:\WINDOWS\System32\LogFiles”)
Set w = WScript.CreateObject(“WScript.Shell”)
w.Popup folderP

Function CheckFolders(folderPath)
 Dim fs, f, n, s
 s = “”
 n = 0
 Set fs = CreateObject(“Scripting.FileSystemObject”)
 Set f = fs.GetFolder(folderPath)
 If f.IsRootFolder Then
 s = “This is the root folder.”
 Else
 Do Until f.IsRootFolder
 Set f = f.ParentFolder
 n = n + 1
 Loop
 End If
 ‘Work with folder
 s = “Folder is nested “ & n & “ levels deep.”
 CheckFolders = s
End Function

continued

86804c08.indd 16186804c08.indd 161 1/21/09 1:25:57 PM1/21/09 1:25:57 PM

162

 Part II Windows VBScript and JScript

JScript
checkfolder.js

folderP = CheckFolders(“C:\\WINDOWS\\System32\\LogFiles”)
var w = WScript.CreateObject(“WScript.Shell”);
w.Popup (folderP)

function CheckFolders(folderPath)
{
 var fs, f, n, s;
 s = “”;
 n = 0;
 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderPath);
 if (f.IsRootFolder)
 s = “Root folder.”
 else {
 do
 {
 f = f.ParentFolder;
 n++;
 }
 while (!f.IsRootFolder)
 //Work with folder
 s = “Folder is nested “ + n + “ levels deep.”
 return(s);
 }
}

Output

Folder is nested three levels deep.

As shown, the ParentFolder property returns a Folder object that you can manipulate. If you
just want the name of the parent folder, use the GetParentFolderName method instead. This
method returns a string containing the name of the parent folder and can be used as follows:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
par = fs.GetParentFolderName folderpath

JScript

fs = new ActiveXObject(“Scripting .FileSystemObject”);
var par = fs.GetParentFolderName(folderpath)

LISTING 8-2 (continued)

86804c08.indd 16286804c08.indd 162 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

163

 Working with Files and Folders in VBScript and JScript 8

Here, if the folder path is C:\WINDOWS\System32, the par variable is set to C:\WINDOWS. Note
that if the folder path is a root folder, such as C:\, the GetParentFolderName method returns an
empty string. The reason for this is that root folders don’t have parent folders.

Creating folders
In the previous examples, we’ve assumed that the folder exists on the user’s system. As this may not
always be the case, you may want to test for a folder’s existence before you try to work with it. To do
this, you can use the FolderExists method of FileSystemObject. This method returns True if
the folder exists and can be used as shown in Listing 8-3.

LISTING 8-3

Using FolderExists

VBScript
checkfolder2.vbs

WScript.Echo(CheckFolder(“C:\WINDOWS”))
Function CheckFolder(foldr)
Dim fs, s
 Set fs = CreateObject(“Scripting.FileSystemObject”)
 If (fs.FolderExists(foldr)) Then
 s = foldr & “ is available.”
 Else
 s = foldr & “ doesn’t exist.”
 End If
 CheckFolder = s
End Function

JScript
checkfolder2.js

WScript.Echo(CheckFolder(“C:\\WINDOWS”))
function CheckFolder(foldr)
{
 var fs, s = foldr;
 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 if (fs.FolderExists(foldr))
 s += “ is available.”;
 else
 s += “ doesn’t exist.”;
 return(s);
}

Output

C:\WINDOWS is available.

86804c08.indd 16386804c08.indd 163 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

164

 Part II Windows VBScript and JScript

After checking for a folder’s existence, one of the most common tasks you’ll want to perform is
the creation of a necessary folder. You can create folders with the CreateFolder method of the
FileSystemObject. The main argument for this method is a string containing the path to the
folder you want to create, such as:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set foldr = fs.CreateFolder(“d:\data”)

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var foldr = fs.CreateFolder(“d:\\data”);

Copying, moving, and deleting folders
With Windows scripts, there are two different ways to copy, move, and delete files. You can use
methods of FileSystemObject to work with multiple folders or you can use methods of the
Folder object to work with individual folders.

Issues for multiple folders
Using FileSystemObject, the methods for copying, moving, and deleting folders are:

DeleteFolder■

CopyFolder■

MoveFolder■

Using DeleteFolder
The DeleteFolder method is used to delete a folder and all of its contents, which can include sub-
folders and files. When you use the method, specify the path to the folder you want to delete and
optionally force the method to delete read-only files. For example, you can delete a working direc-
tory in C:\working\data as follows:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
fs.DeleteFolder(“C:\working\data”)

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
fs.DeleteFolder(“C:\\working\\data”);

The DeleteFolder method can be very dangerous. It allows you to specify the root
folder for deletion, which will delete all contents on an entire drive.CAUTION CAUTION

86804c08.indd 16486804c08.indd 164 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

165

 Working with Files and Folders in VBScript and JScript 8

If the directory contains read-only files that you want to delete, an error occurs and the delete opera-
tion is cancelled. To prevent this from happening, you must set the force flag to True. For example:

VBScript

fs.DeleteFolder “C:\working\data”,True

JScript

fs.DeleteFolder(“C:\\working\\data”, “True”);

You can also use wildcards when deleting folders. To do this, specify the wildcard as the last element
of the path. For example, you can delete the folders C:\working\test and C:\working\test2 as
follows:

VBScript

fs.DeleteFolder “C:\working\tes*”

JScript

fs.DeleteFolder(“C:\\working\\tes*”);

Using CopyFolder
The CopyFolder method copies a folder and all of its contents—which can include subfolders and
files — to a new location. Using CopyFolder, you specify the source path of the folder you want to
copy and the destination path for the folder. For example, you can copy C:\working to D:\data as
follows:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
fs.CopyFolder “C:\working”, “D:\data”

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
fs.CopyFolder(“C:\\working”, “D:\\data”);

You can also use CopyFolder to copy between existing folders. For example if both C:\working
and D:\data exist, you can copy files and subfolders from C:\working to D:\data. However, when
you do this, there are several rules you must follow. If the destination directory already exists and any
files are overwritten during the copy, an error occurs and the copy operation stops. To force the
method to overwrite existing files, you must set the overwrite flag to True, like this:

VBScript

fs.CopyFolder “C:\working”,”D:\data”, True

JScript

fs.CopyFolder (“C:\\working”,”D:\\data”, “True”);

86804c08.indd 16586804c08.indd 165 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

166

 Part II Windows VBScript and JScript

If the destination directory already exists and you want to copy specific files and folders, use a wild-
card as the final element of the source folder name. The following example copies the C:\Working\
test and C:\Working\test2 folders to D:\data\test and D:\data\test2:

VBScript

fs.CopyFolder “C:\working\tes*”,”D:\data”

JScript

fs.CopyFolder(“C:\\working\tes*”,”D:\\data”);

Normally, you don’t want to specify the last element of the destination path as a folder
separator (\). If you do, the CopyFolder method assumes the destination folder exists

and will not create it if it is necessary to do so.

Using MoveFolder
If you want to move a folder and all of its contents to a new location, use MoveFolder. When you
use the MoveFolder method, you specify the source path of the folder you want to move and the
destination path. For example, you can move C:\data to D:\work\data as follows:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)

fs.MoveFolder “C:\data”,”D:\work\data”

JScript

var fs = new ActiveXObject(“Scripting.FileSystemObject”);
fs.CopyFolder(“C:\\data”,”D:\\work\\data”);

You can also use MoveFolder to move files and subfolders between existing folders. For example if
both C:\working and D:\data exist, you can move files and subfolders from C:\working to D:\
data. To do this, use wildcards to match subfolders and file contents, like this:

VBScript

fs.MoveFolder “C:\working\tes*”,”D:\data”

JScript

fs.MoveFolder(“C:\\working\\tes*”,”D:\\data”);.

If you specify the last element of the destination path as a folder separator (\), the
MoveFolder method assumes that the destination folder exists and will not create it if

it is necessary to do so. Also, the move operation will not overwrite existing fi les or folders. In such a
case, the move fails the fi rst time it tries to overwrite.

TIPTIP

NOTENOTE

86804c08.indd 16686804c08.indd 166 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

167

 Working with Files and Folders in VBScript and JScript 8

Issues for individual folders
With the Folder object, the methods for copying, moving, and deleting folders are:

Delete■

Copy■

Move■

You cannot use wildcards when copying, moving, or deleting individual folders.

Using Delete
The Delete method of the Folder object works almost the same as the DeleteFolder method dis-
cussed previously. The method deletes a folder and all of its contents, which can include subfolders
and files, and can also force the deletion of read-only contents. The Delete method works with a spe-
cific Folder object reference and, as a result, can delete a folder just by calling the method, like this:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFolder(“C:\working”)
f.Delete

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFolder(“C:\\working”);
f.Delete()

If the folder contains read-only subfolders and files that you want to delete, you must set the force
flag to True, like this:

VBScript

f.Delete True

JScript

f.Delete(“True”)

Using Copy
The Copy method copies a folder and all of its contents to a new location. With Copy, you obtain
a Folder object and then set the destination path for the folder in the Copy method. For example,
you can copy C:\working to D:\data as follows:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFolder(“C:\working”)
f.Copy “D:\data”

NOTENOTE

86804c08.indd 16786804c08.indd 167 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

168

 Part II Windows VBScript and JScript

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFolder(“C:\\working”);
f.Copy(“D:\\data”);

As with CopyFolder, you can also use the Copy method to copy between existing folders. For exam-
ple if both C:\working and D:\data exist, you can copy files and subfolders from C:\working to
D:\data. In this case, you may want to force the method to overwrite existing files, which you do
by setting the overwrite flag to True, like this:

VBScript

f.Copy “D:\data”, True

JScript

f.Copy(“D:\\data”, “True”);

If you try to overwrite existing fi les and don’t set the overwrite fl ag, an error occurs and
the Copy operation stops.

Using Move
The Move method moves a folder and all of its contents to a new location. Before you use Move, you
must first obtain a Folder object and then you can set the destination path for the folder in the Move
method. For example, you can move C:\data to D:\work\data like this:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFolder(“C:\data”)
f.Move “D:\work\data”

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFolder(“C:\\data”);
f.Move(“D:\\work\\data”);

You can also use Move to move files and subfolders between existing folders. For example if both
C:\data and D:\backups\data exist, you can move files and subfolders from C:\data to
D:\backups\data. However, the Move method will not overwrite existing files. If you try to do
this, an error occurs and the operation stops.

Using Special Folders
Entering a specific value for folder paths works in many cases, but there are times when you’ll need
to work with certain folders in a way that isn’t specific to a particular system. For example, if you cre-
ate a login script, users may log in from Windows XP, Windows Vista, Windows Server 2003, or

NOTENOTE

86804c08.indd 16886804c08.indd 168 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

169

 Working with Files and Folders in VBScript and JScript 8

Windows Server 2008. With these operating systems, system files are installed in same locations
by default but can be set to just about any directory name during installation.

So, if you want to create a script that works with operating system files, you shouldn’t enter a precise
path. Instead, you should work with environment variables that act as pointers to the location of the
operating system files, SystemRoot for example. As you will learn in Chapter 10, you can use the
ExpandEnvironmentStrings method of the Shell object to obtain a string representation of the
SystemRoot environment variable. You can then assign this value to a method that uses the path
information. An example is shown in Listing 8-4.

LISTING 8-4

Working with Paths and Environment Variables

VBScript
envpaths.vbs

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set WshShell = WScript.CreateObject(“WScript.Shell”)
osdir = WshShell.ExpandEnvironmentStrings(“%SystemRoot%”)
Set f = fs.GetFolder(osdir)
WScript.Echo f

JScript
envpaths.js

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var WshShell = WScript.CreateObject(“WScript.Shell”)
osdir = WshShell.ExpandEnvironmentStrings(“%SystemRoot%”)
var f = fs.GetFolder(osdir);
WScript.Echo(f)

Output

C:\WINDOWS

Accessing environment variables before working with folders requires a few extra steps that can be
avoided by using the GetSpecialFolder method of FileSystemObject. With this method, you
can directly obtain one of three folders: the Windows folder, the System folder, or the Temp
folder. The method accepts a value that represents the folder you want to work with. The three
values are listed here:

0:■ For the Windows folder, such as C:\WINDOWS. Associated constant is
WindowsFolder.

1:■ For the System folder, such as C:\WINDOWS\System32. Associated constant is
SystemFolder.

2:■ For the Temp folder, such as C:\TEMP. Associated constant is TemporaryFolder.

86804c08.indd 16986804c08.indd 169 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

170

 Part II Windows VBScript and JScript

An example using GetSpecialFolder is shown in Listing 8-5.

LISTING 8-5

Working with Special Folders

VBScript
specialfolder.vbs

Set fs = CreateObject(“Scripting .FileSystemObject”)
‘Get the Windows folder
Set wfolder = fs.GetSpecialFolder(0)
‘Get the System folder
Set sfolder = fs.GetSpecialFolder(1)
‘Get the Temp folder
Set tfolder = fs.GetSpecialFolder(2)

JScript
specialfolder.js

var fs = CreateObject(“Scripting .FileSystemObject”)
//Get the Windows folder
var wfolder = fs.GetSpecialFolder(0)
//Get the System folder
var sfolder = fs.GetSpecialFolder(1)
//Get the Temp folder
var tfolder = fs.GetSpecialFolder(2)

Working with Files
Many of the tasks you perform in Windows scripts will relate to files. You can use scripts to copy,
move, and delete files. You can also use scripts to create, read, and write text files. The types of text
files you can work with include HTML, XML, scripts, and other types of files containing standard
ASCII or Unicode text. The sections that follow examine key file administration tasks, including:

Examining and working with file properties■

Copying, moving, and deleting files■

Checking for and creating files■

Reading and writing files■

Examining file properties
Files have many different properties. Some of these properties can only be read. Others are read/write,
which means you can change their values. A complete list of folder properties is shown as Table 8-4.

86804c08.indd 17086804c08.indd 170 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

171

 Working with Files and Folders in VBScript and JScript 8

TABLE 8-4

Properties of the File Object
Property Description Sample Return Value

Attributes Sets or returns file properties 32

DateCreated Returns the file creation date and time 7/15/10 12:05:11 AM

DateLastAccessed Returns the date the file was last accessed 9/10/10

DateLastModified Returns the date and time the file was last modified 9/10/10 8:26:35 PM

Drive Returns the drive letter on which the file resides D:

Name Returns the file name index.html

ParentFolder Returns the Folder object of the parent folder C:\working

Path Returns the path to the file C:\working\index.html

ShortName Returns the MS DOS-compliant name of the file index.htm

ShortPath Returns the MS DOS–compliant path to the file C:\working\index.htm

Size Returns the byte size of the file 45225

Type Returns the file type Netscape Hypertext
Document

Before you can examine file properties, you must reference the file through its related File object.
You can then work with any of the file properties available. The following example shows how you
can examine the size of a file:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFile(“D:\index.htm”)
fileSize = f.size

JScript

fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFile(“D:\\index.htm”)
fileSize = f.size

One of the key properties you’ll work with is Attributes. The value that is returned by the
Attributes property is the combination of the related values for all the flags set for the file or
folder. You can change file properties by setting Attributes to a new value or by adding and sub-
tracting from its current value. With folders, however, you can only display attribute values.

86804c08.indd 17186804c08.indd 171 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

172

 Part II Windows VBScript and JScript

Table 8-5 provides a complete list of Attribute values that can be used with files and folders. While
read-only values cannot be changed, read/write values can be combined to set multiple attributes.

TABLE 8-5

Attribute Values for Files and Folders
Constant Value Description

Normal 0 A normal file with no attributes set

ReadOnly 1 A read-only file; attribute is read/write.

Hidden 2 A hidden file; attribute is read/write.

System 4 A system file; attribute is read/write.

Volume 8 A disk drive volume label; attribute is read-only.

Directory 16 A folder or directory; attribute is read-only.

Archive 32 A file with the archive bit set (meaning it has changed since last backup);
attribute is read/write.

Alias 64 A link or shortcut; attribute is read-only.

Compressed 128 A compressed file; attribute is read-only.

Changing read/write file attributes is easy. The following example sets the read-only flag for a file
named log.txt:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFile(“D:\log.txt”)
f.Attributes = f.Attributes + 1

JScript

fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFile(“D:\\log.txt”)
f.Attributes += 1

Now you may be wondering what would happen if the file was read-only already and you added one
to its value. The result is unpredictable, but a hidden, read-only file (value 3) would become a system
file (value 4). To ensure that you only set a particular flag—that is, if it’s not set already—you can
use an AND test. In Listing 8-6, the file is changed to read-only, but only if this flag isn’t already set.

86804c08.indd 17286804c08.indd 172 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

173

 Working with Files and Folders in VBScript and JScript 8

LISTING 8-6

Checking for Attributes Before Making Changes

VBScript
attribs.vbs

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFile(“c:\log.txt”)
If f.Attributes And 1 Then
 f.Attributes = f.Attributes + 1
End If

JScript
attribs.js

fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.GetFile(“D:\\log.txt”)
if (f.Attributes & 1)
{
 f.Attributes += 1
}

Creating files
So far, we’ve assumed that the file we want to work with exists on the user’s system. However, this
may not always be the case, so you may want to test for a file’s existence before you try to work with
it. To do this, use the FileExists method of FileSystemObject. This method returns True if
the folder exists and False if not.

Listing 8-7 shows how you can test for a file’s existence.

LISTING 8-7

Using FileExists

VBScript
testfile.vbs

WScript.Echo(CheckFile(“C:\data.txt”))

Function CheckFile(aFile)
Dim fs, s
 Set fs = CreateObject(“Scripting.FileSystemObject”)

 If (fs.FileExists(aFile)) Then
 s = aFile & “ is available.”

continued

86804c08.indd 17386804c08.indd 173 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

174

 Part II Windows VBScript and JScript

 Else
 s = aFile & “ doesn’t exist.”
 End If
CheckFile = s
End Function

JScript
testfile.js

WScript.Echo(CheckFile(“C:\\data.txt”))
function CheckFile(aFile)
{
 var fs, s = aFile;
 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 if (fs.FileExists(aFile))
 s += “ is available.”;
else
 s += “ doesn’t exist.”;
 return(s);
}

Output

C:\data.txt is available.

If a file you want to write to doesn’t exist, you may want to create it. To do this, you can use the
CreateTextFile method of the FileSystemObject. The main argument for this method is a
string containing the path to the file you want to create:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set aFile = fs.CreateTextFile(“d:\data\data.txt”)

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var aFile = fs.CreateTextFile(“d:\\data\\data.txt”);

The Folder object also has a CreateTextFile method. With the Folder object, you specify only
the file name rather than a complete path, like this:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFolder(“D:\data”)
Set aFile = f.CreateTextFile(“data.txt”)

LISTING 8-7 (continued)

86804c08.indd 17486804c08.indd 174 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

175

 Working with Files and Folders in VBScript and JScript 8

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFolder(“D:\\data”)
var aFile = f.CreateTextFile(“data.txt”);;

The CreateTextFile method returns a TextStream object that you can use to work with the
newly created file. If you try to create a file with the same name and path as an existing file, an error
occurs. By default, CreateTextFile won’t overwrite an existing file. You can change this behavior
by setting the overwrite flag, like this:

VBScript

Set aFile = f.CreateTextFile(“data .txt”, True)

JScript

var aFile = f.CreateTextFile(“data .txt”, “True”);

Another default behavior of the CreateTextFile method is to create files in ASCII text mode. You
can also set Unicode mode. To do this, you need to set the Unicode flag to True, as follows:

VBScript

Set aFile = f.CreateTextFile(“data .txt”, False, True)

JScript

var aFile = f.CreateTextFile(“data .txt”, “False”, “True”);

You cannot skip the overwrite fl ag when you set the Unicode fl ag. Instead, set the over-
write fl ag to True or False explicitly and then set the Unicode fl ag.

Copying, moving, and deleting files
You can manage files using methods of FileSystemObject or methods of the File object. Use
FileSystemObject methods when you want to work with multiple files. Use the File object
when you want to work with individual files.

Issues for multiple files
FileSystemObject methods for copying, moving, and deleting files are:

DeleteFile■

CopyFile■

MoveFile■

NOTENOTE

86804c08.indd 17586804c08.indd 175 1/21/09 1:25:58 PM1/21/09 1:25:58 PM

176

 Part II Windows VBScript and JScript

Using DeleteFile
You can use the DeleteFile method to delete one or more files. When you use this method, specify
the path to the file you want to delete and optionally force the method to delete read-only files. Delete
one file by specifying an absolute path, such as C:\working\data.txt. Delete multiple files by using
wildcards in the file name. For example, you can delete all .txt files in C:\working as follows:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
fs.DeleteFile(“C:\working*.txt”)

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
fs.DeleteFile(“C:\\working*.txt”);

The DeleteFile method deletes only read-only files when you set the force flag to True, like this:

VBScript

fs.DeleteFile
“C:\working\data.txt”,True

JScript

fs.DeleteFile
(“C:\\working\\data.txt”, “True”);

If DeleteFile encounters a read-only fi le and you haven’t set the force fl ag, the opera-
tion stops and no other fi les are deleted.

Using CopyFile
The CopyFile method copies one or more files to a new location. To copy a single file, specify the
absolute path to the file you want to copy and then the destination path. For example, you can copy
C:\working\data.txt to D:\backup\data.txt as follows:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
fs.CopyFile “C:\working\data.txt”,”D:\backup\data.txt”

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
fs.CopyFile(“C:\\working\\data.txt”,”D:\\backup\\data.txt”);

NOTENOTE

86804c08.indd 17686804c08.indd 176 1/21/09 1:25:59 PM1/21/09 1:25:59 PM

177

 Working with Files and Folders in VBScript and JScript 8

You can copy multiple files by using wildcards in the file name as well. For example, to copy all .html
files from C:\working to D:\webdata you can use the following code:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
fs.CopyFile “C:\working*.html”,”D:\webdata”

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
fs.CopyFile(“C:\\working*.html”,”D:\\webdata”);

You can also use CopyFile to copy files between directories that already exist. For example, if both
C:\working and D:\data exist, you can copy files from C:\working to D:\data. However, when
you do this, there are several rules you must follow. If the files you are copying exist at the destina-
tion, an error occurs and the copy operation stops. To force the method to overwrite existing files,
set the overwrite flag to True, like this:

VBScript

fs.CopyFile
“C:\working*.txt”,”D:\data”, True

JScript

fs.CopyFile(“C:\\working*.txt”,
”D:\\data”, “True”);

CopyFile will not write into a read-only directory and it will not write over read-only files either.
You cannot change this behavior with the overwrite flag.

Using MoveFile
If you want to move one or more files to a new location, use MoveFile. To move a single file, specify
the absolute path to the file as the source and then set the destination path. For example, you can
move C:\data.txt to D:\work\data.txt as follows:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
fs.MoveFile “C:\data.txt”,”D:\work\data.txt”

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
fs.CopyFile(“C:\\data.txt”,”D:\\work\\data.txt”);

86804c08.indd 17786804c08.indd 177 1/21/09 1:25:59 PM1/21/09 1:25:59 PM

178

 Part II Windows VBScript and JScript

To move multiple files, you can use wildcards. For example, if you want to move all .txt files from
C:\working to D:\backup, you can use the following code:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
fs.MoveFile “C:\working*.txt”,”D:\backup”

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
fs.CopyFile(“C:\\working*.txt”,”D:\\backup”);

You can also use MoveFile to move files to an existing directory. For example, if both C:\working
and D:\data exist, you can move all .html files from C:\working to D:\data, as follows:

VBScript

fs.MoveFile “C:\working*.HTML”,”D:\data”

JScript

fs.MoveFile (“C:\\working*.HTML”,”D:\\data”);

If you specify the last element of the destination path as a folder separator (\), the
MoveFile method assumes the destination folder exists and will not create it if it is nec-

essary to do so. Also, the move operation will not overwrite existing fi les. In such a case, the move fails
the fi rst time it tries to overwrite.

Issues for individual files
With the File object, the methods for copying, moving, and deleting files are:

Delete■

Copy■

Move■

You cannot use wildcards when copying, moving, or deleting individual fi les.

Using Delete
The Delete method of the File object deletes a file and can also force the deletion of a read-only
file. This method works with a specific File object reference and, as a result, you can delete a file
just by calling the method, like this:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFile (“C:\working\data.txt”)
f.Delete

NOTENOTE

NOTENOTE

86804c08.indd 17886804c08.indd 178 1/21/09 1:25:59 PM1/21/09 1:25:59 PM

179

 Working with Files and Folders in VBScript and JScript 8

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFile (“C:\\working\\data.txt”);
f.Delete()

If the file is read-only, you must set the force flag to True, like this:

VBScript

f.Delete True

JScript

f.Delete(“True”)

Using Copy
The Copy method copies a file to a new location. With Copy, you must obtain a File object and then
set the destination path for the file in the Copy method. For example, you can copy C:\data.txt
to D:\data\data.txt as follows:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFile(“C:\data.txt”)
f.Copy “D:\data\data.txt”

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFile(“C:\\data.txt”);
f.Copy(“D:\\data\\data.txt”);

As with CopyFile, you can also use the Copy method to copy over an existing file. To do this, you
must set the overwrite flag to True, like this:

VBScript

f.Copy “D:\data\data.txt”, True

JScript

f.Copy(“D:\\data\\data.txt”, “True”);

If you try to overwrite a fi le and don’t set the overwrite fl ag to True, an error occurs and
the copy operation fails.NOTENOTE

86804c08.indd 17986804c08.indd 179 1/21/09 1:25:59 PM1/21/09 1:25:59 PM

180

 Part II Windows VBScript and JScript

Using Move
Use the Move method to move a file to a new location. Before you use Move, you must first obtain a
File object and then you can set the destination path for the file in the Move method. You can move
C:\data.txt to D:\work\data.txt as follows:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set f = fs.GetFile(“C:\data.txt”)
f.Move “D:\work\data.txt “

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var f = fs.GetFile(“C:\\data.txt”);
f.Move(“D:\\work\\data.txt”);

You cannot use Move to overwrite an existing fi le.

Summary
As you’ve seen in this chapter, the FileSystemObject is used to manipulate files and folders. File
and folder operations you can perform include create, copy, move, and delete. You can examine
folder and file information as well. In the next chapter, you learn how to read and write files.

NOTENOTE

86804c08.indd 18086804c08.indd 180 1/21/09 1:25:59 PM1/21/09 1:25:59 PM

181

Now that you know how to manage files and folders, you’re ready to
take a closer look at manipulating the contents of files. Many dif-
ferent methods and properties are available for working with files.

But before you can work with a file, you need to open it for reading, writ-
ing, or appending.

Some of the scripts in this chapter are not fully working exam-
ples. The scripts may only highlight the syntax of how the com-

mands could be used in a complete script. Also, you may need to replace fi les
and fi le paths with your own if you are trying the examples on your own
computer.

Opening Files
Two methods are provided for opening files. You can use the OpenTextFile
method of FileSystemObject or the OpenAsTextStream method of the
File object. While both methods return a TextStream object, they are
used in slightly different ways.

NOTENOTE

Reading and Writing Files

IN THIS CHAPTER
Opening files

Reading from files

Skipping characters
and lines in files

Writing to files

86804c09.indd 18186804c09.indd 181 1/21/09 1:26:13 PM1/21/09 1:26:13 PM

182

 Part II Windows VBScript and JScript

Using OpenTextFile
The OpenTextFile method expects to be passed the full path to the file you want to open, such as:

VBScript

Set fs = CreateObject(“Scripting .FileSystemObject”)
Set ts = fs.OpenTextFile(“D:\data\log.txt”)

JScript

var fs = new ActiveXObject(“Scripting .FileSystemObject”);
var ts = fs.OpenTextFile(“D:\\data\\log.txt”)

If you plan to work with the file, you should set the access mode as well. Three access modes are
provided:

1■ : Opens a file for reading. Associated constant is ForReading.

2■ : Opens a file for writing to the beginning of the file. Associated constant is ForWriting.

8■ : Opens a file for appending (writing to the end of the file). Associated constant is
ForAppending.

As you can see, the access modes are designed for specific tasks, such as reading, writing, or
appending. You must use the appropriate mode for the task you want to perform and then close
the file before performing a different task. For example, if you want to write to a file, you must
open it in ForWriting mode. Later, if you want to read from the file, you must close it and then
open it in ForReading mode.

Beyond access modes, you can also specify that you want to create the referenced file if it doesn’t
already exist and set the file’s format mode. To create a file if it doesn’t exist, set the create flag to
True. Otherwise, the file isn’t created and an error may occur. To set a file’s format mode, use one
of these values:

-2■ : Opens the file using the system default. Associated constant is TristateUseDefault.

-1■ : Opens the file as Unicode. Associated constant is TristateTrue.

 0■ : Opens the file as ASCII. Associated constant is TristateFalse.

Listing 9-1 opens a file in ForWriting mode. If the file doesn’t exist, it is created automatically,
which is handy, as you don’t have to test for the file with FileExists. The file is also set to ASCII
text mode, which is the default mode on most systems. The listing also creates an extensive set of
constants for working with files. Use constants when you want your scripts to be easy to read. If the
directory does not exist, you will get a “path not found” error.

86804c09.indd 18286804c09.indd 182 1/21/09 1:26:13 PM1/21/09 1:26:13 PM

183

 Reading and Writing Files 9

LISTING 9-1

Using OpenTextFile

VBScript
usefile.vbs

Const ForReading = 1
Const ForWriting = 2
Const ForAppending = 8
Const TristateUseDefault = -2
Const TristateTrue = -1
Const TristateFalse = 0

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set ts = fs.OpenTextFile(“D:\data\log.txt”, ForWriting, True, TristateFalse)

JScript
usefile.js

ForReading = 1
ForWriting = 2
ForAppending = 8
TristateUseDefault = -2
TristateTrue = -1
TristateFalse = 0
var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var ts = fs.OpenTextFile(“D:\\data\\log.txt”,ForWriting, “True”, TristateFalse)

Using OpenAsTextStream
The OpenAsTextStream method is used much like OpenTextFile. The key differences are that
you already have a file reference, so you don’t have to set a file path, and you cannot set a create flag.
Other than that, the methods are identical. Listing 9-2 shows how you can open an ASCII text file in
ForReading mode.

LISTING 9-2

Using OpenAsTextStream

VBScript
usestream.vbs

Const ForReading = 1
Const TristateFalse = 0

continued

86804c09.indd 18386804c09.indd 183 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

184

 Part II Windows VBScript and JScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFile(“D:\data\log.txt”)
Set ts = f.OpenAsTextStream(ForReading, TristateFalse)

JScript
usestream.js

ForReading = 1
TristateFalse = 0
var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.GetFile(“D:\\data\\log.txt”);
var ts = f.OpenAsTextStream(ForReading, TristateFalse)

Reading Text Files
You can read from a text file only when you open it in the ForReading access mode. Once you open the
file for reading, you can read information for the file in several different ways. You can read the entire
contents of the file, or just character strings or lines of information from the file.

Preparing to read
Just because you can open a file doesn’t mean it contains any information. Therefore, before you
try to read the file, you should verify that it contains information. To do this, you can use the
AtEndOfStream property of the TextStream object. The AtEndOfStream property returns
True when you are at the end of a file and False otherwise. If the file exists but is empty, the
AtEndOfStream property returns True immediately after you open the file.

You should also use the AtEndOfStream property to test for the end-of-file marker prior to reading
additional information from a file. One way to test for an empty file and to check for the end-of-file
marker prior to reading it is to use a Do While loop as shown in Listing 9-3. If you run this example
on an empty file, it will complete execution. If you run it against a file containing text, the script will
never stop running because it is not actually reading the file at this point.

LISTING 9-3

Using AtEndOfStream

VBScript
checkeos.vbs

Const ForReading = 1
Const TristateFalse = 0

LISTING 9-2 (continued)

86804c09.indd 18486804c09.indd 184 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

185

 Reading and Writing Files 9

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFile(“D:\data\log.txt”)
Set thefile = f.OpenAsTextStream(ForReading, TristateFalse)

Do While theFile.AtEndOfStream <> True
 ‘Read from the file
Loop

JScript
checkeos.js

ForReading = 1
TristateFalse = 0
var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.GetFile(“D:\\data\\log.txt”);
var ts = f.OpenAsTextStream(ForReading, TristateFalse)
while (!ts.AtEndOfStream) {
//Read from the file
}

Another helpful property is AtEndOfLine, which returns True if you’ve reached an end-of-line
marker. This property is useful if you are reading characters from files where fields or data records
are stored on individual lines. Here, you read from the file until the end of line is reached, at which
point you know you’ve reached the end of a field or record. An example using AtEndOfLine is
shown here:

VBScript

Do While theFile.AtEndOfLine <> True
 ‘Read characters from the file
Loop

JScript

while (!f.AtEndOfLine) {
 //Read characters from the file
}

Your window into text files is gained through column and line pointers. The column pointer indi-
cates the current column position within a file. The line pointer indicates the current line position
within a file. To check the value of these pointers, use the Column and Line properties of the
TextStream object, respectively.

After opening a file, the column and line pointers are both set to 1. This means you are at column 1,
line 1. If you then read in a line from the file, you are at column 1, line 2. If you read 10 characters
from a file without advancing to the next line, you are at column 11, line 1. Being able to check the
column and line position is very useful when you work with fixed-length records or you want to
examine specific lines of data.

86804c09.indd 18586804c09.indd 185 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

186

 Part II Windows VBScript and JScript

Listing 9-4 shows how you could check the column and line position at various stages of reading a
file. You’ll find more pointers for using these properties later in this chapter.

LISTING 9-4

Using the Column and Line Properties

VBScript
fpointers.vbs

Const ForReading = 1
Const TristateFalse = 0

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFile(“D:\data\log.txt”)
Set ts = f.OpenAsTextStream(ForReading, TristateFalse)

currColumn = ts.Column
currLine = ts.Line

WScript.Echo “Position is: Column “ & currColumn & “ Line “ & currLine

JScript
fpointers.js

ForReading = 1
TristateFalse = 0

var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.GetFile(“D:\\data\\log.txt”);
var ts = f.OpenAsTextStream(ForReading, TristateFalse)

currColumn = ts.Column
currLine = ts.Line

WScript.Echo(“Position is: Column “ + currColumn + “ Line “ + currLine)

You can read from a file using any of these three methods:

Read(x)■ : Reads x number of characters from a file.

ReadLine■ : Reads a line of text from a file.

ReadAll■ : Reads the entire contents of a file.

86804c09.indd 18686804c09.indd 186 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

187

 Reading and Writing Files 9

Whether you read in a file all at once, a few characters at a time, or line by line depends on the type
of information the file contains. If the file contains fixed-length records or is written as a single line
of data, you’ll usually want to use Read or ReadAll. If the file contains lines of data and each line
ends with an end-of-line marker, you’ll usually want to use ReadLine or ReadAll.

Reading characters
You use the Read method to read a specific number of characters from a file. The read begins at the
current column position and continues until the number of characters specified is reached. Because
you want to maintain the information returned from Read, assign the return value to a variable.
Listing 9-5 shows how you can open a file and read 20 characters.

LISTING 9-5

Reading Characters from a File

VBScript
readchars.vbs

Const ForReading = 1
Const TristateFalse = 0

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.OpenTextFile(“D:\data\log.txt”, ForReading, True)
returnValue = f.Read(20)

JScript
readchars.js

ForReading = 1
TristateFalse = 0
var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(“D:\\data\\log.txt”, ForReading, “True”)
returnValue = f.Read(20)

The Read method doesn’t stop at end-of-line markers. Instead, the method reads the individual
characters that make up this marker as one or two characters (either carriage return, or carriage
return and line feed). To have the Read method stop when the end of the line is reached, you should
read one character at a time and test for the end-of-line before each successive read, like this:

VBScript

Do While theFile.AtEndOfLine <> True
 val = val + theFile.Read(1)
Loop

86804c09.indd 18786804c09.indd 187 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

188

 Part II Windows VBScript and JScript

JScript

while (!theFile.AtEndOfLine)
{
 val += theFile.Read(1);
}

Reading lines
For files written using lines, you can use the ReadLine method to read a line from the file. As with
the Read method, you store the value returned by the ReadLine method in a variable so you can
use the results. An example is shown as Listing 9-6.

LISTING 9-6

Using ReadLine

VBScript
readlines.vbs

Const ForReading = 1
Const TristateFalse = 0

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.OpenTextFile(“D:\data\log.txt”, ForReading, True)
theLine = f.ReadLine

JScript
readlines.js

ForReading = 1
TristateFalse = 0

var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(“D:\\data\\log.txt”, ForReading, “True”)
theLine = f.ReadLine()

When you read fi les that include end-of-line designators, you normally use ReadLine
rather than Read. If, however, you read the fi rst 20 characters in a line without reaching

the end-of-line designator and then issued a ReadLine command, the ReadLine method would read
from the current pointer position to the end of the current line.

Unless you know that each line of a file has a fixed length, you probably won’t use the Column
pointer in conjunction with the ReadLine method. Instead, you’ll use the individual lines of data to
move around within the file. Let’s say you want to extract data from a file five lines at a time. To do

NOTENOTE

86804c09.indd 18886804c09.indd 188 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

189

 Reading and Writing Files 9

this, you can open the file for reading and then use a loop to advance through the file as is shown in
Listing 9-7.

LISTING 9-7

Reading Data Sets with ReadLine

VBScript
readdatasets.vbs

Const ForReading = 1
count = 5
dataSet = 0

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.OpenTextFile(“D:\data.txt”, ForReading, True)

Do While f.AtEndOfStream <> True
 data = “”
 For a = 1 to count
 If f.AtEndOfStream <> True Then
 data = data + f.ReadLine
 End If
 Next
 dataSet = dataSet + 1
 WScript.Echo “Data Set “ & dataset & “: “ & data
Loop

JScript
readdatasets.js

ForReading = 1
count = 5
dataSet = 0
var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(“D:\\data.txt”, ForReading, “True”)
while (!f.AtEndOfStream){
 var data = “”
 for (a = 0; a < count; a++) {
 if (!f.AtEndOfStream) {
 data += f.ReadLine()
 }
 }
 dataSet++
 WScript.Echo(“Data Set “ + dataSet +”: “ + data)
}

86804c09.indd 18986804c09.indd 189 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

190

 Part II Windows VBScript and JScript

Reading an entire file
The ReadAll method enables you to read in the entire contents of a file and is useful if you want to
manipulate the file contents all at once, or display the contents to a user. Listing 9-8 shows how you
can read in the contents of a file and display the results in a pop-up dialog box.

LISTING 9-8

Using ReadAll

VBScript
readfile.vbs

Const ForReading = 1

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.OpenTextFile(“D:\data.txt”, ForReading, True)

fContents = f.ReadAll
f.Close

Set w = WScript.CreateObject(“WScript.Shell”)
a = w.Popup(fContents,60,”Display File”,1)

JScript
readfile.js

ForReading = 1

var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(“D:\\data.txt”, ForReading, “True”)

fContents = f.ReadAll()
f.Close()

var w = WScript.CreateObject(“WScript.Shell”);
a = w.Popup(fContents,60,”Display File”,1)

Skipping Lines in a File
Skipping characters and lines are common tasks you’ll want to perform when you read from a file.
To do this, you can use these methods:

Skip(x)■ : Skips x number of characters.

SkipLine■ : Skips one line of text.

86804c09.indd 19086804c09.indd 190 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

191

 Reading and Writing Files 9

You cannot skip characters in a file you open to write in or append. In the ForWriting mode, the
file is initialized and any existing contents are deleted. In the ForAppending mode, the file pointer
is set to the end of the file, so there are no characters to skip.

Skipping characters
In a file you are reading, you can set the number of characters to skip when you call the Skip method.
In Listing 9-9, you skip the first 30 characters and then read the next 30 characters.

LISTING 9-9

Working with Skip

VBScript
skipchars.vbs

Const ForReading = 1

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.OpenTextFile(“D:\data.txt”, ForReading, True)
f.Skip(30)
record = f.Read(30)

JScript
skipchars.js

ForReading = 1
var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(“D:\\data.txt”, ForReading, “True”)
f.Skip(30)
record = f.Read(30)

Skipping lines
The SkipLine method is also pretty straightforward. Each time you call the method, it skips one
line in a file. It does this by looking for the next occurrence of the end-of-line designator. If you know
the first three lines of a file have comments that you don’t want to use in a data set, you can skip
them as follows:

VBScript

For a = 1 to 3
 If f.AtEndOfStream <> True Then
 f.SkipLine
 End If
Next

86804c09.indd 19186804c09.indd 191 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

192

 Part II Windows VBScript and JScript

JScript

for (a = 0; a < 3; a++) {
 if (!f.AtEndOfStream) {
 f.SkipLine()
 }
}

The SkipLine method looks for the end-of-line designator to determine when it has
reached the end of a line. So if you called the method after reading part of a line with the

Read method, but before reaching the end of the line, SkipLine would fi nd the end-of-line designator
for the current line and then set the pointer to the beginning of the next line.

Writing to a File
You can write to text files using the ForWriting and the ForAppending modes. The access mode
determines the initial position of the pointer within the file. With the ForWriting mode, the file
is initialized, erasing any existing data. The pointer is then set at the beginning of the file. With the
ForAppending mode, the pointer is set to the end of the file and any data you write is added to the
existing data in the file.

Preparing to write
While you may want to overwrite temporary data files, you probably don’t want to inadvertently
overwrite other types of files. If you have any doubts about whether a file exists, you should use
the FileExists method to check for the file before trying to access it in ForWriting mode. The
FileExists method returns True if the file exists and False if it does not exist. As shown in
Listing 9-10, you can use the results of the FileExists test to determine whether you open a file
in the ForWriting mode or the ForAppending mode.

LISTING 9-10

Setting Mode Based on FileExists

VBScript
setmode.vbs

Const ForWriting = 2
Const ForAppending = 8

aFile = “C:\temp\data.txt”
Set fs = CreateObject(“Scripting.FileSystemObject”)
If (fs.FileExists(aFile)) Then
 Set f = fs.OpenTextFile(aFile, ForAppending)

NOTENOTE

86804c09.indd 19286804c09.indd 192 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

193

 Reading and Writing Files 9

Else
 Set f = fs.OpenTextFile(aFile, ForWriting, True)
End If

JScript
setmode.js

ForWriting = 2
ForAppending = 8
aFile = “C:\\temp\\data.txt”
var fs = new ActiveXObject
(“Scripting.FileSystemObject”);
if (fs.FileExists(aFile))
 var f = fs.OpenTextFile(aFile, ForAppending)
else
 var f = fs.OpenTextFile(aFile, ForWriting, “True”)

When you are finished writing to a file, you should close the file by calling the Close method. Close
writes the end-of-file marker to the file and releases the file. You are then free to open the file in a
different mode, such as ForReading. You close a file as follows:

VBScript

f.Close

JScript

f.Close()

Closing a fi le after a write is essential. If you forget to do this, the end-of-fi le marker may
not be written to the fi le and this may cause problems when trying to read the fi le later.

Writing to a new file or appending data to the end of an existing file is fairly easy. You start by creat-
ing a TextStream object. Afterward, you open the file for writing or appending, and then write to
the file. Regardless of which write-related method you use, the write begins at the pointer position
set when the file was opened (which is either the beginning or end of the file). You can write to a file
using any of these methods:

Write(x)■ : Writes x number of characters to a file.

WriteLine■ : Writes a line of text to a file.

WriteBlankLines(n)■ : Writes n blank lines to a file.

NOTENOTE

86804c09.indd 19386804c09.indd 193 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

194

 Part II Windows VBScript and JScript

Writing characters
The Write method writes strings to a file. You set the string to write when you call the Write
method, like this:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.OpenTextFile(aFile, ForAppending)
f.Write theData
f.Close

JScript

var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(aFile, ForAppending)
f.Write(theData)
f.Close()

Writing lines
The WriteLine method is used to write lines of data to a file. The runtime engine terminates lines
with an end-of-line marker (the carriage return and line-feed characters). You can use the WriteLine
method as follows:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.OpenTextFile(aFile, ForAppending)
f.WriteLine theLine
f.Close

JScript

var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(aFile, ForAppending)
f.WriteLine(theLine)
f.Close()

Writing blank lines
The WriteBlankLines method is used to write blank lines to a file. The only contents on a blank
line are end-of-line markers (the carriage return and line-feed characters). When you call the
WriteBlankLines method, you set the number of blank lines to add to the file, such as 3 or 5.

86804c09.indd 19486804c09.indd 194 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

195

 Reading and Writing Files 9

Normally, you’ll use this method in conjunction with WriteLine, like this:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.OpenTextFile(aFile, ForAppending)

f.WriteLine theHeaderLine
f.WriteBlankLines
f.WriteLine theDataLine
f.WriteBlankLines 1
f.WriteLine theFooterLine

JScript

var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(aFile, ForAppending)
f.WriteLine(theHeaderLine)
f.WriteBlankLines(1)
f.WriteLine(theDataLine)
f.WriteBlankLines(1)
f.WriteLine(theFooterLine)

Writing a blank line to a file is useful when you are managing text files, such as logs or flat-file data-
bases in which multiple blank lines serve as record separators. But keep in mind that blank lines
usually aren’t shown in HTML documents. To create a blank line in an HTML document, you’ll
need to insert an empty paragraph element. You learn more about using scripts to create HTML
documents in other chapters.

Summary
Reading and writing files is one of the fundamental tasks that you’ll need to master. As you set out
to create your own scripts to read and write files, don’t forget the essential lessons learned from this
chapter. You open files for reading, writing, and appending using ForReading, ForWriting, and
ForAppending. Then, once you have the file open in the appropriate mode, you can read, write, or
skip within the file.

86804c09.indd 19586804c09.indd 195 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

86804c09.indd 19686804c09.indd 196 1/21/09 1:26:14 PM1/21/09 1:26:14 PM

197

This chapter completes our look at managing the file system and then moves
on to examine managing network resources. You learn how to work with
drives and how to examine drive properties. You also learn how to map
network drives and configure network printer connections.

Managing Drives
Two different ways of working with drives are available. You can work with
a specific drive, such as the C: drive, or you can work with drive collections.
Drive collections are containers for all of the local and network drives on a
particular system.

Obtaining Drive Information
Most functions that work with drives allow you to reference drive paths in
any of these ways:

By drive letter, such as C or D■

By drive path, such as C:\ or D:\■

By network share path, such as \\PLUTO\MYSHARE or ■

\\SATURN\DATA

Most network drives have a drive designator associated with them as well as
a path. For example, the network drive \\PLUTO\MYSHARE may be mapped
on the system as the H: drive. You can obtain a drive designator for a network

Managing Drives
and Printers with VBScript

and JScript

IN THIS CHAPTER
Working with disk drives

Examining disk drives

Mapping network drives

Setting default printers

Adding and removing printer
connections

86804c10.indd 19786804c10.indd 197 1/21/09 1:26:25 PM1/21/09 1:26:25 PM

198

 Part II Windows VBScript and JScript

drive using the GetDriveName method of FileSystemObject. This method requires a drive path.
The following are a few examples of how it is used:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
drv = fs.GetDriveName (“\\PLUTO\DATA”)
WScript.Echo drv

JScript

fs = new ActiveXObject(“Scripting.FileSystemObject”);
drv = fs.GetDriveName(“\\PLUTO\\DATA”)
WScript.Echo (drv)

Checking for a drive
You’ll usually want to test for a drive’s existence before you try to work with it. To do this, you can
use the DriveExists method of FileSystemObject. This method returns True if a drive exists
and can be used (shown in Listing 10-1).

LISTING 10-1

Checking for a Drive

VBScript
testdrive.vbs

WScript.Echo (CheckDrive(“C”))

Function CheckDrive(drv)
 Dim fs, s
 Set fs = CreateObject(“Scripting.FileSystemObject”)
 If (fs.DriveExists(drv)) Then
 s = drv & “ is available.”
 Else
 s = drv & “ doesn’t exist.”
 End If
 CheckDrive = s
End Function

JScript
testdrive.js

WScript.Echo (CheckDrive(“C”))
function CheckDrive(drv) {
var fs, s = drv;
fs = new ActiveXObject(“Scripting.FileSystemObject”);
if (fs.DriveExists(drv))

86804c10.indd 19886804c10.indd 198 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

199

 Managing Drives and Printers with VBScript and JScript 10

 s += “ is available.”;
else
 s += “ doesn’t exist.”;
 return(s);
}

Output

C is available.

Using the Drive object
After checking for a drive’s existence, one of the most common tasks you’ll want to perform is to
obtain a Drive object. You can then use this object to check drive properties.

To obtain a Drive object, use the GetDrive method of FileSystemObject. The main argument
for this method is a string containing the path to the drive you want to work with, such as:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set drv = fs.GetDrive(“D”)

JScript

var fs = new ActiveXObject(“Scripting.FileSystemObject”);
var drv = fs.GetDrive(“D”)

Once you have a Drive object, you can examine its properties. To do this, use the Drive object
properties summarized in Table 10-1.

TABLE 10-1

Properties of the Drive Object
Property Value Description Sample

AvailableSpace Returns the amount of available space on the drive in bytes,
this is a per-user value that can be affected by quotas.

1632116580

DriveLetter Returns the drive letter without a colon C

DriveType Returns the drive type as an integer value: 0 for Unknown, 1
for Removable, 2 for Fixed, 3 for Network, 4 for CD/DVD-
ROM, and 5 for RAM Disk

2

FileSystem Returns the file system type such as FAT, FAT32, NFTS, or CDFS NTFS

continued

86804c10.indd 19986804c10.indd 199 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

200

 Part II Windows VBScript and JScript

Property Value Description Sample

FreeSpace Returns the total amount of free space on the drive 192975478

IsReady For removable-media drives and CD/DVD drives, returns
True if the drive is ready

True

Path Returns the drive path C:\

RootFolder Returns a Folder object containing the root folder on the
specified drive

-

SerialNumber With removable media, returns the serial number of the media 329941809

ShareName With network drives, returns the network share name work

TotalSize Returns the total size of the drive in bytes 928282853399

VolumeName Returns the volume name of the drive Primary

One of the most useful drive properties is FreeSpace. You can use this property to help you keep
track of system resources throughout the network. For example, you can create a script that runs
as a periodically scheduled job on your key servers, such as your email and file servers. When the
script runs, it logs the free space on system drives. If any of the drives has less free space than is
desirable, you can log a warning that the drive is getting low on space as well.

Because the DriveInfo.js script may run through the Task scheduler, you’ll need to map
the drives you want to use to the network. Mapping network drives is covered later in

this chapter.

Listing 10-2 shows an example script for displaying drive information. You can use this script to
obtain summary information for a specific drive. Using the Drive collection, you could extend the
script to obtain a report for all drives on a system.

LISTING 10-2

Obtaining Drive Information

driveinfo.js

drvpath = “C”
WScript.Echo(GetDriveInfo(drvpath))

function GetDriveInfo(drvpath)
{
 var fs, d, s, t, wnet, cname;

TABLE 10-1 (continued)

TIPTIP

86804c10.indd 20086804c10.indd 200 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

201

 Managing Drives and Printers with VBScript and JScript 10

 wNet = WScript.CreateObject (“WScript.Network”);
 cname = wNet.ComputerName;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 d = fs.GetDrive(drvpath);
 switch (d.DriveType)
 {
 case 0: t = “Unknown”; break;
 case 1: t = “Removable”; break;
 case 2: t = “Fixed”; break;
 case 3: t = “Network”; break;
 case 4: t = “CD/DVD-ROM”; break;
 case 5: t = “RAM Disk”; break;
 }
 s = “=========================” + “\r\n”;
 s += cname + “\r\n”;
 s += “=========================” + “\r\n”;
 s += “Drive “ + d.DriveLetter + “: - “ + t;
 s += “ - “ + d.FileSystem + “\r\n”;
 if (d.VolumeName)
 s += “Volume: “ + d.VolumeName + “\r\n”
 if (d.ShareName)
 s += “ Share: “ + d.ShareName + “\r\n”
 s += “Total space “ + Math.round(d.TotalSize/1048576)
 s += “ Mbytes” + “\r\n”;
 s += “Free Space: “ + Math.round(d.FreeSpace/1048576)
 s += “ Mbytes” + “\r\n”;
 s += “=========================” + “\r\n”;
 return(s);
}

Output

=========================
PLUTO
=========================
Drive C: - Fixed – FAT
Volume: Primary
Total space 20047 Mbytes
Free Space: 5057 Mbytes
=========================

The drive information script uses a few new techniques. First, a Switch Case structure is used to
convert the integer value returned by DriveType to a string:

switch (d.DriveType)
 {

86804c10.indd 20186804c10.indd 201 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

202

 Part II Windows VBScript and JScript

 case 0: t = “Unknown”; break;
 case 1: t = “Removable”; break;
 case 2: t = “Fixed”; break;
 case 3: t = “Network”; break;
 case 4: t = “CD/DVD-ROM”; break;
 case 5: t = “RAM Disk”; break;
 }

Next, the script builds the output by concatenating a series of strings. Tucked away in these strings is
a function that converts the byte values returned by TotalSize and FreeSpace to a value in mega-
bytes. The bytes to megabytes conversion is handled by dividing the return value by 1,048,576, which
is the number of bytes in a megabyte. The result is then rounded to the nearest integer value using
the Math.round() method. In the script, this results in:

s += “Total space “ + Math.round(d.TotalSize/1048576)
s += “ Mbytes” + “\r\n”;
s += “Free Space: “ + Math.round(d.FreeSpace/1048576)

Examining all drives on a system
The easiest way to examine all drives on a system is to use the Drives collection. You work with the
Drives collection much like any other collection discussed in this book. In VBScript, you obtain
the collection, and then use a For Each loop to examine its contents. In JScript, you obtain the
collection through an Enumerator object and then use the methods of the Enumerator object to
examine each drive in turn.

Listing 10-3 shows a sample script that works with the Drives collection. The output provided is
a partial listing of drives from our system. Note that the A: drive is a floppy drive. Because the drive
didn’t contain a disk when checked, the drive wasn’t ready for certain tasks, such as reading the vol-
ume name or obtaining the amount of free space. Running this example on your system will result
in different output than shown below.

LISTING 10-3

Working with the Drives Collection

VBScript
checkdrives.vbs

WScript.Echo GetDriveList()

Function GetDriveList
‘Initialize variables
Dim fs, d, dc, s, n, CRLF
‘Specify EOL designator
 CRLF = Chr(13) & Chr(10)

86804c10.indd 20286804c10.indd 202 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

203

 Managing Drives and Printers with VBScript and JScript 10

 Set fs = CreateObject(“Scripting.FileSystemObject”)
 Set dc = fs.Drives

 For Each d in dc
 n = “”
 s = s & d.DriveLetter & “ - “
 If d.DriveType = Remote Then
 n = d.ShareName
 ElseIf d.IsReady Then
 n = d.VolumeName
 End If
 s = s & n & CRLF
 Next
 GetDriveList = s
End Function

JScript
checkdrives.js

WScript.Echo(GetDriveList())
function GetDriveList()
{
 //Initialize variables
 var fs, s, n, e, d;
 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 e = new Enumerator(fs.Drives);
 s = “”;
 for (; !e.atEnd(); e.moveNext())
 {
 d = e.item();
 s = s + d.DriveLetter + “ - “ ;
 if (d.DriveType == 3)
 n = d.ShareName;
 else if (d.IsReady)
 n = d.VolumeName;
 else
 n = “(Drive not ready)”;
 s += n + “\r\n”;
 }
 return(s);
}

Output

C – PRIMARY
D – SECONDARY
E – HISTORY

86804c10.indd 20386804c10.indd 203 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

204

 Part II Windows VBScript and JScript

Mapping Network Drives
Network drives enable users and scripts to access remote resources on the network. If you are using
a script to configure network drives for a particular user, you should log in as this user and then run
the script, or have the user log in and then run the script. This ensures that the network drives are
configured as necessary in the user’s profile. On the other hand, if you are using a network drive in
a script, such as a script that runs as a scheduled job, you should connect to the drive, use the drive,
and then disconnect from the drive.

Connecting to a network share
Network shares aren’t automatically available to users or to scripts. You must specifically map a net-
work share to a network drive before it is available. In Windows scripts, you map network drives using
the MapNetworkDrive method of the Network object. The basic structure for this method requires
the drive letter to map the name of the network share to the local system, like this:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.MapNetworkDrive “H:”,”\\Saturn\data”

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.MapNetworkDrive(“H:”, “\\\\Saturn\\data”)

The four backslashes used with JScript aren’t typos. Remember, in JScript you must
escape each slash in a directory path with a slash.

By default, the network drive mapping isn’t permanent, and the next time the user logs on, the
drive isn’t mapped. To change this behavior, you can specify that the drive is persistent by setting
the optional persistent flag to True. This updates the user profile to ensure the drive is automati-
cally mapped in subsequent user sessions. You can set the persistent flag like this:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.MapNetworkDrive “H:”,”\\Saturn\data”, True

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.MapNetworkDrive(“H:”, “\\\\Saturn\\data”, “True”)

When mapping a network drive for use by scripts that run as scheduled jobs, you may need to set a
username and password in order to establish the connection. You do this by supplying the username
and password as the final parameters. In this example, scriptAdmin is the username and gorilla
is the password:

NOTENOTE

86804c10.indd 20486804c10.indd 204 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

205

 Managing Drives and Printers with VBScript and JScript 10

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.MapNetworkDrive “H:”,”\\Saturn\data”, True,”scriptAdmin”, “gorilla”

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.MapNetworkDrive(“H:”, “\\\\Saturn\\data”, “True”,”scriptAdmin”, “gorilla”)

Placing passwords in a script isn’t a sound security practice. If you are going to set pass-
words in scripts, you should A) place the scripts in a directory with very limited access,

and B) create a special account that is used only for scripts and has limited permissions.

Disconnecting from a network share
When you are finished working with a network drive, you may want to disconnect the associated
drive. To do this, you can use the RemoveNetworkDrive method of the Network object. Specify
the designator of the network drive you want to disconnect, like this:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.RemoveNetworkDrive “H:”

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.RemoveNetworkDrive(“H:”)

If a drive is still in use, it won’t be disconnected. You can force the drive to disconnect by setting the
optional force flag to True, like this:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.RemoveNetworkDrive “H:”, True

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.RemoveNetworkDrive(“H:”, “True”)

The third and final parameter for RemoveNetworkDrive removes the persistent mapping for the
drive. If you want to remove the persistent mapping for the drive in the user’s profile, set this flag to
True, like this:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.RemoveNetworkDrive “H:”, True, True

CAUTION CAUTION

86804c10.indd 20586804c10.indd 205 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

206

 Part II Windows VBScript and JScript

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.RemoveNetworkDrive(“H:”, “True”, “True”)

Managing Network Printers
Windows scripts can configure default printers, as well as add and remove network printers. A net-
work printer is a shared printer that is accessible to other systems on the network. If you are using a
script to configure printers for a particular user, you should log in as the user and run the script, or
have the user log in and then run the script. This ensures that the printers are configured as neces-
sary in the user’s profile. If you are using a printer in a script, such as one that runs in a scheduled
job, you should connect to the printer, use the printer, and then disconnect from the printer.

Setting a default printer
The default printer is the primary printer for a user. This printer is used whenever a user prints a
document and doesn’t select a specific destination printer. You can set a default printer using the
SetDefaultPrinter method of the Network object. This method automatically updates the
user’s profile to use the default printer in the current session as well as subsequent sessions.

When you use SetDefaultPrinter, you must specify the network share for the printer to use as
the default, such as \\NPSERVER\SW12. The network share path is the only parameter for
SetDefaultPrinter. You can use the method in a script as follows:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.SetDefaultPrinter “\\NPSERVER\SW12”

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.SetDefaultPrinter(“\\\\NPSERVER\\SW12”)

Adding printer connections
Windows scripts manage connections to network printers much like they manage connections to
network drives. You map printer connections using AddPrinterConnection or AddWindows
PrinterConnection. You remove printer connections using RemovePrinterConnection.

AddPrinterConnection adds a remote MS-DOS based computer connection to a computer. As
you cannot use AddPrinterConnection to add a Windows-based printer connection, you’ll need
to use AddWindowsPrinterConnection with Windows-based printers.

86804c10.indd 20686804c10.indd 206 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

207

 Managing Drives and Printers with VBScript and JScript 10

The basic structure for AddPrinterConnection requires a local resource name for the printer,
and the path to the network printer name. For example, if you work in an office building, you may
want to map to the printer in the southwest corner of the 12th floor. If the printer is shared as
\\NPSERVER\SW12, you can map the printer to the local LPT1 port as follows:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.AddPrinterConnection “LPT1”, “\\NPSERVER\SW12”

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.AddPrinterConnection(“LPT1”, “\\\\NPSERVER\\SW12”)

You can also enter “” for the port parameter, for example:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.AddPrinterConnection “”, “\\NPSERVER\SW12”

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.AddPrinterConnection(“”, “\\\\NPSERVER\\SW12”)

If you just need to use the printer temporarily, you probably don’t want to update the user’s profile
to maintain the printer connection in subsequent user sessions. On the other hand, if you are con-
figuring printers that will be used regularly, you can set the optional persistent flag to True. This
updates the user profile to ensure that the printer is automatically connected to in subsequent user
sessions. You can set the persistent flag as follows:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.AddPrinterConnection “LPT1”, “\\NPSERVER\SW12”,True

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.AddPrinterConnection(“LPT1”, “\\\\NPSERVER\\SW12”,”True”)

When mapping a network printer for use by scripts that run as scheduled jobs, you may need to set a
username and password in order to establish the connection. You do this by supplying the username
and password as the final parameters. In this example, prUser is the user name and gorilla is the
password:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.AddPrinterConnection “LPT1”,”\\NPSERVER\SW12”, False, “prUser”, “gorilla”

86804c10.indd 20786804c10.indd 207 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

208

 Part II Windows VBScript and JScript

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.AddPrinterConnection(“LPT1”,”\\\\NPSERVER\\SW12”, “False”,”prUser”, “gorilla”)

An alternative to AddPrinterConnection is AddWindowsPrinterConnection. The AddWindows
PrinterConnection method expects to be passed the path to the network printer, such as:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.AddWindowsPrinterConnection “\\NPSERVER\SW12”

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.AddWindowsPrinterConnection(“\\\\NPSERVER\\SW12”)

Removing printer connections
When you are finished working with a network printer, you may want to remove the connection. To
do this, you can use the RemovePrinterConnection method of the Network object. Specify the
local designator of the printer you want to disconnect, like this:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.RemovePrinterConnection “PrinterSW12”

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.RemovePrinterConnection(“PrinterSW12”)

You can force the printer to disconnect by setting the optional force flag to True, like this:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.RemovePrinterConnection “PrinterSW12”, True

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.RemovePrinterConnection(“PrinterSW12”, “True”)

86804c10.indd 20886804c10.indd 208 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

209

 Managing Drives and Printers with VBScript and JScript 10

You can also remove the persistent mapping for a printer in the user’s profile. To do this, set the
third and final parameter to True, like this:

VBScript

Set wn = WScript.CreateObject(“WScript.Network”)
wn.RemovePrinterConnection “PrinterSW12”, True, True

JScript

var wn = WScript.CreateObject(“WScript.Network”)
wn.RemovePrinterConnection(“PrinterSW12”, “True”, “True”)

If you create a printer connection for a script, you’ll usually want to remove the connection before
the script exits. On other hand, if you create a connection in a user logon script, you usually won’t
remove the printer connection.

Summary
As you’ve seen, you can create scripts to manage drives and to create reports detailing drive infor-
mation. Drive reports can be extremely useful when you want to track drive usage and free space
on enterprise servers. Windows scripts can also be used to map network drives and network
printers—essential tasks that you may need to implement in logon scripts.

86804c10.indd 20986804c10.indd 209 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

86804c10.indd 21086804c10.indd 210 1/21/09 1:26:26 PM1/21/09 1:26:26 PM

211

Shortcuts, menu options, and startup applications are items that most
people don’t give much thought. After all, menu options are config-
ured when you add and remove programs. Startup applications are

configured based on desktop configuration, and you can create shortcuts
without a whole lot of thought. In Windows, you can move items around
the menu simply by clicking on them and dragging them to a new location.
So you may be wondering, why in the world would you need to do this
with a script?

Well, have you ever tried to track down a startup application that you didn’t
want to start anymore? If you have, you know that you have to browse sev-
eral different folders to determine where the startup application is defined.
You then have to delete the reference to the startup application and hope that
you didn’t miss another reference somewhere else. To make this process eas-
ier, you can use a script to examine all startup application definitions and
then delete the unnecessary ones. The script takes care of the dirty work for
you and can be used on one system or a thousand quite easily. Starting to
see how scripts can be useful in this area?

Some of the scripts in this chapter are not fully working exam-
ples. The scripts may only highlight the syntax of how the com-

mands could be used in a complete script. Also, you may need to replace fi les
and fi le paths with your own if you are trying the examples on your own com-
puter. You may receive errors if you do not have permissions. For example, if
using Windows Vista, run the command shell as an administrator.

NOTENOTE

Configuring Menus,
Shortcuts, and Startup

Applications

IN THIS CHAPTER
Creating shortcuts and
menu options

Creating menus

Updating and deleting menus

Adding and removing startup
applications

86804c11.indd 21186804c11.indd 211 1/21/09 1:26:37 PM1/21/09 1:26:37 PM

212

 Part II Windows VBScript and JScript

Working with Menus, Desktops, and
Startup Applications
In the Windows operating system, menus, desktops, and startup applications are all configured with
shortcuts and it is the location of the shortcut that determines how the shortcut is used. For example,
if you want to add a menu option for a user, you add a shortcut to the user’s Programs or Start folder.
These shortcuts then appear on the user’s menu. If you want to configure startup applications for all
users, you add shortcuts to the AllUsersStartup folder. These applications then automatically start
when a user logs in to the system locally.

In Chapter 8, we talked about special folders that you may want to use when managing files and fold-
ers. There’s also a set of special folders that you may want to use when configuring menus, desktops,
and startup applications — for example, Programs, Start, and AllUsersStartup.

Table 11-1 provides a summary of special folders you can use with shortcuts. Keep in mind that these
folders aren’t available on all Windows systems. For example, Windows 95 systems can’t use any of
the global user folders. (These folders are AllUsersDesktop, AllUsersPrograms, AllUsersStartMenu,
and AllUsersStartup.)

TABLE 11-1

Special Folders for Use with Shortcuts
Special Folder Usage

AllUsersDesktop Desktop shortcuts for all users

AllUsersPrograms Programs menu options for all users

AllUsersStartMenu Start menu options for all users

AllUsersStartup Startup applications for all users

Desktop Desktop shortcuts for the current user

Favorites Favorites menu shortcuts for the current user

Fonts Fonts folder shortcuts for the current user

MyDocuments My Documents menu shortcuts for the current user

NetHood Network Neighborhood shortcuts for the current user

Printers Printers folder shortcuts for the current user

Programs Programs menu options for the current user

Recent Recently used document shortcuts for the current user

86804c11.indd 21286804c11.indd 212 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

213

 Confi guring Menus, Shortcuts, and Startup Applications 11

Special Folder Usage

SendTo SendTo menu shortcuts for the current user

StartMenu Start menu shortcuts for the current user

Startup Startup applications for the current user

Templates Templates folder shortcuts for the current user

Before you can work with a special folder, you need to obtain a Folder object that references the
special folder. The easiest way to do this is to use the SpecialFolders method of the WScript
.WshShell object. This method expects a single parameter, which is a string containing the name
of the special folder you want to work with. For example, if you want to add or remove desktop
shortcuts, you can obtain the Desktop folder as follows:

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
dsktop = ws.SpecialFolders(“Desktop”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”)
dsktop = ws.SpecialFolders(“Desktop”)

Creating Shortcuts and Menu Options
Creating a shortcut is a very different process from most other administrative tasks we’ve looked
at so far. In fact, you don’t really create a shortcut — rather, you build shortcuts. The process goes
like this:

 1. Obtain a target folder for the shortcut.

 2. Obtain a shortcut object.

 3. Set properties for the shortcut.

 4. Save the shortcut, which writes it to the target folder or menu.

Each of these steps is examined in the sections that follow.

Obtaining a target folder for the shortcut
Previously, we covered how to obtain a special folder for a shortcut. You aren’t limited to creating
shortcuts for special folders, however. You can create shortcuts in any type of folder.

86804c11.indd 21386804c11.indd 213 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

214

 Part II Windows VBScript and JScript

With a standard folder, you can obtain a pointer to the folder you want to use with the GetFolder
method or any other method that returns a Folder object. If you want to create a shortcut in the
C:\Data folder, you can do so like this:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFolder(“C:\Data”)

JScript

fs = new ActiveXObject(“Scripting.FileSystemObject”);
var f = fs.GetFolder(“C:\\Data”);

Obtaining a shortcut object
Shortcuts can point to local and network files as well as remote Internet resources. With local or
network files, the shortcut name must end with .lnk, which stands for link. With remote Internet
resources, the shortcut must end with .url, which indicates a Universal Resource Locator. For brev-
ity, we refer to these shortcuts as link shortcuts and URL shortcuts.

Regardless of type, you can obtain the necessary object for working with a shortcut via the Create
Shortcut method of the Shell object. For link shortcuts, the method returns a WshShortcut
object. For URL shortcuts, the method returns a WshUrlShortcut object. These objects have dif-
ferent sets of properties, which we examine later in this chapter.

The name of the shortcut is the text that immediately precedes the file extension. For example, if
you want to create a shortcut to Microsoft Word, you can name the shortcut MS Word using the fol-
lowing designator:

MS Word.lnk

Listing 11-1 shows how you can create a link shortcut named Notes. The shortcut is set to execute
the Notepad text editor along the path %WINDIR%\notepad.exe. Then the shortcut is saved to the
Windows desktop with the Save method. Save is the only method for shortcut-related objects.

LISTING 11-1

Creating a Link Shortcut

VBScript
links.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
dsktop = ws.SpecialFolders(“Desktop”)
Set scut = ws.CreateShortcut(dsktop & “\Notes.lnk”)
scut.TargetPath = “%windir%\notepad.exe”
scut.Save

86804c11.indd 21486804c11.indd 214 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

215

 Confi guring Menus, Shortcuts, and Startup Applications 11

JScript
links.js

var ws = WScript.CreateObject(“WScript.Shell”)
dsktop = ws.SpecialFolders(“Desktop”)
var scut = ws.CreateShortcut(dsktop + “\\Notes.lnk”)
scut.TargetPath = “%windir%\\notepad.exe”
scut.Save()

As you examine the previous listing, note how the folder path and the link path are concatenated. In
VBScript, you add the paths together using:

dsktop & “\Notes.lnk”

In JScript, you use:

dsktop + “\\Notes.lnk”

Listing 11-2 shows how you can create a URL shortcut named IDG BOOKS. This shortcut is set to
access the URL www.idgbooks.com. Then the shortcut is saved with the Save method. The short-
cut is created without a folder path and, as a result, is created in the current working directory.

LISTING 11-2

Creating a URL Shortcut

VBScript
urls.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
Set scut = ws.CreateShortcut(“IDG BOOKS.URL”)
scut.TargetPath = “http://www.idgbooks.com/”
scut.Save

JScript
urls.js

var ws = WScript.CreateObject(“WScript.Shell”)
var scut = ws.CreateShortcut(“IDG BOOKS.URL”)
scut.TargetPath =”http://www.idgbooks.com/”
scut.Save()

The forward slash is not a special character in JScript. Thus, the forward slash doesn’t
need to be escaped.NOTENOTE

86804c11.indd 21586804c11.indd 215 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

216

 Part II Windows VBScript and JScript

Setting properties for link shortcuts
Link shortcuts are usually used to start applications or open documents rather than access a URL in
a browser. Because of this, link shortcuts have different properties than URL shortcuts. The proper-
ties are summarized in Table 11-2. At first glance, it seems like a truckload of options, but you can
work through the properties one step at a time.

TABLE 11-2

Properties of WshShortcut
Property Description Sample VBScript Value

Arguments Arguments to pass to an application started
through the shortcut.

“C:\data\log.txt”

Description Sets a description for the shortcut. “Starts Notepad”

Hotkey Sets a hotkey sequence that activates the
shortcut. Can only be used with desktop
shortcuts and Start menu options.

“ALT+SHIFT+Z”

IconLocation Sets the location of an icon for the shortcut. If
not set, a default icon is used. The zero indicates
the index position of the icon. Few applications
have multiple icons indexed, so the index is
almost always zero.

“netscape.exe, 0”

TargetPath Sets the path of the file to execute. “%windir%\notepad.exe”

WindowStyle Sets the window style of the application started
by the shortcut. The default style is 1. The
available styles are the same as options 0-6
discussed in Chapter 10, Table 10-4.

1

WorkingDirectory Sets the working directory of the application
started by the shortcut.

“C:\Working”

If you set any property incorrectly or set a property that isn’t supported by a linked appli-
cation, the shortcut may not be created. In this case, you’ll need to correct the problem

and try to create the shortcut again.

Setting shortcut arguments
One of the most valuable options is the Arguments property. You can use this property to set argu-
ments to pass in to an application you are starting. Using this property, you can create a shortcut that
starts Microsoft Word and loads in a document at C:\Data\Todo.doc as shown in Listing 11-3.
Note the location of Microsoft Word may differ when trying these scripts on your own machine.

CAUTION CAUTION

86804c11.indd 21686804c11.indd 216 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

217

 Confi guring Menus, Shortcuts, and Startup Applications 11

LISTING 11-3

Setting Arguments for Link Shortcuts

VBScript
largs.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
Set scut = ws.CreateShortcut(“To-do List.lnk”)
scut.TargetPath = “C:\Program Files\Microsoft Office\OFFICE\WINWORD.EXE”
scut.Arguments = “C:\temp\Todo.doc”
scut.Save

JScript
largs.js

var ws = WScript.CreateObject(“WScript.Shell”)
var scut = ws.CreateShortcut(“To-do List.lnk”)
scut.TargetPath = “C:\\Program Files\\Microsoft Office\\OFFICE\\WINWORD.EXE”
scut.Arguments = “C:\\Data\\Todo.doc”
scut.Save()

Setting shortcut hotkeys
When you add shortcuts to the Windows desktop or the Start menu, you can set a hotkey sequence
that activates the shortcut. The hotkey sequence must be specified with at least one modifier key and
a key designator. The following modifier keys are available:

ALT■ : The Alt key

CTRL■ : The Ctrl key

SHIFT■ : The Shift key

EXT■ : The Windows key

Modifier keys can be joimed in any combination, such as ALT+CTRL or ALT+SHIFT+CTRL, but
shouldn’t duplicate existing key combinations used by other shortcuts. Key designators include alpha-
betic characters (A–Z) and numeric characters (0–9) as well as Back, Clear, Delete, Escape, End,
Home, Return, Space, and Tab.

Listing 11-4 creates a shortcut for the Start menu. The shortcut uses the hotkey ALT+SHIFT+E.

86804c11.indd 21786804c11.indd 217 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

218

 Part II Windows VBScript and JScript

LISTING 11-4

Setting Hotkeys for Link Shortcuts

VBScript
lkeys.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“StartMenu”)
Set scut = ws.CreateShortcut(smenu & “\Internet Explorer.LNK”)
scut.TargetPath = “C:\Program Files\Plus!\Microsoft Internet\IEXPLORE.EXE”
scut.Hotkey = “ALT+SHIFT+E”
scut.Save

JScript
lkeys.js

var ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“StartMenu”)
var scut = ws.CreateShortcut(smenu + “\\Internet Explorer.LNK”)
scut.TargetPath = “C:\\Program Files\\Plus!\\Microsoft Internet\\IEXPLORE.EXE”
scut.Hotkey = “ALT+SHIFT+E”
scut.Save()

Setting icon locations
When you create shortcuts for applications, the applications normally have a default icon that is dis-
played with the shortcut. For example, if you create a shortcut for Internet Explorer, the default icon is a
large E. When you create shortcuts to document files, the Windows default icon is used in most cases.

If you want to use an icon other than the default, you can use the IconLocation property. This prop-
erty expects to be passed an icon location and an icon index. Normally, the icon location equates to an
application name, such as iexplore.exe or notepad.exe, and the icon index is set to 0. Listing 11-5 adds
an option to the Programs menu for all users. The icon for this option is the Internet Explorer icon.

LISTING 11-5

Setting Icons for Link Shortcuts

VBScript
licons.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders(“AllUsersPrograms”)
Set scut = ws.CreateShortcut(pmenu & “\Current Script.LNK”)
scut.TargetPath = “%windir%\notepad.exe”
scut.Arguments = “C:\data\curr.vbs”

86804c11.indd 21886804c11.indd 218 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

219

 Confi guring Menus, Shortcuts, and Startup Applications 11

scut.IconLocation = “iexplore.exe, 0”
scut.Save

JScript
licons.js

var ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders(“All(pmenu + “\\Current Script.LNK”)UsersPrograms”)
var scut = ws.CreateShortcut
scut.TargetPath = “%windir%\\notepad.exe“
scut.Arguments = “C:\\data\\curr.vbs”
scut.IconLocation = “iexplore.exe, 0”
scut.Save()

Windows has to be able to fi nd the executable. If the executable can’t be found in the
path, the icon can’t be set. In this case, enter the full path to the executable, like this:

scut.IconLocation = “C:\\Program Files\\Plus!\\Microsoft Internet\\
IEXPLORE.EXE, 0”

Setting working directories
The working directory sets the default directory for an application. This directory is used the first
time you open or save files. Listing 11-6 creates a Start menu shortcut for Windows Notepad. The
default directory is set to D:\working.

LISTING 11-6

Setting a Working Directory for Link Shortcuts

VBScript
workingdir.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“StartMenu”)
Set scut = ws.CreateShortcut(smenu & “\Notepad for Working.LNK”)
scut.TargetPath = “%windir%\notepad.exe”
scut.WorkingDirectory = “C:\working”
scut.Save

JScript
workingdir.js

var ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“StartMenu”)
var scut = ws.CreateShortcut(smenu + “\\Notepad for Working.LNK”)
scut.TargetPath =”%windir%\\notepad.exe”
scut.WorkingDirectory = “C:\\working”
scut.Save()

TIPTIP

86804c11.indd 21986804c11.indd 219 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

220

 Part II Windows VBScript and JScript

Setting properties for URL shortcuts
URL shortcuts open Internet documents in the appropriate application. For example, Web pages are
opened in the default browser, such as Internet Explorer. With URL shortcuts, the only property you
can use is TargetPath, which sets the URL you want to use. Listing 11-7 creates a URL shortcut on
the Start menu.

LISTING 11-7

Setting the Target Path for URL Shortcuts

VBScript
urlshortcut.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“StartMenu”)
Set scut = ws.CreateShortcut(smenu & “\Cool Web Site.URL”)
scut.TargetPath = “http://www.centraldrive.com/”
scut.Save

JScript
urlshortcut.js

var ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“StartMenu”)
var scut = ws.CreateShortcut(smenu + “\\Cool Web Site.URL”)
scut.TargetPath =”http://www.centraldrive.com/”
scut.Save()

Managing Shortcuts and Menus
As you’ve seen, creating shortcuts isn’t that difficult. Now let’s extend what you’ve learned to new
areas, such as creating, updating, and deleting menus.

Creating menus
Windows scripts can also create new menus. When you create menus, you add folders to existing
special folders, such as Start or Programs. Start by obtaining a reference to the menu you want to
add onto, like this:

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders (“Programs”)

86804c11.indd 22086804c11.indd 220 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

221

 Confi guring Menus, Shortcuts, and Startup Applications 11

JScript

var ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders (“Programs”)

Then create a new menu by adding a folder to the special menu. The following example creates a
submenu called Work Files under the Programs menu:

VBScript

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set foldr = fs.CreateFolder(pmenu & “\Work Files”)

JScript

fs = new ActiveXObject(“Scripting.FileSystemObject”);
var foldr = fs.CreateFolder(pmenu + “\\Work Files”)

After you create the menu, you can add options to it. You do this by creating shortcuts that point to
a location in the new menu. The following example creates a URL shortcut in the Work Files menu:

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
Set scut = ws.CreateShortcut(pmenu & “\Work Files\CentralDrive.URL”)
scut.TargetPath = “http://www.centraldrive.com/”
scut.Save

JScript

var ws = WScript.CreateObject(“WScript.Shell”)
var scut = ws.CreateShortcut(pmenu + “\\Work Files\\CentralDrive.URL”)
scut.TargetPath =”http://www.centraldrive.com/”
scut.Save()

Accessing and listing menu options
When you manage menus, you’ll often find that you need to display or manipulate all of the avail-
able options on a particular menu. Unfortunately, accessing a complete list of menu options is a bit
more complex than one would imagine. For starters, you need to obtain a WshShell object and then
use this object to access the special folder you want to work with, like this:

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
 smenu = ws.SpecialFolders(mname)

JScript

var ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(mname)

86804c11.indd 22186804c11.indd 221 1/21/09 1:26:38 PM1/21/09 1:26:38 PM

222

 Part II Windows VBScript and JScript

Afterward, you need to access the file collection associated with the special folder. You do this
through the FileSystemObject, like this:

VBScript

Set fs = WScript.CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFolder(smenu)
Set fc = f.Files

JScript

fs = new ActiveXObject(“Scripting.FileSystemObject”);
f = fs.GetFolder(smenu);
fc = new Enumerator(f.Files);

Once you have the file collection, you can use For looping to examine the contents of the collection.
This example places the full name and path for menu options on separate lines:

VBScript

For Each f1 in fc
 s = s & f1
 s = s & Chr(10) & Chr(13)
Next
CheckMenu = s
End Function

JScript

for (; !fc.atEnd(); fc.moveNext())
{
 f1 = fs.GetFile(fc.item());
 s += f1 + “\r\n”
}
return (s)
}

If you want to display only the option name, you can use the name property of the File object, like this:

VBScript

For Each f1 in fc

 s = s & f1.name
 s = s & Chr(10) & Chr(13)
Next
CheckMenu = s
End Function

86804c11.indd 22286804c11.indd 222 1/21/09 1:26:39 PM1/21/09 1:26:39 PM

223

 Confi guring Menus, Shortcuts, and Startup Applications 11

JScript

for (; !fc.atEnd(); fc.moveNext())
{
 f1 = fs.GetFile(fc.item());
 s += f1.name + “\r\n”
}
return (s)
}

Listing 11-8 shows how these procedures could come together in an actual script. This example dis-
plays all of the options on the current user’s Programs menu.

LISTING 11-8

Viewing Menu Options

VBScript
viewoptions.vbs

Function CheckMenu(mname)
 Dim fs, f, f1, fc, s, smenu, ws
 Set ws = WScript.CreateObject(“WScript.Shell”)
 smenu = ws.SpecialFolders(mname)
 Set fs = WScript.CreateObject(“Scripting.FileSystemObject”)
 Set f = fs.GetFolder(smenu)
 Set fc = f.Files
 For Each f1 in fc
 s = s & f1.name
 s = s & Chr(10) & Chr(13)
 Next
 CheckMenu = s
End Function

WScript.Echo CheckMenu(“Programs”)

JScript
viewoptions.js

function CheckMenu(mname)
{
 var fs, f, fc, s;
 var ws = WScript.CreateObject(“WScript.Shell”)
 smenu = ws.SpecialFolders(mname)
 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(smenu);
 fc = new Enumerator(f.Files);

continued

86804c11.indd 22386804c11.indd 223 1/21/09 1:26:39 PM1/21/09 1:26:39 PM

224

 Part II Windows VBScript and JScript

 s = “”;
 for (; !fc.atEnd(); fc.moveNext())
 {
 f1 = fs.GetFile(fc.item());
 s += f1.name + “\r\n”
 }
 return (s)
}
WScript.Echo(CheckMenu(“Programs”))

Updating current shortcuts and menu options
Through Windows scripts, you can update the properties of any shortcut or menu option. You do
this by creating a new shortcut with the exact same name as the old shortcut. For example, if you
created a Start menu shortcut named Notes.lnk, you can update its settings by creating a new short-
cut named Notes.lnk.

In most cases, only the options you specifically set for the shortcut are overwritten. If necessary, you
can clear an existing option by setting its value to an empty string. For example, Listing 11-5 creates
a shortcut for Notepad. This shortcut sets an argument that opens a document called curr.vbs. If you
delete curr.vbs and don’t want to use it anymore, you can update the shortcut as shown in
Listing 11-9.

LISTING 11-9

Updating a Shortcut

VBScript
update.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders(“AllUsersPrograms”)
Set scut = ws.CreateShortcut(pmenu & “\Web Script.LNK”)
scut.TargetPath = “%windir%\notepad.exe”
scut.Arguments = “”
scut.IconLocation = “iexplore.exe, 0”
scut.Save

JScript
update.js

var ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders(“AllUsersPrograms”)

LISTING 11-8 (continued)

86804c11.indd 22486804c11.indd 224 1/21/09 1:26:39 PM1/21/09 1:26:39 PM

225

 Confi guring Menus, Shortcuts, and Startup Applications 11

var scut = ws.CreateShortcut(pmenu + “\\Web Script.LNK”)
scut.TargetPath =”%windir%\\notepad.exe “
scut.Arguments = “”
scut.IconLocation = “iexplore.exe, 0”
scut.Save()

Deleting shortcuts and menu options
Shortcuts and menu options are specified in files. You can delete them as you would any system file.
If a shortcut called Notes.lnk is in the current working directory, you can delete it as follows:

VBScript

Dim fs
Set fs = CreateObject(“Scripting.FileSystemObject”)
fs.DeleteFile “Notes.LNK”

JScript

var fs
fs = new ActiveXObject(“Scripting.FileSystemObject”);
fs.DeleteFile(“Notes.LNK”)

If a shortcut is in a special folder, such as the Start menu folder, you need to obtain the related folder
object before trying to delete the shortcut. Use the path to the folder to retrieve the shortcut using
the GetFile method of FileSystemObject. Afterward, call the Delete method of the File
object. This removes the shortcut. Listing 11-10 shows an example of deleting a shortcut from the
Start menu.

LISTING 11-10

Deleting Start Menu Options

VBScript
deleteoption.vbs

Dim ws, fs, f, smenu
Set ws = WScript.CreateObject(“WScript.Shell”)
Set smenu = ws.SpecialFolders(“StartMenu”)

Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFile(smenu & “\Notes.LNK”)
f.Delete

continued

86804c11.indd 22586804c11.indd 225 1/21/09 1:26:39 PM1/21/09 1:26:39 PM

226

 Part II Windows VBScript and JScript

JScript
deleteoption.js

var ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“StartMenu”)
fs = new ActiveXObject(“Scripting.FileSystemObject”);
f = fs.GetFile(smenu +”\\Notes.LNK”)
f.Delete();

Deleting menus
You can delete menus in much the same way as you delete menu options. However, you normally
delete submenus of special folders rather than the special folders themselves. Also, when you create
a menu for all users, you must delete the menu via the related special folder. For example, if you cre-
ate a submenu of AllUsersStartMenu, you must delete the submenu via the AllUsersStartMenu spe-
cial folder.

The first step in deleting a menu is to obtain a reference to the appropriate special folder, for example:

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders (“Programs”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders (“Programs”)

Afterward, use the DeleteFolder method to delete the submenu. Listing 11-11 shows how you can
delete a submenu called Work Files under the Programs menu.

LISTING 11-11

Deleting a Menu

VBScript
deletemenu.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders (“Programs”)
Set fs = CreateObject(“Scripting.FileSystemObject”)
fs.DeleteFolder(pmenu & “\Work Files”)

LISTING 11-10 (continued)

86804c11.indd 22686804c11.indd 226 1/21/09 1:26:39 PM1/21/09 1:26:39 PM

227

 Confi guring Menus, Shortcuts, and Startup Applications 11

JScript
deletemenu.js

var ws = WScript.CreateObject(“WScript.Shell”)
pmenu = ws.SpecialFolders (“Programs”)
fs = new ActiveXObject(“Scripting.FileSystemObject”);
var foldr = fs.DeleteFolder(pmenu + “\\Work Files”)

Adding and Removing Startup Applications
You specify applications that should be started after a user logs on by creating shortcuts in the
AllUsersStartup and Startup folders. The AllUsersStartup folder sets startup applications for all users
that log onto a system. The Startup folder sets startup applications for the current user.

Adding startup options
Because these shortcuts are used for automatic startup, the only option you need to set in most cases
is the target path. Occasionally, you may also want to set a working directory for the application. The
following example shows how you can set Internet Explorer as a startup application for all users:

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“AllUsersStartup”)
Set scut = ws.CreateShortcut(smenu & “\Internet Explorer.LNK”)
scut.TargetPath = “C:\Program Files\Plus!\Microsoft Internet\IEXPLORE.EXE”
scut.Save

JScript

var ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“AllUsersStartup”)
var scut = ws.CreateShortcut(smenu + “\\Internet Explorer.LNK”)
scut.TargetPath = “C:\\Program Files\\Plus!\\Microsoft Internet\\IEXPLORE.
EXE”
scut.Save()

Removing startup options
If you later want to remove Internet Explorer as a startup application, you delete its related shortcut,
like this:

VBScript

Dim ws, fs, f, smenu
Set ws = WScript.CreateObject(“WScript.Shell”)

86804c11.indd 22786804c11.indd 227 1/21/09 1:26:39 PM1/21/09 1:26:39 PM

228

 Part II Windows VBScript and JScript

Set smenu = ws.SpecialFolders(“AllUsersStartup”)
Set fs = CreateObject(“Scripting.FileSystemObject”)
Set f = fs.GetFile(smenu & “\Internet Explorer.LNK”)
f.Delete

JScript

var ws = WScript.CreateObject(“WScript.Shell”)
smenu = ws.SpecialFolders(“AllUsersStartup”)
fs = new ActiveXObject(“Scripting.FileSystemObject”);
f = fs.GetFile(smenu +”\\Internet Explorer.LNK”)
f.Delete();

Moving startup options
You may want to move it to the Startup folder so that only the current user (rather than all users)
runs the application on startup. To do this, you need to obtain a reference to the original folder and
the destination folder, and then move the shortcut with the MoveFile method. Listing 11-12 shows
how this can be handled.

LISTING 11-12

Moving a Shortcut to a New Location

VBScript
moveoption.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
m1 = ws.SpecialFolders(“AllUsersStartup”)
m2 = ws.SpecialFolders(“Startup”)
orig = m1 & “\Internet Explorer.LNK”
dest = m2 & “\Internet Explorer.LNK”
Set fs = WScript.CreateObject(“Scripting.FileSystemObject”)
fs.MoveFile orig, dest

JScript
moveoption.js

var ws = WScript.CreateObject(“WScript.Shell”)
m1 = ws.SpecialFolders(“AllUsersStartup”)
m2 = ws.SpecialFolders(“Startup”)
orig = m1 + \\Internet Explorer.LNK
dest = m2 + “\\Internet Explorer.LNK”
var fs = WScript.CreateObject(“Scripting.FileSystemObject”)
fs.MoveFile(orig, dest)

86804c11.indd 22886804c11.indd 228 1/21/09 1:26:39 PM1/21/09 1:26:39 PM

229

 Confi guring Menus, Shortcuts, and Startup Applications 11

Summary
Use the techniques examined in this chapter any time you want to work with shortcuts, menus, and
startup applications. Windows Script Host makes it possible to create and manage shortcuts in many
different ways. Through shortcuts, you can manage menu options and startup applications as well.

86804c11.indd 22986804c11.indd 229 1/21/09 1:26:39 PM1/21/09 1:26:39 PM

86804c11.indd 23086804c11.indd 230 1/21/09 1:26:39 PM1/21/09 1:26:39 PM

231

Through Windows Script Host, you can manage the Windows Registry
and the Windows event logs. The registry stores configuration infor-
mation for the operating system, applications, services, and more.

By examining and changing registry information in scripts, you can recon-
figure a system so that it runs exactly the way you want it to. The event logs
track essential processes on a system and can also be used in auditing sys-
tem activity. By examining event logs through scripts, you can analyze
system activity and monitor a system for problems.

Some of the scripts in this chapter are not fully working exam-
ples. The scripts may only highlight the syntax of how the com-

mands could be used in a complete script. Also, you may need to replace
registry paths with your own if you are trying the examples on your own
computer.

Working with the Windows Registry
The Windows Registry stores configuration settings. Through Windows
scripts, you can read, write, and delete registry entries. Because the registry
is essential to the proper operation of the operating system, you should only
make changes to the registry when you know how these changes will affect
the system. Improperly modifying the Windows Registry can cause serious
problems. If the registry gets corrupted, you may have to reinstall the oper-
ating system. Always double-check registry scripts before running them,
and make sure that they do exactly what you intend.

NOTENOTE

Working with the Windows
Registry and Event Logs

IN THIS CHAPTER
Understanding the
Windows Registry

Reading and writing
Registry values

Working with Windows
event logs

Reading and writing event logs

86804c12.indd 23186804c12.indd 231 1/21/09 1:26:53 PM1/21/09 1:26:53 PM

232

 Part II Windows VBScript and JScript

Before you edit the registry in any way, you should create or update the system’s existing
emergency repair disk. This way, if you make a mistake, you can recover the registry and

the system. Details on how to back up and restore the registry for Windows XP and Windows Vista can
be found in Microsoft knowledgebase article 322756 (http://support.microsoft.com/kb/322756).

Understanding the registry structure
The registry stores configuration values for the operating system, applications, user settings, and
more. Registry settings are stored as keys and values. These keys and values are placed under a spe-
cific root key, which controls when and how the keys and values are used.

The root keys are summarized in Table 12-1. This table also shows the short name by which you
can reference the root key in a script. The three keys with short names are the ones you’ll work
with most often.

TABLE 12-1

Working with the Windows Registry and Event Logs
Short Name Long Name Description

HKCU HKEY_CURRENT_USER Controls configuration settings for the current user.

HKLM HKEY_LOCAL_MACHINE Controls system-level configuration settings.

HKCR HKEY_CLASSES_ROOT Configuration settings for applications and files. Ensures
the correct application is opened when a file is started
through Windows Explorer or OLE.

- HKEY_USERS Stores default-user and other-user settings by profile.

- HKEY_CURRENT_CONFIG Contains information about the hardware profile being used.

Under the root keys, you’ll find the main keys that control system, user, and application settings.
These keys are organized into a tree structure where folders represent keys. For example, under
HKEY_CURRENT_USER\Software\Microsoft, you’ll find folders for all Microsoft applications
installed by the current user. Under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services, you’ll find folders for all services installed on the computer. These folders are officially
referenced as keys.

Through Windows scripts, you change the values of existing keys or you can assign values to new
keys. Keys are designated by a folder path; for example:

HKEY_LOCAL_MACHINE
 \SYSTEM
 \CurrentControlSet
 \Services
 \WINS
 \Parameters

NOTENOTE

86804c12.indd 23286804c12.indd 232 1/21/09 1:26:53 PM1/21/09 1:26:53 PM

233

 Working with the Windows Registry and Event Logs 12

Here, the key is Parameters. This key has values associated with it. Key values have three compo-
nents: a value name, a value type, and the actual value. In the following example, the value name is
DbFileNm, the type is REG_EXPAND_SZ, and the actual value is %windir%\system32\wins\
wins.mdb:

DbFileNm : REG_EXPAND_SZ : %windir%\system32\wins\wins.mdb

The DbFileNm value controls the location of the WINS database on a Windows server.
Another useful value for controlling WINS is LogFilePath, which controls the location

of WINS log fi les on a Windows server. This value is written as:

LogFilePath : REG_EXPAND_SZ : %windir%\system32\wins

For more information, see the section, “Managing WINS through Windows scripts.”

Key values are written by default as normal string values (type REG_SZ), but you can assign any of
these data types:

REG_BINARY■ : Identifies a binary value. Binary values must be entered using base-2 (0 or 1
only).

REG_SZ■ : Identifies a string value containing a sequence of characters.

REG_DWORD■ : Identifies a DWORD value, which is composed of hexadecimal data with a
maximum length of four bytes.

REG_MULTI_SZ■ : Identifies a multiple string value.

REG_EXPAND_SZ■ : Identifies an expandable string value, which is usually used with direc-
tory paths.

Reading registry keys and values
You can read registry values by passing the full path and name of a key to the RegRead method of
the WshShell object. RegRead then returns the value associated with the key. Listing 12-1 shows
how you can read the DbFileNm value.

LISTING 12-1

Reading the Windows Registry

VBScript
readkey.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
v=ws.RegRead(“HKLM\SYSTEM\CurrentControlSet\Services\WINS\Parameters\DbFileNm”)
WScript.Echo v

NOTENOTE

continued

86804c12.indd 23386804c12.indd 233 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

234

 Part II Windows VBScript and JScript

JScript
readkey.js

var ws = WScript.CreateObject (“WScript.Shell”)
v=ws.RegRead(“HKLM\\SYSTEM\\CurrentControlSet\\Services\\WINS\\Parameters\\
DbFileNm”)
WScript.Echo(v)

The RegRead method only supports the standard data types: REG_SZ, REG_EXPAND_SZ, REG_
MULTI_SZ, REG_DWORD, and REG_BINARY. If the value contains another data type, the method
returns DISP_E_TYPEMISMATCH.

Writing registry keys and values
Creating keys and writing registry values is a bit different than reading key values. To write keys
and value entries to the registry, use the RegWrite method of the WshShell object. This method
expects to be passed the key name as well as the value you want to set. You can also set an optional
parameter that specifies the value type. If you don’t set the type parameter, the value is set as a
string of type REG_SZ. If you set the value type, the type must be one of the following: REG_SZ,
REG_EXPAND_SZ, REG_DWORD, or REG_BINARY.

Some value types are converted automatically to the appropriate format. With REG_SZ and REG_
EXPAND_SZ, RegWrite automatically converts values to strings. With REG_DWORD, values are con-
verted to integers in hexadecimal format. However, REG_BINARY must be set as integers. If you set
an incorrect data type or an incorrect value, RegWrite returns E_INVALIDARG.

You can use RegWrite to update existing registry keys and values as well as to create new keys and
values. If the path ends with a slash (or double slash for JScript), the entry is written as a key. Otherwise,
the entry is written as a value entry. Listing 12-2 changes the value entry for the DbFileNm key and
then confirms the change by reading the new value.

LISTING 12-2

Modifying an Existing Key

VBScript
modkey.vbs

Dim Path
Path = “HKLM\SYSTEM\CurrentControlSet\Services\WINS\Parameters\”
Set ws = WScript.CreateObject(“WScript.Shell”)
o=ws.RegWrite(Path & “DbFileNm”, “%windir%\system32\wins.mdb”, “REG_EXPAND_SZ”)
v=ws.RegRead(Path & “DbFileNm”)
WScript.Echo v

LISTING 12-1 (continued)

86804c12.indd 23486804c12.indd 234 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

235

 Working with the Windows Registry and Event Logs 12

JScript
modkey.js

var Path
Path = “HKLM\\SYSTEM\\CurrentControlSet\\Services\\WINS\\Parameters\\”
var ws = WScript.CreateObject(“WScript.Shell”)
o=ws.RegWrite(Path + “DbFileNm”,”%windir%\\system32\\wins.mdb”,
 “REG_EXPAND_SZ”)
v=ws.RegRead(Path + “DbFileNm”)
WScript.Echo(v)

If you change the settings of a Windows service, you will need to restart the service
before the changes take effect. If the service won’t start after you’ve made changes, you

should change the key values back to their original settings.

Creating new keys
When you create new keys, you don’t have to worry about creating the tree structure that may be
associated with the key. The registry automatically creates additional folders as necessary.

Usually, you’ll want to add new keys to the HKEY_CURRENT_USER root key. For example, you can
create a new key for Windows scripts called HKEY_CURRENT_USER\WSHBible and then add values
to it. Because these values are stored in the current user’s profile, they are persistent and aren’t
destroyed when the user logs out. This makes it possible to retain values across multiple user
sessions.

Listing 12-3 shows an example of creating registry keys and assigning values to the keys. The key
created is HKEY_CURRENT_USER\WSHBible. The values associated with the key are named Author
and Comments.

LISTING 12-3

Creating Registry Keys and Values

VBScript
Createregkey.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
val = ws.RegWrite(“HKCU\WSHBible\Author”,”William Stanek”)
val = ws.RegWrite(“HKCU\WSHBible\Comments”,”Covers Windows Script Host”)

JScript
createregkey.js

var ws = WScript.CreateObject(“WScript.Shell”)
val = ws.RegWrite(“HKCU\\WSHBible\\Author”,”William Stanek”)
val = ws.RegWrite(“HKCU\\WSHBible\\Comments”,”Covers Windows Script Host”)

TIPTIP

86804c12.indd 23586804c12.indd 235 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

236

 Part II Windows VBScript and JScript

Deleting registry keys and values
You delete registry keys using the RegDelete method of the WshShell object. The only argument
for the method is the full path for the key or the value you want to delete. When you delete a key, the
path should end with a slash, like this: HKCU\WSHBible\. When you delete a key value, the slash
isn’t necessary. For example, you can delete the Author value using HKCU\WSHBible\Author as
the argument to RegDelete.

Listing 12-4 shows an example of how you can delete the Author and Comment values created in
the previous section. The example doesn’t delete the HKEY_CURRENT_USER\WSHBible key.

LISTING 12-4

Deleting Registry Values

VBScript
deleteregkey.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
val = ws.RegDelete(“HKCU\WSHBible\Author”)
val = ws.RegDelete(“HKCU\WSHBible\Comments”)

JScript
deleteregkey.js

var ws = WScript.CreateObject(“WScript.Shell”)
val = ws.RegDelete(“HKCU\\WSHBible\\Author”)
val = ws.RegDelete(“HKCU\\WSHBible\\Comments”)

If you want to delete the HKEY_CURRENT_USER\WSHBible key, you change the listing as follows:

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
val = ws.RegDel(“HKCU\WSHBible\”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”)
val = ws.RegDel(“HKCU\\WSHBible\\”)

When you delete a key, you permanently delete all of the values associated with the key
as well.

Reconfiguring network services through the registry
To better understand how the registry controls system and network settings, let’s take a detailed look
at how you can manage WINS and DHCP through the Windows Registry.

NOTENOTE

86804c12.indd 23686804c12.indd 236 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

237

 Working with the Windows Registry and Event Logs 12

Managing WINS through Windows scripts
WINS is the Windows Internet Name Service and it is used to resolve computer names to IP
addresses. If you log on to a domain, your computer may use WINS to access resources on the
network.

The Parameters key is the primary key that controls WINS configuration. This key is located in
the folder:

HKEY_LOCAL_MACHINE
 \SYSTEM
 \CurrentControlSet
 \Services
 \WINS
 \Parameters

Table 12-2 summarizes the main values that you’ll use to configure WINS.

TABLE 12-2

Key Values for Configuring WINS
Key Value Value Type Value Description

BackUpDirPath REG_EXPAND_SZ Sets the location for WINS backup files. You can change
this location to any valid folder path on the local system.

BurstHandling REG_DWORD Determines whether WINS uses burst handling mode. Set
to 1 to turn the mode on. Set to 0 to turn the mode off.

BurstQueSize REG_DWORD Sets the size of the burst queue threshold. The default
value is 500, but you can use any value from 50 to
5,000. When the threshold you’ve set is reached, WINS
switches to burst handling mode.

DbFileNm REG_EXPAND_SZ Sets the full file path to the WINS database; for example,
%windir%\system32\wins.mdb.

DoBackupOnTerm REG_DWORD Determines whether the WINS database is backed
up when the WINS server is stopped. Set to 1 to turn
backups on. Set to 0 to turn backups off.

LogDetailedEvents REG_DWORD Determines whether detailed logging of WINS activity
is used. All WINS events are logged in the System event
log automatically and usually you will want to turn on
detailed logging only for troubleshooting. Set to 1 to turn
on detailed logging. Set to 0 to turn off detailed logging.

LogFilePath REG_EXPAND_SZ Sets an alternative log file path.

continued

86804c12.indd 23786804c12.indd 237 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

238

 Part II Windows VBScript and JScript

Key Value Value Type Value Description

LoggingOn REG_DWORD Determines whether logging is enabled. Set to 1 to turn on
logging. Set to 0 to turn off logging. If you turn off logging,
WINS events are not logged in the System event log.

RefreshInterval REG_DWORD Sets the interval during which a WINS client must renew
its computer name. The minimum value is 2,400 seconds
and the default value is 518,400 seconds (six days).

TombstoneInterval REG_DWORD Sets the interval during which a computer name can
be marked for removal. The value must be equal to or
greater than the renewal interval or 345,600 seconds
(four days), whichever is smaller.

TombstoneTimeout REG_DWORD Sets the interval during which a computer name can be
removed from the WINS database. The value must be
greater than or equal to the refresh interval.

VerifyInterval REG_DWORD Sets the interval after which a WINS server must
verify computer names originating from other WINS
servers. This allows inactive names to be removed. The
minimum value is 2,073,600 seconds (24 days).

Now that you know the key values and how they are used, you can create a script that manages the
WINS configuration. You can then use this script on other WINS servers to ensure that the configu-
rations are exactly the same, which is usually what you want. An example script is shown as
Listing 12-5.

LISTING 12-5

Configuring WINS

VBScript
updatewins.vbs

Dim Path
Path = “HKLM\SYSTEM\CurrentControlSet\Services\WINS\Parameters\”
Set ws = WScript.CreateObject(“WScript.Shell”)
ws.RegWrite Path & “BackUpDirPath”,”%windir%\system32”, “REG_EXPAND_SZ”
ws.RegWrite Path & “BurstHandling”,1, “REG_DWORD”
ws.RegWrite Path & “BurstQueSize”,500, “REG_DWORD”
ws.RegWrite Path & “DbFileNm”,”%windir%\system32\wins.mdb”, “REG_EXPAND_SZ”
ws.RegWrite Path & “DoBackupOnTerm”,1, “REG_DWORD”

TABLE 12-2 (continued)

86804c12.indd 23886804c12.indd 238 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

239

 Working with the Windows Registry and Event Logs 12

ws.RegWrite Path & “LogDetailedEvents”,0, “REG_DWORD”
ws.RegWrite Path & “LogFilePath”,”%windir%\system32”, “REG_EXPAND_SZ”
ws.RegWrite Path & “LoggingOn”,1, “REG_DWORD”
ws.RegWrite Path & “RefreshInterval”,518400, “REG_DWORD”
ws.RegWrite Path & “TombstoneInterval”,518400, “REG_DWORD”
ws.RegWrite Path & “TombstoneTimeout”,518400, “REG_DWORD”
ws.RegWrite Path & “VerifyInterval”,2073600, “REG_DWORD”

JScript
updatewins.js

var Path
Path = “HKLM\\SYSTEM\\CurrentControlSet\\Services\\WINS\\Parameters\\”
var ws = WScript.CreateObject(“WScript.Shell”)
ws.RegWrite(Path + “BackUpDirPath”,”%windir%\\system32”, “REG_EXPAND_SZ”)
ws.RegWrite(Path + “BurstHandling”,1, “REG_DWORD”)
ws.RegWrite(Path + “BurstQueSize”,500, “REG_DWORD”)
ws.RegWrite(Path + “DbFileNm”,”%windir%\\system32\\wins.mdb”, “REG_EXPAND_SZ”)
ws.RegWrite(Path + “DoBackupOnTerm”,1, “REG_DWORD”)
ws.RegWrite(Path + “LogDetailedEvents”,0, “REG_DWORD”)
ws.RegWrite(Path + “LogFilePath”,”%windir%\\system32”, “REG_EXPAND_SZ”)
ws.RegWrite(Path + “LoggingOn”,1, “REG_DWORD”)
ws.RegWrite(Path + “RefreshInterval”,518400, “REG_DWORD”)
ws.RegWrite(Path + “TombstoneInterval”,518400, “REG_DWORD”)
ws.RegWrite(Path + “TombstoneTimeout”,518400, “REG_DWORD”)
ws.RegWrite(Path + “VerifyInterval”,2073600, “REG_DWORD”)

Managing DHCP through Windows scripts
DHCP is the Dynamic Host Configuration Protocol and it is used to dynamically assign network
configuration settings to computers. If you log on to a workstation in an Active Directory domain,
your computer probably uses DHCP to obtain the settings it needs to access the network.

DHCP configuration is located in the folder:

HKEY_LOCAL_MACHINE
 \SYSTEM
 \CurrentControlSet
 \Services
 \DHCPServer
 \Parameters

The main values that you’ll want to work with to configure DHCP are summarized in Table 12-3.

86804c12.indd 23986804c12.indd 239 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

240

 Part II Windows VBScript and JScript

TABLE 12-3

Key Values for Configuring DHCP
Key Value Value Type Value Description

BackupDatabasePath REG_EXPAND_SZ Sets the location for DHCP backup files. You
can change this location to any valid folder
path on the local system.

BackupInterval REG_DWORD Sets the interval for automatic backups. The
default value is 60 minutes.

DatabaseCleanupInterval REG_DWORD Sets the interval for cleaning up old records in
the DHCP database. The default value is 1,440
minutes (24 hours).

DatabaseLoggingFlag REG_DWORD Determines whether audit logging is enabled.
Audit logs track DHCP processes and requests.
Set to 1 to turn on. Set to 0 to turn off.

DatabaseName REG_SZ Sets the file name for the DHCP database, for
example, dhcp.mdb.

DatabasePath REG_EXPAND_SZ Sets the directory path for the DHCP database,
for example, %SystemRoot%\System32\
dhcp.

DebugFlag REG_DWORD Determines whether debugging is enabled. If
debugging is enabled, detailed events are
created in the event logs. Set to 1 to turn on.
Set to 0 to turn off.

DetectConflictRetries REG_DWORD Sets the number of times DHCP checks to
see if an IP address is in use before assigning.
Generally, you’ll want to check IP addresses at
least once before assigning them, which helps
to prevent IP address conflicts.

DhcpLogDiskSpaceCheckInterval REG_DWORD Determines how often DHCP checks the
amount of disk space used by DHCP. The
default interval is 50 minutes.

DhcpLogFilePath REG_SZ Sets the file path for audit log, for example,
%windir%\system32\dhcp.

DhcpLogFilesMaxSize REG_DWORD Sets the maximum file size for all audit logs.
The default is 7MB.

DhcpLogMinSpaceOnDisk REG_DWORD Sets the free-space threshold for writing to the
audit logs. If the disk drive has less free space
than the value specified, logging is temporarily
disabled. The default value is 20MB.

continued

86804c12.indd 24086804c12.indd 240 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

241

 Working with the Windows Registry and Event Logs 12

Key Value Value Type Value Description

RestoreFlag REG_DWORD Determines whether the DHCP is restored
from backup when the DHCP server is started.
Set this option to 1 only if you want to restore a
previously saved DHCP database.

Using the key values shown in Table 12-3, you can create scripts that help you manage DHCP.
Listing 12-6 shows an example script that reconfigures DHCP settings.

LISTING 12-6

Configuring DHCP

VBScript
updatedhcp.vbs

Dim Path
Path = “HKLM\SYSTEM\CurrentControlSet\Services\DHCPServer\Parameters\”
Set ws = WScript.CreateObject(“WScript.Shell”)
ws.RegWrite Path & “BackupDatabasePath”,”%windir%\dhcp\backup”, “REG_EXPAND_SZ”
ws.RegWrite Path & “BackupInterval”,60, “REG_DWORD”
ws.RegWrite Path & “DatabaseCleanupInterval”,1440, “REG_DWORD”
ws.RegWrite Path & “DatabaseLoggingFlag”,1, “REG_DWORD”
ws.RegWrite Path & “DatabaseName”,”dhcp.mdb”, “REG_SZ”
ws.RegWrite Path & “DatabasePath”,”%windir%\system32\dhcp”, “REG_EXPAND_SZ”
ws.RegWrite Path & “DebugFlag”,0, “REG_DWORD”
ws.RegWrite Path & “DetectConflictRetries”,2, “REG_DWORD”
ws.RegWrite Path & “DhcpLogDiskSpaceCheckInterval”,50, “REG_DWORD”
ws.RegWrite Path & “DhcpLogFilePath”,”d:\logs\dhcp”, “REG_SZ”
ws.RegWrite Path & “DhcpLogFilesMaxSize”,7, “REG_DWORD”
ws.RegWrite Path & “DhcpLogMinSpaceOnDisk”,20, “REG_DWORD”
ws.RegWrite Path & “RestoreFlag”,0, “REG_DWORD”

JScript
updatedhcp.js

var Path
Path = “HKLM\\SYSTEM\\CurrentControlSet\\Services\\DHCPServer\\Parameters\\”
var ws = WScript.CreateObject(“WScript.Shell”)
ws.RegWrite(Path+”BackupDatabasePath”,”%windir%\\dhcp\\backup”,”REG_EXPAND_SZ”)
ws.RegWrite(Path + “BackupInterval”,60, “REG_DWORD”)
ws.RegWrite(Path + “DatabaseCleanupInterval”,1440, “REG_DWORD”)
ws.RegWrite(Path + “DatabaseLoggingFlag”,1, “REG_DWORD”)
ws.RegWrite(Path + “DatabaseName”,”dhcp.mdb”, “REG_SZ”)
ws.RegWrite(Path + “DatabasePath”,”%windir%\\system32\\dhcp”,”REG_EXPAND_SZ”)
ws.RegWrite(Path + “DebugFlag”,0, “REG_DWORD”)

continued

86804c12.indd 24186804c12.indd 241 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

242

 Part II Windows VBScript and JScript

ws.RegWrite(Path + “DetectConflictRetries”,2, “REG_DWORD”)
ws.RegWrite(Path + “DhcpLogDiskSpaceCheckInterval”,50, “REG_DWORD”)
ws.RegWrite(Path + “DhcpLogFilePath”,”d:\\logs\\dhcp”, “REG_SZ”)
ws.RegWrite(Path + “DhcpLogFilesMaxSize”,7, “REG_DWORD”)
ws.RegWrite(Path + “DhcpLogMinSpaceOnDisk”,20, “REG_DWORD”)
ws.RegWrite(Path + “RestoreFlag”,0, “REG_DWORD”)

Using Event Logs
Windows event logs track activity on a particular system. You can use the logs to track system pro-
cesses, to troubleshoot system problems, and to monitor system security. On Windows servers and
workstations, you’ll find the following logs:

Application Log:■ Tracks events logged by applications, such as by SQL Server.

Security■ Log: Tracks events you’ve set for auditing with local or global group policies.
Only authorized users can access security logs.

System■ Log: Tracks events logged by the operating system or its components, such as
WINS or DHCP.

Directory■ Service: Tracks events logged by Active Directory.

DNS■ Server: Tracks DNS queries, responses, and other DNS activities.

File■ Replication Service: Tracks file replication activities on the system.

Viewing event logs
You can view event logs through Event Viewer. This utility is in the Administrative Tools folder
and can also be accessed through the System Tools node in the Computer Management console.
Windows Vista has a slightly updated look and feel from Windows XP. As shown in Figure 12-1,
Event Viewer’s main window is divided into three panels. The left panel is called the console tree.
The middle panel is the view pane, and the right panel is the actions menu. To view a log, click its
entry in the console tree and then the selected log is displayed in the middle panel.

When you start Event Viewer, the utility automatically accesses event logs on the local system. You
can access event logs on remote computers as well. Right-click Event Viewer in the console tree and
then select Connect to Another Computer. You can then use the Select Computer dialog box shown
in Figure 12-2 to connect to a remote computer. Choose the Another Computer radio button and
then enter the name or IP address of the computer to which you want to connect in the input field
provided. Afterward, click OK.

LISTING 12-6 (continued)

86804c12.indd 24286804c12.indd 242 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

243

 Working with the Windows Registry and Event Logs 12

FIGURE 12-1

Event Viewer displays events on local and remote computers.

FIGURE 12-2

To display events on a remote computer, select Another Computer and then enter the computer name or IP address.

Understanding event entries
When you select a log in the console tree, current entries for the log are displayed in the view pane.
Each entry provides an overview of why, when, where, and how an event occurred. This information
is organized under column headings that provide the following information:

Type:■ The type of event that occurred, such as an error event

Date:■ The date the event occurred

86804c12.indd 24386804c12.indd 243 1/21/09 1:26:54 PM1/21/09 1:26:54 PM

244

 Part II Windows VBScript and JScript

Time:■ The time the event occurred

Source:■ The component that generated the event

Category:■ The class of the event, such as Online Defragmentation or Logging/Recovery

Event:■ An identifier for the specific event that occurred

User:■ The user account that triggered the event

Computer:■ The computer name where the event occurred

You can obtain detailed information on an event by double-clicking its entry in the view pane. The
additional information provided is:

Description:■ Provides a text description of the event

Record Data:■ Provides any data or error code output by the event

Of all the various kinds of information that you can gather from event logs, the most valuable for
determining the relevance of an event is the event type. Event types include:

Error:■ An event for an application, component, or service error. You should examine all
error events.

Failure■ Audit: An event related to the failed execution of an action. If you are auditing
user activities to help you monitor network security, you should keep track of all failed
audit events.

Information:■ An information event, which is generally related to a successful action. You
don’t need to watch information events closely, but may want to track totals on various cat-
egories of information events.

Success■ Audit: An event related to the successful execution of an action. You don’t need to
watch these events closely, but may want to track totals on various categories of these events.

Warning:■ An event that may cause problems on the system, but isn’t necessarily the result
of an error. You should examine all warning events.

Archiving event logs
On most servers, administrators will archive event logs periodically. When you archive event logs,
you store logs for later use. Logs can be archived in three formats:

Event log format:■ This archive type is designed for viewing logs in Event Viewer. You can
also access these logs from Dumpel, an event log analysis utility. To access an old log in
Event Viewer, right-click Event Viewer in the console tree, point to New, and then select
Log View. You can now load a previously saved log.

Text (Tab Delimited):■ This archive type works best for viewing in a text editor or word
processor. Individual entries are placed on separate lines with each data column represent-
ing a field. Tabs are used to separate the fields.

86804c12.indd 24486804c12.indd 244 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

245

 Working with the Windows Registry and Event Logs 12

Text (Comma Delimited):■ This archive type works best for importing logs into spread-
sheets and databases. You can also work with the logs in Dumpel.

When you save log files to a comma-delimited file, each field in the event entry is separated by a
comma. Example event entries look like this:

Error,08/15/2008,5:35:07 PM,LicenseService,None,202,N/A,ZETA
Information,08/15/2008,11:25:19 AM,SceCli,None,1704,N/A,ZETA
Information,08/15/2008,11:24:36 AM,ESENT,Logging/Recovery ,302,N/A,ZETA
Information,08/15/2008,11:24:31 AM,Remote Storage,Agent ,1000,N/A,ZETA
Information,08/15/2008,11:24:19 AM,ESENT,Logging/Recovery ,302,N/A,ZETA
Information,08/15/2008,11:22:49 AM,Oakley,None,542,N/A,ZETA
Information,08/15/2008,11:20:38 AM,ESENT,Logging/Recovery ,301,N/A,ZETA
Information,08/15/2008,11:20:35 AM,EvntAgnt,None,2018,N/A,ZETA

The format for the entries is as follows:

Type, Date, Time, Source, Category, Event, User, Computer

As you can see, the event description and record data is not saved with text-based archives. This
saves space and you won’t really need the detailed descriptions in most instances. If you do, you can
use the event code to find the description. The Windows Resource Kit has an Event log database
that provides detailed information on events and their meaning.

Writing to Event Logs
In Chapter 13, you learn how to create scripts that can run automatically, such as scripts that are
scheduled to run periodically at a scheduled time, or scripts that run when a user logs on. To help
you keep track of the success or failure of these scripts, you can write information related to the
scripts directly to the application event log. In this way, when you are browsing or analyzing the
logs, you’ll know immediately if scripts are running properly or failing.

Event logging basics
When you write events to the application event log, you specify the event ID and the event descrip-
tion. Windows Script Host then directs the event to the event logging service. The event logging ser-
vice then:

Sets the event type based on the event identifier■

Records the event with the current date and time■

Sets the source as WSH and the category as None■

Sets the event ID based on the event type■

Sets the user to N/A and then sets the computer name■

86804c12.indd 24586804c12.indd 245 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

246

 Part II Windows VBScript and JScript

The results look like this:

Type Date Time Source Category Event User Computer
Warning 08/15/2008 7:24:36 PM WSH None 2 N/A ZETA
Error 08/15/2008 7:13:08 PM WSH None 1 N/A ZETA

The event description is available, but only if you double-click on the event in the Event Viewer.
Keep in mind that if you save the event log to a text file, the description is not saved, which will
probably mean that you won’t be able to determine the meaning of the event.

Working with the LogEvent method
To write events to the application event log, use the LogEvent method of the WshShell object. The
syntax for this method is:

LogEvent(eventType, eventDescription [,remoteSystem])

in which eventType is a numeric identifier for the event type, eventDescription is a text descrip-
tion of the event, and remoteSystem is an optional value that specifies the system on which you want
to log the event.

Event types you can specify are summarized in Table 12-4. You set the event type as the first argu-
ment for LogEvent. If the logging succeeds, LogEvent returns True. If the logging fails, LogEvent
returns False.

TABLE 12-4

Specifying Event Types for the LogEvent Method
Event Value Event Type

Successful execution 0 Information

Execution error 1 Error

Warning; possible problem 2 Warning

Information 4 Information

Audit of successful action 8 Success Audit

Audit of failed action 16 Failure Audit

Typically, you’ll want to use the event log to record the successful or failed execution of the script. For
example, if the script is performing nightly backups, you’d want to track the success or failure of the
backup process. If you build a main function into the script, you can record the outcome of the execu-
tion as shown in Listing 12-7. Of course, there are many other ways that you can handle event logging.

86804c12.indd 24686804c12.indd 246 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

247

 Working with the Windows Registry and Event Logs 12

LISTING 12-7

Writing to an Event Log

VBScript
writelog.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ex = main()
If ex Then
 ws.LogEvent 0, “WriteLog.VBS Script Completed Successfully”
Else
 ws.LogEvent 1, “Error executing WriteLog.VBS”
End If

Function main()
 ‘add main routine
 WScript.Echo “Write log test...”
If err.Number <> 0 Then
 main = 1
Else
 main = 0
End If
End Function

JScript
writelog.js

var ws = WScript.CreateObject(“WScript.Shell”)
ex = main()
if (ex == 0) {
 //successful execution
 ws.LogEvent(0, “WriteLog.JS Script Completed Successfully”)
 }
else {
 //failed execution
 ws.LogEvent(1, “Error executing WriteLog.JS”)
}

function main() {
 //add main routine
 try {
 //add code to try
 WScript.Echo(“Write log test...”)
 }
 catch(e) {
 return 1
 }
 return 0
}

86804c12.indd 24786804c12.indd 247 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

248

 Part II Windows VBScript and JScript

Reading Event Logs
The EventLog method makes writing to event logs fairly easy. Unfortunately, there isn’t a simple
method that you can use to read event logs. Primarily, this is because event logs have a complex
structure and you really need a tool that can search the event logs for relevant information, rather
than a tool that simply reads the events. While you can use the built-in capabilities of VBScript and
JScript to create log-searching and extraction routines, you don’t need to do this. Instead, you can
use Dumpel to handle all of the dirty work for you. Dumpel is a resource kit utility designed to help
you analyze event logs.

To use the examples in this section, Dumpel must be in a directory that is accessible to
the command path. The default installation location for resource kit utilities is Program

Files\Resource Kit. This directory is not in the standard command path. You can add this directory to
the path or you can move the Dumpel utility to the %SystemRoot% directory. To view the current
command path, start a command prompt and then type path. To add the resource kit directory to the
command path, start a command prompt and then type the following command:

set PATH=%PATH%;F:\Program Files\Resource Kit

in which F:\Program Files\Resource Kit is the location of the resource kit.

Introducing Dumpel
Dumpel provides many different ways to examine information in event logs. You can dump entire
event logs on specific systems and write the logs to files, search the event logs for specific events by
ID, or even search event logs for events logged by a specific user. The syntax for Dumpel follows:

dumpel [/f <filename>] [/s <servername>] [/l <logname> [/m <source>
[/r]]]
 [/e <eventlist>] [/c] [/ns] [/t] [/d <days>]

Each of the arguments for Dumpel is summarized in Table 12-5.

TABLE 12-5

Arguments for Dumpel
Argument Description

/b Filters an existing dump log.

/c Uses commas to separate fields. If not specified, a space is used.

/d <days> Filters events for the past n days. Value must be greater than 0.

/e <eventlist> Filters by event ID. You can specify up to 10 event IDs in a space-separated list.
You must use /m to specify a source as well.

NOTENOTE

86804c12.indd 24886804c12.indd 248 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

249

 Working with the Windows Registry and Event Logs 12

Argument Description

/f <filename> Sets the output file name. If none is specified, the output is sent to the standard
output stream.

/format <fmt> Sets the output format for event fields. Formatting is discussed later in this chapter.

/l <logname> Examines the specified log, such as system, application, or security.

/m <source> Filters for events logged by source.

/ns Specifies that the description should not be dumped.

/r Reverses the source filtering for /m. All events except those logged by the source
are dumped.

/s <servername> Sets the name of the remote server to use.

/t Uses a tab to separate fields. If not specified, a space is used.

Using Dumpel
Working with Dumpel is a lot easier than you might imagine, especially after seeing that long list of
arguments. With Dumpel, the event log you want to examine is specified with the /l switch. Follow
the /l switch with the log type, such as system, application, or security. If you use the /l switch
without specifying any other switches, the utility dumps the specified log on the current system to
the command line. To dump logs to a file, use the /f switch and specify a file name. The following
example dumps the system log to a file on a shared network drive:

dumpel /l system /f \\ZETA\DATA\LOG\%computername%.log

If the local system is named Gandolf, the result would be a text file named Gandolf.log. The file
would contain the entire contents of the system log and each field would be separated with a space.
Although Dumpel works with the local system by default, you can access event logs on remote sys-
tems as well. Use the /s switch to specify the system name. For example:

dumpel /l system /f omega-sys.log /s omega

Fields in the event entry are normally separated by spaces, but you can use /t to specify tabs or /c
to specify commas as delimiters. You can also use the /format switch to determine which fields to
store in the event entries, and their exact order. To do this, follow the /format switch with any
combination of the modifiers shown in Table 12-6. The following example dumps the security log
on the local system and restricts output to the date, time, event ID, and event type fields:

dumpel /l security /format dtIT

86804c12.indd 24986804c12.indd 249 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

250

 Part II Windows VBScript and JScript

TABLE 12-6

Formatting Modifiers for Dumpel
Modifier Description

C Event category

c Computer name

d Date

I Event ID

s Event comment string

S Event source

t Time of day

T Event type

U Username

To search the event logs for specified events by identifier, use the /e switch and then enter one to 10
event identifiers. Each event must be separated with a space. You must also specify an event source,
such as LicenseService or WINS. The following example shows how you can track multiple events in
the system log:

dumpel /l system /f loc-sys.log /e 401 402 403 404 405 /m netlogon

The Windows Resource Kit contains a comprehensive database of events and their mean-
ing. If you’ve installed the resource kit, look for the Windows Event Log Database in the

Tools A to Z listing.

When you use the /m switch, you can search for events logged by specified sources, such as
Netlogon or WINS. Unfortunately, you cannot specify multiple sources, but you can use the /r
switch with the /m switch to specify that you want to see all events except those for the specified
source. In the following example, you search for events logged by the Netlogon service:

dumpel /l system /f loc-sys.log /m netlogon

In this example, you search for all events except those logged by Netlogon:

dumpel /l system /f loc-sys.log /m netlogon /r

Watch out; if you combine /r, /m, and /e, you’ll get a list of all events except the desig-
nated events for the specifi ed source.

TIPTIP

CAUTION CAUTION

86804c12.indd 25086804c12.indd 250 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

251

 Working with the Windows Registry and Event Logs 12

You’ll often have existing log files and may not need to create new ones. In this case, use the /b
switch to search the existing log file specified with /l. In the following example, you search the
loc-sec.log:

dumpel /b /l loc-sec.log /e 401

In this example, you search the loc-sec.log and write the results to a file:

dumpel /b /l loc-sec.log /e 401 /f sec-e401.log

So far we’ve focused on how Dumpel works and how you can use Dumpel from the command line.
Now let’s look at how you can work with Dumpel in scripts.

Working with Dumpel in scripts
Dumpel is a command-line utility and as with other command-line utilities, you can run it within a
Windows script using the Run method of the WshShell object. As discussed in Chapter 6, the basic
syntax for Run is:

object.Run (“command”, [winStyle], [“waitOnReturn”])

When you use the Run method, you can pass Dumpel any necessary arguments in the command
parameter. An example of this is shown as Listing 12-8.

LISTING 12-8

Reading an Event Log with Dumpel

VBScript
readlog.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“dumpel /l system /f loc-sys.log /m netlogon”,0,”TRUE”)

If ret = 0 Then
 ws.LogEvent 0, “ReadLog.VBS Script Completed Successfully”
Else
 ws.LogEvent 1, “Error executing ReadLog.VBS”
End If

JScript
readlog.js

var ws = WScript.CreateObject(“WScript.Shell”);
ret = ws.Run(“dumpel /l system /f loc-sys.log /m netlogon”,0,”TRUE”)

if (ret == 0) {
 //successful execution

continued

86804c12.indd 25186804c12.indd 251 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

252

 Part II Windows VBScript and JScript

 ws.LogEvent(0, “ReadLog.JS Script Completed Successfully”)
 }
else {
 //failed execution
 ws.LogEvent(1, “Error executing ReadLog.JS”)
}

If you are dumping multiple event logs or event logs on multiple systems, you can enter additional
Run statements in the script. Listing 12-9 shows how you can examine the system, security, and
application logs on a remote server, and then store the logs on a network drive. Keep in mind that if
you run this script as a scheduled task, you’ll need to map the drive before you can use it as dis-
cussed in Chapter 10.

LISTING 12-9

Working with Multiple Logs

VBScript
createlogs.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
c = ws.ExpandEnvironmentStrings(“%computername%”)
ret = ws.Run(“dumpel /l system /f \\ash\log\” & c & “-sys.log”,0,”TRUE”)
ret = ret + ws.Run(“dumpel /l security /f \\ash\log\” & c & “-sec.log”,0,”TRUE”)
ret = ret + ws.Run(“dumpel /l application /f \\ash\log\” & c & “-app.
log”,0,”TRUE”)

If ret = 0 Then
 ws.LogEvent 0, “CreateLogs.VBS Script Completed Successfully”
Else
 ws.LogEvent 1, “Error executing CreateLogs.VBS”
End If

JScript
createlogs.js

var ws = WScript.CreateObject(“WScript.Shell”)
c = ws.ExpandEnvironmentStrings(“%computername%”)
ret = ws.Run(“dumpel /l system /f \\\\ash\\log\\” + c + “-sys.log”,0,”TRUE”)
ret += ws.Run(“dumpel /l security /f \\\\ash\\log\\” + c + “-sec.log”,0,”TRUE”)
ret += ws.Run(“dumpel /l application /f \\\\ash\\log\\” + c + “-app.
log”,0,”TRUE”)

if (ret == 0) {

LISTING 12-8 (continued)

86804c12.indd 25286804c12.indd 252 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

253

 Working with the Windows Registry and Event Logs 12

 //successful execution
 ws.LogEvent(0, “CreateLogs.JS Script Completed Successfully”)
 }
else {
 //failed execution
 ws.LogEvent(1, “Error executing CreateLogs.JS”)
}

Generating Event Log Reports
Event logs are only useful if you can analyze the information they contain. One way to do this is to
create a daily event log report for key systems on the network and then publish the results on the
corporate intranet. Let’s break this process down into a series of steps and then analyze how each
step can be implemented.

Step 1: Creating the logs
Step one is to create a script that dumps logs on critical systems and stores the logs on a network
drive. If these systems are named Gandolf, Bilbo, and Dragon, the first part of the script would look
like Listing 12-10. Each time you run the script, the original logs are overwritten.

LISTING 12-10

Creating Logs for the Report

JScript
logstep1.js

var ret; ret=0
var ws = WScript.CreateObject(“WScript.Shell”)

//create array of computers to check from string; no spaces
computers = “gandolf,bilbo,dragon”
sysArray = computers.split(“,”)

//create array of logs to check from string; no spaces
logs = “system,application,security”
logArray = logs.split(“,”)

evArray = parseInt(logs.split(“,”))

//examine each item in the systems array and then the log array
for (s in sysArray) {

continued

86804c12.indd 25386804c12.indd 253 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

254

 Part II Windows VBScript and JScript

 for (l in logArray) {

 ws.Run(“dumpel /l “ + logArray[l] + “ /f \\\\zeta\\corpdatashare\\” +
sysArray[s] + “-” + logArray[l] + “.log /d 1 /ns /s “ + sysArray[s],0,”TRUE”)

 WScript.Echo(“Executing dumpel /l “ + logArray[l] + “ /f \\\\zeta\\
corpdatashare\\” + sysArray[s] + “-” + logArray[l] + “.log /d 1 /ns /s “ +
sysArray[s],0,”TRUE”)

 }
}

The output from the script tells you what the script is doing and can really help in understanding
the script’s logic. The output looks like this:

Executing dumpel /l system /f \\zeta\corpdatashare\gandolf-system.log
/d 1 /ns /s gandolf 0 TRUE

Executing dumpel /l application /f \\zeta\corpdatashare\gandolf-application.log
 /d 1 /ns /s gandolf 0 TRUE

Executing dumpel /l security /f \\zeta\corpdatashare\gandolf-security.log
/d 1 /ns /s gandolf 0 TRUE

Executing dumpel /l system /f \\zeta\corpdatashare\biblo-system.log
/d 1 /ns /s biblo 0 TRUE

Executing dumpel /l application /f \\zeta\corpdatashare\biblo-application.log
/d 1 /ns /s biblo 0 TRUE

Executing dumpel /l security /f \\zeta\corpdatashare\biblo-security.log
/d 1 /ns /s biblo 0 TRUE

Executing dumpel /l system /f \\zeta\corpdatashare\dragon-system.log
/d 1 /ns /s dragon 0 TRUE

Executing dumpel /l application /f \\zeta\corpdatashare\dragon-application.log
 /d 1 /ns /s dragon 0 TRUE

Executing dumpel /l security /f \\zeta\corpdatashare\dragon-security.log
/d 1 /ns /s dragon 0 TRUE

As you can see from the output, the script dumps the logs for the first system specified in the com-
puter’s variable, and then dumps the logs for the seconds system, and so on. The order of the logs is
specified in the logs variable. The output contains events for the current day only (/d 1) and does
not contain descriptions (/ns).

LISTING 12-10 (continued)

86804c12.indd 25486804c12.indd 254 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

255

 Working with the Windows Registry and Event Logs 12

To dump the log files daily, you can schedule the script to run with the Task Scheduler. Scheduling
scripts to run periodically is covered in Chapter 13. Rather than dumping the log to a file and then
browsing the file in a text editor, it would be a lot easier if you could browse the file on the corporate
intranet. Before you do this, you may want to clean up the files, search for specific events, or format
the files in HTML.

Step 2: Formatting the logs for viewing
You can format the logs for viewing in many different ways. If you are running the script manually,
the easiest way to do this is to display the contents of each log file in a pop-up dialog box. The code
that does this is shown in Listing 12-11. Figure 12-3 shows sample output for a log file.

LISTING 12-11

Displaying the Log Reports in a Pop-up Dialog Box

JScript
logstep2a.js

var ret; ret=0
var ws = WScript.CreateObject(“WScript.Shell”)

//create array of computers to check from string; no spaces
computers = “gandolf,bilbo,dragon”
sysArray = computers.split(“,”)

//create array of logs to check from string; no spaces
logs = “system,application,security”
logArray = logs.split(“,”)

//examine each item in the systems array and then the log array
for (s in sysArray) {
 for (l in logArray) {

 ws.Run(“dumpel /l “ + logArray[l] + “ /f \\\\zeta\\corpdatashare\\” +
sysArray[s] + “-” + logArray[l] + “.log /d 1 /ns /s “ + sysArray[s],0,”TRUE”)

 WScript.Echo(“Executing dumpel /l “ + logArray[l] + “ /f \\\zeta\\
corpdatashare\\” +

sysArray[s] + “-” + logArray[l] + “.log /d 1 /ns /s “ + sysArray[s],0,”TRUE”)

 }
}

ForReading = 1

continued

86804c12.indd 25586804c12.indd 255 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

256

 Part II Windows VBScript and JScript

for (s in sysArray) {
 for (l in logArray) {

 fname = “\\\\zeta\\corpdatashare\\” + sysArray[s] + “-” + logArray[l] + “.log”

 var fs = new ActiveXObject (“Scripting.FileSystemObject”);
 var f = fs.OpenTextFile (fname, ForReading, “True”)
 fContents = f.ReadAll()
 f.Close()

 var w = WScript.CreateObject(“WScript.Shell”);
 a = w.Popup (fContents,60,”Display File”,1)

 }
}

FIGURE 12-3

Viewing partial logs in a pop-up dialog box

As you can see from the listing, For loops are used to display the contents of each log in turn. These
For loops are implemented in the same way as the For loops that dump the logs in the first place. The
key difference is that instead of dumping logs, you are reading the contents of the logs and displaying
them in a pop-up dialog box. You can extend this technique to format the logs as HTML, which then
makes the daily log report easier to work with.

Listing 12-12 shows how you can add an HTML header and footer to the log files. Don’t worry — we’ll
analyze the script one step at a time following the listing.

LISTING 12-11 (continued)

86804c12.indd 25686804c12.indd 256 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

257

 Working with the Windows Registry and Event Logs 12

LISTING 12-12

Creating HTML Documents for the Log Reports

JScript
logreports.js

// ************************
// Script: The Log Reporter
// Version: 1.1.5
// Creation Date: 02/15/2007
// Last Modified: 02/15/2007
// Author: William R. Stanek
// Email: williamstanek@aol.com
// Copyright (c) 2007 William R. Stanek
// ************************
// Description: Uses the Dumpel utility to dump specified
// logs on local and remote systems. The script
// then generates reports formatted as HTML.
//
// Maintenance: When installing this script, you should update
// computers, logs, netDrive and fname.
// Computers sets the name of the systems to check.
// Logs sets the type of event logs to dump.
// netDrive sets the log creation directory.
// fname sets the full file path to the publishing directory for
// the HTML reports.
// ************************
theMonth = new Array(12)
theMonth[1] = “January”
theMonth[2] = “February”
theMonth[3] = “March”
theMonth[4] = “April”
theMonth[5] = “May”
theMonth[6] = “June”
theMonth[7] = “July”
theMonth[8] = “August”
theMonth[9] = “September”
theMonth[10] = “October”
theMonth[11] = “November”
theMonth[12] = “December”
theDays = new Array(7)
theDays[1] = “Sunday”
theDays[2] = “Monday”
theDays[3] = “Tuesday”
theDays[4] = “Wednesday”
theDays[5] = “Thursday”
theDays[6] = “Friday”
theDays[7] = “Saturday”

continued

86804c12.indd 25786804c12.indd 257 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

258

 Part II Windows VBScript and JScript

function theDate(aDate) {
 var currentDay = theDays[aDate.getDay() + 1]
 var currentMonth = theMonth[aDate.getMonth() + 1]
 return currentDay + “, “ + currentMonth + “ “ + aDate.getDate()
}

var ret; ret=0
var ws = WScript.CreateObject(“WScript.Shell”)

//create array of computers to check from string; no spaces
computers = “gandolf,bilbo,dragon”
sysArray = computers.split(“,”)

//sets the network drive where logs are created
netDrive = “\\\\zeta\\corpdatashare\\”

//create array of logs to check from string; no spaces
logs = “system,application,security”
logArray = logs.split(“,”)

//examine each item in the systems array and then the log array
for (s in sysArray) {
 for (l in logArray) {

 ws.Run(“dumpel /l “ + logArray[l] + “ /f “ + netDrive + sysArray[s] + “-”
+ logArray[l] + “.log /d 1 /ns /s “ + sysArray[s],0,”TRUE”)
 WScript.Echo(“Executing dumpel /l “ + logArray[l] + “ /f “ + netDrive +
sysArray[s] + “-” + logArray[l] + “.log /d 1 /ns /s “ + sysArray[s],0,”TRUE”)

 }
}

ForReading = 1
ForAppending = 8

for (s in sysArray) {
 for (l in logArray) {

 fname = “\\\\zeta\\corpdatashare\\” + sysArray[s] + “-” + logArray[l]

 var fs = new ActiveXObject (“Scripting.FileSystemObject”);
 var f = fs.OpenTextFile (fname + “.log”, ForReading, “True”)
 fContents = f.ReadAll()
 f.Close()

 var f = fs.OpenTextFile (fname + “.html”, ForAppending, “True”)

 fHeader = “<html><head><title>Daily “

LISTING 12-12 (continued)

86804c12.indd 25886804c12.indd 258 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

259

 Working with the Windows Registry and Event Logs 12

 fHeader += logArray[l]
 fHeader += “ Log Report for “
 fHeader += sysArray[s]
 fHeader += “</title></head>”
 fHeader += “<body bgcolor=’#FFFFFF’ text=’#000000’>”
 fHeader += “<h1>Daily “
 fHeader += logArray[l]
 fHeader += “ Log Report for “
 fHeader += sysArray[s]
 fHeader += “</h1>”
 fHeader += “<h3>”

 today = new Date()
 fHeader += theDate(today)

 fHeader += “</h3>”
 fHeader += “<pre>”

 f.Write(fHeader)
 f.Write(fContents)

 fFooter = “</pre></body></html>”

 f.Write(fFooter)

 f.Close()
 }
}

FIGURE 12-4

Viewing the customized log report in Internet Explorer

86804c12.indd 25986804c12.indd 259 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

260

 Part II Windows VBScript and JScript

The first section of the script sets up a custom Date function. The function looks like this:

function theDate(aDate) {
 var currentDay = theDays[aDate.getDay() + 1]
 var currentMonth = theMonth[aDate.getMonth() + 1]
 return currentDay + “, “ + currentMonth + “ “ + aDate.getDate()
}

The purpose of the Date function is to output the date in a custom format. Thus, rather than the
standard date format:

Sun Sep 5 15:48:52 PDT 2008

you get a date that looks like this:

Sunday, September 5

Another new section of code creates a header for the HTML document you are creating. This code sets
a title for the document and sets a level-1 header that will make it easier to work with the log files:

 fHeader = “<html><head><title>Daily “
 fHeader += logArray[l]
 fHeader += “ Log Report for “
 fHeader += sysArray[s]
 fHeader += “</title></head>”
 fHeader += “<body bgcolor=’#FFFFFF’ text=’#000000’>”
 fHeader += “<h1>Daily “
 fHeader += logArray[l]
 fHeader += “ Log Report for “
 fHeader += sysArray[s]
 fHeader += “</h1>”
 fHeader += “<h3>”

 today = new Date()
 fHeader += theDate(today)

 fHeader += “</h3>”

After creating the header, the code starts a preformatted text element in which the contents of the
log file are placed. The code then writes the document header and contents:

 fHeader += “<pre>”

 f.Write(fHeader)
 f.Write(fContents)

86804c12.indd 26086804c12.indd 260 1/21/09 1:26:55 PM1/21/09 1:26:55 PM

261

 Working with the Windows Registry and Event Logs 12

The final steps are to write the document footer and then close the file:

 fFooter = “</pre></body></html>”

 f.Write(fFooter)

 f.Close()

As shown in Figure 12-4, the result is a customized report that can be viewed on the corporate intra-
net using any standard Web browser, such as Internet Explorer or Netscape Navigator. The script is
designed to append each day’s report to the same HTML document. If you don’t want historical data,
you can open the HTML document’s ForWriting rather than ForAppending. Simply replace the
lines that read:

ForAppending = 8
var f = fs.OpenTextFile (fname + “.html”, ForAppending, “True”)

with these lines:

ForWriting = 2
var f = fs.OpenTextFile (fname + “.html”, ForWriting, “True”)

Now, a new HTML document is created each time the script runs. If you plan to publish the reports
on the corporate intranet, the network drive you use for the HTML documents should point to an
appropriate directory on the intranet server. In the example, the files are written to the network share
\\zeta\corpdatashare. This is the same directory where the log files are written. To change this,
set the fname variable to the directory you want to use for publishing to the intranet, for example:

fname = “\\\\iServer\\webdatashare\\” + sysArray[s] + “-” + logArray[l]

Summary
The registry and the event logs are important resources on Windows computers. As you’ve learned
in this chapter, you can manipulate these resources in many different ways. You can read, write, and
modify registry keys. You can use the registry to reconfigure network services, such as DHCP and
WINS. You can use the event logs to monitor critical systems, and you can create customized reports
based on event log entries as well.

86804c12.indd 26186804c12.indd 261 1/21/09 1:26:56 PM1/21/09 1:26:56 PM

86804c12.indd 26286804c12.indd 262 1/21/09 1:26:56 PM1/21/09 1:26:56 PM

IN THIS PART
Chapter 13
Scheduling One-time and
Recurring Tasks

Chapter 14
Managing Computer and
User Scripts

Chapter 15
Introducing Active Directory
Service Interfaces

Chapter 16
Using Schema to Master ADSI

Chapter 17
Managing Local and Domain
Resources with ADSI

Chapter 18
Service and Resource
Administration with ADSI

Chapter 19
Maintaining Shared Directories,
Printer Queues, and Print Jobs

Chapter 20
Managing Active Directory
Domain Extensions

Network and Dictionary
Service Scripting

Part III takes you into the heart of scripting Windows:
working with network and directory service objects. In
Part III, you’ll learn to plumb the depths of Active

Directory Services Interfaces (ADSI) and master the art of
scheduling one-time and recurring network tasks using
Startup/Shutdown and login scripts; controlling local and
domain resources, services, shared directories, printer queues,
and print jobs. By the end of this Part, you’ll be an expert
Windows scripter.

86804c13.indd 26386804c13.indd 263 1/21/09 1:27:10 PM1/21/09 1:27:10 PM

86804c13.indd 26486804c13.indd 264 1/21/09 1:27:10 PM1/21/09 1:27:10 PM

265

One of the most powerful aspects of Windows scripting is the ability
to schedule scripts to run automatically. You can schedule scripts
to run one time only at 5 p.m. on Wednesday, every day at 11

p.m., every other Monday at 2 a.m., and at other times that are convenient.
Just as important, you can schedule scripts to run on any network com-
puter and you can manage those scripts through an easy-to-use graphical
interface or an equally powerful command-line utility.

Scheduling Local and Remote Jobs
Windows Scripts that run automatically on a periodic or one-time basis are
referred to as scheduled jobs or scheduled tasks. While these scheduled
jobs can perform any regular scripting duty, there are some important dif-
ferences in how scheduled jobs are used. So before we dive into job sched-
uling, let’s look at these differences.

Only authorized users can manage services and network time.
You may need administrative privileges to perform the tasks in

this section.

Scheduling basics
Scheduled jobs are started by a Windows service called Task Scheduler.
This service must be running on the local or remote system in order for
task scheduling to operate. You can check the status of the Task Scheduler
in the Services node of the Computer Management console or through the
Services console itself.

NOTENOTE

Scheduling One-time and
Recurring Tasks

IN THIS CHAPTER
Scheduling scripts to run
automatically

Working with the Task
Scheduler Wizard

Scheduling jobs with the AT
Scheduler

86804c13.indd 26586804c13.indd 265 1/21/09 1:27:11 PM1/21/09 1:27:11 PM

266

 Part III Network and Dictionary Service Scripting

Figure 13-1 shows the Services console. You start the Services console by clicking Start ➪ Pro-
grams ➪ Administrative Tools ➪ Services. As shown in the figure, the Task Scheduler Status should
be Started. The Startup Type should be Automatic. If the service isn’t started, right-click its entry,
and then select Start on the pop-up menu. If the startup type isn’t set to automatic, double-click
Task Scheduler, choose Automatic on the Startup Type selection list, and then click OK.

FIGURE 13-1

The Task Scheduler must be configured properly for scheduled jobs to run.

If you plan to use the command-line scheduler rather than the graphical scheduler, you should con-
figure the logon account for the Task Scheduler. Task Scheduler logs on as the LocalSystem account
by default. This account usually doesn’t have adequate permissions to perform administrative tasks.
Because of this, you should configure Task Scheduler to use a specific user account that has ade-
quate user privileges and access rights to run the tasks you want to schedule. You can change the
logon account for Task Scheduler as follows:

 1. Double-click Task Scheduler in the Services console.

 2. On the Log On tab, choose the This Account radio button as shown in Figure 13-2.

 3. Type the name of the authorized account in the field provided, then enter and confirm the
password for the account.

 4. Click OK.

86804c13.indd 26686804c13.indd 266 1/21/09 1:27:11 PM1/21/09 1:27:11 PM

267

 Scheduling One-time and Recurring Tasks 13

FIGURE 13-2

Configuring the startup account for Task Scheduler

Synchronizing the system time
Task Scheduler uses the local system time to determine when scripts should run. If the local system
time isn’t in sync with the rest of the network, scripts may not run when expected. You can specify a
timeserver that the computer should synchronize with using the net time command.

The syntax for net time is:

net time [\\computername | /domain[:domainname] |
 /rtsdomain[:domainname]] [/set]
net time [\\computername] /querysntp
net time [\\computername] /setsntp[:ntp server list]

The options for the net time command are summarized in Table 13-1.

86804c13.indd 26786804c13.indd 267 1/21/09 1:27:11 PM1/21/09 1:27:11 PM

268

 Part III Network and Dictionary Service Scripting

TABLE 13-1

Arguments for the net time Command
Arguments Description

\\computername Sets the name of the computer you want to check or synchronize with

/domain[:domainname] Specifies that you want to synchronize with a Primary Domain
Controller for domainname

/rtsdomain[:domainname] Specifies that you want to synchronize with a Reliable Timeserver
from domainname

/set Sets the computer time on the computer

/querysntp Displays the DNS name of the currently configured network
timeserver for this computer

/setsntp[:ntp_server_list] Sets the DNS name or IP address of the network timeservers to be
used by this computer; if you list multiple timeservers, you must use
quotation marks.

In an Active Directory domain, the primary domain controller at the root of the domain tree is des-
ignated as the master timeserver. All other computers in the domain can synchronize with this com-
puter or with other designated timeservers. You designate the timeserver that a computer should use
with the /setsntp command. If you want the Gandolf.tvpress.com server to be the timeserver for a
computer, enter the following command:

net time /setsntp:gandolf.tvpress.com

You can also set the timeserver using its IP address, like this:

net time /setsntp:204.67.12.18

When you designate a timeserver for a computer, the time is automatically synchronized, provided
the timeserver is available. If the timeserver goes off line, the computer won’t be able to sync time.
You can, however, specify alternative timeservers to use in case of outage. Simply enter the servers in
a space-separated list, like this:

net time /setsntp:”gandolf.tvpress.com omega.tvpress.com”

Here, the server Gandolf.tvpress.com is the primary timeserver and omega.tvpress.com is an alter-
native timeserver.

Once you designate a timeserver, system time will be synchronized automatically. If you want to deter-
mine the current timeserver for a computer, enter the net time command with the /querysntp
option, like this:

net time /querysntp

86804c13.indd 26886804c13.indd 268 1/21/09 1:27:11 PM1/21/09 1:27:11 PM

269

 Scheduling One-time and Recurring Tasks 13

The results will look similar to this:

The current SNTP value is: gandolf.tvpress.com omega.tvpress.com

Scheduling utilities
As mentioned previously, there are two scheduling utilities: Task Scheduler Wizard and the AT
Scheduler. Both utilities are useful.

The Task Scheduler Wizard provides a graphical interface for task assignment. Using this wizard,
you can quickly configure tasks without having to worry about syntax issues. The disadvantage is
that you don’t have a central location for managing scheduled tasks in the enterprise. You access the
wizard separately on each individual system that you want to configure and you view the scheduled
tasks on each system individually through the related Scheduled Tasks folder.

The AT Scheduler is a command-line utility. Because the AT Scheduler doesn’t have a point-and-click
interface, you’ll have to learn its command syntax, which isn’t all that friendly. Still, AT has a definite
advantage when it comes to script management. Using AT, you can schedule jobs to run on remote sys-
tems without having to access those systems, and you can check the status of jobs in the same way.

Regardless of which scheduling utility you decide to use, you’ll need to ensure that the script can
access resources with which it needs to work. Scripts don’t automatically have access to the environ-
ment settings and may not have mapped drives, environment variables, and other necessary
resources available. Because of this, you may need to map drives, set environment variables, or per-
form other preliminary tasks that aren’t necessary when you run the script yourself. In fact, if you
can run a script from the command line and it operates normally but fails when run as a scheduled
task, something in the user environment isn’t set properly.

Using the Graphical Task Scheduler
The graphical Task Scheduler makes scheduling and viewing tasks fairly easy. You create new tasks
using the Task Scheduler Wizard. You view current tasks and manage their options through the
Scheduled Tasks folder.

Group policy and user permissions can affect your ability to schedule tasks with the Task
Scheduler Wizard. If you can’t run the wizard or you can’t access the Scheduled Tasks

folder, you don’t have the right privileges.

Running the wizard
You can use the Task Scheduler Wizard to create recurring or one-time tasks as follows:

 1. Start Windows Explorer, and then double-click My Network Places.

 2. In My Network Places, access the computer you want to work with and then double-click
the Scheduled Tasks folder.

NOTENOTE

86804c13.indd 26986804c13.indd 269 1/21/09 1:27:11 PM1/21/09 1:27:11 PM

270

 Part III Network and Dictionary Service Scripting

 3. Start the Task Scheduler Wizard by double-clicking Add Scheduled Task. A Welcome dia-
log box is displayed. Click Next.

 4. Click Browse to display the Select Program to Schedule dialog box shown in Figure 13-3.
This dialog box is basically a File Open dialog box that you can use to find the script you
want to schedule. When you find the script you want to use, click it and then click Open.

FIGURE 13-3

Use the Select Program to Schedule dialog box to find the script you want to run as a scheduled task.

 5. Type a name for the task, as shown in Figure 13-4. The task name should help you deter-
mine what the task does. For example, if you are scheduling a script that generates event
log reports, type the name Generate Nightly Log Reports.

 6. Choose a run schedule, and then click Next. Tasks can be scheduled to run one time only,
daily, weekly, or monthly. They can also be set to run when a specific event occurs, such as
when the computer starts or when the current user logs in.

FIGURE 13-4

Enter a descriptive name for the task and then select a run schedule.

86804c13.indd 27086804c13.indd 270 1/21/09 1:27:11 PM1/21/09 1:27:11 PM

271

 Scheduling One-time and Recurring Tasks 13

 7. The next dialog box you see depends on your previous selection. If you want to run the
task daily, the date and time dialog box appears as shown in Figure 13-5. Set a start time
and date. Daily scheduled tasks can be configured to run:

Every Day:■ Sunday to Saturday.

Weekdays:■ Monday to Friday only.

Every…Day:■ Every 2nd, 3rd,…nth day.

FIGURE 13-5

Schedule daily tasks using this dialog box.

 8. If you want the task to run weekly, the date and time dialog box appears as shown in
Figure 13-6. Weekly scheduled tasks can be configured to run using the following fields:

Start Time:■ Sets the start time of the task.

Every…Week:■ Runs the task every week, every other week, or every nth week.

Day of Week:■ Sets the day of the week the task runs, such as on Monday, or on Monday
and Friday.

FIGURE 13-6

Schedule weekly tasks using this dialog box.

86804c13.indd 27186804c13.indd 271 1/21/09 1:27:11 PM1/21/09 1:27:11 PM

272

 Part III Network and Dictionary Service Scripting

 9. If you want the task to run monthly, the date and time dialog box appears as shown in
Figure 13-7. Monthly scheduled tasks can be configured to run using the following fields:

Start Time:■ Sets the start time of the task.

Day:■ Sets the day of the month the task runs. If you select 2, the task runs on the sec-
ond day of the month.

The…Day:■ Sets task to run on the nth occurrence of a day in a month, such as the third
Monday or the fourth Wednesday of every month.

Of the Months:■ Sets the months the task runs in.

FIGURE 13-7

Schedule monthly tasks using this dialog box.

 10. If you want the task to run one time only, the date and time dialog box appears as shown
in Figure 13-8. Set the start time and start date.

FIGURE 13-8

Schedule one-time tasks using this dialog box.

86804c13.indd 27286804c13.indd 272 1/21/09 1:27:11 PM1/21/09 1:27:11 PM

273

 Scheduling One-time and Recurring Tasks 13

 11. If the task runs when the computer starts or when the current user logs on, you don’t have to
set a start date and time. The task runs automatically when the startup or logon event occurs.

 12. Once you configure a start date and time, click the Next button to continue. As shown in
Figure 13-9, enter a username that can be used when running the scheduled task. This
username must have appropriate permissions and privileges to run the scheduled task.

 13. Enter and confirm the user’s password, and then click Next.

Be careful when running scripts using an account with administrative privileges in the
domain. If users have access to the scripts, they may be able to enter malicious code into

the script and, in this way, cause problems on the network. If you must use an administrator account to
start a script, give the script the same strict security consideration you’d give to the administrator pass-
word. Ideally, you place the script in a protected folder on an NTFS volume and then set appropriate
NTFS security restrictions on the script.

FIGURE 13-9

When you use the Scheduled Task Wizard, tasks can be run by any designated user. Enter an appropriate user-
name and password.

 14. Click Finish to complete the scheduling process. Errors that occur while creating a task
don’t normally cause failure. Instead, you’ll see a prompt telling you something went
wrong and you can click OK to continue. After the task is created, double-click the task in
Windows Explorer and then correct the problem in the Properties dialog box.

Viewing wizard tasks
All tasks that you create with the Task Scheduler Wizard are accessible through the Scheduled Tasks
folder. In Windows Explorer, you can access this folder in the following ways:

On a local system, double-click Control Panel and then click Scheduled Tasks.■

On a remote system, double-click My Network Places and then access the computer you ■

want to work with. Afterward, double-click the Scheduled Tasks folder.

CAUTION CAUTION

86804c13.indd 27386804c13.indd 273 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

274

 Part III Network and Dictionary Service Scripting

Once you access the Scheduled Tasks folder, you can manage tasks in the following ways:

To examine properties for scheduled tasks, double-click the task with which you want to ■

work. Set advanced options through the Settings tab.

To delete a task, click it and then press Delete.■

Instead of deleting a task, you may want to temporarily disable it. If you do this, you can ■

start the task at a later date without having to re-create it. You disable a task by double-
clicking it and then clearing the Enabled checkbox on the Task tab.

Changing task properties
You can change the properties of a task at any time. Double-click the task’s entry in the Scheduled
Tasks folder. This displays the properties dialog box shown in Figure 13-10. As shown in the figure,
the Properties dialog box has the following tabs:

Task:■ Used to set general task settings. These settings are the same as those set through the
Task Scheduler Wizard.

Scheduled:■ Used to set the task’s run schedule. These settings are the same as those set
through the Task Scheduler Wizard.

Settings:■ Used to set advanced options for the task.

Security:■ Used to restrict access to the task’s property settings.

FIGURE 13-10

You can change the configuration of a scheduled task at any time.

86804c13.indd 27486804c13.indd 274 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

275

 Scheduling One-time and Recurring Tasks 13

Scheduling Jobs with AT
You can schedule jobs at the command line or within your scripts using the AT utility. With AT, you
can schedule tasks anywhere on the network and you don’t have to log on to remote systems.

You may need special permissions to schedule tasks on remote systems. If you aren’t a
member of the local Administrators group, you may not be able to use AT.

Using the AT Scheduler
When you schedule tasks with AT, you use a 24-hour clock on which 00:00 is midnight and 12:00 is
12 p.m. When you schedule tasks using AT, you must ensure that:

The Task Scheduler service is running on the local or remote system.■

The Task Scheduler service uses an appropriate startup account.■

The scripts you want to use are located in directories that can be found along the command ■

path set for the service logon account.

The syntax for the AT utility is:

AT [\\computername] [[id] [/delete] | /delete [/yes]]
AT [\\computername] time [/interactive]
 [/every:date[,…] | /next:date[,…]] “command”

The arguments for the AT utility are summarized in Table 13-2.

TABLE 13-2

Arguments for the AT Utility
Argument Description

\\computername Sets the name of a remote computer on which to schedule the task

Id Sets the ID number of a task to delete

/delete Deletes a scheduled task; if a specific ID isn’t set, all scheduled tasks are deleted.

/yes Cancels scheduled tasks without prompting to confirm the action

Time Sets the time when task is to run

/interactive Turns on interactive mode, which allows the task to interact with the desktop

/every:date[,…] Runs the task on each specified day of the week or month; if date is omitted, the
current day of the month is assumed.

/next:date[,…] Runs the task on the next occurrence of the day; if date is omitted, the current
day of the month is assumed.

“command” Sets the command, program, or script to run

NOTENOTE

86804c13.indd 27586804c13.indd 275 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

276

 Part III Network and Dictionary Service Scripting

When you use numeric dates, you can use any value in the range 1–31. Here’s how you can schedule
a backup script to run every other day at 5 a.m.:

AT 05:00 /every:2,4,6,8,10,12,14,16,18,20,22,24,26,28,30 checkstatus.js

Another way to schedule tasks by date is to specify the day of the week. The values are:

M:■ Monday

T:■ Tuesday

W:■ Wednesday

Th:■ Thursday

F:■ Friday

S:■ Saturday

Su:■ Sunday

You can schedule tasks to run relative to the current date as well. To do this, specify only a start
time, and not a run date. You can start a backup script at 7 p.m., today as follows:

AT 19:00 backup.js

You can also schedule tasks to run on the next occurrence of a date. For example, if today is Monday
and you want the task to run Wednesday, you can use the following command:

AT 07:30 /next:W starttest.js

Scheduled tasks usually run as background processes. However, you can specify that tasks run
interactively, like this:

AT 05:00 /interactive /every:M,W,F copylogs.js

So far, all of the examples have assumed that you want to schedule tasks to run on the local system.
The local system is the default for the AT Scheduler. If you want to schedule tasks on a remote sys-
tem, type the UNC name or IP address of the remote system before you specify other parameters,
like this:

AT \\Bilbo 09:45 /next:Su update.js

or, like this:

AT \\207.17.12.8 09:45 /every:T,Th backupmainservers.js

Viewing scheduled AT jobs
If a task is scheduled with the AT utility, you can view its status and configuration from anywhere
on the network. To view scheduled jobs on a local system, type at on a line by itself and press Enter.

86804c13.indd 27686804c13.indd 276 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

277

 Scheduling One-time and Recurring Tasks 13

On a remote system, type at followed by the UNC name or IP address of the system you want to
check, for example:

at \\Bilbo

When you view tasks, the output you get is similar to the following:

Status ID Day Time Command Line

 1 Each T Th 7:00 AM checkstatus.js
 2 Each M F 9:00 AM copylogs.js
 3 Each S Su 8:00 AM backup.js

From the output you can determine the following:

Status:■ Shows the status of a task. A blank entry indicates a normal status. Otherwise,
you’ll see an error message, such as ERROR.

ID:■ Shows the unique identifier for the task.

Day:■ Shows when the task is scheduled to run. Recurring tasks begin with the keyword
Each. One-time tasks begin with the keyword Next.

Time:■ Shows the time the command is scheduled to run.

Command■ Line: Shows the command, program, or script scheduled to run.

If you enter the status ID, you can get information on an individual task, for example:

AT 3

or

AT \\Gandolf 3

Deleting scheduled AT jobs
You delete tasks by ID or you can cancel all scheduled tasks. You can delete a specific task like this:

AT 3 /delete

or

AT \\Gandolf 3 /delete

You cancel all tasks by typing the /delete switch without a task ID, like this:

AT /delete

or

AT \\Gandolf /delete

86804c13.indd 27786804c13.indd 277 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

278

 Part III Network and Dictionary Service Scripting

When deleting all tasks, you’ll be prompted to confirm the action:

This operation will delete all scheduled jobs.
Do you want to continue this operation? (Y/N) [N]:

Type y to confirm that you want to delete all tasks. If you want to delete all tasks without having to
confirm the action, use the /yes option:

AT /delete /yes

or

AT \\Gandolf /delete /yes

Scheduling with Scripts
The sections that follow show how you can schedule jobs on local and remote systems using scripts.
As you’ll see, there are many different ways you can schedule jobs in the enterprise.

Using AT in a script
Because the AT Scheduler is a command-line utility, you can access it within scripts using the Run
method of the WshShell object. When you use the Run method, you can pass AT arguments as
command parameters. An example of this is shown as Listing 13-1.

LISTING 13-1

Scheduling Tasks Within a Script

VBScript
schedtask.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“at 5:00 /every:M,W,F copylogs.vbs”,0,”TRUE”)

If ret = 0 Then
 ws.LogEvent 0, “SchedTask.VBS Script Completed Successfully”
Else
 ws.LogEvent 1, “Error executing SchedTask.VBS”
End If

JScript
schedtask.js

var ws = WScript.CreateObject(“WScript.Shell”);
ret = ws.Run(“at 5:00 /every:M,W,F copylogs.js”,0,”TRUE”)

86804c13.indd 27886804c13.indd 278 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

279

 Scheduling One-time and Recurring Tasks 13

if (ret == 0) {
 //successful execution
 ws.LogEvent(0, “SchedTask.JS Script Completed Successfully”)
 }
else {
 //failed execution
 ws.LogEvent(1, “Error executing SchedTask.JS”)
}

If you are scheduling multiple tasks, you can enter additional Run statements in the script.
Listing 13-2 shows how you could schedule tasks on three different systems.

LISTING 13-2

Scheduling Multiple Tasks Through a Script

VBScript
multitasks.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“at 5:00 \\Gandolf /every:T,TH log.vbs”,0,”TRUE”)
ret = ret + ws.Run(“at 5:00 \\Bilbo /every:T,TH log.vbs”,0,”TRUE”)
ret = ret + ws.Run(“at 5:00 \\Dragon /every:T,TH log.vbs”,0,”TRUE”)
If ret = 0 Then
 ws.LogEvent 0, “SchedTask.VBS Script Completed Successfully”
Else
 ws.LogEvent 1, “Error executing SchedTask.VBS”
End If

JScript
multitasks.js

var ws = WScript.CreateObject(“WScript.Shell”);
ret = ws.Run(“at 5:00 \\\\Gandolf /every:T,TH log.js”,0,”TRUE”)
ret += ws.Run(“at 5:00 \\\\Bilbo /every:T,TH log.js”,0,”TRUE”)
ret += ws.Run(“at 5:00 \\\\Dragon /every:T,TH log.js”,0,”TRUE”)

if (ret == 0) {
 //successful execution
 ws.LogEvent(0, “SchedTask.JS Script Completed Successfully”)
 }
else {
 //failed execution
 ws.LogEvent(1, “Error executing SchedTask.JS”)
}

86804c13.indd 27986804c13.indd 279 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

280

 Part III Network and Dictionary Service Scripting

Automated job creation
In a network environment, you’ll often want scheduled tasks to run on multiple computers. Rather
than scheduling each script to run manually, you can automate the chore with a script. You’d proba-
bly want to use a separate file that the script can read to determine where and how to set up the jobs.

If the text file contains the system names and the jobs to execute, the format can look like this:

\\gandolf 00:00 /every:1,5,10,15,20,25,30 cleanup.js

You can then create a script that reads the file and executes the necessary commands, such as the
one shown in Listing 13-3.

LISTING 13-3

Creating Jobs Automatically

schedule.txt

\\gandolf 00:00 /every:1,5,10,15,20,25,30 cleanup.js
\\bilbo 00:00 /every:1,5,10,15,20,25,30 cleanup.js
\\dragon 00:00 /every:1,5,10,15,20,25,30 cleanup.js

autosched.js

var ws = WScript.CreateObject(“WScript.Shell”)

ForReading = 1
 data = new Array()
 count = 0

 var fs = new ActiveXObject (“Scripting.FileSystemObject”);
 var f = fs.OpenTextFile(“schedule.txt”, ForReading, “True”)
 while (!f.AtEndOfStream) {
 data[count] = f.ReadLine()
 count++
 }

for (s in data) {
 ws.Run(“at “ + data[s],0,”True”)
 WScript.Echo(“Creating job “ + data[s])
 }

86804c13.indd 28086804c13.indd 280 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

281

 Scheduling One-time and Recurring Tasks 13

If you are scheduling the same jobs on multiple computers, you may want to have a file that specifies
the computers to use and a script that specifies the jobs to run. If you do this, you don’t have to cre-
ate separate entries when you want to run the same jobs on multiple computers. You can then mod-
ify the job creation script as shown in Listing 13-4.

LISTING 13-4

Scheduling the Same Jobs on Multiple Systems

sched-sys.txt

gandolf
bilbo
dragon

sched-jobs.txt

00:00 /every:1,5,10,15,20,25,30 cleanup.js
02:00 /every:M,W,F backup.js
05:00 /every:T,Th copylogs.js

autosched2.js

var ws = WScript.CreateObject(“WScript.Shell”)

ForReading = 1
data = new Array()
count = 0

var fs = new ActiveXObject (“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(“sched-sys.txt”, ForReading, “True”)
while (!f.AtEndOfStream) {
 data[count] = “\\\\” + f.ReadLine()
 count++
}

ForReading = 1
jobs = new Array()
count = 0

var fs = new ActiveXObject (“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(“sched-jobs.txt”, ForReading, “True”)
while (!f.AtEndOfStream) {
 jobs[count] = f.ReadLine()
 count++
}

continued

86804c13.indd 28186804c13.indd 281 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

282

 Part III Network and Dictionary Service Scripting

for (s in data) {
 for (j in jobs) {
 ws.Run(“at “ + data[s] + “ “ + jobs [j],0,”True”)
 WScript.Echo(“Creating job “ + jobs [j] + “ on “ + data[s])
 }
 }

Deleting jobs using scripts
You can delete jobs using scripts as well. This is useful if you make a mistake during automated
scheduling or simply want to delete jobs that are no longer needed. You can delete jobs using the same
techniques that you used to create jobs. The key difference is that instead of specifying jobs to create,
you set the job identifiers to delete. You can also delete all scheduled jobs and then re-create them.

Listing 13-5 shows how you can delete all jobs on multiple computers. A text file is again used to
specify the names of the systems you want to work with.

LISTING 13-5

Deleting Scheduled Jobs

sched-del.txt

\\gandolf
\\bilbo
\\dragon

deletejobs.js

var ws = WScript.CreateObject(“WScript.Shell”)

ForReading = 1
data = new Array()
count = 0

var fs = new ActiveXObject (“Scripting.FileSystemObject”);
var f = fs.OpenTextFile(“sched-del.txt”, ForReading, “True”)
while (!f.AtEndOfStream) {
 data[count] = f.ReadLine()
 count++
}

LISTING 13-4 (continued)

86804c13.indd 28286804c13.indd 282 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

283

 Scheduling One-time and Recurring Tasks 13

for (s in data) {
 ws.Run(“at “ + data[s] + “ /delete /yes”,0,”True”)
 WScript.Echo(“Deleting jobs on “ + data[s])
}

Creating a scheduling manager script
Previous sections outlined several different techniques for creating and deleting scripts. Now let’s
take this concept a few steps further by developing a script that handles both job creation and job
deletion. You’ll again use text files to designate where and how jobs should be handled.

A file named sched-svr.txt lists the servers on which you want to create or delete jobs. The file
should contain the UNC name of the server, for example:

\\Gandolf
\\Bilbo
\\Dragon
\\Goblin

A file named sched-repl.txt lists the jobs you want to schedule on the designated servers. The file
should only contain the job text:

00:00 /every:1,5,10,15,20,25,30 cleanup.js
00:20 /every:M,W,F backup.js
01:00 /every:Su copylogs.js

To make the script more dynamic, you’ll configure the script to handle arguments. If the user doesn’t
enter an argument, the script should provide basic instruction on how to use the script. If the user
enters an argument, the script should check the value of the argument and determine if the proper
value has been entered. These features are implemented as follows:

var theArgs = WScript.Arguments

if (theArgs.Count() == 0) {
 WScript.Echo(“Configure the text files:”)
 WScript.Echo(“sched-svr.txt and sched-repl.txt”)
 WScript.Echo(“Then enter c to copy or d to delete jobs.”)
 WScript.Quit(1)
}
else {
 arg1 = theArgs.Item(0)
 WScript.Echo(arg1)
}

if (arg1 == “c”) {
 WScript.Echo(“Preparing to create Jobs…”)

86804c13.indd 28386804c13.indd 283 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

284

 Part III Network and Dictionary Service Scripting

 createJobs()
 WScript.Quit(0)
}

if (arg1 == “d”) {
 WScript.Echo(“Preparing to delete Jobs…”)
 deleteJobs()
 WScript.Quit(0)
}

Next, the createJobs() and deleteJobs() functions should perform the appropriate tasks.
Because these functions both read the sched-svr.txt file, there is no reason to code the file-reading
functionality twice. Instead, you can call another function that reads the files and returns the data
neatly packed away in an array. The functions can then use the array values to configure or delete
jobs, for example:

function deleteJobs() {

sysArray = getData(“sched-svr.txt”)

 for (s in sysArray) {
 ws.Run(“at “ + sysArray[s] + “ /delete /yes”,0,”True”)
 WScript.Echo(“Deleting jobs on “ + sysArray[s])
 }
}

function createJobs() {

 sysArray = getData(“sched-svr.txt”)
 jobsArray = getData(“sched-repl.txt”)

 for (s in sysArray) {
 for (j in jobsArray) {
 ws.Run(“at “ + sysArray[s] + “ “ + jobsArray[j],0,”True”)
 WScript.Echo(“Creating job “ + jobsArray[j] + “ on “ + sysArray[s])
 }
 }
}

The getData() function is very similar to the other functions for reading files we’ve examined. The
key difference is that the function expects to be passed the file name to use as the first parameter. In
this way, you can call the function to read both sched-svr.txt and sched-repl.txt. This function is
implemented using the following code:

function getData(fname) {

 ForReading = 1
 data = new Array()
 count = 0

86804c13.indd 28486804c13.indd 284 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

285

 Scheduling One-time and Recurring Tasks 13

 var fs = new ActiveXObject (“Scripting.FileSystemObject”);
 var f = fs.OpenTextFile(fname, ForReading, “True”)
 while (!f.AtEndOfStream) {
 data[count] = f.ReadLine()
 count++
 }
 return data
}

The complete text for the scheduling manager script is shown in Listing 13-6.

LISTING 13-6

Managing Job Scheduling

sched-svr.txt

\\Gandolf
\\Bilbo
\\Dragon
\\Goblin

sched-repl.txt

00:00 /every:1,5,10,15,20,25,30 cleanup.js
00:20 /every:M,W,F backup.js
01:00 /every:Su copylogs.js

schedmgr.js

// ************************
// Script: Enterprise Scheduling Manager
// Version: 1.1.5
// Creation Date: 05/23/2008
// Last Modified: 07/14/2008
// Author: William R. Stanek
// Email: williamstanek@aol.com
//
// Copyright (c) 2008 William R. Stanek
// ************************
// Description: Manages scheduled tasks on local and
// remote systems.
// ************************
// Copy jobs to multiple systems
// Enter c at first parameter
// *
// Delete jobs on a group of servers
// Enter d at first parameter
// *

continued

86804c13.indd 28586804c13.indd 285 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

286

 Part III Network and Dictionary Service Scripting

// Server list comes from sched-svr.txt in current directory
// Enter server names on separate lines, such as:
// \\Gandolf
// \\Bilbo
// *
// Scheduled jobs are entered in sched-jobs.txt in the
// current directory. Enter the job information without
// the at or system name, such as:
// 01:00 /every:M,T,W,Th,F,S,Su cleanup.js
// 05:00 /next:1,15 checkstatus.js
// ************************

var ws = WScript.CreateObject(“WScript.Shell”)

var theArgs = WScript.Arguments

if (theArgs.Count() == 0) {
 WScript.Echo(“Configure the text files:”)
 WScript.Echo(“sched-svr.txt and sched-repl.txt”)
 WScript.Echo(“Then enter c to copy or d to delete jobs.”)
 WScript.Quit(1)
}
else {
 arg1 = theArgs.Item(0)
 WScript.Echo(arg1)
}

if (arg1 == “c”) {
 WScript.Echo(“Preparing to create Jobs…”)
 createJobs()
 WScript.Quit(0)
}

if (arg1 == “d”) {
 WScript.Echo(“Preparing to delete Jobs…”)
 deleteJobs()
 WScript.Quit(0)
}

function deleteJobs() {

sysArray = getData(“sched-svr.txt”)

 for (s in sysArray) {
 ws.Run(“at “ + sysArray[s] + “ /delete /yes”,0,”True”)
 WScript.Echo(“Deleting jobs on “ + sysArray[s])
 }

LISTING 13-6 (continued)

86804c13.indd 28686804c13.indd 286 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

287

 Scheduling One-time and Recurring Tasks 13

}

function createJobs() {

 sysArray = getData(“sched-svr.txt”)
 jobsArray = getData(“sched-repl.txt”)

 for (s in sysArray) {
 for (j in jobsArray) {
 ws.Run(“at “ + sysArray[s] + “ “ + jobsArray[j],0,”True”)
 WScript.Echo(“Creating job “ + jobsArray[j] + “ on “ + sysArray[s])
 }
 }
}

function getData(fname) {

 ForReading = 1
 data = new Array()
 count = 0

 var fs = new ActiveXObject (“Scripting.FileSystemObject”);
 var f = fs.OpenTextFile(fname, ForReading, “True”)
 while (!f.AtEndOfStream) {
 data[count] = f.ReadLine()
 count++
 }
 return data
}

Summary
Task scheduling is one of the primary administrative tasks you’ll need to perform in a network envi-
ronment. As an administrator or a power user with extended permissions, you can use the tech-
niques discussed in this chapter to create and manage scheduled tasks anywhere on the network.
When you set out to manage tasks on multiple computers, don’t forget that you can use scripts to
handle the grunt work. In fact, you can use the scheduling manager script to handle most of your
scheduling needs.

86804c13.indd 28786804c13.indd 287 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

86804c13.indd 28886804c13.indd 288 1/21/09 1:27:12 PM1/21/09 1:27:12 PM

289

Automation is the key to Windows scripting. The previous chapter
showed how you can create scripts to run automatically based on
the time, day of the week, or date. This chapter focuses on creat-

ing scripts that execute based on user logon and logoff, as well as computer
startup and shutdown.

Why Use Computer and
User Scripts?
Every once in a while, an administrator or user asks “Why would I want to
use computer and user scripts?” I always think back to my days in the mili-
tary when I often needed to logon to a system and be able to immediately
begin troubleshooting critical network problems in a real-time environ-
ment. I simply didn’t have time to start all the tools I needed, run back-
ground checks, or perform any other setup tasks, so I automated these
processes. When I logged in, the tools I needed to work with started auto-
matically, the background checks initialized and began running, and other
configuration tasks were executed as well. The result was that instead of it
taking five or six minutes to get ready to troubleshoot, I could start imme-
diately, which helped me earn a reputation as someone who could resolve
problems quickly.

Managing Computer and
User Scripts

IN THIS CHAPTER
Why use computer and
user scripts?

Working with the
Group Policy console

Assigning startup and
shutdown scripts

Assigning logon and
logoff scripts

86804c14.indd 28986804c14.indd 289 1/21/09 1:27:27 PM1/21/09 1:27:27 PM

290

 Part III Network and Dictionary Service Scripting

While seconds may not count in the environment you work in, you can certainly benefit from auto-
mation. Any routine tasks that you or others in your office need to perform on a daily basis can be
automated. You can automate these tasks:

After system startup■

After logging on to the network■

Before logging off■

Before shutting down a system■

The limits for computer and user scripts are the limits of your imagination. Scripts can run any
Windows shell command, work with Windows Script Host, access Windows applications through
COM (Component Object Model), and more. You just have to know how to write the script you
need. For example, with logon scripts you may want to:

Display a message of the day■

Display a network usage policy or disclaimer■

Start applications or run commands■

Configure default printers and set up other printers■

Map network drives and set default drive paths■

Track the users logon and logout times■

Build a daily report from log files and display it in a browser■

So the answer to the question, “Why use computer and user scripts?” is clear. You use computer and
user scripts because you want to become more efficient and you want to help others become more
efficient.

You’ll need special privileges and permissions to manage computer and user scripts. If
you aren’t an administrator and don’t have power user permissions on the local com-

puter, you won’t be able to manage startup, shutdown, logon, and logoff scripts.

Introducing Group Policies
In Windows, you normally assign computer and user scripts through group policies. Think of a
group policy as a set of rules that helps you manage users and computers.

How are policies used?
Group policies can be applied at various levels in the organization. Policies that apply to individual
computers are referred to as local group policies and are stored on an individual computer. Other
group policies affect multiple computers and are stored in the Active Directory directory service.

NOTENOTE

86804c14.indd 29086804c14.indd 290 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

291

 Managing Computer and User Scripts 14

We’ll refer to policies that affect multiple computers as global group policies. This will help differen-
tiate between policies that affect individual computers (local group policies) and policies that affect
multiple computers (global group policies).

The way policies are applied depends on the structure of the organization. To help you understand
the available structures, you need to know a bit about Active Directory. Active Directory is the pri-
mary directory service for Windows. Active Directory provides the logical and physical structure of
the company’s network.

Logical structures defined by Active Directory are:

Domains: ■ A domain is a group of computers that share a common directory structure. For
example, the computers named Gandolf, Bilbo, and Dragon are all a part of the tvpress.com
domain. This means that their full computer names are Gandolf.tvpress.com, Bilbo.tvpress.
com, and Dragon.tvpress.com.

Organizational units: ■ An organizational unit is a subgroup of domains. Organizational
units often mirror the company’s functional or business structure. For example, you may
have organizational units named Marketing, Engineering, and IS.

Domain trees:■ A domain tree is one or more domains that share a contiguous namespace.
For example, the domains hr.tvpress.com and eng.tvpress.com are all a part of the tvpress.
com master domain and are thus a part of the same domain tree.

Domain forests: ■ A domain forest is one or more domain trees that share common directory
information. If your company has multiple domains, such as tvpress.com and centraldrive
.com, these domains form separate domain trees. However, because they are all defined
through your organization’s directory, they are a part of the same forest, and can thus share
directory information.

The physical structures defined by Active Directory are:

Subnets:■ A subnet is a network group with a specific IP address range and network mask.
For example, the IP addresses for Gandolf, Bilbo, and Dragon are all a part of the 207.19.67
network group. Their IP addresses are 207.19.67.12, 207.19.67.14, and 207.19.67.16, respec-
tively. This means they are all a part of the same subnet.

Sites: ■ A site is a group of one or more subnets. For example, if the company used the net-
work groups 207.19.67 and 204.12.5, they could all be part of the same site.

Group policies apply to domains, organizational units, and sites. This means you can set group poli-
cies based on the physical and logical structure of the network. When multiple policies are in place,
they are applied in the following order:

 1. Windows NT 4.0 policies (NTConfig.pol)

 2. Local group policies

 3. Site group policies

86804c14.indd 29186804c14.indd 291 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

292

 Part III Network and Dictionary Service Scripting

 4. Domain group policies

 5. Organizational unit group policies

 6. Child organizational unit group policies

When there are conflicts in policy settings, settings applied later have precedence and overwrite pre-
viously set policy settings. For example, site policies have precedence over local group policies.

Windows does defi ne ways to override and block policy settings. These changes can
affect the way policies are inherited and applied. A good resource to learn more about

group policy is the Microsoft Windows Administrator’s Pocket Consultant.

When are policies applied?
The way policies are applied depends on whether the policies affect computers or users. Computer-
related policies are normally applied during system startup. User-related policies are normally
applied during logon. The events that take place during startup and logon are as follows:

After the network starts, Windows applies computer policies. The computer policies are ■

applied one at a time as outlined previously. No user interface is displayed while computer
policies are being processed.

Windows runs any startup scripts. These scripts are executed one at a time by default. ■

Here, each script must complete or time out before the next starts. Script execution is not
displayed to the user unless otherwise specified.

When a user logs on, Windows loads the user profile.■

Windows applies user policies. The policies are applied one at a time as outlined previ-■

ously. The user interface is displayed while user policies are being processed.

Windows runs logon scripts. These scripts are executed simultaneously by default. Normally ■

script execution is not displayed to the user. Scripts in the Netlogon share are run last.

Windows displays the startup interface configured in Group Policy.■

How are local group policies managed?
All Windows computers have a local group policy. You manage local policies on a computer through
an extension for the Microsoft Management Console (MMC) called Local Computer Policy. You can
access Local Computer Policy as follows:

 1. Click the Start menu, and then click Run. This displays the Run dialog box.

 2. Type mmc in the Open field and then click OK. This displays the Microsoft Management
Console (MMC).

NOTENOTE

86804c14.indd 29286804c14.indd 292 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

293

 Managing Computer and User Scripts 14

 3. Click File, and then click Add/Remove Snap-in. This displays the Add/Remove Snap-in
dialog box shown in Figure 14-1.

FIGURE 14-1

Use the Add/Remove Snap-in dialog box to select snap-ins that you want to add to the console.

 4. On the Standalone tab, click Add.

 5. Next, in the Add Snap-in dialog box, click Group Policy, then click Add. This displays the
Select Group Policy Object dialog box.

 6. Click Local Computer to edit the local policy on your computer or Browse to find the local
policy on another computer.

 7. Click Finish in the Group Policy Object dialog box, and then click Close in the Add
Snap-in dialog box.

 8. Click OK. As Figure 14-2 shows, the Local Computer Policy snap-in is then added to the
console.

Once you’ve added the Local Computer Policy snap-in to the console, you can manage the local pol-
icy on the selected computer.

86804c14.indd 29386804c14.indd 293 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

294

 Part III Network and Dictionary Service Scripting

FIGURE 14-2

Use the Local Computer Policy snap-in to manage local group policies.

How are global group policies managed?
You work with global group policies through the Group Policy snap-in. The way you access this
snap-in depends on the type of policy you are working with. For sites, you start the Group Policy
snap-in from the Active Directory Sites and Services console. For domains and organizational units,
you start the Group Policy snap-in from the Active Directory Users and Computers console.

Once you start the appropriate console, you access the Group Policy snap-in as follows:

 1. Right-click on the site, domain, or organizational unit you want to work within the con-
sole root. Then select Properties. This displays a Properties dialog box.

 2. In the Properties dialog box, select the Group Policy tab, as shown in Figure 14-3. You
can now:

Create a new policy or edit an existing policy by clicking New.■

Edit an existing policy by selecting a policy, then clicking Edit.■

Change the priority of a policy by selecting it and then using the Up/Down buttons to ■

change its position in the Group Policy Object Links list.

Delete an existing policy by selecting it and then clicking Delete.■

86804c14.indd 29486804c14.indd 294 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

295

 Managing Computer and User Scripts 14

FIGURE 14-3

Use the Group Policy tab to view, edit, and delete policies.

Using the policy consoles
Figure 14-4 shows the Group Policy snap-in in an MMC console. If you compare this figure to
Figure 14-2, you’ll see that the Local Computer Policy and the Group Policy snap-ins are configured
similarly. These snap-ins have two main nodes:

Computer Configuration:■ Used to set computer policies

User Configuration:■ Used to set user policies

You’ll usually find that both Computer Configuration and User Configuration have subnodes for:

Software Settings■

Windows Settings■

Administrative Templates■

You configure user and computer scripts through Windows Settings.

86804c14.indd 29586804c14.indd 295 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

296

 Part III Network and Dictionary Service Scripting

FIGURE 14-4

Use the Group Policy snap-in to manage global group policies.

Working with Computer and User Scripts
As you’ve seen, group policies play an important role in the way startup, shutdown, logon, and logoff
scripts are assigned. Now let’s look at how you can assign these scripts as part of group policies.

Managing startup and shutdown scripts
You assign startup and shutdown scripts to individual computers through local group policy, or to
groups of computers through global group policies. By doing this, computers can execute scripts
automatically when they are booted-up or shut down. You assign a startup or shutdown script to a
computer by completing the following steps:

 1. Access the policy console you want to work with as described previously in the chapter.

 2. In the Computer Configuration node, double-click the Windows Settings folder.

86804c14.indd 29686804c14.indd 296 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

297

 Managing Computer and User Scripts 14

 3. In the console root, select Scripts. You can now:

Specify startup scripts by right-clicking Startup and then selecting Properties.■

Specify shutdown scripts by right-clicking Shutdown and then selecting Properties.■

 4. Either technique opens a dialog box similar to the one shown in Figure 14-5. You can now
add, delete, or reconfigure script properties.

FIGURE 14-5

Use the Startup Properties dialog box to manage computer scripts.

 5. To assign a script, click Add. This displays the Add a Script dialog box. In the Script Name
field, type the full file path to the script you want to use, or click Browse to find a script. In
the script parameter field, enter any parameters to pass to the scripting host for a Windows
script. Repeat this step to add other scripts.

 6. During startup or shutdown, scripts are executed in the order that they are listed in the
Properties dialog box. Use the Up/Down buttons to change the order of the scripts if
necessary.

 7. Click OK when you are finished. If you later want to edit the script name or parameters,
select the script in the Script For list, and then click Edit. You can delete a script by select-
ing it in the Script For list and then clicking Remove.

86804c14.indd 29786804c14.indd 297 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

298

 Part III Network and Dictionary Service Scripting

Managing logon and logoff scripts
Logon and logoff scripts are also managed through local and global group policies. Scripts you
assign through local group policies affect all users that log in to that particular computer. Scripts
you assign through global group policies affect all computers in the organizational unit, domain, or
site. You assign a logon or logoff script by completing the following steps:

 1. Access the policy console you want to work with as described previously in the chapter.

 2. In the User Configuration node, double-click the Windows Settings folder.

 3. In the console root, select Scripts. You can now:

Specify logon scripts by right-clicking Logon and then selecting Properties.■

Specify logoff scripts by right-clicking Logoff and then selecting Properties.■

 4. Either technique opens a dialog box similar to the one shown in Figure 14-6. You can now
add, delete, or reconfigure script properties.

FIGURE 14-6

Use the Logoff Properties dialog box to manage user scripts.

 5. To assign a script, click Add. This displays the Add a Script dialog box. In the Script Name
field, type the full file path to the script you want to use, or click Browse to find a script. In
the script parameter field, enter any parameters to pass to the scripting host for a Windows
script. Repeat this step to add other scripts.

86804c14.indd 29886804c14.indd 298 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

299

 Managing Computer and User Scripts 14

 6. During logon or logoff, scripts are executed in the order that they are listed in the Properties
dialog box. Use the Up/Down buttons to change the order of the scripts if necessary.

 7. Click OK when you are finished. If you later want to edit the script name or parameters,
select the script in the Script For list, and then click Edit. You can delete a script by select-
ing it in the Script For list and then clicking Remove.

Alternatives to group policy
The sections that follow look at alternatives to assigning scripts through group policy. Group poli-
cies only apply to Windows 2000 and later. In a Windows domain, the main scripts that you’ll work
with are logon scripts. These scripts are handled by a domain controller, which is a Windows server
acting as a domain controller for the Windows NT domain.

You can use command-shell scripts as logon scripts. These scripts must end with the .bat or .cmd
extension. You can also use Windows scripts or call Windows scripts from command-shell scripts.

Listing 14-1 shows basic logon scripts that are executed through a shell script. The scripting hosts
use the user’s default working directory and all paths must be set relative to this directory; or you
should use a full file path. This example accesses the Netlogon share on the primary domain con-
troller. For logon scripts to be available, you need to configure directory replication or have an
administrator do this for you.

LISTING 14-1

Executing Windows Logon Scripts through a Shell Script

startup.bat

cscript \\Gandolf\NETLOGON\start.vbs
cscript \\Gandolf\NETLOGON\start.js

start.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ws.Run “notepad “ & WScript.ScriptFullName

start.js

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“notepad “ + WScript.ScriptFullName)

86804c14.indd 29986804c14.indd 299 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

300

 Part III Network and Dictionary Service Scripting

Another thing to note is that when you work with Windows systems, you don’t have to assign com-
puter and user scripts through Group Policy. The following options can be used in addition to, or
instead of, Group Policy:

Assign startup and logon scripts as scheduled tasks. You schedule tasks using the Task ■

Scheduler Wizard.

Assign logon scripts to individual user accounts through the Active Directory Users and ■

Computers console. To do this, access the Profile tab of the User Properties dialog box.

Summary
In this chapter, you learned about the benefits of computer and user scripts. Computer scripts help you
automate tasks when a computer is started or shut down. User scripts help you automate tasks when a
user logs on or logs off. Both types of scripts can be powerful automation tools if used properly.

86804c14.indd 30086804c14.indd 300 1/21/09 1:27:28 PM1/21/09 1:27:28 PM

301

W ith Active Directory Service Interfaces, you can manage local
accounts, domain accounts, Windows services, and other
resources through Windows scripts. ADSI is very complex and

is designed primarily for programmers that use Visual Basic or C++. Because
of this complexity, you’ll need to learn a few important concepts before you
can start working with ADSI, which are exactly what this chapter covers.
Don’t worry; we won’t try to teach you Visual Basic or C++ programming.
We won’t try to cover every facet of ADSI either. Instead, we’ll focus on the
core tasks that you can use time and again to manage network and system
resources.

Rather than provide a ton of background material that you may
not need, the focus of this chapter is on using ADSI and not on

directory service basics. If you aren’t familiar with directory services, you
may want to brush up on the basics. A good resource for Active Directory is
Windows Server 2008 Administrator’s Pocket Consultant. Chapters 7 through
11 cover Active Directory in detail.

ADSI Essentials
Directory services are an important part of many network operating systems,
including Novell NetWare and Microsoft Windows. In Novell NetWare, the
directory service is called Novell NetWare Directory Services (NDS). In
Microsoft Windows, the directory service is called Active Directory. Some
directory services implement a common communication protocol called the
Lightweight Directory Access Protocol (LDAP). LDAP is an Internet standard
protocol and you use it to access any compliant directory service.

NOTENOTE

Introducing Active Directory
Services Interfaces

IN THIS CHAPTER
Getting to know ADSI

Taking advantage of ADSI

Understanding ADSI paths

Understanding ADSI objects

Accessing directory services

86804c15.indd 30186804c15.indd 301 1/21/09 1:27:42 PM1/21/09 1:27:42 PM

302

 Part III Network and Dictionary Service Scripting

Directory services often use objects to describe and provide access to various network components,
such as users and groups. You can access these objects through the Active Directory Service Interfaces.
While it’s possible to fill several chapters with background material on how ADSI works, you really
don’t need to know ADSI internals to be able to create Windows scripts that use ADSI. The key con-
cepts you should know are as follows:

ADSI provides access to directory services by exposing their objects as COM objects.■

The interfaces of these COM objects provide methods and properties that can be used in ■

Windows Scripts.

You don’t manipulate the COM interfaces directly and instead access the interfaces through ■

an ADSI provider.

ADSI uses a multi-tier architecture with clients, routers, and providers.■

The sections that follow examine ADSI providers and the ADSI architecture.

Understanding ADSI providers
For Windows scripts, the ADSI provider is the most important aspect of the ADSI model. Each ADSI
provider is specific to a particular directory service. You can get ADSI providers from Microsoft and
from third-party vendors. ADSI providers from Microsoft include:

ADSI LDAP Provider:■ A standard provider for LDAP-compliant services and applications.
You can use this provider to manage Windows Active Directory, Microsoft Exchange
5.5/6.0, and more.

ADSI WinNT Provider:■ A standard provider for accessing Windows NT 4.0 domains,
workstations, and servers. You also use this provider to access local resources on Windows
systems, such as local users and local groups.

ADSI NDS Provider:■ A standard provider for accessing Novell NetWare Directory Services
(NDS).

ADSI NWCOMPAT Provider:■ A standard provider for accessing Novell NetWare 3.

The provider name is case-sensitive and must be used exactly as shown in your scripts.

Providers can be extended at any time by installing new versions, service packs, or other add-ons.
As you might expect, many different provider extensions are available. Two extensions that you may
want to use are GC and IIS. Both are extensions to the ADSI LDAP Providers.

GC provides access to global catalogs. Global catalogs contain partial replicas of all the domains in a
domain forest and are a part of Windows Active Directory. You can use the GC extension to search for
objects in the enterprise regardless of which domain they are in. For example, if your domain forest
contains the domains tvpress.com, centraldrive.com, and weblearningcenter.com, you can search the
global catalog for an object without having to know which domain it is in. Once you find the object,
you could discover its relative domain and then obtain the object.

NOTENOTE

86804c15.indd 30286804c15.indd 302 1/21/09 1:27:42 PM1/21/09 1:27:42 PM

303

 Introducing Active Directory Services Interfaces 15

IIS provides access to Internet Information Services (IIS). Through IIS, you can create and configure
FTP, Web, and SMTP sites. You can also manage logs and the IIS metabase. The IIS metabase contains
definitions for various aspects of IIS and essentially allows you to read and change the configura-
tions of related sites and services.

Understanding the ADSI architecture
ADSI uses a multi-tier architecture. Without going into all of the unnecessary details, the basic
structure of this architecture looks like this:

Client ➪ ADSI Router ➪ ADSI Provider

Following this simple structure, you can see that clients are used to access ADSI and that a middle-
man called a router is used to access providers. The router implements a core set of objects. These
objects present a common set of features and services to providers. Because of this, any feature sup-
ported by the ADSI router is also supported by an ADSI provider (unless the provider chooses
otherwise).

Any computer that wants to make use of ADSI must have the ADSI client installed. The client is
installed automatically with Windows Professional and Windows Server. Computers running other
operating systems must install the ADSI client. For example, if you run Windows scripts on a
Windows 95 or Windows NT 4.0 computer and these scripts use ADSI, you’ll need to install the
ADSI client prior to running the scripts.

The standard providers distributed with the ADSI Software Developers Kit and in ADSI client distri-
butions are referred to as ADSI system providers. Because ADSI is fully extensible, newer versions of
providers are being created all the time. You can take advantage of these extensions by installing the
latest version. Most of the features for ADSI providers and the ADSI router are implemented as
Dynamically Linked Libraries (DLLs). The key DLLs for system providers include:

Activeds.dll, which implements the ADSI router module■

Adsldp.dll, adsldpc.dll, and adsmsext.dll, which implement the ADSI LDAP provider■

Adsnt.dll, which implements the ADSI WinNT provider■

Adsnds.dll, which implements the ADSI NDS provider■

Adsnw.dll, which implements the ADSI NWCompat provider■

If a DLL that’s needed by a provider isn’t installed on a computer, you can’t use the pro-
vider. You’ll need to install the provider.

Binding ADSI objects
You use the ADSI provider interfaces by binding to objects in the related directory service. In WSH,
you can bind objects using the WScript.GetObject method. With ADSI, the syntax for the
GetObject method is:

NOTENOTE

86804c15.indd 30386804c15.indd 303 1/21/09 1:27:42 PM1/21/09 1:27:42 PM

304

 Part III Network and Dictionary Service Scripting

VBScript

Set obj = GetObject(“AdsPathString”)

JScript

var obj = GetObject(“AdsPathString”)

The AdsPath string identifies the ADSI provider and the object to which you want to bind. The fol-
lowing example obtains an object reference to the organizational unit called IT in the seattle.tvpress.
com domain:

VBScript

Set ou = GetObject(“LDAP://OU=IT,DC=seattle,DC=tvpress,DC=com”)

JScript

var ou = GetObject(“LDAP://OU=IT,DC=seattle,DC=tvpress,DC=com”)

Although the AdsPath string is different for each provider, the basic syntax of the string is summa-
rized in Table 15-1. As you can see from the table, the AdsPath string has two basic elements: spe-
cial characters and components. Special characters serve primarily as separators but also join class
designators and escape special characters. Components identify ADSI providers and designate com-
ponent classes, such as domain components and organizational units.

TABLE 15-1

Syntax for AdsPath Strings
String Element Special Characters

Character Description

Backward slash (\) Escapes special characters to signify that they should be used as literals.

Forward slash (/) Separates elements in the AdsPath string

Semicolon (;) Separates elements in the AdsPath string

Comma (,) Separates elements in the AdsPath string

Equal sign (=) Joins a class specifier with a component

Components

Designator Description

Provider:// Designates an ADSI provider, such as LDAP://; the provider name is case-sensitive
and must be exact.

OU= Designates an organizational unit class, such as OU=IT

DC= Designates a domain component class, such as DC=tvpress

86804c15.indd 30486804c15.indd 304 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

305

 Introducing Active Directory Services Interfaces 15

O= Designates an organization, such as O=Internet

CN= Designates a common name, such as CN=user

All directory objects have a unique identifier. The identifier is a representation of each element, from
the root of the directory hierarchy to the object you want to work with. When you use commas to
separate elements in the hierarchy, you use a reverse order, starting from the object you want to work
with and moving to the top-most object. In the previous example, the AdsPath string starts in the
organizational unit and works up to the top-level of the domain hierarchy. The example could have
started with a common name as well, for example:

CN=Administrator,OU=IT,DC=seattle,DC=tvpress,DC=com

When you use forward slashes to separate objects in the domain hierarchy, you move from the
highest-level object to the lowest-level object, like this:

DC=com/DC=tvpress/DC=seattle/OU=IT/CN=Administrator

When you first start working with the AdsPath string, one of the most difficult concepts to under-
stand is how domain names are represented through domain component classes. A technique that is
helpful is to remember that domain names, such as tvpress.com, represent elements in the domain
hierarchy. Here, tvpress represents the organizational domain and com is the top-level domain.
Top-level domains form the root of the domain hierarchy and are also called root domains. Root
domains are organized by function, organization type, and geographic location.

Normal domains, such as tvpress.com, are also referred to as parent domains. Parent domains
can be divided into subdomains. These subdomains can be used for divisions or office locations.
For example, the fully qualified domains seattle.tvpress.com, portland.tvpress.com, and
la.tvpress.com could be used for your company’s Seattle, Portland, and Los Angeles offices
respectively.

Each level of the domain hierarchy is represented by a domain component class. In the portland
.tvpress.com domain:

DC=PORTLAND■ represents the subdomain level

DC=TVPRESS■ represents the parent level

DC=COM■ represents the root level

By specifying these component classes in an AdsPath, you gain access to objects within the subdo-
main container, such as organizational units. If you wanted to work with objects in the parent
domain (tvpress.com), you reference only the parent level and the root level, for example:

Components

Designator Description

86804c15.indd 30586804c15.indd 305 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

306

 Part III Network and Dictionary Service Scripting

VBScript

Set ou = GetObject(“LDAP://OU=Marketing,DC=tvpress,DC=com”)

JScript

var ou = GetObject(“LDAP://OU=Marketing,DC=tvpress,DC=com”)

Once you have the object that you want to work with, you can use the available methods and prop-
erties to manipulate the object. Through these directory objects you can then:

Manage domain accounts for users and groups■

Manage local accounts for users and groups■

Administer printers and print jobs■

Control file services and sharing■

Manage user sessions and connections■

Control other system and network resources■

Taking Advantage of ADSI
Now that you know ADSI essentials, let’s look at how you can take advantage of ADSI. ADSI imple-
ments dozens of interfaces that can be used in scripts. You access these interfaces through a named
provider, such as the ADSI LDAP provider. Each provider implements interfaces for objects that are
available through its related directory service. If an object isn’t available, the interface isn’t imple-
mented. If an object property or method isn’t available, the related interface method or property
method isn’t implemented.

The sections that follow offer overviews of using the various providers. Later in the chap-
ter and in other chapters in this part of the book, you’ll fi nd more detailed examples.

Working with the ADSI LDAP provider
The ADSI LDAP provider is used to manage Windows Active Directory, Microsoft Exchange, and
other LDAP-compliant applications. With Active Directory, you use the provider as outlined previ-
ously in the section titled, “Binding ADSI objects.” As you’ll recall, the basic syntax for the AdsPath
string is:

LDAP://OU=IT,DC=seattle,DC=tvpress,DC=com

You can also reference a specific server or domain in the AdsPath. In the following example, you
bind to the ADSI object through a server named Zeta:

NOTENOTE

86804c15.indd 30686804c15.indd 306 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

307

 Introducing Active Directory Services Interfaces 15

VBScript

Set ou = GetObject(“LDAP://Zeta/OU=Marketing,DC=tvpress,DC=com”)

JScript

var ou = GetObject(“LDAP://Zeta/OU=Marketing,DC=tvpress,DC=com”)

In this example, you bind to an ADSI object through a domain on the Internet:

VBScript

Set ou = GetObject(“LDAP://tvpress.com/OU=Marketing,
DC=tvpress,DC=com,O=Internet”)

JScript

var ou = GetObject(“LDAP://tvpress.com/OU=Marketing,
DC=tvpress,DC=com,O=Internet”)

When you access objects outside your local domain, you may need to authenticate your-
self. To do this, use the OpenDSObject method. See the section in this chapter titled,

“Handling authentication and security” for details.

When you access Microsoft Exchange, you must reference the server name in the AdsPath. Then,
instead of referencing domain components, you reference the organization, site, container, and mail-
box names, for example:

LDAP://ServerName/cn=Mailbox,cn=Container,ou=SiteName,o=OrgName

In this example, you bind to the Recipients container in the mailbox for wrstanek:

VBScript

Set cont = GetObject(“LDAP://qmail/cn=wrstanek,cn=Recipients,
ou=Seattle,o=tvpress”)

JScript

var cont = GetObject(“LDAP://qmail/cn=wrstanek,cn=Recipients,
ou=Seattle,o=tvpress”)

You can also use forward slashes as shown here:

VBScript

Set cont = GetObject(“LDAP://qmail/o=tvpress/ou=Seattle/ cn=Recipients/
cn=wrstanek”)

JScript

var cont = GetObject(“LDAP://qmail/o=tvpress/ou=Seattle/ cn=Recipients/
cn=wrstanek”)

TIPTIP

86804c15.indd 30786804c15.indd 307 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

308

 Part III Network and Dictionary Service Scripting

With Microsoft Exchange, common names are mapped to actual display names rather than directory
names. This means you access mailboxes and their components using the name displayed in
Exchange Administrator, Outlook, or another mail client.

When you use the LDAP provider, you’ll use a different set of objects than you’ll use with other pro-
viders. Table 15-2 lists the objects you’ll use most often with the LDAP provider. The table also lists
the ADSI interfaces for those objects that are supported by the LDAP provider.

Some LDAP provider objects inherit from GenObject, which allows them to access
interfaces supported by this object. For example, although the User object doesn’t sup-

port IADs directly, the object can use the interface. The reason is that the interface is inherited from
GenObject.

TABLE 15-2

Common Objects and Interfaces for the LDAP Provider
ADSI Object Supported Interfaces Description

Class IADs
IADsClass

Represents class definitions in the
schema

GenObject IADs
IADsContainer
IADsDeleteOps
IADsObjectOptions
IADsPropertyList
IDirectoryObject
IDirectorySearch

Provides common services to most
other ADSI objects for the provider

Group IADsGroup
IADsExtension

Represents a group account

GroupCollection IADsMembers Represents a collection of group
accounts

Locality IADsLocality
IADsExtension

Represents geographical locales of
users, organizations, and so forth

Namespace IADs
IADsContainer
IADsOpenDSObject

Represents the LDAP namespace

Organization IADsO
IADsExtension

Represents an organization

OrganizationalUnit IADsOU
IADsExtension

Represents an organizational unit

CAUTION CAUTION

86804c15.indd 30886804c15.indd 308 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

309

 Introducing Active Directory Services Interfaces 15

ADSI Object Supported Interfaces Description

Pathname IADsPathname Represents AdsPath

PrintQueue IADsPrintQueue
IADsPrintQueueOperations
IADsExtension

Represents a print queue

Property IADs
IADsProperty

Represents attribute definitions in the
schema

RootDSE IADs
IADsPropertyList

Represents the root of the directory
tree

Schema IADs
IADsContainer

Represents the schema container

Syntax IADs
IADsSyntax

Represents the attribute syntax

User IADsUser
IADsExtension

Represents a user account

UserCollection IADsMembers Represents a collection of user
accounts

Working with the ADSI WinNT provider
The ADSI WinNT provider is used to access resources in Windows NT 4.0 domains, as well as local
resources on Windows systems. With the WinNT provider, the basic syntax for the Ads/Path
string is:

WinNT://DomainName/ServerName/ObjectName

In many ways this syntax makes the WinNT provider easier to work with, but it also limits the reach
of the provider. You can access objects in the current NT domain or other accessible NT domains, but
you can’t access Internet domains. The following example shows how you can access the user
account for wrstane in the tvpress domain:

VBScript

Set user = GetObject(“WinNT://TVPRESS/wrstane”)

JScript

var user = GetObject(“WinNT://TVPRESS/wrstane”)

86804c15.indd 30986804c15.indd 309 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

310

 Part III Network and Dictionary Service Scripting

You can also access a specific server in the domain. In the following example, you access the
Primary Domain Controller named Zeta:

VBScript

Set user = GetObject(“WinNT://TVPRESS/Zeta/wrstane”)

JScript

var user = GetObject(“WinNT://TVPRESS/Zeta/wrstane”)

If a computer named Omega had a local printer named EngPrinter, you could access it as follows:

VBScript

Set ptr = GetObject(“WinNT://TVPRESS/Omega/EngPrinter”)

JScript

var ptr = GetObject(“WinNT://TVPRESS/Omega/EngPrinter”)

For the WinNT provider, the AdsPath can also include the class name of the object to which you
want to bind. The main reason to do this is to improve the response time for binding the object. In
this example, you specify the user class:

VBScript

Set user = GetObject(“WinNT://TVPRESS/Zeta/wrstane,user”)

JScript

var user = GetObject(“WinNT://TVPRESS/Zeta/wrstane,user”)

Table 15-3 shows the objects you’ll use most often with the WinNT provider. The table also shows
the ADSI interfaces for those objects that are supported by the WinNT provider.

TABLE 15-3

Common Objects and Interfaces for the WinNT Provider
ADSI Object Supported Interfaces Description

Class IADs
IADsClass

Represents a class definition

Computer IADs
IADsComputer
IADsComputerOperations
IADsContainer
IADsPropertyList

Represents a computer account

86804c15.indd 31086804c15.indd 310 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

311

 Introducing Active Directory Services Interfaces 15

ADSI Object Supported Interfaces Description

Domain IADs
IADsContainer
IADsDomain
IADsPropertyList

Represents a domain

FileService IADs
IADsContainer
IADsFileService
IADsFileServiceOperations
IADsPropertyList

Represents a file service

FileShare IADs
IADsFileShare
IADsPropertyList

Represents a file share

Group IADs
IADsGroup
IADsPropertyList

Represents a group account

GroupCollection IADs
IADsMembers

Represents a collection of group
accounts

LocalGroup IADs
IADsGroup
IADsPropertyList

Represents a local group account

LocalgroupCollection IADs
IADsMembers

Represents a collection of local
group accounts

Namespace IADs
IADsContainer
IADsOpenDSObject

Represents the WinNT namespace

PrintJob IADs
IADsPrintJob
IADsPrintJobOperations
IADsPropertyList

Represents a print job

PrintJobsCollection IADsCollection Represents a collection of print jobs

PrintQueue IADs
IADsPrintQueue
IADsPrintQueueOperations
IADsPropertyList

Represents a print queue

Property IADs
IADsProperty

Represents an attribute definition

continued

86804c15.indd 31186804c15.indd 311 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

312

 Part III Network and Dictionary Service Scripting

ADSI Object Supported Interfaces Description

Resource IADs
IADsPropertyList
IADsResource

Represents a resource

ResourcesCollection IADsCollection Represents a collection of resources

Schema IADs
IADsContainer

Represents the schema container

Service IADs
IADsPropertyList
IADsService
IADsServiceOperations

Represents a service

Session IADs
IADsSession
IADsPropertyList

Represents a user session

SessionsCollection IADsCollection Represents a collection of user
sessions

Syntax IADs
IADsSyntax

Represents the syntax of an attribute

User IADs
IADsPropertyList
IADsUser

Represents a user account

UserGroupCollection IADsMembers Represents a collection of user
groups

Working with the ADSI NDS provider
When you need to work with Novell NetWare Directory Services, you’ll use the ADSI NDS provider.
With NDS, you use an AdsPath string that is very similar to the string for the LDAP provider. The
key differences are that you use the NDS:// designator and you normally specify the server or
domain you want work with, for example:

NDS://Goober/CN=Trailer,DC=seattle,DC=tvpress,DC=com,O=Internet

or

NDS://Goober/O=Internet/DC=com/DC=tvpress/DC=seattle/CN=Trailer

TABLE 15-3 (continued)

86804c15.indd 31286804c15.indd 312 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

313

 Introducing Active Directory Services Interfaces 15

In the following example, you bind to the ADSI object through an Internet domain:

VBScript

Set cont = GetObject(“NDS://seattle.tvpress.com/O=Internet/ DC=com/
DC=tvpress/DC=seattle/CN=Trailer “)

JScript

var cont = GetObject(“NDS://seattle.tvpress.com/O=Internet/ DC=com/
DC=tvpress/DC=seattle/CN=Trailer “)

The objects you’ll use most often with the NDS provider are shown in Table 15-4. The table also lists
the ADSI interfaces for those objects that are supported by the NDS provider.

TABLE 15-4

Common Objects and Interfaces for the NDS Provider
ADSI Object Supported Interfaces Description

Acl IADsAcl Represents an access control list

BackLink IADsBackLink Represents the Back Link attribute

CaseIgnoreList IADsCaseIgnoreList Represents a list of strings that aren’t
case-sensitive

Class IADs
IADsClass

Represents a class definition

Email IADsEmail Represents an e-mail account

FaxNumber IADsFaxNumber Represents a fax number

GenObject IADs
IADsContainer
IADsPropertyList
IDirectoryObject
IDirectorySearch

Provides common services to most of
the ADSI objects in the NDS provider

Group IADs
IADsGroup
IADsPropertyList
IDirectoryObject
IDirectorySearch

Represents a group account

GroupCollection IADs
IADsMembers

Represents a collection of group
accounts

Hold IADsHold Represents the Hold attribute in NDS

continued

86804c15.indd 31386804c15.indd 313 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

314

 Part III Network and Dictionary Service Scripting

ADSI Object Supported Interfaces Description

Locality IADsContainer
IADsLocality
IADsPropertyList
IDirectoryObject
IDirectorySearch

Represents the geographical locale of
users, organizations, and so forth

Namespace IADs
IADsContainer
IADsOpenDSObject

Represents the namespace

NetAddress IADsNetAddress Represents the NetAddress attribute
in NDS

OctetList IADsOctetList Represents a list of octet strings

Organization IADsContainer
IADsO
IADsPropertyList
IDirectoryObject
IDirectorySearch

Represents an organization

OrganizationalUnit IADsContainer
IADsOU
IADsPropertyList
IDirectoryObject
IDirectorySearch

Represents an organizational unit

Path IADsPath Represents the Path attribute in NDS

PostalAddress IADsPostalAddress Represents a postal address

PrintQueue IADsPrintQueue
IADsPrintQueueOperations
IADsPropertyList

Represents a print queue

Property IADs
IADsProperty

Represents an attribute definition

ReplicaPointer IADsReplicaPointer Represents the ReplicaPointer
attribute in NDS

Schema IADs
IADsContainer

Represents the schema container

Syntax IADs
IADsSyntax

Represents the syntax of an attribute

Timestamp IADsTimestamp Represents the Timestamp attribute
in NDS

TABLE 15-4 (continued)

86804c15.indd 31486804c15.indd 314 1/21/09 1:27:43 PM1/21/09 1:27:43 PM

315

 Introducing Active Directory Services Interfaces 15

ADSI Object Supported Interfaces Description

Tree IADs
IADsContainer

Represents a NDS directory tree

TypedName IADsTypedName Represents the TypedName attribute
in NDS

User IADs
IADsPropertyList
IADsUser
IDirectoryObject
IDirectorySearch

Represents a user account

UserCollection IADs
IADsMembers

Represents a collection of user accounts

Working with the ADSI NWCOMPAT provider
When you need to work with Novell NetWare Directory Services, you use the ADSI NDS provider.
With NDS, you use an AdsPath string that is very similar to the string for the LDAP provider. The
key differences are that you use the NDS:// designator and you normally specify the server or
domain you want work with the ADSI NWCOMPAT provider is used to access Novell NetWare 3.
The provider designator is NWCOMPAT://. When you use this provider, you should reference the
server or domain you want to work with—for example:

NWCOMPAT://Goober/CN=Trailer,DC=seattle,DC=tvpress,DC=com,O=Internet

or

NWCOMPAT://Goober/O=Internet/DC=com/DC=tvpress/DC=seattle/CN=Trailer

As you can see, the syntax is nearly identical to the syntax for the NDS provider. Table 15-5 shows
the objects you’ll use most often with the NWCOMPAT provider. The table also shows the ADSI
interfaces for those objects that are supported by the NWCOMPAT provider.

TABLE 15-5

Common Objects and Interfaces for the NWCOMPAT Provider
ADSI Object Supported Interfaces Description

Class IADs
IADsClass

Represents a class definition of the schema

continued

86804c15.indd 31586804c15.indd 315 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

316

 Part III Network and Dictionary Service Scripting

ADSI Object Supported Interfaces Description

Computer IADs
IADsComputer
IADsComputerOperations
IADsContainer
IADsPropertyList

Represents a computer on the network

FileService IADs
IADsContainer
IADsFileService
IADsFileServiceOperations
IADsPropertyList

Represents a file service

FileShare IADs
IADsFileShare
IADsPropertyList

Represents a file share on the network

Group IADs
IADsGroup
IADsPropertyList

Represents a group account

GroupCollection IADs
IADsMembers

Represents a collection of group accounts

JobCollection IADs
IADsCollection

Represents a collection of print jobs

Namespace IADs
IADsContainer

Represents the namespace of the directory

PrintJob IADs
IADsPrintJob
IADsPrintJobOperations
IADsPropertyList

Represents a print job

PrintQueue IADs
IADsPrintQueue
IADsPrintQueueOperations
IADsPropertyList

Represents a print queue

Property IADs
IADsProperty

Represents an attribute definition of the
schema

Schema IADs
IADsContainer

Represents the schema container of the
provider

Syntax IADs
IADsSyntax

Represents the syntax of an attribute

TABLE 15-5 (continued)

86804c15.indd 31686804c15.indd 316 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

317

 Introducing Active Directory Services Interfaces 15

ADSI Object Supported Interfaces Description

User IADs
IADsPropertyList
IADsUser

Represents a user account

UserCollection IADs
IADsMembers

Represents a collection of users

ADSI Provider Basics
As you’ve seen, the ADSI providers make a dizzying array of objects and interfaces available to your
Windows scripts. Before going into the specifics of key objects and interfaces, let’s look at basic tasks
you may need to perform regardless of which provider you use. These basic tasks are:

Generic object binding ■

Handling authentication and security■

Accessing properties and updating objects■

Generic object binding
To create effective Windows scripts that use ADSI, you shouldn’t make direct assignments in bind-
ings. In most of the previous examples, we created bindings to specific servers, domains, and
objects. We did so through a direct assignment, such as:

Set user = GetObject(“WinNT://TVPRESS/wrstane”)

Because domain resources can (and frequently do) change, you should be very careful when you bind
directly to specific objects. Instead, you should make variable assignments that designate which
objects you plan to use and then reference the variables. Ideally, you should make these assignments
in the top section of the script so that they are easy to identify and change. You could re-write the
previous example and have the outcome look like Listing 15-1.

LISTING 15-1

Setting Up the Object Binding

VBScript
bind.vbs

‘Set up NT domain information
NTDomain = “TVPRESS”
NTUser = “wrstane”

continued

86804c15.indd 31786804c15.indd 317 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

318

 Part III Network and Dictionary Service Scripting

‘Get user object
Set user = GetObject(“WinNT://” & NTDomain & “/” & NTUser)

JScript
bind.js

//Set up NT domain information
NTDomain = “TVPRESS”
NTUser = “wrstane”

//Get user object
var user = GetObject(“WinNT://” + NTDomain + “/” + NTUser)

You should also use server-less binding whenever possible. So instead of referencing a specific server,
such as Zeta or Goober, you reference the domain only. This allows the provider to locate and use
the best server. For example, with LDAP and Active Directory, the LDAP provider would locate the
best domain controller to work with and then use this domain controller.

With LDAP you can bind to the root of the directory tree through the rootDSE object.
You can then use the rootDSE object to access objects in the domain. In this way, you

can create scripts that can be used in any domain. For details, see the section of Chapter 20 titled,
“Working with Naming Contexts and the rootDSE Object.”

Handling authentication and security
When you work with local domains you usually don’t have to authenticate yourself to gain access to
ADSI objects. If you want to work with objects outside the local domain, or you need to use a con-
trolled account to access objects, you’ll need to authenticate yourself through the OpenDSObject
method of the IADsOpenDSObject interface. If you check Tables 15-2 through 15-6, you’ll see this
interface is supported by the LDAP, NDS, and WinNT providers only.

The IADsOpenDSObject interface is accessible when you obtain an object reference to the ADSI
provider you want to work with—for example:

VBScript

Set prov = GetObject(“WinNT:”)

JScript

var prov = GetObject(“WinNT:”)

You can then call the OpenDSObject method to obtain the object you want to work with. The basic
syntax for this method is:

ProvObj.OpenDSObject(ADSPath, UserID, Password, Flags)

LISTING 15-1 (continued)

TIPTIP

86804c15.indd 31886804c15.indd 318 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

319

 Introducing Active Directory Services Interfaces 15

Here’s an example:

ProvObj.OpenDSObject(“WinNT://TVPRESS/Administrator”, “wrstane”,
“jiggyPop”, ADS_SECURE_CREDENTIALS)

When you use this method with other providers, be sure to use the correct syntax. For example,
with the LDAP provider and Active Directory, you must specify the user ID in the format:

Username@domain

Here is an example:

wrstanek@seattle.tvpress.com

You should also be sure to use the correct flags. Most of the time you’ll want to use the
ADS_SECURE_CREDENTIALS flag, which tells the provider to request secure authentication. Still,
there are times when you may want to use a different flag. You may also want to use multiple flags,
and you can do this as well.

Table 15-6 provides a summary of the available flags. Because the flags represent constant values,
you use multiple flags by adding together the flag values or by adding the constants themselves. While
the constants are available in VBScript, they aren’t available in JScript. Thus in JScript, you’ll have to
assign the constant a value, or simply use the expected value. The constant values are specified in
octal format and use the 0x prefix.

TABLE 15-6

Flags for Use with OpenDSObject
Flag Constant Value Description

ADS_SECURE_
AUTHENTICATION

0x1 Requests secure authentication

ADS_USE_
ENCRYPTION

0x2 Tells ADSI to use SSL (Secure Socket Layer) encryption
whenever exchanging data over the network; you must
have a Certificate Server installed to use this option.

ADS_USE_SSL 0x2 Tells ADSI to use SSL (Secure Socket Layer) encryption. You
must have a Certificate Server installed to use this option.

ADS_READONLY_
SERVER

0x4 Allows the provider to use a read-only connection

ADS_PROMPT_
CREDENTIALS

0x8 Tells ADSI to prompt for user credentials when the
authentication is initiated. An interface must be available
to display the prompt.

continued

86804c15.indd 31986804c15.indd 319 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

320

 Part III Network and Dictionary Service Scripting

Flag Constant Value Description

ADS_NO_
AUTHENTICATION

0x10 Requests no authentication; the WinNT provider does
not support this flag. With Active Directory, the security
context is set as “Everyone.”

ADS_FAST_BIND 0x20 Requests quick bind with minimum interfaces only (rather
than full-interface support)

ADS_USE_SIGNING 0x40 Checks data integrity to ensure the data received is the
same as the data sent; to use this flag, you must also set
the ADS_SECURE_AUTHENTICATION flag.

ADS_USE_SEALING 0x80 Tells ADSI to use Kerberos encryption. To use this flag, you
must also set the ADS_SECURE_AUTHENTICATION flag.

Listing 15-2 shows a more complete example of working with OpenDSObject. Technically, when
you obtain a reference to the provider object, you are obtaining a reference to the root of the provid-
er’s namespace. You can then work your way through this namespace in a variety of ways. As you
examine the listing, compare the VBScript and the JScript code carefully and note the differences.
You should also note the output, which demonstrates that the local Administrator account accessed
by the WinNT provider is different from the domain Administrator account accessed by the LDAP
provider. The accounts have different GUIDs and thus, they are different.

LISTING 15-2

Authenticating Your Access to the Directory

VBScript
auth.vbs

NTDomain = “seattle”
NTUser = “Administrator”

Set prov = GetObject(“WinNT:”)
Set user = prov.OpenDSObject(“WinNT://” & NTDomain & “/” & NTUser,
“wrstane”,”jiggyPop”, ADS_SECURE_AUTHENTICATION)

‘Work with the object
WScript.Echo user.Name
WScript.Echo user.Class
WScript.Echo user.GUID
WScript.Echo “”

Container = “CN=Administrator,CN=Users,DC=SEATTLE,DC=DOMAIN,DC=COM”

TABLE 15-6 (continued)

86804c15.indd 32086804c15.indd 320 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

321

 Introducing Active Directory Services Interfaces 15

Set prov2 = GetObject(“LDAP:”)
Set user2 = prov2.OpenDSObject(“LDAP://” & Container, “wrstanek@seattle.domain
.com”,”snoreLoud”, ADS_SECURE_AUTHENTICATION)

‘Work with the object
WScript.Echo user2.Name
WScript.Echo user2.Class
WScript.Echo user2.GUID
WScript.Echo “”

JScript
auth.js

ADS_SECURE_AUTHENTICATION = 0x1

NTDomain = “seattle”
NTUser = “Administrator”

var prov = GetObject(“WinNT:”)
var user = prov.OpenDSObject(“WinNT://” + NTDomain + “/” +
 NTUser,”wrstane”,”jiggyPop”, ADS_SECURE_AUTHENTICATION)

//Work with the object
WScript.Echo(user.Name)
WScript.Echo(user.Class)
WScript.Echo(user.GUID)
WScript.Echo(“”)

Container = “CN=Administrator,CN=Users,DC=SEATTLE,DC=DOMAIN,DC=COM”

var prov2 = GetObject(“LDAP:”)
var user2 = prov2.OpenDSObject(“LDAP://” + Container,
 “wrstanek@seattle.domain.com”,”snoreLoud”, ADS_SECURE_AUTHENTICATION)

//Work with the object
WScript.Echo(user2.Name)
WScript.Echo(user2.Class)
WScript.Echo(user2.GUID)
WScript.Echo(“”)

Output

Administrator
User
{D83F1060-1E71-11CF-B1F3-02608C9E7553}

CN=Administrator
user
21fa96966f2b5341ba91257c73996825

86804c15.indd 32186804c15.indd 321 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

322

 Part III Network and Dictionary Service Scripting

The script returns the local and domain administrators accounts. These accounts are differ-
ent and the Globally Unique Identifi er (GUID) associated with the accounts shows this. As

you set out to work with the providers, don’t forget that local objects are different than domain objects.

Accessing properties and updating objects
Providers access objects through various interfaces. The core interface is IADs. This interface defines
a set of properties and methods for working with objects. These properties and methods are exam-
ined in the sections that follow.

Working with IADs Properties
IADs properties you’ll want to use in Windows scripts are summarized in Table 15-7. These proper-
ties allow you to examine (but not set) object properties.

TABLE 15-7

IADs Properties for Windows Scripts
Properties Description Sample Return Value

AdsPath Retrieves the object’s AdsPath LDAP://CN=Administrator,
CN=Users,DC=SEATTLE,
DC=DOMAIN,DC=COM

Class Retrieves the name of the object’s class User

GUID Retrieves the GUID of the object 21fa96966f2b5341ba91257c73996825

Name Retrieves the object’s relative name CN=Administrator

Parent Retrieves the AdsPath string for the
parent object

LDAP://CN=Users,DC=SEATTLE,DC=DOMA
IN,DC=COM

Schema Retrieves the AdsPath string for the
related schema class object

LDAP://schema/user

The AdsPath strings for the parent and schema are very useful in your Windows scripts. You can
use these strings to retrieve the related parent and schema objects. Another useful property is GUID.
GUID returns the globally unique identifier that was assigned when the object instance was created.
Globally unique identifiers are 128-bit numbers that are guaranteed to be unique in the namespace.
Once an object is created, the GUID never changes—even if the object is moved or renamed. Thus,
while the AdsPath string to the object may change, the GUID won’t. Because of this, you may want
to use GUIDs to examine and manage objects in scripts.

Listing 15-3 provides a detailed example of how you read property values and display them. You’ll
also see an example of using the parent and schema properties to retrieve the related objects.

NOTENOTE

86804c15.indd 32286804c15.indd 322 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

323

 Introducing Active Directory Services Interfaces 15

LISTING 15-3

Using IADs Properties

VBScript
iads.vbs

Container = “CN=Administrator,CN=Users,DC=SEATTLE,DC=DOMAIN,DC=COM”

Set prov = GetObject(“LDAP:”)
Set user = prov.OpenDSObject(“LDAP://” & Container,
 “wrstanek@seattle.domain.com”,”lolly”, ADS_SECURE_AUTHENTICATION)

‘Work with the object
WScript.Echo “Object AdsPath: “ & user.AdsPath
WScript.Echo “Object Class: “ & user.Class
WScript.Echo “Object GUID: “ & user.GUID
WScript.Echo “Object Name: “ & user.Name
WScript.Echo “Object Parent: “ & user.Parent
WScript.Echo “Object Schema: “ & user.Schema

Set cls = GetObject(user.Schema)
WScript.Echo “Class Name: “ & cls.Name

Set parcls = GetObject(user.Parent)
WScript.Echo “Parent Class Name: “ & parcls.Name

JScript
iads.js

ADS_SECURE_AUTHENTICATION = 0x1
Container = “CN=Administrator,CN=Users,DC=SEATTLE,DC=DOMAIN,DC=COM”

var prov = GetObject(“LDAP:”)
var user = prov.OpenDSObject(“LDAP://” + Container, “wrstanek@seattle.domain.
com”,”lolly”,
 ADS_SECURE_AUTHENTICATION)

//Work with the object
WScript.Echo(“Object AdsPath: “ + user.AdsPath)
WScript.Echo(“Object Class: “ + user.Class)
WScript.Echo(“Object GUID: “ + user.GUID)
WScript.Echo(“Object Name: “ + user.Name)
WScript.Echo(“Object Parent: “ + user.Parent)
WScript.Echo(“Object Schema: “ + user.Schema)

var cls = GetObject(user.Schema)
WScript.Echo(“Class Name: “ + cls.Name)

continued

86804c15.indd 32386804c15.indd 323 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

324

 Part III Network and Dictionary Service Scripting

var parcls = GetObject(user.Parent)
WScript.Echo(“Parent Class Name: “ + parcls.Name)

Output

Object AdsPath: LDAP://CN=Administrator,CN=Users,DC=SEATTLE,DC=DOMAIN,DC=COM
Object Class: user
Object GUID: 21fa96966f2b5341ba91257c73996825
Object Name: CN=Administrator
Object Parent: LDAP://CN=Users,DC=SEATTLE,DC=DOMAIN,DC=COM
Object Schema: LDAP://schema/user
Class Name: user
Parent Class Name: CN=Users

You can modify the script to run on your system by changing the following lines to reflect proper
settings for your network:

Container = “CN=Administrator,CN=Users,DC=SEATTLE,DC=DOMAIN,DC=COM”
Set user = prov.OpenDSObject(“LDAP://” & Container,
 “wrstanek@seattle.domain.com”,”lolly”, ADS_SECURE_AUTHENTICATION)

or

Container = “CN=Administrator,CN=Users,DC=SEATTLE,DC=DOMAIN,DC=COM”
var user = prov.OpenDSObject(“LDAP://” + Container,
 “wrstanek@seattle.domain.com”,”lolly”, ADS_SECURE_AUTHENTICATION)

Once you do this, you should get a GUID for the Administrator object. Now replace the
Container line with the following code:

Container = “<GUID=guid>”

where guid is the actual GUID for the Administrator account. When you run the script again, you
should see output similar to the following:

Object AdsPath: LDAP://<GUID=21fa96966f2b5341ba91257c73996825>
Object Class: user
Object GUID: 21fa96966f2b5341ba91257c73996825
Object Name: <GUID=21fa96966f2b5341ba91257c73996825>
Object Parent: LDAP:
Object Schema: LDAP://schema/user
Class Name: user
Parent Class Name: LDAP:

LISTING 15-3 (continued)

86804c15.indd 32486804c15.indd 324 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

325

 Introducing Active Directory Services Interfaces 15

The output shows the important differences between using a GUID and using a precise object refer-
ence. When you access an object by its GUID, you access it directly from the root of the namespace.
This is why the parent object and parent class name are LDAP:. In your scripts, this difference may
cause poorly written scripts to behave differently when you use GUIDs. To prevent problems, ensure
that the parent and schema objects you obtain reflect the objects with which you want to work.

Working with IADs methods
As you’ve seen, the IADs properties are used to obtain standard properties for objects, such as the
object name and class. When you want to go beyond standard properties or want to set properties
of an object, you’ll need to use the methods of the IADs interface. The key methods are:

Get()■ : Gets a property value from the property cache.

Put()■ : Sets a new value in the property cache.

GetEx()■ : Gets an array of cached values.

PutEx()■ : Sets an array of cached values.

GetInfo()■ : Gets property values for an object from the directory cache.

GetInfoEx()■ : Gets property values for an object from the directory cache.

SetInfo()■ : Saves the object’s cached values to the data store.

During the testing of VBScript and JScript compatibility with ADSI, we found it diffi cult to
obtain reliable results with GetEx(), GetInfoEx(), and PutEx() in JScript. The reason

for this is that ADSI interfaces use safe arrays, which are designed for VBScript. Before you can use safe
arrays in JScript, you must convert them to a standard JScript array with the toArray() method.
Similarly, you can only update a safe array by creating a safe array with the VBArray() method.

When you use any of these methods, you obtain the property value by referencing the property
name, for example:

phone = user.Get(“homePhone”)

or

pager = user.Get(“pager”)

You can retrieve any available property with the Get() method. Although the Get() method is
designed to work with single values, it does return two types of values: strings or arrays. This can
lead to problems in your scripts. If you are unsure whether a property returns one value or many,
you may want to use GetEx(). With GetEx() you get an array regardless of whether there is one
value or multiple values. You can then examine the contents of the array to work with the property
values.

TIPTIP

86804c15.indd 32586804c15.indd 325 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

326

 Part III Network and Dictionary Service Scripting

You can examine multi-value properties in Listing 15-4. We’ve used a side-by-side code example so
you can make a direct comparison of safe array-handling techniques in VBScript and JScript.

LISTING 15-4

Viewing Multi-Value Properties

VBScript

Set user = GetObject(“LDAP://CN=William R. Stanek,CN=Users,DC=SEATTLE,DC=DOMAIN,
DC=COM”)
Nums = user.GetEx(“otherTelephone”)
For Each a In nums
 WScript.Echo a
Next

JScript

var user = GetObject(“LDAP://CN=William R. Stanek, CN=Users, DC=SEATTLE,
DC=DOMAIN, DC=COM”)
nums = user.GetEx(“otherTelephone”)
e = nums.toArray()
for (opt in e)
{
 WScript.Echo(e[opt])
}

When you use the Put() or PutEx() methods, you modify property values in the property cache.
To set the changes, you call SetInfo(). With Put(), you can set the home telephone number for a
user as shown in Listing 15-5.

LISTING 15-5

Setting Property Values

VBScript

Set user = GetObject(“LDAP://CN=William R. Stanek,CN=Users,
 DC=SEATTLE,DC=DOMAIN,DC=COM”)
user.Put “homePhone”, “808-555-1212”
user.SetInfo

86804c15.indd 32686804c15.indd 326 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

327

 Introducing Active Directory Services Interfaces 15

JScript

var user = GetObject(“LDAP://CN=William R. Stanek,CN=Users,
 DC=SEATTLE,DC=DOMAIN,DC=COM”)
user.Put(“homePhone”, “808-555-1212”)
user.SetInfo()

The GetInfo() and SetInfo() methods are strongly related. GetInfo() retrieves a snapshot of an
object from the directory store and puts it in the cache. When you obtain an object property using
Get() or GetEx(), the GetInfo() method is called for you and this is how you are able to obtain a
property value. When you check property values later for the same object, these values are retrieved
directly from cache and GetInfo() is not called (unless you explicitly call it).

Once you change property values in the cache, you should commit those changes by calling
SetInfo(). Keep in mind, however, that you shouldn’t call SetInfo() each time you change
property values. Rather, you should call SetInfo() when you are finished working with the
object and want to update the directory store.

The PutEx() method has an interesting syntax that you should know about. When you call
PutEx(), you pass in three parameters:

A flag that determines how a property value should be updated■

A string containing the property name■

An array containing the new value(s) for the property■

These parameters give PutEx() the following syntax:

Obj.PutEx(Flag, “Property”, Array(“str1”, “str2”, … “strN”)

Table 15-8 provides an overview of the flags for PutEx().

TABLE 15-8

Flags for Use with PutEx()
Flag Constant Value Description

ADS_PROPERTY_CLEAR 1 Sets the property value to an empty string

ADS_PROPERTY_UPDATE 2 Replaces the current property value with the array value(s)

ADS_PROPERTY_APPEND 3 Adds the array value(s) to the current property value

ADS_PROPERTY_DELETE 4 Deletes the specified value(s) in the array from the
property

86804c15.indd 32786804c15.indd 327 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

328

 Part III Network and Dictionary Service Scripting

An example of modifying multi-value properties is shown in Listing 15-6. Note that you normally
wouldn’t make all of these changes on the same object.

LISTING 15-6

Working with Multiple Property Values

VBScript
multiprops.vbs

Set user = GetObject(“LDAP://CN=William R. Stanek,CN=Users,DC=SEATTLE,DC=DOMAIN,
DC=COM”)

‘Replace current value
Dim r
r = Array(“808-555-1212”,”808-678-1000”)
user.PutEx ADS_PROPERTY_UPDATE, “otherTelephone”, r
user.SetInfo

‘Add another phone number
Dim a
a = Array(“206-905-55555”)
user.PutEx ADS_PROPERTY_APPEND, “otherTelephone”, a
user.SetInfo

‘Delete a value while leaving other values
Dim d
d = Array(“808-555-1212”)
user.PutEx ADS_PROPERTY_DELETE, “otherTelephone”, d
user.SetInfo

‘Clear all values
user.PutEx ADS_PROPERTY_CLEAR, “otherTelephone”, vbNullString
user.SetInfo

JScript
multiprops.js

var user = GetObject(“LDAP://CN=William R. Stanek,CN=Users,DC=SEATTLE,DC=DOMAIN,
DC=COM”)

//Replace current value
r = new VBArray(“808-555-1212”,”808-678-1000”)
user.PutEx(ADS_PROPERTY_UPDATE, “otherTelephone”, r)
user.SetInfo()

86804c15.indd 32886804c15.indd 328 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

329

 Introducing Active Directory Services Interfaces 15

//Add another phone number
a = new VBArray(“206-905-55555”)
user.PutEx(ADS_PROPERTY_APPEND, “otherTelephone”, a)
user.SetInfo()

//Delete a value while leaving other values
d = new VBArray(“808-555-1212”)
user.PutEx(ADS_PROPERTY_DELETE, “otherTelephone”, d)
user.SetInfo()

//Clear all values
user.PutEx(ADS_PROPERTY_CLEAR, “otherTelephone”, “”)
user.SetInfo()

Summary
ADSI provides a powerful set of interfaces that you can use to manage system and network resources.
To work with these interfaces, you use an ADSI provider, such as WinNT or LDAP. Each provider
supports an extensible set of objects and these objects implement specific interfaces. The supported
interfaces determine the functions you can script. Most objects implement the IADs interface. This
interface provides basic functions for reading and writing object properties.

86804c15.indd 32986804c15.indd 329 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

86804c15.indd 33086804c15.indd 330 1/21/09 1:27:44 PM1/21/09 1:27:44 PM

331

One of the most important features of ADSI is its extensibility. ADSI
will change and evolve over time, and to adapt to these changes,
you’ll need to know how to navigate the schema. Schemas provide

the basic structures that you can script. By examining the schema, you can
determine the exact feature set a particular computer supports. You can also
determine the acceptable parameters for properties. These elements together
provide everything you need to master the provider features and to get
detailed information on objects and their properties. As you study this
chapter, keep in mind that Appendix B has detailed information on all of
the interfaces that this chapter examines.

Exploring ADSI Schema
In ADSI, you manage groups of objects through collections. You’ll encoun-
ter collections in a wide variety of circumstances. For example, user sessions
are represented through a collection and you use this collection to examine
individual Session objects. You also manage services, print jobs, and open
resources through collections.

Collections are implemented through the IADsCollection interface. This
interface has methods for obtaining, adding, and removing elements. ADSI
defines two special types of collections:

Containers:■ Containers contain other objects and are implemented
with the IADsContainer interface. The IADsContainer inter-
face has properties and methods for examining and managing
objects.

Using Schema to
Master ADSI

IN THIS CHAPTER
Understanding ADSI schema,
collections, and containers

Managing schema class objects

Viewing property values
and ranges

Viewing automation data types

86804c16.indd 33186804c16.indd 331 1/21/09 1:27:56 PM1/21/09 1:27:56 PM

332

 Part III Network and Dictionary Service Scripting

Membership groups:■ Membership groups represent collections of objects belonging to
groups and are implemented with the IADsMembers interface. The IADsMembers interface
has methods for determining and summarizing group membership. Only users and groups
have membership groups.

The Schema object is a top-level container for other objects, and these objects in turn contain other
objects. All system providers support a Schema object. Schema is implemented through three interfaces:

IADsClass■ : Used to manage schema class objects

IADsProperty■ : Used to view object properties

IADsSyntax■ : Used to view data types supported by object properties

An object that is not a container is referred to as a leaf element. Only users and groups have mem-
bership groups. You can determine this because they implement the IADsMembers interface.

Knowing the object model structure is essential to working with Active Directory schema. So before
we cover the schema in depth, we’ll map out the object model for WinNT and LDAP. These provid-
ers are the ones you’ll use the most.

The core WinNT object model
The WinNT provider has the most complex object model, primarily because WinNT serves a multi-
purpose role for domains, Windows NT 4.0 computers, and Windows computers.

With the WinNT provider, the core container objects are Domain, User, and Group. The Domain
object represents the top of the domain hierarchy. The User object represents domain user accounts.
The Group object represents domain group accounts. While the Domain object holds other contain-
ers, the User and Group objects contain individual user and group accounts at the leaf level.

The core hierarchy comes together like this:

WinNT:
 - Domain
 - User
 - LocalGroup
 LocalGroupCollection
 - Computer
 - Service
 - FileService
 - FileShare
 - ResourcesCollection
 - SessionsCollection
 - PrintQueue
 - PrintJobsCollection
 - User
 - Group
 UserGroupCollection
 GroupCollection

86804c16.indd 33286804c16.indd 332 1/21/09 1:27:56 PM1/21/09 1:27:56 PM

333

 Using Schema to Master ADSI 16

You can use the object model to determine how you can access a specific object. For example, to
access the alert service you must go through the Domain and Computer objects:

VBScript

Set service = GetObject(“WinNT://tvpress/zeta/alerter,service”)

JScript

var service = GetObject(“WinNT://tvpress/zeta/alerter,service”)

where tvpress is the domain name, zeta is the computer name, and alerter is the name of the
service you want to work with.

The core LDAP object model
Compared to the WinNT object model, the LDAP object model is fairly basic, primarily because the
LDAP model seeks to be generic so that it can be used with multiple applications, such as Windows
and Exchange Server. Because of this, the only meaningful way to examine the object models related
to the LDAP provider is in the context of a specific implementation. The implementation you’ll use
the most is the Windows object model.

The Windows object model is tied to Active Directory. The root of the Active Directory directory tree
is represented with the RootDSE object. The RootDSE provides information about individual direc-
tory servers and is not a part of the standard namespace. In addition to the directory root, you’ll find
the standard naming contexts for Windows. A naming context is a top-level container for the direc-
tory tree. The available naming contexts are:

Domain container: ■ A top-level container for the domain. It contains users, groups, com-
puters, organizational units, and other domain objects.

Schema container: ■ A top-level container that allows you to access schema objects.

Configuration container: ■ A top-level container for the entire domain forest. It contains
sites, which in turn contain individual sites, subnets, inter-site transports, and other con-
figuration objects.

As you’d expect, these naming contexts hold other containers. You can view other domain contain-
ers through Active Directory Users and Computers. As Figure 16-1 shows, the default domain con-
tainers are:

Builtin:■ Stores built-in local groups.

Computers:■ Stores computer accounts.

ForeignSecurityPrincipals:■ Stores security identifiers for external objects associated with
external, trusted domains.

Users:■ Stores user and group accounts.

86804c16.indd 33386804c16.indd 333 1/21/09 1:27:56 PM1/21/09 1:27:56 PM

334

 Part III Network and Dictionary Service Scripting

The default containers are designed to hold specific types of objects. However, you can add just
about any type of object to these containers, including:

Computers■

Contacts■

Users■

Groups■

Printers■

Shared Folders■

FIGURE 16-1

You can use Active Directory Users and Computers to view high-level domain containers and their contents.

We refer to these types of objects as common-name objects. You access objects in default containers
through the common-name identifier, CN. For example, if you want to access the built-in Administrators
group, you can use the following:

VBScript

Set acc = GetObject(“LDAP://CN=Administrators,CN=Builtin,DC=tvpress,DC=com”)

JScript

var acc = GetObject(“LDAP://CN=Administrators,CN=Builtin,DC=tvpress,DC=com”)

New domain containers can be created as well. To do this, you create organizational units. Organizational
units can contain the same objects as the default domain containers. The only default organizational unit
is Domain Controllers, which is designed to store computer accounts for domain controllers. To access
Domain Controllers, you must use the organizational unit identifier, OU.

86804c16.indd 33486804c16.indd 334 1/21/09 1:27:56 PM1/21/09 1:27:56 PM

335

 Using Schema to Master ADSI 16

If you create or move objects into the organizational unit container, you access the objects through
the organizational unit—for example:

VBScript

Set acc = GetObject(“LDAP://CN=William R. Stanek,OU=IT,DC=tvpress,DC=com”)

JScript

var acc = GetObject(“LDAP://CN=William R. Stanek,OU=IT,DC=tvpress,DC=com”)

You can view other configuration containers through Active Directory Sites and Services. As
Figure 16-2 shows, the default configuration containers are:

Sites:■ A high-level container for subnets, transports, and individual sites.

Default-First-Site:■ The default site for the domain tree.

Subnets:■ A high-level container for subnets in the domain tree.

Inter-Site Transports:■ A high-level container for transports. Transports like IP and SMTP
transfer information throughout the domain tree.

FIGURE 16-2

You can use Active Directory Sites and Services to view high-level configuration containers and their contents.

Putting all this together, you see that the Windows object model looks similar to the following:

RootDSE
 - Domain Container
 - Default Containers
 - Common Name Objects
 - Organizational Units
 - Common Name Objects

86804c16.indd 33586804c16.indd 335 1/21/09 1:27:56 PM1/21/09 1:27:56 PM

336

 Part III Network and Dictionary Service Scripting

 - Schema Container
 - Schema Objects
 - Configuration Container
 - Sites Container
 - Site Container
 - Subnets Container
 - Inter-site Transports Container

Working with Schema Class Objects
Schema class objects provide a window into the world of the ADSI provider. If you know nothing
else about a provider except its name and the core objects it supports, you can—with a bit of trial
and error—explore every key feature of the provider. To do this, you access the IADsClass inter-
face of the object you want to work with and then you use the properties of this interface to explore
the object.

Accessing an object’s schema class
You access an object’s schema class through its Schema property. For example, if you want to access
the schema for a computer, you can use the following:

VBScript

‘WinNT Provider
Set obj = GetObject(“WinNT://zeta,computer”)
Set cls = GetObject(obj.Schema)

‘LDAP Provider
Set obj = GetObject(“LDAP://CN=Zeta,CN=Computers, DC=tvpress, DC=com”)
Set cls = GetObject(obj.Schema)

JScript

//WinNT Provider
var obj = GetObject(“WinNT://zeta,computer”)
var cls = GetObject(obj.Schema)

//LDAP Provider
var obj = GetObject(“LDAP://CN=Zeta,CN=Computers, DC=tvpress, DC=com”)
var cls = GetObject(obj.Schema)

Once you’ve accessed the schema for an object, you can use any of the available properties of
IADsClass to work with the schema. These properties are summarized in Table 16-1.

86804c16.indd 33686804c16.indd 336 1/21/09 1:27:56 PM1/21/09 1:27:56 PM

337

 Using Schema to Master ADSI 16

TABLE 16-1

Properties of IADsClass
Property Status Description

Abstract Read/Write Boolean value that indicates whether the schema class is
abstract

AuxDerivedFrom Read/Write Array of AdsPath strings that specify the super
Auxiliary classes of this schema class

Auxiliary Read/Write Boolean value that determines whether this schema class
is an Auxiliary class

CLSID Read/Write A provider-specific string that identifies the COM object
that implements this schema class

Container Read/Write Boolean value that indicates whether this is a Container
object

Containment Read/Write Array of strings that identify object types that can be
contained within this container

DerivedFrom Read/Write Array of AdsPath strings that indicate which classes this
class is derived from

HelpFileContext Read/Write The context identifier for an optional help file

HelpFileName Read/Write The name of an optional help file

MandatoryProperties Read/Write An array of strings that lists the mandatory properties for
an ADSI object

NamingProperties Read/Write An array of strings that lists the properties that are used for
naming attributes

OID Read/Write A directory-specific object identifier string

OptionalProperties Read/Write An array of strings that lists the optional properties for an
ADSI object

PossibleSuperiors Read/Write An array of AdsPath strings that lists classes that can
contain instances of this class

PrimaryInterface Read Only A globally unique identifier string for the interface defining
this schema class

Checking to see if an object is a container
Often when you work with objects, you’ll want to determine if an object is a container and, if so,
what objects it contains. You can do this with the Container and Containment properties. An
example is shown as Listing 16-1.

86804c16.indd 33786804c16.indd 337 1/21/09 1:27:56 PM1/21/09 1:27:56 PM

338

 Part III Network and Dictionary Service Scripting

As you examine the listing, note the different VBScript and JScript techniques used to access the
Containment array. ADSI returns arrays as safe arrays, which are designed to be used with
VBScript. To use these arrays in JScript, you can convert the safe array to a normal JScript array.

LISTING 16-1

Checking Containers and Containment

VBScript
Container.vbs

Set dom = GetObject(“WinNT://tvpress”)
Set cls = GetObject(dom.Schema)
If cls.Container = True Then
 WScript.Echo “The domain object contains the following objects: “
 e = cls.Containment
 For each op in e
 WScript.Echo op
 Next
End If

JScript
Container.js

var dom = GetObject(“WinNT://tvpress”)
var cls = GetObject(dom.Schema)
if (cls.Container == 1) {
 WScript.Echo(“The domain object contains the following objects: “)
 e = cls.Containment.toArray()
 for (op in e)
 {
 WScript.Echo(e[op])
 }
}

Output

The domain object contains the
 following children:
Computer
User
Group

Examining mandatory and optional properties
Whether you are creating users, modifying groups, or working with other objects, you often need to be
able to determine if a property must be set, or if the property is optional. You can determine mandatory
and optional properties using MandatoryProperties and OptionalProperties, respectively.

86804c16.indd 33886804c16.indd 338 1/21/09 1:27:56 PM1/21/09 1:27:56 PM

339

 Using Schema to Master ADSI 16

Listing 16-2 examines properties of the Computer object using both WinNT and LDAP. With
WinNT, you can bind directly to the object. With LDAP, you must bind to the object via its con-
tainer, which in this case is the Computers container.

LISTING 16-2

Examining Mandatory and Optional Properties

VBScript
Checkproperties.vbs

Set obj = GetObject(“WinNT://zeta,computer”)
Set cls = GetObject(obj.Schema)
WScript.Echo obj.AdsPath
displayProps(cls)

Set obj =GetObject(“LDAP://CN=Omega,CN=Computers,DC=tvpress,DC=com”)
Set cls = GetObject(obj.Schema)
WScript.Echo obj.AdsPath
displayProps(cls)

Sub displayProps(obj)
 For Each p in obj.MandatoryProperties
 WScript.Echo “Mandatory: “ & p
 Next
 For Each p in obj.OptionalProperties
 WScript.Echo “Optional: “ & p
 Next
End Sub

JScript
Checkproperties.js

var obj = GetObject(“WinNT://zeta,computer”)
var cls = GetObject(obj.Schema)
WScript.Echo(obj.AdsPath)
displayProps(cls)

var obj =GetObject(“LDAP://CN=Omega,CN=Computers,DC=tvpress,DC=com”)
var cls = GetObject(obj.Schema)
WScript.Echo(obj.AdsPath)
displayProps(cls)

function displayProps(obj) {

 mprop = obj.MandatoryProperties.toArray()
 for (p in mprop) {
 WScript.Echo(“Mandatory: “ + mprop[p])
 }

continued

86804c16.indd 33986804c16.indd 339 1/21/09 1:27:56 PM1/21/09 1:27:56 PM

340

 Part III Network and Dictionary Service Scripting

 oprop = obj.OptionalProperties.toArray()
 for (p in oprop) {
 WScript.Echo(“Optional: “ + oprop[p])
 }
}

Output

WinNT://SEATTLE/ZETA
Optional: Owner
Optional: Division
Optional: OperatingSystem
Optional: OperatingSystemVersion
Optional: Processor
Optional: ProcessorCount
LDAP://CN=Omega,CN=Computers,DC=SEATTLE,DC=DOMAIN,DC=com
Mandatory: cn
Mandatory: instanceType
Mandatory: nTSecurityDescriptor
Mandatory: objectCategory
Mandatory: objectClass
Mandatory: objectSid
Mandatory: sAMAccountName
Optional: accountExpires
Optional: accountNameHistory
Optional: aCSPolicyName
Optional: adminCount
…
Optional: x121Address

As the output shows, LDAP and Active Directory report many mandatory properties for most
objects. Fortunately, some of these properties are set automatically when you create an object
instance. The pre-set properties are as follows:

instanceType■

nTSecurityDescriptor■

objectCategory■

objectClass■

objectSid■

LISTING 16-2 (continued)

86804c16.indd 34086804c16.indd 340 1/21/09 1:27:57 PM1/21/09 1:27:57 PM

341

 Using Schema to Master ADSI 16

Because of this, you can create a computer object by setting only the cn and samAccountName
properties—for example:

VBScript

Set cont = GetObject(“LDAP://CN=Computers,DC=tvpress,DC=com”)
Set comp = cont.Create(“computer”, “CN=theta”)
comp.Put “samAccountName”, “theta”
comp.SetInfo

JScript

var cont = GetObject(“LDAP://CN=Computers,DC=tvpress,DC=com”)
var comp = cont.Create(“computer”, “CN=theta”)
comp.Put(“samAccountName”, “theta”)
comp.SetInfo()

Viewing Property Syntax, Ranges, and Values
Once you know which properties are available for an object, you may want to take a more detailed
look at a particular property. For example, you may want to know the minimum and maximum val-
ues the property accepts. You may also want to know which type of values you can pass to the prop-
erty. You can examine the individual properties of an object using the IADsProperty interface.

Accessing the IADsProperty interface
The IADsProperty interface is designed for managing attributes of schema objects. You gain access
to an object’s properties by binding to the parent schema object. In this example, you bind to the
schema for the Computer object:

VBScript

Set cls = GetObject(obj.Schema)
Set par = GetObject(obj.Parent)

JScript

var cls = GetObject(obj.Schema)
var par = GetObject(obj.Parent)

Once you bind to the parent schema object, you can retrieve a specific property using the
GetObject() method and the following syntax:

SchemaObject.GetObject(“Property”,”PropertyName”)

86804c16.indd 34186804c16.indd 341 1/21/09 1:27:57 PM1/21/09 1:27:57 PM

342

 Part III Network and Dictionary Service Scripting

where SchemaObject is the schema object you obtained and PropertyName is the name of the
property you want to examine—for example:

VBScript

Set prop = cls.GetObject(“Property”,”Owner”)

JScript

var prop = cls.GetObject(“Property”,”Owner”)

Once you’ve accessed a property, you can use any of the properties of IADsProperty to work with
the schema. These properties are summarized in Table 16-2.

TABLE 16-2

Properties of IADsProperty
Property Status Description

MaxRange Read/Write Numeric value that sets the upper limit of values for the property

MinRange Read/Write Numeric value that sets the lower limit of values for the property

MultiValued Read/Write Boolean value that indicates whether this property supports multiple
values

OID Read/Write The directory-specific object identifier string

Syntax Read/Write A string that specifies the acceptable data type(s) for the property

Examining object properties
Now that you know the features of IADsProperty that are available to you, you can put these fea-
tures to use to help you determine syntax, range, and value types for properties. One way to exam-
ine this information is to identify a specific property you want to learn about and then display its
schema. Listing 16-3 examines the OperatingSystem property of the Computer Object.

LISTING 16-3

Examining Schema for Object Properties

VBScript
viewpropertyschema.vbs

Set obj = GetObject(“WinNT://zeta,computer”)
Set cls = GetObject(obj.Schema)

86804c16.indd 34286804c16.indd 342 1/21/09 1:27:57 PM1/21/09 1:27:57 PM

343

 Using Schema to Master ADSI 16

Set sch = GetObject(cls.Parent)
Set pr = sch.GetObject(“Property”,”OperatingSystem”)

WScript.Echo “Property: “ & pr.Name
WScript.Echo “Syntax: “ & pr.Syntax
WScript.Echo “MaxRange: “ & pr.MaxRange
WScript.Echo “MinRange: “ & pr.MinRange
WScript.Echo “Multivalued: “ & pr.Multivalued

JScript
viewpropertyschema.js

var obj = GetObject(“WinNT://zeta,computer”)
var cls = GetObject(obj.Schema)
var sch = GetObject(cls.Parent)
var pr = sch.GetObject(“Property”,”OperatingSystem”)

WScript.Echo(“Property: “ + pr.Name)
WScript.Echo(“Syntax: “ + pr.Syntax)
WScript.Echo(“MaxRange: “ + pr.MaxRange)
WScript.Echo(“MinRange: “ + pr.MinRange)
WScript.Echo(“Multivalued: “ + pr.Multivalued)

Output

Property: OperatingSystem
Syntax: String
MaxRange: 256
MinRange: 0
Multivalued: False

If you want to examine all the properties of an object, you can set up a control loop through optional
and mandatory object properties (much as you did in Listing 16-2). You’ll run into a problem, how-
ever. While all properties of WinNT objects have maximum and minimum ranges, this isn’t neces-
sarily true with objects in other providers. The only properties that are supported for all objects
across all providers are Syntax and Multivalued.

To work around the property-support problem, you’ll need to set up error-handling for the script as
described in Chapter 7. In Listing 16-4, we’ve implemented error-handling in a VBScript routine
that examines all properties of a given object for WinNT and LDAP. The objects the script examines
are Domain, Computer, User, and Group. The key to accessing these objects is to obtain a reference
to a representative object and then to access the parent schema object.

86804c16.indd 34386804c16.indd 343 1/21/09 1:27:57 PM1/21/09 1:27:57 PM

344

 Part III Network and Dictionary Service Scripting

LISTING 16-4

Examining Schema for All Object Properties

VBScript
viewall.vbs

‘Get domain properties for WinNT
Set obj = GetObject(“WinNT://seattle”)
Set cls = GetObject(obj.Schema)
Set sch = GetObject(cls.Parent)
WScript.Echo obj.AdsPath
displayProps(cls)

‘Get computer properties for WinNT
Set obj = GetObject(“WinNT://zeta,computer”)
Set cls = GetObject(obj.Schema)
Set sch = GetObject(cls.Parent)
WScript.Echo obj.AdsPath
displayProps(cls)

‘Get user properties for WinNT
Set obj = GetObject(“WinNT://zeta/Administrator,user”)
Set cls = GetObject(obj.Schema)
Set sch = GetObject(cls.Parent)
WScript.Echo obj.AdsPath
displayProps(cls)

‘Get group properties for WinNT
Set obj = GetObject(“WinNT://zeta/administrators,group”)
Set cls = GetObject(obj.Schema)
Set sch = GetObject(cls.Parent)
WScript.Echo obj.AdsPath
displayProps(cls)

‘Get domain properties for LDAP
Set obj = GetObject(“LDAP://DC=tvpress,DC=com”)
Set cls = GetObject(obj.Schema)
Set sch = GetObject(cls.Parent)
WScript.Echo obj.AdsPath
displayProps(cls)

‘Get computer properties for LDAP
Set obj = GetObject(“LDAP://CN=Omega,CN=Computers, DC=tvpress,DC=com”)
Set cls = GetObject(obj.Schema)
Set sch = GetObject(cls.Parent)
WScript.Echo obj.AdsPath
displayProps(cls)

86804c16.indd 34486804c16.indd 344 1/21/09 1:27:57 PM1/21/09 1:27:57 PM

345

 Using Schema to Master ADSI 16

‘Get user properties for LDAP
Set obj = GetObject(“LDAP://CN=William R. Stanek,CN=Users,DC=tvpress,DC=com”)
Set cls = GetObject(obj.Schema)
Set sch = GetObject(cls.Parent)
WScript.Echo obj.AdsPath
displayProps(cls)

‘Get group properties for LDAP
Set obj = GetObject(“LDAP://CN=Administrators,CN=Builtin,DC=tvpress,DC=com”)
Set cls = GetObject(obj.Schema)
Set sch = GetObject(cls.Parent)
WScript.Echo obj.AdsPath
displayProps(cls)

‘Subroutine to display object properties
Sub displayProps(obj)
 On Error Resume Next

 For Each p in obj.MandatoryProperties
 Set prop = sch.GetObject(“Property”,p)
 WScript.Echo “Property: “ & prop.Name
 WScript.Echo “Syntax: “ & prop.Syntax
 WScript.Echo “MinRange: “ & prop.MinRange
 WScript.Echo “MaxRange: “ & prop.MaxRange
 WScript.Echo “Multivalued:” & prop.Multivalued
 WScript.Echo
 Next

 For Each p in obj.OptionalProperties
 Set prop = sch.GetObject(“Property”,p)
 WScript.Echo “Property: “ & prop.Name
 WScript.Echo “Syntax: “ & prop.Syntax
 WScript.Echo “MinRange: “ & prop.MinRange
 WScript.Echo “MaxRange: “ & prop.MaxRange
 WScript.Echo “Multivalued:” & prop.Multivalued
 WScript.Echo
 Next
End Sub

One of the properties that deserves additional discussion is Multivalued. If you are unsure
whether a property returns a single value or multiple values, use the Multivalued property. If you
create general-purpose functions for handling properties, you can use this to determine whether you
use Get(), GetEx(), Put(), or PutEx()—for example:

VBScript

If prop.Multivalued = True Then
 ‘use GetEx() or PutEx()

86804c16.indd 34586804c16.indd 345 1/21/09 1:27:57 PM1/21/09 1:27:57 PM

346

 Part III Network and Dictionary Service Scripting

Else
 ‘use Get() or Put()
End If

JScript

if (prop.Multivalued == 1) {
 //use GetEx() or PutEx()
else {
 //use Get() or Put()
}

Summary
As you’ve seen in this chapter, schemas are an important aspect of ADSI scripting. If you know how
to access schema, you can examine objects and the properties they support. Some properties are
optional when you create a new instance of an object. Other properties are mandatory. You must set
mandatory properties when you create an object, such as a user, group, or computer account.

86804c16.indd 34686804c16.indd 346 1/21/09 1:27:57 PM1/21/09 1:27:57 PM

347

W indows scripts and ADSI can help you build powerful tools for
managing computers and domain resources. The ADSI provider
you’ll use to manage local resources on Windows computers is

WinNT. You will also use the WinNT provider to manage domain resources.
The focus of this chapter is on using WinNT to manage the following:

Domain account policies for both Windows Vista and ■

Windows Server 2008

Domain user accounts for both Windows Vista and ■

Windows Server 2008

Domain group accounts for both Windows Vista and ■

Windows Server 2008

Local computer properties for both Windows Vista and ■

Windows Server 2008

Local user and group accounts for both Windows Vista and ■

Windows Server 2008

Managing Domain Account Policies
Using the WinNT provider, you can view and set domain account policies
for Windows Vista and Windows Server 2008. In Windows NT, you nor-
mally access these properties through the User Manager’s Account Policy
dialog box. In Windows, you normally access these properties through
Group Policy.

Managing Local and
Domain Resources

with ADSI

IN THIS CHAPTER
Managing domain settings

Viewing and modifying local
computer settings

Local and global user account
administration

Local and global group account
administration

86804c17.indd 34786804c17.indd 347 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

348

 Part III Network and Dictionary Service Scripting

Working with domain objects
Before you can manage domain account policies, you must first obtain a reference to a domain
object. In this example, you obtain the domain object for a domain named tvpress:

VBScript

Set dom = GetObject(“WinNT://tvpress”)

JScript

var dom = GetObject(“WinNT://tvpress”)

The domain name you use with WinNT is always the NT domain name whether you are working
with Windows NT or Windows. With the domain seattle.tvpress.com, the NT equivalent
would normally be seattle, but with the domain tvpress.com, the NT equivalent would nor-
mally be tvpress.

Once you obtain the Domain object, you can get and set the properties of the object, for example:

VBScript

dom.Put “MinPasswordLength”, 8
dom.SetInfo

JScript

dom.Put(“MinPasswordLength”, 8)
dom.SetInfo()

Table 17-1 summarizes the available Domain object properties. A status of RW means that you can
set and get the property (i.e., it is readable and writable).

TABLE 17-1

WinNT Domain Object Summary

Property Status Value Type Min Range Max Range
Multiple
Values

MinPasswordLength RW Integer 0 14 False

MinPasswordAge RW Integer 0 86227200 False

MaxPasswordAge RW Integer 86400 86313600 False

MaxBadPasswordsAllowed RW Integer 0 2147483647 False

PasswordHistoryLength RW Integer 0 8 False

AutoUnlockInterval RW Integer 0 2147483647 False

LockoutObservation Interval RW Integer 0 2147483647 False

86804c17.indd 34886804c17.indd 348 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

349

 Managing Local and Domain Resources with ADSI 17

Note that if you used the techniques described in Chapter 16 to obtain a summary for the
Domain object, you’d get slightly different results. The primary reason for this is that the

syntax often reports –1 as the highest value when a property restriction can be turned off with a setting
of 0. Another interpretation for this is that there isn’t an upper range when the property is turned off.

Preparing to view and set account policies
Before you can manage account policies, you must ensure that the related policies are enabled through
group policies. If a policy is disabled or inactive, you won’t be able to manipulate the related prop-
erty. Group policy is discussed in Chapter 14. As discussed in that chapter, you access the domain
group policy container through Active Directory Users and Computers. Once you start Active
Directory Users and Computers, you can view the group policy for accounts as follows:

 1. Right-click on the domain you want to work with in the console root. Then select
Properties. This displays a Properties dialog box.

 2. In the Properties dialog box, select the Group Policy tab, and then click Edit. You can now
view and set group policies.

 3. Expand Computer Configuration, Windows Settings, and Security Settings. Then click the
Account Policies node.

 4. Select the Password Policy node and note which policies are enabled or disabled.

 5. Select the Account Lockout Policy node and note which policies are enabled or not defined.

 6. If you need to enable a policy, double-click it and then select the Define This Policy check-
box or the Enabled radio button as appropriate.

Domain object properties map to password and account lockout policies as follows:

Password Policy:

PasswordHistoryLength■ sets Enforce Password History.

MaxPasswordAge■ sets Maximum Password Age.

MinPasswordAge■ sets Minimum Password Age.

MinPasswordLength■ sets Minimum Password Length.

Account Lockout Policy:

MaxBadPasswordsAllowed■ sets Account Lockout Threshold.

AutoUnlockInterval■ sets Account Lockout Duration.

LockoutObservationInterval■ sets Reset Account Lockout Counter After.

NOTENOTE

86804c17.indd 34986804c17.indd 349 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

350

 Part III Network and Dictionary Service Scripting

Viewing and setting account policies
Properties of the domain object can be tricky to use because you must set them in a specific way. To
help you get around the pitfalls, we’ll examine each property briefly.

Using MinPasswordLength
The MinPasswordLength property sets the minimum number of characters for passwords. The
value must be between 0 and 14. You can view and set the minimum password length, as shown in
Listing 17-1.

LISTING 17-1

Setting and Viewing the Minimum Password Length

VBScript
minpass.vbs

‘Set minimum password length
Set dom = GetObject(“WinNT://seattle”)
Dom.Put “MinPasswordLength”, 8
Dom.SetInfo
‘Confirm the change
WScript.Echo(“MinPasswordLength”)

JScript
minpass.js

//Set minimum password length
var dom = GetObject(“WinNT://seattle”)
dom.Put(“MinPasswordLength”, 8)
dom.SetInfo()
//Confirm the change
dom.Get
WScript.Echo(dom.Get(“MinPasswordLength”))

Using MinPasswordAge and MaxPasswordAge
The MinPasswordAge and MaxPasswordAge properties are closely related. MinPasswordAge deter-
mines what length of time users must keep a password before they can change it and MaxPasswordAge
determines how long users can keep a password before they must change it. The maximum password
age must be set to a duration that is longer than the minimum password age. Otherwise, an error
occurs when you try to set the property value.

Both MinPasswordAge and MaxPasswordAge have maximum ranges of 998 and 999 days, respec-
tively. You have to set the values in seconds, however, because this is how the Windows Registry
handles the values. The easiest way to convert seconds to days is to use 86,400 as a multiplier. This

86804c17.indd 35086804c17.indd 350 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

351

 Managing Local and Domain Resources with ADSI 17

value is the number of seconds in a day. Following this, you can set a minimum password age of 3
days and a maximum password age of 90 days like this:

VBScript

Set d = GetObject(“WinNT://seattle”)
d.Put “MinPasswordAge”, 86400*3
d.Put “MaxPasswordAge”, 86400*90
d.SetInfo

JScript

var d = GetObject(“WinNT://seattle”)
d.Put(“MinPasswordAge”, 86400*3)
d.Put(“MaxPasswordAge”, 86400*90)
d.SetInfo()

You can then confirm the changes by examining the current property values:

VBScript

WScript.Echo d.Get(“MinPasswordAge”)
WScript.Echo d.Get(“MaxPasswordAge”)

JScript

WScript.Echo(d.Get(“MinPasswordAge”))
WScript.Echo(d.Get(“MaxPasswordAge”))

Using PasswordHistoryLength
The password history determines how often a user can reuse an old password. For example, if you
set the password history length to 3, the history remembers up to three passwords for each user. If
Sally has the passwords coolDays, rainBows, and rubberDuck in the history, she won’t be able to
reuse those passwords.

You can set and then confirm the password history length, as shown in Listing 17-2.

LISTING 17-2

Setting and Viewing the Password History Length

VBScript
passhist.vbs

‘Set password history length
Set dom = GetObject(“WinNT://seattle”)
dom.Put “PasswordHistoryLength”, 4
dom.SetInfo

continued

86804c17.indd 35186804c17.indd 351 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

352

 Part III Network and Dictionary Service Scripting

‘Confirm the change
WScript.Echo(“PasswordHistoryLength: “ & dom.PasswordHistoryLength)

JScript
passhist.js

//Set password history length
var dom = GetObject(“WinNT://seattle”)
dom.Put(“PasswordHistoryLength”, 4)
dom.SetInfo()

//Confirm the change
WScript.Echo(“PasswordHistoryLength: “ + dom.Get(“PasswordHistoryLength “))

Using MaxBadPasswordsAllowed, AutoUnlockInterval,
and LockoutObservationInterval
The MaxBadPasswordsAllowed, AutoUnlockInterval, and LockoutObservationInterval
properties all relate to whether accounts get locked out when users enter bad passwords repeatedly.
The MaxBadPasswordsAllowed property determines the number of bad passwords a user can enter
before he or she is locked out. The AutoUnlockInterval property determines how long the user is
locked out. The LockoutObservationInterval property determines when previously entered bad
passwords no longer count toward locking out the account. If the interval is set to 30 minutes, bad
passwords entered more than 30 minutes ago don’t count.

Both AutoUnlockInterval and LockoutObservationInterval properties have maximum
ranges of 99,999 minutes. Again, the value is set in seconds because this is how the Windows
Registry handles the values. To convert seconds to minutes, use 60 as a multiplier. Listing 17-3
shows how you can set unlock and lockout intervals of 50 and 5 minutes, respectively.

LISTING 17-3

Setting and Viewing the Lockout

VBScript
passlock.vbs

‘Set lockout
Set dom = GetObject(“WinNT://seattle”)
dom.Put “MaxBadPasswordsAllowed”, 4
dom.Put “AutoUnlockInterval”, 60*50
dom.Put “LockoutObservationInterval”,60*5
dom.SetInfo

‘Confirm lockout

LISTING 17-2 (continued)

86804c17.indd 35286804c17.indd 352 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

353

 Managing Local and Domain Resources with ADSI 17

WScript.Echo dom.Get(“MaxBadPasswordsAllowed”)
WScript.Echo(dom.Get(“AutoUnlockInterval”)
WScript.Echo(dom.Get(“LockoutObservationInterval”)

JScript
passlock.js

//Set lockout
var dom = GetObject(“WinNT://seattle”)
dom.Put(“MaxBadPasswordsAllowed”, 4)
dom.Put(“AutoUnlockInterval”, 60*50)
dom.Put(“LockoutObservationInterval”,60*5)
dom.SetInfo()

//Confirm lockout
WScript.Echo(dom.Get(“MaxBadPasswordsAllowed”))
WScript.Echo dom.Get(“AutoUnlockInterval”))
WScript.Echo dom.Get(“LockoutObservationInterval”))

Working with Local Computer Properties
The WinNT Computer object is used to work with properties of a computer in a Windows NT or
Windows domain. You can’t use this object to create computer accounts or to authorize computers
in the domain. You can perform these functions with the LDAP provider, however, and this is dis-
cussed in Chapter 19.

To work with local computers, you need to obtain an object reference to the computer. In the follow-
ing example, you obtain the Computer object for a local computer named Omega:

VBScript

Set dom = GetObject(“WinNT://omega,computer”)

JScript

var dom = GetObject(“WinNT://omega,computer”)

Once you obtain the necessary Computer object, you can get and set the properties of the object:

VBScript

dom.Put “Owner”, “William R. Stanek”
dom.SetInfo

JScript

dom.Put(“Owner”, “William R. Stanek”)
dom.SetInfo()

86804c17.indd 35386804c17.indd 353 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

354

 Part III Network and Dictionary Service Scripting

Table 17-2 summarizes the properties of the WinNT Computer object. These properties are fairly
straightforward so we don’t go into each property individually.

TABLE 17-2

WinNT Computer Object Summary

Property Status Value Type Min Range Max Range
Multiple
Values

Owner RW String 0 256 False

Division RW String 0 256 False

OperatingSystem RW String 0 256 False

OperatingSystemVersion RW String 0 256 False

Processor RW String 0 256 False

ProcessorCount RW String 0 256 False

When you work with the Computer object, you may need to examine or update all of the computers
on the network. One way you can do this is shown as Listing 17-4.
type=”note”

Note that with JScript, you must create Enumerator objects to examine the Domain
and Computer objects. Enumerators are discussed in Chapter 8 in the section entitled

“Working with folders.” As you examine the sample output, note also that on Windows, the operating
system is set to Windows NT, but the OS version is set to 6.0.

LISTING 17-4

Examining All Computer Objects in the Domain

VBScript
checkcomp.vbs

‘Handle Errors
On Error Resume Next
‘Get the provider object
Set prov = GetObject(“WinNT:”)

‘Examine the available domains the provider can reach
For each dom in prov

 ‘Examine the objects in the domain and check for Computer objects
 For each o in dom

NOTENOTE

86804c17.indd 35486804c17.indd 354 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

355

 Managing Local and Domain Resources with ADSI 17

 If o.Class = “Computer” Then

 ‘Display properties of the Computer
 WScript.Echo o.Class & “ “ & o.Name
 WScript.Echo “ Owner: “ & o.Owner
 WScript.Echo “ Division: “ & o.Division
 WScript.Echo “ OperatingSystem: “ & o.OperatingSystem
 WScript.Echo “ OS Version: “ & o.OperatingSystemVersion
 WScript.Echo “ Processor: “ & o.Processor
 WScript.Echo “ ProcessorCount: “ & o.ProcessorCount

 End If

 Next
Next

JScript
checkcomp.js

//Get the provider object
var prov = GetObject(“WinNT:”)

tlist = new Enumerator(prov)

//Examine the available domains the provider can reach
for (; !tlist.atEnd(); tlist.moveNext())
 {

 s = new Enumerator(tlist.item())

 //Examine the objects in the domain and check for Computer objects
 for (; !s.atEnd(); s.moveNext())
 {

 o = s.item();
 if (o.Class == “Computer”) {

 try {
 //Display properties of the Computer
 WScript.Echo(o.Class + “ “ + o.Name)
 WScript.Echo(“ Owner: “ + o.Owner)
 WScript.Echo(“ Division: “ + o.Division)
 WScript.Echo(“ OperatingSystem: “ + o.OperatingSystem)
 WScript.Echo(“ OS Version: “ + o.OperatingSystemVersion)
 WScript.Echo(“ Processor: “ + o.Processor)
 WScript.Echo(“ ProcessorCount: “ + o.ProcessorCount)
 }
 catch(e) {

continued

86804c17.indd 35586804c17.indd 355 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

356

 Part III Network and Dictionary Service Scripting

 WScript.Echo(“ Not online at this time”)
 }
 }

 }
}

Output

Computer OMEGA
 Owner: William Stanek
 Division: Stanek & Associates
 OperatingSystem: Windows NT
 OperatingSystemVersion: 6.0
 Processor: x86 Family 6 Model 6 Stepping 0
 ProcessorCount: Uniprocessor Free
Computer ZETA
 Owner: William R. Stanek
 Division: Stanek & Associates
 OperatingSystem: Windows NT
 OperatingSystemVersion: 6.0
 Processor: x86 Family 6 Model 3 Stepping 3
 ProcessorCount: Uniprocessor Free

Creating and Modifying User Accounts
User accounts are represented with the User object. Of all the objects available for WinNT, the
User object is the most complex. You can use this object to create, delete, update, and move local
user accounts as well as domain accounts. You will also find that WinNT is easier to work with than
LDAP in most respects. However, you cannot use WinNT to perform tasks that are specific to Active
Directory, such as moving accounts to different containers or organizational units. Beyond this, you
also can’t manage extended properties for user accounts that are specific to Active Directory. For
details on Active Directory and LDAP, see Chapter 20.

User properties for WinNT
Before getting into the specifics of working with user accounts, you should examine Table 17-3. This
table provides a brief summary of User object properties. A status of RO means the property is read-
only and cannot be updated. A status of RW means the property is read-write and can be updated.

LISTING 17-4 (continued)

86804c17.indd 35686804c17.indd 356 1/21/09 1:28:10 PM1/21/09 1:28:10 PM

357

 Managing Local and Domain Resources with ADSI 17

TABLE 17-3

WinNT User Object Summary

Property Status Value Type
Min
Range Max Range

Multiple
Values

AccountDisabled RW Boolean 0 1 False

AccountExpirationDate RW Date String n/a n/a False

BadPasswordAttempts RO Integer 0 2147483647 False

Description RW String 0 257 False

FullName RW String 0 257 False

HomeDirDrive RW String 0 340 False

HomeDirectory RW Path String 0 340 False

IsAccountLocked RO Boolean 0 1 False

LastLogin RO Date String n/a n/a False

LastLogoff RO Date String n/a n/a False

LoginHours RW OctetString 0 0 False

LoginScript RW Path String 0 340 False

LoginWorkstations RW Safe Array 0 256 True

MaxLogins RW Integer 0 2147483647 False

MaxPasswordAge RW Integer 86400 86313600 False

MaxStorage RW Integer 0 2147483647 False

MinPasswordAge RW Integer 0 86227200 False

MinPasswordLength RW Integer 0 15 False

ObjectSid RO OctetString 0 0 False

Parameters RO String 0 340 False

PasswordAge RO Date String n/a n/a False

PasswordExpired RO Integer 0 1 False

PasswordHistoryLength RO Integer 0 8 False

PrimaryGroupID RW Integer 0 2147483647 False

continued

86804c17.indd 35786804c17.indd 357 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

358

 Part III Network and Dictionary Service Scripting

Property Status Value Type
Min
Range Max Range

Multiple
Values

Profile RW Path String 0 340 False

RasPermissions RW Integer 0 0 False

UserFlags RW Integer 0 0 False

When you work with object properties, you can get them by name or through the Get() method.
Listing 17-5 shows an example of working with User object properties by name. As you take a look
at the example, note the sample output for each property.

LISTING 17-5

Viewing User Properties

VBScript
viewuser.vbs

On Error Resume Next
Set usr = GetObject(“WinNT://seattle/omega/tgreen,user”)

WScript.Echo “AccountDisabled “ & usr.AccountDisabled
WScript.Echo “AccountExpirationDate “ & usr.AccountExpirationDate
WScript.Echo “BadPasswordAttempts “ & usr.BadPasswordAttempts
WScript.Echo “Description “ & usr.Description
WScript.Echo “FullName “ & usr.FullName
WScript.Echo “HomeDirDrive “ & usr.HomeDirDrive
WScript.Echo “HomeDirectory “ & usr.HomeDirectory
WScript.Echo “IsAccountLocked “ & usr.IsAccountLocked
WScript.Echo “LastLogin “ & usr.LastLogin
WScript.Echo “LastLogoff “ & usr.LastLogoff
WScript.Echo “LoginHours “ & usr.LoginHours
WScript.Echo “LoginScript “ & usr.LoginScript
WScript.Echo “LoginWorkstations “ & usr.LoginWorkstations
WScript.Echo “MaxLogins “ & usr.MaxLogins
WScript.Echo “MaxPasswordAge “ & usr.MaxPasswordAge
WScript.Echo “MaxStorage “ & usr.MaxStorage
WScript.Echo “MinPasswordAge “ & usr.MinPasswordAge
WScript.Echo “MinPasswordLength “ & usr.MinPasswordLength
WScript.Echo “Parameters “ & usr.Parameters
WScript.Echo “PasswordAge “ & usr.PasswordAge
WScript.Echo “PasswordExpired “ & usr.PasswordExpired
WScript.Echo “PasswordHistoryLength “ & usr.PasswordHistoryLength
WScript.Echo “PrimaryGroupID “ & usr.PrimaryGroupID

TABLE 17-3 (continued)

86804c17.indd 35886804c17.indd 358 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

359

 Managing Local and Domain Resources with ADSI 17

WScript.Echo “Profile “ & usr.Profile
WScript.Echo “RasPermissions “ & usr.RasPermissions
WScript.Echo “UserFlags “ & usr.UserFlags

Output

AccountDisabled False
AccountExpirationDate 12/31/2009
BadPasswordAttempts 0
Description Systems Engineer
FullName Tom Green
HomeDirDrive
HomeDirectory d:\home
IsAccountLocked False
LastLogin 10/3/2008 3:05:55 PM
LoginScript log.vbs
MaxPasswordAge 432000
MaxStorage -1
MinPasswordAge 172800
MinPasswordLength 8
Parameters
PasswordAge 1401
PasswordExpired 0
PasswordHistoryLength 3
PrimaryGroupID 513
Profile d:\data
RasPermissions 1
UserFlags 66115

Working with user account properties
The User object properties are very useful in managing user accounts. Some more so than others,
and because of this, several properties deserve special attention. These properties include
AccountDisabled, IsAccountLocked, and UserFlags.

You can use AccountDisabled and IsAccountLocked to troubleshoot basic problems with
accounts and to track down possible security problems. For example, you may want to schedule a
script to run nightly that checks the status of all user accounts to see if they are disabled or locked.
You can use this information to help users that are having problems accessing the network and may
not want to tell you that they forgot their password for the third time in a row, or to track patterns
that may tell you someone is trying to hack into accounts.

Listing 17-6 provides a basic script you can use to check all of the user accounts in a Windows NT or
Windows domain. If an account is disabled or locked, the script writes the account name and status.

86804c17.indd 35986804c17.indd 359 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

360

 Part III Network and Dictionary Service Scripting

LISTING 17-6

Checking for Account Problems

VBScript
secuser.vbs

‘Get the provider object
Set prov = GetObject(“WinNT:”)

‘Examine the available domains the provider can reach
For each dom in prov
 ‘Examine the objects in the domain and check for User objects
 For each o in dom
 If o.Class = “User” Then
 If o.AccountDisabled = “True” Then
 WScript.Echo o.Name & “ is disabled”
 End If
 If o.IsAccountLocked = “True” Then
 WScript.Echo o.Name & “ is locked”
 End If
 End If
 Next
Next

JScript
secuser.js

//Get the provider object
var prov = GetObject(“WinNT:”)

tlist = new Enumerator(prov)

//Examine the available domains the provider can reach
for (; !tlist.atEnd(); tlist.moveNext())
 {
 s = new Enumerator(tlist.item())
 //Examine the objects in the domain and check for User objects
 for (; !s.atEnd(); s.moveNext())
 {
 o = s.item();
 if (o.Class == “User”) {
 if (o.AccountDisabled == 1) {
 WScript.Echo(o.Name + “ is disabled”)
 }
 if (o.IsAccountLocked == 1) {
 WScript.Echo(o.Name + “ is locked”)
 }
 }
 }
}

86804c17.indd 36086804c17.indd 360 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

361

 Managing Local and Domain Resources with ADSI 17

Output

Guest is disabled
testAcc is disabled
Theta is disabled

Knowing that an account is disabled or locked isn’t very useful if you can’t resolve the problem as
necessary, and this is where the UserFlags property comes into the picture. This property provides
an integer value that is the sum of all the flags associated with an account.

Table 17-4 provides a summary of the user flags. Each individual flag represents an account state, such
as the password cannot be changed, or the account is disabled, and so forth. By adding the flag value
to the total, you can apply the flag. By removing the flag value from the total, you can remove the flag.

TABLE 17-4

User Flags
Flag Value Description

ADS_UF_SCRIPT 0X0001 A logon script will be executed.

ADS_UF_ACCOUNTDISABLE 0X0002 The account is disabled.

ADS_UF_HOMEDIR_REQUIRED 0X0004 A home directory is required.

ADS_UF_LOCKOUT 0X0010 The account is locked out.

ADS_UF_PASSWD_NOTREQD 0X0020 No password is required.

ADS_UF_PASSWD_CANT_CHANGE 0X0040 User cannot change the password.

ADS_UF_ENCRYPTED_TEXT_
PASSWORD_ALLOWED

0X0080 User can send an encrypted password.

ADS_UF_TEMP_DUPLICATE_ACCOUNT 0X0100 This is an account for users whose primary
account is in another domain.

ADS_UF_NORMAL_ACCOUNT 0X0200 This is a normal account.

ADS_UF_INTERDOMAIN_TRUST_
ACCOUNT

0X0800 Trusted account

ADS_UF_WORKSTATION_TRUST_
ACCOUNT

0X1000 This is a computer account that is a member
of this domain.

ADS_UF_SERVER_TRUST_ACCOUNT 0X2000 This is a computer account for a backup
domain controller that is a member of this
domain.

continued

86804c17.indd 36186804c17.indd 361 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

362

 Part III Network and Dictionary Service Scripting

Flag Value Description

ADS_UF_DONTEXPIREPASSWD 0X10000 The account password doesn’t expire.

ADS_UF_MNS_LOGON_ACCOUNT 0X20000 This is an MNS logon account.

ADS_UF_SMARTCARD_REQUIRED 0X40000 Forces the user to log on with a smart card.

ADS_UF_TRUSTED_FOR_DELEGATION 0X80000 The user or computer account under which a
service runs is trusted for Kerberos delegation.

ADS_UF_NOT_DELEGATED 0X100000 The security context of the user will not be
delegated to a service even if it is trusted.

If you go back to the output of Listing 17-5, you’ll see that the sample value for UserFlags is 66115.
If you convert that value to hexadecimal format, you get 0ts10243. Now if you review the values in
Table 17-4, you’ll see that the hexadecimal value is the result of the following flags being set on the
account:

ADS_UF_DONTEXPIREPASSWD 0X10000
ADS_UF_NORMAL_ACCOUNT 0X0200
ADS_UF_PASSWD_CANT_CHANGE 0X0040
ADS_UF_ACCOUNTDISABLE 0X0002
ADS_UF_SCRIPT 0X0001

What these flags tell you about the account is:

You are looking at a normal user account that has been assigned a logon script.■

The account password doesn’t expire.■

The user can’t change the password.■

The account is disabled.■

If you want to enable the account, you need to remove the related flag. You do this by removing the
related value from the UserFlags property. Because you normally wouldn’t want to compute flags
by hand and then remove flags individually, you need a safe way to remove the flag if it is set, and to
leave the UserFlags property alone otherwise. This way you can automate the process and not
worry about the details.

The best way to handle this procedure is to use the AccountDisabled and IsLockedOut proper-
ties to tell you when an account is disabled or locked, and then to take appropriate corrective action.
An example of this is shown as Listing 17-7. In this example, you examine the tgreen account on a
computer named omega. If the account is disabled or locked, the code in this listing enables or
unlocks the account as appropriate.

TABLE 17-4 (continued)

86804c17.indd 36286804c17.indd 362 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

363

 Managing Local and Domain Resources with ADSI 17

LISTING 17-7

Enabling and Unlocking a User Account

VBScript
restoreuser.vbs

Set usr = GetObject(“WinNT://seattle/omega/tgreen,user”)

If usr.AccountDisabled = “True” Then
 ‘ADS_UF_ACCOUNTDISABLE 0X0002
 flag = usr.Get(“UserFlags”) - 2
 usr.Put “UserFlags”, flag
 usr.SetInfo

 WScript.Echo usr.Name & “ is now enabled”

End If

If usr.IsAccountLocked = “True” Then
 ‘ADS_UF_LOCKOUT 0X0010
 flag = usr.Get(“UserFlags”) - 16
 usr.Put “UserFlags”, flag
 usr.SetInfo

 WScript.Echo usr.Name & “ is now unlocked”

End If

JScript
restoreuser.js

var usr = GetObject(“WinNT://seattle/omega/tgreen,user”)

if (usr.AccountDisabled == 1) {
 //ADS_UF_ACCOUNTDISABLE 0X0002
 flag = usr.Get(“UserFlags”) - 2
 usr.Put(“UserFlags”, flag)
 usr.SetInfo()

 WScript.Echo(usr.Name + “ is now enabled”)

}

if (usr.IsAccountLocked == 1) {
 //ADS_UF_LOCKOUT 0X0010
 flag = usr.Get(“UserFlags”) - 16
 usr.Put(“UserFlags”, flag)
 usr.SetInfo()

continued

86804c17.indd 36386804c17.indd 363 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

364

 Part III Network and Dictionary Service Scripting

 WScript.Echo(usr.Name + “ is now unlocked”)

}

Actually, the best way to handle this operation is to use a logical XOr. When you perform
an XOr comparison of UserFlags and the fl ag you want to remove, you get the desired

result. The fl ag is always removed if set. Otherwise, the UserFlags property is not changed. To set a
fl ag, you can do a logical Or. Unfortunately, this technique works great in Visual Basic, but not in scripts.

With a few simple modifications, you can create a script to enable/unlock or disable/lock any
account on the network. An example script is shown as Listing 17-8. In this example, Seattle is
the NT-equivalent domain name. Replace this with your domain name for the script to work on
your network.

LISTING 17-8

Enabling and Unlocking a User Account

VBScript
maccounts.vbs

lf = Chr(13) + Chr(10)
WScript.Echo “==” & lf
WScript.Echo “== Account Management Script ==” & lf
WScript.Echo “==” & lf

WScript.Echo “Enter account to work with: “ & lf

r = WScript.StdIn.ReadLine()

WScript.Echo “Enter R to restore or D to disable: “ & lf

n = WScript.StdIn.ReadLine()

WScript.Echo “==” & lf
WScript.Echo “== Working ==” & lf
WScript.Echo “==” & lf

Set usr = GetObject(“WinNT://seattle/” & r & “,user”)

select case LCase(n)

case “r”

 If usr.AccountDisabled = “True” Then

LISTING 17-7 (continued)

NOTENOTE

86804c17.indd 36486804c17.indd 364 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

365

 Managing Local and Domain Resources with ADSI 17

 ‘ADS_UF_ACCOUNTDISABLE 0X0002

 flag = usr.Get(“UserFlags”) - 2
 usr.Put “UserFlags”, flag
 usr.SetInfo

 WScript.Echo usr.Name & “ is enabled”

 End If

 If usr.IsAccountLocked = “True” Then

 ‘ADS_UF_LOCKOUT 0X0010

 flag = usr.Get(“UserFlags”) - 16
 usr.Put “UserFlags”, flag
 usr.SetInfo

 WScript.Echo usr.Name & “ is unlocked”

 End If

case “d”

 If usr.AccountDisabled = “False” Then

 ‘ADS_UF_ACCOUNTDISABLE 0X0002

 flag = usr.Get(“UserFlags”) + 2
 usr.Put “UserFlags”, flag
 usr.SetInfo

 WScript.Echo usr.Name & “ is disabled”

 End If

 If usr.IsAccountLocked = “False” Then

 ‘ADS_UF_LOCKOUT 0X0010

 flag = usr.Get(“UserFlags”) + 16
 usr.Put “UserFlags”, flag
 usr.SetInfo

 WScript.Echo usr.Name & “ is locked”

 End If

End Select

continued

86804c17.indd 36586804c17.indd 365 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

366

 Part III Network and Dictionary Service Scripting

JScript
maccounts.js

lf = “\r\n”
WScript.Echo(“==” + lf)
WScript.Echo(“== Account Management Script ==” + lf)
WScript.Echo(“==” + lf)

WScript.Echo(“Enter account to work with: “ + lf)

r = WScript.StdIn.ReadLine()

WScript.Echo(“Enter R to restore or D to disable: “ + lf)

n = WScript.StdIn.ReadLine()

WScript.Echo(“==” + lf)
WScript.Echo(“== Working ==” + lf)
WScript.Echo(“==” + lf)

var usr = GetObject(“WinNT://seattle/” + r + “,user”)

switch (n) {

case “r” :

 if (usr.AccountDisabled == 1) {

 //ADS_UF_ACCOUNTDISABLE 0X0002

 flag = usr.Get(“UserFlags”) - 2
 usr.Put(“UserFlags”, flag)
 usr.SetInfo()

 WScript.Echo(usr.Name + “ is enabled”)

 }

 if (usr.IsAccountLocked == 1) {

 //ADS_UF_LOCKOUT 0X0010

 flag = usr.Get(“UserFlags”) - 16
 usr.Put(“UserFlags”, flag)
 usr.SetInfo()

 WScript.Echo(usr.Name + “ is unlocked”)

LISTING 17-8 (continued)

86804c17.indd 36686804c17.indd 366 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

367

 Managing Local and Domain Resources with ADSI 17

 }

 break

case “d” :

 if (usr.AccountDisabled == 0) {

 //ADS_UF_ACCOUNTDISABLE 0X0002

 flag = usr.Get(“UserFlags”) + 2
 usr.Put(“UserFlags”, flag)
 usr.SetInfo()

 WScript.Echo(usr.Name + “ is disabled”)

 }

 if (usr.IsAccountLocked == 0) {

 //ADS_UF_LOCKOUT 0X0010

 flag = usr.Get(“UserFlags”) + 16
 usr.Put(“UserFlags”, flag)
 usr.SetInfo()

 WScript.Echo(usr.Name + “ is locked”)

 }

 break
}

Output

==

== Account Management Script ==

==

Enter account to work with:

tgreen
Enter R to restore or D to disable:

r

continued

86804c17.indd 36786804c17.indd 367 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

368

 Part III Network and Dictionary Service Scripting

==

== Working ==

==

tgreen is enabled

As with many examples in the text, this script is designed to run from the command line
with CScript.exe. If you run the script with WScript.exe, you won’t get the results you

expect and you’ll have a lot of pop-up dialog boxes to deal with.

As you examine the script, you should note the techniques used to display output and handle input.
So the output is easy to follow, we added blank lines with Chr(13) and Chr(10) or \r\n. To read
from the command line, the script reads a line from the standard input stream. The code for this is:

r = WScript.StdIn.ReadLine()

The StdIn.ReadLine() method allows you to type in characters and pass the result to a variable
when you press Enter. To get the sample output, we typed tgreen and then pressed Enter.
Afterward, we typed r and then pressed Enter.

Managing user accounts with WinNT
With WinNT, you can perform many common user account tasks. You can create and delete
accounts. You can also set and change account passwords. Another interesting user-management
task is to examine the group membership for users.

Creating user accounts with WinNT
To create user accounts, you use the Create() method of the IADsContainer interface. This method
expects to be passed the two parameters: the class and the relative name of the object to create.

Before you can use the Create() method, you must bind to the container in which you will create
the account. To create a local account, you bind to the local computer object. To create a domain
account, you bind to the domain object. When you create an account with WinNT, you must also set
the account password. You do this with the SetPassword() method which expects a single string
that contains the new password.

The following example binds to the seattle domain and creates a user account for jfranklin:

VBScript

Set obj = GetObject(“WinNT://seattle”)
Set usr = obj.Create(“user”, “jfranklin”)

LISTING 17-8 (continued)

NOTENOTE

86804c17.indd 36886804c17.indd 368 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

369

 Managing Local and Domain Resources with ADSI 17

usr.SetPassword(“gres$#42g”)
usr.SetInfo

JScript

var obj = GetObject(“WinNT://seattle”)
var usr = obj.Create(“user”,”jfranklin”)
usr.SetPassword(“gres$#42g”)
usr.SetInfo()

As stated previously, you can also create local computer accounts. In the next example, you create
the same account on a computer named omega:

VBScript

Set obj = GetObject(“WinNT://seattle/omega”)
Set usr = obj.Create(“user”, “jfranklin”)
usr.SetPassword(“gres$#42g”)
usr.SetInfo

JScript

var obj = GetObject
(“WinNT://seattle/omega”)
var usr = obj.Create(“user”, “jfranklin”)
usr.SetPassword(“gres$#42g”)
usr.SetInfo()

You can, of course, set other properties for the new account before you create it. You can also set
these properties at a later time.

Deleting user accounts with WinNT
You delete accounts with the Delete() method of the IADsContainer interface. As with Create(),
this method expects to be passed the two parameters: the class and the relative name of the object to
create.

Before you can use the Delete() method, you must bind to the container from which you will
delete the account. The following example deletes the user account for jfranklin from the seattle
domain:

VBScript

Set obj = GetObject(“WinNT://seattle”)
obj.Delete “user”, “jfranklin”

JScript

var obj = GetObject(“WinNT://seattle”)
obj.Delete(“user”, “jfranklin”)

86804c17.indd 36986804c17.indd 369 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

370

 Part III Network and Dictionary Service Scripting

Setting and changing passwords
You set passwords for new or existing user accounts with the SetPassword() method. This method
was discussed previously in the chapter. The User object also provides a ChangePassword()
method. To change a password, you can use ChangePassword(); however, you must know the
old password, which is why this method isn’t very practical for day-to-day administration. Instead,
you’ll usually want to use SetPassword().

Examples of using SetPassword() and ChangePassword() follow.

VBScript

Set usr = GetObject(“WinNT://seattle/jsmith,user”)
usr.SetPassword “NewPassword”

Set usr = GetObject(“WinNT://seattle/omega/hwilder,user”)
usr.ChangePassword “OldPassword”,”NewPassword”

JScript

var usr = GetObject(“WinNT://seattle/jsmith,user”)
usr.SetPassword(“NewPassword”)

var usr = GetObject(“WinNT://seattle/omega/hwilder,user”)
usr.ChangePassword(“OldPassword”,”NewPassword”)

Checking group membership
Often you’ll need to check group membership for users on the network. One way to do this quickly
and efficiently is to use a script that examines group membership on a user-by-user basis with the
Groups() method of the User object. The Groups() method returns a collection of group objects
to which a user belongs.

You can use Groups() to examine all of the groups sjohnson belongs to, as follows:

VBScript

Set usr = GetObject(“WinNT://seattle/sjohnson,user”)
For Each grp In usr.Groups
 WScript.Echo grp.Name
Next

JScript

var usr = GetObject(“WinNT://seattle/sjohnson,user”)
mList = new Enumerator(usr.Groups());
for (; !mList.atEnd();mList.moveNext())
{
 s = mList.item()
 WScript.Echo(s.Name)
}

86804c17.indd 37086804c17.indd 370 1/21/09 1:28:11 PM1/21/09 1:28:11 PM

371

 Managing Local and Domain Resources with ADSI 17

Output

Domain Users
Enterprise Admins
Schema Admins
Domain Admins
Administrators
Backup Operators

To make it easier to monitor group membership, you can create a function to check all user accounts
in the domain and then create a report. A sample function is shown in Listing 17-9.

LISTING 17-9

Tracking Group Membership

VBScript
groupmembership.vbs

Set prov = GetObject(“WinNT:”)
For each dom in prov

 For each o in dom

 If o.Class = “User” Then
 WScript.Echo “=======================”
 WScript.Echo “Account: “ & o.FullName
 For Each grp In o.Groups
 WScript.Echo “ “ & grp.Name
 Next
 End If

 Next
Next

JScript
groupmembership.js

//Get the provider object
var prov = GetObject(“WinNT:”)
tlist = new Enumerator(prov)

for (; !tlist.atEnd(); tlist.moveNext())
 {

 s = new Enumerator(tlist.item())

 for (; !s.atEnd(); s.moveNext())
 {

continued

86804c17.indd 37186804c17.indd 371 1/21/09 1:28:12 PM1/21/09 1:28:12 PM

372

 Part III Network and Dictionary Service Scripting

 o = s.item();
 if (o.Class == “User”) {
 WScript.Echo(“=======================”)
 WScript.Echo(“Account: “ + o.FullName)

 mList = new Enumerator(o.Groups());

 for (; !mList.atEnd(); mList.moveNext())
 {
 usr = mList.item()
 WScript.Echo(usr.Name)
 }

 }
 }
}

Output

=======================
Account: Thomas Franklin
 Domain Users
=======================
Account: George Johnson
 Domain Users
=======================
Account: William R. Stanek
 Domain Users
 Enterprise Admins
 Schema Admins
 Domain Admins
 Administrators
 Backup Operators

Creating and Modifying Group Accounts
WinNT supports basic functions for managing group accounts. You can create local group accounts
on member servers and workstations. You can create domain local and global security groups in
domains. You can manipulate any type of group.

LISTING 17-9 (continued)

86804c17.indd 37286804c17.indd 372 1/21/09 1:28:12 PM1/21/09 1:28:12 PM

373

 Managing Local and Domain Resources with ADSI 17

Understanding Windows group types
In Windows, there are several different types of groups and each type of group can have a different
scope. The group type affects how the group is used. The three group types are as follows:

Local:■ Groups are used only on a local workstation or server.

Security:■ Groups have security controls associated with them and are available in domains.

Distribution:■ Groups are used as e-mail distribution lists and do not have security con-
trols. You define distribution groups in domains.

Group scope further defines the area in which groups are valid. The group scopes are:

Domain local:■ These special groups exist only on Domain Controllers and have domain
local permissions. Members of domain local groups can only include user accounts, com-
puter accounts, and groups from the domain in which they are defined.

Built-in local:■ These special groups exist only on Domain Controllers and have domain
local permissions. Built-in local groups differ from other groups in that they cannot be cre-
ated or deleted, but you can modify their membership.

Global:■ These groups are used to grant permissions to any domain in the domain tree or
forest. However, members of global groups can only include user accounts, computer
accounts, and groups from the domain in which they are defined.

Universal:■ These groups are used to grant wide access throughout a domain tree or forest.
Members of global groups include user accounts, computer accounts, and groups from any
domain in the domain tree or forest.

Creating groups with WinNT
Creating groups with WinNT is much like creating user accounts. You start by obtaining the domain
or local computer container in which you want to create the group. If you obtain a domain container,
you create a global domain group by default. If you obtain a local computer container, you create a
local group on that computer.

In the following example, you create a local group on a computer named omega and set the group
name to myGroup:

VBScript

Set obj = GetObject(“WinNT://seattle/omega,computer”)
Set grp = obj.Create(“group”, “myGroup”)
grp.SetInfo

JScript

var obj = GetObject(“WinNT://seattle/omega,computer”)
var grp = obj.Create(“group”, “myGroup”)
grp.SetInfo()

86804c17.indd 37386804c17.indd 373 1/21/09 1:28:12 PM1/21/09 1:28:12 PM

374

 Part III Network and Dictionary Service Scripting

Using a similar technique you could create a global domain group as well. If you want to create a
domain local group, you must set the groupType property. This property is set with an integer value.
The default value of 2 sets the group type to domain local. A value of 4 sets the group type to domain
local. Following this, you could create a domain local group called Marketing like this:

VBScript

Set obj = GetObject(“WinNT://seattle”)
Set grp = obj.Create(“group”, “Marketing”)
grp.groupType = 4
grp.SetInfo

JScript

var obj = GetObject(“WinNT://seattle”)
var grp = obj.Create(“group”, “Marketing”)
grp.groupType = 4
grp.SetInfo()

The only other property that you may want to set for a group is Description, which is used to
describe the group. You can set a description for the group when you create it. You can also view or
change the value if necessary. In the following example, you add a description to the Marketing
group we created previously:

VBScript

Set grp = GetObject(“WinNT://seattle/Marketing,group”)
grp.Description = “Sales and Marketing Group”
grp.SetInfo

JScript

var grp = GetObject(“WinNT://seattle,Marketing,group”)
grp.Description = “Sales and Marketing Group”
grp.SetInfo()

Checking group membership
Often when you work with groups, you’ll want to determine if a particular account or other group is
a member. You can do this with the IsMember() method of the Group object. Start by obtaining
the group object you want to work with and then passing IsMember the AdsPath string of the
member you want to check, for example:

VBScript

Set grp = GetObject(“WinNT://seattle/Marketing,group”)
mem = grp.IsMember(“WinNT://seattle/jsmith,user”)
WScript.Echo mem

86804c17.indd 37486804c17.indd 374 1/21/09 1:28:12 PM1/21/09 1:28:12 PM

375

 Managing Local and Domain Resources with ADSI 17

JScript

var grp = GetObject(“WinNT://seattle,Marketing,group”)
mem = grp.IsMember(“WinNT://seattle/jsmith,user”)
WScript.Echo(mem)

The IsMember method returns True (or 1) if the member is found and False (or 0) otherwise.

Another way you can work with groups is to obtain a list of current members. You can do this by
calling the Members() method, for example:

VBScript

Set grp = GetObject(“WinNT://seattle/Marketing,group”)
mem = grp.Members

JScript

var grp = GetObject(“WinNT://seattle,Marketing,group”)
mem = grp.Members()

The Members() method returns a collection of members using the IADsMembers interface. You can
examine each member using a For loop; for example:

VBScript

Set grp = GetObject(“WinNT://seattle/Domain Users”)
Set mList = grp.members
For Each member In mList
 WScript.Echo member.Name & “ “ & member.Class
Next

JScript

var grp = GetObject(“WinNT://seattle/Domain Users”)
mList = new Enumerator(grp.members());

for (; !mList.atEnd(); mList.moveNext())
{
 s = mList.item()
 WScript.Echo(s.Name)
}

Adding and removing group members
You can use the WinNT provider to add and remove members from any type of group. To do this,
first obtain the group object you want to work with and then add or remove members using their
AdsPath string.

86804c17.indd 37586804c17.indd 375 1/21/09 1:28:12 PM1/21/09 1:28:12 PM

376

 Part III Network and Dictionary Service Scripting

After you add or remove a member, you can use IsMember() to confirm the action; for example:

VBScript

Set grp = GetObject(“WinNT://seattle/Marketing,group”)
mem = grp.Add(“WinNT://seattle/jsmith,user”)
WScript.Echo grp.IsMember(“WinNT://seattle/jsmith,user”)

JScript

var grp = GetObject(“WinNT://seattle/Marketing,group”)
mem = grp.Add(“WinNT://seattle/jsmith,user”)
WScript.Echo(grp.IsMember(“WinNT://seattle/jsmith,user”))

Summary
The WinNT provider is very useful when you want to manage basic settings for domains, users, and
groups. As you’ve seen, you can also use WinNT to create, delete, and modify both user and group
accounts. When using WinNT with Windows, it is useful to keep in mind the limitations discussed
in this chapter. To perform extended functions, such as moving user accounts to different containers
or creating organizational units, you’ll need to use the LDAP provider.

86804c17.indd 37686804c17.indd 376 1/21/09 1:28:12 PM1/21/09 1:28:12 PM

377

You can use ADSI to control many different aspects of workstations
and servers. In this chapter, we look at managing services, opening
files, and handling user sessions. When services and resources aren’t

configured or managed properly, your organization’s productivity can grind
to a halt. E-mail messages may not get delivered. Users may get locked out of
files and databases. Critical systems may even crash. To help avoid prob-
lems with services and resources, you can use scripts to monitor their sta-
tus, update configuration settings, and more.

Managing Windows Services
Windows services provide essential functions for workstations and servers.
Without these services, computers could not perform many important tasks.
If you’ve worked with Windows for awhile, you know that the operating sys-
tem has many different features that help you automatically manage services.
For example, you can configure the automatic restart of a service and the
automatic restart of a computer if a service fails to restart.

With Windows scripts, you gain more control over how and when services
are started, stopped, and restarted. You can use scripts to view service sta-
tus and manage configuration settings as well.

Using and understanding Windows services
The standard utility for managing Windows services is the Services node of
the Computer Management console. You can use the entries in the Services
node to control and monitor services. When you examine services in the

Service and Resource
Administration with ADSI

IN THIS CHAPTER
Configuring Windows services

Starting, stopping, and pausing
services

Viewing resource usage

Controlling user sessions

86804c18.indd 37786804c18.indd 377 1/21/09 1:28:26 PM1/21/09 1:28:26 PM

378

 Part III Network and Dictionary Service Scripting

Computer Management console, you find that each service is displayed with summary information.
As shown in Figure 18-1, this includes the following fields:

Name:■ Shows the name of the service installed on the system.

Description:■ Shows a brief description of the service.

Status:■ Shows the service status. For example, a stopped service is indicated by a blank entry.

Startup Type:■ Shows the startup setting for the service. Manual services can be started by
users or other services. Automatic services are started when the computer boots. Disabled
services are configured so that they cannot be started.

Log On As:■ Shows the account the service logs on as. Usually, this is the local system account.

FIGURE 18-1

You can view and manage services with the Services node in the Computer Management console.

The services that are available on a system depend on the system’s configuration. Table 18-1 lists
some of the most commonly used services and their default configuration settings.

TABLE 18-1

Common Windows Services and Their Default Configuration
Display Name Description Startup Type Log On As

Alerter Notifies users and computers of administrative alerts Automatic LocalSystem

Application Management Provides software installation services Manual LocalSystem

86804c18.indd 37886804c18.indd 378 1/21/09 1:28:26 PM1/21/09 1:28:26 PM

379

 Service and Resource Administration with ADSI 18

Display Name Description Startup Type Log On As

ClipBook Supports the ClipBook Viewer for remote viewing of
ClipBooks

Manual LocalSystem

COM+ Event System Provides automatic distribution of COM events Manual LocalSystem

Computer Browser Maintains an up-to-date list of computers on the
network

Automatic LocalSystem

DHCP Client Provides dynamic host configuration information Automatic LocalSystem

DHCP Server Provides dynamic configuration for DHCP clients Automatic LocalSystem

Distributed File System Manages distributed file systems Automatic LocalSystem

Distributed Transaction
Coordinator

Coordinates distributed transactions Automatic LocalSystem

DNS Client Resolves and caches Domain Naming System (DNS)
names

Automatic LocalSystem

DNS Server Answers DNS requests Automatic LocalSystem

Event Log Logs event messages Automatic LocalSystem

File Replication Service Replicates directory data Automatic LocalSystem

File Server for Macintosh Enables Macintosh users to work with files on a
Windows server

Automatic LocalSystem

FTP Publishing Service Provides FTP connectivity and administration through
the Internet Information Services snap-in

Automatic LocalSystem

IIS Admin Service Permits administration of Web and FTP services
through the Internet Information Services snap-in

Automatic LocalSystem

Indexing Service Indexes files and provides quick access Manual LocalSystem

Internet Authentication
Service

Enables authentication of dial-up and VPN users Automatic LocalSystem

Internet Connection
Sharing

Allows computers to share Internet connections Manual LocalSystem

License Logging Service Logs license-related events Automatic LocalSystem

Logical Disk Manager Monitors the Logical Disk Manager Automatic LocalSystem

Logical Disk Manager
Administrative Service

Used to manage logical disks Manual LocalSystem

Messenger Sends and receives administrative messages Automatic LocalSystem

Net Logon Supports authentication of account logon events Automatic LocalSystem

continued

86804c18.indd 37986804c18.indd 379 1/21/09 1:28:26 PM1/21/09 1:28:26 PM

380

 Part III Network and Dictionary Service Scripting

Display Name Description Startup Type Log On As

Network DDE Provides network transport and security for dynamic
data exchange (DDE)

Manual LocalSystem

Network DDE DSDM Used by Network DDE to manage shared data
exchanges

Manual LocalSystem

NT LM Security Support
Provider

Provides security for remote procedure calls (RPC) Manual LocalSystem

Performance Logs and
Alerts

Configures performance logs and alerts Manual LocalSystem

Plug and Play Manages device installation and configuration Automatic LocalSystem

Print Server for
Macintosh

Enables Macintosh users to send print jobs to a spooler
on a Windows server

Automatic LocalSystem

Print Spooler Loads files to memory for later printing Automatic LocalSystem

Protected Storage Provides protected storage for sensitive data Automatic LocalSystem

Remote Registry Service Allows remote registry manipulation Automatic LocalSystem

Removable Storage Manages removable media Automatic LocalSystem

Routing and Remote
Access

Used to manage routing and remote access Disabled LocalSystem

RunAs Service Allows users to start process using alternate credentials Automatic LocalSystem

Security Accounts
Manager

Stores security information for local user accounts Automatic LocalSystem

Server Provides essential server services Automatic LocalSystem

Simple Mail Transport
Protocol (SMTP)

Transports e-mail across the network Automatic LocalSystem

Smart Card Manages and controls access to smart cards Manual LocalSystem

Smart Card Helper Provides support for legacy smart card readers Manual LocalSystem

System Event Notification Tracks system events Automatic LocalSystem

Task Scheduler Enables task scheduling Automatic LocalSystem

TCP/IP NetBIOS Helper
Service

Supports NetBIOS over TCP/IP (NetBT) service and
NetBIOS name resolution

Automatic LocalSystem

TABLE 18-1 (continued)

86804c18.indd 38086804c18.indd 380 1/21/09 1:28:26 PM1/21/09 1:28:26 PM

381

 Service and Resource Administration with ADSI 18

Display Name Description Startup Type Log On As

TCP/IP Print Server Provides a TCP/IP-based printing Automatic LocalSystem

Telephony Provides Telephony support Manual LocalSystem

Telnet Allows a remote user to log on to the system and run
console programs

Manual LocalSystem

Windows Installer Installs, repairs, and removes software using .MSI files Manual LocalSystem

Windows Internet Name
Service (WINS)

Provides a NetBIOS name service Automatic LocalSystem

Windows Time Used to synchronize system time Automatic LocalSystem

Workstation Provides network connections and communications Automatic LocalSystem

World Wide Web
Publishing Service

Provides Web connectivity and administration through
the Internet Information Services snap-in

Automatic LocalSystem

Windows has built-in controls for monitoring and restarting services. You configure these recov-
ery features on a per-service basis. To check or manage the recovery settings for a service, follow
these steps:

 1. Start the Computer Management console. Choose Start ➪ Programs ➪ Administrative
Tools ➪ Computer Management.

 2. In the Computer Management console, right-click the Computer Management entry in the
console tree. Then, select Connect to Another Computer on the shortcut menu. You can
now choose the system whose services you want to manage.

 3. Click the plus sign (+) next to System Tools and then choose Services.

 4. Right-click the service you want to configure and then choose Properties.

 5. Choose the Recovery tab as shown in Figure 18-2. Now check or reconfigure recovery
options for the first, second, and subsequent recovery attempts.

 6. If you choose the Run A File option, you can specify a script that you want to run if the
service fails. Enter the full directory path to the script in the File field, or click Browse to
find the file. If you want to pass parameters to the script, enter these parameters in the
Command Line Parameters field.

 7. Click OK.

86804c18.indd 38186804c18.indd 381 1/21/09 1:28:26 PM1/21/09 1:28:26 PM

382

 Part III Network and Dictionary Service Scripting

FIGURE 18-2

You set recovery options on a per-service basis and you can designate scripts to run if the service fails.

Working with service objects
Services are specific to a particular computer. So if you want to manage services, you must do so via
the related Computer object. You don’t access services by their display name. Instead, you access them
using the object name for the service. For example, if you want to access the Windows Internet
Name Service on a computer called HodgePodge, you would do so as follows:

Set service = GetObject(“WinNT://seattle/hodgepodge/wins,service”)

In this example, seattle is the domain name (part of seattle.tvpress.com) and wins is the
actual name of the Service object. Table 18-2 provides a detailed mapping of service display names
to service object names. When you want to examine a particular service, use the table to help you
determine the necessary object name.

TABLE 18-2

Service Name Map
Display Name Object Name

Alerter Alerter

Application Management AppMgmt

ClipBook ClipSrv

86804c18.indd 38286804c18.indd 382 1/21/09 1:28:26 PM1/21/09 1:28:26 PM

383

 Service and Resource Administration with ADSI 18

Display Name Object Name

COM+ Event System EventSystem

Computer Browser Browser

DHCP Client Dhcp

DHCP Server DHCPServer

Distributed File System Dfs

Distributed Link Tracking Client TrkWks

Distributed Link Tracking Server TrkSvr

Distributed Transaction Coordinator MSDTC

DNS Client Dnscache

DNS Server DNS

Event Log Eventlog

Fax Service Fax

File Replication Service NtFrs

File Server for Macintosh MacFile

FTP Publishing Service MSFTPSVC

IIS Admin Service IISADMIN

IMDB Server ImdbServer

Indexing Service cisvc

Internet Authentication Service IAS

Internet Connection Sharing SharedAccess

Intersite Messaging IsmServ

IPSEC Policy Agent PolicyAgent

Kerberos Key Distribution Center kdc

License Logging Service LicenseService

Logical Disk Manager dmserver

Logical Disk Manager Administrative Service dmadmin

Messenger Messenger

Net Logon Netlogon

continued

86804c18.indd 38386804c18.indd 383 1/21/09 1:28:26 PM1/21/09 1:28:26 PM

384

 Part III Network and Dictionary Service Scripting

Display Name Object Name

NetMeeting Remote Desktop Sharing mnmsrvc

Network Connections Netman

Network DDE NetDDE

Network DDE DSDM NetDDEdsdm

NT LM Security Support Provider NtLmSsp

Performance Logs and Alerts SysmonLog

Plug and Play PlugPlay

Print Server for Macintosh MacPrint

Print Spooler Spooler

Protected Storage ProtectedStorage

QoS Admission Control (RSVP) RSVP

Remote Access Auto Connection Manager RasAuto

Remote Access Connection Manager RasMan

Remote Procedure Call (RPC) RpcSs

Remote Procedure Call (RPC) Locator RpcLocator

Remote Registry Service RemoteRegistry

Removable Storage NtmsSvc

Routing and Remote Access RemoteAccess

RunAs Service seclogon

Security Accounts Manager SamSs

Server lanmanserver

Simple Mail Transport Protocol (SMTP) SMTPSVC

Simple TCP/IP Services SimpTcp

Smart Card SCardSvr

Smart Card Helper SCardDrv

SNMP Service SNMP

SNMP Trap Service SNMPTRAP

TABLE 18-2 (continued)

86804c18.indd 38486804c18.indd 384 1/21/09 1:28:26 PM1/21/09 1:28:26 PM

385

 Service and Resource Administration with ADSI 18

Display Name Object Name

System Event Notification SENS

Task Scheduler Schedule

TCP/IP NetBIOS Helper Service LmHosts

TCP/IP Print Server LPDSVC

Telephony TapiSrv

Telnet TlntSvr

Terminal Services TermService

Uninterruptible Power Supply UPS

Utility Manager UtilMan

Windows Installer MSIServer

Windows Internet Name Service (WINS) WINS

Windows Management Instrumentation WinMgmt

Windows Management Instrumentation Driver Extensions Wmi

Windows Time W32Time

Workstation lanmanworkstation

World Wide Web Publishing Service W3SVC

If a service you need to work with isn’t listed in Table 18-2, you may need to create a list of all ser-
vices on the computer and then filter this list by the display name. Listing 18-1 shows how you can
search for the Windows Internet Name Service (WINS).

LISTING 18-1

Searching for a Service Object Name

VBScript
servicename.vbs

Set comp = GetObject(“WinNT://seattle/zeta”)

 ‘Check for Service objects
 For each s in comp
 If s.Class = “Service” Then
 If s.DisplayName = “Windows Internet Name Service (WINS)” Then

continued

86804c18.indd 38586804c18.indd 385 1/21/09 1:28:26 PM1/21/09 1:28:26 PM

386

 Part III Network and Dictionary Service Scripting

 WScript.Echo s.DisplayName & “: “ & s.Name
 End If
 End If
 Next

JScript
servicename.js

var comp = GetObject(“WinNT://seattle/zeta”)

tlist = new Enumerator(comp)
for (; !tlist.atEnd(); tlist.moveNext())
 {
 s = tlist.item()
 if (s.Class == “Service”) {
 if (s.DisplayName == “Windows Internet Name Service (WINS)”) {
 WScript.Echo(s.DisplayName + “ “ + s.Name)
 }
 }
 }

Output

Windows Internet Name Service (WINS): WINS

Using service object properties
All service objects have a set of properties that you can work with. These properties are summarized
in Table 18-3. (A status of RO means the property is read-only and cannot be updated. A status of
RW means the property is read-write and can be updated.)

TABLE 18-3

Service Object Properties

Property Status Value Type Min Range Max Range
Multiple
Values

Dependencies RW Array or
String

0 256 True

DisplayName RW String 0 256 False

ErrorControl RW Integer –2147483648 2147483647 False

LISTING 18-1 (continued)

86804c18.indd 38686804c18.indd 386 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

387

 Service and Resource Administration with ADSI 18

Property Status Value Type Min Range Max Range
Multiple
Values

HostComputer RW AdsPath
String

0 256 False

LoadOrderGroup RW String 0 256 False

Path RW Path
String

0 340 False

ServiceAccountName RW String 0 273 False

ServiceType RW Integer -2147483648 2147483647 False

StartType RW Integer -2147483648 2147483647 False

Status RO Integer 1 8 False

As with most object properties, you can access property values by name or through the get()
method. Listing 18-2 shows how you could examine all of the services running on a particular
computer. Services can have multiple dependencies. If they do, these dependencies can be accessed
through the Dependencies array. Note the sample values listed in the output, which we discuss
later in the chapter.

LISTING 18-2

Viewing Service Settings

VBScript
viewservices.vbs

‘Handle Errors
On Error Resume Next

lf = Chr(13) + Chr(10)
‘Get the provider object
Set comp = GetObject(“WinNT://seattle/zeta”)

 ‘Check for Service objects
 For each s in comp

 If s.Class = “Service” Then

 ‘Display service properties
 WScript.Echo s.Class & “ “ & s.Name
 WScript.Echo “==============================”

continued

86804c18.indd 38786804c18.indd 387 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

388

 Part III Network and Dictionary Service Scripting

 WScript.Echo “StartType: “ & s.StartType
 WScript.Echo “ServiceType: “ & s.ServiceType
 WScript.Echo “DisplayName: “ & s.DisplayName
 WScript.Echo “Path: “ & s.Path
 WScript.Echo “ErrorControl: “ & s.ErrorControl
 WScript.Echo “HostComputer: “ & s.HostComputer
 WScript.Echo “LoadOrderGroup: “ & s.LoadOrderGroup
 WScript.Echo “ServiceAccountName: “ & s.ServiceAccountName

 WScript.Echo “Dependency: “ & a
 Set ds = c.GetObject(“Service”, a)
 Next
 End If
 WScript.Echo(lf)
 End If

Next

JScript
viewservices.js

lf = “\r\n”

var comp = GetObject(“WinNT://seattle/zeta”)

tlist = new Enumerator(comp)

for (; !tlist.atEnd(); tlist.moveNext())
 {

 s = tlist.item()

 if (s.Class == “Service”) {

 //Display service properties
 WScript.Echo(s.Class + “ “ + s.Name)
 WScript.Echo(“==============================”)
 WScript.Echo(“StartType: “ + s.StartType)
 WScript.Echo(“ServiceType: “ + s.ServiceType)
 WScript.Echo(“DisplayName: “ + s.DisplayName)
 WScript.Echo(“Path: “ + s.Path)
 WScript.Echo(“ErrorControl: “ + s.ErrorControl)
 WScript.Echo(“HostComputer: “ + s.HostComputer)
 WScript.Echo(“LoadOrderGroup: “ + s.LoadOrderGroup)
 WScript.Echo(“ServiceAccountName: “ + s.ServiceAccountName)

LISTING 18-2 (continued)

86804c18.indd 38886804c18.indd 388 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

389

 Service and Resource Administration with ADSI 18

 try {
 WScript.Echo(“Dependencies: “ + s.Dependencies)
 }
 catch (e) {
 //property setting not available or is array
 }
 try {
 //services can have multiple dependencies
 e = s.Dependencies.toArray()
 for (opt in e)
 {
 WScript.Echo(“Dependencies: “ + e[opt])
 }
 }
 catch (e) {
 //property setting not available
 }
 try {
 WScript.Echo(“Status: “ + s.Get(“Status”))
 }
 catch (e) {
 //property setting not available
 }

 WScript.Echo(lf)
 }

 }

Output

Service WINS
==============================
StartType: 2
ServiceType: 16
DisplayName: Windows Internet Name Service (WINS)
Path: F:\WIN2000\System32\wins.exe
ErrorControl: 1
HostComputer: WinNT://seattle/zeta
LoadOrderGroup:
ServiceAccountName: LocalSystem
Dependencies: RPCSS
Dependencies: NTLMSSP
Dependencies: SAMSS
Status: 4

continued

86804c18.indd 38986804c18.indd 389 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

390

 Part III Network and Dictionary Service Scripting

Service Wmi
==============================
StartType: 3
ServiceType: 32
DisplayName: Windows Management Instrumentation Driver Extensions
Path: F:\WIN2000\system32\Services.exe
ErrorControl: 1
HostComputer: WinNT://seattle/zeta
LoadOrderGroup:
ServiceAccountName: LocalSystem
Dependencies: RPCSS
Dependencies: NTLMSSP
Dependencies: SAMSS
Status: 4

We had a problem accessing the Status property in JScript on our system. This property
wasn’t directly accessible by name for some service types. To resolve this problem, we

had to use s.Get(“Status”) instead of s.Status, in which s is the name of the current Service
object.

Checking Service Status and Dependencies
One of the key properties that you’ll use while troubleshooting service problems is Status. This
property returns a code that indicates the state of the service. The status codes are:

Service Stopped 1 Attempting to Continue Service 5

Attempting to Start Service 2 Attempting to Pause Service 6

Attempting to Stop Service 3 Service Paused 7

Service Running 4 Service Error 8

Another important property that’s used in troubleshooting service problems is Dependencies. The
Dependencies property returns an array of services that must be running before the parent service
can run. For example, the WINS service can only run if the RPCSS, NTLMSSP, and SAMSS services
are running. So if you determine that WINS is a critical service that you want to track or manage
through a Windows script, you also want to track and manage these additional services.

Using the Status and Dependencies properties together, you can determine if a service isn’t run-
ning because of problems with dependent services. In Listing 18-3, the user is prompted to enter a
computer name and service name. The script then checks to see if the service is running normally.
If the service isn’t running normally, the script checks the status of dependent services.

LISTING 18-2 (continued)

NOTENOTE

86804c18.indd 39086804c18.indd 390 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

391

 Service and Resource Administration with ADSI 18

LISTING 18-3

Resolving Service-Related Problems

VBScript
trservices.vbs

‘ ************************
‘ Script: Service Troubleshooter
‘ Version: 1.1.5
‘ Creation Date: 6/16/2008
‘ Last Modified: 7/23/2008
‘ Author: William R. Stanek
‘ Email: williamstanek@aol.com
‘ Copyright (c) 2008 William R. Stanek
‘ ************************

On Error Resume Next
lf = Chr(13) & Chr(10)

WScript.Echo “==” & lf
WScript.Echo “== Service Troubleshooting Script ==” & lf
WScript.Echo “==” & lf

WScript.Echo “Enter local or remote host name: “ & lf

host = WScript.StdIn.ReadLine()

WScript.Echo lf & “Enter service to troubleshoot: “ & lf

servName = WScript.StdIn.ReadLine()

Set c = GetObject(“WinNT://” & host & “,computer”)
Set s = c.GetObject(“Service”, servName)

WScript.Echo lf & “==” & lf
WScript.Echo “Checking Status for “ & s.Name
WScript.Echo “==” & lf

checkStatus(s)

sub checkStatus(obj)

 Select Case obj.Status
 Case 1

 WScript.Echo “==”
 WScript.Echo “Service not running.”
 WScript.Echo “Checking dependent services.”

continued

86804c18.indd 39186804c18.indd 391 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

392

 Part III Network and Dictionary Service Scripting

 WScript.Echo “==” & lf

 deps = obj.Dependencies

 If VarType(deps) = vbString Then
 WScript.Echo “Dependency: “ & deps & lf

 Set ds = c.GetObject(“Service”, deps)
 checkStatus(ds)
 Else

 For Each a In deps
 WScript.Echo “Dependency: “ & a & lf

 Set ds = c.GetObject(“Service”, a)
 checkStatus(ds)

 Next
 End If

 Case 4

 WScript.Echo obj.Class & “ “ & obj.Name & “ is running normally”
 WScript.Echo lf

 Case 7

 WScript.Echo obj.Class & “ “ & obj.Name & “ is paused.” & lf

 Case 8

 WScript.Echo “==”
 WScript.Echo “Service error!”
 WScript.Echo “Checking dependent services.”
 WScript.Echo “==” & lf
 deps = obj.Dependencies

 If VarType(deps) = vbString Then
 WScript.Echo “Dependency: “ & deps & lf

 Set ds = c.GetObject(“Service”, deps)
 checkStatus(ds)
 Else

 For Each a In deps
 WScript.Echo “Dependency: “ & a & lf

LISTING 18-3 (continued)

86804c18.indd 39286804c18.indd 392 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

393

 Service and Resource Administration with ADSI 18

 Set ds = c.GetObject(“Service”, a)
 checkStatus(ds)

 Next
 End If

 Case Else

 WScript.Echo obj.Class & “ “ & obj.Name & “ is changing states.”
 WScript.Echo lf

 End Select
End Sub

Output

==

== Service Troubleshooting Script ==

==

Enter local or remote host name:

zeta

Enter service to troubleshoot:

w3svc

==

Checking Status for w3svc
==

==
Service not running or error.
Checking dependent services.
==

Dependency: IISADMIN

Service IISADMIN is running normally

We’ve configured the script to use recursive calls to the checkStatus subroutine. This enables the
script to check the next level of service dependencies in case of service failure. In the previous
example, the W3SVC depends on the IISADMIN service. In turn, IISADMIN depends on other

86804c18.indd 39386804c18.indd 393 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

394

 Part III Network and Dictionary Service Scripting

services. If both W3SVC and IISADMIN aren’t running properly, the script checks the dependent
services of IISADMIN. To see how this works, consider the following output from this service trou-
bleshooting script:

==

== Service Troubleshooting Script ==

==

Enter local or remote host name:

zeta

Enter service to troubleshoot:

w3svc

==

Checking Status for w3svc
==

==
Service not running or error.
Checking dependent services.
==

Dependency: IISADMIN

==
Service not running or error.
Checking dependent services.
==

Dependency: RPCSS

Service RPCSS is running normally

Dependency: ProtectedStorage

Service ProtectedStorage is running normally

In this example, niether W3SVC nor IISADMIN are running normally. Because of this, the script
checks the dependencies of both services. The section of code driving most of the script is:

deps = obj.Dependencies

 If VarType(deps) = vbString Then

86804c18.indd 39486804c18.indd 394 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

395

 Service and Resource Administration with ADSI 18

 WScript.Echo “Dependency: “ & deps & lf

 Set ds = c.GetObject(“Service”, deps)
 checkStatus(ds)
 Else

 For Each a In deps
 WScript.Echo “Dependency: “ & a & lf

 Set ds = c.GetObject(“Service”, a)
 checkStatus(ds)

 Next
 End If

This snippet of code is responsible for checking service dependencies. A single dependency is repre-
sented with a string. Multiple dependencies are represented with an array. Because of this, you need
a section of code that checks for a string value if one is present, and otherwise handles the depen-
dencies as an array.

Viewing and Setting Service Information
These other service object properties let you view and configure service settings:

DisplayName■ : Specifies the service display name.

ErrorControl■ : Specifies the actions taken in case of service failure. A value of 0 indicates
no recovery settings. A value greater than zero indicates recovery options have been set.

HostComputer■ : Displays the AdsPath string of the host computer running the service.

LoadOrderGroup■ : Identifies the load order group of which the service is a member.

Path■ : Specifies the path and file name of the executable for the service.

ServiceAccountName■ : Designates the account used by the service at startup.

ServiceType■ : Specifies the process type in which the service runs.

StartType■ : Identifies the start type for the service.

For detailed information on these properties, see Appendix B. Service properties and
methods are defi ned in the IADsService and IADsServiceOperations interfaces.

In scripts, you’ll often need to view values for the service object properties, and you can do this as
shown in Listing 18-2. However, unless you are creating a script to install a service, you won’t need
to set most of these properties. Because of this, we’ll focus on the two properties that you may want
to configure: DisplayName and ServiceAccountName.

NOTENOTE

86804c18.indd 39586804c18.indd 395 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

396

 Part III Network and Dictionary Service Scripting

As you’ve seen in previous examples, the Service object name isn’t tied to the display name. This
means you can change the display name without affecting the service. For example, if you want to
rename the Windows Management Instrumentation Driver Extensions service as Wmi, you can do
so as follows:

VBScript

Set s = GetObject(“WinNT://seattle/zeta/wmi,service”)
s.Put “DisplayName”, “Wmi”
s.SetInfo

JScript

var s = GetObject(“WinNT://seattle/zeta/wmi,service”)
s.Put(“DisplayName”, “Wmi”)
s.SetInfo()

Changing the ServiceAccoutName property, on the other hand, does affect the service. This prop-
erty controls which domain or system account is used to start the service. If you use a domain
account, you must enter the domain name as well as the account name. For example, if the domain
is Seattle and the account is Administrator, you enter Seattle/Administration as the account name.

When you set the account name, you must also enter the password for the account. To do this, use
the SetPassword() method of the service object. The only parameter for this method is a string
containing the account password. You can configure a new service startup account as follows:

VBScript

Set s = GetObject(“WinNT://seattle/zeta/snmp,service”)
s.Put “ServiceAccountName”, “Seattle/Administrator”
s.SetPassword “MamboKings”
s.SetInfo

JScript

var s = GetObject(“WinNT://seattle/zeta/snmp,service”)
s.Put(“ServiceAccountName”, “Seattle/Administrator”)
s.SetPassword(“MamboKings”)
s.SetInfo()

Starting, Stopping, and Pausing Services
The service object has methods for controlling services in scripts as well. These methods are:

Start()■ : Starts a service.

Stop()■ : Stops a service.

Pause()■ : Pauses a service.

Continue()■ : Resumes a paused service.

86804c18.indd 39686804c18.indd 396 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

397

 Service and Resource Administration with ADSI 18

Using these methods is rather straightforward. If you want to start the W3SVC, you obtain the
related service object and then call Start(), for example:

VBScript

Set s = GetObject(“WinNT://seattle/zeta/w3svc,service”)
s.Start

JScript

var s = GetObject(“WinNT://seattle/zeta/w3svc,service”)
s.Start()

You can use the other methods in a similar manner. Keep in mind that if you stop a service, you
must use Start() to start it, but if you pause a service, you must use Continue() to resume it.

A problem arises when you want to stop a service that other services depend on. For example, if you
want to stop the IISADMIN service and haven’t stopped dependent services, you’ll get the following
error message:

A stop control has been sent to a service that other running services
are dependent on.

You’ll need to stop the dependent services before you can stop this service. Fortunately, if you try to
start a service that is dependent on another service that is stopped, Windows is smart enough to
start the dependent service as well. To see how this works, stop the IISADMIN and W3SVC services
and then try to start W3SVC. You’ll discover that both IISADMIN and W3SVC start.

Listing 18-4 shows a script that you can use to manage services. This script combines some of the
techniques we’ve discussed previously and is not meant to be complete. You’ll need to add to the
script to suit your needs.

LISTING 18-4

Managing Services

VBScript
servicemgr.vbs

‘ ************************
‘ Script: Service Manager
‘ Version: 1.1.5
‘ Creation Date: 06/15/2008
‘ Last Modified: 07/20/2008
‘ Author: William R. Stanek
‘ Email: williamstanek@aol.com
‘ Copyright (c) 2008 William R. Stanek
‘ ************************

continued

86804c18.indd 39786804c18.indd 397 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

398

 Part III Network and Dictionary Service Scripting

On Error Resume Next
lf = Chr(13) & Chr(10)

WScript.Echo “==” & lf
WScript.Echo “== Service Manager Script ==” & lf
WScript.Echo “==” & lf

WScript.Echo “Enter local or remote host name: “ & lf

host = WScript.StdIn.ReadLine()

WScript.Echo lf & “Enter service to manage: “ & lf

servName = WScript.StdIn.ReadLine()

WScript.Echo lf & “G) Start Service” & lf
WScript.Echo “S) Stop Service” & lf

action = WScript.StdIn.ReadLine()

action = LCase(action)

Set c = GetObject(“WinNT://” & host & “,computer”)
Set s = c.GetObject(“Service”, servName)

manageService s, action

sub manageService(obj, a)

 On Error Resume Next

 Select Case a
 Case “g”

 If obj.Status = 1 Then

 obj.Start

 WScript.Echo “==”
 WScript.Echo “Starting Service...”
 WScript.Echo “==” & lf

 Else

 WScript.Echo “==”
 WScript.Echo “Service is running already.”
 WScript.Echo “==”

LISTING 18-4 (continued)

86804c18.indd 39886804c18.indd 398 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

399

 Service and Resource Administration with ADSI 18

 WScript.Echo “Checking dependent services.”
 WScript.Echo “==” & lf
 deps = obj.Dependencies

 If VarType(deps) = vbString Then
 WScript.Echo “Dependency: “ & deps & lf

 Set ds = c.GetObject(“Service”, deps)
 checkStatus(ds)
 Else

 For Each a In deps
 WScript.Echo “Dependency: “ & a & lf

 Set ds = c.GetObject(“Service”, a)
 checkStatus(ds)

 Next
 End If
 End If

 Case “s”

 If obj.Status = 4 Then

 obj.Stop
 WScript.Echo “==”
 WScript.Echo “Stopping Service...”
 WScript.Echo “==” & lf

 Else

 WScript.Echo “==”
 WScript.Echo “Service is already stopped.”
 WScript.Echo “==”
 WScript.Echo “Checking dependent services.”
 WScript.Echo “==” & lf
 deps = obj.Dependencies

 If VarType(deps) = vbString Then
 WScript.Echo “Dependency: “ & deps & lf

 Set ds = c.GetObject(“Service”, deps)
 checkStatus(ds)
 Else

 For Each a In deps
 WScript.Echo “Dependency: “ & a & lf

continued

86804c18.indd 39986804c18.indd 399 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

400

 Part III Network and Dictionary Service Scripting

 Set ds = c.GetObject(“Service”, a)
 checkStatus(ds)

 Next
 End If

 End If

 Case Else

 WScript.Echo “Please re-run script and enter a valid option”

 End Select
End Sub

sub checkStatus(obj)

 On Error Resume Next

 Select Case obj.Status
 Case 1

 WScript.Echo “==”
 WScript.Echo “Service not running.”
 WScript.Echo “Checking dependent services.”
 WScript.Echo “==” & lf
 deps = obj.Dependencies

 If VarType(deps) = vbString Then
 WScript.Echo “Dependency: “ & deps & lf

 Set ds = c.GetObject(“Service”, deps)
 checkStatus(ds)
 Else

 For Each a In deps
 WScript.Echo “Dependency: “ & a & lf

 Set ds = c.GetObject(“Service”, a)
 checkStatus(ds)

 Next
 End If

 Case 4

 WScript.Echo obj.Class & “ “ & obj.Name & “ is running normally”

LISTING 18-4 (continued)

86804c18.indd 40086804c18.indd 400 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

401

 Service and Resource Administration with ADSI 18

 WScript.Echo lf

 Case 7

 WScript.Echo obj.Class & “ “ & obj.Name & “ is paused.” & lf

 Case 8

 WScript.Echo “==”
 WScript.Echo “Service error!”
 WScript.Echo “Checking dependent services.”
 WScript.Echo “==” & lf
 deps = obj.Dependencies

 If VarType(deps) = vbString Then
 WScript.Echo “Dependency: “ & deps & lf

 Set ds = c.GetObject(“Service”, deps)
 checkStatus(ds)
 Else

 For Each a In deps
 WScript.Echo “Dependency: “ & a & lf

 Set ds = c.GetObject(“Service”, a)
 checkStatus(ds)

 Next
 End If

 Case Else

 WScript.Echo obj.Class & “ “ & obj.Name & “ is changing states.”
 WScript.Echo lf

 End Select
End Sub

Output

==

== Service Manager Script ==

==

Enter local or remote host name:

zeta

continued

86804c18.indd 40186804c18.indd 401 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

402

 Part III Network and Dictionary Service Scripting

Enter service to manage:

w3svc

G) Start Service

S) Stop Service

g
==
Starting Service…
==

The script relies on the manageService and checkStatus subroutines to perform most of the
work. The manageService subroutine expects to be passed a service object and an action to be
performed. For example:

sub manageService(obj, a)
 …
end sub

The subroutine then uses these arguments to start or stop services. If the referenced service is
already started (or stopped), the script calls checkStatus to display the status of dependent ser-
vices. You’ll find this useful when you want to control services and the services they depend on.

Managing Open Resources and User Sessions
User sessions are created each time users connect to shared resources on a server. If a user opens a file
for editing, the file is also listed as an open resource on the server. Problems with open files and user
sessions can often affect network operations. If a file is listed as open but no user is actually using it,
another user may not be able to access the file. To resolve this problem you need to end the user ses-
sion causing the problem or close the open file. For this and other reasons, you’ll find that you often
need to manage user sessions and open resources, especially in a busy network environment.

LISTING 18-4 (continued)

86804c18.indd 40286804c18.indd 402 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

403

 Service and Resource Administration with ADSI 18

Viewing open files and user sessions
In Windows, you normally manage open files and user sessions through the Computer Management
console. You view connections to shared resources as follows:

 1. In the Computer Management console, right-click the Computer Management entry in the
console tree. Then select Connect to Another Computer on the shortcut menu. You can
now choose the system whose services you want to manage.

 2. Click the plus sign (+) next to System Tools, and then click the plus sign next to Shared Folders.

 3. Select Sessions to view or manage user sessions. The information provided in the Sessions
node tells you the following information:

User:■ Names of users or computers connected to shared resources. Computer names are
shown with a $ suffix to differentiate them from users.

Computer:■ IP address of the computer being used.

Type:■ Type of computer being used.

Open Files:■ Number of files the user has open.

Connected Time:■ Elapsed time since the connection was established.

Idle Time:■ Elapsed time since the connection was last used.

Guest:■ Identifies users accessing the computer through a guest account or default guest
access.

 4. Select Open Files to view or manage open files. The Open Files node provides the follow-
ing information about resource usage:

Open File:■ File or folder path to the open file on the local system.

File Locks:■ Total number of file locks.

Accessed By:■ Name of the user accessing the file.

Type:■ Type of computer being used.

Locks:■ Number of locks on the resource.

Open Mode:■ Access mode used when the resource was opened, such as Read or
Read+Write mode.

Figure 18-3 shows Computer Management with the Open Files node selected. As you would expect,
you can obtain similar information through Windows scripts. We’ll show you how in the next section.

86804c18.indd 40386804c18.indd 403 1/21/09 1:28:27 PM1/21/09 1:28:27 PM

404

 Part III Network and Dictionary Service Scripting

FIGURE 18-3

You can use Computer Management to get summary information on open files and user sessions.

Viewing resources and sessions in scripts
In scripts, you view open files and user sessions through the Resource and Session objects. These
objects can only be accessed through a FileService object. You obtain a FileService object
through the LanManServer service. The AdsPath string should either not state the object type:

WinNT://seattle/zeta/lanmanserver

or it should state the object type as FileService:

WinNT://seattle/zeta/lanmanserver,fileservice

FileService is a special type of object that extends the standard Service object, adding several
new properties and methods that you can use to work with resources and sessions. If you state the
object type as Service, as was done in previous examples, you won’t get the extended
FileService interface and instead will get the standard IADsService interface.

Additional properties for FileService are:

Description■ : A read/write string that describes the file service.

MaxUserCount■ : A read/write integer value that identifies the maximum number of users
allowed to run the service concurrently. A value of –1 indicates that no limit is set.

86804c18.indd 40486804c18.indd 404 1/21/09 1:28:28 PM1/21/09 1:28:28 PM

405

 Service and Resource Administration with ADSI 18

Additional methods for FileService are:

Resources()■ : Gets an interface pointer on a collection object that represents current open
resources for the file service.

Sessions()■ : Gets an interface pointer on a collection object that represents current open
sessions on the file service.

Listing 18-5 shows how you can display the standard and extended features of the FileService
object. By iterating through each element in the Resources and Sessions collections, you can dis-
play a list of currently open files and active user sessions. You’ll use this technique in the next sec-
tion when you examine Resource and Session object properties.

LISTING 18-5

Viewing Resource and Sessions Usage

VBScript
fileservice.vbs

On Error Resume Next

Set s = GetObject(“WinNT://seattle/zeta/lanmanserver,fileservice”)

‘Display service properties
WScript.Echo s.Class & “ “ & s.Name
WScript.Echo “==============================”
WScript.Echo “StartType: “ & s.StartType
WScript.Echo “Description: “ & s.Description
WScript.Echo “MaxUserCount: “ & s.MaxUserCount
WScript.Echo “ServiceType: “ & s.ServiceType
WScript.Echo “DisplayName: “ & s.DisplayName
WScript.Echo “Path: “ & s.Path
WScript.Echo “ErrorControl: “ & s.ErrorControl
WScript.Echo “HostComputer: “ & s.HostComputer
WScript.Echo “LoadOrderGroup: “ & s.LoadOrderGroup
WScript.Echo “ServiceAccountName: “ & s.ServiceAccountName
WScript.Echo “Dependencies: “ & s.Dependencies
WScript.Echo “Status: “ & s.Status

For Each resource In s.Resources
 WScript.Echo “Resource path: “ & resource.Path
Next
For Each session In s.sessions
 WScript.Echo “Session name: “ & session.Name
Next

continued

86804c18.indd 40586804c18.indd 405 1/21/09 1:28:28 PM1/21/09 1:28:28 PM

406

 Part III Network and Dictionary Service Scripting

JScript
fileservice.js

var s = GetObject(“WinNT://seattle/zeta/lanmanserver,fileservice”)

//Display service properties
WScript.Echo(s.Class + “ “ + s.Name)
WScript.Echo(“==============================”)
WScript.Echo(“StartType: “ + s.StartType)
WScript.Echo(“Description: “ + s.Description)
WScript.Echo(“MaxUserCount: “ + s.MaxUserCount)
WScript.Echo(“ServiceType: “ + s.ServiceType)
WScript.Echo(“DisplayName: “ + s.DisplayName)
WScript.Echo(“Path: “ + s.Path)
WScript.Echo(“ErrorControl: “ + s.ErrorControl)
WScript.Echo(“HostComputer: “ + s.HostComputer)
WScript.Echo(“LoadOrderGroup: “ + s.LoadOrderGroup)
WScript.Echo(“ServiceAccountName: “ + s.ServiceAccountName)

try {
 WScript.Echo(“Dependencies: “ + s.Dependencies)
}
catch (e) {
 //property setting not available
}
try {
 WScript.Echo(“Status: “ + s.Get(“Status”))
}
catch (e) {
 //property setting not available
}

 rList = new Enumerator(s.Resources());

 for (; !rList.atEnd(); rList.moveNext())
 {
 resource = rList.item()
 WScript.Echo(“Resource path: “ + resource.Path)
 }

 sList = new Enumerator(s.Sessions());

 for (; !sList.atEnd(); sList.moveNext())
 {
 session = sList.item()
 WScript.Echo(“Session name: “ + session.Name)
 }

LISTING 18-5 (continued)

86804c18.indd 40686804c18.indd 406 1/21/09 1:28:28 PM1/21/09 1:28:28 PM

407

 Service and Resource Administration with ADSI 18

Output

FileService lanmanserver
==============================
StartType: 2
Description:
MaxUserCount: -1
ServiceType: 32
DisplayName: Server
Path: F:\WIN2000\System32\services.exe
ErrorControl: 1
HostComputer: WinNT://seattle/zeta
LoadOrderGroup:
ServiceAccountName: LocalSystem
Resource path: E:\myBooks\docs
Resource path: E:\myBooks\docs\chapter1.rtf
Session name: WRSTANEK\127.0.0.1

Working with Resource and Session objects
You use Resource objects to view open resources for a file service. The properties for Resource
objects are:

LockCount■ : The number of locks on a resource.

Path■ : The file path of the resource.

User■ : The name of the user who opened the resource.

UserPath■ : An AdsPath string of the user object that is accessing the resource.

You use Session objects to view active user sessions for the file service. The properties for Session
objects are:

Computer■ : The name of the client workstation from which the session initiated.

ComputerPath■ : The AdsPath of the related computer object.

ConnectTime■ : The number of minutes since the session started.

IdleTime■ : The number of minutes the session has been idle.

User■ : The name of the user that initiated the session.

UserPath■ : The AdsPath of the related user object.

All properties of Resource and Session objects are read-only. This means you can view them
but cannot set them, which makes sense because these values are set automatically by the operat-
ing system.

86804c18.indd 40786804c18.indd 407 1/21/09 1:28:28 PM1/21/09 1:28:28 PM

408

 Part III Network and Dictionary Service Scripting

Listing 18-6 shows a script that displays summary information for open files and user sessions on
a specified computer. We’ve written the script in both VBScript and JScript so you can compare
the implementation techniques. Note the format of property values in the output. With resources,
entries can relate to folder paths and to file paths. Generally, if you have an entry for a file path,
you’ll also see an entry for the related folder path. With sessions, you’ll see that the session name
is a combination of the username and the IP address from which the session originates, such as
WRSTANEK\127.0.0.1. You may also see entries that begin with a dollar sign ($), which indicates
a computer account rather than a user account.

LISTING 18-6

Viewing Resource and Sessions Usage

VBScript
shareusage.vbs

‘ ************************
‘ Script: Share Usage
‘ Version: 1.1.5
‘ Creation Date: 06/15/2008
‘ Last Modified: 07/21/2008
‘ Author: William R. Stanek
‘ Email: williamstanek@aol.com
‘ Copyright (c) 2008 William R. Stanek
‘ ************************

On Error Resume Next
lf = Chr(13) & Chr(10)

WScript.Echo “==” & lf
WScript.Echo “== Share Usage Script ==” & lf
WScript.Echo “==” & lf

WScript.Echo “Enter local or remote host name: “ & lf

host = WScript.StdIn.ReadLine()

On Error Resume Next

Set s = GetObject(“WinNT://” & host & “/lanmanserver,fileservice”)

‘Display open files
WScript.Echo lf & s.Class & “ “ & s.Name
WScript.Echo “==============================”
WScript.Echo “Open Files: “ & lf

For Each resource In s.Resources
 WScript.Echo “File or Folder Path: “ & resource.Path

86804c18.indd 40886804c18.indd 408 1/21/09 1:28:28 PM1/21/09 1:28:28 PM

409

 Service and Resource Administration with ADSI 18

 WScript.Echo “Number of Locks: “ & resource.LockCount
 WScript.Echo “User: “ & resource.User & lf
Next

‘Display user sessions
WScript.Echo “==============================”
WScript.Echo “User sessions: “ & lf

For Each session In s.sessions
 WScript.Echo “Session name: “ & session.Name
 WScript.Echo “User: “ & session.User
 WScript.Echo “Computer: “ & session.Computer
 WScript.Echo “Connect Time: “ & session.ConnectTime
 WScript.Echo “Idle Time: “ & session.IdleTime & lf
Next

JScript
shareusage.js

// ************************
// Script: Share Usage
// Version: 1.1.5
// Creation Date: 6/17/2008
// Last Modified: 7/21/2008
// Author: William R. Stanek
// Email: williamstanek@aol.com
// Copyright (c) 2008 William R. Stanek
// ************************

lf = “\r\n”

WScript.Echo(“==” + lf)
WScript.Echo(“== Share Usage Script ==” + lf)
WScript.Echo(“==” + lf)

WScript.Echo(“Enter local or remote host name: “ + lf)

host = WScript.StdIn.ReadLine()

var s = GetObject(“WinNT://” + host + “/lanmanserver,fileservice”)

//Display open files
WScript.Echo(lf + s.Class + “ “ + s.Name)
WScript.Echo(“==============================”)
WScript.Echo(“Open Files: “ + lf)

 rList = new Enumerator(s.Resources());

continued

86804c18.indd 40986804c18.indd 409 1/21/09 1:28:28 PM1/21/09 1:28:28 PM

410

 Part III Network and Dictionary Service Scripting

 for (; !rList.atEnd(); rList.moveNext())
 {
 resource = rList.item()
 WScript.Echo(“File or Folder Path: “ + resource.Path)
 WScript.Echo(“Number of Locks: “ + resource.LockCount)
 WScript.Echo(“User: “ + resource.User + lf)
 }

//Display user sessions
WScript.Echo(“==============================”)
WScript.Echo(“User sessions: “ + lf)

 sList = new Enumerator(s.Sessions());

 for (; !sList.atEnd(); sList.moveNext())
 {
 session = sList.item()
 WScript.Echo(“Session name: “ + session.Name)
 WScript.Echo(“User: “ + session.User)
 WScript.Echo(“Computer: “ + session.Computer)
 WScript.Echo(“Connect Time: “ + session.ConnectTime)
 WScript.Echo(“Idle Time: “ + session.IdleTime + lf)
 }

Output

==

== Share Usage Script ==

==

Enter local or remote host name:

zeta

FileService lanmanserver
==============================
Open Files:

File or Folder Path: E:\myBooks\docs
Number of Locks: 0
User: WRSTANEK

File or Folder Path: E:\myBooks\docs\chapter1.rtf
Number of Locks: 0
User: WRSTANEK

LISTING 18-6 (continued)

86804c18.indd 41086804c18.indd 410 1/21/09 1:28:28 PM1/21/09 1:28:28 PM

411

 Service and Resource Administration with ADSI 18

==============================
User sessions:

Session name: WRSTANEK\127.0.0.1
User: WRSTANEK
Computer: 127.0.0.1
Connect Time: 7259
Idle Time: 7236

In Windows scripts, you can close open files and end user sessions, using the Remove() method of
the IADsCollection interface. However, you can only do this if the files or sessions are inactive or
erroneously listed. The following example ends all inactive user sessions:

VBScript

Set s = GetObject(“WinNT://zeta/lanmanserver,fileservice”)
Set coll = fso.Sessions

For Each session In coll
 coll.Remove “Session”, session.Name
Next

JScript

var s = GetObject(“WinNT://” + host + “/lanmanserver,fileservice”)

sList = new Enumerator(s.Sessions());

for (; !sList.atEnd(); sList.moveNext())
{
 session = sList.item()
 sList.Remove(“Session”, session.Name)
}

Summary
This chapter explored working with services, open resources, and user sessions. Services provide
essential functions for Windows computers. You can use scripts to view service settings and to
manage service configuration using the properties and methods of the IADsService interface.
This interface is extended by IADsFileService and IADsFileServiceOperations, which
provide additional features for FileService objects. These additional features enable you to
work with open resources and user sessions. Groups of resources and sessions are represented
by Resources and Sessions collections, which in turn, contain one or more Resource or
Session objects.

86804c18.indd 41186804c18.indd 411 1/21/09 1:28:28 PM1/21/09 1:28:28 PM

86804c18.indd 41286804c18.indd 412 1/21/09 1:28:28 PM1/21/09 1:28:28 PM

413

In previous chapters, you learned how to manage network resources,
in particular network drives and network printer connections. Now
it’s time to extend this knowledge so that you can create, control, and

configure related resources; namely shared folders, print queues, and print
jobs. A key concept on any network is resource sharing; both folders and
printers can be shared.

When you share a folder, you make all of its files and subfolders available to
network users. Authorized users can then access this shared folder by creat-
ing a network drive that points to the folder. Using ADSI, you can create
shared folders and set shared folder properties.

When you share printers, you configure a printer for remote access over
the network. If a user prints a document, the document is routed to a print
queue where it is stored prior to printing. Documents in a print queue are
referred to as print jobs. Print jobs can be handled in FIFO (first in, first
out) fashion. They can also be printed according to their priority—for
example, a print job with high priority is printed before a print job with
low priority.

Working with Shared Folders
As you know, shared folders are used to make data available over the net-
work. What you may not know is how shared folders generally are man-
aged. Normally, you create and configure shared folders using Windows
Explorer or Computer Management. Once you create a shared folder,
you can also use Computer Management to view and manage both open
resources and user sessions related to the shared folder.

Maintaining Shared
Directories, Printer Queues,

and Print Jobs

IN THIS CHAPTER
Creating shared folders

Configuring shared folders

Managing print queues

Controlling print jobs

86804c19.indd 41386804c19.indd 413 1/21/09 1:28:40 PM1/21/09 1:28:40 PM

414

 Part III Network and Dictionary Service Scripting

You can also manage shared folders in Windows scripts. Chapter 10 showed you how to map network
drives to access shares. Chapter 18 showed you how to view and manage open resources and user
sessions for shares. Now let’s look at scripting techniques that help you manage the shared folders.

Folder sharing essentials
As with open resources and user sessions, you access shared folders through the FileService
object of the LanManServer service. After you obtain a pointer to the FileService object, you can
then create file shares or work with existing file shares through the FileShare object. The follow-
ing example looks at all file shares on a computer called Zeta:

Set fs = GetObject(“WinNT://zeta/LanmanServer,FileService”)
For Each sh In fs
 WScript.Echo sh.name
Next

The example returns a list of shares on Zeta, such as:

PRINT$
NETLOGON
SYSVOL
CorpDataShare
myBooks

The list does not show default shares (other than PRINT$). Default shares are shared folders created
automatically by the operating system and are also referred to as administrative shares. If you use the
NET SHARE command-line utility to list the shares on a computer, you’ll see all shares (both default
and standard). To see a list of all shares, type net share at the command line. The resulting output
should look similar to the following:

Share name Resource Remark
--
I$ I:\ Default share
IPC$ Remote IPC
D$ D:\ Default share
print$ F:\WIN2000\System32\spool\drivers
 Printer Drivers
ADMIN$ F:\WIN2000 Remote Admin
C$ C:\ Default share
E$ E:\ Default share
F$ F:\ Default share
CorpDataShare
 F:\CorpData
myBooks E:\myBooks
NETLOGON F:\WIN2000\sysvol\sysvol\seattle.domain.com\SCRIPTS
 Logon server share
SYSVOL F:\WIN2000\sysvol\sysvol Logon server share

86804c19.indd 41486804c19.indd 414 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

415

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

BrotherM LPT1: Spooled Brother MFC-5550
HPDeskJe LPT1: Spooled HP DeskJet 890C
The command completed successfully.

Note that the last two entries in the code are for shared printers.

Table 19-1 provides an overview of how administrative shares are used.

TABLE 19-1

Using Administrative Shares
Share Name Description

ADMIN$ Provides access to the operating system %SystemRoot% during remote administration

Driveletter$ Allows an administrator to connect to the root folder of a drive; shares are shown as
C$, D$, E$, and so on.

FAX$ Supports network faxes

IPC$ Supports named pipes during remote access

Microsoft UAM
Volume

User Access Manager volume; provides access control files for non-Windows users

NETLOGON Supports the Net Logon service

PRINT$ Provides access to printer drivers, which are used with network printers

SYSVOL Active Directory system volume; used by Active Directory

Examining shared folders and their properties
When you work with shared folders that already exist, you can obtain their objects directly through
the WinNT provider. To do this, you use the following syntax for the ADsPath String:

WinNT://ComputerName/lanmanserver/ShareName,FileShare

where ComputerName is the name of the computer and ShareName is the actual name of the share,
such as:

WinNT://Zeta/lanmanserver/netlogon,FileShare

Each shared folder has a set of properties that you can work with. These properties are summarized
in Table 19-2.

NOTENOTE

86804c19.indd 41586804c19.indd 415 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

416

 Part III Network and Dictionary Service Scripting

TABLE 19-2

FileShare Object Properties
Property Status Value Type Min. Range Max. Range Multiple Values

CurrentUserCount RO Integer 0 2147483647 False

Description RW String 0 257 False

HostComputer RW ADsPath String 0 256 False

MaxUserCount RW Integer 0 2147483647 False

Path RW Path String 0 340 False

Most of these properties are rather straightforward. CurrentUserCount returns the current
number of users connected to this share. Description sets or gets a description of the file share.
HostComputer sets or gets the ADsPath to the host computer on which the share resides. Path
sets or gets the file path to shared directory. MaxUserCount sets or gets the maximum number
of concurrent users for the share. If MaxUserCount is set to –1, there is no maximum set for the
shared folder.

Listing 19-1 shows how you could display the properties of the Netlogon share and then change the
maximum number of users.

LISTING 19-1

Examining Properties of Shared Folders

VBScript
foldershare.vbs

Set fs = GetObject(“WinNT://zeta/LanmanServer/netlogon,fileshare”)
WScript.Echo fs.Name
WScript.Echo “Current User Count: “ & fs.CurrentUserCount
WScript.Echo “Description: “ & fs.Description
WScript.Echo “Host Computer: “ & fs.HostComputer
WScript.Echo “Maximum User Count: “ & fs.MaxUserCount
WScript.Echo “File Path: “ & fs.Path

JScript
foldershare.js

var fs = GetObject(“WinNT://zeta/LanmanServer/netlogon,fileshare”);
WScript.Echo(fs.Name);
WScript.Echo(“Current User Count: “ + fs.CurrentUserCount);
WScript.Echo(“Description: “ + fs.Description);
WScript.Echo(“Host Computer: “ + fs.HostComputer);

86804c19.indd 41686804c19.indd 416 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

417

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

WScript.Echo(“Maximum User Count: “ + fs.MaxUserCount);
WScript.Echo(“File Path: “ + fs.Path);

Output

NETLOGON
Current User Count: 0
Description: Logon server share
Host Computer: WinNT://SEATTLE/zeta
Maximum User Count: -1
File Path: F:\WIN2000\sysvol\sysvol\seattle.domain.com\SCRIPTS

Creating and deleting shared folders
As with many other objects, you create and delete shared folders using the Create() and
Delete() methods of the IADsContainer interface. Before you can call either of these methods,
you must bind to the container for the LanManServer service, and then you can call Create() or
Delete() as necessary.

The only mandatory properties for creating a shared folder are Path and MaxUserCount.
However, you must also specify the name for the shared folder. Listing 19-2 creates a shared folder
called CorpData.

LISTING 19-2

Creating Shared Folders

VBScript
createshare.vbs

Set cont = GetObject(“WinNT://seattle/zeta/LanmanServer,FileService”)
Set fs = cont.Create(“FileShare”, “CorpData”)
fs.Path = “C:\Data\Users\Docs”
fs.MaxUserCount = -1
fs.SetInfo

JScript
createshare.js

var cont = GetObject(“WinNT://seattle/zeta/LanmanServer,FileService”);
var fs = cont.Create(“FileShare”, “CorpData”);
fs.Path = “C:\\Data\\Users\\Docs”;
fs.MaxUserCount = -1;
fs.SetInfo();

86804c19.indd 41786804c19.indd 417 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

418

 Part III Network and Dictionary Service Scripting

You delete shares using a similar technique. First you bind to the container for the FileService
object. Then you delete the shared folder by name using the Delete() method, such as:

VBScript

Set cont = GetObject(“WinNT://seattle/zeta/LanmanServer,FileService”)
cont.Delete(“FileShare”, “CorpData”)

JScript

var cont = GetObject(“WinNT://seattle/zeta/LanmanServer,FileService”);
cont.Delete(“FileShare”, “CorpData”);

Managing Print Queues
Through print queues, administrators can view and manage printers and pending print jobs. In
ADSI, print queues are controlled with the PrintQueue object, which is implemented through the
IADsPrintQueue and IADsPrintQueueOperations interfaces.

Examining print queues
Each printer configured for use on the network can have one or more print queues associated with
it. For example, you could configure one print queue to handle high-priority printing and another
to handle low-priority printing. Both print queues could point to a network-attached printer, and
through these print queues you could manage your printing.

In Windows scripts, you access print queues through the Computer object. Each print queue con-
figured on the computer will have a unique object associated with it. The name of this object is
the same as the shared printer name, which can be obtained by typing net share at the command
prompt. If a printer is registered in Active Directory, you can also obtain shared printer names
through the Find Printers dialog box. Follow these steps:

 1. Click Start, point to Search, and then select For Printers. This displays the Find Printers
dialog box.

 2. Enter * in the Name field, and then click Find Now. The find dialog box will return a list of
all printers that are on the network.

 3. Right-click on the printer entry that you want to examine and then select Properties.

 4. In the Properties dialog box, select the Sharing tab, and then note the shared name of the
printer. This is the name you’ll use to access the PrintQueue object for this printer.

In a script, you would obtain the name of print queues through the associated Computer object. For
example, if a computer named Zeta is a print server and has several print queues attached to it, you

86804c19.indd 41886804c19.indd 418 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

419

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

could obtain the shared printer name by filtering the related container on the PrintQueue object,
such as:

VBScript

Set c = GetObject(“WinNT://Zeta,computer”)
c.Filter = Array(“PrintQueue”)
n = 0

For Each p In c
 n = n + 1
 Set pq = GetObject(p.ADsPath)
 WScript.Echo “Print Queue “ & CStr(n) & “: “ & pq.Name
Next

Output

Print Queue 1: HPEngineering
Print Queue 2: HPMarketing
Print Queue 3: HPTechnology

Another way to examine PrintQueue objects is to use an Enumerator to examine all objects in the
Computer object’s container using a loop to search for the PrintQueue class, such as:

JScript

var comp = GetObject(“WinNT://Zeta,Computer”);
n = 0;

tlist = new Enumerator(comp);
for (; !tlist.atEnd(); tlist.moveNext())
 {
 s = tlist.item();
 if (s.Class == “PrintQueue”) {
 n += 1;
 WScript.Echo(“Print Queue “ + n + “: “ + s.Name);
 }
}

Output

Print Queue 1: HPEngineering
Print Queue 2: HPMarketing
Print Queue 3: HPTechnology

You could then manage the HPEngineering, HPMarketing, and HPTechnology print queues on
Zeta. To manage the queues individually, you could use any of the following ADsPath strings:

WinNT://seattle/zeta/HPEngineering
WinNT://seattle/zeta/HPMarketing
WinNT://seattle/zeta/HPTechnology

86804c19.indd 41986804c19.indd 419 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

420

 Part III Network and Dictionary Service Scripting

You could also manipulate the print queues within the For loops, which would allow you to manage
all of the print queues on a particular computer.

Using the PrintQueue object
The PrintQueue object has many properties associated with it. An overview of properties for the
PrintQueue object is provided in Table 19-3. You use properties to examine and control configura-
tion of the print queue.

TABLE 19-3

PrintQueue Object Properties
Property Status Value Type Min. Range Max. Range Multiple Values

Action RW Integer 0 2147483647 False

Attributes RW Integer 0 2147483647 False

BannerPage RW Path String 0 340 False

Datatype RW String 0 256 False

DefaultJobPriority RW Integer 1 99 False

Description RW String 0 257 False

JobCount RO Integer 0 2147483647 False

Location RW String 0 256 False

Model RW String 0 256 False

NetAddresses RW String,
Array

0 256 True

ObjectGUID RO String 0 256 False

PrintDevices RW String,
Array

0 256 True

PrinterName RW String 0 256 False

PrintProcessor RW String 0 256 False

Priority RW Integer 1 99 False

StartTime RW Time String n/a n/a False

Status RO Integer 0 16777216 False

UntilTime RW Time String n/a n/a False

86804c19.indd 42086804c19.indd 420 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

421

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

Listing 19-3 shows how you could display properties of print queues on a particular computer. Note
the output values for each property. We discuss key properties and their uses in the next section.

LISTING 19-3

Working with Print Queues

VBScript
printqueue.vbs

On Error Resume Next

Set c = GetObject(“WinNT://Zeta,computer”)
c.Filter = Array(“PrintQueue”)

For Each p In c

 Set pq = GetObject(p.ADsPath)
 WScript.Echo “Shared Printer: “ & pq.Name
 WScript.Echo “===========================”
 WScript.Echo “Action “ & pq.Action
 WScript.Echo “Attributes “ & pq.Attributes
 WScript.Echo “Banner Page “ & pq.BannerPage
 WScript.Echo “Data Type “ & pq.Datatype
 WScript.Echo “Default Job Priority “ & pq.DefaultJobPriority
 WScript.Echo “Description “ & pq.Description
 WScript.Echo “Host Computer “ & pq.HostComputer
 WScript.Echo “Job Count “ & pq.JobCount
 WScript.Echo “Location “ & pq.Location
 WScript.Echo “Model “ & pq.Model
 WScript.Echo “Object GUID “ & pq.ObjectGUID
 WScript.Echo “Print Devices “ & pq.PrintDevices
 WScript.Echo “Print Processor “ & pq.PrintProcessor
 WScript.Echo “Print Queue Name “ & pq.PrinterName
 WScript.Echo “Queue Priority “ & pq.Priority
 WScript.Echo “Start Time “ & pq.StartTime
 WScript.Echo “Until Time “ & pq.UntilTime

Next

Output

Shared Printer: HPEngineering
===========================
Action 1
Attributes 8776
Banner Page C:\WIN2000\system32\sysprint.sep
Data Type RAW

continued

86804c19.indd 42186804c19.indd 421 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

422

 Part III Network and Dictionary Service Scripting

Default Job Priority 0
Description Engineering Departmental Printer
Job Count 1
Location 16th Floor
Model HP LaserJet 8000
Object GUID {50DD3D14-25F3-4740-BB87-A1605BE46E95}
Print Devices LPT1:
Print Processor WinPrint
Print Queue Name HP8000Eng
Queue Priority 1
Start Time 4:00:00 PM
Until Time 4:00:00 PM

Using a banner page
The PrintQueue object properties are helpful in managing printers. One of the most useful proper-
ties is BannerPage, which lets you view or set the path to a banner-page file used to separate print
jobs. Banner pages can be used at the beginning of print jobs in order to clearly identify where one
print job starts and another ends. They also can be used to change the print device mode, such as
whether the print device uses PostScript or PCL (Printer Control Language).

Windows provides a default set of banner-page files. These files are saved in the %SystemRoot%\
system32 folder with a .SEP file extension. Each file has a different use:

pcl.sep■ : Switches the printer to PCL mode and prints a banner page before each
document.

pscript.sep■ : Sets the printer to PostScript mode but doesn’t print a banner page.

sysprint.sep■ : Sets the printer to PostScript mode and prints a banner page before each
document.

If you don’t like the banner pages provided, you can use the default banner page files as the basis for
new ones. You set the banner page for a printer as follows:

VBScript

Set pq = GetObject(“WinNT://seattle/zeta/HPDeskJe,PrintQueue”)

Set WshShell = WScript.CreateObject(“WScript.Shell”)
sysroot = WshShell.ExpandEnvironmentStrings(“%SystemRoot%”)

pq.BannerPage = sysroot & “\system32\sysprint.sep”
pq.SetInfo

LISTING 19-3 (continued)

86804c19.indd 42286804c19.indd 422 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

423

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

JScript

var pq = GetObject(“WinNT://seattle/zeta/HPDeskJe,PrintQueue”);

var WshShell = WScript.CreateObject(“WScript.Shell”);
sysroot = WshShell.ExpandEnvironmentStrings(“%SystemRoot%”);

pq.BannerPage = sysroot + “\\system32\\sysprint.sep”;
pq.SetInfo();

If you don’t want a printer to use a banner page, set the BannerPage property to an empty string,
such as:

VBScript

Set pq = GetObject(“WinNT://seattle/zeta/HPDeskJe,PrintQueue”)
pq.BannerPage = “”
pq.SetInfo

JScript

var pq = GetObject(“WinNT://seattle/zeta/HPDeskJe,PrintQueue”);
pq.BannerPage = “”;
pq.SetInfo();

Working with general printer information
Many PrintQueue properties provide general information, such as the printer model or print
device in use. Usually, you’ll want to view this information, rather than set it. For example, you
could create a script to obtain summary information on all printers on the network. The type of
information you might collect could include the printer name, model, description, and location.

More technical information that you may want to gather for administrators includes:

Network Address:■ Tells you the IP address of a network-attached printer. Printers can
have multiple IP addresses.

Print Device:■ Tells you how the printer is connected to the print server. Printers can be
connected through one or more ports, such as LPT1 or LPT1 and LPT2.

Print processor:■ Creates the raw print data necessary for printing. The format of the
data is based on the data type set for the print processor. The primary print processor on
Windows is WinPrint. This print processor supports several different data types.

Data type:■ Identifies the data type. In most cases, the data type is controlled by the Print
Spooler service. Because of this, the data type shown by the DataType property is rarely used.

If you move a printer from one location to another, you’ll probably need to update the printer’s loca-
tion and description. You may also need to change the print device or network address. An example
is shown as Listing 19-4.

86804c19.indd 42386804c19.indd 423 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

424

 Part III Network and Dictionary Service Scripting

LISTING 19-4

Setting Print Queue Information

VBScript
printinfo.vbs

Set pq = GetObject(“WinNT://seattle/zeta/HPMarketing,PrintQueue”)
pq.Location = “15th Floor SE”
pq.Description = “Color printer for marketing department”
pq.NetAddresses = “192.168.10.5”
pq.SetInfo

JScript
printinfo.vbs

var pq = GetObject(“WinNT://seattle/zeta/HPMarketing,PrintQueue”);
pq.Location = “15th Floor SE”;
pq.Description = “Color printer for marketing department”;
pq.NetAddresses = “192.168.10.5”;
pq.SetInfo();

Prioritizing print queues and print jobs
Other PrintQueue properties control when and how documents are printed. When multiple print
queues point to the same physical print device, you may want to control the priority of the print queue.
In this way, you could have a high-priority print queue for documents that are needed immediately
and a low-priority print queue for all other documents.

You control print queue priority with the Priority property. A priority of 1 is the lowest priority. A
priority of 99 is the highest priority. If you create two print queues, one with a priority of 1 and the
other with a priority of 99, documents in the second queue will always print before documents in
the first queue.

Another way to control document printing is to set a default priority for print jobs. Print jobs always
print in order of priority. Jobs with higher priority print before jobs with lower priority. Remember
that the range of priorities is from 1 to 99.

The following example sets the queue priority to 10 and the default job priority to 1:

VBScript

Set pq = GetObject(“WinNT://seattle/zeta/HPTechnology,PrintQueue”)
pq.Priority = 10
pq.DefaultJobPriority = 1
pq.SetInfo

86804c19.indd 42486804c19.indd 424 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

425

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

JScript

var pq = GetObject(“WinNT://seattle/zeta/HPTechnology,PrintQueue”);
pq.Priority = 10;
pq.DefaultJobPriority = 1;
pq.SetInfo();

Scheduling print queue availability
Print queues are either always available or available only during certain hours. You control print
queue availability through the StartTime and UntilTime properties. If these properties are set to
the same value, the print queue is always available. If these properties are set to different times, the
print queue is only available during the specified time.

You could specify that a print queue is only available after normal business hours by setting
StartTime to 5 p.m. and UntilTime to 9 a.m., such as:

VBScript

Set pq = GetObject(“WinNT://seattle/zeta/HPTechnology2,PrintQueue”)
pq.StartTime = “5:00:00 PM”
pq.UntilTime = “9:00:00 AM”
pq.SetInfo

JScript

var pq = GetObject(“WinNT://seattle/zeta/HPTechnology2,PrintQueue”);
pq.StartTime = “5:00:00 PM”;
pq.UntilTime = “9:00:00 AM”;
pq.SetInfo();

Checking print queue status
The print queue status tells you the status of the print queue and the physical print device. You can
use the status to determine if the printer is jammed, out of paper, and much more.

Checking the status of a print queue is easy; you just obtain the value of the Status property, such as:

var pq = GetObject(“WinNT://seattle/zeta/HPEngineering,PrintQueue”)
WScript.Echo(pq.Status)

Understanding precisely what the status code means is more challenging than merely obtaining the
status code because there is a fairly extensive list of status codes. Table 19-4 shows the list.

86804c19.indd 42586804c19.indd 425 1/21/09 1:28:41 PM1/21/09 1:28:41 PM

426

 Part III Network and Dictionary Service Scripting

TABLE 19-4

Print Queue Status Codes
Constant Code Description

- 0 Print is running normally.

ADS_PRINTER_PAUSED 1 Print queue is paused.

ADS_PRINTER_PENDING_DELETION 2 Print queue is being deleted.

ADS_PRINTER_ERROR 3 Printer error

ADS_PRINTER_PAPER_JAM 4 Paper is jammed in the printer.

ADS_PRINTER_PAPER_OUT 5 Printer is out of paper.

ADS_PRINTER_MANUAL_FEED 6 Printer is set for manual feed.

ADS_PRINTER_PAPER_PROBLEM 7 Printer has a paper problem.

ADS_PRINTER_OFFLINE 8 Printer offline

ADS_PRINTER_IO_ACTIVE 256 Printer IO active

ADS_PRINTER_BUSY 512 Printer busy

ADS_PRINTER_PRINTING 1024 Printer is printing.

ADS_PRINTER_OUTPUT_BIN_FULL 2048 Printer output bin is full.

ADS_PRINTER_NOT_AVAILABLE 4096 Printer not available

ADS_PRINTER_WAITING 8192 Printer is waiting.

ADS_PRINTER_PROCESSING 16384 Printer is processing.

ADS_PRINTER_INITIALIZING 32768 Printer is initializing.

ADS_PRINTER_WARMING_UP 65536 Printer is warming up.

ADS_PRINTER_TONER_LOW 131072 Printer is low on toner.

ADS_PRINTER_NO_TONER 262144 Printer is out of toner.

ADS_PRINTER_PAGE_PUNT 524288 Printer page punt

ADS_PRINTER_USER_INTERVENTION 1048576 Printer user intervention

ADS_PRINTER_OUT_OF_MEMORY 2097152 Printer is out of memory.

ADS_PRINTER_DOOR_OPEN 4194304 Printer door is open.

ADS_PRINTER_SERVER_UNKNOWN 8388608 Printer server has unknown error.

ADS_PRINTER_POWER_SAVE 16777216 Printer is in power save mode.

86804c19.indd 42686804c19.indd 426 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

427

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

Rather than trying to handle all possible printer problems in a script, you’ll probably want to focus
on handling the most common problems. For example, you could create a script that periodically
polls all printers on the network, checking for problems and displaying a list of possible ways to
resolve these problems.

Listing 19-5 shows a script that monitors printers on a specified print server. The script has two
key subroutines: printMon and checkPrinter. The printMon subroutine controls how often the
script checks printers. The basic technique is to use WScript.Sleep to set a wait interval. This
interval is in milliseconds with 300,000 milliseconds equaling 5 minutes. The checkPrinter sub-
routine displays the status of printers. This is handled with a Select Case structure that checks
the status code.

LISTING 19-5

Monitoring Printers

VBScript
printmonitor.vbs

lf = Chr(13) & Chr(10)

WScript.Echo “==” & lf
WScript.Echo “== Printer Monitor ==” & lf
WScript.Echo “==” & lf

WScript.Echo “Enter name of print server to monitor: “ & lf
host = WScript.StdIn.ReadLine()
printMon()

‘Check printers at 5 minute intervals
sub printMon()

 Set c = GetObject(“WinNT://” & host & “,computer”)

 c.Filter = Array(“PrintQueue”)

 WScript.Echo lf & “==”
 WScript.Echo “Checking Printers on “ & host
 WScript.Echo “==”

 For Each pq In c
 If pq.Status > 0 Then CheckPrinter(pq)
 Next

 ‘Wait 5 minutes before calling printMon again
 WScript.Sleep(300000)

 printMon()

continued

86804c19.indd 42786804c19.indd 427 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

428

 Part III Network and Dictionary Service Scripting

End Sub

‘Display printer status for non-normal conditions
sub checkPrinter(obj)

 WScript.Echo lf
 WScript.Echo “Print Queue Name: “ & obj.Name
 WScript.Echo “Printer Model: “ & obj.Model
 WScript.Echo “Printer Location: “ & obj.Location
 WScript.Echo “==”

 Select Case obj.Status
 Case 1
 WScript.Echo “Print Queue is Paused.”

 Case 3
 WScript.Echo “Printer Error!”

 Case 4
 WScript.Echo “Paper Jam!”

 Case 5
 WScript.Echo “Printer is out of paper!”

 Case 6
 WScript.Echo “Printer set to manual paper feed.”

 Case 7
 WScript.Echo “Paper problem on printer!”

 Case 8
 WScript.Echo “Printer is offline.”

 Case 131072
 WScript.Echo “Printer is low on toner.”

 Case 262144
 WScript.Echo “Printer is out of toner!”

 Case Else
 WScript.Echo “Printer is changing states or has error.”
 WScript.Echo “Status: “ & CStr(pq.Status)

 End Select

 WScript.Echo “==”
 WScript.Echo “==”

LISTING 19-5 (continued)

86804c19.indd 42886804c19.indd 428 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

429

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

End Sub

Output

==
== Printer Monitor ==
==

Enter name of print server to monitor:

Zeta

==
Checking Printers on Zeta
==

Print Queue Name: HPEngineering
Printer Model: HP LaserJet 8000
Printer Location: 16th Floor SW
==
Print Queue is Paused.
==
==

Print Queue Name: HPMarketing
Printer Model: HP LaserJet 8000
Printer Location: 16th Floor NE
==
Print Queue is Paused.
==
==

Managing print queues
In addition to properties, the PrintQueue object also has methods. These methods are used to pause,
resume, and purge the print queue. You pause a print queue by invoking its Pause method, such as:

VBScript

Set pq = GetObject(“WinNT://seattle/zeta/HPEngineering,PrintQueue”)
pq.Pause

JScript

var pq = GetObject(“WinNT://seattle/zeta/HPEngineering,PrintQueue”);
pq.Pause();

86804c19.indd 42986804c19.indd 429 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

430

 Part III Network and Dictionary Service Scripting

To resume printing, the script can invoke the print queue’s Resume method. If you want to delete all
documents in a print queue, call its Purge method. Here’s an example:

VBScript

Set pq = GetObject(“WinNT://seattle/zeta/HPEngineering,PrintQueue”)
pq.Purge

JScript

var pq = GetObject(“WinNT://seattle/zeta/HPEngineering,PrintQueue”);
pq.Purge();

Any document that has spooled to the printer and is in the printer’s memory will con-
tinue to print.

Another useful method of the PrintQueue object is PrintJobs. The PrintJobs method retrieves
a pointer to a collection of print jobs managed by the print queue. You can then iterate through this
collection of print jobs to manage individual documents that are waiting to be printed. Working
with print jobs is discussed in the next section.

Controlling Print Jobs
Now that you know how to work with print queues, let’s take a look at working with print jobs. A
busy print queue can have dozens of documents waiting to be printed. All of these documents are
represented as PrintJob objects in the PrintJobs collection.

Examining print job properties
Each PrintJob object has properties that you can view and set. These properties are summarized
in Table 19-5.

TABLE 19-5

Properties of Print Jobs
Property Status Value Type Min. Range Max. Range Multiple Values

Description RW String 0 256 False

HostPrintQueue RO ADsPath
String

0 256 False

Notify RW String 0 256 False

PagesPrinted RO Integer 0 2147483647 False

Position RW Integer 0 2147483647 False

NOTENOTE

86804c19.indd 43086804c19.indd 430 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

431

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

Property Status Value Type Min. Range Max. Range Multiple Values

Priority RW Integer 1 99 False

Size RO Integer 0 2147483647 False

StartTime RW Time
String

n/a n/a False

Status RO Integer 0 256 False

TimeElapsed RO Integer 0 2147483647 False

TimeSubmitted RO Time
String

n/a n/a False

TotalPages RO Integer 0 2147483647 False

UntilTime RW Time
String

n/a n/a False

User RO String 0 256 False

Listing 19-6 provides a detailed example of working with print job properties. As the listing shows,
you access print jobs through the PrintJobs collection.

LISTING 19-6

Monitoring Printers

VBScript
printjobs.vbs

On Error Resume Next
Set pq = GetObject(“WinNT://zeta/HPDeskJe,PrintQueue”)

For Each pj in pq.PrintJobs

 WScript.Echo “Print Job: “ & pj.Name
 WScript.Echo “=============================”
 WScript.Echo “Description: “ & pj.Description
 WScript.Echo “Host Print Queue: “ & pj.HostPrintQueue
 WScript.Echo “Notify: “ & pj.Notify
 WScript.Echo “Notify Path: “ & pj.NotifyPath
 WScript.Echo “Pages Printed: “ & pj.PagesPrinted
 WScript.Echo “Position: “ & pj.Position
 WScript.Echo “Priority: “ & pj.Priority
 WScript.Echo “Size: “ & pj.Size
 WScript.Echo “Start Time: “ & pj.StartTime

continued

86804c19.indd 43186804c19.indd 431 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

432

 Part III Network and Dictionary Service Scripting

 WScript.Echo “Status: “ & pj.Status
 WScript.Echo “Time Elapsed: “ & pj.TimeElapsed
 WScript.Echo “Time Submitted: “ & pj.TimeSubmitted
 WScript.Echo “Total Pages: “ & pj.TotalPages
 WScript.Echo “Until Time: “ & pj.UntilTime
 WScript.Echo “User: “ & pj.User
 WScript.Echo “User Path: “ & pj.UserPath
 WScript.Echo “=============================”

Next

Output

Print Job 2
=============================
Description: Microsoft Word - addresses.doc
Host Print Queue: WinNT://SEATTLE/zeta/HPDeskJet
Notify: Administrator
Pages Printed: 0
Position: 1
Priority: 1
Size: 917328
Start Time: 4:00:00 PM
Status: 0
Time Elapsed: 0
Time Submitted: 5/15/2008 3:25:48 PM
Total Pages: 39
Until Time: 4:00:00 PM
User: Administrator
=============================

While most of the print job properties are self-explanatory, a few deserve more attention. These are:

HostPrintQueue■ : The ADsPath string that names the print queue processing this print job.

Notify■ : The user to be notified when the print job is completed.

NotifyPath■ : The ADsPath string for the user to be notified when the job is completed.

PagesPrinted■ : The total number of pages printed in the current job.

Position■ : The numeric position of the print job in the print queue.

Priority■ : The priority of the print job from 1 (lowest) to 99 (highest).

User■ : The name of user who submitted the print job.

UserPath■ : The ADsPath string of the user who submitted the print job.

LISTING 19-6 (continued)

86804c19.indd 43286804c19.indd 432 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

433

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

Print jobs can also have a status. A status of zero (0) indicates a normal condition. Any other status
indicates a possible problem. Status codes for print jobs are summarized in Table 19-6.

TABLE 19-6

Print Job Status Codes
Constant Status Code Description

- 0 Normal

ADS_JOB_PAUSED 1 Job is paused.

ADS_JOB_ERROR 2 Job error

ADS_JOB_DELETING 4 Job is being deleted.

ADS_JOB_PRINTING 8 Job is printing.

ADS_JOB_OFFLINE 16 Job is offline.

ADS_JOB_PAPEROUT 32 Paper is out.

ADS_JOB_PRINTED 64 Job printed.

ADS_JOB_DELETED 256 Job was deleted.

Monitoring print job status
You can check print job status conditions in much the same way as you can check print queue status
conditions. In fact, with a few modifications, you can use the print monitor script to monitor print
jobs, as well. To see how, examine Listing 19-7.

LISTING 19-7

Monitoring Printers and Print Jobs

VBScript
printmonitor2.vbs

lf = Chr(13) & Chr(10)

WScript.Echo “==” & lf
WScript.Echo “== Printer Monitor ==” & lf
WScript.Echo “==” & lf

WScript.Echo “Enter name of print server to monitor: “ & lf
host = WScript.StdIn.ReadLine()

continued

86804c19.indd 43386804c19.indd 433 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

434

 Part III Network and Dictionary Service Scripting

printMon()

‘Check printers at 5 minute intervals
sub printMon()

 Set c = GetObject(“WinNT://” & host & “,computer”)

 c.Filter = Array(“PrintQueue”)

 WScript.Echo lf & “==”
 WScript.Echo “Checking Printers on “ & host
 WScript.Echo “==”

 For Each pq In c
 If pq.Status > 0 Then CheckPrinter(pq)

 For Each j in pq.PrintJobs
 checkPrintJobs(j)
 Next
 Next

 ‘Wait 5 minutes before calling printMon again
 WScript.Sleep(300000)

 printMon()

End Sub

‘Display printer status for non-normal conditions
sub checkPrinter(obj)

 WScript.Echo lf
 WScript.Echo “Print Queue Name: “ & obj.Name
 WScript.Echo “Printer Model: “ & obj.Model
 WScript.Echo “Printer Location: “ & obj.Location
 WScript.Echo “==”

 Select Case obj.Status
 Case 1
 WScript.Echo “Print Queue is Paused.”
 Case 3
 WScript.Echo “Printer Error!”
 Case 4
 WScript.Echo “Paper Jam!”
 Case 5
 WScript.Echo “Printer is out of paper!”
 Case 6
 WScript.Echo “Printer set to manual paper feed.”

LISTING 19-7 (continued)

86804c19.indd 43486804c19.indd 434 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

435

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

 Case 7
 WScript.Echo “Paper problem on printer!”
 Case 8
 WScript.Echo “Printer is offline.”
 Case 131072
 WScript.Echo “Printer is low on toner.”
 Case 262144
 WScript.Echo “Printer is out of toner!”
 Case Else
 WScript.Echo “Printer is changing states or has error.”
 WScript.Echo “Status: “ & CStr(pq.Status)
 End Select

 WScript.Echo “==”
 WScript.Echo “==”

End Sub

‘Display printer job status for non-normal conditions
sub checkPrintJobs(pj)

 Select Case pj.Status
 Case 1

 WScript.Echo lf
 WScript.Echo “Print Job: “ & pj.Description
 WScript.Echo “Position: “ & pj.Position
 WScript.Echo “Pages Printed: “ & pj.PagesPrinted
 WScript.Echo “Total Pages: “ & pj.TotalPages
 WScript.Echo “Printed By: “ & pj.User
 WScript.Echo “==”
 WScript.Echo “Print Job is Paused.”
 WScript.Echo “==”

 Case 2

 WScript.Echo lf
 WScript.Echo “Print Job: “ & pj.Description
 WScript.Echo “Position: “ & pj.Position
 WScript.Echo “Pages Printed: “ & pj.PagesPrinted
 WScript.Echo “Total Pages: “ & pj.TotalPages
 WScript.Echo “Printed By: “ & pj.User
 WScript.Echo “==”
 WScript.Echo “Print Job error.”
 WScript.Echo “==”

 End Select

End Sub

continued

86804c19.indd 43586804c19.indd 435 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

436

 Part III Network and Dictionary Service Scripting

Output

==

== Printer Monitor ==

==

Enter name of print server to monitor:

Zeta

==
Checking Printers on Zeta
==

Print Queue Name: HPEngineering
Printer Model: HP LaserJet 8000
Printer Location: 16th Floor
==
Print Queue is Paused.
==
==

Print Job: Microsoft Word - listings.doc
Position: 1
Pages Printed: 0
Total Pages: 39
Printed By: Administrator
==
Print Job is Paused.
==

Print Job: Test Page
Position: 2
Pages Printed: 0
Total Pages: 1
Printed By: Administrator
==
Print Job is Paused.
==

LISTING 19-7 (continued)

86804c19.indd 43686804c19.indd 436 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

437

 Maintaining Shared Directories, Printer Queues, and Print Jobs 19

Pausing and resuming print jobs
As with print queues, print jobs can be paused and resumed. You use the Pause method to pause a
print job and the Resume method to resume a print job. One reason to pause a print job would be to
temporarily stop printing a large document to allow other documents to be printed first.

Listing 19-8 shows an example of how you could control print jobs through Pause and Resume.
Anytime there are five or more documents in the print queue and the document being printed
has more than 50 pages to print, the active document is paused and other documents are printed.
Printing doesn’t resume until several of the smaller documents have printed.

LISTING 19-8

Controlling Print Jobs with Pause and Resume

VBScript
controlprinting.vbs

lf = Chr(13) & Chr(10)

WScript.Echo “==” & lf
WScript.Echo “== Print Job Monitor ==” & lf
WScript.Echo “==” & lf

checkJobs()

sub checkJobs()
 Set c = GetObject(“WinNT://Zeta,computer”)
 c.Filter = Array(“PrintQueue”)

 ‘Initialize counter
 n = 0

 For Each pq In c

 For Each j in pq.PrintJobs
 n = n + 1
 Next

 If n > 5 Then
 For Each j in pq.PrintJobs
 If j.Status = 8 And j.TotalPages - j.PagesPrinted > 50 Then
 WScript.Echo “Pausing ... “ & j.Description
 j.Pause
 End If
 Next
 End If

continued

86804c19.indd 43786804c19.indd 437 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

438

 Part III Network and Dictionary Service Scripting

 If n < 3 Then
 For Each j in pq.PrintJobs
 If j.Status = 1 Then
 WScript.Echo “Resuming ... “ & j.Description
 j.Resume
 End If
 Next
 End If

 Next

 ‘Wait 5 minutes
 WScript.Sleep(300000)

 ‘Call self
 checkJobs()

end sub

Output

==

== Print Job Monitor ==

==

Pausing ... Microsoft Word - massiveprint.doc
Resuming ... Microsoft Word - massiveprint.doc

Summary
Resource sharing is an essential part of any network environment. With Windows scripts, you can
manage and maintain many different types of network resources. This chapter focused on working
with shared folders, print queues, and print jobs. As you learned, you can create, delete, and modify
shared folders. With print queues and print jobs, you can move a few steps beyond normal mainte-
nance by implementing monitoring scripts. These scripts help maintain the healthy status of print
queues and print jobs with limited administrator intervention.

LISTING 19-8 (continued)

86804c19.indd 43886804c19.indd 438 1/21/09 1:28:42 PM1/21/09 1:28:42 PM

439

A s you’ve seen in previous chapters, many features of Windows and
Active Directory can be scripted with the WinNT ADSI provider.
WinNT is useful for managing most core functions, including user,

group, and computer accounts. However, when you want to perform more
advanced manipulation of Windows or Active Directory, you’ll need to use
the LDAP (Lightweight Directory Access Protocol) ADSI provider. With
LDAP, you can script the extended features of any Active Directory object.

Working with Naming Contexts
and the RootDSE Object
Active Directory uses a multimaster approach for maintaining and replicat-
ing directory information. Because of this, you can use any domain control-
ler to view and manage directory information and don’t have to specify a
specific server when working with Active Directory. In fact, with the LDAP
provider you are encouraged not to specify a server in your AdsPaths.
Instead, you should bind to the root of the directory tree and then select
a naming context that you want to work with. In Active Directory, the
RootDSE object represents the root of the directory tree.

Binding to a naming context
A naming context is a top-level container for the directory tree. Three nam-
ing contexts are available: domain container, schema container, and config-
uration container. Domain container contains users, groups, computers,
organizational units, and other domain objects. Schema container provides
access to schema objects. Configuration container contains sites, which in
turn contain individual sites, subnets, intersite transports, and other con-
figuration objects.

Managing Active Directory
Domain Extensions

IN THIS CHAPTER
Working with naming contexts
and the RootDSE object

Accessing Active Directory
schema

Using user extensions

Using group extensions

Using computer extensions

Creating and managing
organizational units

86804c20.indd 43986804c20.indd 439 1/21/09 1:28:54 PM1/21/09 1:28:54 PM

440

 Part III Network and Dictionary Service Scripting

As you might expect, the domain container is the one you’ll use the most. In most cases, you can
bind to the domain container via the defaultNamingContext property of the RootDSE object,
such as:

VBScript

Set rootDSE = GetObject(“LDAP://rootDSE”)
domainContainer = rootDSE.Get(“defaultNamingContext”)

JScript

var rootDSE = GetObject(“LDAP://rootDSE”);
domainContainer = rootDSE.Get(“defaultNamingContext”);

If the domain is seattle.tvpress.com, the following is the value of domainContainer:

DC=seattle,DC=tvpress,DC=com

You can then use the domainContainer variable when you work with objects in the domain. For
example, instead of specifying the AdsPath:

LDAP://OU=Marketing,DC=seattle,DC=tvpress,DC=com

you would use the following:

LDAP://OU=Marketing,” & domainContainer

or

LDAP://OU=Marketing,” + domainContainer

A key reason for binding to RootDSE and then to the domain container is to ensure that
your scripts work in any domain. For example, you could use the script in the seattle

.tvpress.com, newyork.tvpress.com or la.tvpress.com domain. However, if you wanted
to access objects in a domain other than the current domain, you must specify the AdsPath. You
will also need to authenticate yourself in the domain as discussed in the section of Chapter 15 titled,
“Introducing Active Directory Services Interfaces.”

Using RootDSE properties
defaultNamingContext is only one of many properties for the RootDSE object. Other properties
of this object are summarized in Table 20-1.

TIPTIP

86804c20.indd 44086804c20.indd 440 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

441

 Managing Active Directory Domain Extensions 20

TABLE 20-1

Properties of the RootDSE Object

Property Description Value Type
Multi-
valued

configurationNamingContext The distinguished name for the
configuration container

ADsPath String False

currentTime The time on the current
directory server

Date Time False

defaultNamingContext The distinguished name for the
domain of which the current
directory server is a member;
the value can be changed.

ADsPath String False

DnsHostName The DNS address for this
directory server

String False

dsServiceName The distinguished name of the
NTDS settings object for the
current directory server

ADsPath String False

HighestCommittedUSN The Highest Update Sequence
Number (USN) used on the
current directory server;
USNs are used in directory
replication.

Integer False

LdapServiceName The Service Principal Name
(SPN) for the current LDAP
server; SPNs are used for
mutual authentication.

String False

namingContexts The distinguished names for all
naming contexts stored on the
current directory server

Array True

RootDomainNamingContext The distinguished name for the
root domain in the forest that
contains the domain of which
the current directory server is
a member

ADsPath String False

schemaNamingContext The distinguished name of the
schema container

ADsPath String False

ServerName The distinguished name of the
server object for the current
directory server

ADsPath String False

continued

86804c20.indd 44186804c20.indd 441 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

442

 Part III Network and Dictionary Service Scripting

Property Description Value Type
Multi-
valued

subschemaSubentry The distinguished name of
the subSchema object, which
exposes supported attributes

ADsPath String False

SupportedControl Object identifiers (OIDs)
for the extension controls
supported by the current
directory server

Array True

SupportedLDAPVersion The major LDAP versions
supported by the current
directory server

Array True

SupportedSASLMechanisms The supported security
mechanisms for the current
server

Array True

Listing 20-1 provides a script that displays the values of RootDSE properties. Be sure to examine the
output of the script. This output should give you a better understanding of how the RootDSE prop-
erties are used.

LISTING 20-1

Working with RootDSE

VBScript
rootdse.vbs

On Error Resume Next
Set obj = GetObject(“LDAP://rootDSE”)

WScript.Echo “Path: “ & obj.AdsPath
WScript.Echo “Subschema: “ & obj.subschemaSubentry
WScript.Echo “Service Name: “ & obj.dsServiceName
WScript.Echo “Server Name: “ & obj.ServerName
WScript.Echo “Default Naming Context: “ & obj.defaultNamingContext
WScript.Echo “Schema Naming Context: “ & obj.schemaNamingContext
WScript.Echo “Config Naming Context: “ & obj.configurationNamingContext
WScript.Echo “Root Domain Naming Context: “ & obj.RootDomainNamingContext
WScript.Echo “Highest USN: “ & obj.HighestCommittedUSN
WScript.Echo “DNS Host Name: “ & obj.DnsHostName
WScript.Echo “LDAP Service Name: “ & obj.LdapServiceName

TABLE 20-1 (continued)

86804c20.indd 44286804c20.indd 442 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

443

 Managing Active Directory Domain Extensions 20

‘Examine Multivalued properties
c = obj.namingContexts

For Each a In c
 WScript.Echo “Naming Context: “ & a
Next

c = obj.SupportedControl
For Each a In c
 WScript.Echo “Supported Control: “ & a
Next

c = obj.SupportedLDAPVersion
For Each a In c
 WScript.Echo “Supported LDAP Version: “ & a
Next

c = obj.SupportedSASLMechanisms
For Each a In c
 WScript.Echo “Supported SASL: “ & a
Next

Output

Path: LDAP://rootDSE

Subschema: CN=Aggregate,CN=Schema,CN=Configuration,
DC=seattle,DC=tvpress,DC=com

Service Name: CN=NTDS Settings,CN=ZETA,CN=Servers,CN=Default-First-Site,CN=Sit
es,CN=Configuration,DC=seattle,DC=tvpress,DC=com

Server Name CN=ZETA,CN=Servers,CN=Default-First-Site, CN=Sites,CN=Configuratio
n,DC=seattle,DC=tvpress,DC=com

Default Naming Context: DC=seattle,DC=tvpress,DC=com

Schema Naming Context: CN=Schema,CN=Configuration,DC=seattle, DC=tvpress,DC=com

Config Naming Context: CN=Configuration,DC=seattle,DC=tvpress,DC=com

Root Domain Naming Context: DC=seattle,DC=tvpress,DC=com

Highest USN: 2055

DNS Host Name: ZETA.seattle.domain.com

LDAP Service Name: seattle.domain.com:zeta$@SEATTLE.DOMAIN.COM

continued

86804c20.indd 44386804c20.indd 443 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

444

 Part III Network and Dictionary Service Scripting

Naming Context: CN=Schema,CN=Configuration,DC=seattle, DC=tvpress,DC=com
Naming Context: CN=Configuration,DC=seattle,DC=tvpress,DC=com
Naming Context: DC=seattle,DC=tvpress,DC=com

Supported Control: 1.2.840.113556.1.4.319
Supported Control: 1.2.840.113556.1.4.801
Supported Control: 1.2.840.113556.1.4.473

Supported LDAP Version: 3
Supported LDAP Version: 2

Supported SASL: GSSAPI
Supported SASL: GSS-SPNEGO

Accessing Active Directory Schema
One of the first things you’ll notice when you set out to work with Active Directory is that there’s an
extremely rich feature set and as a result, even the most basic objects can have many properties. To
help manage this complexity, Windows Support Tools includes a utility called ADSI Edit (adsiedit.
exe). Using ADSI Edit, you can manage objects in the domain, configuration, and schema contain-
ers. The sections that follow provide an overview of installing and using ADSI Edit.

Installing and starting ADSI Edit
ADSI Edit is installed as part of the Windows Support Tools library. You install the support tools by
completing the following steps:

 1. Insert the Windows CD-ROM into the CD-ROM drive. Then when the Autorun screen
appears, click Browse This CD. This starts Windows Explorer.

 2. In Explorer, click Support, click Reskit, and then click Setup. This starts the Windows
Support Tools Setup Wizard. Read the Welcome dialog box, and then click Next.

 3. Enter your user information, and then continue by clicking Next.

 4. Select the installation type Typical, and then click Next twice to start the installation.

 5. Click Finish. The Support Tools will be installed on your computer.

You can now start ADSI Edit by clicking Start, pointing to Programs, pointing to Windows Support
Tools, pointing to Tools, and then selecting ADSI Edit. As shown in Figure 20-1, ADSI Edit is used
to access naming context and their objects. Each naming context has its own node. The node you’ll
use the most is Domain NC.

LISTING 20-1 (continued)

86804c20.indd 44486804c20.indd 444 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

445

 Managing Active Directory Domain Extensions 20

FIGURE 20-1

Use ADSI Edit to access naming contexts and their related objects.

Examining the domain-naming context
In the Domain NC node, you can access the domain-naming context for each domain in the domain
forest. As summarized in Table 20-2, each container stored in this node has an associated object class
and distinguished name. Unlike Active Directory Users and Computers, both default and advanced
containers are available, which is why you see the additional entries for LostAndFound, System, and
Infrastructure.

TABLE 20-2

Domain NC Node Containers
Name Object Class Sample Distinguished Name

CN=Builtin builtinDomain CN=Builtin,DC=seattle,DC=tvpress,DC=com

CN=Computers container CN=Computers,DC=seattle,DC=tvpress,DC=com

OU=Domain
Controllers

organizationalUnit OU=Domain Controllers,DC=seattle,DC=tvpress,
DC=com

CN=ForeignSecurity
Principals

container CN=ForeignSecurityPrincipals,DC=seattle,DC=tvpress,
DC=com

CN=LostAndFound lostAndFound CN=LostAndFound,DC=seattle,DC=tvpress,DC=com

CN=System container CN=System,DC=seattle,DC=tvpress,DC=com

CN=Users container CN=Users,DC=seattle,DC=tvpress,DC=com

CN=Infrastructure infrastructureUpdate CN=Infrastructure,DC=seattle,DC=tvpress, DC=com

86804c20.indd 44586804c20.indd 445 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

446

 Part III Network and Dictionary Service Scripting

You create an instance of a container object when you bind to the distinguished name for the con-
tainer. For example, you could bind to the System container using the ADsPath string:

CN=System,DC=seattle,DC=tvpress,DC=com

You could also access the System container through RootDSE, such as:

VBScript

Set rootDSE = GetObject(“LDAP://rootDSE”)
domainContainer = rootDSE.Get(“defaultNamingContext”)
Set sysObject = GetObject(“LDAP://CN=System,” & domainContainer)

JScript

var rootDSE = GetObject(“LDAP://rootDSE”);
domainContainer = rootDSE.Get(“defaultNamingContext”);
var sysObject = GetObject(“LDAP://CN=System,” + domainContainer);

Right-clicking an entry in the Domain NC node displays a menu that allows you to manage the
selected container or object. Generally, only advanced administrators should move, rename, or
create elements directly in ADSI Edit. More often, you’ll use ADSI Edit to examine the properties
of containers and objects. To do this, right-click on the element you want to examine, and then
select Properties. This displays a dialog box similar to the one shown in Figure 20-2.

FIGURE 20-2

The Properties dialog box allows you to view attributes for the selected element.

86804c20.indd 44686804c20.indd 446 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

447

 Managing Active Directory Domain Extensions 20

In the Attributes tab of the Properties dialog box, you can examine mandatory and optional proper-
ties of the selected element. The Attribute Values panel displays information for the currently selected
property. Being able to view element attributes allows you to explore the properties of Active Directory
objects. This is useful if the directory in your domain has been extended or reconfigured.

As you examine attributes, you’ll note that the syntax types are a bit different than what you’re used
to because Active Directory supports different syntax types. The mapping between common attri-
bute syntax types and property data types is as follows:

Boolean■ : A Boolean value represented as True/False or 1/0

CaseExactString■ : A case-sensitive String

CaseIgnoreString■ : A string that isn’t case-sensitive

DirectoryString■ : A string that may contain directory or file path separators, such as
seattle.tvpress.com/Users

DN■ : An AdsPath string, such as CN=Users,DC=seattle, DC=tvpress, DC=com

GeneralizedTime■ : A date/time value

INTEGER■ : An integer value

INTEGER8■ : An 8-bit integer value

OctetString■ : A String containing hexadecimal values

OID■ : An object identifier or class

ObjectSecurityDescriptor■ : An integer value representing the security descriptor of
the element

Time■ : A date/time value

UTCTIME■ : A UTC (Universal Time Coordinate) date/time value

Some object attributes are inherited and are not listed as normal object properties. For example, most
objects support the mandatory attributes instanceType, objectCategory, and objectClass.
These attributes are displayed in ADSI Edit but are not returned as either mandatory or optional attri-
butes when you examine objects through scripts. Still, you usually can call these inherited attributes
in scripts, as follows:

Set cont = GetObject(“LDAP://OU=Engineering,DC=seattle,DC=tvpress,DC=com”)
c = cont.objectClass
For Each a In c
 WScript.Echo “Object Class: “ & a
Next

Common Active Directory objects
Active Directory distinguishes between various types of objects using object classes. The top-level
object class for domain objects is domainDNS. This is the class for domains in the domain-naming

86804c20.indd 44786804c20.indd 447 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

448

 Part III Network and Dictionary Service Scripting

context. Domain objects in turn contain other objects. The most commonly used object classes are
as follows:

Computer■ : Represents computer objects

Contact■ : Represents contacts listed in Active Directory

Group■ : Represents domain security and distribution groups

organizationalUnit■ : Represents organizational units

user■ : Represents user accounts

Each of these objects supports a different set of object properties. Because we’ve examined similar
properties in previous chapters, we won’t spend a lot of time covering these properties and will
instead provide summary tables that you can use as quick references. Afterwards, we’ll cover spe-
cific techniques for managing these objects.

Managing Computer Objects with LDAP
You can examine computer accounts and set properties that describe a particular computer with the
WinNT ADSI provider. You can’t, however, manage computer accounts, and this is where the LDAP
provider comes in handy. Using the LDAP provider, you can create, rename, move, and delete com-
puter accounts. To do this, you bind to the container or organizational unit that you want to work
with and then invoke the appropriate method of the IADsContainer interface on the computer
account, such as Create or Delete.

Active Directory computer object properties
Normally, computer objects are stored in the Computers container or the Domain Controllers orga-
nizational unit. However, you can store computer objects in any available container or organization
unit. Table 20-3 provides a summary of computer object properties for Active Directory.

TABLE 20-3

Active Directory Computer Object Properties

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

accountDisabled RW Boolean 0 1 False

adminDescription RW DirectoryString 0 1024 False

adminDisplayName RW DirectoryString 1 256 False

CN RO DirectoryString 1 64 False

86804c20.indd 44886804c20.indd 448 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

449

 Managing Active Directory Domain Extensions 20

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

company RW DirectoryString 1 64 False

controlAccessRights RO OctetString 16 16 True

department RW DirectoryString 1 64 False

description RW DirectoryString 0 1024 True

destinationIndicator RW PrintableString 1 128 True

displayName RW DirectoryString 0 256 False

displayNamePrintable RW PrintableString 1 256 False

division RW DirectoryString 0 256 False

dNSHostName RO DirectoryString 0 2048 False

employeeID RW DirectoryString 0 16 False

extensionName RW DirectoryString 1 255 True

facsimileTelephone
Number

RW DirectoryString 1 64 False

givenName RW DirectoryString 1 64 False

homePhone RW DirectoryString 1 64 False

homePostalAddress RW DirectoryString 1 4096 False

info RW DirectoryString 1 1024 False

initials RW DirectoryString 1 6 False

international
ISDNNumber

RW NumericString 1 16 True

location RW DirectoryString 0 1024 False

mail RW DirectoryString 0 256 False

middleName RW DirectoryString 0 64 False

mobile RW DirectoryString 1 64 False

mSMQDigests RW OctetString 16 16 True

name RW DirectoryString 1 255 False

netbootGUID RO OctetString 16 16 False

networkAddress RW CaseIgnoreString 0 256 True

continued

86804c20.indd 44986804c20.indd 449 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

450

 Part III Network and Dictionary Service Scripting

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

nTSecurityDescriptor RO ObjectSecurity
Descriptor

0 132096 False

objectGUID RO OctetString 16 16 False

objectSid RO OctetString 0 28 False

otherFacsimile
TelephoneNumber

RW DirectoryString 1 64 True

otherHomePhone RW DirectoryString 1 64 True

otherLogin
Workstations

RW DirectoryString 0 1024 True

otherMobile RW DirectoryString 1 64 True

otherPager RW DirectoryString 1 64 True

otherTelephone RW DirectoryString 1 64 True

ou RW DirectoryString 1 64 True

pager RW DirectoryString 1 64 False

personalTitle RW DirectoryString 1 64 False

physicalDelivery
OfficeName

RW DirectoryString 1 128 False

postalAddress RW DirectoryString 1 4096 True

postalCode RW DirectoryString 1 40 False

postOfficeBox RW DirectoryString 1 40 True

primaryInternational
ISDNNumber

RW DirectoryString 1 64 False

primaryTelexNumber RW DirectoryString 1 64 False

proxyAddresses RW DirectoryString 1 1123 True

registeredAddress RW OctetString 1 4096 True

sAMAccountName RW DirectoryString 0 256 False

siteGUID RO OctetString 16 16 False

street RW DirectoryString 1 1024 False

TABLE 20-3 (continued)

86804c20.indd 45086804c20.indd 450 1/21/09 1:28:55 PM1/21/09 1:28:55 PM

451

 Managing Active Directory Domain Extensions 20

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

streetAddress RW DirectoryString 1 1024 False

telephoneNumber RW DirectoryString 1 64 False

telexNumber RW OctetString 1 32 True

textEncodedORAddress RW DirectoryString 1 1024 False

thumbnailLogo RW OctetString 1 32767 False

thumbnailPhoto RW OctetString 0 102400 False

title RW DirectoryString 1 64 False

userCert RW OctetString 0 32767 False

userParameters RW DirectoryString 0 32767 False

userPassword RW OctetString 1 128 True

userWorkstations RW DirectoryString 0 1024 False

wWWHomePage RW DirectoryString 1 2048 False

x121Address RW NumericString 1 15 True

Creating and deleting computer accounts with LDAP
To create a computer account, you must get the object for the container you want to work with and
then invoke the container’s Create method. The only properties that you must set when creating
computer accounts are the common name and the Windows NT SAM account name. You could set
these properties when creating an account for a computer called Omega, as shown in Listing 20-2.

LISTING 20-2

Creating a Computer Account

VBScript
createcomputer.vbs

Set cont = GetObject(“LDAP://OU=Engineering,DC=seattle,DC=tvpress,DC=com”)
Set comp = cont.Create(“computer”,”CN=Omega”)
comp.Put “samAccountName”,”Omega”
comp.SetInfo

continued

86804c20.indd 45186804c20.indd 451 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

452

 Part III Network and Dictionary Service Scripting

JScript
createcomputer.js

var cont = GetObject(“LDAP://OU=Engineering, DC=seattle,DC=tvpress,DC=com”);
var comp = cont.Create(“computer”,”CN=Omega”);
comp.Put(“samAccountName”,”Omega”);
comp.SetInfo()

You can delete a computer account stored in a container by invoking the container’s Delete
method. Here’s how you would delete the computer account created in the previous listing:

VBScript

Set cont = GetObject(“LDAP://OU=Engineering,DC=seattle,DC=tvpress,DC=com”)
cont.Delete “computer”,”CN=Omega”

JScript

var cont = GetObject(“LDAP://OU=Engineering, DC=seattle,DC=tvpress,DC=com”);
cont.Delete(“computer”,”CN=Omega”);

Moving and renaming computer accounts with LDAP
Moving and renaming computer accounts are similar operations. When you move an account, you
retrieve the destination container and then invoke the container’s MoveHere method for the com-
puter account you want to move. Listing 20-3 shows how you could move a computer object from
the Computers container to the Engineering organizational unit.

LISTING 20-3

Moving a Computer Account

VBScript
movecomputer.vbs

‘Get rootDSE
Set rootDSE = GetObject(“LDAP://rootDSE”)
domainCont = rootDSE.Get(“defaultNamingContext”)

‘Get the destination container
set cont = GetObject(“LDAP://OU=Engineering,” & domainCont)

‘Move object from original container to the destination
cont.MoveHere “LDAP://CN=Omega,CN=Computers,” & domainCont, “CN=Omega”

LISTING 20-2 (continued)

86804c20.indd 45286804c20.indd 452 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

453

 Managing Active Directory Domain Extensions 20

JScript
movecomputer.js

//Get rootDSE
var rootDSE = GetObject(“LDAP://rootDSE”);
domainCont = rootDSE.Get(“defaultNamingContext”);

//Get the destination container
var cont = GetObject(“LDAP://OU=Engineering,” + domainCont);

//Move object from original container to the destination
cont.MoveHere(“LDAP://CN=Omega,CN=Computers,” + domainCont, “CN=Omega”);

The first parameter for the MoveHere method is the current location of the computer object. The
second parameter is the object name at the destination. Thus, as Listing 20-4 shows, you could
rename a computer object that you are moving simply by specifying a different name as the second
parameter.

LISTING 20-4

Moving and Renaming a Computer Account

VBScript
mrcomputer.vbs

‘Get rootDSE
Set rootDSE = GetObject(“LDAP://rootDSE”)
domainCont = rootDSE.Get(“defaultNamingContext”)

‘Get the destination container
set cont = GetObject(“LDAP://OU=Marketing,” & domainCont)

‘Move object and specify new name
cont.MoveHere “LDAP://CN=Omega,CN=Computers,” & domainCont, “CN=BobsComputer”

JScript
mrcomputer.js

//Get rootDSE
var rootDSE = GetObject(“LDAP://rootDSE”);
domainCont = rootDSE.Get(“defaultNamingContext”);

//Get the destination container
var cont = GetObject(“LDAP://OU=Marketing,” + domainCont);

//Move object and specify new name
cont.MoveHere(“LDAP://CN=Omega,CN=Computers,” + domainCont, “CN=BobsComputer”);

86804c20.indd 45386804c20.indd 453 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

454

 Part III Network and Dictionary Service Scripting

If you want to rename an object without changing its container, set the destination container’s
ADsPath string to be the same as that of the original container. An example is shown as Listing 20-5.

LISTING 20-5

Renaming a Computer Account Without Moving It

VBScript
renamecomputer.vbs

‘Get rootDSE
Set rootDSE = GetObject(“LDAP://rootDSE”)
domainCont = rootDSE.Get(“defaultNamingContext”)

‘Get the destination container
set cont = GetObject(“LDAP://CN=Computers,” & domainCont)

‘Move object and specify new name
cont.MoveHere “LDAP://CN=Omega,CN=Computers,” & domainCont, “CN=Delta”

JScript
renamecomputer.js

//Get rootDSE
var rootDSE = GetObject(“LDAP://rootDSE”);
domainCont = rootDSE.Get(“defaultNamingContext”);

//Get the destination container
var cont = GetObject(“LDAP://CN=Computers,” + domainCont);

//Move object and specify new name
cont.MoveHere(“LDAP://CN=Omega,CN=Computers,” + domainCont, “CN=Delta”);

Enabling and disabling computer accounts with LDAP
Computer accounts often need to be enabled or disabled. You enable a computer account to make it
active and allow the computer to connect to the domain. To enable a computer account, you set the
accountDisabled property to False, as in the following:

VBScript

Set comp = GetObject(“LDAP://CN=Omega,OU=Sales,DC=seattle,DC=tvpress,DC=com”)
comp.AccountDisabled = “False”
comp.SetInfo

86804c20.indd 45486804c20.indd 454 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

455

 Managing Active Directory Domain Extensions 20

JScript

var comp = GetObject(“LDAP://CN=Omega,OU=Sales,DC=seattle,DC=tvpress,DC=com”);
comp.AccountDisabled = “False”;
comp.SetInfo();

You disable a computer account to deactivate it, which doesn’t allow the computer to connect to the
domain. However, disabling an account won’t forcibly disconnect a computer from a domain. To dis-
able a computer account, you set the accountDisabled property to True, as follows:

VBScript

Set comp = GetObject(“LDAP://CN=Omega,OU=Sales,DC=seattle,DC=tvpress,DC=com”)
comp.AccountDisabled = “True”
comp.SetInfo

JScript

var comp = GetObject(“LDAP://CN=Omega,OU=Sales,DC=seattle,DC=tvpress,DC=com”);
comp.AccountDisabled = “True”;
comp.SetInfo();

Managing Contacts with LDAP
In Active Directory, a contact represents an address book entry. Generally, contacts provide names,
addresses, and other information needed to contact a person or business. Table 20-4 provides a
summary of properties for Active Directory contact objects.

TABLE 20-4

Active Directory Contact Object Properties

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

adminDescription RW DirectoryString 0 1024 False

adminDisplayName RW DirectoryString 1 256 False

cn RO DirectoryString 1 64 False

company RW DirectoryString 1 64 False

department RW DirectoryString 1 64 False

description RW DirectoryString 0 1024 True

destinationIndicator RW PrintableString 1 128 True

continued

86804c20.indd 45586804c20.indd 455 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

456

 Part III Network and Dictionary Service Scripting

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

displayName RW DirectoryString 0 256 False

displayNamePrintable RW PrintableString 1 256 False

division RW DirectoryString 0 256 False

employeeID RW DirectoryString 0 16 False

extensionName RW DirectoryString 1 255 True

facsimileTelephone
Number

RW DirectoryString 1 64 False

givenName RW DirectoryString 1 64 False

homePhone RW DirectoryString 1 64 False

homePostalAddress RW DirectoryString 1 4096 False

info RW DirectoryString 1 1024 False

initials RW DirectoryString 1 6 False

international ISDNNumber RW NumericString 1 16 True

mail RW DirectoryString 0 256 False

middleName RW DirectoryString 0 64 False

mobile RW DirectoryString 1 64 False

name RW DirectoryString 1 255 False

nTSecurityDescriptor RO ObjectSecurity
Descriptor

0 132096 False

objectGUID RO OctetString 16 16 False

otherFacsimile
TelephoneNumber

RW DirectoryString 1 64 True

otherHomePhone RW DirectoryString 1 64 True

otherMobile RW DirectoryString 1 64 True

otherPager RW DirectoryString 1 64 True

otherTelephone RW DirectoryString 1 64 True

ou RW DirectoryString 1 64 True

pager RW DirectoryString 1 64 False

TABLE 20-4 (continued)

86804c20.indd 45686804c20.indd 456 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

457

 Managing Active Directory Domain Extensions 20

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

personalTitle RW DirectoryString 1 64 False

physicalDelivery
OfficeName

RW DirectoryString 1 128 False

postalAddress RW DirectoryString 1 4096 True

postalCode RW DirectoryString 1 40 False

postOfficeBox RW DirectoryString 1 40 True

primaryInternational
ISDNNumber

RW DirectoryString 1 64 False

primaryTelexNumber RW DirectoryString 1 64 False

proxyAddresses RW DirectoryString 1 1123 True

registeredAddress RW OctetString 1 4096 True

sn RW DirectoryString 1 64 False

street RW DirectoryString 1 1024 False

streetAddress RW DirectoryString 1 1024 False

telephoneNumber RW DirectoryString 1 64 False

telexNumber RW OctetString 1 32 True

textEncodedORAddress RW DirectoryString 1 1024 False

thumbnailLogo RW OctetString 1 32767 False

thumbnailPhoto RW OctetString 0 102400 False

title RW DirectoryString 1 64 False

userCert RW OctetString 0 32767 False

userPassword RW OctetString 1 128 True

wWWHomePage RW DirectoryString 1 2048 False

x121Address RW NumericString 1 15 True

Using the LDAP provider, you can manage contacts in much the same way as you manage computer
accounts. To do this, you bind to the container or organizational unit that you want to work with
and then invoke the appropriate container method on the contact. Again, these methods are
Create, Delete, and MoveHere.

86804c20.indd 45786804c20.indd 457 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

458

 Part III Network and Dictionary Service Scripting

The only property that you must set when creating a contact is the common name. You may also
want to set the following properties:

company■ : Company name

department■ : Department name

title■ : Job title

telephoneNumber■ : Business telephone number

homePhone■ : Home telephone number

givenName■ : First name

initials■ : Middle initial

sn■ : Last name (surname)

displayName■ : Display name in Active Directory

mail■ : E-mail address

Listing 20-6 shows how you could create a contact in Active Directory.

LISTING 20-6

Creating a Contact

VBScript
createcontact.vbs

Set cont = GetObject(“LDAP://OU=Marketing,DC=seattle,DC=tvpress,DC=com”)
Set contact = cont.Create(“contact”,”CN=Tony Green”)
contact.company = “ABC Enterprises, Ltd.”
contact.department = “Sales”
contact.title = “Sales Associate”
contact.telephoneNumber = “206-555-1212”
contact.homePhone = “253-555-1212”
contact.givenName = “Tony”
contact.initials = “R”
contact.sn = “Green”
contact.displayName = “Tony Green”
contact.mail = “tgreen@tvpress.com”
contact.SetInfo

JScript
createcontact.js

var cont = GetObject(“LDAP://OU=Marketing,DC=seattle,DC=tvpress,DC=com”);
var contact = cont.Create(“contact”,”CN=Tony Green”);
contact.company = “ABC Enterprises, Ltd.”;
contact.department = “Sales”;
contact.title = “Sales Associate”;

86804c20.indd 45886804c20.indd 458 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

459

 Managing Active Directory Domain Extensions 20

contact.telephoneNumber = “206-555-1212”;
contact.homePhone = “253-555-1212”;
contact.givenName = “Tony”;
contact.initials = “R”;
contact.sn = “Green”;
contact.displayName = “Tony Green”;
contact.mail = “tgreen@tvpress.com”;
contact.SetInfo();

Managing Groups with LDAP
In Chapter 17, you learned the basics for managing groups with the WinNT provider. Now let’s look
at how you manage groups with the LDAP provider. One of the first things you’ll note is that on the
surface the administration techniques are similar, but as you delve deeper, you’ll find that the LDAP
provider supports a richer feature set.

Active Directory group object properties
Table 20-5 provides a summary of properties for Active Directory group objects. Before you can work
with a group object, you must bind to the container in which the group object resides, such as:

GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”)

Or you must access the group object directly, such as:

GetObject(“LDAP://CN=Domain Users,CN=Users, DC=seattle,DC=tvpress,DC=com”)

TABLE 20-5

Active Directory Group Object Properties

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

adminDescription RW DirectoryString 0 1024 False

adminDisplayName RW DirectoryString 1 256 False

cn RO DirectoryString 1 64 False

controlAccessRights RO OctetString 16 16 True

description RW DirectoryString 0 1024 True

displayName RW DirectoryString 0 256 False

continued

86804c20.indd 45986804c20.indd 459 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

460

 Part III Network and Dictionary Service Scripting

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

displayNamePrintable RW PrintableString 1 256 False

extensionName RW DirectoryString 1 255 True

groupType RW Integer -2 ^ 31 2 ^ 31 False

info RW DirectoryString 1 1024 False

mail RW DirectoryString 0 256 False

name RW DirectoryString 1 255 False

nTSecurityDescriptor RO ObjectSecurity
Descriptor

0 132096 False

objectGUID RO OctetString 16 16 False

objectSid RO OctetString 0 28 False

proxyAddresses RW DirectoryString 1 1123 True

sAMAccountName RW DirectoryString 0 256 False

telephoneNumber RW DirectoryString 1 64 False

textEncodedORAddress RW DirectoryString 1 1024 False

userCert RW OctetString 0 32767 False

wWWHomePage RW DirectoryString 1 2048 False

Creating groups with LDAP
Unlike WinNT, you can only use the LDAP provider to create global group accounts. You cannot use
LDAP to create groups stored on local computers. Still, you create groups in much the same way. You
access the container in which you want to place the group, and then invoke the container’s Create
method. Afterward, you can set properties for the group.

The only mandatory properties for groups are the common name and the Windows NT SAM
account name. This means you could create a group account called Sales as follows:

VBScript

Set obj = GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”)
Set grp = obj.Create(“group”, “Sales”)
grp.samAccountName = “sales”
grp.SetInfo

TABLE 20-5 (continued)

86804c20.indd 46086804c20.indd 460 1/21/09 1:28:56 PM1/21/09 1:28:56 PM

461

 Managing Active Directory Domain Extensions 20

JScript

var obj = GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”);
var grp = obj.Create(“group”, “Sales”);
grp.samAccountName = “sales”;
grp.SetInfo();

You create a global security group by default. If you want to create a different type of group, you
must set the groupType property when creating the group. This property is set to an integer value
that represents the type of group to create. The following are valid values for groupType:

2■ creates a global distribution group.

4■ creates a domain-local distribution group.

8■ creates a universal distribution group.

-2147483646■ creates a global security group.

-2147483644■ creates a domain-local security group.

-2147483640■ creates a universal security group.

Universal security groups cannot be created when using mixed-mode operations. You
must be in native mode operations. In native mode, Active Directory only supports

Windows domains and no longer supports Windows NT domains. So before you change modes, you
should ensure that all Windows NT systems in the domain have been upgraded to Windows.

Listing 20-7 shows how you could create these group types in VBScript. You would use similar tech-
niques for JScript.

LISTING 20-7

Creating Groups

VBScript
creategroups.vbs

‘Create global distribution group
Set obj = GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”)
Set grp = obj.Create(“group”, “CN=MarketingGlobalDist”)
grp.groupType = 2
grp.Put “samAccountName”, “MarketingGD”
grp.SetInfo

‘Create domain local distribution group
Set obj = GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”)
Set grp = obj.Create(“group”, “CN=MarketingDomainLocalDist”)
grp.groupType = 4
grp.Put “samAccountName”, “MarketingDD”
grp.SetInfo

NOTENOTE

continued

86804c20.indd 46186804c20.indd 461 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

462

 Part III Network and Dictionary Service Scripting

‘Create universal distribution group
Set obj = GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”)
Set grp = obj.Create(“group”, “CN=MarketingUniversalDist”)
grp.groupType = 8
grp.Put “samAccountName”, “MarketingUD”
grp.SetInfo

‘Create global security group
Set obj = GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”)
Set grp = obj.Create(“group”, “CN=MarketingGlobal”)
grp.groupType = -2147483646
grp.Put “samAccountName”, “MarketingG”
grp.SetInfo

‘Create domain local security group
Set obj = GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”)
Set grp = obj.Create(“group”, “CN=MarketingDomainLocal”)
grp.groupType = -2147483644
grp.Put “samAccountName”, “MarketingD”
grp.SetInfo

‘Create universal security group
Set obj = GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”)
Set grp = obj.Create(“group”, “CN=MarketingUniversal”)
grp.groupType = -2147483640
grp.Put “samAccountName”, “MarketingU”
grp.SetInfo

Deleting, moving, and renaming groups with LDAP
You can also delete, move, and rename groups. You can delete a group stored in a container by
invoking the container’s Delete method. Here’s how you would delete a group called Marketing:

VBScript

Set cont = GetObject(“LDAP://OU=Users,DC=seattle,DC=tvpress,DC=com”)
cont.Delete “group”,”CN=Marketing”

JScript

var cont = GetObject(“LDAP://OU=Users,DC=seattle,DC=tvpress,DC=com”);
cont.Delete “group”,”CN=Marketing”;

Moving and renaming groups is similar to moving and renaming computer accounts. You retrieve
the destination container and then invoke the container’s MoveHere method for the group you want
to move. Listing 20-8 shows how you could move a group called SalesEng from the Users container
to the Sales organizational unit.

LISTING 20-7 (continued)

86804c20.indd 46286804c20.indd 462 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

463

 Managing Active Directory Domain Extensions 20

LISTING 20-8

Moving a Group

VBScript
movegroup.vbs

‘Get rootDSE
Set rootDSE = GetObject(“LDAP://rootDSE”)
domainCont = rootDSE.Get(“defaultNamingContext”)

‘Get the destination container
set cont = GetObject(“LDAP://OU=Sales,” & domainCont)

‘Move group from original container to the destination
cont.MoveHere “LDAP://CN=SalesEng,CN=Users,” & domainCont, “CN=SalesEng”

JScript
movegroup.js

//Get rootDSE
var rootDSE = GetObject(“LDAP://rootDSE”);
domainCont = rootDSE.Get(“defaultNamingContext”);

//Get the destination container
var cont = GetObject(“LDAP://OU=Sales,” + domainCont);

//Move group from original container to the destination
cont.MoveHere(“LDAP://CN=SalesEng,CN=Users,” + domainCont, “CN=SalesEng”);

To rename a group when you move it, you simply specify a different name as the second parameter
for MoveHere. To rename a group and keep it in the same container, use the same value for the origi-
nal and destination container, as shown in Listing 20-9.

LISTING 20-9

Renaming a Group

VBScript
renamegroup.vbs

‘Get rootDSE
Set rootDSE = GetObject(“LDAP://rootDSE”)
domainCont = rootDSE.Get(“defaultNamingContext”)

‘Get the destination container
set cont = GetObject(“LDAP://OU=Engineering,” & domainCont)

continued

86804c20.indd 46386804c20.indd 463 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

464

 Part III Network and Dictionary Service Scripting

‘Move group from original container to the destination
cont.MoveHere “LDAP://CN=Coders,OU=Engineering,” & domainCont, “CN=Developers”

JScript
renamegroup.js

//Get rootDSE
var rootDSE = GetObject(“LDAP://rootDSE”);
domainCont = rootDSE.Get(“defaultNamingContext”);

//Get the destination container
var cont = GetObject(“LDAP://OU=Engineering,” + domainCont);

//Move group from original container to the destination
cont.MoveHere(“LDAP://CN=Coders,OU=Engineering,” + domainCont, “CN=Developers”);

Checking group membership with LDAP
One way to work with groups is to obtain a list of current members. You can do this by calling the
group object’s Members() method. The Members() method returns a collection of members using
the IADsMembers interface. You can examine each member using a for loop, as shown in
Listing 20-10.

LISTING 20-10

Checking Group Membership

VBScript
groupmembers.vbs

Set grp = GetObject(“LDAP://CN=Marketing,CN=Users, DC=seattle,DC=domain,DC=com”)

Set mList = grp.members
For Each member In mList
 WScript.Echo member.Name
Next

JScript
groupmembers.js

var grp = GetObject(“LDAP://CN=Marketing,CN=Users, DC=seattle,DC=domain,DC=com”);

mList = new Enumerator(grp.members());

for (; !mList.atEnd(); mList.moveNext())
{

LISTING 20-9 (continued)

86804c20.indd 46486804c20.indd 464 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

465

 Managing Active Directory Domain Extensions 20

 s = mList.item();
 WScript.Echo(s.Name);
}

To check for a specific member, you can use the IsMember () method. This method returns True
(1) if the user or group is a member of the group and False (0), otherwise. You could use IsMember
as follows:

VBScript

Set grp = GetObject(“LDAP://CN=Marketing,CN=Users,
DC=seattle,DC=domain,DC=com”)

mem = grp.IsMember(“CN=William R. Stanek,CN=Users,
DC=seattle,DC=domain,DC=com”)
WScript.Echo CStr(mem)

JScript

var grp = GetObject(“LDAP://CN=Marketing,CN=Users,
DC=seattle,DC=domain,DC=com”);

mem = grp.IsMember(“CN=William R. Stanek,CN=Users,
DC=seattle,DC=domain,DC=com”);
WScript.Echo(mem);

Adding and removing group members with LDAP
You can use the LDAP provider to add and remove members from a group, as well. First, obtain the
group object you want to work with, and then invoke Add or Remove as appropriate. After you add
or remove a member, you can use IsMember() to confirm the action, as follows:

VBScript

Set grp = GetObject(“LDAP://CN=Marketing,CN=Users,
DC=seattle,DC=domain,DC=com”)
grp.Add(“CN=William R. Stanek,CN=Users,DC=seattle,DC=domain,DC=com”)

WScript.Echo grp.IsMember(“CN=William R. Stanek,CN=Users,
DC=seattle,DC=domain,DC=com”)

JScript

var grp = GetObject(“LDAP://CN=Marketing,CN=Users,
DC=seattle,DC=domain,DC=com”);
grp.Add(“CN=William R. Stanek,CN=Users,DC=seattle,DC=domain,DC=com”);

WScript.Echo(grp.IsMember(“CN=William R. Stanek,CN=Users,
DC=seattle,DC=domain,DC=com”));

86804c20.indd 46586804c20.indd 465 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

466

 Part III Network and Dictionary Service Scripting

Working with Organizational Units
Organizational units often are used to mirror business or functional structures. For example, if your
organization has business groups called Technology, Marketing, and Operations, you may want to
have organizational units with the same names. You could then add resources and accounts to these
organizational units.

Examining organizational unit properties
Organizational units can be at different physical locations, as well. This is why contact information,
such as addresses and telephone numbers, are associated with organizational units. Table 20-6 pro-
vides a summary of properties for organizational units.

TABLE 20-6

Properties for Organizational Units

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

adminDescription RW DirectoryString 0 1024 False

adminDisplayName RW DirectoryString 1 256 False

businessCategory RW DirectoryString 1 128 True

cn RW DirectoryString 1 64 False

description RW DirectoryString 0 1024 True

destinationIndicator RW PrintableString 1 128 True

displayName RW DirectoryString 0 256 False

displayNamePrintable RW PrintableString 1 256 False

extensionName RW DirectoryString 1 255 True

facsimileTelephone Number RW DirectoryString 1 64 False

international ISDNNumber RW NumericString 1 16 True

name RW DirectoryString 1 255 False

nTSecurityDescriptor RO ObjectSecurity
Descriptor

0 132096 False

objectGUID RO OctetString 16 16 False

ou RW DirectoryString 1 64 True

physicalDelivery
OfficeName

RW DirectoryString 1 128 False

86804c20.indd 46686804c20.indd 466 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

467

 Managing Active Directory Domain Extensions 20

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

postalAddress RW DirectoryString 1 4096 True

postalCode RW DirectoryString 1 40 False

postOfficeBox RW DirectoryString 1 40 True

proxyAddresses RW DirectoryString 1 1123 True

registeredAddress RW OctetString 1 4096 True

street RW DirectoryString 1 1024 False

telephoneNumber RW DirectoryString 1 64 False

telexNumber RW OctetString 1 32 True

thumbnailLogo RW OctetString 1 32767 False

userPassword RW OctetString 1 128 True

wWWHomePage RW DirectoryString 1 2048 False

x121Address RW NumericString 1 15 True

Creating organizational units
Organizational units can be created within the top-level domain container or within existing organi-
zational units. When you create a unit in the top-level domain container, you bind to the domain-
naming context and then invoke the Create method of this container. Otherwise, you bind to an
existing organizational unit and then create a sub-unit by invoking the Create method.

The only property you must set is OU, which stores the name of the organizational unit. Listing 20-11
creates an organizational unit called Engineering.

LISTING 20-11

Creating an Organizational Unit

VBScript
createou.vbs

‘Get domain naming context
Set obj = GetObject(“LDAP://DC=seattle,DC=domain,DC=com”)

‘create ou object
Set ou = obj.Create(“organizationalUnit”,”OU=Engineering”)

continued

86804c20.indd 46786804c20.indd 467 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

468

 Part III Network and Dictionary Service Scripting

‘Set the name of the ou
ou.ou = “Engineering”
ou.SetInfo

JScript
createou.js

//Get domain naming context
var obj = GetObject(“LDAP://DC=seattle,DC=domain,DC=com”);

//create ou object
var ou = obj.Create(“organizationalUnit”,”OU=Engineering”);

//set the name of the ou
ou.ou = “Engineering”;
ou.SetInfo();

Modifying organizational units
You can work with existing organizational units in much the same way as you work with other objects.
You bind to the organizationalUnit object:

GetObject(“LDAP://OU=Marketing,DC=seattle,DC=tvpress,DC=com”)

Then you set or get properties. You may also need to examine the objects within the organizational
unit. One way to do this would be to obtain a list of all objects that it contains, as shown in
Listing 20-12.

LISTING 20-12

Accessing Objects Within an Organizational Unit

VBScript
getobjs.vbs

Set ou = GetObject(“LDAP://OU=Engineering,DC=seattle,DC=domain,DC=com”)

For Each member In ou
 WScript.Echo member.Name
Next

LISTING 20-11 (continued)

86804c20.indd 46886804c20.indd 468 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

469

 Managing Active Directory Domain Extensions 20

JScript
getobjs.js

var ou = GetObject(“LDAP://OU=Engineering,DC=seattle,DC=domain,DC=com”);

mList = new Enumerator(ou);

for (; !mList.atEnd(); mList.moveNext())
{
 s = mList.item();
 WScript.Echo(s.Name);
}

Moving, renaming, and deleting organizational units
The LDAP provider supports the MoveHere method for moving and renaming organizational units.
The following example moves Developers so that it is a sub-unit of Engineering:

VBScript

Set cont = GetObject(“LDAP://OU=Engineering,DC=seattle,DC=domain,DC=com”)
cont.MoveHere “LDAP://OU=Developers,DC=seattle,DC=domain,DC=com”,
“OU=Developers”

JScript

var cont = GetObject(“LDAP://OU=Engineering,DC=seattle,DC=domain,DC=com”);
cont.MoveHere(“LDAP://OU=Developers,DC=seattle,DC=domain,DC=com”,
“OU=Developers”);

You delete organizational units using the Delete method. An example follows:

VBScript

Set obj = GetObject(“LDAP://DC=seattle,DC=domain,DC=com”)
obj.Delete “organizationalUnit”, “OU=Engineering”

JScript

var obj = GetObject(“LDAP://DC=seattle,DC=domain,DC=com”);
obj.Delete(“organizationalUnit”, “OU=Engineering”);

86804c20.indd 46986804c20.indd 469 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

470

 Part III Network and Dictionary Service Scripting

Managing User Accounts with LDAP
Just about everything you learned about managing user accounts with WinNT can be applied to
managing user accounts with LDAP. There are some important differences, however, and these dif-
ferences are examined in this section.

Examining user object properties with LDAP
Table 20-7 provides a summary of properties for Active Directory user objects. Before you can work
with user objects, you must bind to the container in which the objects reside, such as:

GetObject(“LDAP://CN=Users,DC=seattle,DC=tvpress,DC=com”)

Or you must access the user object directly, such as:

GetObject(“LDAP://CN=William R. Stanek, OU=Technology,DC=seattle,
DC=tvpress,DC=com”)

TABLE 20-7

Active Directory User Object Properties

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

adminDescription RW DirectoryString 0 1024 False

adminDisplayName RW DirectoryString 1 256 False

cn RO DirectoryString 1 64 False

company RW DirectoryString 1 64 False

controlAccessRights RO OctetString 16 16 True

department RW DirectoryString 1 64 False

description RW DirectoryString 0 1024 True

destinationIndicator RW PrintableString 1 128 True

displayName RW DirectoryString 0 256 False

displayNamePrintable RW PrintableString 1 256 False

division RW DirectoryString 0 256 False

employeeID RW DirectoryString 0 16 False

extensionName RW DirectoryString 1 255 True

86804c20.indd 47086804c20.indd 470 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

471

 Managing Active Directory Domain Extensions 20

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

facsimileTelephone
Number

RW DirectoryString 1 64 False

generationQualifier RW DirectoryString 1 64 False

givenName RW DirectoryString 1 64 False

homePhone RW DirectoryString 1 64 False

homePostalAddress RW DirectoryString 1 4096 False

info RW DirectoryString 1 1024 False

initials RW DirectoryString 1 6 False

internationalISDNNumber RW NumericString 1 16 True

mail RW DirectoryString 0 256 False

middleName RW DirectoryString 0 64 False

mobile RW DirectoryString 1 64 False

mSMQDigests RW OctetString 16 16 True

name RW DirectoryString 1 255 False

networkAddress RW CaseIgnoreString 0 256 True

nTSecurityDescriptor RO ObjectSecurity
Descriptor

0 132096 False

objectGUID RO OctetString 16 16 False

objectSid RO OctetString 0 28 False

otherFacsimile
TelephoneNumber

RW DirectoryString 1 64 True

otherHomePhone RW DirectoryString 1 64 True

otherLoginWorkstations RW DirectoryString 0 1024 True

otherMobile RW DirectoryString 1 64 True

otherPager RW DirectoryString 1 64 True

otherTelephone RW DirectoryString 1 64 True

ou RW DirectoryString 1 64 True

pager RW DirectoryString 1 64 False

continued

86804c20.indd 47186804c20.indd 471 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

472

 Part III Network and Dictionary Service Scripting

Property Status Value Type
Min.
Range

Max.
Range

Multiple
Values

personalTitle RW DirectoryString 1 64 False

physicalDelivery
OfficeName

RW DirectoryString 1 128 False

postalAddress RW DirectoryString 1 4096 True

postalCode RW DirectoryString 1 40 False

postOfficeBox RW DirectoryString 1 40 True

primaryInternational
ISDNNumber

RW DirectoryString 1 64 False

primaryTelexNumber RW DirectoryString 1 64 False

proxyAddresses RW DirectoryString 1 1123 True

registeredAddress RW OctetString 1 4096 True

sAMAccountName RW DirectoryString 0 256 False

sn RW DirectoryString 1 64 False

street RW DirectoryString 1 1024 False

streetAddress RW DirectoryString 1 1024 False

telephoneNumber RW DirectoryString 1 64 False

telexNumber RW OctetString 1 32 True

textEncodedORAddress RW DirectoryString 1 1024 False

thumbnailLogo RW OctetString 1 32767 False

thumbnailPhoto RW OctetString 0 102400 False

title RW DirectoryString 1 64 False

userCert RW OctetString 0 32767 False

userParameters RW DirectoryString 0 32767 False

userPassword RW OctetString 1 128 True

userWorkstations RW DirectoryString 0 1024 False

wWWHomePage RW DirectoryString 1 2048 False

x121Address RW NumericString 1 15 True

TABLE 20-7 (continued)

86804c20.indd 47286804c20.indd 472 1/21/09 1:28:57 PM1/21/09 1:28:57 PM

473

 Managing Active Directory Domain Extensions 20

With user objects, the LDAP provider also supports a custom mapping between ADSI properties and
Active Directory properties. These customizations only apply to specific properties and are designed to
more closely resemble the fields that you’ll find in Active Directory Users and Computers dialog boxes.

A partial list of custom mappings is shown in Table 20-8. Because of these custom mappings, your
scripts can refer to the givenName property as FirstName, the sn property as LastName, and so on.

TABLE 20-8

Custom Mappings for User Object Properties
ADSI Properties Active Directory Property

AccountDisabled userAccountControl Mask

AccountExpirationDate AccountExpires

BadLoginCount BadPwdCount

Department Department

Description Description

Division Division

EmailAddress Mail

EmployeeID EmployeeID

FaxNumber FacsimileTelephoneNumber

FirstName GivenName

FullName DisplayName

HomeDirectory HomeDirectory

HomePage WWWHomePage

IsAccountLocked UserAccountControl

Languages Language

LastFailedLogin BadPasswordTime

LastLogin LastLogon

LastLogoff LastLogoff

LastName Sn

LoginHours LogonHours

LoginScript ScriptPath

continued

86804c20.indd 47386804c20.indd 473 1/21/09 1:28:58 PM1/21/09 1:28:58 PM

474

 Part III Network and Dictionary Service Scripting

ADSI Properties Active Directory Property

LoginWorkstations UserWorkstations

Manager Manager

MaxStorage MaxStorage

NamePrefix PersonalTitle

NameSuffix GenerationQualifier

OfficeLocations PhysicalDeliveryOfficeName

OtherName MiddleName

PasswordLastChanged PwdLastSet

PasswordRequired UserAccountControl

Picture ThumbnailPhoto

PostalAddresses PostalAddress

PostalCodes PostalCode

Profile ProfilePath

SeeAlso SeeAlso

TelephoneHome HomePhone

TelephoneMobile Mobile

TelephoneNumber TelephoneNumber

TelephonePager Pager

Title Title

Creating user accounts with LDAP
While the WinNT provider allows you to create both local and domain user accounts, the LDAP
provider can only create domain user accounts. Yet unlike WinNT, these domain accounts can be
placed in any container or organizational unit, giving you additional flexibility.

To create a user account, you must specify the common name and the Windows NT SAM account
name. All other properties are optional.

TABLE 20-8 (continued)

86804c20.indd 47486804c20.indd 474 1/21/09 1:28:58 PM1/21/09 1:28:58 PM

475

 Managing Active Directory Domain Extensions 20

You could create a user account for William R. Stanek and place it in the Technology organizational
unit as follows:

VBScript

Set obj = GetObject(“LDAP://OU=Technology,DC=seattle,DC=domain,DC=com”)
Set usr = obj.Create(“user”, “CN=William R. Stanek”)
usr.samAccountName = “wrstanek”
usr.SetInfo

JScript

var obj = GetObject(“LDAP://OU=Technology,DC=seattle,DC=domain,DC=com”);
var usr = obj.Create(“user”, “CN=William R. Stanek”);
usr.samAccountName = “wrstanek”;
usr.SetInfo();

If no additional attributes are specified, the new user account is created with default property set-
tings. These default property settings are as follows:

Full Name (■ displayName) is blank.

First Name (■ givenName) is blank.

Last Name (■ sn) is blank.

User Principal Name (■ UPN) is blank.

Password is blank.■

Primary group is set to Domain Users.■

User flags are also set on the account. These flags state that the user must change the password, the
account is disabled, and the account never expires. User flags can be set using techniques similar to
those discussed in Chapter 17. All of the flags discussed in Table 17-4 apply to LDAP user objects, as
well. You set or view these flags through the userAccessControl property.

With LDAP, you must create a user account before you can set or change the password. The related
methods are the same, however. You use SetPassword to set a password and ChangePassword to
change a password, as follows:

VBScript

Set usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”)
usr.SetPassword “NewPassword”

Set usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”)
usr.ChangePassword “OldPassword”,”NewPassword”

86804c20.indd 47586804c20.indd 475 1/21/09 1:28:58 PM1/21/09 1:28:58 PM

476

 Part III Network and Dictionary Service Scripting

JScript

var usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”);
usr.SetPassword(“NewPassword”);

var usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”);
usr.ChangePassword(“OldPassword”,”NewPassword”);

Setting user account flags
The LDAP implementation of the user object provides several advantages over the WinNT imple-
mentation, especially when it comes to setting account flags. Unlike WinNT, you can set any of the
following properties directly and don’t have to use the userAccessControl flags:

User must change password■

Account disabled■

Account lockout■

Account expiration■

You specify that the user must change his password with the pwdLastSet property. A value of zero
(0) means the user must change his password at the next logon. A value of –1 clears this setting. In
this example, you specify that William R. Stanek must change his password at the next logon:

VBScript

Set usr = GetObject(“LDAP://CN=William R. Stanek, OU=Technology,DC=seattle,
DC=domain,DC=com”)
usr.Put “pwdLastSet”, CLng(0)
usr.SetInfo

JScript

var usr = GetObject(“LDAP://CN=William R. Stanek, OU=Technology,DC=seattle,
DC=domain,DC=com”);
usr.Put(“pwdLastSet”, 0);
usr.SetInfo();

You can disable a user account by setting the AccountDisable property to True (1). Then to enable
the account, you would set AccountDisable to False (0), as follows:

VBScript

Set usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”)
usr.AccountDisabled = False
usr.SetInfo

86804c20.indd 47686804c20.indd 476 1/21/09 1:28:58 PM1/21/09 1:28:58 PM

477

 Managing Active Directory Domain Extensions 20

JScript

var usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”);
usr.AccountDisabled = 0;
usr.SetInfo();

To unlock an account that has been locked out by the operating system, set the IsAccountLocked
property to False (0), as follows:

VBScript

Set usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”)
usr.IsAccountLocked = False
usr.SetInfo

JScript

var usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”);
usr.IsAccountLocked = 0;
usr.SetInfo();

Only Windows can set IsAccountLocked to True (1). Typically, an account gets locked because a
user (or intruder) repeatedly entered a bad password.

Other useful properties for managing user accounts are AccountExpirationDate and
AccountExpires. If you want an account to expire on a specific date, set
AccountExpirationDate to the desired date, as in the following:

VBScript

Set usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”)
usr.AccountExpirationDate = “12/15/2001”
usr.SetInfo

JScript

var usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”);
usr.AccountExpirationDate = “12/15/2001”;
usr.SetInfo();

To specify that an account should never expire, set AccountExpires to –1, as follows:

VBScript

Set usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”)
usr.AccountExpires = -1
usr.SetInfo

86804c20.indd 47786804c20.indd 477 1/21/09 1:28:58 PM1/21/09 1:28:58 PM

478

 Part III Network and Dictionary Service Scripting

JScript

var usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”);
usr.AccountExpires = -1;
usr.SetInfo();

Viewing group membership
As with WinNT, you can use the Groups() method to check group membership for users. The
Groups() method returns a collection of group objects to which a user belongs. You could use this
method to examine all of the groups William R. Stanek belongs to, as follows:

VBScript

Set usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”)

For Each grp In usr.Groups
 WScript.Echo grp.Name
Next

JScript

var usr = GetObject(“LDAP://CN=William R. Stanek,
 OU=Technology,DC=seattle,DC=domain,DC=com”);

mList = new Enumerator(usr.Groups());

for (; !mList.atEnd(); mList.moveNext())
{
 s = mList.item();
 WScript.Echo(s.Name);
}

Output

CN=Enterprise Admins
CN=Schema Admins
CN=Domain Admins
CN=Administrators
CN=Backup Operators

Moving, renaming, and deleting user accounts with LDAP
The LDAP provider supports the MoveHere method for moving and renaming user accounts, and
the Delete method for deleting user accounts. You could move a user account to a different con-
tainer, as Listing 20-13 demonstrates.

86804c20.indd 47886804c20.indd 478 1/21/09 1:28:58 PM1/21/09 1:28:58 PM

479

 Managing Active Directory Domain Extensions 20

LISTING 20-13

Moving a User Account

VBScript
moveuser.vbs

‘Get rootDSE
Set rootDSE = GetObject(“LDAP://rootDSE”)
domainCont = rootDSE.Get(“defaultNamingContext”)

‘Get the destination container
Set cont = GetObject(“LDAP://OU=Engineering,” & domainCont)

‘Move object from original container to the destination
cont.MoveHere “LDAP://CN=William R. Stanek,OU=Technology,” & domainCont,
 “CN=William R. Stanek”

JScript
moveuser.js

//Get rootDSE
var rootDSE = GetObject(“LDAP://rootDSE”);
domainCont = rootDSE.Get(“defaultNamingContext”);

//Get the destination container
var cont = GetObject(“LDAP://OU=Engineering,” + domainCont);

//Move object from original container to the destination
cont.MoveHere(“LDAP://CN=William R. Stanek,OU=Technology,” + domainCont,
 “CN=William R. Stanek”);

Summary
In this chapter, you used the LDAP ADSI provider to manage Active Directory objects. As you
learned, many extensions are available for common objects, and you can use these extensions to
manipulate objects in many different ways. Because this provider can access other LDAP-compliant
technologies, you can apply everything you’ve learned in this chapter when scripting Exchange
Server, as well as other LDAP-compliant servers. For example, you could create, move, and delete
Exchange mailboxes using the techniques discussed in this chapter.

86804c20.indd 47986804c20.indd 479 1/21/09 1:28:58 PM1/21/09 1:28:58 PM

86804c20.indd 48086804c20.indd 480 1/21/09 1:28:58 PM1/21/09 1:28:58 PM

Part IV digs deep into Windows PowerShell, covering
everything from input, output, and error handling to
working with files to managing event logging and

beyond. In Part IV, you’ll learn exactly how you can use
PowerShell to configure, manage, and troubleshoot Windows.
You’ll also learn how to use PowerShell with Active Directory
Services Interfaces (ADSI) and Windows Management
Instrumentation (WMI).

IN THIS PART
Chapter 21
Input, Output, and Error
Handling in PowerShell

Chapter 22
Working with Files and the
Registry in PowerShell

Chapter 23
Event Logging and Process
Monitoring with PowerShell

Chapter 24
Working with Active Directory
Using ADSI and PowerShell

Chapter 25
Working with WMI
and PowerShell

Windows PowerShell

86804c21.indd 48186804c21.indd 481 1/21/09 1:29:11 PM1/21/09 1:29:11 PM

86804c21.indd 48286804c21.indd 482 1/21/09 1:29:11 PM1/21/09 1:29:11 PM

483

It’s important to learn early in your PowerShell career the range of
options you have for output. Output can go into a variable, it can be
sent to a file, it can be piped into another command, or it can be left to

drop out to the console. One of the first lessons in this area to learn is that
you don’t have to do anything to get output. Writing in PowerShell gives you
access to many facilities which control output and handle XML, HTML, and
CSV formats with minimal effort. In fact, one of the reasons that people
take up PowerShell in the first place is the small amount of work needed
to produce well-formatted output.

This chapter is going to look at some of the inputs and outputs and some
of the traps that might be there for people coming to PowerShell for other
environments.

Output to the Console
Arguably the most famous piece of computer program is the one that appears
at the start of Kernighan and Ritchie’s The C Programming Language, which
contains the line:

printf(“Hello, world!\n\r”);

Ever since that book appeared, people learning any new language have
started with something to output some basic text on whatever console
device they are using, be that a teletype printer, a terminal screen, or a
text window in Windows. PowerShell refers to this window as its host. It
is common to call this destination standard output.

Input, Output, and Error
Handling in PowerShell

IN THIS CHAPTER
How PowerShell outputs
information

Different kinds of output
available

Tracking execution of commands

Overriding the default
formatting of objects

Processing information at input
or output time

86804c21.indd 48386804c21.indd 483 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

484

 Part IV Windows PowerShell

In the batch language, which has been with us since the early days of DOS, you use the echo com-
mand when you want to output something to standard output. For example:

Echo Hello world

In PowerShell, if you enter the text string:

“Hello world”

PowerShell outputs “Hello World” back to you. What has happened here? You’ve got some output on
the screen without ever giving a command to do that: CMD would have responded with the following:

‘“hello world”’ is not recognized as an internal or external command,
operable program or batch file.

PowerShell has parsed this line and decided you have given it a text string object: you’ve been clear
by putting quotation marks around it that you wanted a string object. So what do you want to do
with your string object? Do you want to put in a variable? No. Send it to a file? Didn’t say so. Pipe it
to a command? Haven’t asked for that either. So PowerShell lets it fall out to the console.

Without the quotes around it, PowerShell assumes that text must be a command, but it can recog-
nize numbers—in fact, you can check how it handles different kinds of input:

> (“hello”).gettype().name
String
> (3).gettype().name
Int32
> (3.14159).gettype().name
Double
> ([wmiclass]”\\.\root\cimv2:win32_processor”).gettype().name
ManagementClass

Without quotation marks, PowerShell looks for a command that matches the string. Of course
commands with spaces in them need to be wrapped in quotes but entering ‘C:\Program Files\
Internet Explorer\iexplore.exe’ just returns the string. To execute what is in the string as
a command you prefix the string with an ampersand (&):

& ‘C:\Program Files\Internet Explorer\iexplore.exe’

A Little Diversion into Strings
In the last few paragraphs the single quote and double quotation mark have been used almost
interchangeably.

86804c21.indd 48486804c21.indd 484 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

485

 Input, Output, and Error Handling in PowerShell 21

PowerShell interprets this text:

& “C:\Program Files\Internet Explorer\iexplore.exe”

which uses double quotes in same way it would if the if single quotes were used as follows:

& ‘C:\Program Files\Internet Explorer\iexplore.exe’

However, they are not quite the same; variables are wrapped in the double quoted version, so you
could have entered:

> & “$Env:ProgramFiles\Internet Explorer\iexplore.exe”

But they are not expanded in the single quotation version—which causes an error in this case:

> & ‘$Env:ProgramFiles\Internet Explorer\iexplore.exe’
The term ‘$Env:ProgramFiles\Internet Explorer\iexplore.exe’ is not
recognized as a cmdlet, function, operable program, or script file.

Strings can also be followed by a –f (format) operator, as in the following command:

 ‘{0}\Internet Explorer\iexplore.exe’ -f $env:programFiles

The {0} says to the –f operator “convert the parameter at position 0 to a string and insert it here.”

Inside the braces, you can specify formatting for the string-conversion if need be. It is shorter to write:

“you specified a cylinder diameter of {1} and height {2}, giving
a volume of {0:0.00000} x ({1}/2)^2 x {2} = {3:0.000}” -f
$pi,$d,$h,($pi*$h*$d*$d/4)

than it is to write:

“you specified a cylinder diameter of ” + $d + “ and height ” + $d + “
giving a volume of ” + $pi.tostring(“0.00000”) + “ x (” + $d + “/2)^2
x” +$h + “ = ” + ($pi*$h*$d*$d/4).toString(“0.000”)

It is even possible to use a hybrid—with both string expansion and the –f parameter in the same
string:

“you specified a cylinder diameter of $d and height $h, giving a volume
of {0:0.00000} x ($d/2)^2 x $h = {1:0.000}” -f $pi ($pi*$h*$d*$d/4)

The settings you can use inside the braces or in a tostring() method are explained in more detail
in Table 21-1. Most formats can include a digit, in the table 4 is used as an example, but other num-
bers could be used.

86804c21.indd 48586804c21.indd 485 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

486

 Part IV Windows PowerShell

TABLE 21-1

Formatting codes and their results

Type Code
Applied to
3.14159265358979 Applied to 31

Applied to
314159265358.979

Currency c $3.14 $31.00 $314,159,265,358.98

C4 $3.1416 $31.0000 $314,159,265,358.9790

Decimal D Exception 31 Exception

D4 Exception 0031 Exception

Exponential E 3.141593E+000 3.100000e+001 3.141593e+011

E4 3.1416e+000 3.1000e+001 3.1416e+011

Fixed point F 3.14 31.00 314159265358.98

f4 3.1416 31.0000 314159265358.9790

General G 3.14159265358979 31 3.142e+11

G4 3.142 31 314,159,265,358.9790

Number N 3.14 31.00 314,159,265,358.98

n4 3.1416 31.0000 314,159,265,358.9790

Percentage p 314.16 % 3,100.00 % 31,415,926,535,897.90%

p4 314.1593 % 3,100.0000 % 31,415,926,535,897.9000%

Round trip r 3.1415926535897931 Exception 314159265358.979

r4 3.1415926535897931 Exception 314159265358.979

Hex x Exception 1f Exception

x4 Exception 001f Exception

Custom 00.00% 314.16% 3100.00% 31415926535897.90%

##.##% 314.16% 3100% 31415926535897.90%

#,###.## 3.14 31 314,159,265,358.98

0,000.00 0,003.14 0,031.00 314,159,265,358.98

Custom formats can be built up for numbers as in the preceding examples. It is important to under-
stand that different number formats will be treated differently in different cultures.

86804c21.indd 48686804c21.indd 486 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

487

 Input, Output, and Error Handling in PowerShell 21

You can see what the settings are by querying a .NET object:

[System.Globalization.CultureInfo]::currentCulture.numberFormat

This object has properties, CurrencyGroupS1izes, NumberGroupSizes and PercentGroupSizes,
which specify how many digits are grouped together: NumberDecimalSeparator allows Windows to
cope with using the , and the . as the decimal point and CurrencySymbol lets Windows use $, £, €,
or ¥ as needed.

You can examine the settings for each culture. For example, the following code:

[System.Globalization.CultureInfo]::GetCultureinfo(“ja-jp”).
numberFormat

will get the number format for Japanese. To discover the list of possible settings to pass in
GetCultureInfo you can use the following:

[System.Globalization.CultureInfo]::GetCultures(“installedWin32Culture
s”)

There is a special culture named the invariant culture. Cynics might assume that this is English-US,
but it is a mixture of US and international settings. The next table uses the date formats returned by:

[System.Globalization.CultureInfo]::InvariantCulture.datetimeformat

Dates can have more complex formatting, as shown in Table 21-2.

TABLE 21-2

Pre-defined date formatting codes
Code Description Format (invariant culture)

d ShortDate pattern MM/dd/yyyy

D LongDate pattern dddd, dd MMMM yyyy

f Full date/time pattern (short time) dddd, dd MMMM yyyy HH:mm

F Full date/time pattern (long time) dddd, dd MMMM yyyy HH:mm:ss

g General date/time pattern (short time) MM/dd/yyyy HH:mm

G General date/time pattern (long time) MM/dd/yyyy HH:mm:ss

M or m Month day pattern MMMM dd

o Round-trip date/time pattern “yyyy’-’MM’-’dd’T’HH’:’mm’:’ss.
fffffffK”

continued

86804c21.indd 48786804c21.indd 487 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

488

 Part IV Windows PowerShell

Code Description Format (invariant culture)

R or r RFC1123 pattern ddd, dd MMM yyyy HH’:’mm’:’ss ‘GMT’

s SortableDateTime pattern yyyy’-’MM’-’dd’T’HH’:’mm’:’ss

t ShortTime pattern “HH:mm” HH:mm

T LongTime pattern HH:mm:ss

u Universal SortableDate/Time pattern yyyy’-’MM’-’dd HH’:’mm’:’ss’Z’

Y or y YearMonth pattern yyyy MMMM

Finally you can put custom date formats together using the terms in Table 21-3.

TABLE 21-3

Custom date formatting codes
Code Meaning

h h is the hour on the 12-hour clock without a leading 0.

hh (plus any number of additional “h” specifiers) is the hour on the 12-hour clock: A single-digit
hour is formatted with a leading 0.

H is the hour on the 24-hour clock without a leading 0.

HH (plus any number of additional “H” specifiers) is the hour on the 24-hour clock: A single-
digit hour is formatted with a leading 0.

m m is the minute formatted without a leading zero.

mm (plus any number of additional “m” specifiers) is the minute; a single-digit minute is
formatted with a leading zero.

s s is the second, formatted as a number without a leading zero.

ss (plus any number of additional “s” specifiers) is the second; a single-digit second is formatted
with a leading zero.

f Represents the seconds fraction.
f is the most significant digit; ff is the two most significant . . .up to fffffff for the seven most
significant, with trailing zeros included.

F is the most significant digit; FF is the two most significant . . . up to FFFFFFF for the seven most
significant, with trailing zeros omitted.

TABLE 21-2 (continued)

86804c21.indd 48886804c21.indd 488 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

489

 Input, Output, and Error Handling in PowerShell 21

Code Meaning

t t represents the first character of the A.M./P.M. designator.

tt (plus any number of additional “t” specifiers) represents the full A.M./P.M. designator.

d d represents the day of the month as a number without a leading zero.

dd represents the day of the month as a number; a single-digit day is formatted with a leading zero.

ddd represents the abbreviated name of the day of the week.

dddd (plus any number of additional “d” specifiers) represents the full name of the day of the week.

M M represents the month as a number without a leading zero.

MM represents the month as a number. A single-digit month is formatted with a leading zero.

MMM represents the abbreviated name of the month.

MMMM represents the full name of the month.

y y represents the year as, at most, a two-digit number, without a leading zero.

yy represents the year as, at most, a two-digit number. If the year is one of the first ten in a new
century, it includes a leading zero.

yyyy represents the year as a four-digit number. If the year has fewer than four digits, the number
is padded with leading zeros to achieve four digits.

g g (plus any number of additional “g” specifiers) represents the period or era (A.D. for example).

z z represents the signed time zone offset in hours, without a leading zero.

zz represents the signed time zone offset in hours; a single-digit offset is formatted with a
leading zero.

zzz (plus any number of additional “z” specifiers) is the time offset in hours and minutes.

The offset is always displayed with a leading sign. A plus sign (+) indicates hours ahead of GMT,
and a minus sign (-) indicates hours behind GMT. The offset ranges from –12 through +13. The
offset is affected by daylight savings time.

: is the time separator. It can be overridden by local settings.

/ is the date separator. It can be overridden by local settings.

“ or ‘ can be used for quoted text. “ should be preceded with the escape character (\).

%x displays any one of the above on their own.

Any other character is copied to the result.

86804c21.indd 48986804c21.indd 489 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

490

 Part IV Windows PowerShell

Implicit and Explicit Output
You need to be aware of implicit and explicit outputs. As you’ve seen, you can just specify a string
and PowerShell will send it to the host console. That means there is no need to tell a function that
something should be returned. So the following function will work very nicely:

Function calc-cylinder
{“To calculate the volume of a cylinder using Pi(R^2)H”
“Enter the diameter of your cylinder”
$d=read-host
“Enter the height of your cylinder”
 $h=read-host
 $pi=[system.math]::pi
 “You specified a cylinder diameter of $d and height $h, giving
a volume of {0:0.00000} x ($d/2)^2 x $h = {1:0.000}” -f $pi,
($pi*$h*$d*$d/4)
}

When you run it, it looks like this:

To calculate the volume of a cylinder using Pi(R^2)H
Enter the diameter of your cylinder
12
Enter the height of your cylinder
14
You specified a cylinder diameter of 12 and height 14, giving a volume
of 3.14159 x (12/2)^2 x 14 = 1319.469

You can improve the behavior of the function by allowing the user to pass it parameters, like this:

Function calc-cylinder
{Param ($d=(read-host –prompt “Enter the diameter”) ,
 $h=(read-host –prompt “Enter the height”))
 “Calculating the volume of a cylinder using Pi (R^2) H”
 $pi=[system.math]::pi
 $result=($pi*$h*$d*$d/4)
 “You specified a cylinder diameter of $d and height $h, so the volume
is {0:0.00000} x ($d/2)^2 x $h “ -f $pi
 $result
}

So when you run the function, you get this:

> calc-cylinder -d 12 -h 14
Calculating the volume of a cylinder using Pi (R^2) H
You specified a cylinder diameter of 12 and height 14, so the volume is
3.14159 x (12/2)^2 x 14
1319.46891450771

86804c21.indd 49086804c21.indd 490 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

491

 Input, Output, and Error Handling in PowerShell 21

You should be able to pass the function the bore and stroke of an engine (its cylinder diameter and
height), and multiply the cylinder volume by the number of cylinders to get the total capacity of the
engine, like this:

> (calc-cylinder -d 7.78 -h 10.5) * 4
Calculating the volume of a cylinder using Pi (R^2) H
You specified a cylinder diameter of 7.78 and height 10.5, so the
volume is 3.14159 x (7.78/2)^2 x 10.5
499.158389030554
Calculating the volume of a cylinder using Pi (R^2) H
You specified a cylinder diameter of 7.78 and height 10.5, so the
volume is 3.14159 x (7.78/2)^2 x 10.5
499.158389030554
Calculating the volume of a cylinder using Pi (R^2) H
You specified a cylinder diameter of 7.78 and height 10.5, so the
volume is 3.14159 x (7.78/2)^2 x 10.5
499.158389030554
Calculating the volume of a cylinder using Pi (R^2) H
You specified a cylinder diameter of 7.78 and height 10.5, so the
volume is 3.14159 x (7.78/2)^2 x 10.5
499.158389030554

Wait—that’s not right and, no, it’s not an error by the typesetter. PowerShell really has returned four
copies of the calculation. Each one is an array containing two text strings and a double precision
floating point number. How was PowerShell supposed to know what was the true result of the cal-
culation and what was written to the screen to keep us informed?

The answer, of course, is that you need to stop implying to PowerShell that you want something
printed on the screen and be explicit about it, using the Write-host Cmdlet.

Function calc-cylinder
{Param ($d=(read-host –prompt “Enter the diameter”) ,$h=(read-host
–prompt “Enter the height”))
 Write-host “Calculating the volume of a cylinder using Pi (R^2) H”
 $pi=[system.math]::pi
 $result=($pi*$h*$d*$d/4)
 Write-host (“You specified a cylinder diameter of $d and height $h, so
the volume is {0:0.00000} x ($d/2)^2 x $h “ -f $pi)
 $result
}

> (calc-cylinder -d 7.78 -h 10.5) * 4
Calculating the volume of a cylinder using Pi (R^2) H
You specified a cylinder diameter of 7.78 and height 10.5, so the
volume is 3.14159 x (7.78/2)^2 x 10.5
1996.63355612222

86804c21.indd 49186804c21.indd 491 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

492

 Part IV Windows PowerShell

Notice in the second Write-Host the string is wrapped in brackets; otherwise, PowerShell will
assume that -f $pi is a parameter for Write-Host. Because –f is short for -foregroundColor
this would mean you were trying to set a non-integer foreground color—which will cause an error.

Here, you can see two important guidelines at work:

Think about input parameters for the function.■ Allow users to provide parameters; don’t
ask them to type in input by using the Read-Host Cmdlet unless it is necessary (for exam-
ple, if a parameter is omitted.)

Try to divide function output into something you want to tell the user and something ■

to be used by another operation. If a function’s sole job is only to display information,
you are safe using implicit output; if its output is used by something else, then you aren’t.

When you specify that something should be sent to the host console with Write-Host or by piping it
to Out-Host, it is no longer an output of the function; this has a consequence for capturing what you
do because, if you redirect calc-cylinder to a file, it does not affect what is written to the screen.

> (calc-cylinder -d 7.78 -h 10.5) > results.txt
Calculating the volume of a cylinder using Pi (R^2) H
You specified a cylinder diameter of 7.78 and height 10.5, so the
volume is 3.14159 x (7.78/2)^2 x 10.5

You can check what is in the file and you see it contains only the value:

> type results.txt
499.158389030554

Sometimes that is exactly what you want, and sometimes you want to have a record of what appeared
on the screen. PowerShell provides two Cmdlets, Start-transcript and Stop-transcript,
which do exactly that; PowerShell doesn’t care what route something took to reach the console. If it
got there it goes in the transcript. You’ll see shortly why this is important.

Verbose and Debug Output
One of the problems any developer has to deal with when thinking about output is how much of it
there should be.

In the preceding example, telling the user that the formula for a cylinder is πr2h and what they
passed into the function is probably going to be redundant most of the time in practice may annoy
some users. Consider the case where someone is getting the wrong results. They know that a cylin-
der 30 units high and 10 units in diameter should have a volume a little less than 2500, but is turn-
ing out over 7,000. Wouldn’t it be useful to show that calc-cylinder 30 10 treats the first

86804c21.indd 49286804c21.indd 492 1/21/09 1:29:12 PM1/21/09 1:29:12 PM

493

 Input, Output, and Error Handling in PowerShell 21

parameter as the diameter not the height. What is the developer to do? Annoy one set of users with
output that isn’t needed? Or leave others floundering? What if those are the same users on differ-
ent days?

Fortunately, PowerShell has an answer in Write-Verbose.

If you enter the command:

Write-Verbose “hello world”

at the command prompt on a default configuration of PowerShell, then nothing happens. And you’ll
be left wondering “How can that be called ‘Verbose’?” PowerShell has a trick here: whereas CMD and
UNIX shells have the concept of standard output and standard error, PowerShell has some other pipe-
lines that you can write to. You can write to these pipelines with different write- commands, as
shown in Table 21-4.

TABLE 21-4

PowerShell’s write commands
Cmdlet Description

Write-Output Writes to the “success” pipeline, and is pretty much redundant because if PowerShell
isn’t told what else to do with something that’s what it will do anyway.

Write-error Writes to the error pipeline, which shows up in red on the screen

Write-Debug Writes to warning pipeline, which shows up in yellow on the screen, prefixed with the
word DEBUG

Write-
verbose

Writes to warning pipeline, which shows up in yellow on the screen, prefixed with the
word VERBOSE

Write-
Warning

Writes to warning pipeline, which shows up in yellow on the screen, prefixed with the
word WARNING

So there are probably two questions in your mind, one of which is “Why didn’t Write-Verbose
output anything?” The other is “Isn’t it worse to have the text in yellow with the word VERBOSE in
front of it?” The answer to these is the same: Debug, Error, Verbose, and Warning all have an associ-
ated preference variable, which can be set to Silently Continue, Continue, Stop, or Inquire.

By default, $ErrorPreference and $WarningPreference are set to Continue—that is, output
the message but do not stop; and $debugPrefence and $VerbosePreference are set to
Silently Continue—that is, ignore the message and proceed as if it hadn’t even been written.
Stop stops the script and Inquire asks the user if the script should continue.

86804c21.indd 49386804c21.indd 493 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

494

 Part IV Windows PowerShell

So if you change the function you were using before to this:

Function calc-cylinder
{Param ($d=(read-host –prompt “Enter the diameter”) ,$h=(read-host
–prompt “Enter the height”))
 Write-Verbose “Calculating the volume of a cylinder using Pi (R^2) H”
 $pi=[system.math]::pi
 $result=($pi*$h*$d*$d/4)
 Write-debug (“You specified a cylinder diameter of $d and height $h,
so the volume is {0:0.00000} x ($d/2)^2 x $h “ -f $pi)
 $result
}

When you run the function, you can change the preferences to give a better understanding of what
the function is doing.

> $VerbosePreference=”Continue”
> calc-cylinder 30 10
VERBOSE: Calculating the volume of a cylinder using Pi (R^2) H
7068.58347057703
> $DebugPreference=”continue”
> calc-cylinder 30 10
VERBOSE: Calculating the volume of a cylinder using Pi (R^2) H
DEBUG: You specified a cylinder diameter of 30 and height 10, so the
volume is 3.14159 x (30/2)^2 x 10
7068.58347057703

Managing Different Outputs from Cmdlets
PowerShell has a standard set of parameters that most Cmdlets implement. These include -Confirm
and -WhatIf, and -OutputBuffer, which controls the number of objects to be buffered between
one command and the next one in the pipeline. In addition to these, there are five that control out-
put: –Debug, –Verbose, -ErrorAction, -ErrorVariable, and –OutVariable.

-■ Verbose will cause output to the verbose display regardless of the setting of
$verbosePreference.

-Debug■ will prompt the user if they wish to continue, regardless of the setting of
$DebugPreference.

-erroraction■ allows $errorActionPreference to be overridden for a single Cmdlet.

$ErrorActionPreference can be set with a scope for just a function or script like this:

$Local:ErrorActionPreference = “SilentlyContinue”

This will silence error reporting for every Cmdlet in the script or function.

86804c21.indd 49486804c21.indd 494 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

495

 Input, Output, and Error Handling in PowerShell 21

To test access to an administrator-only registry key to see if the user is running with elevated privi-
leges, you can use the following command and silence errors only for that Cmdlet and not for the
whole script.

dir Microsoft.PowerShell.Core\Registry::HKEY_USERS\s-1-5-20 `
 -ErrorAction silentlycontinue | out-null

PowerShell has an automatic variable, $?, which queries the success of the last command so you
could follow the previous line with:

if ($?) { write-host -ForegroundColor Green “This session is elevated”} `
else { write-host -ForegroundColor Red “This session is not elevated.”}

This is a pretty simple test; if the dir is successful, you must be an administrator and any error
means you’re not—but it would be better to try to check the error and confirm that it is access
denied. PowerShell has another automatic variable, Error[], an array that holds the history of
errors. An error can be returned from the Cmdlet in a named variable. One important detail to note
is that the variable name doesn’t include a dollar ($) sign in this case. You can think of $ as meaning
“the value of” in statements such as $x=10 ; Write-host $x. When you tell a Cmdlet to store the
result in x, (without the $ sign) you’re passing it a pointer to where something should go. So the pre-
ceding line can be extended like this:

dir Microsoft.PowerShell.Core\Registry::HKEY_USERS\s-1-5-20 `
 -ErrorAction silentlycontinue –errorVariable MyErr | out-null

Using –ErrorVariable (or –OutVariable for success output) does not redirect output but makes
a copy of it, so simply writing the line as follows will not hide the line from the user,

dir Microsoft.PowerShell.Core\Registry::HKEY_USERS\s-1-5-20 `
 –errorVariable MyErr

In the same way, the following:

dir –Outvariable myFolder

is not the same as:

$myFolder = dir

The second line takes the output and stores it in a variable without returning any results, whereas
the first returns the results of looking at the current directory and stores the results in a variable.
This is similar to the Tee-Object Cmdlet, which can write an object to a file and output it as well
or can store it in a variable and output it. For example:

dir | Tee-object –Variable myFolder

86804c21.indd 49586804c21.indd 495 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

496

 Part IV Windows PowerShell

or

dir | Tee-object –FilePath MyFolder.Txt

In the case of the error example, the specified variable contains an array of error objects, which give
rich information. They have an Exception property, which contains the text of the message. You
can see what it is in this case:

> $myerr[0].Exception
Requested registry access is not allowed.

Error objects have a target object property, which is very useful in a loop that is processing multiple
files because it will allow the one that caused the error to be identified. In this case, it will just con-
tain the path to the registry key. They have an InvocationInfo property, which is an object con-
taining the information about the command that caused the error. And they have a categoryinfo
property, which is an object with information about the error itself. For this error you can discover
more about it using the following code.

> $myerr[0].categoryInfo

Category : PermissionDenied
Activity : Get-ChildItem
Reason : SecurityException
TargetName : HKEY_USERS\s-1-5-20
TargetType : String

So the dir command in the preceding code can be followed with a test like this:

if (-not $MyErr) { write-host -Foreground Green “This session is
elevated”} `
else { if ($myerr[0].categoryInfo.category -eq “PermissionDenied”) `
 {write-host -Foreground Red “This session is not
elevated.”}
 Else {write-host -Foreground Red “Error testing elevation”} }

More on Error Output
Before we leave the question of the errors, let’s examine a situation in which a script needs to gener-
ate an error on purpose. You have already seen that scripts can send output to the error display. In
fact, write-error has parameters to allow it to set all the properties you looked at in the previous
section. So write-error is not simply “output to the error channel,” but “write an object into the
error[] array” as well. This works very well for informational errors but there are some cases where
you need a script or a function to terminate and display an error—perhaps the simplest case being

86804c21.indd 49686804c21.indd 496 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

497

 Input, Output, and Error Handling in PowerShell 21

when parameters are needed but not specified. PowerShell can put in a default expression for a
parameter, so a Param statement at the start of a function might contain:

$Server=”.”

which will set the $server parameter to “.” if no parameter is specified. But the expression can be
something that is evaluated, so a parameter can be written as:

$path=$(Throw “you must specify a path”)

Earlier in this chapter, we described a dollar sign ($) in front of a variable name as meaning
the value of, and it is playing a similar role in the $() construction here—effectively saying to
PowerShell evaluate this. Evaluating throw generates an error and breaks out of the script so, for
example, a function to create a new Hyper-V hard disk is called without the required parameters.
The result might be as follows:

> new-virtualHardDisk
You must specify a Path for the disk
At C:\Users\administrator\HYPERV.PS1:119 char:33
+ {Param ([String]$vhdPath=$(Throw(<<<< “You must specify a Path for
the disk”)) , [int64]$size, $parentDisk, $server=”.”
,[Switch]$Fixed
,[Switch]$wait)

Throw can be placed anywhere in a script—in a function body, for example—and it will normally
cause the function to exit. PowerShell also provides a Trap keyword to specify a code block to eval-
uate when an error is thrown. The error object becomes available in the script block specified by
trap as $_, just like code piped into anything else. Trap is not the equivalent of on error goto
found in languages such as Visual Basic, so something like the following will fail.

Trap {“You don’t have administrator Access”}
dir Microsoft.PowerShell.Core\Registry::HKEY_USERS\s-1-5-20

If Trap can catch only exceptions that are explicitly thrown, then it does beg the question: Why
not simply write the exception handler in the body of the script? There are two reasons for wanting
to do this—first, the same handler or handlers might be needed in multiple places and Trap allows
the script for them to be put in one place, making the script shorter and easier to maintain. Second,
in a complex combination of conditions and loops, it may simply be easier to jump out using Throw.
Trap allows the exit to be more graceful, closing connections for example, but it can also continue at
the next command by including the Continue keyword.

Knowing which command Trap will consider to be next is something that requires a little under-
standing of PowerShell’s command processing.

Consider this simple looking command:

1..5 | foreach {write-host $_ ; $_ * $_ ; write-host “after the
calculation”}

86804c21.indd 49786804c21.indd 497 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

498

 Part IV Windows PowerShell

So we are going to take the numbers 1 to 5, echo the number to console, output its square as the result
of the for loop, and then echo the words after the calculation to the console. Simple enough—so
here’s the output:

1
1
after the calculation
2
4
after the calculation
3
9
after the calculation
4
16
after the calculation
5
25
after the calculation

Nothing changes if you direct the output of the function using Out-Host. In other words, the output
of the for loop gets processed before the next command inside the loop.

So let’s introduce a throw and a trap into this:

trap
{$_.exception ; continue}
1..5 | foreach {write-host $_ ; $_ * $_ ; throw “An exception”
 write-host “after the calculation”} | out-host
write-host “All done”

So you have a trap, which will output the exception and continue—but where does it continue from?
Immediately after the throw? At the next item in the loop? Somewhere else entirely? And does the
output go through to the Out-Host? Here’s the output:

1
1
An exception
All done

As before, what happens here is that as soon as there is some output it is sent to the next command
in the pipeline. So the sequence begins, writes 1 to the console, passes 1*1 to Out-Host, throws an
exception with the text “An exception”, and then continues. You can see that PowerShell continues
at the next command in the block—the whole of 1..5 | foreach | Out-Host is one command.

This is not always what you want. Suppose you are trying to catch problems opening one file in
many and have a trap that records failures in more than one place in the script? Three important

86804c21.indd 49886804c21.indd 498 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

499

 Input, Output, and Error Handling in PowerShell 21

words may have passed you by in the previous paragraph. PowerShell continues at the next com-
mand in the block. The trick for this case is that the trap needs to be inside a foreach block, like
this:

1..5 | foreach { trap{$_.exception ; continue}
 write-host $_
 $_ * $_
 throw “An exception”
 write-host “after the calculation”} | out-host
write-host “All done”

Now the output is:

1
1
An exception
after the calculation
2
4
An exception
after the calculation
3
9
An exception
after the calculation
4
16
An exception
after the calculation
5
25
An exception
after the calculation
All done

Of course the drawback of this is that if you are trying to trap things in more than one block, you
have to put the trap command in each one—and if the block run by trap is large, it probably
needs to be moved into its own function.

Session Transcripts
One of the shortcomings of redirection is that, by default, what it can do is limited. You can redi-
rect the normal (success) pipeline to a file with the > sign—as you can in CMD.EXE—and >> will
append to a file rather than overwrite it, but anything explicitly sent to the console does not get
redirected.

86804c21.indd 49986804c21.indd 499 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

500

 Part IV Windows PowerShell

You can also redirect things sent to the error pipeline with 2>, and PowerShell has a trick for merg-
ing errors into the success pipeline by using 2>&1. This allows errors and success output to be sent
to the same file or into the same piped command. The debug, verbose, and warning pipelines can’t
be captured in the same way.

PowerShell provides a transcript facility with two Cmdlets, Start-Transcript and
Stop-Transcript.

Where a series of commands in CMD would need to be sent to a file with > and >>, and the com-
mand itself is not recorded, everything that you can see by scrolling back up in the console window
is captured in the transcript, the prompt, the commands entered and their parameters error, verbose
and debug output as well as the normal session output. So let’s see the transcript from the cylinder
calculation example—just for completeness, there is an error at the end of it.

Windows PowerShell Transcript Start
Start time: 20080830202103
Username : Contoso\james
Machine : JAMES-2008 (Microsoft Windows NT 6.0.6001 Service Pack 1)

Transcript started, output file is C:\Users\james\Documents\PowerShell_
transcript.20080830202103.txt
PS C:\Users\james\Documents\windowsPowershell> calc-cylinder 30 10
7068.58347057703
PS C:\Users\james\Documents\windowsPowershell>
$DebugPreference=”continue”
PS C:\Users\james\Documents\windowsPowershell> calc-cylinder 30 10
DEBUG: You specified a cylinder diameter of 30 and height 10, so the
volume is 3.14159 x (30/2)^2 x 10
7068.58347057703
PS C:\Users\james\Documents\windowsPowershell>
$VerbosePreference=”Continue”
PS C:\Users\james\Documents\windowsPowershell> calc-cylinder 30 10
VERBOSE: Calculating the volume of a cylinder using Pi (R^2) H
DEBUG: You specified a cylinder diameter of 30 and height 10, so the
volume is 3.14159 x (30/2)^2 x 10
7068.58347057703
PS C:\Users\james\Documents\windowsPowershell> $debugPreference=silentl
yContinue
The term ‘silentlyContinue’ is not recognized as a cmdlet, function,
operable program, or script file. Verify the term and try again.
At line:1 char:33
+ $debugPreference=silentlyContinue <<<<
PS C:\Users\james\Documents\windowsPowershell> Stop-Transcript

Windows PowerShell Transcript End
End time: 20080830202205

86804c21.indd 50086804c21.indd 500 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

501

 Input, Output, and Error Handling in PowerShell 21

Tracking Progress
In a lot of scripts, there is a delay while something happens, and giving progress updates—a
progress bar or a percentage, for example—is difficult. In a Windows forms application, it is easy
enough to update a number and there is a gas gauge control, there is no equivalent for a batch file.

PowerShell has a Write-Progress Cmdlet that allows activity to be tracked, without leaving anything
permanently on the console. It has to be passed at least two parameters: -Activity is the overall
description and -Status describes what is happening. In addition, -percentagecompete gives a
visual progress indicator, -Secondsremaining shows how long the command can be expected to keep
running. and -CurrentActivity shows more granular information about the task. The output dis-
played by Write-Progress looks like this:

activity
 Status
 [ooooooooooooooooo]
 00:01:10 remaining.
 Current Activity

Unlike the other write- Cmdlets, the output of Write-Progress is not captured by the transcript
process.

It is possible for Write-Progress to display nested activities:

for($i = 1; $i -lt 101; $i++)
 {write-progress -activity “Updating” -Status “customers->”
-percentComplete $i
 for($j = 1; $j -lt 101; $j++)
{write-progress -activity “Updating” -status “customer-Orders “ `
 -current “Customer ID $i” -seconds (10100-(100*$i)-$j) –id 1
}
 }

Here you can see two loops: The outer one contains a Write-Progress statement, which displays a
progress bar, and the inner one contains another Write-Progress statement, which displays the
seconds remaining and a current activity. The logic behind the Write-Progress Cmdlet is that the
second has an –ID parameter and thus does not overwrite the information displayed by the first.

Information displayed by Write-Progress remains onscreen until the PowerShell prompt
reappears. This means that if you want to test it, you cannot simply enter the Cmdlet on its own
because no sooner has the text appeared, than it will disappear, so follow it with Sleep 5 to keep
it on the screen for a few seconds. Conversely, a progress message can be removed early by calling
Write-Progress with a –Completed switch; if more than one progress section is on display, the
–ID is used to identify which has completed; -Activity and -Status switches are still required
even though they are not displayed.

86804c21.indd 50186804c21.indd 501 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

502

 Part IV Windows PowerShell

Taking More Control of Formatting
One of the things that puts the Power into PowerShell is its ability to work with objects, and objects
have many properties, not all of which will be of interest to us. For example, if you get a list of pro-
cesses with the Get-Process command, there are over 50 properties available. You might be
happy with the default selection, but you may want to select your own. Similarly, there are situa-
tions where you don’t want every item returned. It is quite common for people who are starting out
with PowerShell to start by converting VB or VBScript code into PowerShell language but still retain
all the paradigms of VB in the resulting code. Here is an example in PowerShell:

$procs=Get-Process
for($i = 0; $i -lt $procs.count; $i++)
{if ($Procs[$i].product -match “Office”)
 {write-host ($Procs[$i].name.padright(20) + “ “+
 $Procs[$i].cpu.tostring(“00000.00”) + “ “ +
 $Procs[$i].VM.tostring().padleft(12))
 }
}

This is perfectly valid PowerShell. But a few things add complexity here.

The first of these is the technique of storing something as an array and then using its Count prop-
erty in a loop that indexes into each item. You can simply pipe into forEach-Object (or one of its
aliases, forEach or %) and refer to each object using $_, as follows:

Get-Process | forEach-object {if ($_.product -match “Office”)
 {write-host ($_.name.padright(20) + “ “+
 $_.cpu.tostring(“00000.00”) + “ “ +
 $_.VM.tostring().padleft(12))
 }
}

That’s simpler, but a second improvement would be to filter the items before looping through them.
Get-Process can be given the names of processes—but this requires passing a list of all the mem-
bers of the product family, and querying for one which is not running will result in an error . So a
better solution is to put a Where-Object Cmdlet between the get and the for, as follows:

Get-Process | where-object {$_.product -match “Office”}|
forEach-object {
 write-host ($_.name.padright(20) + “ “+
 $_.cpu.tostring(“00000.00”) + “ “ +
 $_.VM.tostring().padleft(12)) }

Finally, you can use Format-Table to replace the whole write in a loop construction.

Get-Process| where-object {$_.product -match “Office”}|
 format-table –property ` Name,cpu,VM

86804c21.indd 50286804c21.indd 502 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

503

 Input, Output, and Error Handling in PowerShell 21

Format-Table has an alias, ft, and if only one parameter is passed (in this case a single array) it is
assumed to be -property. Where-Object can also be abbreviated to ? and Get-Process has a
UNIX-style alias of PS, so at the command line the original half dozen lines of code could be pared
down to this:

PS | ? {$_.product -match “Office”} | ft Name,cpu,VM

Before looking at some of the more sophisticated uses of Format-Table, it is worth mentioning its
-autoSize and -wrap switches. If -autoSize is not specified, Format-Table simply divides
the width of the screen by the number of properties to be displayed and displays each of the col-
umns using that width—and it can output the information as it is returned by an earlier function in
the pipeline. With -autoSize, it waits until all the data has been passed, and calculates the
required widths. This is usually preferable. The -wrap switch allows data that is longer than its
column width to be wrapped over multiple lines.

In addition, where there is too much data to display in table form, there is a Format-List Cmdlet
that works in a similar way, but displays each item working down the screen rather than across.
Format-List can be abbreviated to its alias, fl, and as with Format-Table, it is provided with
one parameter that is assumed to be the list of properties. Sometimes it is useful when exploring
objects to use | FL * rather than | GM to look at the properties with the get-member Cmdlet.

Format-table becomes particularly powerful when used with calculated properties. In their simplest
form, calculated properties allow the label of a column in the table to be replaced with something eas-
ier to understand than the property name. For example, instead of CPU and VM, in the process example
shown previously, you might want to display Total CPU Time and Virtual Memory.

A calculated property is written as an associative array—which some people know as a
hash table—with an expression and (for Format-table) a Label. The syntax for declaring an
associative array is:

@{<key1 = item1>; <key2 = item2>;…}

The sequence doesn’t matter because an item is found using its key. The item for the Label key is a
text string, and the item for the expression key is a script block enclosed in braces. So to rename
fields in the earlier get-process command to give CPU and VM better labels, the command would
look like this:

Get-Process| where-object {$_.product -match “Office”}|
 format-table –property `
Name, @{Label=”Total CPU Time”; expression={$_.cpu}},
@{Label=”Virtual memory”; expression={$_.VM} }

Of course the fields in this example aren’t calculating anything; their expressions are just a property,
which Format-Table retrieves and evaluates. Whatever is returned by expression appears in the
table. You could put a more complex formula into the expression. For example, the following:

(Get-Date) - $_.StartTime

86804c21.indd 50386804c21.indd 503 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

504

 Part IV Windows PowerShell

will return a TimeSpan object and you can use its Totalseconds property to give the total time a
process has been running in seconds, using the following calculated property:

@{expression={ ((get-date) - $_.StartTime).totalSeconds};Label=”Time
running” }

You can even calculate the percentage of CPU time that process has used over its life.

@{expression={ ($_.cpu/((get-date)-$_.StartTime).totalSeconds).
tostring(“P3”)}; Label=”Lifetime CPU %” }

The toString(“p3”) at the end formats the result as a percentage to three places of decimals.
Another use for calculated fields is to change the format of a property using the formatting laid out
earlier in this chapter.

The important thing is that an expression is just a script block and whatever it returns appears in the
table. Recall earlier how we pooh-poohed the idea of using a for loop to iterate through all the mem-
bers of the array. Suppose you wanted to display a number next to them. That might seem like a rea-
son for going back to the for loop, but PowerShell can evaluate any code in an expression—like
something to increment a counter.

For example:

$Counter=-1
Get-Process| where-object {$_.product -match “Office”}|
 format-table –property `
@{Label=”ID”; expression={ ($global:Counter++)} } , Name, cpu

This can be the basis for a simple menu. Instead of piping the processes into Format-Table, another
of the Cmdlet’s switches can specify an input object. Then a function asks the user to select one of
the running processes.

Function choose-ProcessByProduct
{param ($product)
 $processes= Get-Process| where-object {$_.product -match
[string]$product}
 $Global:Counter=-1
 format-table -inputObject $processes -autosize -property `
 @{Label=”ID”; expression={ ($global:Counter++)} } , Name, cpu
 $processes[(read-host “Which one ?”)]
}

86804c21.indd 50486804c21.indd 504 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

505

 Input, Output, and Error Handling in PowerShell 21

And this will produce something similar to the following, depending on what is running on the
computer at the time.

>choose-ProcessByProduct office
ID Name CPU
-- ---- ---
 0 communicator 2095.9046352
 1 EXCEL 86.5181546
 2 OUTLOOK 9681.9524634
 3 WINWORD 10828.2010111
Which one ?: 2

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 6442 190 324056 214940 951 9,682.03 5032 OUTLOOK

This looks fine until you realize one thing about the output of Format-Table. It has been relying
on implicit output—which is great if you want to redirect your nicely formatted output to a file but
not so nice if you want to store the chosen process in a variable, because this will happen:

> $P=choose-ProcessByProduct office
Which one ?:

What happened to all the information in the menu? The answer is that it was just output—PowerShell
was told that the output of the choose function was to go into $P so it did what it was told!

Fortunately, this is easy to fix by piping the Format-Table into the Out-Host Cmdlet, like this:

format-table -inputObject $processes -autosize -property `
 @{Label=”ID”; expression={ ($global:Counter++)} } , Name, cpu | out-Host

Sorting and Selecting Fields
So far, you’ve seen Implicit and Explicit output and how you can use Format-Table (or Format-
List) to give nicely formatted output with relatively little work; before we leave calculated fields,
let’s look at two techniques that are useful for managing the properties of objects in output.

The first is the Select-Object Cmdlet. If you have a background in querying data from databases
it is sometimes helpful to think of PowerShell building up a classic SQL query with a set of Cmdlets.
So a query in SQL would typically be:

Select fields From source where condition Order By Field

or

Select fields From source where condition Group By Field

86804c21.indd 50586804c21.indd 505 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

506

 Part IV Windows PowerShell

In PowerShell, you’ve seen that Get functions and Cmdlets (such as Get-Process, in the preceding
examples) do the job of the From part. PowerShell has a Where-Object Cmdlet with an alias of
where, which does the same job as the where clause.

PowerShell also has Cmdlets for sorting and grouping, for example:

Get-Process| where-object {$_.product -match “Office”}|
 sort-object –property name

As before, if the –property is not specified, PowerShell will assume that the first un-named param-
eter is the property field, so at a command line one could simplify this to:

PS | Sort Name,Vm

which will sort the processes by name and virtual memory (by writing name,VM the comma causes
PowerShell’s parser to treat Name and Vm as a single-array parameter rather than two separate string
parameters). Like Format-Table, the Sort-Object Cmdlet will accept calculated fields, so the list
of processes you obtained in the Format-Table example could be sorted with a calculated field.

Get-Process| where-object {$_.product -match “Office”}|
 sort @{expression={ ($_.cpu/((get-date)-$_.StartTime
).totalSeconds)}}

Note that the definition of the field doesn’t have a name or label part, just an expression.

For grouping, PowerShell has a Group-Object Cmdlet. This returns group-info objects, each of
which has a name property, a count property, and a Group property, which contains an array of the
original objects. So the Get-Process command can return groups of objects based on the product
they belong to using the following command:

get-process | Group-Object -Property product

From these groups, you might look at each of the groups returned and add up the CPU time of each
of its members—like this:

get-process | Group-Object -Property product | foreach-object `
{$_.name ; $_.group | foreach-object -begin {$cpu=0} `
 -process {$cpu+=$_.CPU} -end {$cpu} }

Rather than using a loop to go through each group member and calculate a running total, you can
use the PowerShell’s Measure-Object Cmdlet. Measure-Object takes multiple objects—the
groups in this case—and counts them and can be told to calculate the minimum, maximum, sum,
and average for one or more properties, which would need quite a lot more script.

So a more efficient way to write the previous script is as follows:

get-process | Group-Object -Property product | foreach-object `
{$_.name ; ($_.group | Measure-Object -sum -property CPU).sum }

86804c21.indd 50686804c21.indd 506 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

507

 Input, Output, and Error Handling in PowerShell 21

Grouping can use the same calculated properties that you use in both sorting and displaying the
table. The only problem with this approach is that you may need to do the same calculation in more
than one place—especially if you are sorting by a property and then showing it in a formatted table,
which makes the process a bit unwieldy.

There are two ways around this. The first is to use the Select-Object Cmdlet; select does what
you might expect—returning required fields, in SQL style. For example:

Select-object –property Name,VM,CPU, @{name=”LifeTimeCPU”; expression=
{($_.cpu/((get-date)-$_.StartTime).totalSeconds.tostring(“p”))}}

Although the sequence is not the same as SQL, you now have parts of a PowerShell command,
which are equivalent to SQL’s Select, Where, From, and Order by, although in PowerShell the
order is Get | Where | Select | sort so the full command would be:

> Get-Process| where-object {$_.product -match “Office”}|
 Select-object –property Name,VM,CPU, @{name=”LifeTimeCPU”; expression=
{(($_.cpu/((get-date)-$_.StartTime).totalSeconds).tostring(“p”))}} |
sort LifeTimeCPu | Format-table -autosize -property Name,Vm,Cpu,
LifetimeCpu

This works nicely unless, for example, you want to be able to call the Kill()method for the process
object because you’ll find the method has gone. If you redirect the output of Select-Object into
get-member, you get output like this:

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- -------- --
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
CPU NoteProperty System.Management.Automation.PSObject
 CPU=2344.1334264
LifeTimeCPU NoteProperty System.Management.Automation.PSObject
 LifeTimeCPU=0.28%
Name NoteProperty System.String Name=communicator
VM NoteProperty System.Int32 VM=403300352

The type has changed; Select-Object throws away the original Process object and creates a new
PSCustomObject. It adds properties to it (you’ll see what NoteProperties are about in a
moment), but you’ve lost all the methods of the object, so you might want to look for another way.

If you were very sharp eyed in the choose- example, you might have noticed that when PowerShell
outputs the details of a process object without any other instruction it uses a column titled

86804c21.indd 50786804c21.indd 507 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

508

 Part IV Windows PowerShell

ProcessName, but all the subsequent examples simply used Name. PowerShell can add members to
objects; in fact, under the surface, PowerShell does that for some existing .NET objects. For example,
you can find out about the member with the name “Name” returned by get-Process, as follows:

> get-process | get-member -name “name”
 TypeName: System.Diagnostics.Process
Name MemberType Definition
---- ---------- ----------
Name AliasProperty Name = ProcessName

The first thing this tells you is that you have a System.Diagnostics.Process .NET object. If you
were to look up the properties of this object class on MSDN, you would find that it does not have a
name property, only ProcessName. But the next thing that get-member says is that the member
named “Name” has a member type of “Alias Property,” which is defined as “Name=ProcessName.”
In other words, PowerShell has made the ProcessName property accessible using an alias of “name.”

PowerShell’s Add-Member Cmdlet adds AliasProperties, and about a dozen other member
types. You saw NoteProperties in the previous section—they are properties that are set once—
and ScriptProperties. For reasons known only to the people who designed it, when input is
piped into Add-Member, it needs to be called with a –PassThrough switch. Otherwise, it adds the
member and throws the result away.

To add a script property to the processes you have been looking at in the previous examples, the
code is just slightly different. Instead of writing $_ for “the current one in the pipeline,” you write
$this, so the command would be:

> Get-Process| where-object {$_.product -match “Office”}|
add-member -PassThru -memberType scriptproperty -name LifeTimeCpu
-value { ($this.cpu/((get-date)-$this.StartTime).totalSeconds)}

Just running this on its own will cause PowerShell to output the following:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 2290 90 77676 79000 370 2,358.02 3572 communicator
 394 26 18128 28320 205 1.95 6696 EXCEL
 8146 222 373028 208884 1032 ...07.48 5032 OUTLOOK
 2384 83 57956 85804 386 ...36.40 4376 WINWORD

After adding a member, the the object is still a Process object: PowerShell knows which fields it
should output for Process objects (you’ll see how shortly) and the list of fields does not contain the

86804c21.indd 50886804c21.indd 508 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

509

 Input, Output, and Error Handling in PowerShell 21

new LifeTimeCPU property, so it doesn’t appear in the table above but it’s there—you can use it in
Sort-Object and Format-Table.

> Get-Process| where-object {$_.product -match “Office”}|
 add-member -PassThru -memberType scriptproperty -name LifeTimeCpu
 -value {
 ($This.cpu/((get-date)-$This.StartTime).totalSeconds)} |
sort-object -Property lifetimeCpu |
format-table -autosize -Property name,vm,cpu,@{Label=”Lifetime CPU”;
 expression={$_.lifetimecpu.toString(“P”)}}

Name VM CPU Lifetime CPU
---- -- --- ------------
communicator 390860800 2364.7411585 0.27 %
WINWORD 407875584 11699.4041957 1.36 %
OUTLOOK 1108582400 12307.074891 1.43 %

We examine additional uses for Add-Member in later sections. But first there is a little aside about
PowerShell understands how to format objects.

Changing How PowerShell Formats Objects
How is it, for example, that when you get information about files and let PowerShell output it, it
always displays the folder the file is in, even if you do something like this?

> $d1 = dir *.ps1
> $d2 = dir pics*.ps1
> $dlot=$d1+$d2
> $dlot
 Directory: Microsoft.PowerShell.Core\FileSystem::C:Stuff

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 20/08/2007 15:16 2514 AD-e164.ps1

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Stuff\pics

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 17/03/2008 13:47 224 reset.ps1

How does PowerShell know, not just to output Mode, Last Write Time, Length and Name, but
also to put out a header for each change in the parent folder? How does it know which properties to
output for a process object—and that Non-Paged, Paged, Working Set, and Virtual Memory
should be converted to different units?

86804c21.indd 50986804c21.indd 509 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

510

 Part IV Windows PowerShell

The answer to both of these questions lies in some XML files in the PowerShell home folder (under
Windows\system32—the location is stored in $PsHome). These files are digitally signed and you
must not change them: doing so would break the signatures and then PowerShell won’t know how to
format things. One of these files is named FileSystem.format.ps1xml, and if you look inside it
you will find a section that goes like this:

<View>
 <Name>children</Name>
 <ViewSelectedBy>
 <SelectionSetName>FileSystemTypes</SelectionSetName>
 </ViewSelectedBy>
 <GroupBy>
 <PropertyName>PSParentPath</PropertyName>
 <CustomControlName>FileSystemTypes-GroupingFormat</
CustomControlName>
 </GroupBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Label>Mode</Label><Width>7</Width><Alignment>left</Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>LastWriteTime</Label><Width>25</Width><Alignment>right</
Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Length</Label><Width>10</Width><Alignment>right</
Alignment>
 </TableColumnHeader>
 <TableColumnHeader/>
 </TableHeaders>
 <TableRowEntries><TableRowEntry>
 <Wrap/>
 <TableColumnItems>
 <TableColumnItem><PropertyName>Mode</PropertyName></
TableColumnItem>
 <TableColumnItem><ScriptBlock>
 [String]::Format(“{0,10} {1,8}”, $_.LastWriteTime.
ToString(“d”), $_.LastWriteTime.ToString(“t”))
 </ScriptBlock></TableColumnItem>
 <TableColumnItem><PropertyName>Length</PropertyName></
TableColumnItem>
 <TableColumnItem><PropertyName>Name</PropertyName></
TableColumnItem>
 </TableColumnItems>
 </TableRowEntry></TableRowEntries>
 </TableControl>
</View>

86804c21.indd 51086804c21.indd 510 1/21/09 1:29:13 PM1/21/09 1:29:13 PM

511

 Input, Output, and Error Handling in PowerShell 21

You can see that the XML applies to file system types (which are defined elsewhere in the XML file)
and it groups by the property PSParentPath. Then it defines a table control, with one section to
define headers—with familiar looking labels—and another section to define the data part which con-
tains a mixture of properties from the object and script.

In the same way, DotNetTypes.format.ps1xml describes how a number of types should be displayed.
You can create a new version of this file with a pared down entry for System.Diagnostics.process,
with some of the fields removed.

<Configuration><ViewDefinitions><View>
 <Name>process</Name>
 <ViewSelectedBy>
 <TypeName>System.Diagnostics.Process</TypeName>
 <TypeName>Deserialized.System.Diagnostics.Process</TypeName>
 </ViewSelectedBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Label>VM(M) </Label><Width> 5</Width><Alignment>right</
Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>CPU(s) </Label><Width> 8</Width><Alignment>right</
Alignment>
 </TableColumnHeader>
 <TableColumnHeader />
 </TableHeaders>
 <TableRowEntries><TableRowEntry><TableColumnItems>
 <TableColumnItem>
 <ScriptBlock>[int]($_.VM / 1048576)</ScriptBlock>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>if ($_.CPU -ne $()) { $_.CPU.ToString(“N”)}</
ScriptBlock>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>ProcessName</PropertyName>
 </TableColumnItem>
 </TableColumnItems></TableRowEntry></TableRowEntries>
 </TableControl>
</View></ViewDefinitions></Configuration>

This can be loaded with the Update-FormatData Cmdlet. To add a file to the collection used
for formatting, it is called with a -PrePend or -Append switch. PowerShell applies a rule of first
definition wins so the file needs to be loaded with a -prepend switch. The file that defines the

86804c21.indd 51186804c21.indd 511 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

512

 Part IV Windows PowerShell

format for a process can be updated and tested using the same example as shown previously,
like this:

> Update-FormatData -PrependPath My.Format.PS1XML
> Get-Process| where-object {$_.product -match “Office”}

VM(M) CPU(s) ProcessName
----- ------- -----------
 262 20.14 communicator
 187 2.04 EXCEL
 535 110.51 OUTLOOK
 326 367.32 WINWORD

Because you have seen the structure of the file and removed columns you don’t want, adding col-
umns to the view is not difficult.

You can add a heading, as follows:

<TableColumnHeader>
 <Label>Life CPU</Label>
 <Width>8</Width>
 <Alignment>right</Alignment>
</TableColumnHeader>

And the same code block you used before:

<TableColumnItem>
 <ScriptBlock>
 {(($_.cpu/((get-date)-$_.StartTime).totalSeconds).tostring(“p”))}
 </ScriptBlock>
</TableColumnItem>

The Update-FormatData Cmdlet doesn’t need to be told to add the file a second time, so if the file
is saved, you can run the update again and get the new format with our custom field.

> Update-FormatData
> Get-Process| where-object {$_.product -match “Office”}
VM(M) CPU(s) Life CPU ProcessName
----- ------- -------- -----------
 263 20.23 0.09 % communicator
 187 2.07 0.01 % EXCEL
 523 111.10 0.52 % OUTLOOK
 309 381.80 1.79 % WINWORD

The format data defines the default formatting that PowerShell uses when outputting the object. As we
mentioned before, PowerShell adds some properties to types, and these are defined in types.ps1XML.
As with the format, you must not change the original files but you can create your XML file and, using
the Update-TypeData Cmdlet, you can spot weld extra properties onto any type.

86804c21.indd 51286804c21.indd 512 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

513

 Input, Output, and Error Handling in PowerShell 21

Creating Custom Objects on Demand
You’ve seen in the previous section that new properties can be added to a type for the duration of a
session by using the Update-TypeData Cmdlet, and earlier you saw how properties could be added
to an object as it is processed using the Add-member Cmdlet. But there are other circumstances in
which you don’t have an object to start with, but it would be more useful to be able to deal with an
object than, for example, a block of XML.

The following example comes from the same Hyper-V management library used as an example in
Chapter 25 on WMI. Hyper-V provides a system called Key-Value Pair exchange, which allows the
host computer to tell its virtual machines information such as its own name, and the name by which
it refers to them. In return, the guest machines report back which operating system they are running,
and their fully qualified domain name. The WMI object that returns the Key value pairs has a prop-
erty that contains an array of blocks of XML. Each block looks something like the following:

<INSTANCE CLASSNAME=”Msvm_KvpExchangeDataItem”>
 <PROPERTY NAME=”Caption” PROPAGATED=”true” TYPE=”string”>
 </PROPERTY>
 <PROPERTY NAME=”Data” TYPE=”string”>
 <VALUE>UK-DC.Contoso.com</VALUE>
 </PROPERTY>
 <PROPERTY NAME=”Description” PROPAGATED=”true” TYPE=”string”>
 </PROPERTY>
 <PROPERTY NAME=”ElementName” PROPAGATED=”true”TYPE=”string”>
 </PROPERTY>
 <PROPERTY NAME=”Name” TYPE=”string”>
 <VALUE>FullyQualifiedDomainName</VALUE>
 </PROPERTY>
 <PROPERTY NAME=”Source” TYPE=”uint16”>
 <VALUE>2</VALUE>
</PROPERTY>
</INSTANCE>

The ideal would be to have a single object with properties for FullyQualifiedDomainName,
OSName, OSVersion, and so on, and this piece of script will produce just such an object:

$KVPComponent.GuestIntrinsicExchangeItems |
 forEach –begin { $KVPObj = New-Object -TypeName System.Object } `
 -process {([xml]$_).SelectNodes(“/INSTANCE/PROPERTY”) |
 forEach -process {if ($_.name -eq “Name”) {$propName=$_.value}
 if ($_.name -eq “Data”) {$Propdata=$_.value}}
 -end {Add-Member -inputObject $KvpObj –MemberType `
 NoteProperty -Name $PropName -Value $PropData}}
 -end {$KvpObj}

The script contains two loops, one inside the other. The outer loop uses one of the features that
PowerShell provides in the Foreach-Object Cmdlet, which was covered in Chapter 4. This offers

86804c21.indd 51386804c21.indd 513 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

514

 Part IV Windows PowerShell

you the capability to have three script blocks, named begin, process, and end. In this case, begin
creates a new object with a type of system.object, and end returns that object. In between, the
process script block adds properties to the object.

The inner loop doesn’t need a Begin block but has a process block, which looks for /Instance/
Property nodes within the XML and picks out the name and data ones, and stores them. When the
inner loop has looked at each of the property nodes it adds a property to the System.object. The
name of the property is the “name” /instance/property node and the value of the property is its
“data” /instance/property node. So when processing the preceding XML, the code in the inner
loop will pick out FullyQualifiedDomainName and UK-DC.Contoso.com. When all the XML
blocks have been processed, the output looks like this:

FullyQualifiedDomainName : UK-DC-WDS.Roadshow.com
OSName : Windows Server (R) 2008 Enterprise
OSVersion : 6.0.6001
CSDVersion : Service Pack 1
OSMajorVersion : 6
OSMinorVersion : 0
OSBuildNumber : 6001
OSPlatformId : 2
ServicePackMajor : 1
ServicePackMinor : 0
SuiteMask : 18
ProductType : 2
ProcessorArchitecture : 9

Techniques for Switching in Output
One of the common things needed in the output of a PowerShell command is to return different text
as a result of different codes returned by other commands—for example, ProductType or SuiteMask
in the previous example. PowerShell’s associative arrays—or hash tables—provide a useful way of
doing this.

It would be possible to expand the product type as follows:

If ($kvpobj.ProductType –eq 1) {“WorkStation”}
If ($kvpobj.ProductType-eq 2) {“Domain controller”}
If ($kvpobk.ProductType-eq 3) {“Server”}

This can be improved a little by using a switch statement:

switch ($kvpobj.ProductType {
 1 {“WorkStation”}
 2{“Domain controller”}

 3 {“Server}
}

86804c21.indd 51486804c21.indd 514 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

515

 Input, Output, and Error Handling in PowerShell 21

This can be reduced to a single line by using a hash table:

@{1=”WorkStation”;2=”Domain controller”;3=”Server”}.[int]$kvpobj
.ProductType

The hash table is enclosed in the @{} construction and defines each possible ProductType code as
a key, with the descriptions as the associated value. Using a .Key qualifier with a hash table returns
the value associated with that key, and in this case the key is held in the ProductType field.

An extension to this technique is to use a hash table to expand a bitmap mask construction. In these
cases, a number is built up using 1 to mean one thing, 2 to mean another, 4 another, 8, 16, and 32
further flags. This is the case with the suitemask property in the Hyper-V key/value pair example
shown previously. Each of these columns can be checked using the –band (binary AND) in mutltiple
if statements like this:

If ($kvpobj.SuiteMask –band 1){“ Small Business”}
If ($kvpobj.SuiteMask –band 2){“ Enterprise”}
If ($kvpobj.SuiteMask –band 4){“BackOffice”}
If ($kvpobj.SuiteMask –band 8){“Communications”}

But with many values to test, it becomes quite a long process.

Here is the same thing in one line using a hash table. One long line defines the hash table itself and
the second looks up the keys (1,2,4,8, and so on). If –band shows a match with a key, then the value
associated with that key is output:

$suites=@{1=”Small Business”; 2=”Enterprise”; 4=”BackOffice”;
8=”Communications”; 16=”Terminal”; 32=”Small Business Restricted”;
64=”Embedded NT”;128=”Data Center”; 256=”Single User”;
512=”Personal”;1024=”Blade”}
Foreach ($Key in $suites.keys){if ($KvpObj.suiteMask -band $key)
{$suites.$key}}

Additional Output Cmdlets
You have seen already that you can control what PowerShell outputs and you saw that PowerShell
has both implicit output—where output just goes to the console for want of being sent anywhere
else—and explicit output where you explicitly send output to a particular destination. You saw the
different pipes for success, error, debug, and warning, and that you could use Write-Host or pipe
information into Out-Host to explicitly display it on the console.

PowerShell has six built-in out- Cmdlets to output information received via the pipe, two useful
export- Cmdlets to save information in CSV or XML format, and a ConvertTo-HTML Cmdlet.

You have seen some of the Out- commands already, particularly Out-Host, which sends output
from a function or Cmdlet to the console rather than relying on implicit output. For short pieces of

86804c21.indd 51586804c21.indd 515 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

516

 Part IV Windows PowerShell

text in a function it is usually easier to use Write-Host, but when dealing with the output of a
function or another Cmdlet—such as Format-Table—it is easier to pipe input into Out-Host
which has a -paging switch that allows output to be displayed a page at a time.

PowerShell doesn’t have a More Cmdlet; by default, it creates a function for a More, which is a wrap-
per for Out-Host –paging. Because there is a tiny risk that More won’t exist on a machine, if you
don’t know where a script is going to be run, it is safest to use Out-Host in your own scripts.

You have also seen Out-Null, which serves the same purpose as > Nul in CMD—it throws away
output. PowerShell understands that Nul is a three-letter device name (such as Con, Prn, and the
LPT and COM names) and will only allow commands to be redirected to files, not devices. It uses
the four-letter Null for the name of its variable and in the in the out- command.

PowerShell also has Out-Default, which takes input and outputs it to wherever it was going to go
anyway. It doesn’t really serve any purpose at all. The following:

AnyCommand | out-Default

gives the same results as:

Anycommand

Out-File is functionally equivalent using the redirection operator >, except that it takes switches.
-NoClobber is common to Cmdlets, which write to files and says “Don’t over-write an existing file.”
-whatif and –Confirm report what the command would have done and confirm the action respec-
tively. And -Width truncates lines after a given number of characters. Out-File also takes a param-
eter to specify different kinds of text encoding (ANSI, Unicode, and so on).

One of the limitations of the Format-Table Cmdlet is that it is scaled to the width of the screen;
one of the uses for the Out-String Cmdlet is to specify an alternate width so you could use the fol-
lowing command to get a detailed directory that could be viewed in another program.

 dir | format-table -property * -auto | Out-String -Width 800 >
bigtable.txt

The last of the built-in Out- Cmdlets is Out-Printer. The ability to use > LPT1 to get a quick out-
put has long gone from windows scripting, and Out-Printer puts it back. Out-Printer will print
to the default printer or it can be given a –name parameter to switch to a different one. You can dis-
cover and change printer settings using WMI. (See Chapter 25 for more details.) There are many
extensions to the range of Out- commands. Some are provided in snap-ins for PowerShell but they
can be as simple as using aliases. PowerShell can pipe text into normal Windows programs such as
clip.exe. Some people like to define an alias to map clip to Out-Clipboard.

86804c21.indd 51686804c21.indd 516 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

517

 Input, Output, and Error Handling in PowerShell 21

Outputting in Specific File Formats
The ConvertTo-HTML Cmdlet can save an enormous amount of script because you can take a set of
objects and output them as an HTML table with one simple Cmdlet rather than using dozens of lines
of script to write each of the HTML tags around the data you need.

Typically the output of ConvertTo-HTML is sent to a file, either by using the > operator or by
using the Out-File Cmdlet. Like other commands you have seen, ConvertTo-HTML takes a
-properties switch. Without it, the Cmdlet will build an HMTL table with a column for every
property in the objects passed to it. So for example, you can take the processes you looked at
before and send them to ConvertTo-HTML and open the result.

get-process | where {$_.product -match “office”} | convertto-Html >
Process.htm
invoke-item process.htm

But this will give a very wide table because every property of the processes is included. You could go
back to the earlier example and pass the ConvertTo-HTML Cmdlet the same -Property parameter
that was used for format table.

Get-Process| where-object {$_.product -match “Office”}| convertTO-
Html –property Name, @{Label=”Total CPU Time”; expression={$_.cpu}},@
{Label=”Virtual memory”; expression={$_.VM} } , @{expression={
($_.cpu/((get-date)-$_.StartTime).totalSeconds).tostring(“P3”)};
Label=”Lifetime CPU %” }

The output of ConvertTo-HTML is an array of strings containing an HTML table. The Cmdlet takes
-Title, -head, and –Body switches to allow the page to be given a title and additional content to be
added as the head section or at the start of the body section. The strings in the array can be manipu-
lated like any others; for example, everything in the table can be right aligned with the following code:

ConvertTo-Html | foreach-object ($_.replace(“<td>”,
”<td alight=right>”)

In addition to producing formatted output, the Export- Cmdlets allow PowerShell to produce text
output that is designed to be read by another program. Export-CSV creates a CSV file.

First, it outputs the type of the first object (prefixed with a # sign). This allows PowerShell to import
from the file and create the correct kind of object, but it can confuse other importers so it can be
disabled with a –NoTypeInformation switch.

Next, PowerShell examines the properties of the first item, and adds a header row to the data, just
as it would if formatting a table or converting to HTML. Next it outputs those properties for each of
the objects it was passed. If the information passed to the command contains more than one type

86804c21.indd 51786804c21.indd 517 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

518

 Part IV Windows PowerShell

of data—for example, DIR | export-csv “My-Directory.csv” will export both File objects
and directory objects—only one type and one header row are written and these are based on the
first object. For each subsequent object, PowerShell attempts to output properties matching those
found on the first one. With the output of DIR this is not a major problem as a lot of properties are
common to both FileInfo and DirectoryInfo objects. In other cases, it may cause blank or
nonsense output.

As is normal with CSV, special techniques are needed for text items. As the online help explains:

“Property values that contain commas, double quotes, leading or trailing spaces, or line
breaks are put in double quotes before being written to the CSV fi le. Any double quotes con-
tained in a property are redoubled to indicate that they are literal.”

Neither of the Export- Cmdlets take the -property switch because they are designed to take infor-
mation and output it in a way that can be imported at a later stage, so any formatting or custom field
creation needs to be done earlier in the pipeline.

The second Export- Cmdlet is Export-CliXML and this exports to an XML representation, which
can be re-imported later. Unlike a CSV file, which is a flat table, an XML document can contain lev-
els of hierarchy, so Export-CliXML has a –Depth switch, which will control the expansion of child
objects when they are exported. If this isn’t specified, Export-CliXML will look at the settings in
types.psxml to decide the depth for each object.

For example, without specifying a depth switch, DIR | Export-CliXML will export an XML file
that simply details the files and subdirectories. With a depth switch these are each of the properties
might be expanded, so the XML file contains the properties for each item’s parent, and drive that it
is stored on and so on.

Every Export Has a Corresponding Import
Everything in this chapter so far has concentrated on output, which shouldn’t be a surprise as a lot
of work in PowerShell is getting information from somewhere and displaying it. The other side of the
coin—input—tends to be a smaller part of the story.

First of all, the Export- Cmdlets you have just seen have companion Import- Cmdlets, so infor-
mation exported with Export-CliXML can be imported directly with import-CliXML, and the
result will be a facsimile of the original objects. For example, the following:

$myDir = Dir $env:userProfile –recurse

will take a snapshot of the state of the files and directories in the users home folder, and these can be
compared with the state of the same folders as they stand at a later time. However, if PowerShell is
closed, the variable will be lost. By using:

Dir $env:userProfile –recurse | export-CliXML –Path MyDir.xml

86804c21.indd 51886804c21.indd 518 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

519

 Input, Output, and Error Handling in PowerShell 21

the information is saved and when it is reloaded PowerShell rebuilds the same FileInfo and
DirectoryInfo objects—not some text representation of them. The depth specified for the
export will determine if some of the associated objects are present or not.

The two -CliXML Cmdlets use a specific schema designed to allow objects to be exported in this
way, but it is not designed for handling generic XML.

Handling XML in PowerShell is reasonably simple, thanks to an [XML] type accelerator. This allows
an XML file to be read and processed into an XMLDocument object like this:

$x=[xml](get-content C:\Windows\System32\WindowsPowerShell\v1.0\types.
ps1xml)

The result is a .NET system.xml.XmlDocument object with all the associated properties and
methods.

Processing XML is a subject for a book in its own right, so here we will just make two quick obser-
vations. First, an XMLDocument object has a normal object hierarchy, so you can refer to $x.Types
.Type to get an object for each of the type nodes in the file. Second, you can also use XPath notation
to select nodes, using one of the methods built into the XMLDocument object. So you can write:

$x.selectNodes(“/Types/Type [Name=’System.Array’]”)

and this will select type nodes inside the root Types node which contain a name set to System.Array.

Just as Export-CliXML has a companion, so does Export-CSV. Because a wide range of tools can
save or export in CSV format there are many applications for CSV data from provisioning services
for users based on an export from an HR system through to Geo-tagging photographs using the log
from a GPS device. And, of course, using a spreadsheet package such as Microsoft Excel makes it
easy to prepare data for a script.

As we mentioned before, by default the first row of a CSV file created with the Export-CSV Cmdlet
is the type of the object being exported. On import, if there is no type found in the first line, then
PowerShell creates custom management objects for each row of data. Import CSV is dependent on
having a header row at the start of the CSV file, which sets the property names for the custom object.
You’ll see shortly how to deal with a file that does not have a header row.

Any text file can be read using the Get-Content Cmdlet, and this returns an array of text strings.
In fact, Get-Content can also be used with an –encoding switch, and this allows different kinds
of text to be selected or for the file to be flagged as a binary file. The Type and cat commands are
aliases for Get-Content, although many people find it is somehow more natural to use Type
Filename as a command to see the contents of a file at the command prompt and Get-Content
to read it in to a variable. The cat command in UNIX is short for concatenate and Get-Content
can be told to read multiple files—and concatenate their output—in three different ways:

Dir *.txt -recurse | get-Content
Get-Content *.txt
Get-Content gps.csv,Sdm.csv

86804c21.indd 51986804c21.indd 519 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

520

 Part IV Windows PowerShell

Usually, PowerShell will be asked to do some other processing with the file so the result of
Get-Content will either be assigned to a variable or piped into another command. For example, if
the file comes from a GPS logger it might be piped into the Where-Object Cmdlet to select only the
lines that are tagged as the “Recommend minimum Data”—which begin $GPRMC and drop all the
other lines of diagnostic information.

dir *.gps | get-content | where {$_ -like ‘$GPRM*’}

Get-Content returns an array of strings and this has a useful side effect. This example uses GPS
data deliberately because although the rows of data are comma-separated, the file does not have a
header row. But it is possible to add one by concatenating two string arrays together, so the following
code will add a header row to the data:

@(“Type,Time,status,latitude,NS,longitude,EW,Speed,bearing,Date,blank,ch
ecksum”) + (dir *.gps | get-content | where {$_ -like ‘$GPRM*’} > Temp.CSV

Now that the data has been written to a file, you can import it with Import-CSV—which will only
read from files, and won’t take input from the pipe (at least in PowerShell V1). Feeding the results into
Get-Member shows the names that were used in the header are now properties of a custom object.

PS C:\Users\jamesone\Documents\windowsPowershell> import-csv temp.csv | GM
 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
bearing NoteProperty System.String bearing=73.06
blank NoteProperty System.String blank=
checksum NoteProperty System.String checksum=*2F
Date NoteProperty System.String Date=030708
EW NoteProperty System.String EW=W
latitude NoteProperty System.String latitude=5325.5023
longitude NoteProperty System.String longitude=00255.0864
NS NoteProperty System.String NS=N
Speed NoteProperty System.String Speed=4.869933
status NoteProperty System.String status=A
Time NoteProperty System.String Time=070445.647
Type NoteProperty System.String Type=$GPRMC

More on Selecting Text
It is often convenient to use Get-Content | where either at the command prompt (perhaps
shortening Get-Content to one of its aliases ,GC, Type or Cat) or in a script. But there is another
Cmdlet that is useful for getting just the matching strings: Select-String. This is a mixture of

86804c21.indd 52086804c21.indd 520 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

521

 Input, Output, and Error Handling in PowerShell 21

the DOS find command and the UNIX grep command: unlike these two it doesn’t return simple
strings, but PowerShell objects that contain the line number, file name, and the line of text. The
drawback to using Select-String is that its output is not the matching text, and the text itself
needs to be referenced using the .line property. But it has a number of benefits—not least that its
default output shows file names and line numbers when looking for text.

Used at the command line, Select-String gives a quick way to answer questions such as “Which of
these files contain this text,” and even “Which ones have lots of occurrences of the text I’m seeking.”

select-string *.ps1 -Pattern “Get-WmiObject” -SimpleMatch | group
filename

Notice the use of –SimpleMatch—normally the pattern is a regular expression that allows much
more sophisticated searching, but at the price of needing to learn a new language for expressing
search terms. Chapter 30 has a brief guide to using regular expressions.

Sometimes it is useful to output the first few lines of a file, so the previous example could be modi-
fied to show the first few lines at the start of a script by calling Get-Content and specifying the
number of lines it should read with the -TotalCount parameter.

select-string *.ps1 -Pattern “Get-WmiObject” -SimpleMatch | group
filename | foreach-object {$_.name; get-content $_.name –totalcount 5}

Using –TotalCount allows you to specify the first n lines. You can also use the Select-Object
Cmdlet to select the first or last n lines. It is more efficient to read only the first five lines than to use
Select-Object to throw the others away, but Select-Object is useful if the notes that explain a
file are placed at the end.

select-string *.ps1 -Pattern “Get-WmiObject” -SimpleMatch | group
filename | foreach-object {$_.name; get-content $_.name | select-object
–last 5}

And these two can be combined. If you know you want lines 95 to 99, you can tell Get-Content to
read the first 99 lines with –TotalCount 99 and then select the last five of those.

Because PowerShell text strings are .NET string objects, they have all the methods that .NET pro-
vides for strings, which makes it very easy to select text within a string, or replace parts of a string,
or split strings. For example, if a file just contains a list of file paths, you can output the extensions
by splitting each line at any . characters and outputting the last one.

Get-content fileList.txt | foreach-object {$_.split(“.”)[-1]}

Or you can output the drive letter by splitting at any colon (:) characters and outputting the first one.

Get-content fileList.txt | foreach-object {$_.split(“:”)[0]}

86804c21.indd 52186804c21.indd 521 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

522

 Part IV Windows PowerShell

User Input
The last kind of input to consider is that which comes from the user. As was pointed out earlier, it is
better to allow the user to pass a parameter as a string but sometimes you need or want the user to
input something—for example, the user may run a command that presents a set of choices based on
the state of the system and then pipes their selection into another command.

For this, PowerShell provides the Read-Host Cmdlet. Just as Write-Host writes to the console in
its role as “standard output” so Read-Host reads from the console in the role of “standard input” .

Read-Host takes only two possible parameters: the “prompt” text and a switch, –asSecureString,
to say “This is a password; display stars and store the result as a secure string.” Secure strings can
be passed in places where credentials are expected.

The result that comes back from Read-Host is a string, and if multiple inputs are required the
string can be split using the Split() method you saw previously.

Summary
In this chapter, you have had a tour of a lot of different parts of PowerShell covering everything from
how you can take an input object and convert it to a well-formatted table through how to take input
from the user. On the way, you have seen how simple it is for PowerShell to read from and process
files and how it can sort, group, and calculate properties. You should be able to see the flexibility
PowerShell offers—indeed sometimes it seems to give you multiple ways to accomplish a task with-
out a clear-cut way of picking the best one. What should have become clear is how PowerShell gives
you simple building blocks that can be piped together to great effect with minimal amounts of pro-
gramming required.

86804c21.indd 52286804c21.indd 522 1/21/09 1:29:14 PM1/21/09 1:29:14 PM

523

Working with files is one of the most basic roles that a shell must
fill. In this chapter you’ll see how PowerShell does that, but also
how it uses providers to make the same commands valid file-

systems, the registry and more.

Using PSDrives, Accessing the
File System, Mapping Drives
First, a little history …

Back in the 1970s, the CP/M operating system used a convention of A: for the
first floppy disk drive and B: for the second, and this was duplicated in the
first version of MS-DOS. When support for hard disks was needed, DOS
2.0 named the first hard disk volume C:, and added hierarchical directories
in a similar style to UNIX ones—the two most obvious differences being,
first, that UNIX uses the forward slash (/) to separate directories on the path
whereas Microsoft operating systems use the backward slash (\), and sec-
ond, that UNIX mounts additional disks into a hierarchy with a single root,
where traditionally each volume in a Microsoft operating system has a sepa-
rate root. In fact, from the early days of DOS, Microsoft operating systems
have featured the command SUBST, which allows a long path to be pre-
sented as its own drive letter.

Working with Files and the
Registry in PowerShell

IN THIS CHAPTER
Introducing the
PowerShell providers

Commands for files and
other items supported by
the providers

Exploring the Registry with file
system–style commands

86804c22.indd 52386804c22.indd 523 1/21/09 1:29:25 PM1/21/09 1:29:25 PM

524

 Part IV Windows PowerShell

Current Microsoft operating systems don’t require a drive letter per disk. Like UNIX, they can mount
a volume into a directory on an existing file system, but in most cases users expect each disk volume
to have its own drive letter.

Microsoft’s early networking products introduced “Universal Naming Convention” (UNC) names
and a set of NET commands, such as NET USE and NET SHARE, which are still valid 20 years later.
Connections to shared files on a network server are typically presented using drive letters.

Anyone who has worked with a Microsoft command processor will expect to have access to drives in
exactly the same way in PowerShell. PowerShell takes the idea of drives a little further with providers.

Providers allow things that would not normally look like a drive to be presented as one. The built-in
snap-ins have the following providers (see Table 22-1), As well as a provider for the file systems,
which provides the traditional A: , C: and so on.

TABLE 22-1

PowerShell Providers
Provider Name Snap-In Provides Access To

Alias Microsoft.PowerShell.Core PowerShell Aliases

Function Microsoft.PowerShell.Core PowerShell Functions

Variable Microsoft.PowerShell.Core PowerShell Variables

Environment Microsoft.PowerShell.Core System Environment Variables

Registry Microsoft.PowerShell.Core System Registry

Certificate Microsoft.PowerShell.Core The System Certificate Store

Additional snap-ins can add providers. For example, the PowerShell Community Extensions
(www.codeplex.com/pscx) has providers for Internet Explorer’s Common RSS Feed store, the
.NET Global Assembly Cache, and Directory Services.

So you can use commands such as the following:

DIR Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
DIR Microsoft.PowerShell.Core\FileSystem::c:\

Or, if you have the Community Extensions installed, you can use the following:

DIR PSCX\FeedStore::

This syntax is painfully longwinded—although as you will see in a moment, you may want to use it
occasionally.

86804c22.indd 52486804c22.indd 524 1/21/09 1:29:25 PM1/21/09 1:29:25 PM

525

 Working with Files and the Registry in PowerShell 22

PowerShell defines drives and you can see what has been defined with the Get-PSDrive command.
Typically, it might show something like this:

Name Provider Root
---- -------- ----
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
Function Function
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
HKUSERS Registry HKEY_USERS
Variable Variable

Get-PSDrive has companion Cmdlets, Remove-PSDrive and New-PSDrive.

You can remove all the non–file system drives, which PowerShell defines for you. For example:

Remove-PSDrive -PSProvider Registry -name *

will remove all the drives created by the registry provider and

Remove-PSDrive FUNCTION

will remove the Function drive. You can put it back with

New-PSdrive –PSProvider Function –name Function –Root \

If you want to create a drive for your home directory, you can, like this:

New-PSdrive –PSProvider FileSystem –name Home `
–Root C:\users\administrator

The flat providers (ENV, ALIAS, and FUNCTION) can be treated like variable scopes. For example,
$Env:UserProfile will return the UserProfile variable (equivalent to %UserProfile% in
CMD.EXE, or a batch file). So the previous command could have been written as:

New-PSdrive –PSProvider FileSystem –name Home `
–Root $env:UserProfile

Note that the trailing colon is not included when specifying the name of the drive to be created,
although it is used when the drive is referenced after creation.

As mentioned, it is not necessary to add a drive to access something. For example, to determine
whether PowerShell is running with elevated privileges on Windows Vista or Windows Server 2008,
you can test to see if accessing part of the Registry that is only available to administrators generates
an error.

86804c22.indd 52586804c22.indd 525 1/21/09 1:29:25 PM1/21/09 1:29:25 PM

526

 Part IV Windows PowerShell

Rather than creating a drive for the HKEYUSERS branch and then deleting it, you can use the
following:

Dir Microsoft.PowerShell.Core\Registry::HKEY_USERS\S-1-5-20

You’ll see later how to test for errors and to suppress error messages.

Changing (setting) locations
Anyone who has used CMD.EXE or COMMAND.COM knows that entering D: changes the cur-
rent drive to D:, and CD D: will not change the current location to drive D:, but will tell you
which directory on D: is the current one; CD D:\STUFF changes the active directory on D: but
doesn’t make D: the active drive.

PowerShell has a more generic Set-Location Cmdlet, which combines both of these tasks. It is
also aliased to CD, ChDir, and SL. Set-Location is used to change drives as well. However, rather
than forcing those who have grown up with the other shells to change their ways, PowerShell has
functions A:, B:, C:, and so on all the way up to Z:. You can see the content of one of these with the
command:

$Function:D:

This tells you that the body of the function is:

Set-Location D:

If you have a look at the functions: drive, you’ll see there are no functions for changing to the
other predefined drives, although there is nothing to stop you from adding commands for ENV:,
Variable:, and the others listed and any drives you create.

In addition to Set-Location, PowerShell has a Get-Location Cmdlet, which is aliased to PWD
(print working directory), the UNIX version of the same thing.

Getting child items (a.k.a. getting a directory)
and testing paths
Although PowerShell supports the DIR and PS commands known by users of earlier Microsoft and
UNIX shells, these are actually aliases for the Get-ChildItem Cmdlet.

Get-ChildItem returns the contents of a directory or, with the –recurse switch, a directory and
all its subdirectories. Using the DIR alias you can enter the following commands:

DIR
DIR *.JPG
DIR Photos

86804c22.indd 52686804c22.indd 526 1/21/09 1:29:25 PM1/21/09 1:29:25 PM

527

 Working with Files and the Registry in PowerShell 22

All three commands work as they would in CMD.EXE or COMMAND.COM. The first returns the
contents of the current directory. The second returns files with a .jpg extension, and the third returns
files in a Photos subdirectory. Where the older shells have a /S switch for subdirectories, PowerShell
uses –recurse because it needs only enough to tell it apart from the other switches; you can use
this command:

Dir –r

as the equivalent of the command dir /s in CMD.EXE.

However, from this point the behavior of Get-ChildItem, and its aliases DIR and LS, is different
from what you would experience in CMD.EXE. For example, in PowerShell, you can type:

Dir ‘May photos’ , ‘June photos’

and get the contents of two directories, or you can type:

Dir ‘*.ps1’, ‘*.txt’

to get PowerShell script files and text files in the current directory. If the first Parameter in the com-
mand line is not named, PowerShell treats it as the –Path parameter, if multiple items are supplied
separated by commas they are treated as one parameter.

When the –recurse switch is used, the Cmdlet treats it as “recurse through these directories” so
the following two commands work differently from what you might have been used to. The fol-
lowing code:

Dir *Photos –recurse

will take the directories Jan Photos, Feb Photos, Mar Photos, Apr Photos, and so on and
recurse through their contents and subdirectories. This command:

Dir *.jpg –recurse

won’t return anything—unlike dir *.jpg /s in CMD.EXE. If you want to include .jpg files only,
the command is:

Dir –recurse –include *.jpg

And you can combine a collection of paths to be recursed and then filter the results.

Dir *Photos –recurse –include *.jpg,*.Jpeg

-include allows a list of values, and so does its companion, the –exclude switch. So you can
build up a command like this:

Dir *Photos –recurse –include *.jpg,*.Jpeg –exclude _IMG*

86804c22.indd 52786804c22.indd 527 1/21/09 1:29:25 PM1/21/09 1:29:25 PM

528

 Part IV Windows PowerShell

One important thing to note is that include and exclude work only if DIR is told to fetch some-
thing first, so:

Dir –include *.jpg

won’t return anything.

You can use the Where-Object Cmdlet to filter the items returned. However all the objects will be
returned, and Where-Object will discarded some, which is less efficient than using -Include and
-Exclude switches; so you should try to use these where possible. But using Where-Object gives
greater flexibility because it can work with complex conditions on any the properties of the object.
The command:

Dir | Get-Member

will show the properties of FileInfo and DirectoryInfo objects to see what properties you can
use in Where-Object. For example, the length property holds the file size so you can filter to files
smaller than 1MB in size with the following command.

Dir | Where-Object {$_.length –lt 1mb}

The test in Where-Object is a PowerShell code block that can do pretty much anything provided it
returns true or false. For example:

Dir | Where-Object {test-path (“Photos\” + $_.name)}

will return those files in the current directory, which are also in the Photos subfolder.

Test-Path takes the -include and -exclude switches in the same way as dir, and it tests to
see if there is something that matches the specified path. An easy way to think of it is that if Dir
<something> would return anything, Test-Path <something> will return true.

Test-path can also test to see if an item is a container or a leaf node, and it can test to see if the
path is valid, even if the item does not exist.

Other path Cmdlets worth noting:

Resolve-Path■ converts a partial path to a fully qualified one.

Split-Path■ cuts the path at the last \ character and returns the directory part by default;
with the other switches it can return the file part or the drive part.

Join-Path■ links the directory and file part, and unlike simply joining the two strings it
handles the common problem of deciding if a \ character is present at the end of the path.

Like other Cmdlets, they can be used with multiple files, but the following example is designed for
processing a single file. It is from a function that saves an image of a running virtual machine as a

86804c22.indd 52886804c22.indd 528 1/21/09 1:29:25 PM1/21/09 1:29:25 PM

529

 Working with Files and the Registry in PowerShell 22

JPEG file. It takes a parameter for the JPEG path; the .NET assemblies for handling bitmaps require
a fully qualified path to be specified but the function needs to cope with several possibilities:

No path is specified at all.■

Multiple virtual machines are piped into the function, so the function needs to give each ■

JPEG a name based on the name of the VM (its element name property).

A file name is specified without a path.■

A relative path is specified—for example ■ IMAGES instead of
C:\users\administrator\images.

Folder names might be written with a trailing ■ \ or without it.

So the code in the function ends up as follows:

if ($JpegPath -eq $null) {$JpegPath = $pwd}
if (test-path $JpegPath -pathtype container) {$JpegPath =`
 join-Path $JpegPath ($VMSettings.elementName + “.JPG”) }
$Folder = split-path $JpegPath
if ($folder -eq “”) {$JpegPath = join-Path $pwd $JpegPath }
else {$jpegpath=$jpegpath.Replace($Folder , (resolve-path `
 $folder)) }

The first line of the preceding code says that if no path is specified, make the path the current
directory.

The second says that if the path is a directory, add the Virtual Machine’s element name and .JPG to
the path. The Join-Path Cmdlet handles the directory being written with or without the trailing \.

If just a file was specified, then neither of the previous lines will have done anything. The next line
splits the directory part of the path from the file name, and if there is no directory part, the current
directory is added. If there is a directory part, then it is resolved and the unresolved name replaced
with a fully qualified one. Resolve-Path won’t expand a path to a file that doesn’t exist yet—hence
the trick of replacing the unresolved directory with the resolved one.

Copying, deleting and renaming files
As you may have come to expect by now, PowerShell has its own Cmdlets for copying, deleting, and
renaming files or other objects made visible through providers.

The Copy-Item Cmdlet has aliases cp (like UNIX) and Copy (like the Microsoft shells).

Remove-Item deletes both files and directories and has aliases rm, rmdir, del, erase, and rd.

Move-Item combines Copy and Remove and has the alias move.

86804c22.indd 52986804c22.indd 529 1/21/09 1:29:25 PM1/21/09 1:29:25 PM

530

 Part IV Windows PowerShell

And finally, Rename-Item has an alias, ren.

Through their aliases, these Cmdlets can be used in a very similar way to their counterparts in CMD.

So you can use the following:

Copy *.jpg photos
Ren IMG_1234.JPG DIVE1234.JPG
Del IMG_1234.JPG
Rd OldData

Because PowerShell tries to be consistent, the -recurse, -include, and -exclude switches work
with Copy-Item and Remove-Item in the same way as they do with Get-ChildItem, and all three
support -force to allow them to handle read-only files. They also support -whatif and -confirm
switches, which are implemented by many Cmdlets. -whatif shows what the command would do
and -confirm asks for confirmation before carrying it out.

One area where these Cmdlets differ from their CMD.EXE equivalents is in the use of the pipe.
Users of CMD.EXE may well have sent the output of DIR to MORE or to SORT or FIND. The idea of
piping it to delete, rename, or copy might seem a bit alien. The previous section showed a
command:

DIR | Where-Object {test-path (“Photos\” + $_.name)}

which will return the files in the current directory that are also in the Photos subdirectory. Because
those files are duplicates, you can delete them with the following:

DIR | Where-Object {test-path (“Photos\” + $_.name)} | DEL

Remember that Get-ChildItem (or its alias Dir) returns file objects; if you don’t tell PowerShell to
process them, it outputs them to the screen. Piping it into Remove-Item (or its aliases) will delete
the files. In this case, Where-Object just filters out some of the objects you don’t want to process.

One place where usage differs between CMD.EXE and PowerShell is with the rename command.
In CMD, you can issue the command Ren *.JPEG *.JPG, and this will rename all the files with
a .JPEG extension to .JPG. This doesn’t work in PowerShell: Rename-Item takes items individu-
ally and renames them. It is possible to perform complex rename operations by piping files into
Rename-Item and setting the name to something based on the name of the file object. For example:

dir _igp* | rename-item -newname {$_.name.replace(“_IGP”,”Party”) }

Creating and deleting directories
As you have just seen, PowerShell does not differentiate between deleting a file and removing a
directory: Del and RD are both aliased to Remove-Item. If you use Remove-Item, or one of its
aliases and specify a non-empty directory, without using the -recurse switch, then PowerShell
will prompt to ask if you want to delete the directory and all its contents.

86804c22.indd 53086804c22.indd 530 1/21/09 1:29:25 PM1/21/09 1:29:25 PM

531

 Working with Files and the Registry in PowerShell 22

PowerShell’s New-Item Cmdlet needs to be told explicitly to create a directory, so there is an MD
function rather than an alias.

File properties and attributes
As you saw in the section on getting child items, file objects in PowerShell have properties; and
there are several ways to access them—one is to get the file with Get-Item or Get-ChildItem.
This is usually the easiest if you need to examine the properties of several items. To get the proper-
ties of a single item, PowerShell provides the Get-ItemProperty Cmdlet.

Viewing and setting ACL permissions
PowerShell has Get-Acl and Set-Acl Cmdlets for manipulating access control lists.

Get-Acl returns a .NET, System.Security.AccessControl.FileSecurity or
System.Security.AccessControl.DirectorySecurity object when used against the files
system. (There is a System.Security.AccessControl.RegistrySecurity object, which is
returned if it is run against the registry). Set-Acl takes one of these objects and applies it. Because
PowerShell can manipulate .NET objects, it is possible to build the security object from scratch;
however, the most common use of Set-Acl is to copy an ACL from one place to another.

One unusual thing about Set-Acl is that it accepts either the file(s) to be ACL’d or the security
object from the pipe. PowerShell’s online help gives the following examples (the first pipes the ACL
into Set-Acl, and the second pipes in the objects to be permissioned):

get-acl c:\dog.txt | set-acl -path C:\cat.txt

and

$newACL = get-acl file0.txt
get-childitem c:\temp -recurse -include *.txt -force | set-acl
-aclobject $newacl

In many cases, it will be easier to use the CACLS or The New iCACLS command-line utility to set
ACLs as one would from CMD.

The name GET-Acl is slightly misleading as it returns all the security information for an object, not
just the Access Control List, as you can see:

> Get-Acl . | Format-List
Path : Microsoft.PowerShell.Core\FileSystem::C:\Users\james\
 Documents\windowsPowershell
Owner : LONDON\james
Group : LONDON\Domain Users
Access : LONDON\james Allow FullControl
 LONDON\james Allow 268435456
 NT AUTHORITY\SYSTEM Allow FullControl

86804c22.indd 53186804c22.indd 531 1/21/09 1:29:25 PM1/21/09 1:29:25 PM

532

 Part IV Windows PowerShell

 NT AUTHORITY\SYSTEM Allow 268435456
 BUILTIN\Administrators Allow FullControl
 BUILTIN\Administrators Allow 268435456
Audit :
Sddl : O:S-1-5-21-1721254763-462695806-1538882281-
 46340G:DUD:(A;ID;FA;;;S-1-5-21-1721254763-462695806-
 1538882281-46340)(A;OICIIOID;GA;;;S-1-5-21-1721254763-
 462695806-1538882281-46340)(A;ID;FA;;;SY)(A;OICIIOID;GA;;;SY)
 (A;ID;FA;;;BA)(A;OICIIOID;GA;;;BA)

The access entry is itself made up of File System Access rule objects (or Registry Access rule objects),
and you can explore the rules by sending them to Format-list,

> (get-acl .)
 .access[0] | format-list

FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : EUROPE\jamesone
IsInherited : True
InheritanceFlags : None
PropagationFlags : None

You can see that PowerShell expands the flags to meaningful text—for example, displaying Allow
or Deny instead of 0 or 1. It has a textual representation of the more common rights, such as Full
Control. In the preceding example, non-standard combinations are parsed as follows:

TABLE 22-2

Rights, Codes and their Meanings
Value Meaning

1 ReadData/ListDirectory

2 WriteData/CreateFiles

4 AppendData/CreateDirectories

8 ReadExtendedAttributes

16 WriteExtendedAttributes

32 ExecuteFile/TraverseDirectory

64 DeleteSubdirectoriesAndFiles

128 ReadAttributes

256 WriteAttributes

131072 ReadPermissions

86804c22.indd 53286804c22.indd 532 1/21/09 1:29:26 PM1/21/09 1:29:26 PM

533

 Working with Files and the Registry in PowerShell 22

Value Meaning

262144 ChangePermissions

524288 TakeOwnership

1048576 Synchronize

Working with file items: reading their content, creating
and adding to them
In CMD there is a TYPE command that types the contents of a file to the screen. In UNIX, the cat
command can be used to do the same. PowerShell has a Cmdlet, Get-Content, which has aliases of
Type and Cat.

Get-Content is closer to the UNIX cat, in that it can concatenate the content of multiple files. For
example, the following:

Get-Content blog-utils.ps1, GPS.ps1

returns the contents of two PowerShell scripts concatenated.

Get-Content returns an array of text strings that can be piped into something else, so the follow-
ing command finds lines in PowerShell scripts that contain the term webclient

Get-Content *.ps1 | Where-Object { $_ -like “*webclient*” }

Because the content returned is an array of strings, you can use normal array notation to return sub-
sets of the file; for example:

(get-content myFile.Txt)[0]
(get-content myFile.Txt)[1,2,7]
(get-content myFile.Txt)[0..19]

Get-Content has companions: Add-Content and Set-Content.

Add-Content appends content to the end of an existing file; for example:

Add-content week.log (get-content Monday.log,Tuesday.log,
 Wednesday.log,Thursday.log,Friday.log)

Add-content *.PS1 “# Note: this is a sample use at your own risk”

The first appears no different from using the >> “append results to a file” redirection operator, which
is used in other shells and supported in PowerShell. The second shows that Add-Content is more
flexible and can add to multiple files. The same is true of Set-Content; used with a single file, it is

86804c22.indd 53386804c22.indd 533 1/21/09 1:29:26 PM1/21/09 1:29:26 PM

534

 Part IV Windows PowerShell

no different from the > “create a file with results” redirection operator but it, too, can work with
multiple files. For example:

Set-Content *day.log (“Log Reset “ + (get-date))

One other thing worth noting is that PowerShell has a shorthand syntax for getting the content of a
single file—${path}—which treats the file pointed to by path as if it were a variable. This can be
useful—but the path is fixed as with a variable name—so it is less useful when the name of the file
isn’t known in advance.

Selecting strings and working with text data
It is often necessary to process a text file in some way and there are two basic common patterns—
either to filter the lines in the text or to run a command against each line—which might return a
modified version of the line.

In addition to selecting the lines in a file by knowing their position, PowerShell allows lines to be fil-
tered using the Where-Object Cmdlet, which you saw earlier for filtering child items in a folder.
One of the most important things to remember is that the expressions used in Where-Object use
operators that begin with a minus sign and are written as text rather than symbols, so you use:

-eq For “Is equal to,” not =

-ge For “Is greater than or equal to,” not >=

-gt For “Is greater than,” not >

-lt For “Is less than,” not <

-le For “Is less than or equal to,” not <=

-ne For “Is not equal to,” not <>

-and Not and

-or Not or

It is a fairly common mistake to test for something in a where or if statement with the equal (=)
sign, which assigns a value rather than testing for it. PowerShell will process this as a valid com-
mand—it just won’t give the desired results.

The following command returns all the non-blank lines in a file:

Get-Content MyScript.ps1 | where-object {$_ -ne “”}

PowerShell has –like and –Contains operators. Contains is sometimes incorrectly used; it is not
like the contains predicate in the free text searches of some SQL dialects. Contains returns True
if one member of an array matches the argument. For example:

> “boo” -contains “o”
False
> “b”,”o”,”o” -contains “o”
True

86804c22.indd 53486804c22.indd 534 1/21/09 1:29:26 PM1/21/09 1:29:26 PM

535

 Working with Files and the Registry in PowerShell 22

-Like works in a similar way to the Like predicate in SQL: the asterisk (*) is used for “anything”
and the question mark (?) is used for a single character. For example:

> “boo” -like “b*”
True
> “boo” -like “b”
False
> “boo” -like “b??”
True
> “boo” -like “b?”
False
> “b”,”o”,”o” -like “b*”
b

Notice in the last example, the -like operator returns the matching members of the array.

PowerShell is able to process regular expressions with the –match operator. Regular expressions are
both powerful and complex and we will not discuss them in detail here. But testing for lines which
either begin or end with a given substring are operations which are so commonly needed that it is
worth looking at them. We might use the form:

$_.substring(0,9) -eq “# example”

However, it can be a chore to count the characters and if you know that ^ means “starting” and $
means “ending” in a regular expression you can write:

$_ -match “^# example”

-Like, -Contains, and -Match all have negative versions (-NotLike, -NotContains, and
–NotMatch) so the preceding example could also be used to filter out lines that begin with # (com-
ments), like this:

Get-Content MyScript.ps1 | Where-Object {($_ -notmatch “^#”)
 -and ($_ -ne “”)}

This could be piped into the Measure-object Cmdlet to find the number of lines of “real” script in
the file, as follows:

Get-Content MyScript.ps1 | Where-Object {($_ -notmatch “^#”)
 -and ($_ -ne “”)} | measure-object –count

Finally, when handling strings it is useful to know if the comparisons are case-sensitive or not.
PowerShell normally treats strings in a case-insensitive way, but all the operators listed in this sec-
tion can be prefixed with a C for case-sensitive, or an I to make them explicitly case-Insensitive.

Typically, when processing a file, it’s necessary to do something with each line of it and you can do
this with the Foreach-Object command. A simple example would be to look at each line and replace
one piece of text with another; because strings in PowerShell are .NET string objects, they have all the

86804c22.indd 53586804c22.indd 535 1/21/09 1:29:26 PM1/21/09 1:29:26 PM

536

 Part IV Windows PowerShell

properties and methods you’d find in a .NET language, including replace() (which is case-sensitive);
for example, this command will replace all instances of a variable $file with $fileName:

Get-Content MyScript.ps1 |ForEach-Object {$_.replace(“$file”,
“$FileName”)

Parsing text
As was just mentioned, PowerShell strings are .NET strings and they have a split function. For
example, if a string is separated by commas, it can be converted into an array of strings;

Get-Content GPS-Data.CSV | ForEach-Object {$_.split(“,”)}

This will turn the content from an array of text strings to an array of arrays of text strings.

However, for comma-separated files with a header row, it is easier to use the Import-CSV Cmdlet. If
the file doesn’t have a header file, then it is quite easy to add one: the result of Get-Content is an
array of strings. A new array can be defined with the syntax @(Element0,Element1,Element2),
so a single element array can be defined containing the first row line of the file and joined to the rest
of the file; the header row can be added to a GPS log file like this:

@(“Type,Time,status,latitude,NS,longitude,EW,Speed,bearing,Date,
blank,checksum”)+ (Get-Content GPS.LOG) > Gps-Data.CSV

The critical thing when importing a CSV file, instead of parsing the raw text, is that its fields become
properties of an array of objects.

> Import-Csv Gps-Data.CSV | Get-Member
 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
bearing NoteProperty System.String bearing=73.06
blank NoteProperty System.String blank=
checksum NoteProperty System.String checksum=*2F
Date NoteProperty System.String Date=030708
EW NoteProperty System.String EW=W
latitude NoteProperty System.String latitude=5325.5023
longitude NoteProperty System.String longitude=00255.0864
NS NoteProperty System.String NS=N
Speed NoteProperty System.String Speed=4.869933
status NoteProperty System.String status=A
Time NoteProperty System.String Time=070445.647
Type NoteProperty System.String Type=$GPRMC

86804c22.indd 53686804c22.indd 536 1/21/09 1:29:26 PM1/21/09 1:29:26 PM

537

 Working with Files and the Registry in PowerShell 22

Notice that the type is a “PSCustomObject”—building these objects with your own custom scripts is
covered in Chapters 21 and 30; the process may use items from an array created by calling Split(),
or any of the other string methods.

In addition to using Where-Object to filter out rows—for example, filtering this GPS data to only
the Navigation data rows (the ones where the type field is $GPRMC)—PowerShell has another useful
tool for filtering (and calculating) columns: Select-Object. For example:

Import-CSV temp.CSV | Where-Object {$_.type -eq ‘$GPRMC’} |
Select-Object Date,time, Latitude, NS, Longitude, EW

Converting a text file into an XML document is very straight forward; for example:

 [xml](get-content “..\Remote Assistance Logs\20080523132838.xml”)

 The syntax of – [type] Something is used in many contexts; for example:

[Char]65

The preceding code takes the number 65 and converts it to an ASCII character (A in this case).
This type accelerator syntax is used in many places in PowerShell—you saw the XML version used
in Chapter 21, and it will be used to convert a path into an AD object or a WMI object in Chapters
24 and 25.

Working with the Registry
So far, everything you have seen has used the File System Provider. However, at the start of the
chapter, you saw there were other providers, including one for the Registry; this provider creates
two drives by default—HKCU, for the HKEY_CURRENT_USER hive, and HKLM, for the HKEY_
LOCAL_MACHINE hive. Other drives can be set up for any part of the Registry and it can be refer-
enced with the full provider path as well.

Navigation in the Registry is the same as navigation in the file system—Set-Location (or its alias
CD), Push-Location, Pop-Location (and their aliases PushD and PopD) , Get-ChildItem (its
aliases DIR and ls), and Get-Item all work in the same way.

The major difference between working with the File System and working with the Registry is that
the Registry keys (the items in the left pane in REGEDIT) can be both containers and leaf nodes in
the tree, and treated as items. They can be created in the same way as directories in the file system
with New-Item. (The registry provider ignores the -type parameter for New-Item so it is possible
to use the MD function and treat registry keys as directories.)

86804c22.indd 53786804c22.indd 537 1/21/09 1:29:26 PM1/21/09 1:29:26 PM

538

 Part IV Windows PowerShell

Registry values (the items in the right pane in REGEDIT) are treated as item-properties. They are
not leaf nodes in the Registry tree. You can see this in the different way that a dir command works
in the Registry, compared with the file system.

PS HKCU:\software\microsoft> dir

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\
 software\microsoft

SKC VC Name Property
--- -- ---- --------
 1 0 .NETFramework {}
 1 0 Active Setup {}

 0 1 Calc {layout}

 2 0 Works Suite {}

The SKC and VC columns are the Sub-Key Count and Value Count respectively. The following com-
mand returns all the values inside the key.

PS HKCU:\software\microsoft> Get-ItemProperty calc

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\
 software\microsoft\calc
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\
 software\microsoft
PSChildName : calc
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
layout : 0

There are two ways to get an individual property:

PS HKCU:\Software\Microsoft> $properties=(Get-ItemProperty
 -Path Calc)
PS HKCU:\Software\Microsoft> $properties.layout
0

PS HKCU:\software\microsoft> (Get-ItemProperty -Path Calc
-Name “Layout”).layout
0

The first is more useful if more than one value needs to be examined, and the second is more useful
when only one value is needed.

Values can be changed with the Set-ItemProperty Cmdlet. For example:

set-ItemProperty -Path Calc -Name “Layout” 1

86804c22.indd 53886804c22.indd 538 1/21/09 1:29:26 PM1/21/09 1:29:26 PM

539

 Working with Files and the Registry in PowerShell 22

Values can be added to a key with New-ItemProperty, and like creating new items in the file sys-
tem, it is necessary to use the -PropertyType switch. The property type can be:

String■

ExpandString■

Binary■

DWord■

MultiString■

QWord■

Unknown■

For example:

New-ItemProperty -Path HKCU:\Software\Microsoft\Calc `
-Name “test” -Value “This is a test” -PropertyType string

Finally, a value can be removed from a key using the following syntax:

Remove-ItemProperty -Path calc -Name “test”

Summary
In this chapter, you have seen the main commands for working with files, which can be used at
the prompt in PowerShell in a very similar way to their equivalents in CMD.EXE. By using aliases,
PowerShell allows the same command names to be used—albeit with different switches than their
CMD.EXE equivalents.

You have also seen that by using providers, PowerShell allows you to use the same commands to
access the registry as you would to work with files. This consistency—for example using new-item
or get-childItem to do the same job with different kinds of objects—means you do not have to
spend time learning new commands to work with different kinds of objects. Deleting a function
uses the same command as deleting a file, which uses the same command as deleting a certificate.

86804c22.indd 53986804c22.indd 539 1/21/09 1:29:26 PM1/21/09 1:29:26 PM

86804c22.indd 54086804c22.indd 540 1/21/09 1:29:26 PM1/21/09 1:29:26 PM

541

I t is important for any shell to allow a system administrator to manage
the programs running a system. These may be normal user mode pro-
cesses or they may be services which run in the background. This chap-

ter looks at the tools PowerShell provides for managing both of these events
as well as examining the information the programs record in the event log.

Working with Services
Microsoft environments have had command-line tools for managing net-
work services since the days of DOS and MS-NET, and the NET.EXE com-
mand still provides much of the same functionality as it did back then:
Net Start, Net Stop, Net Share, and Net Use commands from 20
years ago have remained constant through the change to OS/2 LAN
Manager, Windows NT, and Server 2000, 2003, and 2008 and as the cli-
ent has changed from DOS/Windows to Windows NT–based, including
Windows XP and Windows Vista. The command has evolved to take on
the ability to manage accounts and groups and to pause and resume ser-
vices as well as simply starting and stopping them.

The Net Start command returns a list of running services; as a tradi-
tional text-based command, it can be run in PowerShell and have its out-
put piped into something. For example, the following command checks
which services containing “Windows” in their name are running on a
Windows Vista Ultimate computer:

> net start | where {$_ -like “*Windows*” }
These Windows services are started:
 Windows Audio
 Windows Audio Endpoint Builder
 Windows Backup

Event Logging, Services,
and Process Monitoring

with PowerShell

IN THIS CHAPTER
Controlling services and
their settings

Monitoring processes

Interrogating the event logs

86804c23.indd 54186804c23.indd 541 1/21/09 1:29:37 PM1/21/09 1:29:37 PM

542

 Part IV Windows PowerShell

 Windows Defender
 Windows Driver Foundation - User-mode Driver Framework
 Windows Error Reporting Service
 Windows Event Log
 Windows Firewall
 Windows Image Acquisition (WIA)
 Windows Management Instrumentation
 Windows Media Center Extender Service
 Windows Media Center Receiver Service
 Windows Media Center Scheduler Service
 Windows Mobile-2003-based device connectivity
 Windows Mobile-based device connectivity
 Windows Search
 Windows Time
 Windows Update

If you look at the top of the list, you can see this command line returned the title from NET.EXE. In
cases like this, the old world worked purely with text, but when you want to do anything with the
returned services the information returned by NET.EXE is too limited—even if you made the effort
to parse it. You can’t get a list of services that are not running, or identify which services start auto-
matically. In short: you can see why PowerShell needs to implement something better.

Before looking at PowerShell’s commands, however, it is worth taking a moment to consider access
to services through WMI because it provides a different but overlapping set of features.

There is a WMI object class in the Root/CIMV2 namespace named Win32_Service that provides
access to the services, and like any other WMI class, it can be accessed on remote machines. It can
offer greater flexibility, although it can be more complicated because you need to deal with the
objects that are in a less processed state than if you use the Cmdlets that PowerShell provides.

You can see the kind of flexibility in the WMI objects just by getting the first few, like this:

> Get-WmiObject win32_service | select-object -First 5

ExitCode : 0
Name : AeLookupSvc
ProcessId : 460
StartMode : Auto
State : Running
Status : OK

ExitCode : 1077
Name : ALG
ProcessId : 0
StartMode : Manual
State : Stopped
Status : OK

86804c23.indd 54286804c23.indd 542 1/21/09 1:29:37 PM1/21/09 1:29:37 PM

543

 Event Logging, Services, and Process Monitoring with PowerShell 23

ExitCode : 0
Name : Appinfo
ProcessId : 460
StartMode : Manual
State : Running
Status : OK

ExitCode : 1077
Name : AppMgmt
ProcessId : 0
StartMode : Manual
State : Stopped
Status : OK

ExitCode : 0
Name : AudioEndpointBuilder
ProcessId : 396
StartMode : Auto
State : Running
Status : OK

So you can see that some of the services—such as “ALG”—are in an OK state even though they are
stopped. WMI gives access to more properties than the PowerShell commands, including the
ProcessID, Description, and the AccountName used to start it and the ExitCode you can see
in the preceding examples.

One facility of NET.EXE that is useful even when using something else to manage the services is the
HELPMSG sub-command, which expands return codes to a text message. For example, you might be
curious what 1077 means in the exit codes of several of the services in the previous example. You
can find out like this:

> net helpmsg 1077
No attempts to start the service have been made since the last boot.

In addition to the six default properties that are defined as the default output in types.ps1xml,
there are other useful properties and methods you can access on the WMI object; you can discover
these by piping the output of the Get-WMIObject command into Get-Member. For example, you
would usually want to see the display name field rather than the shorthand name.

PowerShell has its own Get-Service command, which returns .NET service objects that have
slightly different properties and methods from those provided by WMI. You can get a tabulated list
of the services as follows:

> get-Service | sort-object -property displayname | select -first 5 |
Format-Table -autosize -Property DisplayName, ServiceName, Status, ServiceType

DisplayName ServiceName Status ServiceType
----------- ----------- ------ -----------
Application Experience AeLookupSvc Running Win32ShareProcess

86804c23.indd 54386804c23.indd 543 1/21/09 1:29:37 PM1/21/09 1:29:37 PM

544

 Part IV Windows PowerShell

Application Information Appinfo Running Win32ShareProcess
Application Layer Gateway Service ALG Stopped Win32OwnProcess
Application Management AppMgmt Stopped Win32ShareProcess
Background Intelligent Transfer Service BITS Running Win32ShareProcess

The Name of a service is a short name that is used internally by Windows. This is different from
what is normally shown to users: therefore Get-Service is flexible about the passing of names. It
supports a –Name parameter, which is considered to be best practice in PowerShell because when
something has a name, it should be possible to ask for it by name, as in this example:

> get-service -Name *network*
Status Name DisplayName
------ ---- -----------
Stopped WMPNetworkSvc Windows Media Player Network Sharin…

As with many other commands you have seen already, Get-Service has an alias, in this case GSV,
and if the first parameter is not labeled, it is assumed to be the -Name parameter, so the previous
command can be entered at the prompt using a little less typing by putting it in the form:

Gsv *network*

However, most people will want to refer to this service by its display name so in addition to the
–Name parameter, Get-Service can take a –DisplayName parameter. Changing the preceding
example from –Name to -DisplayName finds more services:

> Get-Service -DisplayName *network*

Status Name DisplayName
------ ---- -----------
Running napagent Network Access Protection Agent
Running Netman Network Connections
Running netprofm Network List Service
Running NlaSvc Network Location Awareness
Running nsi Network Store Interface Service
Stopped p2pimsvc Peer Networking Identity Manager
Stopped p2psvc Peer Networking Grouping
Stopped WMPNetworkSvc Windows Media Player Network Sharin...

As before, the command can be abbreviated for entry at the prompt. However, the Cmdlet takes
both -Debug and -DisplayName parameters so -DisplayName can’t be shortened to –d At least
-di must be given.

Like the Get-ChildItem Cmdlet (or its alias Dir), Get-Service (or Gsv) supports an -Include
parameter, which acts on the name field, and can be modified with an –Exclude parameter. But it
doesn’t have a switch for just running, just stopped, just auto-started, or just manually-started ser-
vices. Although it is less efficient to get all the services and then filter them using Where-Object,

86804c23.indd 54486804c23.indd 544 1/21/09 1:29:37 PM1/21/09 1:29:37 PM

545

 Event Logging, Services, and Process Monitoring with PowerShell 23

the number of services on any machine is small enough for this not to be considered a problem, so it
is perfectly acceptable to construct a command like the following:

Get-Service | where-object {($_.name -like “lanman*”) -and
 ($_.Status –eq “running”)}

Status Name DisplayName
------ ---- -----------
Running LanmanServer Server
Running LanmanWorkstation Workstation

Starting, Stopping, Suspending, Resuming,
and Restarting Services
PowerShell has five Cmdlets: Start-Service, Stop-Service, Restart-Service (which is stop
followed by start), Suspend-Service, and Resume-Service.

These do pretty much what you would expect them to—with the capability to act on more than one
service at once being one of the more obvious improvements over their NET.EXE equivalents.

Stopping a service
Although most things about the Stop-Service Cmdlet are obvious, remember that stopping ser-
vices is a privileged operation and if you start PowerShell on Windows Vista or Server 2008 as an
administrative user, but without saying you want to run PowerShell as administrator, you’ll get an
error when you try to start or stop the service.

Windows services can register dependency relationships with each other, and these can be quite
complex. For example, a dozen services depend on the Plug and Play service, and the Workstation
service depends on four others. So what happens when you try to stop a service that has other ser-
vices depending on it? The following example puts that to the test.

> Stop-Service AudioEndpointBuilder
Stop-Service : Cannot stop service ‘Windows Audio Endpoint Builder
(AudioEndpointBuilder)’ because it has dependent services. It can only
be stopped if the Force flag is set.

When the Stop-Service Cmdlet is given a single unnamed parameter, it assumes it to be the –Name
parameter, which can be a wildcard. audioE* would have worked just as well here. Like Get-Service,
you can filter out services you don’t want to stop with the –Exclude switch. And just as you can retrieve
a service by its display name with Get-Service, you can specify –DisplayName, which can be trun-
cated at the command prompt to –di. Stop-Service has an alias of SpSv for command-line use if you
want to minimize your typing.

86804c23.indd 54586804c23.indd 545 1/21/09 1:29:37 PM1/21/09 1:29:37 PM

546

 Part IV Windows PowerShell

PowerShell requires the -force flag, even if the dependent services are not running. If you specify
it, they are stopped, but unlike the Net command, you won’t be told what the dependent services
are, or what their dependents are. They’re just stopped.

In a script, this is probably what you want anyway. You can check before putting the script into pro-
duction what services (if any) depend on the one you want to stop and specify the –Force switch.
Your script(s) can then take responsibility for restarting the services. How?

A service, running or not, has two properties: DependentServices and ServicesDependedOn.
These are arrays that contain not just the name of the services but the .NET ServiceController
objects. So before you stop a service, you can discover which of its dependent services are running.
If you store this information, you can restart the dependents after you have completed the action for
which they needed to be stopped. For example:

$dep=(get-Service audioEndPointBuilder).DependentServices |
where-object {$_.status -eq “running”}
Stop-service –name audioEndPointBuilder -force
Take some action
Start-Service audioEndPointBuilder
$dep | Start-Service

The last line of this example shows something else that is useful about Stop-Service and the oth-
ers: they can take input from the pipe.

Starting a service
The Start-Service Cmdlet is no more complicated to understand than Stop-Service, and takes
the same parameters. Services can be identified by DisplayName or internal name, can be filtered
using -Exclude, and can be passed via the pipe. If what is piped into these Cmdlets is a string or
array of strings, the Cmdlets assume they are being passed the name(s) of the service(s).

If a service depends on others that are not running, those services will be silently started without
the need for any switch, and attempting to start a service that is already running will not cause
any error.

Restarting a service
The Restart-Service Cmdlet delivers the same behavior as calling Stop-Service and then call-
ing Start-Service with identical parameters. Quite commonly, if a service’s settings are changed,
the quickest way to get them to take effect is to restart the service.

The same rules apply to restarting as stopping. It requires administrator privileges, and if the service
has dependents, the Cmdlet needs the –Force switch. Restarting a service does not restart its depen-
dents, so some method is needed for restarting them. Here is another method, which is more general
than the preceding one, in that it will restart any service that has been stopped—either because
multiple services were restarted or because a service’s dependents had their own dependents.

86804c23.indd 54686804c23.indd 546 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

547

 Event Logging, Services, and Process Monitoring with PowerShell 23

It is possible to capture all the running services before one or more other services are restarted and
then restart any of the services that have become stopped. If services need to be started in a given
order, their dependencies should ensure that those that are needed earlier are auto-started if called
out of sequence. This could be done as follows:

$srv=Get-Service | where {$_.status –eq “running”}
$serviceList | Restart-service
$srv | get-service | where-object {$_.status -ne “running”} | Start-Service

There is an alternate way to write the last line, as you will see in a moment.

Suspending and resuming services
Not all services accept the command to pause (or suspend operations), and those that do, behave in
different ways. Some will stop processing requests entirely. Others will continue to process requests
but won’t allow new users to connect. Some even use the pause request as a method to tell the ser-
vice to take some action without ever going into a paused state. As with starting and stopping ser-
vices, pause and resume are privileged operations and attempting to run them in a non-elevated
session will cause an error.

PowerShell provides a Suspend-Service Cmdlet; with a companion Resume-Service. You can
check which of the services accept the suspend request by checking the property
CanPauseAndContinue, like this:

Get-service | where-object{$_.canPauseAndContinue}
Status Name DisplayName
------ ---- -----------
Running LanmanServer Server
Running LanmanWorkstation Workstation
Running Netlogon Netlogon
Running seclogon Secondary Logon
Running stisvc Windows Image Acquisition (WIA)
Running TapiSrv Telephony
Running WerSvc Windows Error Reporting Service
Running Winmgmt Windows Management Instrumentation

Rather confusingly, the Cmdlets use the verbs Suspend and Resume, but the objects returned by
Get-Service have methods named Pause() and Continue()—in addition to start() and
Stop(). The Cmdlets provide a shortcut, so the following:

 (Get-service -Name lanmanServer).pause()

is equivalent to:

Suspend-Service LanManServer

86804c23.indd 54786804c23.indd 547 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

548

 Part IV Windows PowerShell

So the alternate version of the example in the restart section would be to use the start() method
on the ServiceController object rather than using the Start-Service Cmdlet, like this:

$srv | get-service | foreach-Object {if ($_.status -ne “running”)
 {$_.Start()}}

Configuring services
PowerShell has a Set-Service Cmdlet, which allows:

The startup type of a service to be toggled between Automatic, Manual, and Disabled■

The Long description to be changed■

The Display name to be changed■

The first two can be seen in the Services Management console, but can only be viewed in PowerShell
by using WMI.

The description of the Windows Vista Bluetooth Service is blank by default and it can be set by get-
ting the object and piping it into Set-Service, as follows:

Get-Service -DisplayName “Bluetooth*” |
set-service -Description “Supports Bluetooth Devices”

The short name for the service is BthServ, but it is easier to find the service with a display name
that starts Bluetooth and pipe it into Set-Service. If you know the name you could enter the
command as:

set-service –name BthServ -Description “Supports Bluetooth Devices”

Set-Service lets you change the display name by specifying a –DisplayName parameter and
change the startup type to Automatic, Manual, or Disabled by specifying a -StartUpType
switch. For example:

set-service –name BthServ -StartupType manual

Setting service properties, like the other tasks you have already seen with services, requires an ele-
vated PowerShell session.

It is possible to discover more about services by looking at the Win32_Service WMI object. For
example, the following will give a list of running services and their associated process IDs and the
account used to start them:

> Gwmi win32_service | where {$_.started} | select name, displayname,
StartName, ProcessID | sort ProcessID | ft * -a

86804c23.indd 54886804c23.indd 548 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

549

 Event Logging, Services, and Process Monitoring with PowerShell 23

Working with Processes
Services are a special class of processes that run in the background to enable some system feature.
Once running—and especially if you have discovered the service’s process ID—you can work with
its process object. In addition, any user tasks—including PowerShell itself—will have an associated
process.

Starting, finding, and stopping processes
It is more-or-less axiomatic that a shell should make it easy to start a process: In PowerShell, if you
enter a command, it first checks to see if it is defined as an alias. If not, the command checks to see
if it is defined as a function, and if neither is found, then PowerShell checks the path to see if it can
find a script or executable program with that name. For example, the following:

notepad MyScript.ps1

will edit a file in Notepad. However, if you enter:

New-Alias notepad calc
function notepad {write-host “Oh no”}

the alias wins.

One important consideration is how to be clear that a file name contain spaces is a single entity. In
the old CMD shell, all that was needed was to wrap the command in quotation marks. However,
that tells PowerShell This is a string so PowerShell uses the ampersand (&) to say execute this. You
can see this if you type \p [tab]. When the path expands to program files, PowerShell converts
the line to & ‘Program Files’.

PowerShell has a Get-Process Cmdlet that returns System.Diagnostics.Process .NET
objects. You saw in the section “Changing How PowerShell Formats Objects” in Chapter 21 that
types can have extra properties added to them using definitions in Types.PS1XML. The process
object has 51 properties of its own plus another six alias properties and seven script properties added
by the types file. That’s obviously a rich source of information when trying to find out what is going
on with processes. However, there are additional properties that can be found through WMI. For
example, in task manager you can view the command line used to start a process, but it’s not avail-
able from the .NET object. You can get the information from the Win32_Process WMI object. But
Get-Process is convenient. It gives a table of information, and processes can be easily found by
name or process ID, and it can be invoked from the command line using an alias: either GP or PS.
For example, Ps calc will get a process object without your having to use the Get-WMIObject
command, specify the Win32_process class, and filter it to the item with the process name of Calc.

86804c23.indd 54986804c23.indd 549 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

550

 Part IV Windows PowerShell

Get-Process gives access to a useful subset of properties needed when checking on the operation
of processes: their start time, CPU time (privileged and UserMode), priority, threads, handles, and
memory (Working Set, Paged Memory, NonPaged Memory, Virtual Memory, and Private Memory,
with the peaks in Paged, Virtual, and Working Set), plus the window title, path to the executable,
and file version, product, and company name. Any of these can be used in the condition of
Where-Object. For example:

 Get-Process | where-object {$_.mainWindowTitle -like “*calc*” }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 53 6 2248 8876 80 0.16 7888 calc

The process object has a threads property, which allows you to see whether threads are executing
or waiting and, if so, what for.

Access to the file versions is useful when trying to detect differences in behavior between two sys-
tems that should be identical. The process object allows you to drill into the modules loaded by the
application, and see beyond the program which was started and look at the information for each of
the modules that it calls. So if you have two applications that should be the same but are acting dif-
ferently you can check the versions of the modules they load, as follows:

(Gp calc).modules |sort fileVersion | ft –a -w moduleName, fileversion

ModuleName FileVersion
---------- -----------
USP10.dll 1.0626.6001.18000 (longhorn_rtm.080118-1840)
CLBCatQ.DLL 2001.12.6931.18000 (longhorn_rtm.080118-1840)
ole32.dll 6.0.6000.16386 (vista_rtm.061101-2205)
SHLWAPI.dll 6.0.6000.16386 (vista_rtm.061101-2205)
MSCTF.dll 6.0.6000.16386 (vista_rtm.061101-2205)
uxtheme.dll 6.0.6000.16386 (vista_rtm.061101-2205)
calc.exe 6.0.6000.16386 (vista_rtm.061101-2205)
OLEAUT32.dll 6.0.6001.18000
LPK.DLL 6.0.6001.18000 (longhorn_rtm.080118-1840)
SHELL32.dll 6.0.6001.18000 (longhorn_rtm.080118-1840)
ntdll.dll 6.0.6001.18000 (longhorn_rtm.080118-1840)
kernel32.dll 6.0.6001.18000 (longhorn_rtm.080118-1840)
IMM32.DLL 6.0.6001.18000 (longhorn_rtm.080118-1840)
ADVAPI32.dll 6.0.6001.18000 (longhorn_rtm.080118-1840)
RPCRT4.dll 6.0.6001.18000 (longhorn_rtm.080118-1840)
USER32.dll 6.0.6001.18000 (longhorn_rtm.080118-1840)
GDI32.dll 6.0.6001.18023 (vistasp1_gdr.080221-1537)
comctl32.dll 6.10 (longhorn_rtm.080118-1840)
msvcrt.dll 7.0.6001.18000 (longhorn_rtm.080118-1840)

86804c23.indd 55086804c23.indd 550 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

551

 Event Logging, Services, and Process Monitoring with PowerShell 23

The modules listed above are for Calculator running on Windows Vista. As you can see, some of the
DLLs loaded follow the normal operating system versioning (6.0.xxxx.xxxxx) and others don’t. You
can look at the file description to see what these DLLs are (for example, USP10.DLL is the Uniscribe
Unicode Script Processor). You can also see that most of the DLLs are from the RTM version of
Windows Vista, but some are from Service Pack 1, which synched with the release of Server 2008
(aka, Longhorn). The numbers at the end are the build date and time, so the Vista RTM build is
November 1, 2006, and the Longhorn RTM ones are January 18, 2008. You might notice one of the
files (GDI32) has a later build number (18023 instead of 18000) and was built on February 21, 2008,
so you could reasonably assume that this file has been patched from Windows Update. It is this sort
of information that can help you to identify differences in patches between machines.

There are three ways to bring a process to an end. Both the .NET object returned by the Get-Process
and the WMI Win32_Process object have Kill() methods; there is also a Stop-Process Cmdlet.
All three of the following will end a running instance of Calculator.

(get-process -Name calc).kill()
get-process -name calc | Stop-Process
stop-process –name Calc

Of these, the first will work only if the there is a single instance of Calculator running and the sec-
ond form is usually combined with a Where-Object{}to identify a specific instance.

One final thing to investigate before leaving processes is the question of which user owns a pro-
cess—or which processes belong to a given user session.

As you will learn in Chapter 25, WMI objects can be linked together using an Associators Of
WMI query. Win32_Process objects are linked to Win32_logonSession objects.

>$p=gwmi -q “select * from win32_process where name=’calc.exe’”
> gwmi -q “associators of {$p} where classdefsonly”
Win32_ComputerSystem Win32_LogonSession
CIM_DataFile

Investigating this a little further shows that a win32_LogonSession object doesn’t contain the
name of the user but is linked to a Win32_Account object via a Win32_LoggedOnUser object:

> $l=gwmi -q “associators of {$p} where resultclass=win32_logonSession”
> gwmi -q “associators of {$l} where classdefsonly”
Win32_Process Win32_Account

> gwmi -q “references of {$l} where classdefsonly”
Win32_SessionProcess Win32_LoggedOnUser

86804c23.indd 55186804c23.indd 551 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

552

 Part IV Windows PowerShell

So you can obtain the user details from the Win32_Account object. One caveat is that if the user has
logged on with cached credentials, it won’t be possible to get their associated Win32_Account object.
Instead, their name can be found by parsing the Antecedent property of the logged on user account.

It is possible to work the other way, and get all the logged on user accounts and display the user and
associated processes, as in the following example.

Function Get-UserProcess{
Param ($Server=”.”)
Get-wmiobject -computerName $server -class Win32_LoggedOnUser |
Foreach-object {
 $d=[wmi]$_.dependent ;
 $Processes=get-wmiobject -query “associators of {$d} where
 resultclass=Win32_process”
 If ($Processes –ne $null)
 {$_.antecedent ;
 Format-table –autosize –wrap –inputobject $processes `
 -property name, commandline, Processid}
 }
}

Working with Event Logs
Many different kinds of troubleshooting and process or service management lead to the Windows
event logs.

PowerShell has a single Cmdlet for working with event logs, Get-EventLog, which takes the com-
mon PowerShell parameters and four parameters of its own.

-Logname■ : Identifies the log from which events are to be fetched.

-newest■ : Returns the most recent n events.

-asString■ : Returns the events as strings and not objects.

-List■ : Changes the behavior of the Cmdlet so that it returns the logs themselves and not
the events they contain. –List and –logname can’t be combined.

86804c23.indd 55286804c23.indd 552 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

553

 Event Logging, Services, and Process Monitoring with PowerShell 23

Clearing an event log
When used with the –list switch, Get-EventLog returns System.Diagnostics.EventLog
.NET objects. By default, these are presented like this:

> Get-EventLog -list

 Max(K) Retain OverflowAction Entries Name
 ------ ------ -------------- ------- ----
 15,168 0 OverwriteAsNeeded 28,251 Application
 15,168 0 OverwriteAsNeeded 0 DFS Replication
 20,480 0 OverwriteAsNeeded 0 Hardware Events
 512 7 OverwriteOlder 0 Internet Explorer
 20,480 0 OverwriteAsNeeded 0 Key Management Service
 8,192 0 OverwriteAsNeeded 3,467 Media Center
 16,384 0 OverwriteAsNeeded 28 Microsoft Office Diagnostics
 16,384 0 OverwriteAsNeeded 621 Microsoft Office Sessions
 30,016 0 OverwriteAsNeeded 54,937 Security
 15,168 0 OverwriteAsNeeded 32,666 System
 15,360 0 OverwriteAsNeeded 18,648 Windows PowerShell

In fact, the type formatting XML files (in this case DotNetTypes.format.ps1xml) have worked
some magic here because the column names are not “Max(k)”, “Retain”, and “Name”. Piping the
output into Get-Member shows the names are actually MaximumKilobytes, MinimumRetention
Days, and Log. Get-Member also shows a Clear() method, which clears the log.

The way to get a single log file is to request the list of event logs and filter down to the one you are
interested in; you can then call the clear() method () on that log, like this:

((Get-EventLog -list) | where {$_.log -match “Windows PowerShell”}).clear()

This syntax doesn’t seem intuitive; you would expect to use something like Get-EventLog
“Windows Powershell” but this will return the entries in the PowerShell log, not the log itself.

Exporting event logs
Before clearing a log, it is a good idea to export it. PowerShell can export a log simply by getting the
EventLog entries and piping the results into Export-Csv or Export-Clixml

Windows’ event viewer tool has its own .EVTx binary format—but also exports CSV files. It can only
import EVTx files back so if you want to read events in Event viewer, you need to use it to export
them. However, in many cases what is desired is to have a log that can be processed in Excel or
imported into a database, and CSV format is good enough for this. For example, this will create a
CSV file and load it into Excel (assuming Excel is present, and the default program for CSV files):

get-eventlog “windows powershell” | export-csv powershell-events.csv
Invoke-Item powershell-events.csv

Figure 23-1 shows examining an Event log using filtering in Excel.

86804c23.indd 55386804c23.indd 553 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

554

 Part IV Windows PowerShell

FIGURE 23-1

Examining an Event log using filtering in Excel

Finding entries in the event log
Get-eventlog will return entries that have an ID, a category, an entry type (Warning, Error, or
Information), a message, and a time stamp. These properties can be used in a Where-Object or a
group-object command. For example:

Get-EventLog “WindowsPowerShell” | Group-Object -Property entryType |

 ft -a name, count

Name Count
---- -----
Information 18609
Warning 39

86804c23.indd 55486804c23.indd 554 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

555

 Event Logging, Services, and Process Monitoring with PowerShell 23

>Get-EventLog “Windows PowerShell” | where {$_.entryType -eq “Warning”} |
 group category | ft name,count -a

Name Count
---- -----
Provider Health 35
Engine Health 4

> Get-EventLog “Windows PowerShell” | where {($_.entryType -eq “Warning”)
-and ($_.category -eq “Engine Health”)} | ft -a timegenerated, message

TimeGenerated Message
------------- -------
05/06/2008 21:50:46 Settings: There were errors in loading the format
 data file:
05/06/2008 21:50:46 Settings: Error loading the extended type data file:...
05/06/2008 21:50:42 Settings: There were errors in loading the format
 data file:
05/06/2008 21:50:41 Settings: Error loading the extended type data file:...

To save processing time, it is often easiest to specify the –newest switch so that instead of process-
ing many thousands of entries, you can limit it to the first few hundred. For example:

> Get-EventLog “Windows PowerShell” -newest 1000 |
 where {($_.entryType -eq “Warning”)} | ft -a timegenerated,message

By getting the Log object—as you would to clear it—you can also reference an entries object as
one of its properties. 0 is the oldest entry, so you can get the oldest events like this:

((Get-EventLog -list) |
 where {$_.log -match “Windows PowerShell”}).entries[0..20]

In fact, you can add a Script property to each log to show the oldest entry:

> Get-EventLog -list | Add-Member -PassThru -Name “Oldest” `
-MemberType ScriptProperty -Value {$this.entries[0].TimeGenerated} |
 ft –a log,oldest

Log Oldest
--- ------
Application 09/02/2008 16:26:14
DFS Replication
HardwareEvents
Internet Explorer
Key Management Service
Security 07/07/2008 12:12:56
System 01/07/2008 09:47:05
Windows PowerShell 23/03/2008 11:16:00

(Some of the logs are empty so they have no “oldest” entry.)

86804c23.indd 55586804c23.indd 555 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

556

 Part IV Windows PowerShell

Summary
In this chapter you’ve seen how PowerShell works with events, processes, and services. Through its
built-in Cmdlets, it provides a functionality that extends what was previously available from the com-
mand prompt in Windows environments. In cases where these don’t go far enough, the capability to
access WMI and .NET objects easily means that PowerShell is a very useful aid in system management
and troubleshooting. This is a slightly different use case for PowerShell because often it is positioned
as a tool for automating tasks, which could be done with GUI tools, but which are repeated and so
are scripted for reasons of efficiency. In the case of investigating process behavior, PowerShell is giv-
ing access to options that aren’t accessible through the GUI tools provided with Windows.

86804c23.indd 55686804c23.indd 556 1/21/09 1:29:38 PM1/21/09 1:29:38 PM

557

ADSI—the Active Directory Services Interface—allows you to query
directory services. Three different kinds of directories are commonly
used in the Microsoft world:

WinNT allows access to the local computer, and Windows NT ■

(pre–Windows 2000) domains.

LDAP accesses an Active Directory Domain Controller using the ■

LDAP protocol.

GC accesses an Active Directory Global Catalog server.■

A Quick Introduction to
Active Directory
Active Directory is a replicated database that holds information about
objects that are to be centrally managed—for example, Users, Groups and
Computers. The set of object classes that can be stored is extensible, so
anything that needs to be managed centrally can have an object definition
added to AD. Exchange 2000 was the first major application to use Active
Directory to store its information. It uses AD as its mail directory and
defines extra classes for mail stores, gateways, and so on.

In addition to classes, AD defines a set of attributes (properties) for those
classes. The set of attributes is also extensible. Any attribute can be added
to any existing class. So, for example, Exchange does not define a new class

Working with Active
Directory Using ADSI and

PowerShell

IN THIS CHAPTER
Different methods for
querying AD

How AD objects need different
handling from other PowerShell
objects

LDAP syntax used in queries

Building a library of
AD functions

86804c24.indd 55786804c24.indd 557 1/21/09 1:29:51 PM1/21/09 1:29:51 PM

558

 Part IV Windows PowerShell

for a mail-enabled user. Instead, the attributes that it needs—the users’ mail addresses, where their
mailboxes are stored, and so on—are defined as new attributes that are added to the existing user
object class. The definitions of attributes and objects are referred to as the Active Directory Schema.

AD groups computers into Domains, each of which has a DNS style name—for example, Contoso.com.
Domains with contiguous names (for example, Contoso.com, Americas.Contoso.com, and Europe.
Contoso.com), can be grouped into trees, and multiple trees (or other non-contiguous domains) can
be grouped into forests. In each domain one or more Domain Controllers (DCs) holds the database;
but each Domain Controller only holds a subset of the information for the whole forest.

A DC stores the complete database information for objects in its own domain; in other words it holds
all their attributes. A Domain controller that is designated as a Global Catalog server also stores all
objects outside its domain, but it holds only a partial replica of them—a read-only subset of their
attributes. Each attribute in the AD Schema has a flag to indicate whether it is a member of this Partial
Replica Set, and whether it is indexed for fast retrieval.

The AD database is divided into partitions known as Contexts. Each Domain has its own context, and
this context is replicated to all the Domain Controllers in the domain. The Schema has a context, and
another context holds configuration information: these are replicated to every Domain Controller in
the forest.

To make management of objects in the domain easier, domains support containers, like folders in the
file system. The directory entry for an object can be moved between containers in its domain, and it
has a path that includes the domain and container hierarchy, which can be used to identify it (because
the path can change AD objects also have a globally unique ID, which remains constant).

Directory activities
Any activity with Active Directory can be broken down into one of three tasks:

Creating new objects (of a class which is defined in the Schema)■

Finding objects in the directory■

Modifying objects that have been found or created■

In the real world, activities are often combinations of these tasks—for example, “Find all the user
entries that match certain criteria and set an attribute on them.” Or “Produce a report showing which
users are enabled for service X.” Or it might be to provide diagnostic information about a service, or
to find some information that is used as a parameter in undertaking some other task.

Caution
At the risk of stating the obvious: Erroneous changes to AD can also have serious consequences, so
you should always develop and test scripts that make changes to the directory in a separate environ-
ment before using them in production.

86804c24.indd 55886804c24.indd 558 1/21/09 1:29:51 PM1/21/09 1:29:51 PM

559

 Working with Active Directory Using ADSI and PowerShell 24

The second caution is less obvious. When making changes to the directory entries for services objects
or attributes those services use on other classes, you should check that that the service supports mak-
ing an update simply by changing the attribute(s) in Active Directory, or whether you need to go
through some other interface. In some cases, direct manipulation of AD appears to work but is unsup-
ported and may cause issues later. For example, in Office Communications Server there is a WMI
object for managing OCS-enabled users. It is also possible to enable a user by setting the correct AD
attributes; only the WMI method is supported.

PowerShell and ADSI
When version 1 of PowerShell was released it attracted some criticism for the weakness of its AD
support. Microsoft has said that this will be improved in future versions.

This has given rise to a number of third-party tools to ease the management of AD (for example,
Quest has made the PowerShell part of its management tools available free of charge—see
www.quest.com/powershell/activeroles-server.aspx). If you have full control of the
environment, then it is worth investigating these tools because they reduce the amount of script
that is needed to accomplish a given task. However, if you are writing scripts that will be used on
machines that you don’t control then you won’t be able to rely on these tools being present, and you
will need to write several lines of PowerShell using the built-in ADSI type accelerator and generic
.NET classes. Active Directory objects are not as easy to explore as COM, .NET, and WMI ones so
more expertise—or more reference material—is required to work them.

Getting Entries from AD with [ADSI]
Explicitly or implicitly, queries for an object use an Active Directory Service Path (ADSpath). ADSI
will attempt to discover a Domain Controller for an LDAP query and a Global Catalog server for a GC
query; but some understanding is needed of whether an object will be found on the default Domain
Controller, and if a Global Catalog server is queried, whether the attributes of interest are found on
GCs. In some cases an object will be a different domain and the desired attribute will not be on the
GC, so it will be necessary to specify the directory server.

An ADSpath is written in the style of a URI:

AccessMethod://Server:Port/resource

For example:

LDAP://localhost:389/RootDSE
LDAP://localhost/RootDSE
LDAP://RootDSE

86804c24.indd 55986804c24.indd 559 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

560

 Part IV Windows PowerShell

The access method is case sensitive—you must write LDAP and GC in uppercase—using lowercase
results in an error.

> [adsi]”ldap://rootdse”
out-lineoutput : Exception retrieving member
“ClassId2e4f51ef21dd47e99d3c952918aff9cd”: “Unknown error (0x80005000)”

RootDSE is a special object—we examine it shortly.

All the examples in this chapter will use LDAP, and we will assume that it will work cor-
rectly against the default server and port. In your own scripts, you may need to use GC

or WinNT providers, or specify the server or port explicitly.

The path for an AD entry is known as a distinguished name and looks something like this:

“cn=UK-DC-WDS,ou=Domain Controllers,dc=contoso,dc=com”

This notation reads from least significant to most significant: you could read the path above aloud
like this:

The object with the Common Name UK-DC-WDS,
which is a member of the Organizational Unit Domain controllers,
which is a member of the Domain Component Contoso,
which is a member of the Domain Component com.

Many people would read this by splitting the path into groups and reading the Domain Components
forwards and the rest working backwards “contoso.com / Domain Controllers ou /
UK-DC-WDS object”.

When it comes to getting Directory entries in PowerShell, you will see there is more than one way to
do it (you may grow to feel that any task in PowerShell can be accomplished in more than one way).
The first way is the [ADSI] Type Accelerator.

Like other Type Accelerators [ADSI] takes one kind of object and flips it another. In this case, it
takes an ADSpath as a string and returns a System.DirectoryServices.DirectoryEntry
object like this:

> [adsi]”LDAP://rootdse”
currentTime : {20081010110949.0Z}
subschemaSubentry : {CN=Aggregate,CN=Schema,CN=
 Configuration,DC=Contoso,DC=com}
dsServiceName : {CN=NTDS Settings,CN=UK-DC-
 WDS,CN=Servers,CN=Default-First-Site-
 Name,CN=Sites,CN=Configuration
 ,DC=Contoso,DC=com}
namingContexts : {DC=Contoso,DC=com,
 CN=Configuration,DC=Contoso
 ,DC=com, CN=Schema,CN=Configuration,
 DC=Contoso, DC=com, DC=DomainDnsZones,
 DC=Contoso,DC=com...}

NOTENOTE

86804c24.indd 56086804c24.indd 560 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

561

 Working with Active Directory Using ADSI and PowerShell 24

defaultNamingContext : {DC=Contoso,DC=com}
schemaNamingContext : {CN=Schema,CN=Configuration,DC=Contoso
 ,DC=com}
configurationNamingContext : {CN=Configuration,DC=Contoso,DC=com}
rootDomainNamingContext : {DC=Contoso,DC=com}
supportedControl : {1.2.840.113556.1.4.319,
 1.2.840.113556.1.4.801
 , 1.2.840.113556.1.4.473,
 1.2.840.113556.1.4.52
 8...}
supportedLDAPVersion : {3, 2}
supportedLDAPPolicies : {MaxPoolThreads, MaxDatagramRecv,
 MaxReceiveBuffer, InitRecvTimeout...}
highestCommittedUSN : {205014}
supportedSASLMechanisms : {GSSAPI, GSS-SPNEGO, EXTERNAL,
 DIGEST-MD5}
dnsHostName : {UK-DC-WDS.Contoso.com}
ldapServiceName : {Contoso.com:uk-dc-wds$@CONTOSO.COM}
serverName : {CN=UK-DC-WDS,CN=Servers,CN=Default-
 First-Site-Name,CN=Sites,CN=
 Configuration,DC=Contoso,DC=com}
supportedCapabilities : {1.2.840.113556.1.4.800,
 1.2.840.113556.1.4.167
 0, 1.2.840.113556.1.4.1791,
 1.2.840.113556.1.4.
 1935}
isSynchronized : {TRUE}
isGlobalCatalogReady : {TRUE}
domainFunctionality : {3}
forestFunctionality : {3}
domainControllerFunctionality : {3}

Here, you can see the RootDSE giving information about the LDAP service—from the current time,
through different names used for the service (its DNS name, LDAP-Service, or Service-Principal name
and the location in AD where its configuration is stored). Querying RootDSE also shows you a list of
the different contexts the LDAP server can service, in this case the list is:

DC=Contoso,DC=com■

CN■ =Configuration,DC=Contoso,DC=com

CN■ =Schema,CN=Configuration,DC=Contoso,DC=com

DC=DomainDnsZones,DC=Contoso,DC=com■

RootDSE also shows the ADSpath for the Schema, configuration, root domain, and current domain
(default) contexts (which might not be stored on this server).

86804c24.indd 56186804c24.indd 561 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

562

 Part IV Windows PowerShell

You can also see that the service reports its forest, domain, and domain-controller levels (all Server
2008) and that it is synchronized within the domain and between domains as a Global Catalog
server, so this is the first case of being able to use information from ADSI for diagnostic purposes.

The next thing you can try is to get the default domain naming context: If you know the domain
where you are working, you can enter it in the form LDAP://dc=Contoso,dc=com or you can get
it by reference to the DefualtNamingContext property of RootDSE—which is more useful if you
don’t know where the script is going to be run.

> [adsi](“LDAP://” + ([adsi]”LDAP://rootdse”).defaultNamingContext)
distinguishedName

{DC=Contoso,DC=com}

In fact, there is a shortcut: [ADSI]”” will return the default naming context.

At first glance it seems that you can use all the properties of the objects returned by [ADSI] using
the conventional dotted notation—such as .defaultNamingContext; however, with ADSI, frustra-
tion lurks round every corner. If you pipe the previous command into format-list (or FL *), you
find a line like this:

creationTime : {System.__ComObject}

Unfortunately, there isn’t any easy way to convert this to something you can work with—although
we present a solution shortly.

The next annoyance you may notice is that if you pipe this object into Get-Member (or GM), it lists the
properties you saw on the previous page but it doesn’t list any methods. This means you have to look
outside PowerShell to find what you can do with the object. This isn’t a bad thing for authors of books
on scripting, but compared with other objects you work with in PowerShell, it is certainly a drag.

The final annoyance (for now) is that this object is the root of the domain; it has some container and
OU objects underneath but none of the properties appear to be children. In Chapter 25, you will see
that objects that PowerShell has “tweaked” can also have a PSBASE property, which contains the
base object. So you can get to the children (and some methods) using this object. Here’s an example
that uses an empty string to return the current domain, and then gets the objects at the top level of
the domain:

> ([adsi]””).psbase.children | ft -a objectClass, distinguishedName

objectClass distinguishedName
----------- -----------------
{top, builtinDomain} {CN=Builtin,DC=Contoso,DC=com}
{top, container} {CN=Computers,DC=Contoso,DC=com}
{top, organizationalUnit} {OU=Domain Controllers,DC=Contoso,DC=com}
{top, container} {CN=ForeignSecurityPrincipals,DC=Contoso,
 DC=com}
{top, infrastructureUpdate} {CN=Infrastructure,DC=Contoso,DC=com}
{top, lostAndFound} {CN=LostAndFound,DC=Contoso,DC=com}

86804c24.indd 56286804c24.indd 562 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

563

 Working with Active Directory Using ADSI and PowerShell 24

{top, msDS-QuotaContainer} {CN=NTDS Quotas,DC=Contoso,DC=com}
{top, container} {CN=Program Data,DC=Contoso,DC=com}
{top, container} {CN=System,DC=Contoso,DC=com}
{top, container} {CN=Users,DC=Contoso,DC=com}

You can see that some of the containers at the top of the domain are special-purpose ones with their
own special classes. Some of the default containers are of a type container and some belong to the
OrganizationalUnit class.

Creating Objects
One of the hidden methods for a directory entry is named create(); you might expect the follow-
ing command to create a new OU in the root of the domain with the name My OU:

> ([adsi]””).Create(“organizationalUnit”, “ou=My OU”)
distinguishedName

{}

If you check for the presence of the OU, it isn’t there; you need to commit the changes.

$o=([adsi]””).Create(“organizationalUnit”, “ou=My OU”)
$o.setinfo()

You need to be aware of some potentially frustrating behavior with the conventional dotted notation.

> $o=([adsi]””).Create(“organizationalUnit”, “ou=Management”)
> $o.Description=”I’m an OU”
> $o.setinfo()
Exception calling “setinfo” with “0” argument(s): “A constraint
violation occurred. (Exception from HRESULT: 0x8007202F)”

Instead of using this syntax, the property needs to be assigned with a Put() method:

> $o.put(“Description”,”I’m an OU”)
> $o.setinfo()
>

It’s good practice to always use the put method, but not using it doesn’t always cause an error. For
example, the following:

> $o=([adsi]””).Create(“organizationalUnit”, “ou=Third OU”)
> $o.setinfo()
> $o.Description=”Another OU”
> $o.setinfo()
>

produces no error.

86804c24.indd 56386804c24.indd 563 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

564

 Part IV Windows PowerShell

Getting Directory Entries with the Searcher
If you pipe the objects you have created or fetched with the [ADSI] type accelerator into Get-Member,
it reports that they belong to the System.DirectoryServices.DirectoryEntry .NET class, but
there is another way to get objects of that class, which is to use the DirectorySearcher object. The
following is an example of the searcher in use, to find all users in the domain, regardless of the container
they are in:

> (new-Object directoryServices.DirectorySearcher(“(objectclass=user)”)
).findall()

Path Properties
---- ----------
LDAP://CN=Administrator,CN=Users,DC=... {primarygroupid, iscriticalsystemobj...
LDAP://CN=Guest,CN=Users,DC=Contoso... {iscriticalsystemobject, samaccountn...
LDAP://CN=UK-DC-WDS,OU=Domain Contro... {primarygroupid, iscriticalsystemobj...
LDAP://CN=WIN-PQS6KIOLM1W,CN=Compute... {primarygroupid, iscriticalsystemobj...
LDAP://CN=GROMMIT,CN=Computers,DC=Ro... {primarygroupid, iscriticalsystemobj...
LDAP://CN=WALLACE,CN=Computers,DC=Ro... {primarygroupid, iscriticalsystemobj...
LDAP://CN=James,CN=Users,DC=Contoso... {lastlogontimestamp, countrycode, sa...
LDAP://CN=user1,CN=Users,DC=Contoso... {samaccountname, useraccountcontrol,...
LDAP://CN=lisa,CN=Users,DC=Contoso,... {samaccountname, useraccountcontrol,...

When requesting a new system.directoryServices.DirectorySearcher object, PowerShell
will look for the object under the system part of the .NET object hierarchy, so the New-Object
Cmdlet can be given a -typeName parameter, which is allowed to omit the word system. In the pre-
ceding example, the -typeName has been omitted as well; New-Object will assume that an
unnamed parameter is the type name. Although this is fine when entering commands at the
PowerShell prompt, in scripts you should try to use the full names and be clear about parameter
naming.

There are different parameter combinations when requesting a new directorySearcher, as shown
in Table 24-1.

 TABLE 24-1

Directory searcher creation Parameters
Parameters passed in to a new searcher Meaning

 () No parameters, returns all the properties of all the objects in the
default naming context without any kind of filtering.

(String) Specifies a filter, in LDAP syntax: only objects matching this filter
are returned.

(String, String[]) Specifies a filter, and an array containing the names of properties
to load; other properties are discarded.

86804c24.indd 56486804c24.indd 564 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

565

 Working with Active Directory Using ADSI and PowerShell 24

Parameters passed in to a new searcher Meaning

(String, String[],
SearchScope)

Specifies a filter, properties to load, and a search scope, which
is either “Base” (which returns only the object), “OneLevel”
(which returns all the objects children), or “Subtree,” which is
the default and searches recursively through all the containers
and sub-containers below the start point.

(DirectoryEntry) Specifies the search root — where the search should start — and
returns all the properties of every object below the start point.

(DirectoryEntry, string) Specifies the search root and a filter. Returns only those objects
matching the filter below the start point.

(DirectoryEntry, String,
String[])

Specifies the search root, a filter, and an array of properties to load.

(DirectoryEntry, String,
String[], SearchScope)

Specifies the search root, a filter, properties to load, and the
search scope (base, Onelevel, or Subtree)

Notice that if you specify the search root, you pass a directory entry object, and the easiest way to
get the object is with the [ADSI] type accelerator.

The values passed in creating the searcher can be set on the object after it is created, using its
SearchRoot, Filter, PropertiesToLoad, and SearchScope properties.

There are additional properties, which can be set on the searcher object, as shown in Table 24-2.

TABLE 24-2

Directory Searcher properties
Property Name Use

PageSize Sets the number of items to be returned in at a time. By default it is 0, meaning
return all the results together.

Sort A System.DirectoryServices.SortOption object. This has two
properties: one named Direction — which is either Ascending or
Descending and the other named propertyName,

PropertyNamesOnly Retrieves the property names for each object but not the values they contain.

SizeLimit Sets a maximum number of items to return. This is especially useful in test
scenarios, where an incorrectly formulated search could return tens of
thousands of items.

TombStone Specifies if deleted objects are to be returned.

86804c24.indd 56586804c24.indd 565 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

566

 Part IV Windows PowerShell

The searcher object class provides two main methods: FindAll(), which returns all the matching
objects, and FindOne(), which returns only the first one.

Using the scopes with the searcher, it is possible to get the immediate children of an object:
Previously you saw that the DirectoryEntry could be obtained with the [ADSI] type accelerator
and then its PSbase.Children property could be examined. With the searcher, it is possible to get
the top-level containers in the domain by writing the following:

>$searcher= New-Object directoryServices.DirectorySearcher([ADSI]””)
>$searcher.SearchScope=”oneLevel”
>$searcher.FindAll() | format-Table
Path Properties
---- ----------
LDAP://CN=Builtin,DC=Contoso,DC=com {uascompat, objectguid, nextrid, obj...
LDAP://CN=Computers,DC=Contoso,DC=com {iscriticalsystemobject, systemflags...
LDAP://OU=Domain Controllers,DC=Road... {iscriticalsystemobject, systemflags...
LDAP://CN=ForeignSecurityPrincipals,... {iscriticalsystemobject, systemflags...
LDAP://CN=Infrastructure,DC=Contoso... {iscriticalsystemobject, systemflags...
LDAP://CN=LostAndFound,DC=Contoso,D... {iscriticalsystemobject, systemflags...
LDAP://OU=Management,DC=Contoso,DC=com {objectclass, usncreated, name, obje...
LDAP://OU=My OU,DC=Contoso,DC=com {objectclass, usncreated, name, obje...
LDAP://CN=NTDS Quotas,DC=Contoso,DC... {iscriticalsystemobject, systemflags...
LDAP://CN=Program Data,DC=Contoso,D... {objectclass, usncreated, name, obje...
LDAP://CN=System,DC=Contoso,DC=com {iscriticalsystemobject, systemflags...
LDAP://CN=Users,DC=Contoso,DC=com {iscriticalsystemobject, systemflags...

The searcher doesn’t return directoryentry objects, as the [ADSI] type accelerator does, but
SearchResult objects. These have only two properties (Path and Properties) and the single
method, getdirectoryEntry().

The properties collection has some case sensitivity, which may cause you some frustration until you
get used to it. If you use the type accelerator, you might see something like the following:

> ([adsi]”LDAP://CN=Administrator,CN=Users,DC=Contoso,DC=com”) | fl *

objectClass : {top, person, organizationalPerson, user}
cn : {Administrator}
description : {Built-in account for administering the
 computer/domain}
distinguishedName : {CN=Administrator,CN=Users,DC=Contoso,DC=com}
instanceType : {4}
whenCreated : {4/22/2008 5:31:54 AM}
whenChanged : {10/5/2008 8:21:17 AM}
uSNCreated : {System.__ComObject}
lastLogon : {System.__ComObject}

As you can see, the property names are in mixed case.

86804c24.indd 56686804c24.indd 566 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

567

 Working with Active Directory Using ADSI and PowerShell 24

Try the same with the searcher, like this:

>$searcher.SearchRoot=[adsi]”LDAP://CN=Administrator,CN=Users,DC=Contoso,
DC=com”
>$searcher.SearchScope=”base”
>$searcher.Findone().properties

Name Value
---- -----
objectclass {top, person, organizationalPerson, user}
cn {Administrator}
description {Built-in account for administering the compu...
distinguishedname {CN=Administrator,CN=Users,DC=Contoso,DC=com}
whencreated {4/22/2008 5:31:54 AM}
whenchanged {10/5/2008 8:21:17 AM}
usncreated {8194}
lastlogon {128681052251349570}

The property names are all lowercase—but notice that usnCreated has become a readable Update
Sequence Number instead of an unreadable object. WhenCreated has become a date and so has
lastlogon.

The properties property of a SearchResult object is a collection with the usual count and
item members. There are two ways to get a property from the collection: dotted notation and the
item parameterized property:

> $searcher.Findone().properties.distinguishedName
> $searcher.Findone().properties.item(“distinguishedName”)
CN=Administrator,CN=Users,DC=Contoso,DC=com
> $searcher.Findone().properties.distinguishedname
CN=Administrator,CN=Users,DC=Contoso,DC=com

The attempt to get the distinguishedName with an uppercase N fails when using the dotted form
but succeeds when using the item() form. The dotted form works only if the name is all lowercase,
even if it is normally returned in mixed case. When writing scripts, you might choose to use the more
verbose Item() syntax. When you are in a hurry and trying to discover something at the command
prompt, and you want to use the shorter dotted notation, you will find that this is exactly the time
you are likely to forget about this case behavior.

It’s a date Jim, but not as we know it
In the previous section, you saw that the COM objects had changed into dates, and there was a
comment that lastLogon had become a date, but if you look at what was returned in the example,
128681052251349570 doesn’t look like a date. It is what is referred to as FileTime format.
According to MSDN:

A Windows file time is a 64-bit value that represents the number of 100-nanosecond
intervals that have elapsed since 12:00 midnight, January 1, 1601 A.D. (C.E.) Coordinated
Universal Time (UTC).

86804c24.indd 56786804c24.indd 567 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

568

 Part IV Windows PowerShell

Of the many ways of writing a time, that’s one of the more obtuse. Fortunately, the .NET
System .DateTime class provides a fromFileTime() method for converting these numbers to a
conventional date. Unfortunately, AD doesn’t return a 64 bit integer but a string, which must be con-
verted first, and PowerShell’s normal casting syntax—[int64]$lastlogon—doesn’t work. Instead,
you need to use the Parse() method provided by the int64 class; this can parse numbers in deci-
mal or hex. By default, parse() assumes the string is a decimal number, but it can take a bitwise
array of flags to tell it the number is something else. 515 is the combination of flags used for hex
numbers. (The Win32_QuickFixEngineeering WMI class returns install dates as FileTimes, in hex,
which must entitle its authors to consideration for a “Most obfuscated time format devised” award.).

The following is a utility function to do the conversion:

Function Convertto-DateTime
{Param ($FileTime , [Switch]$Hex)
 If ($hex)
 {$Number = [int64]::parse($filetime , 515) }
else
 {$Number = [int64]::parse($filetime) }
 [system.datetime]::FromFileTime($number)
}

LDAP filters
All this talk of the difficulties with properties might leave you wondering if the DirectorySearcher
object is actually better avoided. However, because it is able to return an object, the children of an
object, or an arbitrary set of objects found by searching the directory, and is accessible from any-
thing that can access .NET objects, it is still very useful.

Its search ability is based on LDAP filters, and LDAP syntax is the last new thing to learn. At times,
it may be tempting to get all the Active Directory objects and then filter them down to the set that
you want to work with using PowerShell’s Where-Object Cmdlet. But doing so would mean ask-
ing AD to send many more objects over the network—potentially tens of thousands—only for
PowerShell to discard them. So this approach should be avoided, which requires at least a basic
understanding of filters. It is possible to query AD using an ActiveX Data Objects (ADO) provider,
but this introduces its own problems and won’t be discussed here.

Note also that AD maintains indexes on properties, which are commonly used for searching and
sorting, so it is able to do these things more efficiently than PowerShell Cmdlets, which don’t have
the benefit of being able to use the indexes.

The expressions that are used in LDAP filters usually take one of the following forms:

(attribute = value)■

(attribute >= value)■

(attribute <= value)■

86804c24.indd 56886804c24.indd 568 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

569

 Working with Active Directory Using ADSI and PowerShell 24

The asterisk (*) symbol is used as a Wildcard, so you can search for *Operators, Domain*, *Admin*,
or simply *.

The ! prefix operator negates an expression.

A filter is made up of either a single expression or a compound expression using either the “&” pre-
fix operator for “and” or the “|” prefix operator for “or” to group expressions together. The grouped
expression is wrapped in brackets.

So whereas in SQL you would write:

where (expression1) and (expression2) and (expression3)

 or in a PowerShell Where-Object Cmdlet you would write:

where-object {(expression1) –and (expression2) –and (expression3)

 in LDAP you write:

(&(expression1)(expression2)(expression3))

The directory doesn’t return properties that are part of the definition for a class but which are
not set for given entry. One common task is to find all the objects where a property has been set,
which is where testing for a wildcard is most useful. A typical task is to search for all mail-enabled
users—or in AD terms, all entries with an object class of user and an e-mail property set to any-
thing. The filter for that would look like this:

(&(objectClass=user)(email=*))

To find users who are not mail enabled, there are two ways to write the filter:

(&(objectClass=user)(!(email=*)))

or

 (&(objectClass=user)(!email=*))

You can combine and conditions with or conditions. For example, the following filter:

 (&(objectClass=user) (|(givenName=Lisa)(givenName=James)))

selects all directory entries for the user object class where the given name is either Lisa or James.

86804c24.indd 56986804c24.indd 569 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

570

 Part IV Windows PowerShell

Building a library of AD functions
It can be useful to have functions to wrap the Searcher object. For example, here is a function to
return properties in a more PowerShell-focused way:

Function Get-ADEntryProperties
{ param($Root=””, [String]$Scope=”Subtree”, [String]$Filter)
 $Searcher = New-Object system.directoryServices.DirectorySearcher([adsi]$Root)
 $Searcher.SearchScope = $Scope
 If ($filter) {$Searcher.Filter = $Filter}
 $Searcher.findAll() |
 foreach-object {$p=$_.Properties
 $p.propertyNames |
 foreach-object -begin {$ADObj = New-Object -TypeName System.Object}`
 -process {if ($P.item($_).count -eq 1)
 {Add-Member -inputObject $ADObj -MemberType NoteProperty`
 -Name $_ -Value $P.item($_)[0]}
 else {Add-Member -inputObject $ADObj -MemberType NoteProperty`
 -Name $_ -Value $P.item($_)}
 }`
 -end {$ADObj} }
}

Let’s examine how this function works, line by line.

The function takes root and Scope parameters. Note that by naming these root and scope
instead of using the searchRoot and SearchScope names used by the Searcher object, they can
be identified with -r and –s for easy entry at the command prompt. $root is set to an empty
string if no value is passed for it, and if $scope isn’t passed it is set to Subtree, the final parame-
ter is the filter.

The searcher object is created with a Search Root, the scope is set, and if the filter was passed as a
parameter then the filter property is set on the object Then the findall method is called and the
results piped into a for loop.

For each directory entry retrieved, the function creates a new object and works through the entry’s
property names, adding each one with its associated value to the new object. Because a lot of the
properties are arrays with a single item, there is logic in the loop to strip these items out of the array.
Once all the properties have been processed, one object is returned for each directory entry found.

86804c24.indd 57086804c24.indd 570 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

571

 Working with Active Directory Using ADSI and PowerShell 24

Here are a couple of examples of using the function—first a formatted list of the top-level containers
in the domain:

> Get-ADEntryProperties -root “LDAP://DC=contoso,DC=com” -scope “onelevel” |
 ft name,distinguishedName –a

name distinguishedname
---- -----------------
Builtin CN=Builtin,DC=Contoso,DC=com
Computers CN=Computers,DC=Contoso,DC=com
Domain Controllers OU=Domain Controllers,DC=Contoso,DC=com
ForeignSecurityPrincipals CN=ForeignSecurityPrincipals,DC=Contoso,DC=com
Infrastructure CN=Infrastructure,DC=Contoso,DC=com
LostAndFound CN=LostAndFound,DC=Contoso,DC=com
My OU OU=My OU,DC=Contoso,DC=com
NTDS Quotas CN=NTDS Quotas,DC=Contoso,DC=com
Program Data CN=Program Data,DC=Contoso,DC=com
System CN=System,DC=Contoso,DC=com
Users CN=Users,DC=Contoso,DC=com

Another use would be to export all the objects that matched particular criteria—for example all
computer objects in the domain:

Get-ADEntryproperties -filter “(objectclass=computer)” |
 export-csv computer.csv

The second function returns selected directory entries from AD—either a single item, given its path
(which is doing the same job as the type accelerator), or its children, or all the objects in a branch of
the directory, filtered with an LDAP filter.

Function Get-ADEntry
{ param($Root=””, [String]$Scope=”Subtree”, [String]$Filter)
 $Searcher = New-Object system.directoryServices.
DirectorySearcher([adsi]$Root)
 $Searcher.SearchScope = $Scope
 If ($filter) {$Searcher.Filter = $Filter}
 $Searcher.findAll() | foreach-object {$_.GetDirectoryEntry()}
}

This is a basic form of the function. It hasn’t been written to accept piped input, and doesn’t check
that the search root is a valid string. Even in this short form, it can be put to good use in a variety of

86804c24.indd 57186804c24.indd 571 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

572

 Part IV Windows PowerShell

ways—first getting all the objects within a container, and the objects they contain. Notice that com-
puter entries can be containers, holding Service Connection Point entries.

> Get-ADEntry -root “LDAP://CN=Computers,DC=Contoso,DC=com”
distinguishedName

{CN=Computers,DC=Contoso,DC=com}
{CN=WIN-PQS6KIOLM1W,CN=Computers,DC=Contoso,DC=com}
{CN=Windows Virtual Machine,CN=WIN-PQS6KIOLM1W,CN=Computers,
DC=Contoso,DC=com}
{CN=MSVMM,CN=WIN-PQS6KIOLM1W,CN=Computers,DC=Contoso,DC=com}
{CN=GROMMIT,CN=Computers,DC=Contoso,DC=com}
{CN=Microsoft Hyper-V,CN=GROMMIT,CN=Computers,DC=Contoso,DC=com}
{CN=WALLACE,CN=Computers,DC=Contoso,DC=com}
{CN=Microsoft Hyper-V,CN=WALLACE,CN=Computers,DC=Contoso,DC=com}

The next example just gets the directory entries in the container, without looking at any contents
they might have. (Note that this is not the best way to search for computer objects.)

> Get-ADEntry -root “LDAP://CN=Computers,DC=Contoso,DC=com” `
-scope “OneLevel”
distinguishedName

{CN=GROMMIT,CN=Computers,DC=Contoso,DC=com}
{CN=WALLACE,CN=Computers,DC=Contoso,DC=com}
{CN=WIN-PQS6KIOLM1W,CN=Computers,DC=Contoso,DC=com}

This search filters out the container itself and any grandchildren—it simply returns children. So if
the container has child OUs, it will return them but not the computers they contain. To search just
for computers in this container, you can use the following command:

> Get-ADEntry -root “LDAP://CN=Computers,DC=Contoso,DC=com” `
-filter “(ObjectClass=”Computer)”
distinguishedName

{CN=GROMMIT,CN=Computers,DC=Contoso,DC=com}
{CN=WALLACE,CN=Computers,DC=Contoso,DC=com}
{CN=WIN-PQS6KIOLM1W,CN=Computers,DC=Contoso,DC=com}

And you could get a single entry from a container:

> Get-ADEntry -root “LDAP://CN=Computers,DC=Contoso,DC=com” `
-filter “(name=grommit)”
distinguishedName

{CN=GROMMIT,CN=Computers,DC=Contoso,DC=com}

86804c24.indd 57286804c24.indd 572 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

573

 Working with Active Directory Using ADSI and PowerShell 24

In reality, you probably wouldn’t request the entry named Grommit in the Computers container.
Instead you’d ask for the entry named Grommit anywhere in the domain and, perhaps, qualify it by
filtering down to entries for computer objects, as in the following example:

>(Get-ADEntry -filter “(&(objectclass=computer)(name=grommit))”
).psbase.moveto([ADSI]”LDAP://OU=My OU,DC=Contoso,DC=com”)

This last example uses the moveTo() method of the Directory entry object to move items to a differ-
ent container. Move and some of the other methods are discussed shortly.

Finding related entries in AD
One further kind of query is available through the searcher object, and that is the Attribute
scoped query. The most obvious use for this is checking on group memberships. It works by find-
ing the Search-Root directory entry and examining one of its attributes. The selected attribute
must contain the distinguished names of other entries: the searcher then returns those entries. For
example, you can find the entries that are members of the Built-in Administrators group by using its
member property:

> $searcher.SearchRoot=
 [adsi]”LDAP://CN=Administrators,CN=Builtin,DC=Contoso,DC=com”
> $searcher.SearchScope=”base”
> $searcher.Filter=$null
> $searcher.AttributeScopeQuery=”Member”
> $searcher.FindAll()

Path Properties
---- ----------
LDAP://CN=Administrator,CN=Users,DC=... {primarygroupid, iscriticalsystemobj...
LDAP://CN=Enterprise Admins,CN=Users... {admincount, iscriticalsystemobject,...
LDAP://CN=Domain Admins,CN=Users,DC=... {admincount, iscriticalsystemobject,...

Alternatively, you can discover groups that a user belongs to by using the MemberOf property, as follows:

> $searcher.SearchRoot=[adsi]”LDAP://CN=Administrator,CN=USers,DC=Contoso,
 DC=com”
> $searcher.AttributeScopeQuery=”MemberOf”
> $searcher.FindAll()

Path Properties
---- ----------
LDAP://CN=Administrators,CN=Builtin,... {admincount, iscriticalsystemobject,...
LDAP://CN=Schema Admins,CN=Users,DC=... {admincount, iscriticalsystemobject,...
LDAP://CN=Enterprise Admins,CN=Users... {admincount, iscriticalsystemobject,...
LDAP://CN=Domain Admins,CN=Users,DC=... {admincount, iscriticalsystemobject,...
LDAP://CN=Group Policy Creator Owner... {iscriticalsystemobject, samaccountn...

86804c24.indd 57386804c24.indd 573 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

574

 Part IV Windows PowerShell

Attribute scoped queries can be used anywhere that one entry has a property that points to other
objects: manager/direct reports relationships, for example. It might be useful to create a function
for this:

Function Get-ADReleation
{param($Root, [String]$Property, [String]$Filter)
 $Searcher = New-Object system.directoryServices
 .DirectorySearcher([adsi]$Root)
 $Searcher.SearchScope = “Base”
 $Searcher.AttributeScopeQuery=$property
 If ($filter) {$Searcher.Filter = $Filter}
 $Searcher.findAll() | foreach-object {$_.GetDirectoryEntry()}}

This function can be improved to take input from the pipe, and perform some validation of the
parameters, but as it stands now it can find out memberships and direct reports. For example:

> Get-ADReleation -root “LDAP://CN=James,CN=Users,DC=Contoso,DC=Com” `
 -property “DirectReports”
distinguishedName

{CN=lisa,CN=Users,DC=Contoso,DC=com}

This function can be used as the basis for other functions, for example:

Function Get-ADGroupMemberEntry
{Param ($groupName)
 $root=Get-ADEntry –Filter “(&(name=$groupName)(objectclass=group))”
 Get-ADReleation -root $root -property “Member”}

The function can be used as follows:

> Get-ADGroupMemberEntry “administrators”

distinguishedName

{CN=Administrator,CN=Users,DC=Contoso,DC=com}
{CN=Enterprise Admins,CN=Users,DC=Contoso,DC=com}
{CN=Domain Admins,CN=Users,DC=Contoso,DC=com}

Operations on Directory Entries
Examples you have already seen in this chapter have used the Create and Move methods of the
Directory entry object being used. It doesn’t matter whether the object is obtained using the [ADSI]
Type accelerator or the DirectorySearcher object; the process is the same.

86804c24.indd 57486804c24.indd 574 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

575

 Working with Active Directory Using ADSI and PowerShell 24

Creating objects
As you saw earlier in this chapter, entries have a Create() method, which takes ObjectClass
and Name parameters:

> ([adsi]””).Create(“organizationalUnit”, “ou=My OU”)

Common objects you might want to create include organizational units, users, and groups.

The syntax is $DirectoryEntry.Create(“ObjectClass”, “name”)

If you are not sure about the Object class to use, you can either look at the class of an existing object
of the same type, or you can examine the AD Schema using the ADSIedit utility.

The name is written as the local name within the container. This is normally in the form cn=, the
exception being for Organizational Units. In the distinguished name, they form an ou= element and
this is used in the name, as in the preceding example.

You can get the container, which will hold the new object either using the [ADSI] type accelerator,
as you saw before, or using the DirectorySearcher object—the functions that were defined for in the
previous section to get an entry do exactly that, they could be used in the following code to create a
new user.

$usersContainer= get-adentry –filter “(&(name=users)
(objectclass=container))”
$newUser=$usersContainer.create(“user”,”cn=paul”)
$newUser.put(“SamAccountName”,”Paul”)
$newUser.put(“Description”, “New Starter”)
$newUser.setinfo()

Every item in the directory is an ActiveDirectoryEntry object, even though the entries represent dif-
ferent kinds of objects. In other words, although Users are one class of object and Groups are a dif-
ferent class, they are both represented by directory entries, which are handled in exactly the same
way. The only difference between creating a user and a group is the class name in the create
statement.

$GroupsContainer= get-adentry –filter “(&(name=users)
(objectclass=container))”
$newGroup=$groupsContainer.create(“group”,”cn=Sales”)
$newGroup.put(“SamAccountName”,”Sales”)
$newGroup.put(“Description”, “Sales”)
$newGroup.setinfo()

In both of these examples, you can see that the SAMAccountName property is set; this is the name
used in the form Domain\Name. If it is not set, AD will assign a quasi-random one.

You’ll also notice that if you create a user account in this way it begins life in a disabled state.

86804c24.indd 57586804c24.indd 575 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

576

 Part IV Windows PowerShell

Setting single-valued properties
Active Directory allows the set of attributes to be extended and so to discover some properties it may
be necessary to see what they are set to on an existing entry, or examine the AD Schema using the
ADSIedit utility. In many cases, you can discover information about a property by searching for its
name in the MSDN library (http://msdn.microsoft.com/en-us/library/default.aspx).

There are some properties you will want to set on objects when you create them—for example,
changing the flags on a user account so that the user is able to log on, and setting the user’s pass-
word, SAM Account Name, and User Principal Name. In the case of groups, the AD ObjectClass is
the same whether the group is a Distribution Group or a Security Group and whether its scope is
Domain-Local, Global, or Universal. You set a flag on the group to change its type and scope.
Finally, there are different ways of setting an attribute, depending on whether you are adding a
member to a list or overwriting what is already there.

User Account Control flags
If you examine a newly created directory entry for a user account, you will see it has a property named
UserAccountControl, and by default on a Windows Server 2008 AD domain, this is set to 546
(0x00000222).

The value is made up from the ADS User Flags, which are set as shown in Table 24-3.

TABLE 24-3

ADS user flags
Value Name Meaning

1 SCRIPT Doesn’t apply to AD

2 ACCOUNTDISABLE Account disabled

8 HOMEDIR_REQUIRED Home Directory is required.

16 LOCKOUT The Account is locked out.

32 PASSWD_NOTREQD No Password is required.

64 PASSWD_CANT_CHANGE Read only—ACLs mean user can’t change the password.

128 ENCRYPTED_TEXT_
PASSWORD_ALLOWED

This user can send their password as encrypted text.

256 TEMP_DUPLICATE_ACCOUNT A local account for users from another domain, not
visible to other domains

512 NORMAL_ACCOUNT This is a normal user account.

86804c24.indd 57686804c24.indd 576 1/21/09 1:29:52 PM1/21/09 1:29:52 PM

577

 Working with Active Directory Using ADSI and PowerShell 24

Value Name Meaning

2048 INTERDOMAIN_TRUST_
ACCOUNT

This is an account for a domain trust relationship.

4096 WORKSTATION_TRUST_
ACCOUNT

This is an account for a Member server or Workstation.

8192 SERVER_TRUST_ACCOUNT This is an account for a Domain Controller.

65536 DONT_EXPIRE_PASSWD This User’s password never expires.

131072 MNS_LOGON_ACCOUNT This is a Majority node Set account for fail-over clustering.

262144 SMARTCARD_REQUIRED The user must use a smart card to log on.

524288 TRUSTED_FOR_DELEGATION This is a service account, which can impersonate
other users.

1048576 NOT_DELEGATED This account may not be impersonated by a service
account.

2097152 USE_DES_KEY_ONLY This account must use DES encryption for keys.

4194304 DONT_REQUIRE_PREAUTH Kerberos authentication is not required.

8388608 PASSWORD_EXPIRED Read only—user’s password has expired.

16777216 TRUSTED_TO_AUTHENTICATE_
FOR_DELEGATION

This service account can log on as an impersonated user.

So the default value, 546, is 512 + 32 + 2—ordinary account, no password required, and account
disabled. You can set the value to 512 or 544, when creating the user to enable the account.

Setting passwords
Although it is stored in Active Directory, a user’s password is not accessible as a property. Instead,
there is a setpassword() method, so that you can set a user’s initial password. Having set the
password, you can force the user to change it by setting the pwdLastSet field to 0, for example.

$newuser.SetPassword(“TopSecret!”)
$newUser.put(“UserAccountControl”, 544)
$newUser.put(“pwdlastSet”, 0)
$newUser.setinfo()

Setting group types
There is a similar issue with flags when creating groups; by default, groups are created as Global
security groups. Some changes of scope are allowed after creation but it is better to set the type of
group you want when it is created.

86804c24.indd 57786804c24.indd 577 1/21/09 1:29:53 PM1/21/09 1:29:53 PM

578

 Part IV Windows PowerShell

The flags for the different types of group are:

2 Global Group

4 Local Group

8 Universal Group

2147483648 (0x80000000) Security enabled

To create a group as a security-enabled local group, use the following:

$newGroup=$groupsContainer.create(“group”,”cn=Marketing”)
$newGroup.put(“SamAccountName”,”Marketing”)
$newGroup.put(“Description”, “Marketing Local Group”)
$newGroup.put(“GroupType”, 0x80000004)
$newGroup.setinfo()

Adding to (and deleting from) multivalued properties
Calling the Put() method will overwrite an existing property, and when a property can hold only a
single value, that is exactly what you want to happen. But when a property can be multivalued, you
usually want to append rather than overwrite. There is a “Put-Extended” method, PutEx(). In fact,
there are four operations that you may want to perform, which are chosen by passing a flag to PutEx.

1 Clear Remove the property from the object

2 Update Replace the existing values

3 Append Add extra values to a multi-valued field

4 Delete Remove values from a multi valued field

Note that the properties must be an array, so the following syntax will cause an error:

$newGroup.putex(3, “member”, $newuser.distinguishedName)

The correct syntax is:

$newGroup.putex(3, “member”,@($newuser.distinguishedName))

The same PutEx() syntax can be used with the MemberOf attribute of users and manager and
reports, or even the multivalued phone number fields.

In the example, it is safe to assume that a newly created user is not a member of a newly created
group. However, you should be aware that adding a user to a group they already belong to will
cause an error when the SetInfo() method is called to save the changes. So the following would
be safer in a script:

If (-not($Group.member -contains $user.distinguishedName))
{ $Group.putex(3, “member”,@($user.distinguishedName)) }

86804c24.indd 57886804c24.indd 578 1/21/09 1:29:53 PM1/21/09 1:29:53 PM

579

 Working with Active Directory Using ADSI and PowerShell 24

Moving and deleting objects
You saw earlier that the psbase property of the directory entry object has a MoveTo() method for
moving objects from one place to another. For example:

$usersContainer=get-adentry -f “(&(name=my*)(objectclass=organizational
 Unit))”
$user=get-adentry -f “(&(name=lisa)(objectclass=user))”
$user.psbase.moveto($usersContainer)

There are two ways to delete objects in Active Directory. The simpler, safer way works in a similar
way to create() a first get a container, and then call its delete() method, specifying object class
and name.

$usersContainer=get-adentry -f “(&(name=users)(objectclass=container))”
$newUser=$usersContainer.delete(“user”,”cn=paul”)

The second way is rather more severe because it deletes all the objects below a given point in the
directory, and that is the deleteTree() method of the psbase property. Following on from the
previous example, this will delete both the OU and the user entry that was moved into it.

$usersContainer.psbase.deleteTree()

Testing for the presence of an entry
One final use for the directory entry object is to test to see if a given entry exists. For example, the
following code:

[System.DirectoryServices.DirectoryEntry]::exists(“LDAP://CN=Administr
ator,CN=Users,DC=Contoso,DC=com”)

returns True if the administrator account can be found at its default location and False otherwise.

Summary
This chapter has deliberately set out to be a “warts and all” examination of working with AD in
PowerShell. Some people have said that it is simply too difficult, but you have seen how PowerShell
can be used to carry out most Active Directory tasks, and although there are certainly areas that can
be improved—especially by adding some of the third-party tools that are available—PowerShell is
still a very useful tool for carrying out many AD tasks, especially with the aid of a few lines of script
to automate the parts of the process. It is worth building your own library of functions for specific
tasks you need to carry out; and the ones provided in this chapter can be used as a starting point.

86804c24.indd 57986804c24.indd 579 1/21/09 1:29:53 PM1/21/09 1:29:53 PM

86804c24.indd 58086804c24.indd 580 1/21/09 1:29:53 PM1/21/09 1:29:53 PM

581

PowerShell has the capability to work with all three of the major
kinds of objects in Windows: .NET, COM, and WMI. Windows
Management Instrumentation is a general method for managing

Windows components and applications, both on the local machine and on
other machines over the network.

The number of WMI objects available in current versions of Windows can
seem bewildering at first. We won’t try to list every available WMI object;
rather, we’ll look at how to discover what is available and make use of it in
your own scripts.

First of all, WMI objects are arranged into namespaces. A namespace is a
collection of related WMI objects. The objects belong to classes. And several
instances may exist of each class.

Here’s a simple case of getting the drives on the local computer:

> Get-WmiObject -namespace root\cimv2 -class win32_
logicalDisk

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 5735075840
Size : 99929288704
VolumeName :

Working with WMI
in PowerShell

IN THIS CHAPTER
Basic WMI concepts

Methods for retrieving
WMI objects

Querying remote computers

Exploring connections between
WMI objects

Formatting WMI data

86804c25.indd 58186804c25.indd 581 1/21/09 1:30:06 PM1/21/09 1:30:06 PM

582

 Part IV Windows PowerShell

DeviceID : D:
DriveType : 5
ProviderName :
FreeSpace :
Size :
VolumeName :

DeviceID : E:
DriveType : 2
ProviderName :
FreeSpace : 106528768
Size : 1018822656
VolumeName :

As you can see, each Logical disk object has a DeviceID—the drive letter, a Drivetype—that indi-
cates whether it is a hard disk, CD/DVD, and so on.

It is often necessary to look up information about the WMI object returned, and the best place is
Microsoft’s MSDN website. If you go to http://msdn.microsoft.com/library and search for
“Win32_LogicalDisk class” you will get a complete list of the properties and methods available, and
an explanation of what each does, including a table of the drive types.

The command line in the preceding code is deliberately verbose. In most situations, it could simply
be written as:

Gwmi win32_logicalDisk

Get-WMIObject has an alias, GWMI. If only one parameter is passed to it without naming it, then it
is assumed to be Class. In this shortened version, the –Namespace has been omitted. Windows
has a default namespace and this starts as one named root\CIMv2, but it can be changed from the
computer management MMC console.

Figure 25-1 shows how to configure the default WMI namespace.

If most of your WMI work is with a different namespace, you can make that one the default to save
you from having to enter it at the command line again and again. Of course, this carries the risk that
any script that assumes that the default namespace hasn’t been changed will break. So when writing
a script, it is always best to explicitly specify the namespace. If you are working at the command
line, you can dispense with it and with the –Class parameter label.

86804c25.indd 58286804c25.indd 582 1/21/09 1:30:06 PM1/21/09 1:30:06 PM

583

 Working with WMI in PowerShell 2

FIGURE 25-1

Configuring the default WMI namespace.

Displaying WMI Information
One of the common things you want with WMI is to get some information and report it (or a subset
of it) in a nicely formatted way. This is where PowerShell’s format-table Cmdlet can be a great
help, and it is worth taking a moment to look at some techniques we use with format-table
before you move on to look at more sophisticated ways of querying WMI.

The simplest way to use format-table is just to pipe the objects output from one command into it.
Often, output is more readable if the columns are sized automatically, with the -autosize switch.
For example:

>Get-WmiObject –class win32_logicalDisk | format-table -autosize

DeviceID DriveType ProviderName FreeSpace Size VolumeName
-------- --------- ------------ --------- ---- ----------
C: 3 5708292096 99929288704
D: 5
E: 106528768 1018822656

86804c25.indd 58386804c25.indd 583 1/21/09 1:30:06 PM1/21/09 1:30:06 PM

584

 Part IV Windows PowerShell

As with most PowerShell Cmdlets, Format-Table has an alias to reduce the amount of typing
needed when working interactively. FT can be used as an alias for Format-Table and the
-Autosize can be shortened to simply -a.

It’s quite rare that the default properties are the ones that are actually wanted. So Format-Table
will usually be called with the -property switch, as follows:

> Get-WmiObject win32_logicalDisk | format-table `
 –property deviceID,drivetype,filesystem,freespace -autosize

deviceID drivetype filesystem freespace
-------- --------- ---------- ---------
C: 3 NTFS 6190678016
D: 5
E: 2 FAT 106528768
Z: 4

This is all fine—except that DeviceID isn’t great as a column name, driveType isn’t very easy to
understand, and FreeSpace isn’t very easy to read—so not that fine at all really. Format-Table
(and other PowerShell Cmdlets that accept lists of properties, such as Select-Object) can create
custom fields. These are defined using PowerShell’s hash table syntax with a label part and an expres-
sion part. The simplest kind of custom field changes the column heading, like this:

@{label= “drive”; expression={$_.DeviceID} }

The next simplest custom field is one that reformats text. Because PowerShell text strings are .NET
text strings, PowerShell can access all the formatting available in .NET. Other types—such as the
Unsigned 64 bit integer used for FreeSpace, have a ToString() method, which can take a format-
ting string, as follows:

@{Label=”Free-Space”; Expression={$_.freeSpace.tostring(“#,###”)}}

However, because the expression is a PowerShell code block, it can contain long and intricate pieces
of code. Examples of tricks you can use with custom fields appear in Chapters 21 and 30.

People who are moving over to PowerShell from scripting in Visual Basic, for example, might write
something like this to output the list of drives:

$MyDrives= Get-WmiObject win32_logicalDisk
Write-host “deviceID drivetype filesystem freespace”
Foreach ($Drive in $mydrives) {
 $DriveLetter=$Drive.DeviceID.padRight(5)
 switch ($Drive.DriveType) {0 {$Dt=”Unknown “}
 1 {$Dt=”No Root Directory “}
 2 {$Dt=“Removable disk ”}
 3 {$Dt=“Local disk “}
 4 {$Dt=“Network drive ”}
 5 {$Dt=“Compact Disk ”}
 6 {$Dt=“RAM Disk “}}

86804c25.indd 58486804c25.indd 584 1/21/09 1:30:06 PM1/21/09 1:30:06 PM

585

 Working with WMI in PowerShell 2

 If ($Drive.FileSystem –ne $null) {
 $filesystem = $Drive.FileSystem.PadRight(10)}
 Write-host $DriveLetter,$dt,$filesystem,$drive.freespace }

Most of what you see here is doing work that could be done by Format-Table—indeed, a For loop
to generate output is a sure sign of someone new to PowerShell. But what about the Switch? That
can go in the expression code block for a custom property in Format-List or Format-Table, but
there is a more compact way of doing the same thing, using one of PowerShell’s built-in features—
the hash table or associative array, which can be declared and accessed like this:

>$days=@{“January”=31;”February”=28;”March”=31;”April”=30;”June”=30}
>$days[“January”]
31

The preceding two lines can be joined to form a single line—although in this case you are looking
for the name of a drive type based on the value in the drive type property:

 @{ 0= “Unknown”; 1=“No Root Directory”; 2=“Removable Disk”;
3=“Local Disk” ; 4= “Network Drive”; 5=“Compact Disc”;
6=“ RAM Disk”}[[int]$drive.DriveType]

And this can be put into an expression in a Format-Table—so now you have a more complex
Format-Table line. Although this wraps down multiple lines in print (and you can split lines for
readability), this function is one line:

Function Get-DiskInfo
{Get-WmiObject –nameSpace “root\cimv2” –class win32_logicalDisk |
 format-table -autosize –property
 @{label=”Drive”; expression={$_.DeviceID}}, Filesystem,
 @{label=”DriveType”; Expression={@{0=”Unknown”;
 1=”No Root Directory”; 2=”Removable Disk”; 3=”Local Disk”;
 4=”Network Drive”; 5=”Compact Disc”;
 6=”RAM Disk”}[[int]$_.DriveType] }},
 @{Label=”Free-Space”;Expression={$_.freeSpace.tostring(“#,###”)}}
 }

If you are working with the same class of object that you want to display in a specific format, you
can define an XML file for it, as shown in Chapter 21 in the section “Changing How PowerShell
Formats Objects.”

In that section, the Win32_logical disk object is one that has a predefined XML entry, but you
can define your own XML file to override defaults. To get the same result as the function in the
example, the XML would look like this:

<Configuration><ViewDefinitions><View>
 <Name>process</Name>
 <ViewSelectedBy>

86804c25.indd 58586804c25.indd 585 1/21/09 1:30:06 PM1/21/09 1:30:06 PM

586

 Part IV Windows PowerShell

 <TypeName>System.Management.ManagementObject#root\cimv2\win32_logicalDisk
 </TypeName>
 </ViewSelectedBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Label>Drive</Label><Width>5</Width><Alignment>right</Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>DriveType</Label><Width>20</Width><Alignment>right</Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Free Space</Label><Width>20</Width><Alignment>right</Alignment>
 </TableColumnHeader>
 </TableHeaders>
 <TableRowEntries><TableRowEntry><TableColumnItems>
 <TableColumnItem>
 <PropertyName>DeviceID</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>@{0=”Unknown”; 1=”No Root Directory”; 2=”Removable Disk”;
 3=”Local Disk”; 4=”Network Drive”; 5=”Compact Disc”;
 6=”RAM Disk”}[[int]$_.DriveType] </ScriptBlock>
 </TableColumnItem>
 <TableColumnItem>
 <ScriptBlock>$_.freeSpace.tostring(“#,###”) </ScriptBlock>
 </TableColumnItem>
 </TableColumnItems></TableRowEntry></TableRowEntries>
 </TableControl>
</View></ViewDefinitions></Configuration>

This approach is useful when you are writing functions that query WMI to produce something
which is then piped into another function. Otherwise you need one function to get objects and a
second function to output them nicely.

Querying WMI
In the previous section, you saw that Get-WMIObject could retrieve all the instances of a particular
class of object. In fact, beneath the surface Get-WMIObject is using a SQL-like syntax—the WMI
Query Language (WQL). There are two ways of writing the queries.

86804c25.indd 58686804c25.indd 586 1/21/09 1:30:06 PM1/21/09 1:30:06 PM

587

 Working with WMI in PowerShell 2

Choosing to how to write the query
One method to get WMI objects is to write select statements in WQL. For example:

Get-WMIObject –Query “Select * From WIN32_LogicalDrive”

The other is one you have seen already: the -Class parameter.

Get-WMIObject –Class WIN32_LogicalDrive

These two commands are equivalent and make the same query of WMI. WQL uses the same Where
clause structure as conventional SQL, allowing queries like this:

Get-WMIObject –Query “Select * From WIN32_LogicalDrive where DeviceID=’C:’”

What about the same thing in the –Class syntax? One way to do this would be to use PowerShell’s
where-object Cmdlet:

Get-WMIObject –Class WIN32_LogicalDrive | where-object {$_.DeviceID -eq “C:”)

Note that PowerShell’s where-object Cmdlet uses the –eq operator for “is equal to” where WQL
uses the equal (=) sign, even when it is invoked from PowerShell.

There are cases where it is necessary to use Where-Object—for example, when searching for a reg-
ular expression with the –match operator, which has no equivalent in WQL. But as a rule it is best
to avoid using Where-Object if criteria can be specified at the get stage. To understand why, imag-
ine that instead of retrieving one drive from a list of five, you are querying Win32_UserAccount
objects on a domain controller to find one user among 5,000 or even 50,000. Obviously, a form that
retrieves many objects and passes every one into where-object only to throw most of them away
is much less efficient than one that returns only the required objects in the first place, which is what
the where WQL clause does.

Just as the –Class switch is, in effect, a way of specifying a FROM clause, Get-WMIobject has a
-Filter switch to specify a WHERE clause, and a -Property switch to handle selecting fields. For
example, the following:

Get-WmiObject -Property freeSpace, Filesystem `
 -class win32_logicalDisk -filter “deviceID=’C:’”

is identical to:

Get-WmiObject -query “Select freeSpace, Filesystem from win32_logicalDisk
where deviceID=’C:’”

Sometimes when PowerShell offers two ways of carrying out the same task, it is easy to see which
circumstances favor one method and which favor the other. For example, one might mean less typ-
ing when entering commands interactively at the prompt, and the other might make a script easier

86804c25.indd 58786804c25.indd 587 1/21/09 1:30:06 PM1/21/09 1:30:06 PM

588

 Part IV Windows PowerShell

to understand. In this case, any query that has a Select...From...Where structure, can be writ-
ten using the -class, -filter, -property form of Get-WMIObject. Only a few special queries
that don’t use Select must be written in WQL form; for the majority it is a matter of personal
choice: any script that builds a where clause can also build a -filter parameter and so on.

Finding WMI objects by association
So what are the WQL queries that don’t use SELECT? WMI allows objects to define associations—
relationships with each other—and these can be queried with WQL using the Associators of
and References of statements. The most common use is to get one object and then get those asso-
ciated with it, like this:

> $CDrive=(Get-WmiObject -query “Select * from win32_logicalDisk where
deviceID=’C:’”)
>Get-WmiObject -query “ASSOCIATORS OF {$CDrive}”

Hidden :
Archive :
EightDotThreeFileName :
FileSize :
Name : c:\
Compressed :
Encrypted :
Readable : True

NumberOfBlocks : 195174400
BootPartition : True
Name : Disk #0, Partition #1
PrimaryPartition : True
Size : 99929292800
Index : 1

Domain : Contoso.com
Manufacturer : Dell Inc.
Model : Latitude D820
Name : JAMES-2008
PrimaryOwnerName : James
TotalPhysicalMemory : 3486859264

The associators of statement uses the WMI path to the object, but when the string is wrapped
in double quotes, PowerShell expands the variable $CDrive to its path. In other words:

“ASSOCIATORS OF {$CDrive}”

is the same as:

‘ASSOCIATORS OF {\\JAMES-2008\root\cimv2:Win32_LogicalDisk.DeviceID=”C:”}’

86804c25.indd 58886804c25.indd 588 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

589

 Working with WMI in PowerShell 2

Connected items can be retrieved based on the nature of the connection, and the references of state-
ment is helpful in discovering information about the relationships. Because the links between objects
form many-to-many relationships, objects only rarely have properties to point to other, connected objects.
Instead, WMI uses an intermediate object type—for example, a Win_32LogicalDisk RootDirectory
object joins a Win32_logicaldisk object to the Win32_directory object, which represents its root
directory. These association classes define roles for objects, which they connect—the most common one
being to say that one is a part that is contained by the other—which is a container.

The following diagram shows the relationships for the three objects connected to the Logical disk in
the preceding example.

Win32_logicaldisk Links through Win32_
LogicaldiskRootDirectory
(AssocClass)

To Win32_directory
(ResultClass)

Win32_logicaldisk Links through Win32_
LogicalDiskToPartition
(AssocClass)

To Win32_DiskPartition
(ResultClass)

Win32_logicaldisk Links through Win32_SystemServices
(AssocClass)

To Win32_computerSystem
(ResultClass)

Win32_LogicalDisk Is a part of Win32_computerSystem

Win32_LogicalDisk Is a group
containing

Win32_Directory

Win32_LogicalDisk Is a dependent of Win32_DiskPartition

You can discover the association classes in the middle by using the references of statement; for
example:

>Get-wmiobject –Query “references of {$cdrive}”

__CLASS : Win32_LogicalDiskRootDirectory
GroupComponent : \\JAMES-2008\root\CIMV2:Win32_LogicalDisk
 .DeviceID=”C:”
PartComponent : \\JAMES-2008\root\cimv2:Win32_Directory.Name=”C:\\”

__CLASS : Win32_SystemDevices
GroupComponent : \\JAMES-2008\root\cimv2:Win32_ComputerSystem
 .Name=”JAMES-2008”
PartComponent : \\JAMES-2008\root\cimv2:Win32_LogicalDisk
 .DeviceID=”C:”

__CLASS : Win32_LogicalDiskToPartition
Antecedent : \\JAMES-2008\root\cimv2:Win32_DiskPartition
 .DeviceID=”Disk #0, Partition #1”
Dependent : \\JAMES-2008\root\cimv2:Win32_LogicalDisk
 .DeviceID=”C:”
EndingAddress : 100028907519
StartingAddress : 99614720

86804c25.indd 58986804c25.indd 589 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

590

 Part IV Windows PowerShell

With an understanding of these relationships, it is easier to understand the special WHERE terms
used by the associators of statement. Although it uses the same where keyword, the clause is
different from the Where clause in a Select statement in the following ways:

Properties of the WMI object can’t be used; fields have to be part of the association ref-■

erence. They include AssocClass and ResultClass, ResultRole and Role, and
ClassDefsOnly.

The only operator that can be used in a ■ where clause is =. (There is no “like,” and no <>.)

Terms being sought are not enclosed in quotes (that is: ■ where ResultClass= Win32_
Directory, not where ResultClass= ‘Win32_Directory’).

Where multiple parts are specified, there is an implied ■ AND, the AND is not written, and
there is no option to specify OR or NOT.

The first example of an associators of query you saw was:

Get-WmiObject -query “ASSOCIATORS OF {$CDrive}”

It would be unusual to ask “What objects are connected with this object in any way?” This command
returns three different types of objects. The classes of the result objects can be discovered using an
Associators of query with a where classDefsOnly clause. The classes of the intermediate asso-
ciation objects can be discovered with a references of query with the same where ClassDefs
only clause.

> get-wmiobject -query “ASSOCIATORS OF {$cdrive} where classdefsonly”

Win32_Directory Win32_ComputerSystem
Win32_DiskPartition

> get-wmiobject -query “references OF {$cdrive} where classdefsonly”

Win32_LogicalDiskRootDirectory Win32_SystemDevices
Win32_LogicalDiskToPartition

When a script needs to find an object by association, generally we know the class of that object. For
example, we know we want the disk partition for drive C: , so Associators of is called with a
where clause, which specifies the ResultClass—the Win32_diskPartition class.

get-wmiobject -query “ASSOCIATORS OF {$cdrive} where ResultClass=
Win32_DiskPartition”

Some types of connections can link to more than one type of object, and because these queries do
not support the use of OR, the objects cannot be retrieved by specifying multiple result classes in a
Where clause. In this case, the objects can be found using AssocClass in the Where clause and
specifying the intermediate object discovered with a references of query.

86804c25.indd 59086804c25.indd 590 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

591

 Working with WMI in PowerShell 2

Here’s how the same query would be written based on the type of association that links the objects,
rather than the type of the result object:

get-wmiobject -query “associators OF {$cdrive} where AssocClass=
Win32_LogicalDiskToPartition”

Each reference object contains two properties, which define the nature of relationship. In the preceding
example, Win32_LogicalDiskRootDirectory and Win32_SystemDevices define a link between a
PartComponent and a GroupComponent that contains it, and the Win32_LogicalDiskToPartition
object defines a link between an Antecedent (parent) and a Dependent (child).

So it is also possible to find an object by specifying the role of the starting object, or the resultRole
result object, so testing for role=groupComponent is the same as testing for resultRole=
PartComponent, and vice versa.

For example, one can find the objects contained within the WIN32_computer:

> $pc= get-wmiobject win32_computerSystem
>get-wmiobject -query “associators OF {$pc} where role=groupcomponent
classdefsonly”

Win32_BIOS Win32_LoadOrderGroup
Win32_UserAccount Win32_SystemDriver
Win32_Process Win32_Service
Win32_OperatingSystem Win32_Environment
Win32_DMAChannel Win32_IRQResource
Win32_DeviceMemoryAddress Win32_PortResource
Win32_MotherboardDevice Win32_Bus
Win32_SoundDevice Win32_PnPEntity
Win32_1394Controller Win32_Battery
Win32_IDEController Win32_PortableBattery
Win32_POTSModem Win32_Printer
Win32_Processor Win32_CDROMDrive
Win32_DiskDrive Win32_DiskPartition
Win32_Fan Win32_Keyboard
Win32_LogicalDisk Win32_MappedLogicalDisk
Win32_MemoryArray Win32_MemoryDevice
Win32_PCMCIAController Win32_PointingDevice
Win32_SCSIController Win32_NetworkAdapter
Win32_USBController Win32_USBHub
Win32_Volume Win32_CacheMemory
Win32_DesktopMonitor Win32_TemperatureProbe
Win32_VideoController Win32_SerialPort
Win32_NetworkConnection

86804c25.indd 59186804c25.indd 591 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

592

 Part IV Windows PowerShell

The WMI Type Accelerators
In addition to the different forms of querying for an object, PowerShell implements a type accelera-
tor for WMI.

 You may have seen Type Accelerators within PowerShell without even realizing it. For example:

[■ String]123 converts the number 123 to a text string: “123”

[char[]][String]123■ converts that to an array of characters, “1”, “2”, “3”

Byte[]] [char[]][String]123■ coverts it to a byte array with ASCII representations of
“1”, “2”and “3”, the numbers 49, 50, and 51.

Putting [WMI] in front of something returns a WMI object—but what can it convert? The answer is
that every WMI object has a unique path that identifies it, which is in the form:

\\Server\namespace:Class.identifier

The identifier might be some kind of DeviceID, or process handle, or any other property of the
object that is unique, the most common one being Name. For example:

([wmi]’\\JAMES-2008\root\cimv2:Win32_ComputerSystem.Name=”JAMES-2008”’)

The preceding code returns the same object as:

Get-WmiObject –computerName James-2008 –namespace root\cimv2 –query
“Select * from Win32_computersystem where name=’James-2008’ ”

The second syntax is generally easier to read and supports filters and passing of multiple objects;
-computerName can be an array of computers. But there are cases where it is necessary to use the
path—for example, when one WMI object gives a path as a reference to another object.

An example of this is in Windows Server 2008 Hyper-V. Hyper-V is Microsoft’s new virtualization
technology, which allows a single computer to be divided into multiple Virtual Machines, each of
which runs its own operating system. Hyper-V doesn’t include any PowerShell Cmdlets, but it does
provide a lot of WMI objects. A Virtual Machine object has an associated hard disk object, objects
that represent memory, network cards, and so on.

Some of the WMI objects for Hyper-V include methods that start a job running in the background—
for example, saving the state of a Virtual Machine, or compacting a Virtual Hard Disk file. There is a
WMI object to represent the job, and the path to this object is returned by the method that sets the
job in motion.

Scripts to check the State property of the WMIJob object have been posted in several places. Here
is a PowerShell function to do it.

86804c25.indd 59286804c25.indd 592 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

593

 Working with WMI in PowerShell 2

Function Test-WMIJob
{param ([String]$JobID, [Switch]$Wait)
 $Job = [WMI]$JobID
 if ($job -ne $null) {
 while (($job.jobstate -eq 4) -and $wait) {
 Start-Sleep -seconds 1
 $Job.PSBase.Get() }
 @{2=”New”; 3=”Starting”; 4=”Running $($job.PercentComplete)%”;
5=”Suspended”; 6=”Shutting Down”; 7=”Completed”; 8=”Terminated”;
9=”Killed”; 10=”Exception”; 11=”Service”}[[int]$Job.JobState]
}}

Reviewing this line by line:

The function takes a ■ –Wait switch, and a -JobID parameter, which is expected to be a
string, and is immediately converted to a WMI object.

Assuming an object was found, the function checks its ■ JobState property.

If this is 4, “Running,” and the ■ wait switch was specified, it goes into a loop of sleeping for
1 second, and checking the job again.

Finally it uses a hash table to translate the ■ JobState property to text—the technique that
was introduced in Chapter 4.

PowerShell version 1 does not make all the methods available from the WMI object accessible directly
as properties of the PowerShell object, so PSBASE is used to get to the methods of the underlying
object—as in the Get(), which is used to check for the updated state of the job.

There is a second WMI type accelerator, [WMICLASS], which returns an object that describes the
class, including a list of the classes properties and methods. For example, you can see all the proper-
ties defined on an account object:

> ([wmiclass]”\\.\root\cimv2:Win32_account”).psbase.properties |
 Format-Table -Property name,type -autosize

Name Type
---- ----
Caption String
Description String
Domain String
InstallDate DateTime
LocalAccount Boolean
Name String
SID String
SIDType UInt8
Status String

The path used includes the computer name (“.” indentifies the local computer in the example) so it is
possible to see classes that are defined on remote computers.

86804c25.indd 59386804c25.indd 593 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

594

 Part IV Windows PowerShell

The object returned by [WMIClass] always includes a method named createInstance, but
whether this can be used to create an object in the underlying OS depends on the object. For
example, the following code:

$CPU=([wmiclass]”\\.\root\cimv2:Win32_processor”).createInstance()

creates an object that describes a processor. Obviously, it can’t add a CPU to the system, and trying
to save the newly created object back to the OS will fail. For logical objects—such as user accounts—
whether a new objected can be saved (with the Put() method described later) depends on how the
WMI provider is implemented. In the case of accounts, WMI does not let us circumvent the normal
account creation methods. Here, and in several situations when working with WMI objects, you
need a knowledge of the object itself. For objects that are part of the operating system, the informa-
tion is found on Microsoft’s MSDN website. Links do change on the site so the easiest way to find
information is to search at http://msdn.microsoft.com/library.

Querying Across Computers
So far all the queries in this chapter have run on the local computer. In the previous section, you saw
that the paths used by the PowerShell type accelerators contain the name of the target computer. The
Get-WmiObject Cmdlet supports a -computerName parameter that allows it to run across multiple
computers—assuming that the firewall rules on the destination computer allow it. By default, rules
in the Remote Administration firewall group are disabled and need to be enabled—either through
the management console or with a NetSh command. The following is the version for Server 2008
(including Server core); other operating systems may vary:

netsh advfirewall firewall set rule group=”Remote Administration” new
enable=yes

In the Get-WmiObject command, the –computerName switch routes the WMI command to
another server. PowerShell has a principle that if multiple items can be gracefully supported, then
they should be, so the computer name can actually be an array of names.

Get-WmiObject –computerName LocalHost,James-2008 -namespace root\cimv2 `
 -class win32_logicalDisk

The name Localhost or a dot (.) character can be used to represent the local machine. When writ-
ing PowerShell functions and filters that use WMI, it is a good practice to accept the computer name
as a parameter and default it to “.” as in the following example, which retrieves virtual machines
running under Hyper-V on server 2008.

Function Get-VM
{Param ($Name=”%”, $Server=”.”)
 $Name=$Name.replace(“*”,”%”)
 $WQL=”Select * From MsVM_ComputerSystem Where ElementName Like ‘Name’
AND Caption Like ‘Virtual%’ “
Get-WmiObject -computername $Server -NameSpace “root\virtualization”
-Query $WQL
}

86804c25.indd 59486804c25.indd 594 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

595

 Working with WMI in PowerShell 2

You can see that the function doesn’t use the name ComputerName for any of its parameters—this
function is part of a wider library, and in different places ComputerName might mean the virtual
machine or the server hosting the virtual machine. In addition, there is a piece of general advice:

GET Cmdlets should support -NAME. A VERY large percentage of the time people do a
GET, they want a specific item or a set of NAMED items so you should hotrod this
experience by directly supporting it. NAME should take multiple inputs and support
wildcards, e.g., “get-process -name *ss,a*”

—Jeffrey Snover, writing on the PowerShell blog

In the function as shown, there is no support for multiple names for the virtual machines (although
other functions in the same library do support arrays of names, but do so by calling Get-VM for each
one). However, it does support wildcards. The function anticipates that people will want to write Core*
for machines beginning “core” rather than following the WQL and SQL convention of Core% for a wild-
card. So it replaces * with %. If the server parameter holds multiple names, then Get-WmiObject will
be invoked with those names, and no special coding needs to be done to support multiple servers. To
ensure that function works when no server is specified it defaults the parameter to “.”

You can see it also creates a variable, WQL, to hold the query. The full version of the function has
additional switches—-Running, -Stopped, and -Supsended—which extend the query so it only
returns virtual machines in one of those states.

There is one final point to make about this function: it returns the objects in their natural state,
which makes it easy to pipe its output into another command. For example, to put running VMs
into a suspended (saved) state, the full version of the function supports this command line:

Get-vm –running | suspend-VM

Unless some formatting XML is loaded (see the section “Changing How PowerShell Formats Objects”
in Chapter 21) the raw WMI object will be displayed. This makes Get-VM’s output when used on its
own a little ugly. The alternatives are:

Write a format XML file and load it when needed.■

Give ■ Get-VM a –Formatted switch, so sometimes it outputs objects and sometimes not.

Write a “List-VM” function, which produces formatted output.■

Logging on to the remote computer
WMI will pass the logged-on user’s credentials through to another computer but if these are not the
required ones, a –credential switch can be used, either with a string containing a user name
(which will cause the user to be prompted for a password), or a variable that holds credentials
securely. A script can use:

$MyCred = Get-Credential

And PowerShell will prompt the user for logon details. Thereafter, all the Get-WmiObject com-
mands can use -Credential $myCred. However, there is a limitation that credentials can’t be

86804c25.indd 59586804c25.indd 595 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

596

 Part IV Windows PowerShell

passed to the local computer. If a script needs to pass credentials to remote servers and retrieve
information from the local server, two different forms of the command need to be specified, one
without the -credential switch for the local machine and one with the switch for remote ones.
Because the local machine can be specified using “LocalHost” or any other alias, its short name,
fully qualified domain name, or IP address, or simply “.”, trapping this can be awkward.

Discovering WMI Objects
So far, this chapter has assumed that you know which objects you want to get using the Get-WMIObject
Cmdlet. WMI objects are documented on Microsoft’s MSDN website but sometimes it is necessary to
browse and discover the objects that might be used to accomplish a task. Sometimes a known object
will lead to a desired one using associators of, as seen earlier in this chapter, but at other times it
may be necessary to explore a namespace, and examine objects to discover whether something you
want to use in script is available as an object.

One of the first questions to answer is, “What namespaces are available on this computer?”

The root namespace has a __namespace class, so to get a list of the available namespaces, you can
get those objects, like this:

Get-WmiObject -Namespace root -class __namespace | Select-Object name

When you know the available namespaces, it is then possible to list the classes they contain. For
example, this will give a list of all the object types in the root\cimV2 namespace:

Get-WmiObject -Namespace root\cimV2 -list | Sort-Object -Property name

It is sometimes useful to filter out the names that begin with two underscore characters. For example,
the following will dump out an entire namespace to a file that can then be studied to find a property,
a name, or a known value—but only with the “real” properties, not the “housekeeping” ones.

> $ns=”root\securityCenter”
> Get-WmiObject -Namespace $ns -list | where-object {$_.name -notmatch
“__”} | foreach-object {GetWmiObject -Namespace $ns -class $_.name} >
temp.txt

WMI Object Properties
All WMI objects have some common properties that are used for the internal housekeeping—these
properties begin with two underscore characters and include the object’s class, __NAMESPACE, __
PATH (which was used with the [WMI] type accelerator earlier in this chapter), and __SERVER (the
computer which generated it). The __Server property is useful when a PowerShell function is passed
a WMI object and can’t be sure which server that object came from and needs to get a related object.
For example, when managing Server-2008 Hyper-V remotely, $VM might point to a virtual machine
running on a remote server; an associators of query can be used to get the Settings object for

86804c25.indd 59686804c25.indd 596 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

597

 Working with WMI in PowerShell 2

that virtual machine, but only if it is run against the correct server, so the command to run the query
uses the __Server property of $VM to direct it to the right server:

Get-WmiObject -ComputerName $vm.__Server -NameSpace “root\
virtualization” -Query “Associators Of {$VM} Where ResultClass =
MsVM_VirtualSystemSettingData”

The __class property can be useful for checking that the right kind of WMI object has been passed
to or returned from a function; PowerShell can test the type of a parameter or variable but only to
the level of knowing it is a WMI object—not the WMI class the object represents—using code simi-
lar to this:

if ($VM -is [System.Management.ManagementObject]) {do something}
else {write-host “A WMI object was needed”}

Updating WMI Objects
The properties of WMI objects seen in PowerShell are static—that is, if the underlying object
changes, WMI doesn’t have a method to automatically propagate that change through to a variable in
PowerShell. (In fact, in version 1, PowerShell can’t respond to any kind of event from WMI.) To work
around this, the objects have an underlying GET() method, which you saw in the test-wmiJob
function. If the GET() were omitted then this function would loop forever.

Properties can be flagged read-only or read-write—but PowerShell treats all properties as read-
write. When the PUT() method is called to write back updated properties, then only the writeable
properties are committed. This can be confusing because superficially PowerShell lets you do impos-
sible things with WMI properties. Earlier, you retrieved a logical disk object so you could try setting
its free space through WMI. Clearly that makes no sense. You can’t make more space on the disk
just by saying “Make it so” and yet it appears that you can.

> $cdrive

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 8255655936
Size : 99929288704
VolumeName :

> $cdrive.FreeSpace=100GB
> $cdrive

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 107374182400
Size : 99929288704
VolumeName :

86804c25.indd 59786804c25.indd 597 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

598

 Part IV Windows PowerShell

So it appears this disk—which is only 93GB in size—now has 100GB of free space, which is, of
course, impossible. You can even save this information back. (Note that this will only work if the
PowerShell session is running with administrative privileges.)

> $cdrive.put()

Path : \\localhost\root\cimv2:Win32_LogicalDisk.DeviceID=”C:”
RelativePath : Win32_LogicalDisk.DeviceID=”C:”
Server : localhost
NamespacePath : root\cimv2
ClassName : Win32_LogicalDisk
IsClass : False
IsInstance : True
IsSingleton : False

> $cdrive

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 107374182400
Size : 99929288704
VolumeName :

Only by using the GET() method can you see that the property was never saved back.

> $cdrive.psbase.get()
> $cdrive

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 8255655936
Size : 99929288704
VolumeName :

Other properties can be changed simply by setting them to something else and calling the Put()
method, which writes them back. Some can only be changed by calling special purpose methods.
For example, in the preceding examples, you can see that the volume name is blank. You can set the
volume name, save it using Put(), and verify it has been saved with Get().

> $cdrive.VolumeName=”Windows_Boot”
> $cdrive.Put()

Path : \\localhost\root\cimv2:Win32_LogicalDisk.DeviceID=”C:”
RelativePath : Win32_LogicalDisk.DeviceID=”C:”
Server : localhost
NamespacePath : root\cimv2
ClassName : Win32_LogicalDisk

86804c25.indd 59886804c25.indd 598 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

599

 Working with WMI in PowerShell 2

IsClass : False
IsInstance : True
IsSingleton : False

> $cdrive.get
> $cdrive

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 8257511424
Size : 99929288704
VolumeName : Windows_Boot

Other properties can be changed only by calling methods specially provided. For example, the
win32_computerSystem object has Name and Domain properties. You can change the domain of a
computer or its name, but not by simply setting them to their new values and calling Put(). Instead
there are methods named JoinDomainOrWorkgroup(), UnjoinDomainOrWorkgroup(), and
Rename() and these handle the complexities of, for example, specifying an account, which can be
used to join the domain.

WMI Object Methods
Many WMI objects don’t implement any methods aside from Get() and Put(). For those objects
that are part of Windows, the objects are documented on MSDN, with an entry for each method
explaining what parameters it takes and what it returns; it is usually easiest to find the details by
searching at http://msdn.microsoft.com/library.

There are two ways to invoke a method: the most common is to call it with the “dotted” notation, as
follows:

$cdRes=$cdrive.chkdsk($false,$false,$false,$false,$false,$false)

$cdRes has a .returnValue property, and may have additional properties depending on the
method; for example, some of the methods used to manage Hyper-V return a value to say they have
started a process and then have a Job property, which allows the process to be tracked.

There is an alternative syntax, which some people find easier to use, and that is to call the underly-
ing InvokeMethod method of the WMI object. This uses a single array of arguments for passed and
returned parameters. For example:

$arguments=@($false,$false,$false,$false,$false,$false)
$chkres=$cdrive.psbase.invokemethod(“chkdsk”,$arguments)

$chkres holds the value that was in $cdres.returnValue in the previous example. With this syn-
tax, a value returned—such as the job in the Hyper-V case—will be found in the arguments array.

86804c25.indd 59986804c25.indd 599 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

600

 Part IV Windows PowerShell

A Case Study for WMI: Server 2008 Hyper-V
Hyper-V, the virtualization stack for Windows Server 2008, does not provide a command-line inter-
face, but it does provide a large number of WMI objects, which can be used from PowerShell. In
writing a library, to manage Hyper-V from PowerShell, the same WMI techniques were used again
and again.

Hyper-V defines many object classes to handle different aspects of a virtual machine, and it defines
three important management classes. The Image Management Service deals with virtual hard disks,
the Virtual System Management Service deals with the virtual machines, and the Virtual Switch
Management Service handles networking. Generally, to find information about a Virtual Machine
you need to call Get-WMIObject with the right query. The put() method is not used to saving
changes; instead, to create, change, or delete something, the management services are used.

To get a piece of information about a Virtual Machine, or to change it, an MSVM_ComputerSystem
object is usually required. Often the difficult part of writing functions is trying to anticipate how the
user wants to invoke them, and what he or she expects to be returned. Typically, the user might
want to pass a name of a virtual machine, rather than the WMI object that represents it. Consider
the simple case of starting VMs. The user might want to call the following:

Start-VM London-DC
Start-VM –server HVtest1 –VM London-DC
Start-VM London-DC,Paris-DC,NewYork-DC,Munich-DC
$myDCList= “London-DC”,”Paris-DC”; Start-VM $MyDCList
Start-VM *DC –Server HvTest1,HvTest2
Get-vm *DC –Server HvTest1,HvTest2 | Start-VM

The last one—a requirement to accept piped input, made it easier to make the command a filter,
rather than a function. Each item is piped into a filter individually and is accessible via the $_ variable.

So, many of the commands follow a template like this:

Filter Set-VMState
{Param ($VM , $state, $Server=”.”)
 if ($VM -eq $null) {$VM=$_}
 if ($VM -is [String]) {$VM=(Get-VM -Name $VM -Server $Server) }
 if ($VM -is [Array]) {$VM | ForEach-Object {Set-VMState -VM $_ -State
$state -Server $Server} }
 if ($VM -is [System.Management.ManagementObject]) {
 $result = $VM.RequestStateChange($State)
 $Result.Job }
 $VM=$null
}

86804c25.indd 60086804c25.indd 600 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

601

 Working with WMI in PowerShell 2

The first step is to see if a $VM parameter has been passed at all. If not, the function looks to the pipe
for input. Any variables set in the filter will be preserved for subsequent objects piped in so $VM is
set to null at the end. Otherwise, piping ten objects into the filter will result in the same command
being run against the first one ten times.

If $VM is a single text string—either because it was passed as a parameter, or because a string was
piped in—then it is replaced with matching MSVM_ComputerSystem object(s) obtained by calling
the Get-VM function from earlier in this chapter Get-VM will handle wildcards in $VM and multiple
servers in $Server. If an array is passed to the filter or returned by Get-VM, the function is called
recursively for each of its items. This has the side effect of being able to process an array that con-
tains MSVM_ComputerSystem objects, unique machine names as strings, or wildcarded names or a
mixture.

The function then makes sure it has a WMI object, and calls its RequestStateChange() method.

What should the output of the filter be? Should it return the text State of VM <name> was
changed? Should it return the resultCode for calling the RequestStateChange method—which
might indicate “Job started”? Should it return the JobID? If the filter is simply invoked like this:

Set-VMState –VM “London-DC” –State $vmstate.running

then what does the user want to see? And if set-vmState is called from another function, what
does that function need? The two may not be the same.

It is sometimes useful to return some text as the result of the function—that is not to formally prefix
it with write-host or pipe it to out-host—but doing that will make things harder for another
function. This problem is discussed in more detail in Chapter 21. Put simply when writing a func-
tion, you must decide if any returned text should be,

Returned as a result, which is passed into a variable or another command in the pipleline■

Explicitly sent to the console for the user to see■

Sent to the ■ Verbose channel using the Write-Verbose Cmdlet to give output for the user
only if the variable $verbosepreference has be set to request it.

This function might use something like the following:

Write-Verbose “Changing state of $($vm.elementName)”

Returning the only JobID as the result of the function allows another function (or the user) to find
out what happened to the request to start the VM.

86804c25.indd 60186804c25.indd 601 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

602

 Part IV Windows PowerShell

To avoid writing the same function four times to request different state changes for Start, Stop, Suspend,
Pause these tasks have been given functions which are just wrappers around the set-VMState filter.
Each tests to see if it needs to pass a named parameter or one from the pipe, and if the –wait switch is
specified it calls the test-WMIjob function shown earlier in this chapter:

Filter Start-VM
{Param ($VM , $server, [Switch]$wait)
 if ($VM -eq $null) {
 $JobID=(Set-VMState -VM $_ -Server $server -State $vmState.running)
}
 else {
 $jobID=(Set-VMState -VM $VM -Server $server -State $vmState.running)
}
 if ($wait) {test-wmijob $jobID -wait}
 else {$jobid}
}

Finally, the script that defines these functions also defines a hash table containing each of the
possible states for a VM, so instead of requesting that state be set to 2 (which would send the reader
of the script to the reference materials to find out what 2 represents), the call to Set-VMstate uses
$VMState.running. The hash table—or associative array as PowerShell calls it—is declared
like this:

$VMState=@{“Running”=2 ; “Stopped”=3; “Paused”=32768;
“Suspended”=32769; “Starting”=32770; “Snapshotting”=32771;
“Saving”=32773; “Stopping”=32774 }

Summary
In this chapter you have seen:

How you can discover WMI objects—either by association from a known object or by find-■

ing first namespaces and then classes within a namespace

How to query for objects using the ■ [WMI] type accelerator and different forms of the
Get-WMIObject command—with both Select and Associators of forms of WQL

The properties of WMI objects and how they can be presented in a way that is easier to ■

read than the raw output of the object

How properties can be changed, including the need to use■ GET to find or verify changes
and PUT to send changes back

Some practical points around building PowerShell scripts that use WMI■

86804c25.indd 60286804c25.indd 602 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

603

 Working with WMI in PowerShell 2

Often, working with any kind of object—whether it is WMI, COM, or .NET, and in whatever lan-
guage, whether it is PowerShell, VB, or C#—the language that manipulates the object is usually the
easy part to learn, and the reusable part. It is exactly the same process to get a WMI object that rep-
resents a logical disk on Windows XP as it is to get one that represents a Hyper-V virtual machine on
Windows Server 2008. And you pass a command to the logical disk to say “run a chkDsk” in the same
way that you pass a command to the VM to say “change state to ‘running.’” The technique for finding
a partition object from a logical disk is the same technique used to find the machine settings object
from a virtual machine. A trick that is useful to format one object for display can be useful for any
object, and so on. In the cimV2 namespace alone, there are over 1,000 object classes. Adding appli-
cations or operating system options adds to the number of available objects, so the question to ask is
not “What can PowerShell do for these objects?” but “What objects are available for PowerShell to
leverage?”

86804c25.indd 60386804c25.indd 603 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

86804c25.indd 60486804c25.indd 604 1/21/09 1:30:07 PM1/21/09 1:30:07 PM

IN THIS PART
Chapter 26
Library: File-System Utilities

Chapter 27
Library: I/O Utilities

Chapter 28
Library: Network
Resource Utilities

Chapter 29
Library: Account
Management Utilities

Chapter 30
Library: Building a
PowerShell Library

Windows Scripting
Libraries

Now that you’ve worked through parts I, II, III and IV,
you should be ready to tackle any job using Windows
scripting. But rather than start from scratch, it would

be good to begin with a set of tools. Part V provides you those
tools. The five chapters in this Part develop a set of script librar-
ies that you can incorporate into your own projects: file system
and administration utilities, network and system administration
utilities, account management utilities and general PowerShell
utilities. With these tools, you’re well on your way to creating
your own Windows scripting projects. Good luck!

86804c26.indd 60586804c26.indd 605 1/21/09 1:30:23 PM1/21/09 1:30:23 PM

86804c26.indd 60686804c26.indd 606 1/21/09 1:30:23 PM1/21/09 1:30:23 PM

607

The file-system utility library provides functions for working with
files and folders. Through batch script (.WS) files, you can access
these utility functions in any of your scripts. The sections that follow

show you the source of the library, as well as how the library can be used.

Examining the File-System
Utility Library
Listing 26-1 shows the file-system utility library script. When calling this
script from JScript, be sure to pass path information in JScript format with
double slashes as folder separators. You do not need to do this from VBScript.
Windows Script Host automatically transforms VBScript paths into JScript
paths when you call JScript functions from VBScript.

Library: File-System
Utilities

IN THIS CHAPTER
Creating the file-system
utility library

Using the file-system
utility library

Working with library methods

LISTING 26-1

File-System Utility Library

filesystemlib.js

// ************************
// Script: File System Utility Library
// Version: 1.1.5
// Creation Date: 06/15/2008
// Last Modified: 07/05/2008
// Author: William R. Stanek
// E-mail: williamstanek@aol.com

continued

86804c26.indd 60786804c26.indd 607 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

608

 Part V Windows Scripting Libraries

// ************************
// Description: Provides a utility library for working
// with files and folders.
// ************************
// Copyright (c) 2008 William R. Stanek
// You have a royalty-free right to use these applications, provided
// that you give credit to the author AND agree that the author has
// no warranty, obligations or liability for any of these library
// functions.
// ************************

function GetFolderContents(folderPath, separator)
{
 var contents, fpath, sep;
 fpath = folderPath
 sep = separator

 contents = “”;
 contents += “Folders:” + sep
 contents += “==========================” + sep
 contents += GetSubFolders(fpath, sep)
 contents += sep + “Files:” + sep
 contents += “==========================” + sep
 contents += GetFiles(fpath, sep)

 return(contents);
}

function GetSubFolders(folderPath, separator)
{
 var fs, f, fc, s;

 s = “”;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderPath);
 fc = new Enumerator(f.SubFolders);

 for (; !fc.atEnd(); fc.moveNext())
 {
 s += fc.item();
 s += separator
 }

 return(s);
}

LISTING 26-1 (continued)

86804c26.indd 60886804c26.indd 608 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

609

 Library: File-System Utilities 26

function GetFiles(folderPath, separator)
{
 var fs, f, fc, s;

 s = “”;

 fs = new ActiveXObject (“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderPath);
 fc = new Enumerator(f.Files);

 for (; !fc.atEnd(); fc.moveNext())
 {
 s += fc.item();
 s += separator
 }

 return(s);
}

function CheckExists(filePath)
{
 var fs, s;

 s = “False”;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);

 if (fs.FolderExists(filePath))
 s = “True”;
 else if (fs.FileExists(filePath))
 s = “True”;

 return(s);
}

function GetInfo(filePath)
{
 var fs, f, s;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);

 if (fs.FolderExists(filePath))
 f = fs.GetFolder(filePath);
 else if (fs.FileExists(filePath))
 f = fs.GetFile(filePath);

 s = “Name: “ + f.Name + “\r\n”;
 s += “Path: “ + f.Path + “\r\n”;
 s += “Date Created: “ + f.DateCreated + “\r\n”;

continued

86804c26.indd 60986804c26.indd 609 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

610

 Part V Windows Scripting Libraries

 s += “Date Last Accessed: “ + f.DateLastAccessed + “\r\n”;
 s += “Date Last Modified: “ + f.DateLastModified;

 return(s);
}

function GetSize(filePath)
{
 var fs, f, s;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(filePath);

 if (fs.FolderExists(filePath))
 f = fs.GetFolder(filePath);
 else if (fs.FileExists(filePath))
 f = fs.GetFile(filePath);

 s = f.size;

 return(s);
}

function GetType(filePath)
{
 var fs, f, s;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(filePath);

 if (fs.FolderExists(filePath))
 f = fs.GetFolder(filePath);
 else if (fs.FileExists(filePath))
 f = fs.GetFile(filePath);

 s = f.type;

 return(s);
}

function CheckParentFolder(filePath)
{
 var fs, s = “”;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 s += fs.GetParentFolderName(filePath);

LISTING 26-1 (continued)

86804c26.indd 61086804c26.indd 610 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

611

 Library: File-System Utilities 26

 return(s);
}

function SetArchiveAttribute(folderName)
{
 var fs, f, fc, s;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderName);
 fc = new Enumerator(f.Files);
 s = “”;

 for (; !fc.atEnd(); fc.moveNext())
 {
 theFile = fs.GetFile(fc.item());

 if (!(theFile.attributes && 32))
 {
 theFile.attributes = theFile.attributes + 32;
 }

 }
 return(“Finished!”);
}

function ClearArchiveAttribute(folderName)
{
 var fs, f, fc, s;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderName);
 fc = new Enumerator(f.Files);
 s = “”;

 for (; !fc.atEnd(); fc.moveNext())
 {
 theFile = fs.GetFile(fc.item());

 if (theFile.attributes && 32)
 {
 theFile.attributes = theFile.attributes - 32;
 }

 }
 return(“Finished!”);
}

continued

86804c26.indd 61186804c26.indd 611 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

612

 Part V Windows Scripting Libraries

function SetReadOnly(folderName)
{
 var fs, f, fc, s;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderName);
 fc = new Enumerator(f.Files);
 s = “”;

 for (; !fc.atEnd(); fc.moveNext())
 {
 theFile = fs.GetFile(fc.item());

 theFile.attributes = 1;
 }
 return(“Finished!”);
}

function ClearReadOnly(folderName)
{
 var fs, f, fc, s;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderName);
 fc = new Enumerator(f.Files);
 s = “”;

 for (; !fc.atEnd(); fc.moveNext())
 {
 theFile = fs.GetFile(fc.item());

 theFile.attributes = 0;
 }
 return(“Finished!”);
}

function SetHiddenSystem(folderName)
{
 var fs, f, fc, s;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderName);
 fc = new Enumerator(f.Files);
 s = “”;

 for (; !fc.atEnd(); fc.moveNext())

LISTING 26-1 (continued)

86804c26.indd 61286804c26.indd 612 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

613

 Library: File-System Utilities 26

 {
 theFile = fs.GetFile(fc.item());

 theFile.attributes = 6;

 }
 return(“Finished!”);
}

function SetNormal(folderName)
{
 var fs, f, fc, s;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(folderName);
 fc = new Enumerator(f.Files);
 s = “”;

 for (; !fc.atEnd(); fc.moveNext())
 {
 theFile = fs.GetFile(fc.item());

 theFile.attributes = 0;
 }
 return(“Finished!”);
}

function ListSpecialFolders(sep)
{
 var s;

 s = “”;
 s += “===” + sep;
 s += “Special Folders List” + sep;
 s += “ Scripting Bible” + sep;
 s += “ by William R. Stanek” + sep;
 s += “===” + sep;
 s += “AllUsersDesktop: Desktop shortcuts for all users.” + sep;
 s += “AllUsersPrograms: Programs menu options for all users.” + sep;
 s += “AllUsersStartMenu: Start menu options for all users.” + sep;
 s += “AllUsersStartup: Startup applications for all users.” + sep;
 s += “Desktop: Desktop shortcuts for the current user.” + sep;
 s += “Favorites: Favorites menu shortcuts for the current user.” + sep;
 s += “Fonts: Fonts folder shortcuts for the current user.” + sep;
 s += “MyDocuments: My Documents menu shortcuts for the current user.” + sep;
 s += “NetHood: Network Neighborhood shortcuts for the current user.” + sep;
 s += “Printers: Printers folder shortcuts for the current user.” + sep;

continued

86804c26.indd 61386804c26.indd 613 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

614

 Part V Windows Scripting Libraries

 s += “Programs: Programs menu options for the current user.” + sep;
 s += “Recent: Recently used document shortcuts for the current user.” + sep;
 s += “SendTo: SendTo menu shortcuts for the current user.” + sep;
 s += “StartMenu: Start menu shortcuts for the current user.” + sep;
 s += “Startup: Startup applications for the current user.” + sep;
 s += “Templates: Templates folder shortcuts for the current user.” + sep;
 s += “===” + sep;

 return(s);
}

function NewShortcut(sfolder, sname, stype, starget)
{
 var ws = WScript.CreateObject(“WScript.Shell”);

 pmenu = ws.SpecialFolders(sfolder);

 var scut = ws.CreateShortcut(pmenu + “\\” + sname + “.” + stype);
 scut.TargetPath = starget;

 scut.Save();
}

function CheckMenu(mname)
{
 var fs, f, fc, s;
 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 var ws = WScript.CreateObject (“WScript.Shell”)
 smenu = ws.SpecialFolders(mname)

 f = fs.GetFolder(smenu);
 fc = new Enumerator(f.Files);
 s = “”;
 for (; !fc.atEnd(); fc.moveNext())
 {
 theFile = fs.GetFile(fc.item());
 s += theFile + “\r\n”
 }
 return (s)
}

function CheckMenu2(mname)
{
 var fs, f, fc, s;

 var ws = WScript.CreateObject(“WScript.Shell”);
 smenu = ws.SpecialFolders(mname);

LISTING 26-1 (continued)

86804c26.indd 61486804c26.indd 614 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

615

 Library: File-System Utilities 26

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFolder(smenu);
 fc = new Enumerator(f.Files);
 s = “”;

 for (; !fc.atEnd(); fc.moveNext())
 {
 f1 = fs.GetFile(fc.item());
 s += f1.name + “\r\n”
 }
 return (s)
}

function NewMenu(sfolder, mname)
{
 var s;
 s = “False”

 var ws = WScript.CreateObject(“WScript.Shell”);
 pmenu = ws.SpecialFolders(sfolder);

 if (sfolder == “AllUsersPrograms” || sfolder == “AllUsersStart” || sfolder ==
“Programs” || sfolder == “StartMenu”) {

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 var foldr = fs.CreateFolder(pmenu + “\\” + mname)
 s = “True”

 }
 return(s)
}

function AddMenuOption(sfolder, mname, sname, stype, starget)
{
 var ws = WScript.CreateObject(“WScript.Shell”);
 pmenu = ws.SpecialFolders(sfolder);

 var scut = ws.CreateShortcut(pmenu + “\\” + mname + “\\” + sname + “.” + stype);
 scut.TargetPath = starget;

 scut.Save()
}

function CopyFile2Desktop(filePath)
{
 var fs, test;

 var ws = WScript.CreateObject(“WScript.Shell”);
 pmenu = ws.SpecialFolders(“Desktop”);

continued

86804c26.indd 61586804c26.indd 615 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

616

 Part V Windows Scripting Libraries

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 fs.CopyFile(filePath, pmenu + “\\”);
}

function MoveFile2Desktop(filePath)
{
 var ws = WScript.CreateObject(“WScript.Shell”);
 pmenu = ws.SpecialFolders(“Desktop”);

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 fs.MoveFile(filePath, pmenu + “\\”);
}

function CopyFolder2Desktop(filePath)
{
 var fs, test;

 var ws = WScript.CreateObject(“WScript.Shell”);
 pmenu = ws.SpecialFolders(“Desktop”);

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 fs.CopyFolder(filePath, pmenu + “\\”);
}

function MoveFolder2Desktop(filePath)
{
 var ws = WScript.CreateObject(“WScript.Shell”);
 pmenu = ws.SpecialFolders(“Desktop”);

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 fs.MoveFolder(filePath, pmenu + “\\”);
}

function NewFile(filePath)
{
 var fs, s = filePath;
 fs = new ActiveXObject(“Scripting.FileSystemObject”);

 if (!fs.FileExists(filePath)) {
 var theFile = fs.CreateTextFile(filePath);
 s += “ created.”
 } else
 s += “ already exists.”;

 return(s);
}

LISTING 26-1 (continued)

86804c26.indd 61686804c26.indd 616 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

617

 Library: File-System Utilities 26

function NewFolder(folderPath)
{
 var fs, s = folderPath;
 fs = new ActiveXObject(“Scripting.FileSystemObject”);

 if (!fs.FolderExists(folderPath)) {
 var foldr = fs.CreateFolder(folderPath);
 s += “ created.”
 } else
 s += “ already exists.”;

 return(s);
}

function AddDesktop(sname,trgt)
{

var ws = WScript.CreateObject (“WScript.Shell”)
dsktop = ws.SpecialFolders(“Desktop”)

var scut = ws.CreateShortcut (dsktop + “\\” + sname + “.LNK”)
scut.TargetPath = trgt
scut.Save()

}

function AddDesktopURL(sname,trgt)
{

var ws = WScript.CreateObject (“WScript.Shell”)
dsktop = ws.SpecialFolders(“Desktop”)

var scut = ws.CreateShortcut (dsktop + “\\” + sname + “.URL”)
scut.TargetPath = trgt
scut.Save()

}

function AddStartMenu(sname,trgt)
{

var ws = WScript.CreateObject (“WScript.Shell”)
smenu = ws.SpecialFolders(“StartMenu”)
var scut = ws.CreateShortcut (smenu + “\\” + sname + “.LNK”)
scut.TargetPath = trgt
scut.Save()

}

continued

86804c26.indd 61786804c26.indd 617 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

618

 Part V Windows Scripting Libraries

function AddStartMenuURL(sname,trgt)
{

var ws = WScript.CreateObject (“WScript.Shell”)
smenu = ws.SpecialFolders(“StartMenu”)
var scut = ws.CreateShortcut (smenu + “\\” + sname + “.URL”)
scut.TargetPath = trgt
scut.Save()

}

function DeleteShortcut(sfolder, sname)
{
 var ws = WScript.CreateObject(“WScript.Shell”);
 smenu = ws.SpecialFolders(sfolder);

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.GetFile(smenu + “\\” + sname);

 f.Delete();
}

function DeleteFile(filePath)
{
 var fs;
 fs = new ActiveXObject(“Scripting.FileSystemObject”);

 fs.DeleteFile(filePath);
}

function DeleteFolder(folderPath)
{
 var fs;
 fs = new ActiveXObject(“Scripting.FileSystemObject”);

 fs.DeleteFolder(folderPath);
}

Using the File-System Utility Library
The file-system utility library has many functions that you can call from other scripts. Most of the
functions expect to be passed a folder path, such as:

D:\\Working

LISTING 26-1 (continued)

86804c26.indd 61886804c26.indd 618 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

619

 Library: File-System Utilities 26

or a file path, such as:

D:\\working\\data.txt

There are a few exceptions, such as GetFolderContents, GetSubFolders, and GetFiles, that
expect additional parameters.

Using GetSubFolders, GetFiles, and GetFolderContents
The GetSubFolders and GetFiles functions return a list of subfolders or files in the referenced
folder. These functions expect to be passed a folder path and a character to display as a separator.
This separator can be a space, a comma, or a special formatting character, such as \r\n for carriage
return and line feed. Here’s an example of how you can call GetFiles:

theList = GetFiles(“C:\\WinnT”, “\r\n”)

If you use a .WS file, you don’t have to place the GetFiles function in your script. Instead, you can
handle the function like a library call. With a .WS file, you can use GetFiles as follows:

<Job ID=”CreateFolders”>
 <Script LANGUAGE=”JScript” SRC=”filesystemlib.js” />
 <Script LANGUAGE=”JScript”>
 theList = GetFiles(“C:\\WinnT”, “\r\n”)
 WScript.Echo(theList)
 </Script>
</Job>

The GetFolderContents function returns a list of all subfolders and files in the referenced folder.
The function does this by obtaining the output of both GetSubFolders and GetFiles, and then
formatting the output using the separator you’ve specified, such as:

Folders:
==========================
E:\working\data1
E:\working\data2
E:\working\data3
E:\working\samples
E:\working\data_back

Files:
==========================
E:\working\document1.txt
E:\working\document2.txt
E:\working\document3.txt
E:\working\document4.txt
E:\working\document5.txt
E:\working\document6.txt

86804c26.indd 61986804c26.indd 619 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

620

 Part V Windows Scripting Libraries

Using CheckExists
You can use the CheckExists function to determine if a resource that you want to work with
exists. The function expects to be passed a file or folder path, and returns True if the resource exists
and False otherwise. An interesting feature of this function is the If ... Else If construct that
tests whether the path you’ve supplied references a folder of a file:

if (fs.FolderExists(filePath))
 s = “True”;
else if (fs.FileExists(filePath))
 s = “True”;

Here, you test for the existence of the file path as a folder and as a file. The If ... Else If construct
allows a single function to work with files and folders, and it is used by many other functions in the
system utility library, including GetInfo, GetSize, and GetType.

Using GetInfo, GetSize, and GetType
The GetInfo function expects to be passed a file or folder path, and returns summary information
for the file or folder. This information is placed on separate lines using \r\n and includes:

File or folder name■

File or folder path■

Date created■

Date last accessed■

Date last modified■

The GetSize and GetType functions also return file or folder information. GetSize returns the
byte size of the file or folder. GetType returns the file or folder type. A similar function is
CheckParentFolder. This function returns the name of the parent folder for the specified
resource.

Setting and clearing file attributes
The utility library also has functions for working with file attributes. These functions are:

SetReadOnly■ : Sets the read-only attribute

ClearReadOnly■ : Clears the read-only attribute

SetArchiveAttribute■ : Sets the archive attribute

ClearArchiveAttribute■ : Clears the archive attribute

SetHiddenSystem■ : Sets the hidden and system attributes

SetNormalAttribute■ : Clears all other attributes and sets the normal attribute

86804c26.indd 62086804c26.indd 620 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

621

 Library: File-System Utilities 26

These functions set the attributes on all files in a referenced folder, but they do not go through sub-
folders. Keep in mind that you can’t change the archive attribute on read-only files. Because of this,
you may want to call ClearReadOnly before calling SetArchiveAttribute or ClearArchive
Attribute.

You can set the read-only attribute on all files in the D:\working folder as follows:

SetReadOnly(“D:\\Working”)

If you use a .WS file, you don’t have to place the SetReadOnly function in your script. Instead, you
can handle the function like a library call, such as:

<Job ID=”CreateFolders”>
 <Script LANGUAGE=”JScript” SRC=”adminlib.js” />
 <Script LANGUAGE=”JScript”>
 ret = SetReadOnly(“D:\\Working”)
 WScript.Echo(ret)
 </Script>
</Job>

The set and clear functions use an Enumerator object to move through each file in the referenced
folder. To obtain a file object, the function calls GetFile with the name of the current item in the
enumerator list. The file object is then used to set or clear the appropriate attribute, such as:

theFile = fs.GetFile(fc.item());
if (theFile.attributes && 32)
 {
 theFile.attributes = theFile.attributes - 32;
 }

Working with special folders, shortcuts, and menus
You can use the ListSpecialFolders function to display a formatted list of all the special folders
available. This is useful so script users can obtain a list of special folders that they may want to work
with. For example, if you prompt users to enter the name of a special folder to manage and they
don’t know the folder name, they can leave it blank or type “?” to obtain a list of special folders.

The function expects to be passed a line separator, which could be \r\n for output to the command
line, a dialog box, or HTML tags, such as
, for display in a browser window. With \r\n, the
output of the function looks like this:

===
Special Folders List
 Scripting Bible
 by William R. Stanek
===
AllUsersDesktop: Desktop shortcuts for all users.
AllUsersPrograms: Programs menu options for all users.

86804c26.indd 62186804c26.indd 621 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

622

 Part V Windows Scripting Libraries

AllUsersStartMenu: Start menu options for all users.
AllUsersStartup: Startup applications for all users.
Desktop: Desktop shortcuts for the current user.
Favorites: Favorites menu shortcuts for the current user.
Fonts: Fonts folder shortcuts for the current user.
MyDocuments: My Documents menu shortcuts for the current user.
NetHood: Network Neighborhood shortcuts for the current user.
Printers: Printers folder shortcuts for the current user.
Programs: Programs menu options for the current user.
Recent: Recently used document shortcuts for the current user.
SendTo: SendTo menu shortcuts for the current user.
StartMenu: Start menu shortcuts for the current user.
Startup: Startup applications for the current user.
Templates: Templates folder shortcuts for the current user.
===

Once you know which special folder you want to work with, you can add items to the special folder
using NewShortcut. The NewShortcut function can be used to create link and URL shortcuts. It
can also be used to add start items, menu options, and desktop links. When you use this function,
you must pass in the following parameters:

sfolder■ : The name of the special folder to use, such as Programs

sname■ : The name of the shortcut, such as My Home Page

stype■ : The type of the shortcut, either LNK or URL

starget■ : The target of the shortcut, such as http://www.tvpress.com

The following example creates a URL shortcut on the Programs menu:

NewShortcut(“Programs”, “My Home Page”, “URL”, “http://www.tvpress.com/”)

Other useful functions for working with menus and menu options are NewMenu and
AddMenuOption. You use NewMenu to create a new menu and AddMenuOption to add options to
the menu.

The NewMenu function expects to be passed the name of a special folder that represents one of the
following menus:

AllUsersPrograms■

AllUsersStart■

Programs■

StartMenu■

86804c26.indd 62286804c26.indd 622 1/21/09 1:30:24 PM1/21/09 1:30:24 PM

623

 Library: File-System Utilities 26

It also expects to be passed the name of the menu to create. With this in mind, you could call
NewMenu as follows:

NewMenu (“Programs”, “Quick Access”)

You can then use the AddMenuOption function to add options to this menu. You could also use this
function to add options to any existing menus, provided they are submenus of Programs or Start.
The AddMenuOption function expects to be passed the following arguments:

sfolder■ : The name of the special folder to use, such as Programs

mname■ : The name of the submenu to work with, such as Quick Access

sname■ : The name of the shortcut, such as My Home Page

stype■ : The type of the shortcut; either LNK or URL

starget■ : The target of the shortcut, such as http://www.tvpress.com

The following is an example of calling this function:

AddMenuOption (“Programs”, “Quick Access”, “My Home Page”, “URL”,
“http://www.tvpress.com”)

Managing menu options
The CheckMenu and CheckMenu2 functions are designed to help you track and manage menu
options. You can pass the function the name of a special menu and the function returns a list of all
options assigned through this menu. The CheckMenu function returns the full file path to the menu
options, such as:

F:\Documents and Settings\Administrator.ZETA\Start Menu\Programs\
Internet Explorer.LNK

F:\Documents and Settings\Administrator.ZETA\Start Menu\Programs\My
Home Page.URL

F:\Documents and Settings\Administrator.ZETA\Start Menu\Programs\
Outlook Express.LNK

The CheckMenu2 function returns the option name only, such as:

Internet Explorer.LNK
My Home Page.URL
Outlook Express.LNK

86804c26.indd 62386804c26.indd 623 1/21/09 1:30:25 PM1/21/09 1:30:25 PM

624

 Part V Windows Scripting Libraries

You can use these functions in several ways. If you are trying to determine whether a particular
option is assigned to the current user or all users, you can call CheckMenu or CheckMenu2 once
with a current user menu and a second time with an all users menu, such as:

WScript.Echo(CheckMenu(StartMenu))
WScript.Echo(“================”)
WScript.Echo(CheckMenu(AllUsersStartMenu))

Because the CheckMenu function returns the complete file path to the options, you can use the
function to delete menu options, as well. To see how, let’s work through an example. Listing 26-2
obtains a list of options on the Programs menu for the current user and all users on the system.
These options are written to a text file (menuoptions.txt). The script uses WriteChar from
iolib.js and CheckMenu from filesystemlib.js.

LISTING 26-2

Getting All Menu Options

getoptions.WS

<Job ID=”GetMenuOptions”>
 <Script LANGUAGE=”JScript” SRC=”iolib.js” />
 <Script LANGUAGE=”JScript” SRC=”filesystemlib.js” />

 <Script LANGUAGE=”VBScript”>
 theOptions = CheckMenu(“Programs”)
 ret = WriteChar(“d:\\menuoptions.txt”, theOptions)
 theOptions = CheckMenu(“AllUsersPrograms”)
 ret = WriteChar(“d:\\menuoptions.txt”, theOptions)
</Script>
</Job>

menuoptions.txt

D:\WINNT\Profiles\All Users\Start Menu\Programs\Access.LNK
D:\WINNT\Profiles\All Users\Start Menu\Programs\Excel.LNK
D:\WINNT\Profiles\All Users\Start Menu\Programs\FrontPage.LNK
D:\WINNT\Profiles\All Users\Start Menu\Programs\PowerPoint.LNK
D:\WINNT\Profiles\All Users\Start Menu\Programs\Word.LNK
D:\WINNT\Profiles\All Users\Start Menu\Programs\PhotoDraw.LNK
D:\WINNT\Profiles\All Users\Start Menu\Programs\Web Script.LNK
D:\WINNT\Profiles\All Users\Start Menu\Programs\Web Script2.LNK
D:\WINNT\Profiles\All Users\Start Menu\Programs\Web Script3.LNK

86804c26.indd 62486804c26.indd 624 1/21/09 1:30:25 PM1/21/09 1:30:25 PM

625

 Library: File-System Utilities 26

You then edit the menuoptions.txt file and remove menu options that you don’t want to keep.
Afterward, you run Listing 26-3 to remove the options from the menu. The script uses ReadLineN
from iolib.js and DeleteFile from filesystemlib.js.

LISTING 26-3

Deleting Multiple Menu Options

deleteoptions.WS

<Job ID=”DeleteOptions”>
 <Script LANGUAGE=”JScript” SRC=”adminlib.js” />
 <Script LANGUAGE=”JScript” SRC=”filelib.js” />
 <Script LANGUAGE=”VBScript”>
 Dim numLines, theFile
 numLines = 4

 theFile = “d:\menuoptions.txt”

 For i = 1 to numLines Step 1

 theShortcut = ReadLineN(theFile, i)
 ret = DeleteFile(theShortcut)

 Next
 </Script>
</Job>

If you use this script, be sure to update the numLines variable so that it refl ects the
actual number of lines in the menuoptions.txt fi le.

Adding to the desktop and Start menu
To quickly add shortcuts to the desktop or Start menu for the current user, use the AddDesktop,
AddDesktopURL, AddStartMenu, and AddStartMenuURL functions. While AddDesktop and
AddStartMenu create link shortcuts, AddDesktopURL and AddStartMenuURL create URL short-
cuts. These functions accept the same parameters: the name of the shortcut (without the LNK or
URL extension) and the target path of the shortcut.

Listing 26-4 shows how you can use these functions in order to add multiple desktop and menu
shortcuts. The listing uses the file utility library, as well as the network resource library. The file
options.txt contains the shortcuts being added to the desktop. The file adesktop.WS contains a
batch script, with the main script written in VBScript.

NOTENOTE

86804c26.indd 62586804c26.indd 625 1/21/09 1:30:25 PM1/21/09 1:30:25 PM

626

 Part V Windows Scripting Libraries

LISTING 26-4

Adding Multiple Shortcuts

options.txt

WinScripting Home
http://www.tvpress.com/winscripting/
WinScripting Microsoft
http://msdn.microsoft.com/scripting/
WinScripting for IIS 7.0
http://msdn.microsoft.com/library/sdkdoc/iisref/aore2xpu.htm

adesktop.WS

<Job ID=”AddShortcuts”>
 <Script LANGUAGE=”JScript” SRC=”iolib.js” />
 <Script LANGUAGE=”JScript” SRC=”filesystemlib.js” />

 <Script LANGUAGE=”VBScript”>
 Dim numLines, theFile
 numLines = 6

 theFile = “D:\datatest.txt”

 For i = 1 to numLines Step 2

 theShortcut = ReadLineN(theFile, i)
 theTarget = ReadLineN(theFile, i+1)
 ret = AddDesktopURL(theShortcut, theTarget)

 Next
 </Script>
</Job>

Because this is the first time we’ve called JScript from VBScript via the utility libraries, let’s take a
quick look at some key concepts. As the script shows, when you call a JScript function that uses file
paths, you don’t need to use the JScript syntax. File paths are automatically converted for you, which
is why you can set the file path as:

D:\datatest.txt

However, you do have to use a slightly different syntax when calling functions that don’t return val-
ues. The script uses:

ret = AddDesktopURL(theShortcut, theTarget)

86804c26.indd 62686804c26.indd 626 1/21/09 1:30:25 PM1/21/09 1:30:25 PM

627

 Library: File-System Utilities 26

rather than:

AddDesktopURL(theShortcut, theTarget)

Even though the AddDesktopURL function doesn’t return a value, you can call the function as
though it does return a value. If you don’t do this, VBScript thinks the function is a subroutine, and
you cannot use parentheses when calling a subroutine.

An interesting feature of the script is the use of a For Next loop to read from the file two lines at a
time. In the first iteration of the For loop, lines 1 and 2 are read from the options.txt file. The
value of line 1 is assigned as the shortcut name. The value of line 2 is assigned as the target path.
Then the AddDesktopURL function is called with these values. In the second iteration of the For
loop, lines 3 and 4 are read from the options.txt file, and so on.

Other useful desktop functions are CopyFile2Desktop and MoveFile2Desktop. These functions
expect to be passed a file path and then for the file to be either copied or moved to the Windows
desktop. You can move a file to the desktop as follows:

MoveFile2Desktop(“D:\\Working\\document1.txt”)

Two functions with similar usage are CopyFolder2Desktop and MoveFolder2Desktop. These
functions expect to be passed a folder path and then for the folder to be either copied or moved to
the Windows desktop. You can copy a folder to the desktop as follows:

MoveFile2Desktop(“D:\\Working\\Data”)

Using NewFolder and NewFile
You can use the NewFolder function to create a new folder, provided the folder doesn’t already
exist. If you wanted to create a folder at D:\Working\Data, you could use the following call:

WScript.Echo(NewFolder(“D:\\working\\data”))

The value returned from NewFolder would either be:

D:\working\data created.

or

D:\working\data already exists.

The NewFile function can be used in much the same way. The key difference is that you pass
NewFile the file path you want to create, instead of a folder path, such as:

WScript.Echo(NewFile(“D:\\working\\data\\document1.txt”))

86804c26.indd 62786804c26.indd 627 1/21/09 1:30:25 PM1/21/09 1:30:25 PM

628

 Part V Windows Scripting Libraries

Using DeleteFile, DeleteFolder, and DeleteShortcut
The DeleteFile and DeleteFolder functions are used to delete files and folders, respectively.
You can use wildcards when calling these functions, such as:

DeleteFile(“D:\\working*.txt”)

Be careful when using the delete functions. Never pass a reference to a root folder, such
as C:\.

You use DeleteShortcut to delete shortcuts. The function expects to be passed the name of a spe-
cial folder containing the shortcut and the full name of the shortcut. For example, you could delete a
shortcut called My Home Page from the Programs menu as follows:

DeleteShortcut(“Programs”, “\My Home Page.URL”)

If the shortcut is on a submenu, be sure to enter the submenu path as part of the shortcut name,
such as:

DeleteShortcut(“Programs”, “Quick Access\\My Home Page.URL”)

Summary
This chapter developed a utility library for working with file systems. You can call the functions of
this library from your own scripts at any time. The next chapter provides a utility library for han-
dling input and output.

CAUTION CAUTION

86804c26.indd 62886804c26.indd 628 1/21/09 1:30:25 PM1/21/09 1:30:25 PM

629

The I/O utility library provides functions for handling input and
output. With these functions, you’ll be able to read files, write files,
obtain input, and display output. Through batch script (.WS) files,

you can access these utility functions in any of your scripts. The sections that
follow show the source for the library, as well as how the library can be used.

Examining the I/O Utility Library
The code for the I/O utility library is shown in Listing 27-1. When using
this script from JScript, be sure to pass path information in JScript format
with double slashes as folder separators. With other scripting languages,
you normally don’t have to use double slashes.

Library: I/O Utilities

IN THIS CHAPTER
Creating the I/O utility library

Using the I/O utility library

Working with library methods

LISTING 27-1

I/O utility library

iolib.js

// ************************
// Script: I/O Utility Library
// Version: 1.1.5
// Creation Date: 05/20/2008
// Last Modified: 06/15/2008
// Author: William R. Stanek
// Email: williamstanek@aol.com
// ************************
// Description: Provides a utility library for reading
// and writing files.

continued

86804c27.indd 62986804c27.indd 629 1/21/09 1:30:38 PM1/21/09 1:30:38 PM

630

 Part V Windows Scripting Libraries

// ************************
// Copyright (c) 2008 William R. Stanek
// You have a royalty-free right to use these applications,
// provided that you give credit to the author AND agree that
// the author has no warranty, obligations or liability for
// any of these library functions.
// ************************

function DisplayConsolePrompt(promptText)
{

 lf = “\r\n”
 WScript.Echo(promptText + lf)

 r = WScript.StdIn.ReadLine()

 return(r)
}

function ReadFromKeyboard(scriptname, promptText)
{

 lf = “\r\n”
 WScript.Echo(“==” + lf)
 WScript.Echo(scriptname + lf)
 WScript.Echo(“==” + lf)

 WScript.Echo(promptText + lf)

 r = WScript.StdIn.ReadLine()

 return(r)
}

function ReadFile(theFile)
{
 var fs, f, r;
 var ForReading = 1;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.OpenTextFile(theFile, ForReading);
 r = f.ReadAll();

 return(r);
}

function ReadLineN(theFile,n)

LISTING 27-1 (continued)

86804c27.indd 63086804c27.indd 630 1/21/09 1:30:38 PM1/21/09 1:30:38 PM

631

 Library: I/O Utilities 27

{
 var fs, f, r;
 var ForReading = 1;

 n—

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.OpenTextFile(theFile, ForReading);

 for (a = 0; a < n; a++) {
 if (!f.AtEndOfStream) {
 f.SkipLine()
 }
 }
 r = f.ReadLine();

 return(r);
}

function ReadCharN(theFile,s,n)
{
 var fs, f, r;
 var ForReading = 1;

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 f = fs.OpenTextFile(theFile, ForReading);

 f.Skip(s);
 r = f.Read(n);

 return(r);
}

function WriteLine(theFile,theLine)
{
 var fs, f;
 var ForWriting = 2, ForAppending = 8;

 fs = new ActiveXObject(“Scripting.FileSystemObject”)

 if (fs.FileExists(theFile))
 var f = fs.OpenTextFile (theFile, ForAppending)
 else
 var f = fs.OpenTextFile (theFile, ForWriting, “True”)

 f.WriteLine(theLine);
 f.Close();
}

continued

86804c27.indd 63186804c27.indd 631 1/21/09 1:30:38 PM1/21/09 1:30:38 PM

632

 Part V Windows Scripting Libraries

function WriteChar(theFile,theString)
{
 var fs, f;
 var ForWriting = 2, ForAppending = 8;

 fs = new ActiveXObject(“Scripting.FileSystemObject”)

 if (fs.FileExists(theFile))
 var f = fs.OpenTextFile (theFile, ForAppending)
 else
 var f = fs.OpenTextFile (theFile, ForWriting, “True”)

 f.Write(theString);
 f.Close();
}

function DisplayDialog(text, timeout, title, buttonType)
{
 var answ;

 if (timeout == null)
 timeout = 10
 if (title == null)
 title = “Input Required”
 if (buttonType == null)
 buttonType = 3

 var w = WScript.CreateObject(“WScript.Shell”);
 answ = w.Popup(text, timeout, title, buttonType)
 return(answ)
}

function GetResponse(text, timeout, title, buttonType)
{
 var s, answer;

 answer = DisplayDialog(text, timeout, title, buttonType)

 s = “”;

 switch (answer) {
 case 1 :
 s = “ok”;
 break;

 case 2 :
 s = “cancel”;

LISTING 27-1 (continued)

86804c27.indd 63286804c27.indd 632 1/21/09 1:30:38 PM1/21/09 1:30:38 PM

633

 Library: I/O Utilities 27

 break;

 case 3 :
 s = “abort”;
 break;

 case 4 :
 s = “retry”;
 break;

 case 5 :
 s = “ignore”;
 break;

 case 6 :
 s = “yes”;
 break;

 case 7 :
 s = “no”;
 break;

 default :
 s = “none”
 break
 }

 return(s)
}

function GetErrorInfo(e, sep)
{

 var s;
 s = “”;

 s += “Error Type: “ + e + sep
 s += “Description: “ + e.description + sep;
 s += “Error Code: “
 s += e.number & 0xFFFF;
 s += sep;

 return(s)
}

function WriteEvent(status)
{
 var s;
 s = “”

continued

86804c27.indd 63386804c27.indd 633 1/21/09 1:30:38 PM1/21/09 1:30:38 PM

634

 Part V Windows Scripting Libraries

 var ws = WScript.CreateObject(“WScript.Shell”)

 if (status == 0) {
 //successful execution
 s = WScript.ScriptName + “ completed successfully.”
 ws.LogEvent(0, s)
 }
 else {
 //failed execution
 s = WScript.ScriptName + “ did not execute properly.”
 s += “\r\n “ + WScript.ScriptFullName
 s += “\r\n “ + WScript.FullName
 ws.LogEvent(1, s)
 }

}

Using the I/O Utility Library
As you examined the source code, you probably noted two general types of functions: those for han-
dling file I/O and those for handling other types of I/O tasks. Let’s look at the file I/O functions first
and then look at the other I/O functions.

Handling file I/O with the utility library
File I/O tasks make several assumptions. First of all, text files are assumed to be in the default format
for the system, which is normally ASCII text. Most of the file I/O functions also expect to be passed a
file path, such as:

D:\\working\\document1.txt

One of the most basic utility functions is ReadFile. This function reads an entire file and returns
the contents for you to work with. You could use ReadFile to display the contents of a file in a pop-
up dialog as follows:

var w = WScript.CreateObject(“WScript.Shell”);
w.Popup (ReadFile(“D:\\document1.txt”))

If you use a .WS file, you don’t have to place the ReadFile function in your script. Instead, you can
handle the function like a library call. With a .WS file, you could use ReadFile as follows:

<Job ID=”ReadFile”>
 <Script LANGUAGE=”JScript” SRC=”filelib.js” />

LISTING 27-1 (continued)

86804c27.indd 63486804c27.indd 634 1/21/09 1:30:38 PM1/21/09 1:30:38 PM

635

 Library: I/O Utilities 27

 <Script LANGUAGE=”JScript”>
 theFile = ReadFile(“D:\\data.txt”)
 WScript.Echo(theFile)
 </Script>
</Job>

Other functions in the library can be used in similar ways as well. Use the ReadLineN function to
read a specific line in a file, such as the fifth line. If you want to read the fifth line in the file, pass in
the file name and then the integer value 5, such as:

theLine = ReadLineN(“D:\\document.txt”,5)

The ReadLineN function skips four lines in the file and then reads the fifth line. The contents of
this line are then returned. To read the first line in the file, you could pass in 1 as the line parameter,
such as:

theLine = ReadLineN(“D:\\document1.txt”,1)

Keep in mind that you cannot try to read a line that doesn’t exist. For example, if the fi le
contains 12 lines, you can’t try to read the 14th line. If you do, no value is returned.

The ReadCharN function is used to read a specific group of characters in a file. For example, if you
know that the file contains fixed-length records with each record having 50 characters, you could
read in the third record by telling ReadCharN to skip 100 characters and then read 50 characters,
such as:

theRecord = ReadLineN(“D:\\data.txt”,100,50)

The utility library also provides functions for writing to files. The WriteLine function writes a line
to a file. The WriteChar function writes a block of characters to a file. You can use these functions
to write onto new files or to append onto existing files. To ensure that existing files are appended,
rather than overwritten, the functions make use of the following If Else construct:

if (fs.FileExists(theFile))
 var f = fs.OpenTextFile (theFile, ForAppending)
else
 var f = fs.OpenTextFile (theFile, ForWriting, “True”)

Again, this conditional test checks for a file’s existence. If the file exists, it is opened in ForAppending
mode. Otherwise, the file is opened in ForWriting mode. You could use the WriteLine function as
follows:

theFile = “D:\\mydata.txt”
theLine = “William Stanek, wrstane, wrs@tvpress.com, x7789”
WriteLine(theFile,theLine)

In a .wsc file you could use WriteLine in much the same way:

<Job ID=”WriteFile”>
 <Script LANGUAGE=”JScript” SRC=”filelib.js” />

NOTENOTE

86804c27.indd 63586804c27.indd 635 1/21/09 1:30:38 PM1/21/09 1:30:38 PM

636

 Part V Windows Scripting Libraries

 <Script LANGUAGE=”JScript”>
 theFile = “D:\\mydata.txt”
 theLine = “William Stanek, wrstane, wrs@tvpress.com, x7789”
 WriteLine(theFile,theLine)
 </Script>
</Job>

Handling other I/O tasks with the utility library
The I/O utility library also provides functions for handling essential I/O tasks. Two key functions are
DisplayConsolePrompt and ReadFromKeyboard. When called from a script using the CScript
host, the DisplayConsolePrompt function displays a message at the command prompt and waits
for the user to enter a line of information. The function then returns the user’s response to the caller.
You could use this function anytime you need to obtain input from a user. If you wanted the user to
enter the name of a remote system to work with, you could call DisplayConsolePrompt like this:

response = DisplayConsolePrompt(“Please Enter Remote System Name:”)

The ReadFromKeyboard function takes this idea a bit further. Not only can you supply a prompt
to display, but you can also enter banner text to display to the user. For example, if you called
ReadFromKeyboard as follows:

response = ReadFromKeyboard(“File Administration Script”, “Please Enter
Remote System Name:”)

the user would see the following output at the command prompt:

==

File Administration Script

==

Please Enter Remote System Name:

If you would rather display a pop-up dialog, you can use the DisplayDialog function, instead.
This function provides a quick and easy way to get input from users through pop-up dialogs. To see
how this works, you’ll need to give the function a test run. Try calling DisplayDialog as follows:

answ = DisplayDialog(“Shall We Continue?”)

You should see a pop-up dialog with the following default settings:

Title set to “Input Required”■

Timeout set to ten seconds■

Button type set to Yes/No/Cancel■

86804c27.indd 63686804c27.indd 636 1/21/09 1:30:38 PM1/21/09 1:30:38 PM

637

 Library: I/O Utilities 27

If necessary, you can override the default settings. Simply enter the parameters you’d like to set,
such as:

answ = DisplayDialog(“Shall We Continue?”, 20, “Continue Y/N?”)

Although the DisplayDialog function doesn’t analyze the user response, the GetResponse func-
tion does. Using GetResponse, you can determine which button a user pressed and then handle the
response appropriately. The text values returned by GetResponse are:

ok■

cancel■

abort■

retry■

ignore■

yes■

no■

none■

You can call GetResponse just as you call DisplayDialog, but you can do a bit more with the
response—and you don’t need to worry about which numeric values equate to which answer types.
Here’s an example:

answ = GetResponse(“Shall We Continue?”)

if (answ = “yes”) {
 //answered yes; handle response
} else
 //answered no or didn’t respond; handle response
}

When you want to handle or track problems with scripts, you’ll find that the GetErrorInfo and
WriteEvent functions are very useful. The GetErrorInfo function can be used to examine errors
that occur during execution, and it normally is used with try catch statements, such as:

try {
 x = data
}
catch(e) {
 WScript.Echo(GetErrorInfo(e, “\r\n”))
}

If the data variable isn’t defined, GetErrorInfo returns the following results:

Error Type: [object Error]
Description: ‘data’ is undefined

86804c27.indd 63786804c27.indd 637 1/21/09 1:30:39 PM1/21/09 1:30:39 PM

638

 Part V Windows Scripting Libraries

Error Code: 5009

These results could then be displayed to the current user.

The WriteEvent function writes events to the Application Log on the local system. The type of
event written depends on how a status flag is set when the function is called. If the status is set to 0,
the function writes an informational event with the description:

ScriptName completed successfully.

such as:

myscript.ws completed successfully.

If the status is set to 1, the function writes an error event with the following description:

ScriptName completed successfully.
 ScriptPath
 WSHPath

such as:

myscript.ws did not execute properly.
 E:\scripts\myscript.ws
 F:\WIN2000\system32\cscript.exe

You could use WriteEvent in a script as follows:

//script body here using a status flag
//to track success or failure

WriteEvent(status)

Summary
This chapter developed a utility library for handling input and output. You can call the functions of
this library from your own scripts at any time. The next chapter discusses a network resource library.

86804c27.indd 63886804c27.indd 638 1/21/09 1:30:39 PM1/21/09 1:30:39 PM

639

The network resource library provides functions for working with
drives, network shares, services, open resources, and user sessions.
The sections that follow show the source for the script, as well as

how the script can be used.

Examining the Network Resource
Utility Library
Listing 28-1 shows the source code for the network resource library. Key
features implemented in this library are discussed in Chapters 10, 18, and 19.

Library: Network Resource
Utilities

IN THIS CHAPTER
Creating the network resource
library

Using the network resource
library

Working with library methods

LISTING 28-1

Managing Network Resources

netreslib.js

// ************************
// Script: Network Resource Library
// Version: 1.1.8
// Creation Date: 04/30/2008
// Last Modified: 05/15/2008
// Author: William R. Stanek
// Email: williamstanek@aol.com
// ************************
// Description: Provides a utility library for
// managing network resources.
// ************************

continued

86804c28.indd 63986804c28.indd 639 1/21/09 1:30:52 PM1/21/09 1:30:52 PM

640

 Part V Windows Scripting Libraries

// Copyright (c) 2008 William R. Stanek
// You have a royalty-free right to use these applications, provided
// that you give credit to the author AND agree that the author has
// no warranty, obligations or liability for any of these library
// functions.
// ************************

function GetDriveInfo()
{
 var fs, d, e, s, t, wnet, cname;

 wNet = WScript.CreateObject(“WScript.Network”);
 cname = wNet.ComputerName;

 fs = new ActiveXObject (“Scripting.FileSystemObject”);
 e = new Enumerator(fs.Drives);
 s = “”;
 s += “=========================” + “\r\n”;
 s += cname + “\r\n”;
 s += “=========================” + “\r\n”;

 for (; !e.atEnd(); e.moveNext())
 {

 d = e.item();
 switch (d.DriveType)
 {
 case 0: t = “Unknown”; break;
 case 1: t = “Removable”; break;
 case 2: t = “Fixed”; break;
 case 3: t = “Network”; break;
 case 4: t = “CD-ROM”; break;
 case 5: t = “RAM Disk”; break;
 }
 s += “Drive “ + d.DriveLetter + “: - “ + t + “\r\n”;
 if (d.ShareName)
 s += “ Share: “ + d.ShareName + “\r\n”;
 s += “Total space “ + Math.round(d.TotalSize/1048576);
 s += “ Mbytes” + “\r\n”;
 s += “Free Space: “ + Math.round(d.FreeSpace/1048576);
 s += “ Mbytes” + “\r\n”;
 s += “=========================” + “\r\n”;
 }
 return(s);
}

function GetDriveInfo2()

LISTING 28-1 (continued)

86804c28.indd 64086804c28.indd 640 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

641

 Library: Network Resource Utilities 28

{
 var fs, d, e, s, t, wnet, cname;

 wNet = WScript.CreateObject(“WScript.Network”);
 cname = wNet.ComputerName;

 fs = new ActiveXObject (“Scripting.FileSystemObject”);
 e = new Enumerator(fs.Drives);
 s = “”;
 s += “=========================” + “\r\n”;
 s += cname + “\r\n”;
 s += “=========================” + “\r\n”;

 for (; !e.atEnd(); e.moveNext())
 {

 d = e.item();
 if ((d.DriveType < 2) || (d.DriveType > 3))
 continue;

 switch (d.DriveType)
 {
 case 0: t = “Unknown”; break;
 case 1: t = “Removable”; break;
 case 2: t = “Fixed”; break;
 case 3: t = “Network”; break;
 case 4: t = “CD-ROM”; break;
 case 5: t = “RAM Disk”; break;
 }
 s += “Drive “ + d.DriveLetter + “: - “ + t + “\r\n”;
 if (d.ShareName)
 s += “ Share: “ + d.ShareName + “\r\n”;
 s += “Total space “ + Math.round(d.TotalSize/1048576) ;
 s += “ Mbytes” + “\r\n”;
 s += “Free Space: “ + Math.round(d.FreeSpace/1048576);
 s += “ Mbytes” + “\r\n”;
 s += “=========================” + “\r\n”;
 }
 return(s);
}

function CheckFreeSpace()
{
 var fs, d, e, s, tspace, fspace, wnet, cname;

 wnet = WScript.CreateObject(“WScript.Network”);
 cname = wnet.ComputerName;

 fs = new ActiveXObject (“Scripting.FileSystemObject”);

continued

86804c28.indd 64186804c28.indd 641 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

642

 Part V Windows Scripting Libraries

 e = new Enumerator(fs.Drives);
 s = “”;
 s += “=========================” + “\r\n”;
 s += cname + “\r\n”;
 s += “=========================” + “\r\n”;

 for (; !e.atEnd(); e.moveNext())
 {

 d = e.item();
 if ((d.DriveType < 2) || (d.DriveType > 3))
 continue
 tspace = Math.round(d.TotalSize/1048576);
 fspace = Math.round(d.FreeSpace/1048576);
 if (fspace < (tspace*.1))
 {
 s += “Drive “ + d.DriveLetter;
 if (d.VolumName)
 s += “Volume: “ + d.VolumName;
 if (d.ShareName)
 s += “ Share: “ + d.ShareName;
 s += “\r\n!!!” + “\r\n”;
 s += “Free Space: “ + fspace;
 s += “ Mbytes” + “\r\n”;
 s += “!!!” + “\r\n”;
 }

 }
 return(s);
}

function MapDrive(drv, nshare)
{

 fs = new ActiveXObject(“Scripting.FileSystemObject”);
 if (fs.DriveExists(drv))
 {
 var wn = WScript.CreateObject (“WScript.Network”);
 wn.RemoveNetworkDrive(drv);
 }
 else
 {
 var wn = WScript.CreateObject (“WScript.Network”);
 wn.MapNetworkDrive(drv, nshare);
 }
}

LISTING 28-1 (continued)

86804c28.indd 64286804c28.indd 642 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

643

 Library: Network Resource Utilities 28

function defPrinter(dp)
{
 var wn = WScript.CreateObject(“WScript.Network”);
 wn.SetDefaultPrinter (dp);
}

function AddPrinter(prntr, pshare)
{
 var wn = WScript.CreateObject(“WScript.Network”);
 wn.AddPrinterConnection(prntr, pshare);
}

function RemPrinter(prntr)
{
 var wn = WScript.CreateObject(“WScript.Network”);
 wn.RemovePrinterConnection (prntr);
}

function getServiceInfo(domain,system)
{
 var lf, ret, tlist;
 lf = “\r\n”;
 ret = “”;

 var comp = GetObject(“WinNT://” + domain + “/” + system);
 tlist = new Enumerator(comp);

 for (; !tlist.atEnd(); tlist.moveNext())
 {

 s = tlist.item();

 if (s.Class == “Service”) {

 //Display service properties
 ret += s.Class + “ “ + s.Name + lf;
 ret += “==============================” + lf;
 ret += “StartType: “ + s.StartType + lf;
 ret += “ServiceType: “ + s.ServiceType + lf;
 ret += “DisplayName: “ + s.DisplayName + lf;
 ret += “Path: “ + s.Path + lf;
 ret += “ErrorControl: “ + s.ErrorControl + lf;
 ret += “HostComputer: “ + s.HostComputer + lf;
 ret += “LoadOrderGroup: “ + s.LoadOrderGroup + lf;
 ret += “ServiceAccountName: “ + s.ServiceAccountName + lf;

 try {
 ret += “Dependencies: “ + s.Dependencies + lf;
 }

continued

86804c28.indd 64386804c28.indd 643 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

644

 Part V Windows Scripting Libraries

 catch (e) {
 //property setting not available or is array
 }
 try {
 //services can have multiple dependencies
 e = s.Dependencies.toArray();
 for (opt in e)
 {
 ret += “Dependencies: “ + e[opt] + lf;
 }
 }
 catch (e) {
 //property setting not available
 }
 try {
 ret += “Status: “ + s.Get(“Status”) + lf;
 }
 catch (e) {
 //property setting not available
 }

 }

 ret += lf;

 }

 return (ret);
}

function checkService(domain, system, service)
{

 var lf, ret, tlist;
 lf = “\r\n”;
 ret = “”;

 var comp = GetObject(“WinNT://” + domain + “/” + system);
 tlist = new Enumerator(comp);

 for (; !tlist.atEnd(); tlist.moveNext())
 {

 s = tlist.item();

 if (s.Class == “Service”) {

LISTING 28-1 (continued)

86804c28.indd 64486804c28.indd 644 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

645

 Library: Network Resource Utilities 28

 if (s.DisplayName == service || s.Name == service) {

 ret += “==” + lf;
 ret += “Checking status of “ + s.Name + lf;

 switch (s.Status) {
 case 1 :
 ret += “==” + lf;
 ret += “Service not running.” + lf;
 ret += “==” + lf;
 break;
 case 2 :
 ret += “==” + lf;
 ret += “Service is starting…” + lf;
 ret += “==” + lf;
 break;
 case 3 :
 ret += “==” + lf;
 ret += “Service is stopping…” + lf;
 ret += “==” + lf;
 break;
 case 4 :
 ret += “==” + lf;
 ret += “Service is running normally.” + lf;
 ret += “==” + lf;
 break;
 case 5 :
 ret += “==” + lf;
 ret += “Service is resuming…” + lf;
 ret += “==” + lf;
 break;
 case 6 :
 ret += “==” + lf;
 ret += “Service is pausing.” + lf;
 ret += “==” + lf;
 break;
 case 7 :
 ret += “==” + lf;
 ret += “Service is paused.” + lf;
 ret += “==” + lf;
 break;
 case 8 :
 ret += “==” + lf;
 ret += “Service error!” + lf;
 ret += “==” + lf;
 break;
 }
 }
 }

continued

86804c28.indd 64586804c28.indd 645 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

646

 Part V Windows Scripting Libraries

 }

 return (ret);

}

function startService(domain, system, service)
{

 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var s = GetObject(“WinNT://” + domain + “/” + system + “/” + service +
 “,service”);

 if (s.Status == 1) {
 s.Start();
 ret += “==” + lf;
 ret += “Starting Service…” + s.Name + lf;
 ret += “==” + lf;

 } else {
 ret += “==” + lf;
 ret += s.Name + “ may already be started.” +lf;
 ret += “==” + lf;
 ret += checkService(domain, system, service)
 }

 return (ret);

}

function stopService(domain, system, service)
{

 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var s = GetObject(“WinNT://” + domain + “/” + system + “/” + service +
 “,service”);

 if (s.Status == 4) {
 s.Stop();
 ret += “==” + lf;
 ret += “Stopping Service…” + s.Name + lf;

LISTING 28-1 (continued)

86804c28.indd 64686804c28.indd 646 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

647

 Library: Network Resource Utilities 28

 ret += “==” + lf;

 } else {
 ret += “==” + lf;
 ret += s.Name + “ may already be stopped.” +lf;
 ret += “==” + lf;
 ret += checkService(domain, system, service)
 }

 return (ret);

}

function pauseService(domain, system, service)
{

 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var s = GetObject(“WinNT://” + domain + “/” + system + “/” + service +
 “,service”);

 if (s.Status == 4) {
 s.Pause();
 ret += “==” + lf;
 ret += “Pausing Service…” + s.Name + lf;
 ret += “==” + lf;

 } else {
 ret += “==” + lf;
 ret += s.Name + “ may already be paused.” +lf;
 ret += “==” + lf;
 ret += checkService(domain, system, service)
 }

 return (ret);

}

function resumeService(domain, system, service)
{

 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var s = GetObject(“WinNT://” + domain + “/” + system + “/” + service +
 “,service”);

continued

86804c28.indd 64786804c28.indd 647 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

648

 Part V Windows Scripting Libraries

 if (s.Status == 7) {
 s.Continue();
 ret += “==” + lf;
 ret += “Resuming Service…” + s.Name + lf;
 ret += “==” + lf;

 } else {
 ret += “==” + lf;
 ret += s.Name + “ may already be running.” +lf;
 ret += “==” + lf;
 ret += checkService(domain, system, service)
 }

 return (ret);

}

function checkRS(domain, system)
{
 var lf, rList, sList, resource, ret, session;

 lf = “\r\n”;
 var s = GetObject(“WinNT://” + domain + “/” + system +
 “/lanmanserver,fileservice”);

 ret = “”;
 ret += “===============================” + lf;
 ret += “Checking Resources and Sessions” + lf;
 ret += lf;
 ret += s.HostComputer + lf;
 ret += “===============================” + lf;

 rList = new Enumerator(s.Resources());

 for (; !rList.atEnd(); rList.moveNext())
 {
 resource = rList.item();
 ret += “Resource path: “ + resource.Path + lf;
 }

 sList = new Enumerator(s.Sessions());

 for (; !sList.atEnd(); sList.moveNext())
 {
 session = sList.item();
 ret += “Session name: “ + session.Name + lf;
 }

LISTING 28-1 (continued)

86804c28.indd 64886804c28.indd 648 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

649

 Library: Network Resource Utilities 28

 return (ret);
}

function viewDetailedRS(domain, system)
{

 var lf, rList, sList, resource, ret, session;

 lf = “\r\n”;
 var s = GetObject(“WinNT://” + domain + “/” + system +
 “/lanmanserver,fileservice”);

 ret = “”;
 ret += “===============================” + lf;
 ret += “Getting Detailed Information” + lf;
 ret += “for Resources and Sessions” + lf + lf;
 ret += s.HostComputer + lf;
 ret += “===============================” + lf;

 ret += “==============================” +lf;
 ret += “Open Files: “ + lf +lf;

 rList = new Enumerator(s.Resources());

 for (; !rList.atEnd(); rList.moveNext())
 {
 resource = rList.item()
 ret += “File or Folder Path: “ + resource.Path +lf;
 ret += “Number of Locks: “ + resource.LockCount +lf;
 ret += “User: “ + resource.User + lf
 }

 ret += “==============================” +lf;
 ret += “User Sessions: “ + lf + lf;

 sList = new Enumerator(s.Sessions());

 for (; !sList.atEnd(); sList.moveNext())
 {
 session = sList.item()
 ret += “Session name: “ + session.Name +lf;
 ret += “User: “ + session.User +lf;
 ret += “Computer: “ + session.Computer +lf;
 ret += “Connect Time: “ + session.ConnectTime +lf;
 ret += “Idle Time: “ + session.IdleTime +lf;

 }

continued

86804c28.indd 64986804c28.indd 649 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

650

 Part V Windows Scripting Libraries

 ret += “==============================” +lf;
 return (ret);
}

function viewShareInfo(domain, system, share)
{
 var lf, ret;

 lf = “\r\n”;
 ret = “”;

 var fs = GetObject(“WinNT://” + domain + “/” + system + “/LanmanServer/” +
 share + “,fileshare”);

 ret += “==============================” +lf;
 ret += fs.Name + “ Information “ + lf;
 ret += “==============================” +lf;
 ret += “Current User Count: “ + fs.CurrentUserCount + lf;
 ret += “Description: “ + fs.Description + lf;
 ret += “Host Computer: “ + fs.HostComputer + lf;
 ret += “Maximum User Count: “ + fs.MaxUserCount + lf;
 ret += “File Path: “ + fs.Path + lf;
 ret += “==============================” +lf;

 return (ret);
}

function createShare(domain, system, sharename, path)
{

 var lf;

 lf = “\r\n”;
 var s = GetObject(“WinNT://” + domain + “/” + system +
 “/LanmanServer,fileservice”);

 val = “”;

 var fs = s.Create(“FileShare”, sharename);
 fs.Path = path;
 fs.MaxUserCount = -1;
 fs.SetInfo();

}

function deleteShare(domain, system, sharename)
{

LISTING 28-1 (continued)

86804c28.indd 65086804c28.indd 650 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

651

 Library: Network Resource Utilities 28

 var lf;

 lf = “\r\n”;
 var s = GetObject(“WinNT://” + domain + “/” + system +
 “/LanmanServer,fileservice”);

 val = “”;

 var fs = s.Delete(“FileShare”, sharename);

}

Using the Network Resource Utility Library
As you’ve seen from Listing 28-1, the network resource utility library provides many custom func-
tions. Calling these ready-to-use functions from within your own scripts can save you time and effort.

Using GetDriveInfo
The GetDriveInfo function returns a summary of all drives on a system. If you want to run the
script as a nightly AT job, you can log the information to a file using the .wsf file shown in Listing 28-2.
This script uses the I/O utility library (iolib.js) and the network resource library (netreslib.js).

The results of the script are stored in a file called logfile.txt. Sample output for this file is shown in
the listing. Because the WriteChar function appends to existing files, information is added to the
log file each time you run the script.

LISTING 28-2

Getting and Logging Drive Information

logdriveinfo.wsf

<Job ID=”LogDriveInfo”>
 <Script LANGUAGE=”JScript” SRC=”iolib.js” />
 <Script LANGUAGE=”JScript” SRC=”netreslib.js” />
 <Script LANGUAGE=”JScript”>
 checkDrive = GetDriveInfo()
 WriteChar(“logfile.txt”,checkdrive)
 </Script>
</Job>

continued

86804c28.indd 65186804c28.indd 651 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

652

 Part V Windows Scripting Libraries

Output into logfile.txt

=========================
ZETA
=========================
Drive C: - Fixed
Total space 2047 Mbytes
Free Space: 564 Mbytes
=========================
Drive G: - Removable
Total space 96 Mbytes
Free Space: 39 Mbytes
=========================
Drive H: - CD-ROM
Total space 584 Mbytes
Free Space: 0 Mbytes
=========================

The GetDriveInfo function, as currently written, checks all drives on the system, including
removable drives. These drives must have media. If they don’t, you may see a prompt asking you
to check the drive. To get a report of fixed and network drives only, use the GetDriveInfo2
function. These statements within the For loop cause the function to skip checks for removable
and CD-ROM drives:

if ((d.DriveType < 2) || (d.DriveType > 3))
 continue

Using CheckFreeSpace
Another useful function for tracking drive info is CheckFreeSpace. CheckFreeSpace returns a
warning if a fixed or network drive has less than 10 percent free space available. The code that
checks for free space is:

 tspace = Math.round(d.TotalSize/1048576)
 fspace = Math.round(d.FreeSpace/1048576)
 if (fspace < (tspace*.1))

Here, you take the total free space and multiply by .1 to come up with a value to compare to the
amount of free space. The code that checks the free space percentage is easily updated. For exam-
ple, if you want to report errors when there is 25 percent free space, you can update the function
as follows:

 tspace = Math.round(d.TotalSize/1048576)
 fspace = Math.round(d.FreeSpace/1048576)
 if (fspace < (tspace*.25))

LISTING 28-2 (continued)

86804c28.indd 65286804c28.indd 652 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

653

 Library: Network Resource Utilities 28

The CheckFreeSpace function can also be run as a nightly AT job. Listing 28-3 shows a sample
.wsf file that maps a network share and then updates a central log file. Sample output for this log
file is shown.

LISTING 28-3

Examining Free Space on a System

checkdriveinfo.wsf

<Job ID=”DriveInfo”>
 <Script LANGUAGE=”JScript” SRC=”iolib.js” />
 <Script LANGUAGE=”JScript” SRC=”netreslib.js” />
 <Script LANGUAGE=”JScript”>
 checkDrive = CheckFreeSpace()
 MapDrive(“X:”, “\\\\Omega\\data”)
 WriteChar(“X:\\dspace.log”,checkdrive)
 MapDrive(“X:”)
 </Script>
</Job>

Output into dspace.log

=========================
ZETA
=========================
Drive C
!!!
Free Space: 8 Mbytes
!!!
=========================
OMEGA
=========================
Drive C
!!!
Free Space: 12 Mbytes
!!!

Using MapDrive
MapDrive provides a single function for connecting and disconnecting drives. If the drive referenced
in the first parameter exists, the drive is disconnected. Otherwise, the drive is connected to the net-
work share passed in the second parameter. You can use MapDrive to connect a drive as follows:

MapDrive(“Z:”, “\\\\Zeta\\logs”)

86804c28.indd 65386804c28.indd 653 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

654

 Part V Windows Scripting Libraries

Later, you can disconnect the drive by calling:

MapDrive(“Z:”)

Working with printers
The network resource library also has functions for working with printers. These functions are
defPrinter for setting a default printer, AddPrinter for adding a printer connection, and
RemPrinter for removing a printer connection. The first parameter for all of these functions is
the local name of the printer you are working with. AddPrinter expects a second parameter,
which is the name of the network printer share you are connecting. You can call AddPrinter in
a script as follows:

AddPrinter(“MarketingPrinter”, “\\\\Omega\\Prtrs\\Marketing”)

Viewing, checking, and managing services
You’ll find two key functions for viewing and checking Windows services: getServiceInfo and
checkService. The getServiceInfo function provides a detailed summary of all services on a
specified computer. For example, you could examine all the services on a computer called Jupiter in
the Marketing domain as follows:

WScript.Echo(getServiceInfo(“Marketing”,”Jupiter”))

The results would look similar to the following:

Service Alerter
==============================
StartType: 2
ServiceType: 32
DisplayName: Alerter
Path: F:\WINNT\System32\services.exe
ErrorControl: 1
HostComputer: WinNT://marketing/jupiter
LoadOrderGroup:
ServiceAccountName: LocalSystem
Dependencies: LanmanWorkstation

Service AppMgmt
==============================
StartType: 3
ServiceType: 32
DisplayName: Application Management
Path: F:\WINNT\system32\services.exe
ErrorControl: 1
HostComputer: WinNT://marketing/jupiter

86804c28.indd 65486804c28.indd 654 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

655

 Library: Network Resource Utilities 28

LoadOrderGroup:
ServiceAccountName: LocalSystem
…
…
Service Wmi
==============================
StartType: 3
ServiceType: 32
DisplayName: Windows Management Instrumentation Driver Extensions
Path: F:\WINNT\system32\Services.exe
ErrorControl: 1
HostComputer: WinNT://marketing/jupiter
LoadOrderGroup:
ServiceAccountName: LocalSystem

The checkService function displays the status of a service on a specified system. The service can
be referenced by display name or by the actual service name. For example, you could reference the
WinMgmt service:

WScript.Echo(checkService(“seattle”, “Zeta”, “WinMgmt”))

or the Windows Management Instrumentation service:

WScript.Echo(checkService(“seattle”, “Zeta”,
“Windows Management Instrumentation”))

If the service is running normally, the output you see is:

==
Checking status of WinMgmt
==
Service is running normally.
==

If you need to manage services on a remote system, you’ll find that the startService, stopService,
pauseService, and resumeService functions are very handy. As the names imply, these functions
start, stop, pause, or resume services, respectively. Be sure to specify the domain, system, and service
name when calling these functions, such as:

WScript.Echo(startService(“seattle”, “Zeta”, “WinMgmt”))

The return value from the function tells you one of two things. If the service was stopped, you’ll get
the following message:

==
Starting Service…WinMgmt
==

86804c28.indd 65586804c28.indd 655 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

656

 Part V Windows Scripting Libraries

This message tells you that the service is being started. If the service wasn’t stopped, however, you’ll
get this message:

==
WinMgmt may already be started.
==
==
Checking status of WinMgmt
==
Service is running normally.
==

The function displays a message that tells you the service may already be started and then calls the
checkService function in order to obtain a more precise status.

Using checkRS and viewDetailedRS
The checkRS and viewDetailedRS functions display information about open resources and user
sessions. checkRS returns summary information. viewDetailedRS returns detailed information.
Both functions expect to be passed a domain and system name to work with, such as:

WScript.Echo(checkRS(“seattle”, “zeta”))

The return values from checkRS are formatted as follows:

==============================
Checking Resources and Sessions

WinNT://seattle/zeta
==============================
Resource path: E:\myBooks
Resource path: E:\myBooks\Apartments.doc
Session name: ADMINISTRATOR\127.0.0.1

The return values from viewDetailedRS are formatted like this:

===============================
Getting Detailed Information
for Resources and Sessions

WinNT://seattle/zeta
===============================
==============================
Open Files:

File or Folder Path: E:\myBooks
Number of Locks: 0
User: ADMINISTRATOR
File or Folder Path: E:\myBooks\Apartments.doc

86804c28.indd 65686804c28.indd 656 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

657

 Library: Network Resource Utilities 28

Number of Locks: 3
User: ADMINISTRATOR
==============================
User Sessions:

Session name: ADMINISTRATOR\127.0.0.1
User: ADMINISTRATOR
Computer: 127.0.0.1
Connect Time: 819
Idle Time: 803
==============================

Using viewShareInfo, createShare, and deleteShare
The final set of utility functions is designed to work with network shares. You use viewShareInfo
to obtain summary information for a named share. Here’s how you could examine the netlogon
share on a computer called Goldbug in the Gemini domain:

WScript.Echo(viewShareInfo(“Gemini”, “Goldbug”, “netlogon”))

The return value would look similar to the following:

==============================
NETLOGON Information
==============================
Current User Count: 0
Description: Logon server share
Host Computer: WinNT://gemini/goldbug
Maximum User Count: -1
File Path: F:\WINNT\sysvol\sysvol\gemini.com\SCRIPTS
==============================

The createShare function provides a quick and easy way to create shared folders on remote com-
puters. Just call the function with the domain name, remote system name, share name, and folder
path, such as:

createShare(“gemini”, “goldbug”, “UserData”, “e:\\Users\\Data”)

Don’t worry if you make a mistake; you can use the deleteShare function to delete the share:

deleteShare(“gemini”, “goldbug”, “UserData”)

Summary
This chapter developed a utility library for managing network resources. Through batch script (.wsf)
files, you can access these utility functions in any of your scripts. The next chapter provides a utility
library for managing accounts.

86804c28.indd 65786804c28.indd 657 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

86804c28.indd 65886804c28.indd 658 1/21/09 1:30:53 PM1/21/09 1:30:53 PM

659

A s you set out to manage accounts, you may want to keep the account
management library in mind. This library provides functions for
managing user, group, and computer accounts, as well as domain

account policies. Through batch scripts (.wsf) files, you can access these
utility functions in any of your scripts.

Building the Account
Management Library
Listing 29-1 provides the source code for the account management library.
As you examine the listing, note the function names and how the functions
are implemented. If you have specific questions on the techniques used in
the listing, you’ll find related discussions in Chapters 17 and 20.

Library: Account
Management Utilities

IN THIS CHAPTER
Creating the account
management library

Using the account management
library

Working with library methods

LISTING 29-1

Account Management Utility Library

accountlib.js

// ************************
// Script: Account Management Library
// Version: 1.1.5
// Creation Date: 04/22/2008
// Last Modified: 05/05/2008
// Author: William R. Stanek
// E-mail: williamstanek@aol.com

continued

86804c29.indd 65986804c29.indd 659 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

660

 Part V Windows Scripting Libraries

// ************************
// Description: Provides a utility library for
// managing Windows accounts.
// ************************
// Copyright (c) 2008 William R. Stanek
// You have a royalty-free right to use these applications,
// provided that you give credit to the author AND agree that
// the author has no warranty, obligations or liability for any
// of these library functions.
// ************************

//Domain management functions

function setMinPasswordLength(domain, passLength)
{
 var dom = GetObject(“WinNT://” + domain);
 dom.Put(“MinPasswordLength”, passLength);
 dom.SetInfo();

 return (“Minimum Password Length: “ + dom.Get(“MinPasswordLength”));

}

function setPasswordAge(domain, minAge, maxAge)
{
 var lf, ret, passMinAge, passMaxAge;
 lf = “\r\n”;
 ret = “”;

 var dom = GetObject(“WinNT://” + domain);
 dom.Put(“MinPasswordAge”, 86400 * minAge);
 dom.Put(“MaxPasswordAge”, 86400 * maxAge);
 dom.SetInfo();

 passMinAge = dom.Get(“MinPasswordAge”) / 86400;
 passMaxAge = dom.Get(“MaxPasswordAge”) / 86400;

 ret += “Minimum Password Age: “ + passMinAge + “ days” + lf;
 ret += “Maximum Password Age: “ + passMaxAge + “ days”;

 return (ret);
}

function setPasswordHistory(domain, histLength)
{
 var ret;
 ret = “”;

LISTING 29-1 (continued)

86804c29.indd 66086804c29.indd 660 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

661

 Library: Account Management Utilities 29

 var dom = GetObject(“WinNT://” + domain);
 dom.Put(“PasswordHistoryLength”, histLength);
 dom.SetInfo();

 return(“Password History Length: “ + dom.Get(“PasswordHistoryLength”));
}

function setAccountLockoutInfo(domain, maxBad, unlockInt, lockoutObs)
{

 var lf, ret, maxBad, autoU, lockO;
 lf = “\r\n”;
 ret = “”;

 var dom = GetObject(“WinNT://” + domain);
 dom.Put(“MaxBadPasswordsAllowed”, maxBad);
 dom.Put(“AutoUnlockInterval”, 60 * unlockInt);
 dom.Put(“LockoutObservationInterval”, 60 * lockoutObs);
 dom.SetInfo();

 maxBad = dom.Get(“MaxBadPasswordsAllowed”);
 autoU = dom.Get(“AutoUnlockInterval”) / 60;
 lockO = dom.Get(“LockoutObservationInterval”) / 60;

 ret += “Maximum Bad Passwords Allowed: “ + maxBad + lf;
 ret += “AutoLock Interval: “ + autoU + “ minutes” + lf;
 ret += “Lockout Observation Interval: “ + lockO + “ minutes”;

 return (ret);
}

//Computer management functions

function getAllComputers() {

 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var prov = GetObject(“WinNT:”);
 tlist = new Enumerator(prov);

 for (; !tlist.atEnd(); tlist.moveNext())
 {

 s = new Enumerator(tlist.item());

 for (; !s.atEnd(); s.moveNext())

continued

86804c29.indd 66186804c29.indd 661 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

662

 Part V Windows Scripting Libraries

 {

 o = s.item();
 if (o.Class == “Computer”) {

 try {
 ret += o.Class + “ “ + o.Name + lf;
 ret += “ Owner: “ + o.Owner + lf;
 ret += “ Division: “ + o.Division + lf;
 ret += “ OperatingSystem: “ + o.OperatingSystem + lf;
 ret += “ OS Version: “ + o.OperatingSystemVersion + lf;
 ret += “ Processor: “ + o.Processor + lf;
 ret += “ ProcessorCount: “ + o.ProcessorCount + lf;
 }
 catch(e) {

 ret += “ Not online at this time” + lf;
 }
 }
 }
 }

 return (ret);
}

function getDomainComputers(domain) {

 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var dom = GetObject(“WinNT://” + domain);

 s = new Enumerator(dom);

 for (; !s.atEnd(); s.moveNext())
 {

 o = s.item();
 if (o.Class == “Computer”) {

 try {
 ret += o.Class + “ “ + o.Name + lf;
 ret += “ Owner: “ + o.Owner + lf;
 ret += “ Division: “ + o.Division + lf;
 ret += “ OperatingSystem: “ + o.OperatingSystem + lf;
 ret += “ OS Version: “ + o.OperatingSystemVersion + lf;

LISTING 29-1 (continued)

86804c29.indd 66286804c29.indd 662 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

663

 Library: Account Management Utilities 29

 ret += “ Processor: “ + o.Processor + lf;
 ret += “ ProcessorCount: “ + o.ProcessorCount + lf;
 }
 catch(e) {

 ret += “ Not online at this time” + lf;
 }
 }
 }

 return (ret);
}

function createComputerAccount(container, computer) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var comp = cont.Create(“computer”,”CN=” + computer);

 comp.Put(“samAccountName”,computer);
 comp.SetInfo();

}

function createEnabledComputerAccount(container, computer) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var comp = cont.Create(“computer”,”CN=” + computer);

 comp.Put(“samAccountName”,computer);
 comp.SetInfo();

continued

86804c29.indd 66386804c29.indd 663 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

664

 Part V Windows Scripting Libraries

 comp.AccountDisabled = “False”;
 comp.SetInfo();
}

function deleteComputerAccount(container, computer) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 cont.Delete(“computer”,”CN=” + computer);

}

function enableComputerAccount(container, computer) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var comp = cont.GetObject(“computer”,”CN=” + computer);

 comp.AccountDisabled = “False”;
 comp.SetInfo();
}

function disableComputerAccount(container, computer) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);

LISTING 29-1 (continued)

86804c29.indd 66486804c29.indd 664 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

665

 Library: Account Management Utilities 29

 }

 var comp = cont.GetObject(“computer”,”CN=” + computer);

 comp.AccountDisabled = “True”;
 comp.SetInfo();
}

//User management functions

function createLocalUser(computer, user, password) {

 var obj = GetObject(“WinNT://” + computer)
 var usr = obj.Create(“user”, user)
 usr.SetPassword(password)
 usr.SetInfo()

}

function deleteLocalUser(computer, user) {

 var obj = GetObject(“WinNT://” + computer)
 obj.Delete(“user”, user)

}

function createUser(container, fullName, first, last, samName, password) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var usr = cont.Create(“user”, “CN=” + fullName);
 usr.samAccountName = samName;
 usr.displayName = fullName;
 usr.givenName = first;
 usr.sn = last;
 usr.userPrincipalName = samName

 usr.SetInfo();

 usr.AccountDisabled = 0;

continued

86804c29.indd 66586804c29.indd 665 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

666

 Part V Windows Scripting Libraries

 usr.SetPassword(password);
 usr.SetInfo();

}

function deleteUser(container, displayName) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 cont.Delete(“User”, “CN=” + displayName);

}

function userMustChangePassword(container, displayName) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var usr = cont.GetObject(“User”, “CN=” + displayName);

 usr.Put(“pwdLastSet”, 0)
 usr.SetInfo()

}

function enableUserAccount(displayName) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://” + domainCont);

LISTING 29-1 (continued)

86804c29.indd 66686804c29.indd 666 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

667

 Library: Account Management Utilities 29

 }
 catch(e) {
 var cont = GetObject(“LDAP://” + domainCont);
 }

 var usr = cont.GetObject(“User”, “CN=” + displayName);

 usr.AccountDisabled = 0
 usr.SetInfo()

}

function enableUserAccount(container, displayName) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var usr = cont.GetObject(“User”, “CN=” + displayName);

 usr.AccountDisabled = 0
 usr.SetInfo()

}

function disableUserAccount(container, displayName) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var usr = cont.GetObject(“User”, “CN=” + displayName);

 usr.AccountDisabled = 1
 usr.SetInfo()

}

continued

86804c29.indd 66786804c29.indd 667 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

668

 Part V Windows Scripting Libraries

function unlockUserAccount(container, displayName) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var usr = cont.GetObject(“User”, “CN=” + displayName);

 usr.IsAccountLocked = 0
 usr.SetInfo()

}

function changePassword(container, displayName, password) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var usr = cont.GetObject(“User”, “CN=” + displayName);

 usr.SetPassword(password)
 usr.SetInfo()

}

function accountExpiration(container, displayName, dateString) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {

LISTING 29-1 (continued)

86804c29.indd 66886804c29.indd 668 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

669

 Library: Account Management Utilities 29

 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var usr = cont.GetObject(“User”, “CN=” + displayName);

 usr.AccountExpirationDate = dateString
 usr.SetInfo()

}

//Group management functions

function createGDistGroup (container, groupName, groupSAMName)
{

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var grp = cont.Create(“group”, “CN=” + groupName)

 grp.groupType = 2

 if (groupSAMName == null)
 grp.Put(“samAccountName”, groupName)
 else
 grp.Put(“samAccountName”, groupSAMName)

 grp.SetInfo()

}

function createDLDistGroup (container, groupName, groupSAMName)
{

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);

continued

86804c29.indd 66986804c29.indd 669 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

670

 Part V Windows Scripting Libraries

 }

 var grp = cont.Create(“group”, “CN=” + groupName)

 grp.groupType = 4

 if (groupSAMName == null)
 grp.Put(“samAccountName”, groupName)
 else
 grp.Put(“samAccountName”, groupSAMName)

 grp.SetInfo()

}

function createUDistGroup (container, groupName, groupSAMName)
{

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var grp = cont.Create(“group”, “CN=” + groupName)

 grp.groupType = 8

 if (groupSAMName == null)
 grp.Put(“samAccountName”, groupName)
 else
 grp.Put(“samAccountName”, groupSAMName)

 grp.SetInfo()

}

function createGSecGroup (container, groupName, groupSAMName)
{

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

LISTING 29-1 (continued)

86804c29.indd 67086804c29.indd 670 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

671

 Library: Account Management Utilities 29

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var grp = cont.Create(“group”, “CN=” + groupName)

 grp.groupType = -2147483646

 if (groupSAMName == null)
 grp.Put(“samAccountName”, groupName)
 else
 grp.Put(“samAccountName”, groupSAMName)

 grp.SetInfo()

}

function createDLSecGroup (container, groupName, groupSAMName)
{

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var grp = cont.Create(“group”, “CN=” + groupName)

 grp.groupType = -2147483644

 if (groupSAMName == null)
 grp.Put(“samAccountName”, groupName)
 else
 grp.Put(“samAccountName”, groupSAMName)

 grp.SetInfo()

}

function createUSecGroup (container, groupName, groupSAMName)
{

continued

86804c29.indd 67186804c29.indd 671 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

672

 Part V Windows Scripting Libraries

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 var grp = cont.Create(“group”, “CN=” + groupName)

 grp.groupType = -2147483640

 if (groupSAMName == null)
 grp.Put(“samAccountName”, groupName)
 else
 grp.Put(“samAccountName”, groupSAMName)

 grp.SetInfo()

}

function deleteGroup (container, groupName)
{

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” + domainCont);
 }

 cont.Delete(“group”, “CN=” + groupName)

}

function createLocalGroup(computer, groupName) {

 var obj = GetObject(“WinNT://” + computer)
 var grp = obj.Create(“group”, groupName)
 grp.SetInfo()

}

LISTING 29-1 (continued)

86804c29.indd 67286804c29.indd 672 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

673

 Library: Account Management Utilities 29

function deleteLocalGroup(computer, groupName) {

 var obj = GetObject(“WinNT://” + computer)
 obj.Delete(“group”, groupName)

}

//General computer, group and user functions

function moveAccount(orig, dest, comp) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + dest + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + dest + “,” + domainCont);
 }

 try {
 cont.MoveHere(“LDAP://CN=” + comp + “,OU=” + orig + “,” + domainCont, “CN=” +
comp);
 }
 catch(e) {
 cont.MoveHere(“LDAP://CN=” + comp + “,CN=” + orig + “,” + domainCont, “CN=” +
comp);
 }

}

function mrAccount(orig, dest, comp, newcomp) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + dest + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + dest + “,” + domainCont);
 }

 try {
 cont.MoveHere(“LDAP://CN=” + comp + “,OU=” + orig + “,” + domainCont, “CN=” +
newcomp);
 }
 catch(e) {

continued

86804c29.indd 67386804c29.indd 673 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

674

 Part V Windows Scripting Libraries

 cont.MoveHere(“LDAP://CN=” + comp + “,CN=” + orig + “,” + domainCont, “CN=” +
newcomp);
 }

}

function renameAccount(orig, comp, newcomp) {

 var rootDSE = GetObject(“LDAP://rootDSE”);
 domainCont = rootDSE.Get(“defaultNamingContext”);

 try {
 var cont = GetObject(“LDAP://OU=” + orig + “,” + domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + orig + “,” + domainCont);
 }

 try {
 cont.MoveHere(“LDAP://CN=” + comp + “,OU=” + orig + “,” + domainCont, “CN=” +
newcomp);
 }
 catch(e) {
 cont.MoveHere(“LDAP://CN=” + comp + “,CN=” + orig + “,” + domainCont, “CN=” +
newcomp);
 }

}

//check functions

function checkUserGroups(domain, userSAMName) {

 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var ntusr = GetObject(“WinNT://” + domain + “/” + userSAMName)
 ntList = new Enumerator(ntusr.Groups());

 ret += “=================================” + lf;
 ret += userSAMName + “ is a member of: “ + lf + lf;

 for (; !ntList.atEnd(); ntList.moveNext())
 {
 s = ntList.item();
 ret += s.Name + lf;
 }

LISTING 29-1 (continued)

86804c29.indd 67486804c29.indd 674 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

675

 Library: Account Management Utilities 29

 return (ret);
}

function checkGroupMembership()
{

 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var prov = GetObject(“WinNT:”)
 tlist = new Enumerator(prov)

 for (; !tlist.atEnd(); tlist.moveNext())
 {

 s = new Enumerator(tlist.item())

 for (; !s.atEnd(); s.moveNext())
 {

 o = s.item();
 if (o.Class == “User”) {

 ret += “=====================================” + lf;
 if (o.FullName == “”)
 ret += “Account: “ + o.Name + lf;
 else
 ret += “Account: “ + o.FullName + lf;

 mList = new Enumerator(o.Groups());

 for (; !mList.atEnd(); mList.moveNext())
 {
 usr = mList.item();
 ret += usr.Name + lf;
 }

 }
 }
 }

 return (ret);
}

function checkComputerAccounts() {

continued

86804c29.indd 67586804c29.indd 675 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

676

 Part V Windows Scripting Libraries

 //This function only checks the Computers and Domain Controllers containers
 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var prov = GetObject(“WinNT:”)

 tlist = new Enumerator(prov)

 for (; !tlist.atEnd(); tlist.moveNext())
 {

 s = new Enumerator(tlist.item());

 for (; !s.atEnd(); s.moveNext())
 {

 o = s.item();
 if (o.Class == “Computer”) {

 if (o.AccountDisabled == “True”) {

 ret += o.Name + “ is disabled” + lf;

 }

 }

 }
 }

 return (ret);
}

function checkUserAccounts() {

 //This function checks all containers for users
 var lf, ret;
 lf = “\r\n”;
 ret = “”;

 var prov = GetObject(“WinNT:”);
 tlist = new Enumerator(prov);

 for (; !tlist.atEnd(); tlist.moveNext())
 {

LISTING 29-1 (continued)

86804c29.indd 67686804c29.indd 676 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

677

 Library: Account Management Utilities 29

 s = new Enumerator(tlist.item());

 for (; !s.atEnd(); s.moveNext())
 {

 o = s.item();
 if (o.Class == “User”) {

 if (o.AccountDisabled == 1) {

 ret += o.Name + “ is disabled” + lf;

 }

 if (o.IsAccountLocked == 1) {

 ret += o.Name + “ is locked” + lf;

 }
 }
 }
 }

 return (ret);

}

Using the Account Management Utilities
The account management library has more than 36 utility functions. After reviewing the source
code for the utility library, you are probably ready to put these functions to work on your network.
Still, you may need to take a brief look at how the functions are used, and the usage details are
exactly what you’ll find in the sections that follow.

Configuring domain account policies with the library utilities
The account management library includes four functions for configuring account policies. Each
function sets one or more account policy in the designated domain and is used as follows:

setMinPasswordLength■ : Sets the minimum password length.

setPasswordAge■ : Sets the minimum and maximum password age in days.

86804c29.indd 67786804c29.indd 677 1/21/09 1:31:05 PM1/21/09 1:31:05 PM

678

 Part V Windows Scripting Libraries

setAccountLockoutInfo■ : Sets the maximum number of bad passwords allowed, the
auto unlock interval, and the lockout observation interval. Both intervals are specified
in minutes.

setPasswordHistory■ : Sets the password history length.

Listing 29-2 shows how you could use these functions in a batch script (.wsf) file.

LISTING 29-2

Setting Domain Account Policies with the Utility Library

logdriveinfo.wsf

<Job ID=”SetDomainAccountPolicy”>
 <Script LANGUAGE=”JScript” SRC=”accountlib.js” />

 <Script LANGUAGE=”JScript”>
 WScript.Echo(setMinPasswordLength(“seattle”, 8))
 WScript.Echo(setPasswordAge(“seattle”, 5, 60))
 WScript.Echo(setAccountLockoutInfo(“seattle”, 5, 60, 5))
 WScript.Echo(setPasswordHistory(“seattle”, 5))
 </Script>
</Job>

Output

Minimum Password Length: 8
Minimum Password Age: 5 days
Maximum Password Age: 60 days
Maximum Bad Passwords Allowed: 5
AutoLock Interval: 60 minutes
Lockout Observation Interval: 5 minutes
Password History Length: 5

Managing groups with the library utilities
In the account management library, you’ll find a large section of functions for working with groups.
As you know from previous discussions, there are several different types of groups, and each type of
group has different characteristics. To manage local groups, you can use the createLocalGroup
and deleteLocalGroup functions. When using these functions, be sure to reference the name of
the local computer and local group to work with. The following example shows how you could cre-
ate a local group called LocalMarketing on a computer called Harpo:

createLocalGroup(“Harpo”, “LocalMarketing”)

86804c29.indd 67886804c29.indd 678 1/21/09 1:31:06 PM1/21/09 1:31:06 PM

679

 Library: Account Management Utilities 29

If you later wanted to delete the group, you could call deleteLocalGroup with the same
parameters:

deleteLocalGroup(“Harpo”, “LocalMarketing”)

You’ll also find functions for creating domain security and distribution groups. These functions are:

createDLDistGroup■ : Creates a domain-local distribution group

createGDistGroup■ : Creates a global distribution group

createUDistGroup■ : Creates a universal distribution group

createDLSecGroup■ : Creates a domain-local security group

createGSecGroup■ : Creates a global security group

createUSecGroup■ : Creates a universal security group

You call these functions with the name of the container or organizational unit in which the group
should be created and the name of the group, such as:

createDLDistGroup (“Engineering”, “EngLocalMail”)

You don’t need to specify the CN= or OU= designator. This information is added automatically using
the following try catch statement:

 try {
 var cont = GetObject(“LDAP://OU=” + container + “,” +
 domainCont);
 }
 catch(e) {
 var cont = GetObject(“LDAP://CN=” + container + “,” +
 domainCont);
 }

You’ll see similar try catch statements used throughout this library. The primary rea-
son to use these statements is to make it easier to manage domain resources—you don’t

need to worry whether you are referencing a container or an organizational unit.

To delete domain groups, use the deleteGroup function. Because this function has the same syn-
tax, it can be used as follows:

deleteGroup(“Engineering”, “EngLocalMail”)

Another useful function for working with groups is checkGroupMembership. You can use this
function to display or log the group membership of all users in the domain. An example of logging
group membership is shown in Listing 29-3.

NOTENOTE

86804c29.indd 67986804c29.indd 679 1/21/09 1:31:06 PM1/21/09 1:31:06 PM

680

 Part V Windows Scripting Libraries

LISTING 29-3

Getting and Logging Group Membership Information

logmeminfo.wsf

<Job ID=”LogMemInfo”>
 <Script LANGUAGE=”JScript” SRC=”accountlib.js” />
 <Script LANGUAGE=”JScript” SRC=”iolib.js” />

 <Script LANGUAGE=”JScript”>
 WriteChar(“logfile.txt”,checkGroupMembership())
 </Script>
</Job>

Output into logfile.txt

=====================================
Account: Administrator
Enterprise Admins
Schema Admins
Group Policy Creator Owners
Domain Admins
Domain Users
Administrators
=====================================
Account: Guest
Domain Guests
Domain Users
Guests
=====================================
Account: Henry Brown
Domain Users
=====================================
...
...
=====================================
Account: William R. Stanek
Domain Admins
Domain Users
Administrators
=====================================

Managing users with the library utilities
Like groups, user accounts can be managed locally and in the domain. To manage local user
accounts, you can use the createLocalUser and deleteLocalUser functions. When creating

86804c29.indd 68086804c29.indd 680 1/21/09 1:31:06 PM1/21/09 1:31:06 PM

681

 Library: Account Management Utilities 29

a local account, pass in the name of the computer on which to create the account, the name of the
account, and the account password. The following example creates an account for tjbrown on a
computer called Groucho:

createLocalUser(“Groucho”, “tjbrown”, “changeMe”)

Later, you could delete the account using deleteLocalUser:

deleteLocalUser(“Groucho”, “tjbrown”)

Creating and deleting domain user accounts is a bit different. When you create a domain account
with the utility library, you must pass in the following parameters in this order:

Container or organizational unit in which the new account should be created■

Full name for the account■

First name■

Last name■

Login name (This parameter also sets the SAM account name.)■

Password■

An example follows:

createUser(“Engineering”, “Henry Brown”, “Henry”, “Brown”,
“hbrown”, “radicalmamma”)

The deleteUser function has only two parameters—the container name and the user display
name. Following this, you could delete the previous account with this function call:

deleteUser(“Engineering”, “Henry Brown”)

Functions are also provided to unlock, enable, disable, and force the user to change passwords on
the next login. These functions are unlockUserAccount, enableUserAccount, disableUser
Account, and userMustChangePassword. The syntax for these functions is as follows:

unlockUserAccount(“Engineering”, “Henry Brown”)
enableUserAccount(“Engineering”, “Henry Brown”)
disableUserAccount(“Engineering”, “Henry Brown”)
userMustChangePassword(“Engineering”, “Henry Brown”)

Additional utility functions are provided, as well. changePassword is used to set a new password
for a user. In this example, you set Harold’s password to brownBears:

changePassword(“Engineering”, “Harold Brown”, “brownBears”)

86804c29.indd 68186804c29.indd 681 1/21/09 1:31:06 PM1/21/09 1:31:06 PM

682

 Part V Windows Scripting Libraries

accountExpiration sets the expiration date on the named account. Use a date string to set a spe-
cific expiration date:

accountExpiration(“Engineering”, “Harold Brown”, “12/31/99”)

Or use –1 to specify that the account has no expiration date:

accountExpiration(“Engineering”, “Harold Brown”, -1)

checkUserAccounts returns a list of all accounts that are locked or disabled. You don’t need to
pass in any parameters when calling this function. Thus, you could call checkUserAccounts as
follows:

WScript.Echo(checkUserAccounts())

And you’d then get a list of locked or disabled accounts:

Guest is disabled
krbtgt is disabled

The final utility function for working with user accounts is checkUserGroups. This function dis-
plays the group membership of a named user. Because the WinNT provider is used to obtain this
list, you should be sure to pass in the SAM account name rather than the display name, as well as
the NT domain name. In this example, you check the seattle domain for the group membership
of wrstanek:

checkUserGroups(“seattle”, “wrstanek”)

The result is as follows:

=================================
wrstanek is a member of:

Enterprise Admins
Domain Admins
Domain Users
Administrators

Managing computers with the library utilities
Computer accounts can also be managed with this library. The key functions are the following:

createComputerAccount■ : Used to create new computer accounts but not enable them

createEnabledComputerAccount■ : Used to create and enable new computer accounts

deleteComputerAccount■ : Used to delete computer accounts

disableComputerAccount■ : Used to disable computer accounts

enableComputerAccount■ : Used to enable computer accounts

86804c29.indd 68286804c29.indd 682 1/21/09 1:31:06 PM1/21/09 1:31:06 PM

683

 Library: Account Management Utilities 29

These functions all have the same syntax. You pass in the name of container or organization units
for the computer account, as well as the account name, such as:

createComputerAccount(“Computers”, “Zippo”)
createEnabledComputerAccount(“Computers”, “Zippo”)
deleteComputerAccount(“Computers”, “Zippo”)
disableComputerAccount(“Engineering”, “Jupiter”)
enableComputerAccount(“Engineering”, “Jupiter”)

You’ll find other utility functions for working with computer accounts, as well. Use getDomain
Computers to obtain information on all active computers in the named domain. You could log
information for computers in the seattle domain as shown in Listing 29-4.

LISTING 29-4

Obtaining Computer Account Information

logmeminfo.wsf

<Job ID=”LogMemInfo”>
 <Script LANGUAGE=”JScript” SRC=”accountlib.js” />
 <Script LANGUAGE=”JScript” SRC=”iolib.js” />

 <Script LANGUAGE=”JScript”>
 WriteChar(“logfile.txt”, getDomainComputers(“seattle”))
 </Script>
</Job>

Output into logfile.txt

Computer HARPO
 Not online at this time
Computer OMEGA
 Not online at this time
Computer ZETA
 Owner: William Stanek
 Division: Web@Work
 OperatingSystem: Windows NT
 OS Version: 5.0
 Processor: x86 Family 6 Model 3 Stepping 3
 ProcessorCount: Uniprocessor Free

getAllComputers returns a similar list for all domains in the domain forest. With check
Computer Accounts, you can check the status of computer accounts in the domain forest. Simply
call the function:

WScript.Echo(checkComputerAccounts())

86804c29.indd 68386804c29.indd 683 1/21/09 1:31:06 PM1/21/09 1:31:06 PM

684

 Part V Windows Scripting Libraries

You’ll obtain a list of all disabled computers, such as:

Harpo is disabled
Omega is disabled

Functions for renaming and moving accounts
We’ve taken a look at nearly all of the functions in the utility library. The only remaining functions
to discuss are the multipurpose functions:

moveAccount■ : Used to move computer, user, and group accounts

renameAccount■ : Used to rename computer, user, and group accounts

mrAccount■ : Used to move and rename computer, user, and group accounts

These functions are easy to use. You pass moveAccount the original container name, the destination
container name, and the name of the object to move, such as:

moveAccount(“Engineering”, “Marketing”, “Henry Brown”)

You pass renameAccount the current container, the current name, and the new name for the
account, such as:

renameAccount(“Engineering”, “Henry Brown”, “Harold Brown”)

You pass mrAccount the original container name, the destination container name, the name of the
object to move, and the new name, such as:

mrAccount(“Marketing”, “Engineering”, “Henry Brown”, “Harold Brown”)

That’s all there is to it. The functions handle the behind-the-scenes work for you.

Summary
The account management utilities provide a great starting point for managing user, group, and com-
puter accounts. If you want to use these functions in your own scripts, be sure to use batch script
(.wsf) files. Remember that you can combine multiple libraries, as well as multiple scripts.

86804c29.indd 68486804c29.indd 684 1/21/09 1:31:06 PM1/21/09 1:31:06 PM

685

In this chapter, you will see some useful techniques to draw on when
building your own functions, filters, and scripts. The idea is not so
much to give you “101 useful PowerShell scripts,” but rather to build

some scripts so you can see techniques that can be applied in many differ-
ent contexts. First, let’s look at how to get PowerShell the way you want it.

Customizing Your
PowerShell Environment
There are several ways that you might want to customize the environment for
PowerShell. You can use the profile if you would like every session to have:

Additional PowerShell snap-ins loaded■

User-defined functions pre-loaded from a script ■

Additional .NET libraries available ■

Additional or redefined aliases■

Additional variables predefined■

Customized prompt behavior or window title■

Customized colors ■

Library: Building a
PowerShell Library

IN THIS CHAPTER
Customizing the PowerShell
environment

Building network utilities, with
COM, WMI, and .NET

Regular expressions and
advanced text processing

86804c30.indd 68586804c30.indd 685 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

686

 Part V Windows Scripting Libraries

The profile is just a PowerShell script and, as described in Chapter 4, the execution policy of the
machine needs to be set to allow scripts to run and may require the profile script to be signed. A
Group Policy template file is available from Microsoft’s website (go to www.microsoft.com/
downloads and search for PowerShell ADM). This allows the permissions to be set centrally for
particular computers or users. For example, a Group Policy object could apply to an Active
Directory OU containing servers to require scripts to be signed.

Before looking at things you can add to a profile script, it would be useful to consider what can be
done without resorting to scripts at all.

Snap-ins present a problem: If security dictates that the default policy of PowerShell is not to run
any scripts at all, how is a product that uses PowerShell supposed to provide the user with a shell
with its snap-ins preloaded? If you look at such products, you find they tend to have an icon labeled
“PowerShell – product name.” Examining the command for these icons, you find that they start
PowerShell with the PsConsoleFile parameter. The PS console file is an XML file with a .psc1
extension that lists additional snap-ins. These files aren’t signed and can’t run scripts—or stop the
default profile running. To avoid writing your own XML file, you can use a Cmdlet, Export-Console,
which exports an XML file which will then load all the currently loaded snap-ins. For example:

export-console -path CustomConsole.psc1

A PowerShell shortcut can be created with the following command line:

powershell.exe -PsConsoleFile CustomConsole.psc1

While on the subject of shortcuts, it is the shortcut that sets the default window title for PowerShell
and PowerShell’s default background color. If you just run PowerShell.exe without using the short-
cut, it will come up in traditional CMD-style black. If you want to specify custom colors—either to
make it clear you have loaded a special-purpose configuration of the shell, or just because you might
like retro-looking green on black, then this is the easiest place to do it.

One useful technique on Windows Vista and Server 2008 is to configure a second PowerShell
shortcut for administrative tasks. By default, both of these operating systems start programs with
reduced privileges for users other than the built-in Administrator. Any other user who is a member
of the Administrators group will get a reduced privilege shell unless they request otherwise. In
the shortcut, you can set the option to “Run as Administrator.” In the shortcut’s properties, simply
go to Shortcut tab and click the Advanced button to set it. You can then change the window title to
Windows PowerShell [Administrator] on the General properties page. Because you tend not to look
at the window title much when actually using the shell, here is a good case for setting a custom color
scheme. Another reason for doing this is that a script may change the window title while PowerShell
is running.

If you are creating custom shortcuts to start PowerShell, you can run a script that defines functions,
variables, and aliases. If you launch PowerShell with a command line, it will normally exit on com-
pletion. The script needs to be specified as a –noExit parameter to avoid PowerShell closing. To

86804c30.indd 68686804c30.indd 686 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

687

 Library: Building a PowerShell Library 30

ensure that whatever is defined in the script remains after the script has finished, it needs to be dot
sourced. So the command becomes:

powershell.exe -NoExit “. CustomScript.ps1”

Exploring the PowerShell host
If you look at the PowerShell variables (for example, by entering the command Dir Variable;),
you will see there is one named Host. PowerShell is modular and does not need to be run in the
command-line mode. Indeed, there are various Microsoft and third-party tools that run PowerShell
inside other programs. If you check what is in $host, you’ll discover some information about the
environment where PowerShell is hosted. The command window will look something like this:

> $host
Name : ConsoleHost
Version : 1.0.0.0
InstanceId : cf160ee7-d19e-48ea-8f0a-f8a092b44755
UI : System.Management.Automation.Internal.Host
 InternalHostUserInterface
CurrentCulture : en-GB
CurrentUICulture : en-US
PrivateData : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

Notice that although this was returned by a machine running in British English, the PowerShell UI
remains in U.S. English.

There are two properties of interest here, PrivateData and UI.

The UI property contains a single object, RAW UI, which you can examine like this:

> $host.ui.rawui
ForegroundColor : DarkYellow
BackgroundColor : DarkMagenta
CursorPosition : 0,79
WindowPosition : 0,23
CursorSize : 25
BufferSize : 140,80
WindowSize : 140,57
MaxWindowSize : 140,57
MaxPhysicalWindowSize : 160,57
KeyAvailable : False
WindowTitle : Windows PowerShell

Most of these properties can be ignored, but you can see the foreground and background colors and
the window title.

86804c30.indd 68786804c30.indd 687 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

688

 Part V Windows Scripting Libraries

Chapter 21 had a small piece of code to test to see if the user was able to exercise administrative privi-
leges; as described earlier, it’s good to have a separate shortcut to start PowerShell as Administrator
with different colors and window title. But what if the user just right-clicks the normal PowerShell
shortcut and chooses Run as Administrator? Then the window title won’t be changed and the screen
colors won’t be set; so this would be the kind of thing that could be run from a profile.

dir Microsoft.PowerShell.Core\Registry::HKEY_USERS\s-1-5-20 `
 -ErrorAction silentlycontinue –errorVariable MyErr | out-null
$global:Admin=(-not $myerr)
If ($global:admin) {$host.ui.rawui.ForegroundColor=”yellow”
 $host.ui.rawui.windowtitle += “[Administrator]”}

This piece of script sets a variable for other scripts to check to see if the user is an administrator,
rather than just setting the title and foreground color. That way, any script which runs later in the
session can check to see if the variable is set and then change its behavior according to its value.

You can also see and customize colors in $Host.PrivateData.

> $host.PrivateData

ErrorForegroundColor : Red
ErrorBackgroundColor : Black
WarningForegroundColor : Yellow
WarningBackgroundColor : Black
DebugForegroundColor : Yellow
DebugBackgroundColor : Black
VerboseForegroundColor : Yellow
VerboseBackgroundColor : Black
ProgressForegroundColor : Yellow
ProgressBackgroundColor : DarkCyan

You may already have noticed that the background when PowerShell returns an error or writes to
the Debug, Error, Verbose, or Warning pipes is always black. There is nothing to set these colors
when the Windows shortcut tells PowerShell what the background should be. (Normally it is set to
Dark Magenta, a label that actually corresponds to “PowerShell blue.”) You can set the colors for
both the text and the background; for example:

$host.PrivateData.errorbackgroundColor=”DarkMagenta”

Of course, this assumes that the background color is PowerShell blue, so it is safer to set it to
$host.ui.rawui.backgroundColor.

PowerShell has a shorthand way of assigning multiple variables to the same value; all the back-
grounds can be set with one long line, as follows:

$host.PrivateData.errorBackgroundColor =
$host.PrivateData.warningBackgroundColor =
$host.PrivateData.DebugBackgroundColor =
$host.PrivateData.VerboseBackgroundColor = $host.ui.rawui.backgroundColor

86804c30.indd 68886804c30.indd 688 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

689

 Library: Building a PowerShell Library 30

If you change the background color, you may think the error text has changed to a different fore-
ground color. This is actually an illusion, although you may need to take a screenshot of a window
with errors before and after the change and check the pixel color values in a paint program to prove
it to yourself!

If you want to have different foreground colors, you can. For example, you might add color to differ-
entiate between Warning, Verbose, and Debug text.

The PowerShell prompt
Veterans of MS-DOS may remember that in the Autoexec.bat file—DOS’s equivalent of a profile—
you would usually have a PROMPT command. This set an environment variable, also named PROMPT.
If it was not set, DOS would have a prompt of C>. To get it to show the path, the prompt would be
set to pg ($p being the path and $g being a greater-than sign). The default was changed so that
CMD.EXE defaults to pg if nothing else is set, but you can still use prompt [$D] pg to dis-
play the date in square brackets before the path, just as you could in the 1980s.

PowerShell has a different approach to the prompt. It manages its own prompt, independent of any
prompt you might have in CMD. In fact, if you start PowerShell from inside CMD, it doesn’t open a
new window, but if you look for a variable named prompt it doesn’t have one. There’s a prompt
function instead. You can see what its code block is by using the following:

PS C:\> type function:prompt
‘PS ‘ + $(Get-Location) + $(if ($nestedpromptlevel -ge 1) { ‘>>’ }) + ‘> ‘

Get-Location is the equivalent of the UNIX “Print Working Directory” command pwd. In fact, it
has an alias of pwd. So this function just returns PS, the location, and a greater-than sign: the famil-
iar PowerShell prompt. The prompt is a function—whatever it returns becomes the prompt for the
next line. So you could replicate that 80s-style prompt like this:

Function prompt {“[“ + (get-Date).toString(“d”) +”]” + (Get-Location) + “>”}

But it is a function—so it could do anything. For example, in preparing this book, the publisher
works with an 80-column page width for text so the examples have a shortened prompt, but it is
still necessary to know the current location. To do this, the prompt function can be changed to
show the current location on the window title, and just set the prompt to a minimal >.

Function prompt {$host.ui.rawui.windowtitle = Get-Location ; “>”}

Adding more to the environment
The prompt is an example of a function that sits naturally in the profile, but you may well have others.
Often you will want to load functions, which are contained in a script. Remember that these need to
be dot sourced. Normally when a script runs, any functions that it defines are only “in scope” for the
lifetime of the script. As soon as the script completes, the functions effectively vanish. Prefixing a
function or script with a dot tells PowerShell: “Run this in the current scope, not in its own.” The

86804c30.indd 68986804c30.indd 689 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

690

 Part V Windows Scripting Libraries

profile runs at the global level in PowerShell itself, so variables, functions, and aliases it affects are
global and accessible for the life of the PowerShell session. But any scripts that it calls need to be dot
sourced if they are to leave anything behind.

Snap-ins can be loaded by starting PowerShell with a console file, but this technique is best used for
loading different combinations of snap-ins in different sessions. If you always use the same snap-in(s),
an Add-PsSnapIn command can be added to the profile. For example, Windows Server Backup in
Server 2008 has a PowerShell snap-in to manage the backup configuration. This can be made avail-
able in every session by adding a line to your profile.

Add-PsSnapIn Windows.ServerBackup

This way, the backup Cmdlets are always available so you don’t have to run the Add-PsSnapIn
command in every session. However, one word of caution. If you become too used to a snap-in being
loaded, it is very easy to forget that you need to explicitly load it when taking a script you have
developed to another machine.

The same warning applies to loading .NET assemblies. For example, if you do a lot of work process-
ing photos and want to have the .NET library that gives access to them, then you need to load the
library, and the following line can be added to your profile.

 [reflection.assembly]::loadfile(
“C:\Windows\Microsoft.NET\Framework\v2.0.50727\System.Drawing.dll”)

Having done so, it is easy to forget that System.drawing.bitMap is not a class that PowerShell
understands by default. In the same way customizations to object properties that are loaded from
XML using the Update-TypeData or Update-FormatData Cmdlets can be added through the
profile, you must remember to explicitly load them on other computers.

As the profile can run any code you could enter at the prompt, you can set variables for use later in
the session and define your own aliases. Again, the same warning applies. Aliases of your own will
work in scripts on your machine, but taken to another machine without the same aliases they will
fail. Some people avoid using any aliases in scripts. Some will allow CD, DIR, TYPE, and others,
which are used in the same way that they have been for more than 20 years. Others think it is fine
to use PowerShell-defined aliases such as % or GCI, even away from the prompt. Most people, how-
ever, will draw the line at user-defined aliases in a script.

It is still helpful to define new aliases to ease navigation at the command prompt. For example,
PowerShell has Push-Location and Pop-Location Cmdlets to stack previous folder locations.
(A stack is a last-in first-out data structure. Items are said to be pushed onto the top of the stack and
popped off again.) Some of the old add-ons for DOS maintained a directory history so it might be nice
to do the same in PowerShell: You use CD to move to a new directory, and CD- to retrace your steps.

86804c30.indd 69086804c30.indd 690 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

691

 Library: Building a PowerShell Library 30

To do this, you need to delete the initial alias, which maps CD onto Set-location, and re-alias it to
Push-location. Then a new alias CD- can be created for Pop-Location, like this:

del Alias:\cd
set-alias -Name cd -Value push-location
set-alias -Name “cd-” -value Pop-Location

Now that you know how to configure your environment to work with PowerShell in the way that
you want to, it’s time to look at some of the functions that you build inside it.

A Generic “choose” Function
Frequently you need to ask users to choose from a set of objects. Sometimes you do this because the
user didn’t bother to supply the object as a parameter. Sometimes when the command is entered, the
user can’t know what choices are available, and sometimes it is quicker to choose from a list than it
is to enter the selection as a parameter. For example, consider the two command lines for starting
virtual machines:

Start-vm –VM “London 2008 DC”,”Paris 2003 SQL”

and

Choose-vm | start-vm

So how to write a Choose- function?

In Chapter 21, you saw the following choose function created as a demonstration of the power of
calculated fields in get-table:

Function choose-ProcessByProduct
{param ($product)
 $processes= Get-Process| where-object {$_.product -match
[string]$product}
 $Global:Counter=-1
 format-table -inputObject $processes -autosize -property `
 @{Label=”ID”; expression={ ($global:Counter++)} } , Name, cpu
 $processes[(read-host “Which one ?”)]
}

You can rewrite this function as required for each object type you need. So if virtual machines have
a Get-VM command, you could insert that, change a few names, and make yourself a choose-VM
function.

86804c30.indd 69186804c30.indd 691 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

692

 Part V Windows Scripting Libraries

You have also seen the split() method for text strings; the user’s input can be split into an array
of items. PowerShell arrays can take an array of indices, so the read-host command can accept
comma-separated inputs that can then be split to an array of integers like this:

[int[]](Read-Host “Which one(s) ?”).Split(“,”)

You can see that this function is gradually getting harder to maintain. The usual way of creating a
new Choose- function is to copy an existing one and modify it to suit a new purpose, but as more
variations are introduced, the scope for introducing errors increases.

What would be better would be a function that could be handed an array of any object, told which
properties to display, get the user to make a single or multiple selection, and return the select
object(s). And here it is:

Function Choose-List {Param ($InputObject, $Property, [Switch]$multiple)
If ($inputObject -is [Array]) {
 $Global:counter=-1
 $Property=@(@{Label=”ID”; Expression={ ($global:Counter++) }}) + $Property
 $InputObject | format-table -autosize -property $Property | out-host
 if ($multiple){$InputObject[[int[]](Read-Host “Which one(s)?”).Split(“,”)]}
 else { $InputObject[(Read-Host “Which one ?”)]}
 }
else {$inputObject}
}

Let’s break this down line by line:

The function is passed an array of input objects, a list of properties, and a switch to indicate ■

whether it can return multiple objects.

If ■ $InputObject is not an array— that is, if it is a single object or empty, then it is
returned; otherwise the rest of the code executes.

$counter■ starts at –1. This isn’t intuitive; the first item in the array has an index of 0 .
$counter will be incremented and displayed as a single operation. So counter has to start
at 1 less than the first number. The first time it is displayed it will be incremented to 0,
and each object will be displayed with a number which matches its array index and The
counter needs to be global; otherwise it will be reset between one object being passed to
format-table and the next.

$Property■ is an array that contains the properties to be displayed. The calculated field to
increment and display, $counter, is defined as the only element in a new array, and that
array is joined onto $property.

$input■ is piped into format-table, which uses $property to choose the columns. The
result is explicitly sent to the console; otherwise it would be treated as a result of the function.

If the -■ multiple switch was specified, the user is prompted for multiple inputs, which are
split and used as the array indices. If it was not, then the user is asked for a single input,
which is used as the array index. The select item(s) from the array are returned.

86804c30.indd 69286804c30.indd 692 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

693

 Library: Building a PowerShell Library 30

So the Choose-VM function, which was mooted previously, is just a way to call Choose-List.

Function Choose-VM
 {param ($Server=”.”)
 choose-list –multiple -InputObject (Get-VM -Server $Server) `
 -Property @(@{Label=”VM Name”; Expression={$_.ElementName}}}

In this case, Get-VM is another PowerShell function that uses WMI to return objects representing vir-
tual machines. A calculated field is used to display the ElementName property with a column heading
of VM Name, and this is wrapped in @() to make it an array with one item instead of single string.

There will be more uses for this choose- function in the next section.

Network Utilities
There can scarcely be an IT professional who hasn’t used Ping to test network connectivity and
IPConfig to return information about TCP/IP configuration or manage DHCP settings. Because
they are command-line programs, it is perfectly valid to run either of these programs in a PowerShell
session but IPconfig returns text output. You can’t pipe that output into ping, and it is hard work
to extract just the default gateway or DNS server. The best you can do is copy and paste from the
results of IPconfig into the command line for Ping.

In this section, we will have a look at PowerShell implementations of Ping and IPconfig.

Finding network adapters
A good place to start would be to get a list of network adapters, and WMI has a ready-made class to
provide just that. The following code:

Get-WmiObject -nameSpace Root\cimv2 -class Win32_Networkadapter

will return the nework adapters on the local computer, so that they can be used in a function. You
might want to get only certain adapters so it’s better to use a query in the function, like this:

Function Get-NetworkAdapter
{Param ($Name=”%”)
 Get-WmiObject -nameSpace Root\cimv2 ‘
 -Query “Select * from Win32_Networkadapter where name like ‘$name’ “}

When Get-NetworkAdapter “%wireless%” is run, it might return something like this:

__GENUS : 2
__CLASS : Win32_NetworkAdapter
__SUPERCLASS : CIM_NetworkAdapter
__DYNASTY : CIM_ManagedSystemElement
__RELPATH : Win32_NetworkAdapter.DeviceID=”9”

86804c30.indd 69386804c30.indd 693 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

694

 Part V Windows Scripting Libraries

__PROPERTY_COUNT : 40
__DERIVATION : {CIM_NetworkAdapter, CIM_LogicalDevice,
 CIM_LogicalElement, CIM_ManagedSystemElement}
__SERVER : JAMES-2008
__NAMESPACE : Root\cimv2
__PATH : \\JAMES-2008\Root\cimv2:Win32_NetworkAdapter
 .DeviceID=”9”
AdapterType : Ethernet 802.3
AdapterTypeId : 0
AutoSense :
Availability : 3
Caption : [00000009] Intel(R) Wireless WiFi Link 4965AGN
ConfigManagerErrorCode : 0
ConfigManagerUserConfig : False
CreationClassName : Win32_NetworkAdapter
Description : Intel(R) Wireless WiFi Link 4965AGN
DeviceID : 9
ErrorCleared :
ErrorDescription :
GUID : {B5186613-6363-4AC7-BE32-6B0F04C6D28E}
Index : 9
InstallDate :
Installed : True
InterfaceIndex : 11
LastErrorCode :
MACAddress : 00:21:5C:03:1B:BD
Manufacturer : Intel Corporation
MaxNumberControlled : 0
MaxSpeed :
Name : Intel(R) Wireless WiFi Link 4965AGN
NetConnectionID : Wireless Network
NetConnectionStatus : 2
NetEnabled : True
NetworkAddresses :
PermanentAddress :
PhysicalAdapter : True
PNPDeviceID : PCI\VEN_8086&DEV_4230&SUBSYS_11118086&REV_61\
 FF031BBD00
PowerManagementCapabilities :
PowerManagementSupported : False
ProductName : Intel(R) Wireless WiFi Link 4965AGN
ServiceName : NETw4v64
Speed : 54000000
Status :
StatusInfo :
SystemCreationClassName : Win32_ComputerSystem
SystemName : JAMES-2008
TimeOfLastReset : 20080921111111.375199+060

86804c30.indd 69486804c30.indd 694 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

695

 Library: Building a PowerShell Library 30

This is a good start but it is probably not the way you want to see the information, so the next step is
to try piping it into Format-Table.

Get-NetworkAdapter | format-table –property Name, MACAddress, speed -autosize

Name MACAddress speed
---- ---------- -----
WAN Miniport (SSTP)
WAN Miniport (L2TP)
WAN Miniport (PPTP) 50:50:54:50:30:30
WAN Miniport (PPPOE) 33:50:6F:45:30:30
WAN Miniport (IPv6)
WAN Miniport (Network Monitor)
Intel(R) 82566MM Gigabit Network Connection 00:1C:25:BC:C2:76
Wired Virtual Network 00:1C:25:BC:C2:76 10000000000
WAN Miniport (IP)
Intel(R) Wireless WiFi Link 4965AGN 00:21:5C:03:1B:BD 54000000
isatap.{B5186613-6363-4AC7-BE32-6B0F04C6D28E} 100000
RAS Async Adapter
Teredo Tunneling Pseudo-Interface 02:00:54:55:4E:01 1073741824
Microsoft Virtual Network Switch Adapter
Internal Virtual Network 00:15:5D:01:68:01 10000000000
isatap.{D1F84CFF-7092-4720-AEEA-A2D58381787D} 100000
6TO4 Adapter 100000
Microsoft Windows Mobile Remote Adapter
isatap.{FF66572F-8568-49F2-92A0-2D4A722E719E} 100000

That’s better—so the function can be adapted to use Format-Table.

Function Get-NetworkAdapter
{Param ($Name=”%” , [switch]$Formatted)
$nic=Get-WmiObject -nameSpace Root\cimv2 `
 -Query “Select * from Win32_Networkadapter where name like ‘$name’ “
if ($formatted) {format-table -autosize -inputObject $nic -property Name, ,
MACAddress , speed }
else {$nic}
}

> Get-NetworkAdapter “intel%” -f
Name MACAddress speed
---- ---------- -----
Intel(R) 82566MM Gigabit Network Connection 00:1C:25:BC:C2:76
Intel(R) Wireless WiFi Link 4965AGN 00:21:5C:03:1B:BD 54000000

It is worth noting that you could leave Get-NetworkAdapter outputting the raw WMI object and
define a formatting XML file instead of using Format-Table. You have multiple options to choose
from and which one is “right” will vary with the circumstances.

86804c30.indd 69586804c30.indd 695 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

696

 Part V Windows Scripting Libraries

The list of network adapters isn’t in order so it would be good to sort it by name. Also, notice that
the speed column is blank for the first one because in this case the cable was disconnected. The
parameters passed to Format-Table can be adapted to show disconnected if the speed is null.
With a sort added and a calculated speed column, the function looks like this:

Function Get-NetworkAdapter {Param ($Name=”%” , [switch]$Formatted)
 $nic=Get-WmiObject -nameSpace Root\cimv2 `
 -Query “Select * from Win32_Networkadapter where name like ‘$name’ “ |
 sort-object –property name
 if ($formatted) {
 format-table -autosize -inputObject $nic -property Name, MACAddress,
 @{Label=”Speed”; Expression={if ($_.Speed -eq $null) {“Disconnected”}
 else {$_.Speed}} } }
else {$nic}
}

> Get-NetworkAdapter -f

Name MACAddress Speed
---- ---------- -----
6TO4 Adapter 100000
Intel(R) 82566MM Gigabit Network Connection 00:1C:25:BC:C2:76 Disconnected
Intel(R) Wireless WiFi Link 4965AGN 00:21:5C:03:1B:BD 54000000
Internal Virtual Network 00:15:5D:01:68:01 10000000000
isatap.{B5186613-6363-4AC7-BE32-6B0F04C6D28E} 100000
isatap.{D1F84CFF-7092-4720-AEEA-A2D58381787D} 100000
isatap.{FF66572F-8568-49F2-92A0-2D4A722E719E} 100000
Microsoft Virtual Network Switch Adapter Disconnected
Microsoft Windows Mobile Remote Adapter Disconnected
RAS Async Adapter Disconnected
Teredo Tunneling Pseudo-Interface 02:00:54:55:4E:01 1073741824
WAN Miniport (IP) Disconnected
WAN Miniport (IPv6) Disconnected
WAN Miniport (L2TP) Disconnected
WAN Miniport (Network Monitor) Disconnected
WAN Miniport (PPPOE) 33:50:6F:45:30:30 Disconnected
WAN Miniport (PPTP) 50:50:54:50:30:30 Disconnected
WAN Miniport (SSTP) Disconnected
Wired Virtual Network 00:1C:25:BC:C2:76 10000000000

Two final modifications complete the function.

First, it is looking at the local computer only, so it might be useful to add a parameter for the tar-
get server. WMI properties use the name __Server, but the Get-WMIObject Cmdlet uses a
-computerName parameter. Which you use is up to you, but it is a good idea to be consistent.

Second, most users expect to be able to use * for a wildcard rather than the SQL style % so the final
version of the function can replace * with % so they don’t need to adapt.

86804c30.indd 69686804c30.indd 696 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

697

 Library: Building a PowerShell Library 30

Function Get-NetworkAdapter {Param ($Name=”%”, $Server=”.”, [switch]$Formatted)
 $name=$name.replace(“*”,”%”)
 $nic=Get-WmiObject -nameSpace Root\cimv2 –computername $Server `
 -Query “Select * from Win32_Networkadapter where name like ‘$name’ “ |
 sort-object –property name
 if ($formatted) {
 format-table -autosize -inputObject $nic -property Name, MACAddress,
 @{Label=”Speed”; Expression={if ($_.Speed -eq $null) {“Disconnected”}
 else {$_.Speed}} } }
else {$nic}
}

This would also be a good place to create a Choose-NetworkAdapter function.

Function Choose-NetworkAdapter {param ($Server=”.”)
choose-list -InputObject (Get-networkAdapter -Server $Server) `
 –multiple -Property name,MacAddress}

Now you can get one or more network adapter(s) by choosing with this function or by specifying the
name to the Get-NetworkAdapter. It’s time to put the object to use.

Get-Ipconfig
IPconfig is an example of a command-line program that just looks wrong from a PowerShell per-
spective. For example, where other TCP/IP utilities use a minus sign (-) for their switches, IPconfig
uses a forward slash (/). Its functionality seems to have grown without being planned.

On modern versions of Windows, IPconfig does three main things. It tells you the IP configuration,
manages automatic configuration (/release and /renew) and manages DNS behavior (/FlushDNS
and /RegisterDNS and /DisplayDNS). This last one is interesting: Windows has a DNS cache that
holds mappings of names to IP addresses. It also has an ARP cache that holds the mappings of IP
addresses to MAC addresses. A separate program (ARP.EXE) gives access to the ARP cache, but DNS
cache support has been lashed onto IPconfig. If things were consistent, either ARP would be part
of IPconfig or DNS would have its own tool.

How would PowerShell approach this with the benefit of starting a design from scratch? First, it
would use a Verb-Noun name. The psychology of this shouldn’t be underestimated; if you have a
command named Get-IpConfiguration you would start other functions with names like
Release-IpConfiguration, Renew-Ipconfiguration and so on. The change is subtle but
important; the meaning of the command is in the name, not the switches.

Second, if there is a tool for selecting network adapters, then it should be possible to pass one or
more network adapters as a parameter to any of these commands. But it should also be possible to
pass a name to the command as well.

86804c30.indd 69786804c30.indd 697 1/21/09 1:31:20 PM1/21/09 1:31:20 PM

698

 Part V Windows Scripting Libraries

In Chapter 25, you saw that you could go from an object to its associated objects and that it was pos-
sible to discover the classes with classdefsonly. In this case, you could do the following:

> $nic=choose-networkAdapter
> gwmi -q “associators of {$nic} where classDefsOnly”

Win32_ComputerSystem Win32_PnPEntity
Win32_NetworkAdapterConfiguration Win32_IRQResource
Win32_DeviceMemoryAddress Win32_NetworkProtocol
Win32_SystemDriver

If you were exploring the WMI objects, you would probably look at the Win32_NetworkProtocol
class first, but this contains entries for different members of the IP family (TCP/IPv4, UDP/IPv4,
TCP/IPv6, and UDP/IPv6) so that’s not it. Next you would look at the properties of
Win32_NetworkAdapterConfiguration:

gwmi -q “associators of {$nic} where resultClass=
Win32_NetworkAdapterConfiguration” | gm

This returns about 70 properties, which look useful.

These include:

Description, MACAddress■ , ServiceName

IPEnabled■ , IPAddress, DefaultIPGateway, IPSubnet

DHCPEnabled■ , DHCPServer, DHCPLeaseObtained and DHCPLeaseExpires

DNSHostName■ , DNSDomain, DNSServerSearchOrder,
DNSDomainSuffixSearchOrder, DNSEnabledForWINSResolution

WINSPrimaryServer■ , WINSSecondaryServer, WINSEnableLMHostsLookup,
WINSScopeID

There isn’t a good way to show these as a table so for the full list it’s necessary to use Format-List.
However, a function could easily have switches for two formats—in the following example that’s
what the –Short and –all switches are used for.

Function get-IpConfig {Param ($nic , [Switch]$Short, [Switch]$All)
$config=Get-wmiObject -query “associators of {$nic} where resultClass=
Win32_NetworkAdapterConfiguration”
If ($short) {$config | format-table –autosize –property IPAddress,
 DefaultIPGateway , IPSubnet }
Else {if ($all) {$config | format-list –property Description, ServiceName,
 MACAddress, IPAddress, DefaultIPGateway , IPSubnet ,
 DHCPEnabled , DHCPServer , DHCPLeaseObtained ,
 DHCPLeaseExpires , DNSHostName , DNSDomain ,
 DNSServerSearchOrder, DNSDomainSuffixSearchOrder ,
 DNSEnabledForWINSResolution, WINSPrimaryServer ,

86804c30.indd 69886804c30.indd 698 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

699

 Library: Building a PowerShell Library 30

 WINSSecondaryServer , WINSEnableLMHostsLookup,
 WINSScopeID}
 Else {$Config} }
}

This can be used in multiple ways—first, to return the object that will display a default set of
properties:

> get-ipconfig $nic
DHCPEnabled : True
IPAddress : {192.168.1.101, fe80::a9bc:5965:f841:3862}
DefaultIPGateway : {192.168.1.1}
DNSDomain :
ServiceName : BCM43XV
Description : Broadcom 802.11g Network Adapter
Index : 5

This set of properties is defined in Types.psXML (see Chapter 21 for how you can redefine it). Used
this way, the function returns the WMI object, which gives rise to a second way to use it—to get one
property:

> (get-ipconfig $nic).DNSServerSearchOrder
194.168.4.100
194.168.8.100

Notice that DNSSearchServerOrder is a single array property so it has more than one value.

The other way to use the Function is to take advantage of the the formatted outputs which it
defines—first the short form as a single line per network card:

> get-ipconfig $nic -short

IPAddress DefaultIPGateway IPSubnet
--------- ---------------- --------
{192.168.1.101, fe80::a9bc:5965:f841:3862} {192.168.1.1} {255.255.255.0, 64}

And then the long form as a list:

> get-ipconfig $nic -all

Description : Broadcom 802.11g Network Adapter
ServiceName : BCM43XV
MACAddress : 00:19:7D:3A:1F:AB
IPAddress : {192.168.1.101, fe80::a9bc:5965:f841:3862}
DefaultIPGateway : {192.168.1.1}
IPSubnet : {255.255.255.0, 64}
DHCPEnabled : True
DHCPServer : 192.168.1.1
DHCPLeaseObtained : 20080922182725.000000+060

86804c30.indd 69986804c30.indd 699 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

700

 Part V Windows Scripting Libraries

DHCPLeaseExpires : 20080923182725.000000+060
DNSHostName : JAMESONE09
DNSDomain :
DNSServerSearchOrder : {194.168.4.100, 194.168.8.100}
DNSDomainSuffixSearchOrder :
DNSEnabledForWINSResolution : False
WINSPrimaryServer :
WINSSecondaryServer :
WINSEnableLMHostsLookup : True
WINSScopeID :

Another feature is worth noting here—the time format. And this is a good news/bad news story.
First the bad news: WMI uses a time format defined by the DTMF, and it is a format that isn’t used
anywhere in .NET. You can use the [System.DateTime]::parseExact method for many date
formats, formats. That doesn’t work here because the DTMF specifies that a time offset, in minutes,
must be written at the end of the time. In the the example above the offset is +060 meaning one
hour ahead of UTC. The good news is that there is a method specific to this time format but it
doesn’t stop there. If you pipe a WMI object into get-member you’ll find this:

ConvertFromDateTime ScriptMethod System.Object ConvertFromDateTime();
ConvertToDateTime ScriptMethod System.Object ConvertToDateTime();

The ScriptMethods are specified in Types.PS1XML but they are defined once for all WMI objects;
each WMI type can also have its own section. You investigate the script method by referring to it
without putting brackets and parameters after it. PowerShell will show you all its members—it is,
after all, just another object. One of these members is named script, so as a shortcut, you can enter
the following:

> (get-ipconfig $nic).ConvertToDateTime.script
[System.Management.ManagementDateTimeConverter]::ToDateTime($args[0])

The examples to date have used named parameters, although strictly speaking anything that takes
only a single parameter doesn’t need to give it a name. The ConvertToDateTime script uses this
approach and so uses $args[0] to refer to the first (and only) parameter it is passed. It calls the
ToDateTime() method of the System.Management.ManagementDateTimeConverter class,
which was created specifically to solve this problem. If you are thinking about creating your own
PS1XML file for a WMI class, which contains dates, it is worth defining a script property that outputs
the reformatted date. As it is, you can call this method when formatting the list.

But before adding the formatting, there are some other things that need to be fixed:

After the trouble of creating a function to choose Network Adapters, there is no way to pipe ■

its output into the function.

The function can’t take a name—only a WMI object.■

The function will fail if passed multiple WMI objects.■

86804c30.indd 70086804c30.indd 700 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

701

 Library: Building a PowerShell Library 30

So here is a template to overcome these problems:

Filter Verb-Noun
{ Param($Noun)
 If ($Noun –eq $null) {$Noun=$_ }
 If ($Noun –is [String]) {$Noun=(Get-noun $noun) }
 If ($Noun –is [Array]) {$Noun | forEach-object {verb-noun $_} }
 If ($Noun –is [NounClass){do the work }
 $noun=$null
}

Let’s review this line by line:

The first line has changed from a ■ function declaration to a filter. Functions and filters are
interchangeable in most circumstances but they handle piped input differently. A filter
receives each item and treats it as the current one, $_.

If the ■ noun parameter is empty, it is set to whatever is in the pipe (which might be
nothing). At this stage $noun might be a string, a single WMI object, an array,
or nothing.

At this point different functions based on the template may vary their behavior if ■

nothing is passed via the parameter or via the pipe. As presented the function will do
nothing if it isn’t given a -noun parameter, and to get all the possible options, it needs to
be invoked with -noun *. This wouldn’t be the expected behavior for the Get-Ipconfig
function so the first line can be modified:

If ($Noun –eq $null) {if ($_) {$Noun=$_} else {$noun=”*” }

If ■ $noun is a single string, then the filter calls another function (Get-Noun) to get the
object(s) represented by that string: typically the string will be a name and the function
will return the object with that name. However, the name might be a wildcard, in which
case Get-Noun will return an array.

If the filter was given an array of objects, or an array of strings, or if it was given a single ■

string that matched multiple objects, then the function is called recursively for each one.
This allows it to cope with being given parameters that are mixed or nested arrays.

At this stage, ■ $noun might be a WMI object. It might be empty, it might be an array—
because execution will continue after the recursive calls for each object. It might be some
other type that was passed in error. So the work of the function is only done if it is the
right type.

The variables in a filter remain in scope for the lifetime of the pipeline where it is used; ■

they are not cleared each time a new item is passed. So, $noun is set to null at the end:
failure to do this will mean the filter runs once for each object passed but each time it
processes the first one again.

86804c30.indd 70186804c30.indd 701 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

702

 Part V Windows Scripting Libraries

All the work of the function is done in the section marked “do the work,” but there is another change
to insert here—that is, the WMI object being worked on might come from a different server so any
calls to Get-WMIObject in this section need to explicitly specify the -computerName parameter as
$noun.__server.

One other change to apply to the function is to include only the response if the IPEnabled property
is true. Otherwise, various unused NICs and pseudo NICs are listed. So when you apply these
changes and the date formatting to the existing function it becomes:

Filter get-IpConfig
 {Param ($nic , $server=“.” , [Switch]$Short, [Switch]$All)
If ($nic –eq $null) {if ($_) {$Nic=$_} else {$nic= “*” }}
If ($Nic –is [String]) {$Nic=(Get-NetworkAdapter $nic)}
If ($nic –is [Array]){$nic| forEach-Object {
 if ($all) {get-ipconfig –nic $_ -Server $server -all}
 else {if ($short) {get-ipconfig –nic $_ -server $Server -short}
 else { get-ipconfig –nic $_ -server $Server }}}}
If ($nic –is [System.Management.ManagementObject]){
 $config=Get-wmiObject –computerName $nic.__server -query “associators of
 {$nic} where resultClass=Win32_NetworkAdapterConfiguration” |
 Where {$_.IPEnabled}
 If ($short) {$config | format-table –autosize –property IPAddress,
 DefaultIPGateway , IPSubnet }
 Else {if ($all){$config |
 format-list –property Description, ServiceName,
 MACAddress, IPAddress, DefaultIPGateway , IPSubnet ,
 DHCPEnabled , DHCPServer ,
 @{Label=”LeaseObtained”;
 expression={$_.convertToDateTime($_.DHCPLeaseObtained)}},
 @{Label=”LeaseExpires”;
 expression={$_.convertToDateTime($_.DHCPLeaseExpires)}},
 DNSHostName , DNSDomain , DNSServerSearchOrder,
 DNSDomainSuffixSearchOrder , DNSEnabledForWINSResolution,
 WINSPrimaryServer ,WINSSecondaryServer ,
 WINSEnableLMHostsLookup, WINSScopeID}
 Else {$Config} }}
$nic=$null
}

Now any of the following commands will work:

get-ipconfig
get-ipconfig “Broadcom 802.11g Network Adapter”
get-ipconfig broad*
get-ipconfig broad*,blue*
get-ipconfig broad* -sh
get-ipconfig broad* -all
get-ipconfig –nic broad* -all
$myNic=choose-networkAdapter ; get-ipconfig –nic $mynic

86804c30.indd 70286804c30.indd 702 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

703

 Library: Building a PowerShell Library 30

choose-networkAdapter | Get-ipconfig
choose-networkAdapter | Get-ipconfig -all
choose-networkAdapter | Get-ipconfig | foreach {$_.dnsServerSearchOrder}

Ping
Ping is one of the standard tools that IT professionals have grown used to over the years to test to
see if a computer is alive. Ping is the name of the program that sends an ICMP Echo request: it’s not
an infallible indicator (the firewall in Windows Server 2008 blocks ICMP Echo by default), and just
because IP packets can reach a server doesn’t mean that all the required services you need are run-
ning. Ping leaves you in a bit of a quandary when it comes to PowerShell: is ping a verb (Ping the
server) or a noun (Send a ping to the server). The examples will treat it as a verb so the function will
be Ping-Host.

Writing your own code to send ICMP packets out and check for responses is just too hard.
Fortunately, WMI provides a PingStatus object and querying this object generates a ping.

Get-WmiObject -query “Select * from Win32_PingStatus where
Address=’192.168.1.1’ and ResolveAddressNames = True and recordRoute=1”

To get this nicely formatted it can be piped into Format-Table; for example:

Get-WmiObject -query “Select * from Win32_PingStatus where
Address=’192.168.1.1’ and ResolveAddressNames = True and recordRoute=1” |
Format-table –autosize –property ProtocolAddressResolved , ResponseTime ,
ResponseTimeToLive , StatusCode

All that is needed is to wrap this in a function, or rather a filter, because it will need to be called in
more than one way; for example:

Ping-host 192.168.1.1,”www.microsoft.com”
Get-ipconfig | foreach { $_.DNSServerSearchOrder | Ping-host }

The same template that was used before can be used again—except that in this case there is less
work to do resolving types. So the filter looks like this:

Filter Ping-host {Param ($target, $server=“.” , [switch]$formatted)
If ($target –eq $null) {$target=$_}
If ($target –is [Array]){$target| forEach-Object {
 if ($formatted) {ping-host –target $target –formatted}
 else {ping-host –target $target } }}
If ($target –is [string]){
 $pingResult= Get-WmiObject -query “Select * from Win32_PingStatus where
 Address=’$target’ and ResolveAddressNames = True and recordRoute=1”
 If ($formatted) {$pingResult | Format-table –autosize `
 –property Address, ProtocolAddressResolved ,
 ResponseTime , ResponseTimeToLive , StatusCode}
 Else {$pingResult}}
}

86804c30.indd 70386804c30.indd 703 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

704

 Part V Windows Scripting Libraries

Incidentally, you saw at the start of this chapter that PowerShell uses $host to mean the console, so
don’t try to define a variable or parameter using the name “Host.” This function can be called with
another parameter or it can take its input from Get-IPconfig, as follows:

> Get-ipconfig | foreach { $_.DNSServerSearchOrder | Ping-host -f}
Address ProtocolAddressResolved ResponseTime ResponseTimeToLive StatusCode
------- ----------------------- ------------ ------------------ ----------
194.168.4.100 194.168.4.100 10 251 0

Address ProtocolAddressResolved ResponseTime ResponseTimeToLive StatusCode
------- ----------------------- ------------ ------------------ ----------
194.168.4.100 194.168.4.100 19 251 0

Because the filter outputs a table for each object, it generates duplicate headers—to remove these it
is better to pass the output of all the pings as objects into format-table like this:

> Get-ipconfig | foreach { $_.DNSServerSearchOrder | Ping-host | format-
table -autosize -Property Address, ProtocolAddressResolved , ResponseTime ,
ResponseTimeToLive , StatusCode }

Address ProtocolAddressResolved ResponseTime ResponseTimeToLive StatusCode
------- ----------------------- ------------ ------------------ ----------
194.168.4.100 194.168.4.100 11 251 0
194.168.4.100 194.168.4.100 11 251 0

Clever Uses for Hash Tables
Back in Chapter 4 you saw that PowerShell can store information in an Associative Array or hash table.
This is useful for avoiding the switch statement and many lines of code to decode a response. In the
example, ping returns a status code. 0 means OK but there are 22 other status codes. Quite often, a
script will contain something like this every time the user should see the meaning instead of the code:

switch ($a) {
 0 {“OK”}
 11001 {“ Buffer Too Small “}
 11002 {“ Destination Net Unreachable” }
 11003 {“ Destination Host Unreachable “}
<etc for 22 lines>
 }

You can define the codes centrally and look them up as needed. Here’s the definition:

$PingStatusCode=@{0=”Success” ; 11001=”Buffer Too Small” ; 11002=”Destination
Net Unreachable” ; 11003=”Destination Host Unreachable” ; 11004=”Destination
Protocol Unreachable”; 11005=”Destination Port Unreachable”;11006=”No
Resources”;11007=”Bad Option”;11008=”Hardware Error”;11009=”Packet Too

86804c30.indd 70486804c30.indd 704 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

705

 Library: Building a PowerShell Library 30

Big”; 11010=”Request Timed Out”; 11011=”Bad Request”; 11012=”Bad Route”;
11013=”TimeToLive Expired Transit”; 11014=”TimeToLive Expired Reassembly”;
11015=”Parameter Problem”; 11016=”Source Quench”; 11017=”Option Too Big”;
11018=”Bad Destination”; 11032=”Negotiating IPSEC”; 11050=”General Failure” }

So now $PingStatusCode[11032] returns Negotiating IPSEC. As you saw in Chapter 20,
extra note properties can be added to an object using the add-member command.

Add-member –inputObject $PingResult –name “statusText” –memberType NoteProperty
–value $PingStatusCode[[int]PingResult_.statusCode]

This is a lot more efficient than writing the add-member 22 times in a switch statement. It can be
inserted into the Ping-Host filter immediately after the line where $PingResult is assigned.
From then on, the .statusText property can be used in other commands.

You can use a similar trick when each bit in a byte or integer value means something. For example,
some WMI functions return a suite mask, which identifies which parts of Windows are installed.
For example, a 1 in the “2s” bit says “This is Enterprise Edition;” a 1 in the “16s” column says “This
supports Terminal Services connection,” and so on. There are ten of these flags and it is common to
see something like this:

 [string[]]$Descriptions=@()
If (KvpObj.suiteMask –band 1) {descriptions+= “Small business”}
If (KvpObj.suiteMask –band 2) {descriptions+= “Enterprise”}
If (KvpObj.suiteMask –band 4) {descriptions+= “BackOffice”}

The if statement uses the bitwise AND operator (sometimes also called a binary AND). This compares
each of the bits in the 2 operands and returns a 1 if both are true and a 0 if either or both is false.
There is a companion bitwise OR, which returns a 1 if either or both bits is true and 0 only if both
bits are false.

For example:

 9 1001 9 1001
-bAND 4 0100 -bOR 4 0100
 0 0000 13 1101

 9 1001 9 1001
-bAND 8 1000 -bOR 8 1000
 8 1000 9 1001

All the different meanings can be stored in a hash table:

$suites=@{1=”Small Business”; 2=”Enterprise”; 4=”BackOffice”;
8=”Communications”; 16=”Terminal”; 32=”Small Business Restricted”; 64=”Embedded
NT”; 128=”Data Center”;256=”Single User”; 512=”Personal”; 1024=”Blade”}

A hash table has a Keys property that contains all its keys (1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024 in this case), so it is easy to loop through the keys and perform a bitwise AND between the key

86804c30.indd 70586804c30.indd 705 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

706

 Part V Windows Scripting Libraries

and the value of the flags. If it returns anything other than zero, the value part of the hash table ele-
ment can be added to an array:

$suites.keys | foreach –begin {[String[]]$descriptions= @()} -process
{if ($KvpObj.suiteMask -bAND $_) {$descriptions += $suites[$_]} } –end
{$descriptions}

So a dozen lines have been reduced to two.

COM Objects: A Firewall Tool
So far, this chapter has looked extensively at WMI objects, which can be retrieved with the
get-WMIobject Cmdlet. PowerShell can work with COM and .NET objects as well. To return to
the theme of Networking utilities, this section will look at the COM object used to manage the fire-
wall on a Vista or Server 2008 machine.

Apart from using a different Cmdlet to obtain the object the process for working with this object is
the same as the ones you have seen before. PowerShell uses the New-Object Cmdlet to obtain COM
and .NET objects—it assumes that the object is a .NET object (which will be covered a little later in
this chapter) unless the -COMObject switch is specified.

For the firewall, the object that’s required is the HNetCfg.FwPolicy2 object.

So to get the object, the command is:

$fw=New-object –comObject HNetCfg.FwPolicy2

The first thing you can test with this object is the type(s) of network the computer is connected to.
There are four values that can appear in profile types:

Domain = 1■

Private = 2■

Public = 4 ■

All = 2147483647■

You can see which is/are in use with the following:

$fw.CurrentProfileTypes

You can use a hash table in the same way as the ping example in the previous section. To test the bit
mask for the different types, use the following:

$FWprofileTypes= @{1GB=”All”;1=”Domain”; 2=”Private” ; 4=”Public”}
Function Convert-FWProfileType
{Param ($ProfileCode)

86804c30.indd 70686804c30.indd 706 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

707

 Library: Building a PowerShell Library 30

 $FWprofileTypes.keys | foreach –begin {[String[]]$descriptions= @()} `
 -process {if ($profileCode -bAND $_) {$descriptions +=
 $FWProfileTypes[$_]} } –end {$descriptions}}

> $fw=New-object –comObject HNetCfg.FwPolicy2
> Convert-fwprofileType $fw.CurrentProfileTypes
Private

Each class of network allows the firewall to be turned on or off, and the default inbound or outbound
action can be set to block or allow. So the following line will show the state of the firewall for each:

> 1,2,4 | foreach-object {“ {0,8} Networks enabled:
 {1,5} defaults: inbound {2}, outbound {3}” –f $FWProfileTypes[$_],
$fw.Firewallenabled($_), $fw.DefaultInboundAction($_),
$fw.DefaultOutboundAction($_) }

 Domain Networks enabled: True defaults: inbound 0, outbound 1
 Private Networks enabled: True defaults: inbound 0, outbound 1
 Public Networks enabled: True defaults: inbound 0, outbound 1

You might know what 0 and 1 mean in this context, but it would be better to define a hash table to
decode it to “block” and “allow.”

$FwAction=@{1=”Allow”; 0=”Block”}

As you can see in the preceding example, FireWallEnabled, DefaultInboundAction, and
DefaultOutBoundAction are parameterized properties—that is to say, they take a value using the
same syntax as a method (rather than using the square brackets of an array) but return a fixed value,
not a calculated one. So here is a function to test the state of the firewall. It looks at each of the net-
works and outputs an object with the network’s name, the state of those properties, and a fourth
one, BlockAllInboundTraffic:

Function Test-Firewall {
 $fw=New-object –comObject HNetCfg.FwPolicy2
 “Active Profiles(s) :” + (Convert-fwprofileType $fw.CurrentProfileTypes)
 @(1,2,4) | select @{name=“Network Type”;expression={$fwProfileTypes[$_]}},
 @{Name=“Firewall Enabled”;expression={$fw.FireWallEnabled($_)}},
 @{Name=“Block all inbound”;expression={$fw.BlockAllInboundTraffic($_)}},
 @{name=“Default In”;expression={$FwAction[$fw.DefaultInboundAction($_)]}},
 @{Name=“Default Out”;expression={$FwAction[$fw.DefaultOutboundAction($_)]}}|
 Format-Table -auto
}

This is the same information that appears in the management console for the firewall, with the
important difference that you can base scripted actions on the results of the functions. Figure 30-1
shows the MMC console.

86804c30.indd 70786804c30.indd 707 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

708

 Part V Windows Scripting Libraries

FIGURE 30-1

The MMC console

The MMC console also shows rules that define how the firewall behaves for each type of traffic.

A rule can specify to allow blocking behavior of inbound or outbound connections for:

Any combination of profiles ■

A program or a service■

A protocol TCP, UDP, ICMP, GRE, and so on■

A connection to or from specific ports (80 for HTTP, 25 for Mail, and so on)■

A connection to or from specific addresses ■

Figure 30-2 shows the rules in the MMC.

The rules property of the FWPolicy object contains a collection of rule objects with these properties.

A function can get the rules, and it makes sense to allow them to be filtered by criteria:

Function Get-FireWallRule
{Param ($Name, $Direction, $Enabled, $Protocol, $profile, $action)
 $Rules=(New-object –comObject HNetCfg.FwPolicy2).rules
 If ($name) {$rules= $rules | where-object {$_.name –like $name}}
 If ($direction) {$rules= $rules | where-object {$_.direction –eq $direction}}
 If ($Enabled) {$rules= $rules | where-object {$_.Enabled –eq $Enabled}}

86804c30.indd 70886804c30.indd 708 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

709

 Library: Building a PowerShell Library 30

 If ($protocol) {$rules= $rules | where-object {$_.protocol -eq $protocol}}
 If ($profile) {$rules= $rules | where-object {$_.Profiles -bAND $profile}}
 If ($Action) {$rules= $rules | where-object {$_.Action -eq $Action}}
 $rules}

FIGURE 30-2

The rules in the MMC

The function can be invoked as:

> Get-FireWallRule -protocol 1 -direction 1 -profile 1 -name *echo* -enabled
$false

But it would be useful to define hash tables that work both ways for the profile type, the Protocol,
and the direction. For example the direction would define 1=“inbound” and “inbound”=1.

$FWprofileTypes= @{1GB=”All”;1=”Domain”; 2=”Private” ; 4=”Public”;
 “all”= 2147483647; “Domain”=1; “Private”=2; “Public”=4}
$FwAction=@{1=”Allow”; 0=”Block”; “Allow”=1;”block”=0}
$FwProtocols=@{1=”ICMPv4”;2=”IGMP”;6=”TCP”;17=”UDP”;41=”IPv6”;43=”IPv6Route”;
44=”IPv6Frag”;47=”GRE”;58=”ICMPv6”;59=”IPv6NoNxt”;60=”IPv6Opts”;112=”VRRP”;
113=”PGM”;115=”L2TP”;
”ICMPv4”=1;”IGMP”=2;”TCP”=6;”UDP”=17;”IPv6”=41;”IPv6Route”=43;
”IPv6Frag”=44;”GRE”=47;”ICMPv6”=48;”IPv6NoNxt”=59;”IPv6Opts”=60;”VRRP”=112;
”PGM”=113;”L2TP”=115}
$FWDirection=@{1=”Inbound”; 2=”outbound”; ”Inbound”=1;”outbound”=2}

86804c30.indd 70986804c30.indd 709 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

710

 Part V Windows Scripting Libraries

With these in place, it is possible to call the function with meaningful names rather than codes for
the different parameters. For example:

> Get-FireWallRule -protocol $fwprotocols.icmpv4 `
-profile $FWprofileTypes.domain `
 -name *echo* -direction $fwDirection.inbound

Name : File and Printer Sharing (Echo Request - ICMPv4-In)
Description : Echo Request messages are sent as ping requests to
 other nodes.
ApplicationName :
serviceName :
Protocol : 1
LocalPorts :
RemotePorts :
LocalAddresses : *
RemoteAddresses : *
IcmpTypesAndCodes : 8:*
Direction : 1
Interfaces :
InterfaceTypes : All
Enabled : False
Grouping : @FirewallAPI.dll,-28502
Profiles : 1
EdgeTraversal : False
Action : 1

You can see one unfortunate way that the object is implemented here and that is the text string used
for the grouping field is abstracted out into a DLL. You can look at the Grouping column in the UI to
match up the value Grouping field (in this case @FirewallAPI.dll,-28502) with the text File
and Printer Sharing. The group name can be used in either the DLL form or as the full text
with the methods EnableRuleGroup() and IsRuleGroupEnabled(). The former enables or dis-
ables a group, and the latter checks to see its status. For example:

> $fw.IsRuleGroupEnabled($fwProfileTypes.all,”@FirewallAPI.dll,-28502”)
False
> $fw.EnableRuleGroup($fwProfileTypes.all,”File and Printer Sharing”)
> $fw.IsRuleGroupEnabled($fwProfileTypes.all,”@FirewallAPI.dll,-28502”)
True

These functions give you an easier-to-use alternative for the NetSh utility if you need a script to con-
figure multiple machines to have the same set of firewall rules. In addition to enabling or disabling
rules by group, you can enable them individually by retrieving the rule with the Get-FireWall rule

86804c30.indd 71086804c30.indd 710 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

711

 Library: Building a PowerShell Library 30

function and setting their Enabled property to $True. There is no separate action to commit the
change so a command like the one that follows will take effect immediately:

 (Get-FireWallRule -protocol $fwprotocols.icmpv4 `
-profile $FWprofileTypes.domain -name *echo* -direction $fwDirection.inbound
).enabled=$true

Note that it requires elevated privileges to change firewall rules (although not to view them), so on a
default installation of Windows Vista or Server 2008, a user—other than the built-in Administrator
who runs PowerShell without specifying “Run as Administrator”—will get an “Access Denied” error.

The ability of the script to return the settings of the firewall without elevating to run the manage-
ment console is obviously a useful one, as a non-administrative user can use it to gather diagnostic
information. The Get-FireRule function can be piped into Export-CSV, or even modified to create
a CSV and mail it to a support person trying to troubleshoot a problem.

The other obvious thing to do with the output of a Get-FirewallRule is to format it with
Format-List and/or FormatTable:

> get-firewallRule -direction $fwdirection[“inbound”] | select -last 5 |
format-table -wrap -property Name,@{Label=”Action”; expression={$Fwaction[$_
.action]}}, @{Label=”Protocol”; expression={$FwProtocols[$_.protocol]}},
localPorts

Name Action Protocol LocalPorts
---- ------ -------- ----------
Core Networking - Internet Group Allow IGMP
Management Protocol (IGMP-In)
Core Networking - Dynamic Host Allow UDP 68
Configuration Protocol (DHCP-In)
Core Networking - Teredo Allow UDP Teredo
Core Networking - IPv6 (IPv6-In) Allow IPv6
Secure Socket Tunneling Protocol Allow TCP 443
(SSTP-In)

You can decide which of the columns to allow. With the limited column width here, the example
uses only four columns, but with a wider display you can use any combination of the following:

 Enabled
 @{Label=”In/Out”;expression={$FwDirection[$_.direction]}}
 localPorts
 remoteports
 Servicename
 ApplicationName

86804c30.indd 71186804c30.indd 711 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

712

 Part V Windows Scripting Libraries

Using .NET Objects to Access Mail
and Web Services
In the previous section on getting information about the firewall, I mentioned that the information
can be exported to a CSV file and then mailed to a support person. Up to this point, I haven’t
explained how to send a mail message so this would be a good place to explore how you can do that.

Sending mail
As with many other things you have seen with PowerShell, there is more than one way to send a
mail message, but the two methods can be summarized as either: interact with an e-mail client on
the computer where PowerShell is running, and use it to assemble and send a message as the cur-
rently signed-in user. Or, connect to a mail server (typically an SMTP server) and pass it a message
that has been composed inside PowerShell, which it can then deliver. The second option is covered
later. In the first example, we will consider how to send mail with Microsoft Outlook, which, like
the firewall, uses a COM object model.

To get access to Outlook, it is first necessary to request the Outlook.application COM object.
If you want to explore Outlook, you can use its GetNamespace method and request the “MAPI”
namespace—then all the folders within Outlook are available to you. In current versions of Outlook,
it is possible to create an item from the application object without having to go to the folder where it
will exist when created, which cuts the process for creating a new message down to two lines of code:

$OL=new-object -comobject “Outlook.Application”
$Msg=$ol.CreateItem(0)

The 0 tells createitem() that you are requesting a “mail note” item (you might be requesting an
appointment, contact, or task). The mail note has a Send() method; all that a script needs to do is
to specify to whom the message is addressed (by setting a To property), its subject line (a Subject
property), and body (an HTMLBody or Body Property), and call the Send method.

$msg.to=”james@contoso.com”
$msg.subject=”Message sent from PowerShell”
$msg.body=”This message was sent from PowerShell”
$msg.send

The message also has an attachments property—which refers to an attachments collection. Adding
an attachment is as simple as calling the add method of this collection with the path of the file that
you want to attach. All of this can be packaged as a PowerShell function, as follows:

Function Send-OutlookMail
{Param ($To,
 $Subject = “Auto-Mail”,
 $Body = “Automated mail from PowerShell”,
 $Attach , [Switch]$HTMLBody)
 $ol= New-Object -comobject “Outlook.application”

86804c30.indd 71286804c30.indd 712 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

713

 Library: Building a PowerShell Library 30

 $msg= $ol.CreateItem(0)
 $msg.to=$to
 $msg.subject=$Subject
 if ($HmtlBody) {$msg.Hmtlbody=$body} else {$msg.body=$body}
 foreach ($f in $attach){$msg.attachments.add((resolve-path $f).path)}
 $msg.send()
}

With the function in place, it can be called to send details of how the firewall is configured:

Get-Firewall | Export-CSV -path firewall.csv
send-outlookmail “james@contoso.com” -attach firewall.csv

This works well, although Outlook is likely to put up one or two warnings in the process—the new
versions know that they are vectors for viruses and spam mailings so they warn the user if some
other program tries to get information out or send messages.

Figure 30-3 shows Outlook warning messages.

FIGURE 30-3

Outlook warning messages

There is a more important issue: servers tend not to have a mail client configured so using
Outlook to send mail is ruled out. The alternative uses .NET objects instead of COM ones and
sends the mail via an SMTP server. Removing the dependency on any particular mail client can
simplify the process of sending mail. However, the problems with spam, phishing mails, and
viruses have meant that many organizations restrict what can be done with their SMTP connec-
tions—even the internal ones. Connections may be limited to specific IP addresses, they may
require IPSec to prove a machine is a valid member of a corporate network, or user authentication
(and the .NET object has an option to log on with the current user’s credentials to make this eas-
ier). If the SMTP server is based on Microsoft Exchange, then it may require the From address on
the mail message to be that of a mailbox linked to the login used. So just going directly to an
SMTP server may not be as simple as it appears here.

The principle is much the same; instead of the client software creating a message object that has a
send method, the .NET objects have a message created as a free standing object and passed to the
client object’s send method. The properties to be set on the message are similar, between SMTP

86804c30.indd 71386804c30.indd 713 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

714

 Part V Windows Scripting Libraries

and Outlook. The one difference is that whereas Outlook has separate Body and HTMLBody proper-
ties, the .NET SMTP message has a single body property, and a separate property of the message
IsBodyHTML identifies the format. The final difference is that Outlook “knows” its server and user-
name, but the .NET objects need to be told the name or IP address of the server and address of the
sender that the mail should appear to come from.

Function Send-SMTPMail {
 Param($From = “NoReply@contoso.com”,
 $To
 $Subject = “Auto-Mail”,
 $Body = “Automated mail from PowerShell”,
 $SMTPhost=”smtp.contoso.com”,
 $Attach, [Switch]$HTMLBody, [Switch]$UseCredentials)

 $SMTPclient = new-object System.Net.Mail.SmtpClient $SMTPhost
 if ($UseCredentials) {$SMTPCLient.UseDefaultCredentials = $true}
 $Msg = new-object System.Net.Mail.MailMessage $from, $to, $subject, $body
 if ($HTMLBody) {$msg.IsBodyHtml = $true}
 if ($attach) { Foreach ($f in $Attach)
 {$data=new-object System.Net.Mail.Attachment $f
 $msg.Attachments.Add($data)
 $client.Send($msg)}

So to send the same firewall configuration information, the two commands needed would be:

Get-Firewall | Export-CSV -path firewall.csv
send-Smtpmail –smtpHost Smtp.contoso.com –to “james@contoso.com” `
–from “$env:userName@contoso.com” -attach firewall.csv

Using the Web client object and XML
In addition to the SMTP client, the .NET classes include a WebClient class, which can upload files
or post information to a web site, and get information from a web site. We take the Web for granted,
but it is often useful to be able to process information obtained from the Internet in PowerShell. So
this section will look at a range of tasks you can take on with a little knowledge of the relevant objects.

Getting a Web client object is as simple as any other object:

 $web=New-Object system.net.webclient

If you look at this object with get-member, you will find it has eight upload and six download
methods. Each of these are doubled-up because they have a normal, synchronous version, which
waits for completion before returning control to whatever called it, and an asynchronous version,
which returns control immediately and then triggers an event to say that the task has been com-
pleted. PowerShell V1 doesn’t provide the tools for handling events (although Microsoft has said
future versions will). However, in most scripts there is very little the script can be doing while wait-
ing for a process to complete—so this isn’t much of a loss.

86804c30.indd 71486804c30.indd 714 1/21/09 1:31:21 PM1/21/09 1:31:21 PM

715

 Library: Building a PowerShell Library 30

The upload and download methods can send or receive a string, an array of bytes, or a file, and for
uploading there is an additional method to upload name/value pairs. The following examples con-
centrate on downloads.

To begin with, you can get the contents of the Microsoft home page, as follows:

$MsHome = $web.downloadString(“http://www.microsoft.com”)

$MSHome is now very large string containing the Microsoft home page, and you can process this as
required. The Webclient object has a ResponseHeaders property, which contains the headers
that describe the transaction that returned the page. So you can investigate what type of file was
returned, and the version of the software running on the Web server as follows:

> $web.responseheaders
Pragma
Content-Length
Cache-Control
Content-Type
Date
Expires
P3P
Server
X-AspNet-Version
X-Powered-By
> $web.responseheaders[“Content-Type”]
text/html; charset=utf-8
> $web.responseheaders[“Server”]
Microsoft-IIS/7.0
> $web.responseheaders[“X-AspNet-Version”]
2.0.50727

So you can see it would be easy to write a short function to discover what version of software a par-
ticular site or server was running.

function Test-WebServer
{Param ($Site=$(Throw “you must specify a site to test”))
 if (-not ($site).tolower().startswith(“http”)) {$site= “http://$site”}
 $null = $web.downloadString($site)
 “$Site is running “ + $web.responseheaders[“Server”]
}

> test-webserver www.microsoft.com
http://www.microsoft.com is running Microsoft-IIS/7.0

Downloading a page to get the headers might be useful for cataloguing servers internally or if you
are curious to know what software is being used by a site. It is far more likely you will want to do
some processing of the text in the page that was downloaded; so the next example will get an RSS
feed and parse its XML.

86804c30.indd 71586804c30.indd 715 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

716

 Part V Windows Scripting Libraries

I have touched on XML only briefly up to this point, so let me take this opportunity to look at how
XML is handled in PowerShell.

The first step is to get the page, which is easy enough; this example is going to process the feed
for the PowerShell library for Hyper-V on Microsoft’s codeplex open source repository
(www.codeplex .com/psHyperV), which has already been mentioned. You can download the RSS
feed and convert it from a string to an XML document using the [XML]type accelerator, as follows:

 $web=New-Object system.net.webclient
$rssPage=$web.downloadString(
 “http://www.codeplex.com/PSHyperv/Project/ProjectRss .aspx”)
 $feed=[Xml]$rssPage

$Feed now contains a .NET system.xml.xmlDocument object and this can be processed in
PowerShell in the same way that it can in other languages. You can see the top-level element and
start to explore like this:

> $feed
xml xml-stylesheet rss
--- -------------- ---
version=”1.0” type=”text/xsl” ref=”http://www.codeplex.com/rss.xsl” rss

“RSS” in the column named RSS is an indication that RSS is a sub-object that can be explored itself,
but xml and xml-stylesheet are top-level properties of the document.

> $feed.rss

version channel
------- -------
2.0 channel

“Channel” in the column named Channel is an indication that Channel is a sub-object that can be
explored itself, and version is a property of the RSS tag.

> $feed.rss.channel
format-default : The member “Item” is already present.

Wait . . . that’s not good. Unfortunately, the .NET object has a member with the name item and
each piece of information in the RSS feed is tagged <item>...</item> in the XML. PowerShell is
trying to call two things item, and that won’t work. To carry on with this exploration, a little cheat-
ing is required. Because the whole page is in a string, and strings have a .replace() method, you

86804c30.indd 71686804c30.indd 716 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

717

 Library: Building a PowerShell Library 30

can change all the instances of <item> and </item> to use a safe name such as RSSitem, and then
convert that to XML and carry on as before.

>$feed2=[xml]($rssPage.replace(“item>”,”RSSitem>”))
>$feed2
xml xml-stylesheet rss
--- -------------- ---
version=”1.0” type=”text/xsl” ref=”http://www.codeplex.com/rss.xsl” rss

>$feed2.rss
version channel
------- -------
2.0 channel

$feed2.rss.channel
title link description RSSitem
----- ---- ----------- -------
PowerShell manag… http://www.codep... A project to pro... {RSSitem, RSSite...

> $feed2.rss.channel.rssitem[-1]
title : Commented Issue: Add support for capturing a thumbnail JPG of a r
 unning VM
link : http://www.codeplex.com/PSHyperv/WorkItem/View .aspx?WorkItemId=28
 45
description : Title says it all.
This has been added for builds after 0.9

Comments: ** Comment from web user: jamesone ** <p></p><p>&
 #42;* Closed by jamesone 8/10/2008 3:56 PM</p>
author : jamesone
pubDate : Sun, 10 Aug 2008 22:56:59 GMT
guid : guid

When you understand the hierarchy within the XML document, you can use its SelectNodes()
method to select each of the channels in the feed. Usually, a feed will have only one channel, but if it
has more than one the following will return an array:

$channels=$feed2.SelectNodes(“/rss/channel”)

So at the command prompt, you could use a line like the following to work through each of the
channels, output its title, and then output a table of its items. In a script, you wouldn’t use % for
foreach-object or ft for format-table, but it’s fine at the prompt.

> $channels | % {$_.Title ; $_.SelectNodes(“RSSitem”)| ft title, pubdate }
PowerShell management Library for Hyper-V
title pubDate
----- -------
Created Issue: Difficult to determin... Tue, 23 Sep 2008 00:09:36 GMT
Created Issue: Delete multiple (all)... Tue, 23 Sep 2008 00:07:28 GMT
New Post: commands are doing nothing Mon, 15 Sep 2008 20:09:30 GMT

86804c30.indd 71786804c30.indd 717 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

718

 Part V Windows Scripting Libraries

New Post: commands are doing nothing Mon, 15 Sep 2008 14:31:17 GMT
New Post: Totally confused Fri, 12 Sep 2008 18:46:05 GMT
New Post: command are doing nothing Fri, 12 Sep 2008 10:27:22 GMT
New Post: Totally confused Fri, 12 Sep 2008 10:20:50 GMT
New Post: Totally confused Thu, 11 Sep 2008 04:04:31 GMT
Commented Feature: Add Get-VMSummary... Wed, 27 Aug 2008 21:42:02 GMT
Commented Issue: Add Get-VMSummaryIn... Tue, 26 Aug 2008 23:50:37 GMT
Updated Release: 0.95a Beta (Aug 19,... Tue, 26 Aug 2008 19:32:05 GMT
Created Issue: Add Get-VMSummaryInfo... Sat, 23 Aug 2008 00:06:57 GMT
Released: 0.95 Beta (Aug 19, 2008) Tue, 19 Aug 2008 09:47:01 GMT
Updated Release: 0.95 Beta (Aug 19, ... Tue, 19 Aug 2008 09:47:01 GMT
Closed Issue: Add -force and -start ... Mon, 18 Aug 2008 23:25:54 GMT
Closed Issue: VHD Items still outsta... Mon, 18 Aug 2008 23:25:23 GMT
Commented Issue: VHD Items still out... Mon, 18 Aug 2008 23:25:05 GMT
Updated Wiki: Home Mon, 18 Aug 2008 23:12:21 GMT
Reopened Issue: Add support for capt... Sun, 10 Aug 2008 22:57:00 GMT
Commented Issue: Add support for cap... Sun, 10 Aug 2008 22:56:59 GMT

Notice that inside the loop there is no leading / on the path to the RSS item in the SelectNodes
because it is not starting at the root element of the document. If you knew the feed was a single
channel, you could write it more simply as: $feed2.SelectNodes(“/rss/channel/RSSitem”).
And if the clash of names isn’t going to impact you, then you could avoid changing the tags in the
document. In fact, you dispense with the variables completely and write:

([xml]($web.downloadString(
“http://www.codeplex.com/PSHyperv/Project/ProjectRss.aspx”))).SelectNodes(
“/rss/channel/item”) | ft Title,pubdate

Regular Expressions
When looking at text—whether from a disk file or a page downloaded from the Internet or in the
property of a management object—it is often necessary to find items that match a particular pat-
tern. PowerShell provides a simple operator, -like, which can check for basic wildcards. In many
places, this is all that is needed—for example, looking through a log file for lines that contain the
word “Error” or looking through a script for lines that don’t begin with a # (these are comments in
PowerShell). On other occasions, a simple wildcard doesn’t work. The following paragraphs explain
an example.

There is a format for writing phone numbers known as E.164, which says phone numbers are writ-
ten in the form

+ national code (area code) Local Number.

For example, a U.S. number might be written +1 (212) 555 1234, or a British number might be writ-
ten +44 (123) 456789.

86804c30.indd 71886804c30.indd 718 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

719

 Library: Building a PowerShell Library 30

However, when dialing a national number in Britain, the area code is written as (0123) 456789. This
has given rise to a British habit of writing numbers as +44 (0) 123 456789. This confuses computers
when they try to dial numbers and people from outside the country don’t know if the 0 should be
dialed or not (it shouldn’t—calls will not connect). The problem is, how do you recognize a number
that is written incorrectly when there are so many options for how to write it?

440123456789■

+440123456789■

+44 0123456789■

+44 0 123456789■

+44 (0) 123456789■

+44(0)123456789■

There isn’t a way to write this with a wildcard syntax, so the text would need some kind of pre-
processing before testing to see if the number was valid. But that would strip out spaces and brack-
ets, which make the number easier to read. The task of a regular expression is to identify any of the
preceding forms with a single template for incorrectly written numbers.

A regular expression describes text as combinations of:

Specific characters (such as A or 9)■

Ranges of characters (such as A–F)■

Classes of characters (such as letters, white-space, or digits)■

An expression can specify how many times a character can appear. It can appear:

Any number of times, including zero■

At least once■

A specified number of times■

So the bad UK phone numbers:

Begin with a plus sign (sometimes) ■

Then 44 (always) ■

Then a space (sometimes)■

Then an open bracket (sometimes) ■

Then a zero ■

Then a close bracket (sometimes) ■

Then a space (sometimes)■

86804c30.indd 71986804c30.indd 719 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

720

 Part V Windows Scripting Libraries

This can be written as a single regular expression.

Expressed as set of instructions in English, we want to tell PowerShell “Find a match if the expres-
sion starts with zero or one plus signs, 44, zero or more spaces, zero or one open bracket, 0, zero or
one close bracket and zero or more spaces.”

It’s time to dive into regular expression syntax:

The start or end of the expression:■ Regular expressions use the ^ sign to mean “Start”
and the $ sign to mean “End.” In the example, the expression being sought is at the
beginning.

Symbols: ■ Regular expressions use \ as an escape character, so if you want to find the $
sign in the text, you write it as \$ to distinguish it from using $ to mean “end.” In the
example, the + sign is written \+ and brackets \(and \).

Specific characters: ■ Provided it doesn’t need to be escaped you can write the character
you are looking for so 0 matches “0” and a matches “a”. In the example, the pattern the
characters looked for are 44 and 0.

Ranges and groups of characters are written wrapped in square brackets: ■ [aeiou]
means “any of a, e, i , o, or u” and [a-e] means “anything in the range a to e inclusive.”

Alternates are separated with the pipe symbol: ■ dog|Cat means “either dog or cat”;
a|e|i|o|u is equivalent to [aeiou].

Classes of characters: ■ \s means “any space,” \w means “any word character—letter or
digit” and \d means “any digit.” The writing of classes is case-sensitive. \S means “any
non-space,” \W means any non-word, and \D means “any non-digit.” The example is going
to look for space characters.

Repetition: ■ * means “any number of occurrences of the previous term, including 0”; +
means “at least one occurrence”; and ? means “0 or 1 occurrences.” {n} means exactly n
occurrences, and {n,m} means between n and m occurrences. The example needs to look
for 0 or 1 plus signs and brackets and any number of spaces.

So the expression builds up like this:

^ begin

\+? + sign zero or once

44 The text “44”

\s* Any number of spaces (including none)

\(? (sign zero or once

86804c30.indd 72086804c30.indd 720 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

721

 Library: Building a PowerShell Library 30

0 The text 0

\)?) sign zero or once

\s* Any number of spaces (including none)

When the whole expression is put together, you can see why people sometimes describe regular
expressions as “write only”; the expression to recognize all those bad phone numbers is:

^\+?44\s*\(?0\)?\s*

PowerShell has two basic comparison operators for regular expressions, -Match and -NotMatch,
and as with other comparison operators these are implicitly case-insensitive. They have explicitly
case-insensitive versions (-iMatch and -iNotMatch) and case-sensitive versions (-cMatch and
-cNotMatch).

This regular expression can be used with -Match to test if a phone number is one of the badly for-
matted ones. For example, both of the following lines return true:

 “440123456789” -match “^\+?44\s*\(?0\)?\s*”
 “+44 (0) 123456789” -match “^\+?44\s*\(?0\)?\s*”

So far so good. Bad numbers can be identified, but in a case like this you would want to substitute the
correct text (+44) in place of the text that gave the match. For that, PowerShell provides a -Replace
operator, which will make the change but return the string unmodified if no match is found.

> “+44 (0) 123456789” -replace “^\+?44\s*\(?0\)?\s*”,”+44 “
+44 123456789

> “+44 (208) 123456” -replace “^\+?44\s*\(?0\)?\s*”,”+44 “
+44 (208) 123456

The PowerShell regular expression operators are based on another .NET class,
System.Text .RegularExpressions.Regex.

Using this class directly allows you to do some more sophisticated things using multiple matches.
PowerShell’s -match operator is concerned only with the question “Does this text give a match with
this expression?”, not “There are many matches in this text: where can they all be found?” Suppose
that instead of wanting to know whether someone has entered a phone number correctly, you wanted
to pull out all the hyperlinks from a Web page. That’s a harder proposition, isn’t it?

In HTML, a link is written as:

Some text

86804c30.indd 72186804c30.indd 721 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

722

 Part V Windows Scripting Libraries

The <a> tag can have other text in it, but the href= part is unique. So a match would be href=
followed by the double-quote (“) sign followed by any number of non-space characters (word charac-
ters exclude the punctuation, which is valid in a URL) and then another “ sign so the expression is:

 ‘href=\”\S*\’

To get a regex object based on this expression, you can use the [regex] type accelerator, and this has
a .Matches() method, which returns each of the matches found. So if a page has been downloaded
and stored in $Webpage already (the RSS feed page from a blog would be a good one to use for this),
the following will return all the matches:

 ([regex]’href=\”\S*\” ‘).matches($WebPage)

You can examine the properties of the matches by piping the results of this command into get-member.
There is an Index property, which gives the offset in the string and a length property, which gives the
length of the matching text. But most useful is the Value property, which gives the matching text. By
using replace() to strip off “ signs and the leading href= the following will give all the URLs on a
given page:

([regex]’href=\”\S*\” ‘).matches($WebPage) | % {$_.value.replace(‘href=’,””
).replace(‘“‘,’’)} | sort -unique

You can follow the links to other pages by building this into a function and calling it recursively, and
if writing for a script it would be better to replace the % and Sort aliases in the preceding code with
their full forms (Foreach-Object and Sort-Object).

Function crawl-Url {Param ($Site=$(Throw “you must specify a site to Crawl”) ,
 $level=0, $maxLevels=3)
 if ($global:web -eq $null) {$global:web = New-Object system.net.webclient}
 if (-not ($site).tolower().startswith(“http”)) {$site= “http://$site”}
 ([regex]’href=\”\S*\” ‘).matches($web.downloadString($site)) |
 Foreach-object {$_.value.replace(‘href=’,””).replace(‘“‘,’’)} |
 sort-object -unique |
 foreach {“$site links to $_”
 $level ++
 if($level -lt $maxLevels){crawl-url -site $_ -level $level}
 }
}

Normally, variables would be declared in the scope of the function, but here, a variable that holds
the web object is declared as a global variable. That way, each time the function is called, the same
object can be reused, instead of creating one afresh for each recursive pass through the function.
There could be thousands of such passes.

86804c30.indd 72286804c30.indd 722 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

723

 Library: Building a PowerShell Library 30

More Advanced Text Processing—Discovering
Script Dependencies
This section draws two techniques together—using regular expressions from the previous section
and another technique for linking an item to the closest match—and it will end with some ways that
you can develop this “fuzzy join” idea.

There is a PowerShell Cmdlet that hasn’t been introduced yet, which makes use of regular expres-
sions, and is a powerful tool for complex textual searches. The Cmdlet is Select-String.

If you see Select-String mentioned in online discussions, it seems to be in the form:

Q. Is there any easy way to find which of my scripts use the WebClient WMI object?

A. Sure. Use this:

> select-string -path *.ps1 “webclient”

If you try this for yourself, you will get output similar to the following:

blog-utils.ps1:73: $results=[xml](new-object System.Net.WebClient).UploadStrin
g($postUrl, $postTemplate)
get-usersblog.ps1:246: $result=(new-object System.Net.WebClient).UploadString($
postURL , $postTemplate)

Each item of output shows the file name, line number in the file, and the matching line itself, but it
wouldn’t be PowerShell if this just returned text and not an object. Sending the last of the items
returned in the preceding example to Format-List shows the members of the MatchInfo object:

IgnoreCase : True
LineNumber : 246
Line : $result=(new-object System.Net.WebClient).UploadString($postURL ,
 $postTemplate)
Filename : get-usersblog.ps1
Path : C:\Users\james\Documents\windowsPowershell\get-usersblog.ps1
Pattern : webclient

This is starting to look useful: it can identify which files contain matches, and tell you where in the
file a match was found, and what matched—pattern sounds like a regular expression.

The parameters for Select-String include standard -path, -include, and –exclude parameters
just like Get-ChildItem to tell it where to look (although it can take input from the pipe as well).

86804c30.indd 72386804c30.indd 723 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

724

 Part V Windows Scripting Libraries

To tell it what to look for, it has a -pattern parameter, which specifies a regular expression, and
there is a –SimpleMatch switch to say the pattern isn’t a regular expression. As usual, PowerShell is
implicitly case-insensitive and Select-String has a -caseSensitive switch to say if matches
should be case-sensitive.

Finally, for people who just want to know which files contain something without getting the details
for each occurrence, there is a –List switch, which stops examining a file after the first occurrence
is found.

So the next example is going to use a couple of lines of PowerShell to find all the function and
filter declarations in a script. Before using Select-String, however, it would be a good idea to
remove comments from the files because they may give bogus references to a function.

A comment line begins with a # but it may have any number of spaces in front of it so this is a good
case for a regular expression. The following reads the script—minus comments—into -$script:

$script=(Get-Content .\hyperv.ps1 | where {$_ -notMatch “^\s*#”})

Next, Select-string can use multiple regular expressions to return a list of functions and filters.
The regular expressions are simple—lines that begin with “Function” or “Filter.” You can see the
behavior of Select-String:

$script | Select-String -pattern “^Function”,”^filter” |
 ft -auto lineNumber,line, pattern

LineNumber Line Pattern
---------- ---- -------
 12 Function Choose-List ^Function
 24 Function Out-Tree ^Function
 33 Function Choose-Tree ^Function
 55 Filter Convert-DiskIDtoDrives ^filter
 62 Filter Test-WMIJob ^filter
 74 Function test-Admin ^Function
 85 Function Get-VhdDefaultPath ^Function
 91 Function New-VHD ^Function
 109 Filter Mount-VHD ^filter
 137 Filter UnMount-VHD ^filter
 151 Function Compact-VHD ^Function
 163 Filter Get-VHDInfo ^filter
 182 Function Expand-VHD ^Function

This can be passed into Add-Member to add a script property, which is the name of the function
or filter. To get this, the “filter “ or “function” can be replaced with an empty string using the
-Replace regular expression operator, which you saw in the previous section. To allow for

86804c30.indd 72486804c30.indd 724 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

725

 Library: Building a PowerShell Library 30

functions that are written as a single line or for authors whose personal style is to write the opening
brace on the same line as the function declaration, rather than on the next line, the result can be
split at { and only the first part kept. Finally, any superfluous spaces can be trimmed off, and the
result stored to be used a little later in the process:

$functions=$script | Select-String -pattern “^Function”,”^filter” |
Add-Member -PassThru -MemberType scriptProperty -Name FunctionName `
-Value {($this.line -replace “Function|Filter”,””).split(“{“)[0].trim()}

So $functions now contains a collection of function and filter names.

With the ability of Select-String to take multiple items as its Pattern parameter, the entire list
of function names can be passed to it. To do this, first a single line isolates the function names from
the $functions array. Then a second line can use Select-String to return all the lines that con-
tain any of those function names. To reduce the false matches, it is better to search for the name
followed by a space. Even so, there will be some false matches because Select-String will return
the lines where functions are declared, but a where-object will filter these out. Rather than using
two terms in the where part, a single regular expression can match Function or Filter.

$bareFunctions = $functions | foreach {$_.functionName +” “}
$script | Select-String -simplematch $bareFunctions |
 Where {($_.line -notmatch “^Function|^filter”)}

The objects returned by this command have a pattern property, which contains whichever of the
patterns in the array (function names) generated a match on that line—in other words, the function
being called, and the line number where the match occurred. The following shows just a few of the
matches:

> $script | Select-String -simplematch $bareFunctions |
 Where {($_.line -notmatch “^Function|^filter”)} |
select -last 5 | ft -auto lineNumber, pattern

LineNumber Pattern
---------- -------
 1039 New-VM
 1069 Get-VM
 1070 Get-VMJPEG
 1071 Get-VMSettingData
 1114 test-Admin

So far, the two fragments of script have obtained a list of where all the functions begin, and a list of
where all function calls occur. What’s needed in order to be able say “function X calls function Y” is
to find the last declaration with a line number before the call (that’s the declaration of the function
that is making the call). In some senses this is like doing a join between database tables, and

86804c30.indd 72586804c30.indd 725 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

726

 Part V Windows Scripting Libraries

isolating the required item. This can be done by piping the command which has been built up in
the preceding paragraphs into Add-Member.

Add-Member {($functions | where {$_.lineNumber -lt $this.lineNumber} |
select -last 1).functionName } -Name “IsCalledBy” -PassThru `
-MemberType scriptProperty

This adds an IsCalledBy property to each item. Its value is calculated by a script block that filters
down the list of function declarations to the ones before this line (the where) and pares it down to
the last one (the select) and just returns its functionname property.

This will give all the matches—including duplicates and functions that recursively call themselves.
A where will remove the recursive calls, and the duplicates can be removed and the data sorted by
piping that into Sort-Object:

sort Pattern,calls –unique | where {$_.pattern -ne $_.Calls}

And finally this might be formatted or otherwise processed by piping into format-table. The final
command is seven Cmdlets piped together:

 $Script | Select-String | where | add-member | sort | where | format

$script | Select-String -simplematch $bareFunctions |
Where-object{($_.line -notmatch “^Function|^filter”)} |
 Add-Member -Name “IsCalledBy” -PassThru -MemberType scriptProperty –value `
 {($functions | where-object {$_.lineNumber -lt $this.lineNumber} |
 select -last 1).functionName } |sort-object Pattern,isCalledBy –unique|
 where {$_.pattern -ne $_.IsCalledBy+” “} | ft pattern,isCalledBy

All this can be put into a function:

Function Get-FunctionLinks
{param ($fileName)
$script=(Get-Content $fileName | where {$_ -notMatch “^\s*#”})
$functions=$script | Select-String -pattern “^Function”,”^filter” |
 Add-Member -PassThru -MemberType scriptProperty -Name FunctionName `
 -Value {($this.line -replace “Function|Filter”,””).split(“{“)[0].trim()}
$bareFunctions = $functions | foreach-object {$_.functionname +” “}
$script | Select-String -simplematch $bareFunctions |
 Where-object{-not(($_.line -match “^Function|filter”))}|
 Add-Member -Name “IsCalledBy” -PassThru -MemberType scriptProperty –value `
 {($functions | where-object {$_.lineNumber -lt $this.lineNumber} |
 Select-object -last 1).functionName } |
 sort-object Pattern,isCalledBy –unique|
 where-object {$_.pattern -ne $_.IsCalledBy+” “}
}

86804c30.indd 72686804c30.indd 726 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

727

 Library: Building a PowerShell Library 30

The preceding code was used to produce a diagram that illustrates the complex relationships between
the functions in the library for HyperV at www.codeplex.com/psHyperv.

You can access a version of this diagram via our downloads page at
www.wiley.com/go/powershellbible.

Scripts or Fuctions:
Checking How a Script Was Invoked
Often you will find that the PowerShell needed to carry out a task is provided as a .PS1 file. In
practice, a function is just block of code that is stored in memory, and the same block of code can be
stored in a .PS1 file. Unless you count copying and pasting, the only way to load stored functions
into a PowerShell session is by dot sourcing a .PS1 file containing the functions. So you might won-
der if there is a definitive way of deciding on filter, function, or script? Generally, if input is going to
be piped into it, then it is best implemented as a filter. Which is better? To write a single .PS1file
with many functions in which you dot source, or many .PS1 files each containing a task-specific
script? In a lot of cases, it will be a matter of personal preference. A collection of interrelated tasks
are generally better as functions. Anything you expect to use more than once in a session is more
efficient as a function.

But this presents a problem because PowerShell is two different things—it is a programming lan-
guage and it is a shell, a successor to COMMAND.COM and CMD.EXE. In those shells, if you had a
batch file that set an environment variable, the variable would still be set when you left the batch file.
Most programming languages, on the other hand, have a concept of scope—what happens in a
function stays in the function. So when PowerShell runs a script, it leaves nothing behind—unless
you expressly specify a dot in front of it to say “run this in the current scope, not a scope for the
script.” The syntax came from the UNIX world, and regularly causes problems for those who are
new to PowerShell and are trying to load a useful script. It doesn’t help that, in PowerShell, the cur-
rent folder is not on the path so scripts frequently have to be invoked as .\script.ps1 and to stay
resident as . .\script.ps1. It is very easy to miss the leading dot.

There is a solution to this, which is to check how the script was run, and that can be discovered
using an automatic variable—$myInvocation.

$MyInvocation will tell you which line of a calling script was the one that launched the current
one, and what the command line was, and so on. It has a line property that returns the command
line used to call the script. This can be tested and the user running the script told that the functions,
filters, and variables defined in the script have not been loaded. For example:

if ($myinvocation.line -notmatch “^\.\s”) {write-host -ForegroundColor red
“No Functions were loaded - you need to invoke with . scriptname “}

86804c30.indd 72786804c30.indd 727 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

728

 Part V Windows Scripting Libraries

$MyInvocation also has a scriptName property, but it needs to be used inside a function. It will
give the name of the script that called the function. Used on its own, like the line property in the
previous example, it will normally be blank. You can test the behavior by creating a function and a
script like this:

> set-content Invoke.ps1 “where_am_I -fake parameter”
> function where_am_i {$myInvocation}
l> .\invoke
MyCommand : where_am_i
ScriptLineNumber : 1
OffsetInLine : -2147483648
ScriptName : C:\Users\jamesone\Documents\windowsPowershell\Invoke.ps1
Line : where_am_I -fake parameter

The function can be in the script or outside, but it can discover which line from which script called
it. You can use Split-Path to divide the folder from the file name, so scripts can load format files
and the like, which are found in the same folder.

Summary
This chapter has given you a tour of PowerShell techniques that you can use in your own scripts;
you have seen how to use the major classes of objects and how to get information from web sites.
You had a brief introduction to regular expressions and saw how PowerShell Cmdlets can build into
very powerful commands. Quite large projects can be undertaken with knowledge of only ten or so
PowerShell topics:

Parameter passing■

Array handling■

String methods ■

Get-WmiObject■ and NewObject

If...else■ (and the associated conditions)

Looping (especially ■ foreach-object)

Where-Object■

Select-Object■

Measure-Object■

Format-Table■ and Format-List

86804c30.indd 72886804c30.indd 728 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

729

 Library: Building a PowerShell Library 30

Of course, even a book many times the size of this one would not be able to cover every possible use
of every object and every Cmdlet. Fortunately, PowerShell has developed a strong Internet commu-
nity, with many people blogging about it. http://Microsoft.com/powershell has links to
many of the interesting third-party sites where extensions are available, and there are many blogs.
Jeffrey Snover, the father of PowerShell, writes at http://blogs.msdn.com/powershell and fre-
quently links to other bloggers. There are also user groups in Europe and North America. So if it
isn’t covered here, there is usually somewhere you can turn for help.

One important thing to remember is that to do useful scripting work you will only need to use a
subset of the available Cmdlets I examined two large projects of my own that total near 2,500 lines.
They used 26 Cmdlets between them, and 7 out of 8 calls to a Cmdlet used the ten most popular.

Read-host, Write-host, Out-Host, Out-Null, Write-Error, WriteProgress
and WriteOutput.
Join-Path, Split-Path, Resolve-Path and Test-Path
Format-table, Format-List, export-CSV, Import-CSV
For-eachObject, Where-object, Sort-Object, Select-Object, Add-Member ,
Measure-Object
New-Object, Get-WmiObject, Get-EventLog
Start-Sleep and Set-Alias.

You don’t need to know a lot of PowerShell to get started…what are you waiting for?

86804c30.indd 72986804c30.indd 729 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

86804c30.indd 73086804c30.indd 730 1/21/09 1:31:22 PM1/21/09 1:31:22 PM

IN THIS PART
Appendix A
Windows Scripting API

Appendix B
Core ADSI Reference

Appendix C
Essential Command-Line Utilities
for Use with WSH

Appendixes

86804bapp01.indd 73186804bapp01.indd 731 1/21/09 1:22:17 PM1/21/09 1:22:17 PM

86804bapp01.indd 73286804bapp01.indd 732 1/21/09 1:22:18 PM1/21/09 1:22:18 PM

733

Windows Scripting API

U se the Windows Script Host Quick Reference to help you quickly find and determine usage
for elements you want to work with. The reference is organized by element and by object.

XML Elements

<?XML ?>
<?XML
 version=”version”
 [standalone=”yes”] ?>

<runtime>
<runtime>
 Self-documentation code. Contains <description>, <example>, <usage>,
<named>, and <unnamed> elements.
</runtime>

<description>
<description>
 Script description in one or more lines.
</description>

<example>
<example>
 Usage example for the job.
</example>

86804bapp01.indd 73386804bapp01.indd 733 1/21/09 1:22:18 PM1/21/09 1:22:18 PM

734

 Part VI Appendixes

<usage>
<usage>
 Usage text that overrides other example and descriptive text.
</usage>

<named>
<named>
 name=”ArgName”
 helpstring=”HelpText”
 [type=”string|boolean|simple”]
 [required=”true|false”] />

<unnamed>
<unnamed>
 name=”PlaceHolderName”
 helpstring=”HelpText”
 [many=”true|false”]
 [required=”true|false”] />

<package>
<package>
 Code for one or more jobs. Contains <job> elements.
</package>

<job>
<job [id=”JobID”]>
 Job code. Contains <?job?>, <object>, <reference>, <resource>, and
<script> elements.
</job>

<?job ?>
<?job
 [error=”flag”]
 [debug=”flag”] ?>

<object>
<object
 id=”objectID”
 [classid=”clsid:GUID” | progid=”programID”]
 [events=”true|false” />

86804bapp01.indd 73486804bapp01.indd 734 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

735

 Windows Scripting API A

<reference>
<reference
 [object=”progID” | guid=”typelibGUID”]
 [version=”version”] />

<resource>
<resource id=”resourceID”>
 Isolated string or number
</resource>

<script>
<script
 language=”language”
 [src=”path”]>
 script code
</script>

getResource Static Method
Returns the contents of a <resource> element as a string.

Usage: VBScript
<resource id=”ResourceIdentifier”> Resource Text </resource>

<script language=”VBScript”>
 WScript.Echo getResource(“ResourceIdentifier”)
</script>

Usage: JScript
<resource id=” ResourceIdentifier “> Resource Text </resource>

<script language=”JScript”>
 WScript.Echo(getResource(“ResourceIdentifier”));
</script>

Drives Collection

Creating: VBScript
Set WshNetwork = WScript.CreateObject(“WScript.Network”)
Set drives = WshNetwork.EnumNetworkDrives

86804bapp01.indd 73586804bapp01.indd 735 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

736

 Part VI Appendixes

Creating: JScript
var WshNetwork = WScript.CreateObject(“WScript.Network”)
var drives = WshNetwork.EnumNetworkDrives

Properties
object.Count (Returns: integer)
object.length
object.Item(integer)

Printers Collection

Creating: VBScript
Set WshNetwork = WScript.CreateObject(“WScript.Network”)
Set printers = WshNetwork.EnumPrinterConnections

Creating: JScript
var WshNetwork = WScript.CreateObject(“WScript.Network”)
var printers = WshNetwork.EnumPrinterConnections

Properties
object.Count (Returns: integer)
object.length
object.Item(integer)

StdIn Stream*

Creating
Set StdIn = WScript.StdIn
var StdIn = WScript.StdIn

*Accessible only in CScript.exe.

Methods
WScript.StdIn.Close()
WScript.StdIn.Read(characters)

86804bapp01.indd 73686804bapp01.indd 736 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

737

 Windows Scripting API A

WScript.StdIn.ReadAll()
WScript.StdIn.ReadLine()
WScript.StdIn.Skip(characters)
WScript.StdIn.SkipLine()

Properties
WScript.StdIn.AtEndOfLine (Returns: boolean flag)
WScript.StdIn.AtEndOfStream (Returns: boolean flag)
WScript.StdIn.Column (Returns: integer)
WScript.StdIn.Line (Returns: integer)

StdErr Stream*

Creating
Set StdErr = WScript.StdErr
var StdErr = WScript.StdErr

*Accessible only in CScript.exe.

Methods
WScript.StdErr.Close()
WScript.StdErr.Write(“text”)
WScript.StdErr.WriteBlankLines(numberOfLines)
WScript.StdErr.WriteLine([“text”])

StdOut Stream*

Creating
Set StdOut = WScript.StdOut
var StdOut = WScript.StdOut

*Accessible only in CScript.exe.

Methods
WScript.StdOut.Close()
WScript.StdOut.Write(“text”)
WScript.StdOut.WriteBlankLines(numberOfLines)
WScript.StdOut.WriteLine([“text”])

86804bapp01.indd 73786804bapp01.indd 737 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

738

 Part VI Appendixes

WshArguments Collection

Creating
Set args = WScript.Arguments
var args = WScript.Arguments

Methods
object.Count() (Returns: integer)
object.ShowUsage() (Returns: string)

Properties
object.length
object.Item(integer)
object.Named (Returns: WshNamed collection)
object.Unnamed (Returns: WshUnnamed collection)

WshNamed Collection

Creating
Set argsNamed = WScript.Arguments.Named
var argsNamed = WScript.Arguments.Named

Method
object.Count() (Returns: integer)

Properties
object.length
object.Item(integer)

WshUnnamed Collection

Creating
Set argsUnnamed = WScript.Arguments.Unnamed
var argsUnnamed = WScript.Arguments.Unnamed

86804bapp01.indd 73886804bapp01.indd 738 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

739

 Windows Scripting API A

Method
object.Count() (Returns: integer)

Properties
object.length
object.Item(integer)

Script.Signer Object

Creating
Set Signer = CreateObject(“Scripting.Signer”)
var Signer = new ActiveXObject(“Scripting.Signer”)

Method
object.Sign(FileExtension, ScriptToSign, Certificate[, CertStore])
object.SignFile(ScriptToSign, Certificate[, CertStore])
object.Verify(FileExtension, ScriptToVerify, PromptUser])
object.VerifyFile(ScriptToVerify, PromptUser])

WScript Object

Creating
Top-level object; forming the root of the object hierarchy.

Methods
WScript.ConnectObject(objectName,
 eventPrefix)
WScript.CreateObject(objectName
 [,eventPrefix])
WScript.DisconnectObject(objectName)
WScript.Echo([Arg1]
 [,Arg2]
 [,ArgN])
WScript.GetObject(pathToFileContainingAutomationObject
 [,programID]
 [,eventPrefix])
WScript.Quit([errorCode])
WScript.Sleep(numberOfMilliseconds)

86804bapp01.indd 73986804bapp01.indd 739 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

740

 Part VI Appendixes

Properties
WScript.Arguments (Returns: WshArguments collection)
WScript.BuildVersion (Returns: integer)
WScript.FullName (Returns: string; full path to host executable)
WScript.Interactive (Returns: Boolean)
WScript.Name (Returns: string; name of WScript object)
WScript.Path (Returns: string; directory where script host resides)
WScript.ScriptFullName(Returns: string; full path to current script)
WScript.ScriptName (Returns: string; name of current script)
WScript.StdErr (Returns: StdErr stream)
WScript.StdIn (Returns: StdIn stream)
WScript.StdOut (Returns: StdOut stream)
WScript.Version (Returns: script; script host version)

WshController Object

Creating
Set Controller = WScript.CreateObject(“WSHController”)
var Controller = WScript.CreateObject(“WSHController”)

Method
object.CreateScript(“scriptPathAndArgs”[, RemoteComputer])

WshEnvironment Object

Creating: VBScript
Set WshShell = WScript.CreateObject(“WScript.Shell”)
Set WshEnv = WshShell.Environment(“EnvironmentVariableType”)

Creating: JScript
var WshShell = WScript.CreateObject(“WScript.Shell”)
var WshEnv = WshShell.Environment(“EnvironmentVariableType”)

Methods
object.Count() (Returns: integer)
object.remove(“environmentVariableToDelete”)

86804bapp01.indd 74086804bapp01.indd 740 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

741

 Windows Scripting API A

Properties
object.length
object.Item(“folderName”)

WshNetwork Object

Creating
Set wn = WScript.CreateObject(“WScript.Network”)
var wn = WScript.CreateObject(“WScript.Network”)

Methods
object.AddPrinterConnection(“localPort”,
 “networkPrinterPath”
 [,”storeProfileFlag”]
 [,”userName”]
 [,”password”])
object.AddWindowsPrinterConnection(“networkPrinterPath”)
object.EnumNetworkDrives()
object.EnumPrinterConnections()
object.MapNetworkDrive(“driveLetter”,
 “networkShare”,
 [,”storeProfileFlag”]
 [,”userName”]
 [,”password”])
object.RemoveNetworkDrive(“driveLetterOrNetworkPath”
 [,”forceFlag”]
 [,”updateProfileFlag”])
object.RemovePrinterConnection(“printerPortOrNetworkPath”
 [,”forceFlag”]
 [,”updateProfileFlag”])
object.SetDefaultPrinter(“remotePrinterName”)

Properties
object.ComputerName (Returns: string; current computer name)
object.UserDomain (Returns: string; current user domain)
object.UserName (Returns: string; current user name)

86804bapp01.indd 74186804bapp01.indd 741 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

742

 Part VI Appendixes

WshRemote Object

Creating: VBScript
Set Controller = WScript.CreateObject(“WSHController”)
Set RemoteScript = Controller.CreateScript(“ScriptToRun”,”RemoteComp”)

Creating: JScript
var Controller = WScript.CreateObject(“WSHController”);
var RemoteScript = Controller.CreateScript(“ScriptToRun”,”RemoteComp”);

Methods
object.Execute()
object.Terminate()

Properties
object.Error (Returns: WshRemoteError object)
object.Status (Returns: status value)

Events
object_End()
object_Error()
object_Start()

WshRemoteError Object
Returned by the Error property of the WshRemote object.

Properties
object.Character (Returns: signed long integer; position of error)
object.Description (Returns: string; description of error)
object.Line (Returns: unsigned long integer; line number of error)
object.Number (Returns: unsigned long integer; number of error)
object.Source (Returns: string; source object that caused error)
object.String (Returns: string; source code that caused error)

86804bapp01.indd 74286804bapp01.indd 742 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

743

 Windows Scripting API A

WshScriptExec Object

Creating: VBScript
Set WshShell = CreateObject(“WScript.Shell”)
Set progExec = WshShell.Exec(“ProgramToRun”)

Creating: JScript
var WshShell = new ActiveXObject(“WScript.Shell”);
var progExec = WshShell.Exec(“ProgramToRun”);

Methods
object.Terminate()

Properties
object.ExitCode (Returns:exit code)
object.ProcessID (Returns: program’s process id for activation)
object.Status (Returns:status code)
object.StdErr (Returns:stderr stream)
object.StdIn (Returns:stdin stream)
object.StdOut (Returns:stdout stream)

WshShell Object

Creating
Set ws = WScript.CreateObject(“WScript.Shell”)
var ws = WScript.CreateObject(“WScript.Shell”)

Methods
object.AppActivate(“appTitle”)
object.CreateShortcut(shortcutNamePath)
object.Exec(“programToRun”)
object.ExpandEnvironmentStrings(environmentVariableToExpand)
object.LogEvent(eventType,
 “eventDescription”
 [,”targetSystem”])
object.Popup(“popupText”,

86804bapp01.indd 74386804bapp01.indd 743 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

744

 Part VI Appendixes

 [secondsToWait]
 [,”popupTitle”]
 [,buttonType])
object.RegDelete(“pathToRegistryKeyOrValue”)
object.RegRead(“pathToRegistryKeyOrValue”)
object.RegWrite(“pathToRegistryKeyOrValue”
 valueToWrite
 [,dataType])
object.Run(“command”
 [,windowStyle]
 [“waitOnReturnFlag”])
object.SendKeys(“keysToSend”)

Properties
object.CurrentDirectory [= “PathToUseAsCurrent”]
object.Environment([“environmentVariableType”])
object.SpecialFolders(“specialFolderName”)

WshShortcut Object

Creating: VBScript
Set WshShell = WScript.CreateObject(“WScript.Shell”)
Set linkShortcut = WshShell.CreateShortcut(“Name.LNK”)

Creating: JScript
var WshShell = WScript.CreateObject(“WScript.Shell”)
var linkShortcut = WshShell.CreateShortcut(“Name.LNK”)

Methods
object.Save()

Properties
object.Arguments = “argString”
object.Description = “shortcutDescription”
object.FullName (Returns: string; full file path to shortcut)
object.Hotkey = “hotKey”
object.IconLocation = “iconPath, iconIndex”
object.RelativePath = “relativePath”
object.TargetPath = “filePath”
object.WindowStyle = “windowStyle”
object.WorkingDirectory = “workingDirectory”

86804bapp01.indd 74486804bapp01.indd 744 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

745

 Windows Scripting API A

WshSpecialFolders Object

Creating: VBScript
Set WshShell = WScript.CreateObject(“WScript.Shell”)
folder = WshShell.SpecialFolders(“SpecialFolderName”)

Creating: JScript
var WshShell = WScript.CreateObject(“WScript.Shell”)
folder = WshShell.SpecialFolders(“SpecialFolderName”)

Method
object.Count() (Returns: integer)

Properties
object.length
object.Item(“folderName”)

WshUrlShortcut Object

Creating: VBScript
Set WshShell = WScript.CreateObject(“WScript.Shell”)
Set urlShortcut = WshShell.CreateShortcut(“Name.URL”)

Creating: JScript
var WshShell = WScript.CreateObject(“WScript.Shell”)
var urlShortcut = WshShell.CreateShortcut(“Name.URL”)

Methods
object.Save()

Properties
object.FullName (Returns: string; full file path to shortcut)
object.TargetPath = “urlPath”

86804bapp01.indd 74586804bapp01.indd 745 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

86804bapp01.indd 74686804bapp01.indd 746 1/21/09 1:22:19 PM1/21/09 1:22:19 PM

747

Core ADSI Reference

Active Directory Service Interfaces provide the core objects used to script directory services,
computer resources, and networks. This appendix provides a quick reference for key inter-
faces, and their related properties and methods. The reference is not meant to be exhaustive;

rather, the focus is on the most commonly used features in Windows scripts.

Using This Reference
ADSI providers implement the interfaces examined in this appendix. In Chapter 21, you learned
about system providers, specifically WinNT, LDAP, NDS, and NWCOMPAT. These providers imple-
ment different subsets of these interfaces. Because each object implements multiple interfaces and
there is almost always overlap between objects, it isn’t practical to map out each object separately.

Instead, you’ll use Tables 21-2 through 21-5 in Chapter 21 and this appendix to map out the core
features of an object. For example, if you wanted to determine the complete set of methods and
properties that are available for the WinNT Computer object, you would look at Table 21-3 and see
that the object implements IADs, IADsComputer, IADsComputerOperations, IADsContainer,
and IADsPropertyList. You would then examine each of these interfaces in order to determine
available properties and methods that may be available to the WinNT Computer object.

With the LDAP and NDS providers, keep in mind that GenObject provides basic services for most
objects. For example, with the LDAP Group object, Table 21-2 shows that Group implements

IADsGroup■

IADsExtension■

86804bapp02.indd 74786804bapp02.indd 747 1/21/09 1:22:46 PM1/21/09 1:22:46 PM

748

 Part VI Appendixes

and GenObject implements

IADs■

IADsContainer■

IADsDeleteOps■

IADsObjectOptions■

IADsPropertyList■

IDirectoryObject■

IDirectorySearch■

Thus, the combination of features for these interfaces represents the total set of methods and proper-
ties that may be available to the Group object.

ADSI Interfaces
The sections that follow provide a quick reference for ADSI interfaces. ADSI providers and ADSI are
completely extensible. This means that new versions of providers and ADSI may add or change key
features. Providers don’t have to implement all the features of an interface, either.

IADs
The IADs interface provides the core features for all ADSI objects. You obtain a pointer to this inter-
face when you bind to an object, as follows:

Set user = GetObject(“LDAP://CN=William Stanek,CN=Users
,DC=TVPRESS, DC=Com”)
user.Put “givenName”, “William”
user.Put “sn”, “Stanek”
user.SetInfo

Properties

AdsPath
Value: String Gettable: Yes Settable: No

Description: The object’s ADsPath that uniquely identifies this object from all others.

Class
Value: String Gettable: Yes Settable: No

Description: The name of the object’s class.

86804bapp02.indd 74886804bapp02.indd 748 1/21/09 1:22:46 PM1/21/09 1:22:46 PM

749

 Core ADSI Reference B

GUID
Value: String Gettable: Yes Settable: No

Description: The GUID of the object from the directory store.

Name
Value: String Gettable: Yes Settable: No

Description: The object’s relative name.

Parent
Value: String Gettable: Yes Settable: No

Description: The ADsPath string for the parent of the object.

Schema
Value: String Gettable: Yes Settable: No

Description: The ADsPath string to the schema class object for this object.

Methods

Get(“propertyName”)
Returns: String or array

Description: Gets a property Value from the property cache.

GetEx(“propertyName”)
Returns: Array

Description: Gets an array of cached property Values.

GetInfo()
Returns: Error status

Description: Gets property Values for an object from the directory store and loads them into the
property cache. Called implicitly the first time you get an object’s property. Overwrites any previ-
ously cached values for the object.

GetInfoEx(“propertyName”)
Returns: Error status

Description: Gets the Values for the select property from the directory store and loads them into the
property cache.

86804bapp02.indd 74986804bapp02.indd 749 1/21/09 1:22:46 PM1/21/09 1:22:46 PM

750

 Part VI Appendixes

Put(“propertyName”, valueString)
Returns: Error status

Description: Sets a new Value in the property cache.

PutEx(Flag, “propertyName”, valueArray)
Returns: Error status

Description: Sets an array of cached Values.

SetInfo()
Returns: Error status

Description: Saves the object’s cached Values to the data store.

IADsAcl
The IADsAcl interface is used to work with ACL attribute Values in Novell NetWare Directory
Services (NDS).

Properties

Privileges
Value: Number Gettable: Yes Settable: Yes

Description: The privilege setting.

ProtectedAttrName

Value: String Gettable: Yes Settable: Yes

Description: The name of the protected attribute.

SubjectName
Value: String Gettable: Yes Settable: Yes

Description: The name of the subject.

Method

CopyAcl()
Returns: Error status

Description: Makes a copy of an existing ACL.

86804bapp02.indd 75086804bapp02.indd 750 1/21/09 1:22:46 PM1/21/09 1:22:46 PM

751

 Core ADSI Reference B

IADsADSystemInfo
The IADsADSystemInfo interface provides information about Windows computers in Windows
domains. You obtain a pointer to this interface when you bind to an object, as follows:

Dim wincomputer
Set wincomputer = CreateObject(“ADwincomputertemInfo”)
Response.Write “User: “ & wincomputer.UserName
Response.Write “Computer: “ & wincomputer.ComputerName
Response.Write “Domain: “ & wincomputer.DomainDNSName
Response.Write “PDC Role Owner: “ & wincomputer.PDCRoleOwner

Properties

ComputerName
Value: String Gettable: Yes Settable: No

Description: The distinguished name of the local computer.

DomainDNSName
Value: String Gettable: Yes Settable: No

Description: The DNS name of the local computer domain.

DomainShortName
Value: String Gettable: Yes Settable: No

Description: The domain component of the local domain name.

ForestDNSName
Value: String Gettable: Yes Settable: No

Description: The DNS name of the local computer forest.

IsNativeMode
Value: Boolean Gettable: Yes Settable: No

Description: Boolean Value that indicates whether the local computer’s domain is running in
Windows 2000 native or higher mode, or Windows 2000 mixed mode.

PDCRoleOwner
Value: String Gettable: Yes Settable: No

Description: The distinguished name of the domain controller that owns the PDC emulate role in
the local computer domain.

86804bapp02.indd 75186804bapp02.indd 751 1/21/09 1:22:46 PM1/21/09 1:22:46 PM

752

 Part VI Appendixes

SchemaRoleOwner
Value: String Gettable: Yes Settable: No

Description: The distinguished name of the domain controller that owns the Schema Master role in
the local computer domain.

SiteName
Value: String Gettable: Yes Settable: No

Description: The name of the local computer site.

UserName
Value: String Gettable: Yes Settable: No

Description: The distinguished name of the currently logged on user or the user context under
which the thread is running.

Method

GetAnyDCName()
Returns: String.

Description: Method obtains the DNS name of an available domain controller in the local comput-
er’s domain.

GetDCSiteName()
Returns: String.

Description: Method obtains the name of the Active Directory site that contains the local computer.

RefreshSchemaCache()
Returns: Error code.

Description: Method performs an immediate update to the schema so that you can view the schema
with all current changes.

GetTrees()
Returns: Array of strings.

Description: Method obtains the DNS names of all directory trees in the local computer’s forest.

IADsBackLink
The IADsBackLink interface is used to access the Back Link attribute in Novell NetWare Directory
Services (NDS).

86804bapp02.indd 75286804bapp02.indd 752 1/21/09 1:22:46 PM1/21/09 1:22:46 PM

753

 Core ADSI Reference B

Properties

ObjectName
Value: String Gettable: Yes Settable: Yes

Description: The name of an object to which the Back Link is attached.

RemoteID
Value: Number Gettable: Yes Settable: Yes

Description: The numeric identifier of a remote server.

IADsCaseIgnoreList
The IADsCaseIgnoreList interface is used to access the Case Ignore List attribute in Novell
NetWare Directory Services (NDS).

Property

CaseIgnoreList
Value: Array Gettable: Yes Settable: Yes

Description: A sequence of case-insensitive strings.

IADsClass
The IADsClass interface is designed for managing schema class objects. You access an object’s
schema class through its Schema property, as follows:

Set obj = GetObject(“WinNT://zeta,computer”)
Set cls = GetObject(obj.Schema)

For Each p in cls.MandatoryProperties
 WScript.Echo “Mandatory: “ & p
Next
For Each p in cls.OptionalProperties
 WScript.Echo “Optional: “ & p
Next

Properties

Abstract
Value: Boolean Gettable: Yes Settable: Yes

Description: Boolean Value that indicates whether the schema class is abstract.

86804bapp02.indd 75386804bapp02.indd 753 1/21/09 1:22:46 PM1/21/09 1:22:46 PM

754

 Part VI Appendixes

AuxDerivedFrom
Value: Array Gettable: Yes Settable: Yes

Description: Array of AdsPath strings that specify the super Auxiliary classes of this schema class.

Auxiliary
Value: Boolean Gettable: Yes Settable: Yes

Description: Boolean Value that determines whether this schema class is an Auxiliary class.

CLSID
Value: String Gettable: Yes Settable: Yes

Description: A provider-specific string that identifies the COM object that implements this schema
class.

Container
Value: Boolean Gettable: Yes Settable: Yes

Description: Boolean Value that indicates whether this is a Container object.

Containment
Value: Array Gettable: Yes Settable: Yes

Description: Array of strings that identify object types that can be contained within this container.

DerivedFrom
Value: Array Gettable: Yes Settable: Yes

Description: Array of AdsPath strings that indicate which classes this class is derived from.

HelpFileContext
Value: String Gettable: Yes Settable: Yes

Description: The context identifier for an optional help file.

HelpFileName
Value: String Gettable: Yes Settable: Yes

Description: The name of an optional help file.

MandatoryProperties
Value: Array Gettable: Yes Settable: Yes

Description: An array of strings that lists the mandatory properties for an ADSI object.

86804bapp02.indd 75486804bapp02.indd 754 1/21/09 1:22:46 PM1/21/09 1:22:46 PM

755

 Core ADSI Reference B

NamingProperties
Value: Array Gettable: Yes Settable: Yes

Description: An array of strings that list the properties that are used for naming attributes.

OID
Value: String Gettable: Yes Settable: Yes

Description: The directory-specific object identifier.

OptionalProperties
Value: Array Gettable: Yes Settable: Yes

Description: An array of strings that list the optional properties for an ADSI object.

PossibleSuperiors
Value: Array Gettable: Yes Settable: Yes

Description: An array of AdsPath strings that lists classes that can contain instances of this class.

PrimaryInterface
Value: String Gettable: Yes Settable: No

Description: The globally unique identifier of the interface defining this schema class.

Method

Qualifiers()
Returns: Collection of ADSI objects

Description: Method obtains a collection with additional provider-specific limits on the object class.
(Not currently implemented)

IADsCollection
The IADsCollection interface is used to manage collections. Two special types of collections are
IADsContainer and IADsMembers. You can obtain a collection of session objects as follows:

Set fso = GetObject(“WinNT://zeta/LanmanServer”)
Set coll = fso.Sessions

For Each session In coll
 WScript.Echo “Session name: “ & session.Name
Next

86804bapp02.indd 75586804bapp02.indd 755 1/21/09 1:22:46 PM1/21/09 1:22:46 PM

756

 Part VI Appendixes

Methods

Add(Object)
Returns: Error status

Description: Adds an object to the collection. Some collections don’t support adding objects.

Remove(Object)
Returns: Error status

Description: Removes an object from the collection. Some collections don’t support removing
objects.

GetObject(Object)
Returns: Error status

Description: Gets the specified object. Some collections don’t support this method.

IADsComputer
The IADsComputer interface is used to manage computers on a network. You can use this interface
when you bind to a computer object, as follows:

Set comp = GetObject(“WinNT://zeta,computer”)
If (comp.Class = “Computer”) Then
 ‘Do the following
End If

Properties

ComputerID
Value: String Gettable: Yes Settable: No

Description: The globally unique identifier for this machine.

Department
Value: String Gettable: Yes Settable: Yes

Description: The department to which this computer belongs.

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of this computer.

86804bapp02.indd 75686804bapp02.indd 756 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

757

 Core ADSI Reference B

Division
Value: String Gettable: Yes Settable: Yes

Description: The division to which this computer belongs.

Location
Value: String Gettable: Yes Settable: Yes

Description: The physical location of this computer.

MemorySize
Value: Number Gettable: Yes Settable: Yes

Description: The amount of RAM in MB.

Model
Value: String Gettable: Yes Settable: Yes

Description: The model of this computer.

NetAddresses
Value: Array Gettable: Yes Settable: Yes

Description: The network addresses of the computer.

OperatingSystem
Value: String Gettable: Yes Settable: Yes

Description: The installed operating system in use.

OperatingSystemVersion
Value: String Gettable: Yes Settable: Yes

Description: The version of installed operating system in use.

Owner
Value: String Gettable: Yes Settable: Yes

Description: The owner of this computer.

PrimaryUser
Value: String Gettable: Yes Settable: Yes

Description: The contact person for this computer.

86804bapp02.indd 75786804bapp02.indd 757 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

758

 Part VI Appendixes

Processor
Value: String Gettable: Yes Settable: Yes

Description: The type of CPU.

ProcessorCount
Value: Number Gettable: Yes Settable: Yes

Description: The number of processors installed in this computer.

Role
Value: String Gettable: Yes Settable: Yes

Description: The role of this computer, such as server or workstation.

Site
Value: String Gettable: Yes Settable: No

Description: The globally unique identifier for the site to which the computer belongs.

StorageCapacity
Value: Number Gettable: Yes Settable: Yes

Description: The size of disk space in MB.

IADsComputerOperations
The IADsComputerOperations interface provides extended functions for computers. You can bind
to a Computer object and use this interface as follows:

Set user = GetObject(“WinNT://domainName/computerName,computer”)

Methods

Shutdown(“rebootFlag”)
Returns: Error status

Description: Executes a remote shutdown of a computer. Set rebootFlag to true for reboot after
shutdown.

Status()
Returns: Status code

Description: Returns the current operations status of the computer.

86804bapp02.indd 75886804bapp02.indd 758 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

759

 Core ADSI Reference B

IADsContainer
The IADsContainer interface enables container objects to create, delete, and manage contained
ADSI objects. You obtain a pointer to this interface when you bind to a container object, as follows:

Set obj = GetObject(“WinNT://zeta,computer”)
Set cls = GetObject(obj.Schema)
If (cls.Container = TRUE) then
 WScript.Echo “The object is a container.”
Else
 WScript.Echo “The object is not a container.”
End If

Properties

Count
Value: Number Gettable: Yes Settable: No

Description: The number of directory objects in the container or the number of filtered items.

Filter
Value: Array Gettable: Yes Settable: Yes

Description: Items in the array represent object classes.

Hints
Value: Array Gettable: Yes Settable: Yes

Description: Items in the array represent properties found in the schema definition.

Methods

CopyHere(“AdsPath”,”newName”)
Returns: Error status

Description: Creates a copy of an object within a directory.

Create(“objectClass”,”relativeName”)
Returns: Error status

Description: Creates a new object within a container.

Delete(“objectClass”,”relativeName”)
Returns: Error status

Description: Deletes a specified object from a container.

86804bapp02.indd 75986804bapp02.indd 759 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

760

 Part VI Appendixes

GetObject(“objectClass”,”relativeName”)
Returns: Error status

Description: Gets interface for a named object.

MoveHere(“AdsPathToObject”,”relativeName”)
Returns: Error status

Description: Moves or renames an object within a directory.

IADsDeleteOps
The IADsDeleteOps interface provides a method that an object can use to delete itself from the
directory store. With container objects, the method also deletes all objects within the container. If
the object doesn’t implement this interface, you can delete the object via the parent object. You can
use IADsDeleteOps to delete an object as follows:

Set cont = GetObject(“LDAP://OU=marketing,DC=tvpress,DC=com”)
cont.DeleteObject(0)

Method

DeleteObject(Flag)
Returns: Error status

Description: Deletes the object from the directory. Set the deletion flag to zero.

IADsDomain
The IADsDomain interface is designed for managing resources in domains. You can use this inter-
face when you bind to a domain object, as in the following:

Set comp = GetObject(“WinNT://zeta “)
If (comp.Class = “Domain”) Then
 ‘Do the following
End If

Properties

AutoUnlockInterval
Value: Number Gettable: Yes Settable: Yes

Description: The minimum time that can elapse before a locked account is automatically
re-enabled.

86804bapp02.indd 76086804bapp02.indd 760 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

761

 Core ADSI Reference B

IsWorkgroup
Value: Boolean Gettable: Yes Settable: No

Description: A Boolean that determines whether the computer is a member of a workgroup, rather
than a domain.

LockoutObservationInterval
Value: Number Gettable: Yes Settable: Yes

Description: The time interval during which the bad password counter is increased.

MaxBadPasswordsAllowed
Value: Number Gettable: Yes Settable: Yes

Description: The maximum bad password logins before the account is locked out.

MaxPasswordAge
Value: Number Gettable: Yes Settable: Yes

Description: The maximum time that can elapse before a password must be changed.

MinPasswordAge
Value: Number Gettable: Yes Settable: Yes

Description: The minimum time that can elapse before a password can be changed.

MinPasswordLength
Value: Number Gettable: Yes Settable: Yes

Description: The minimum number of characters required in a password.

PasswordAttributes
Value: Number Gettable: Yes Settable: Yes

Description: The restrictions on passwords. Restrictions are set with the following:

PASSWORD_ATTR_NONE■ or 0x00000000

PASSWORD_ATTR_MIXED_CASE■ or 0x00000001

PASSWORD_ATTR_COMPLEX■ or 0x00000002

With PASSWORD_ATTR_COMPLEX, the password must include at least one punctuation mark or non-
printable character.

86804bapp02.indd 76186804bapp02.indd 761 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

762

 Part VI Appendixes

PasswordHistoryLength
Value: Number Gettable: Yes Settable: Yes

Description: The number of passwords saved in the password history. Users cannot reuse a pass-
word in the history list.

IADsEmail
The IADsEmail interface is used to access the Email Address attribute in Novell NetWare Directory
Services (NDS).

Properties

Address
Value: String Gettable: Yes Settable: Yes

Description: The e-mail address of the user.

Type
Value: Number Gettable: Yes Settable: Yes

Description: The type of the e-mail message.

IADsExtension
The IADsExtension interface provides features for extending ADSI. Used with interfaces that
extend core ADSI. You won’t normally access this interface directly in scripts.

IADsFaxNumber
The IADsFaxNumber interface is used to access the Facsimile Telephone Number attribute in Novell
NetWare Directory Services (NDS).

Properties

Parameters
Value: Array Gettable: Yes Settable: Yes

Description: Parameters for the fax machine.

TelephoneNumber
Value: String Gettable: Yes Settable: Yes

Description: The telephone number of the fax machine.

86804bapp02.indd 76286804bapp02.indd 762 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

763

 Core ADSI Reference B

IADsFileService
The IADsFileService interface is used to manage file services. This interface inherits from
IADsService, and only additional properties are detailed in this section. You can use this interface
when you bind to a file service, as follows:

Set fs = GetObject(“WinNT://zeta/LanmanServer”)

fs.Description = “WinNT file service.”
n = fs.MaxUserCount
If n = -1 Then
 WScript.Echo “No limit on LanmanServer.”
Else
 WScript.Echo n & “ users are allowed.”
End If

To access active sessions or open resources used by the file service, you have to go through the
IADsFileServiceOperations interface.

Properties

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of the file service.

MaxUserCount
Value: Number Gettable: Yes Settable: Yes

Description: The maximum number of users allowed to run the service concurrently. A Value of –1
indicates no limit is set.

IADsFileServiceOperations
The IADsFileServiceOperations interface provides extended functions for file services. You can
bind to a FileService object and use this interface as follows:

Set user = GetObject(“WinNT://domainName/computerName/LanmanServer”)

The IADsFileServiceOperations interface allows you to work with open resources and active
sessions of the file service through IADsSession and IADsResource, respectively. You can use
these collections as follows:

Set fso = GetObject(“WinNT://zeta/LanmanServer”)
For Each resource In fso.Resources
 WScript.Echo “Resource path: “ & resource.Path

86804bapp02.indd 76386804bapp02.indd 763 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

764

 Part VI Appendixes

Next
For Each session In fso.sessions
 WScript.Echo “Session name: “ & session.Name
Next

Methods

Resources()
Returns: Resource collection

Description: Gets an interface pointer on a collection object that represents current open resources
for this file service.

Sessions()
Returns: Sessions Collection

Description: Gets an interface pointer on a collection object that represents current open sessions
on this file service.

IADsFileShare
The IADsFileShare interface is used to manage shared folders. You can use this interface when
you bind to the LanmanServer service on the host computer, as in the following:

Set fso = GetObject(“WinNT://seattle/zeta/LanmanServer”)
Set fs = fso.Create(“FileShare”, “Test”)
WScript.Echo fs.Class
fs.Path = “F:\test”
fs.SetInfo

Properties

CurrentUserCount
Value: Number Gettable: Yes Settable: No

Description: The current number of users connected to this share.

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of the file share.

HostComputer
Value: String Gettable: Yes Settable: Yes

Description: The AdsPath reference to the host computer.

86804bapp02.indd 76486804bapp02.indd 764 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

765

 Core ADSI Reference B

Path
Value: String Gettable: Yes Settable: Yes

Description: The file system path to a shared directory.

MaxUserCount
Value: Number Gettable: Yes Settable: Yes

Description: The maximum number of concurrent users for the share.

IADsGroup
The IADsGroup interface is used to manage group membership. You can use this interface when
you bind to a Group object, as follows:

Set grp = GetObject(“LDAP://CN=Backup Operators,CN=Builtin,DC=seattle,D
C=domain,DC=com”)

grp.Add(“LDAP://CN=William R. Stanek,CN=Users,DC=seattle,DC=domain,DC=c
om”)

WScript.Echo grp.IsMember(“LDAP://CN=William R. Stanek,CN=Users,DC=seat
tle,DC=domain,DC=com”)

Property

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of the group.

Methods

Add(“AdsPathString”)
Returns: Error status

Description: Adds an object to a group.

IsMember(“AdsPathString”)
Returns: Membership flag

Description: Determines whether the user or group is a member. A nonzero Value indicates that the
user is a member of the group.

86804bapp02.indd 76586804bapp02.indd 765 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

766

 Part VI Appendixes

Members(“AdsPathString”)
Returns: Members object collection

Description: Gets the Members object collection that you can use to iterate through group
membership.

Remove(“AdsPathString”)
Returns: Error status

Description: Removes an object from a group.

IADsHold
The IADsHold interface is used to access the Hold attribute in Novell NetWare Directory Services
(NDS).

Properties

Amount
Value: Number Gettable: Yes Settable: Yes

Description: The amount charged against the user for the period on hold.

ObjectName
Value: String Gettable: Yes Settable: Yes

Description: The name of the object on hold.

IADsLargeInteger
The IADsLargeInteger interface is used to manipulate 64-bit integers of the LargeInteger type.
Use the formula:

largeInt = HighPart * 232 + LowPart

Properties

HighPart
Value: Number Gettable: Yes Settable: Yes

Description: The high part of the integer.

LowPart
Value: Number Gettable: Yes Settable: Yes

Description: The low part of the integer.

86804bapp02.indd 76686804bapp02.indd 766 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

767

 Core ADSI Reference B

IADsLocality
The IADsLocality interface represents the geographical location of a directory element and is used
to manage locality. The interface supports organizing accounts by location, organization, and orga-
nizational unit. IADsLocality implements IADsContainer. You can access this interface as
follows:

Set dom = getObject(“LDAP://zeta/DC=tvpress, DC=com”)
Set loc = dom.GetObject(“locality”,”L=myLocality”)

Properties

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of the locality.

LocalityName
Value: String Gettable: Yes Settable: Yes

Description: The name of the locality.

PostalAddress
Value: String Gettable: Yes Settable: Yes

Description: The main post office address of the locality.

SeeAlso
Value: String Gettable: Yes Settable: Yes

Description: Other information relevant to the locality.

IADsMembers
The IADsMembers interface is used to manage a collection of objects that belong to a group. You can
use this interface when you get the Members object collection, as follows:

Set grp = GetObject(“LDAP://CN=Administrators,CN=Builtin,
DC=seattle,DC=domain,DC=com”)

grp.members.filter = Array(“user”)
For each usr in grp.members
 WScript.Echo usr.Name & “,” & usr.Class & “,” & usr.AdsPath
Next

86804bapp02.indd 76786804bapp02.indd 767 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

768

 Part VI Appendixes

Properties

Count
Value: String Gettable: Yes Settable: No

Description: The number of members.

Filter
Value: String Gettable: Yes Settable: Yes

Description: The filter for selection.

IADsNamespaces
The IADsNamespaces interface is used to manage namespace objects. You obtain a pointer to this
interface when you bind to the object using the “ADs:” string, as in the following:

Set ns = GetObject(“ADs:”)

Property

DefaultContainer
Value: Array Gettable: Yes Settable: Yes

Description: The default container name for the current user. You can set this property by assigning
an AdsPath. You do not need to call SetInfo().

IADsNetAddress
The IADsNetAddress interface is used to access the Net Address attribute in Novell NetWare
Directory Services (NDS).

Properties

Address
Value: Array Gettable: Yes Settable: Yes

Description: The network addresses supported.

AddressType
Value: Number Gettable: Yes Settable: Yes

Description: The communication protocol supported.

86804bapp02.indd 76886804bapp02.indd 768 1/21/09 1:22:47 PM1/21/09 1:22:47 PM

769

 Core ADSI Reference B

IADsO
The IADsO interface is used to manage the organization to which an account belongs. IADsO imple-
ments IADsContainer. You can use this interface when you obtain a pointer to the domain object,
as follows:

Set prov = GetObject(“LDAP:”)
Set org = prov.OpenDSObject(“LDAP://DC=SEATTLE,DC=DOMAIN,DC=COM”,
“wrstanek@seattle.domain.com”,”stanek”, ADS_SECURE_AUTHENTICATION)

org.Filter = Array(“organization”)
For each o in org
 WScript.Echo “Fax number of “ & o.Name & “ : “ & o.Description
Next

Properties

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of the organization.

FaxNumber
Value: String Gettable: Yes Settable: Yes

Description: The fax number of the organization.

LocalityName
Value: String Gettable: Yes Settable: Yes

Description: The name of the organization.

PostalAddress
Value: String Gettable: Yes Settable: Yes

Description: The postal address of the organization.

SeeAlso
Value: String Gettable: Yes Settable: Yes

Description: The other information relevant to this organization.

TelephoneNumber
Value: String Gettable: Yes Settable: Yes

Description: The telephone number of the organization.

86804bapp02.indd 76986804bapp02.indd 769 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

770

 Part VI Appendixes

IADsObjectOptions
The IADsObjectOptions interface for accessing provider-specific options of an ADSI object. These
options are primarily used when searching the directory, as in the following:

Set cont = GetObject(“LDAP://DC=seattle,DC=domain,DC=com”)
srvName = cont.GetOption(ADS_OPTION_SERVERNAME)
WScript.Echo “Server Name for connection: “ & srvName
PageSize = cont.GetOption(ADS_OPTION_PAGE_SIZE)

Methods

GetOption(optionConstantOrValue)
Returns: Error status

Description: Gets an option. Options are:

ADS_OPTION_SERVERNAME■ or 0,

ADS_OPTION_REFERRALS■ or 1,

ADS_OPTION_PAGE_SIZE■ or 2,

ADS_OPTION_SECURITY_MASK■ or 3,

ADS_OPTION_MUTUAL_AUTH_STATUS■ or 4,

ADS_OPTION_QUOTA■ or 5,

ADS_OPTION_PASSWORD_PORTNUMBER■ or 6,

ADS_OPTION_PASSWORD_METHOD■ or 7,

ADS_OPTION_ACCUMULATIVE_MODIFICATION■ or 8,

ADS_OPTION_SKIP_SID_LOOKUP■ or 9

SetOption(optionConstantOrValue, integerValue)
Returns: Error status

Description: Sets an option.

IADsOctetList
The IADsOctetList interface is used to access the OctetList attribute in Novell NetWare
Directory Services (NDS).

Property

OctetList
Value: Array Gettable: Yes Settable: Yes

Description: An ordered sequence of byte arrays.

86804bapp02.indd 77086804bapp02.indd 770 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

771

 Core ADSI Reference B

IADsOpenDSObject
The IADsOpenDSObject interface is designed to obtain an object reference securely. You obtain a
pointer to this interface when you bind to the ADSI provider that you want to work with, as follows:

Set prov = GetObject(“WinNT:”)
Set user = prov.OpenDSObject(“WinNT://” & NTDomain & “/” &
NTUser,”wrstane”,”jiggyPop”, ADS_SECURE_AUTHENTICATION)

Method

OpenDSObject(ADSPath, UserID, Password, Flags)
Returns: Pointer to the object

Description: Binds to an ADSI object using the specified credentials.

IADsOU
The IADsOU interface is used to manage the organizational unit to which an account belongs.
IADsOU implements IADsContainer. You can use this interface when you obtain a pointer to the
domain object, as in the following:

Set prov = GetObject(“LDAP:”)
Set org = prov.OpenDSObject(“LDAP://DC=SEATTLE,DC=DOMAIN,DC=COM”,
“wrstanek@seattle.domain.com”,”stanek”, ADS_SECURE_AUTHENTICATION)

org.Filter = Array(“OrganizationalUnit”)
For each o in org
 WScript.Echo “Category “ & o.BusinessCategory & “ : “ &
 o.Description
Next

Properties

BusinessCategory
Value: String Gettable: Yes Settable: Yes

Description: The business function of the organizational unit.

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of the organizational unit.

FaxNumber
Value: String Gettable: Yes Settable: Yes

Description: The fax number of the unit.

86804bapp02.indd 77186804bapp02.indd 771 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

772

 Part VI Appendixes

LocalityName
Value: String Gettable: Yes Settable: Yes

Description: The physical location of the unit.

PostalAddress
Value: String Gettable: Yes Settable: Yes

Description: The post office address of the unit.

SeeAlso
Value: String Gettable: Yes Settable: Yes

Description: Other information relevant to the unit.

TelephoneNumber
Value: String Gettable: Yes Settable: Yes

Description: The telephone number of the unit.

IADsPath
The IAdsPath interface is used to access the Path attribute in Novell NetWare Directory Services
(NDS).

Properties

Path
Value: String Gettable: Yes Settable: Yes

Description: The file path for a directory.

Type
Value: Number Gettable: Yes Settable: Yes

Description: The type of file system.

VolumeName
Value: String Gettable: Yes Settable: Yes

Description: The name of the volume.

86804bapp02.indd 77286804bapp02.indd 772 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

773

 Core ADSI Reference B

IADsPathname
The IAdsPathname interface is used to examine, extract, and construct paths. You can use this
interface with any AdsPath.

Property

EscapedMode
Value: Number Gettable: Yes Settable: Yes

Description: The mode for escaping a path. Valid modes are:

ADS_ESCAPEDMODE_DEFAULT or 1
ADS_ESCAPEDMODE_ON or 2
ADS_ESCAPEDMODE_OFF or 3

Methods

AddLeafElement(“leafElement”)
Returns: Error status

Description: Adds an element to the end of the object path.

CopyPath()
Returns: Error status

Description: Instantiates an object with the same path as the current AdsPath.

GetElement(index)
Returns: Error status

Description: Gets the leaf element stored at the index.

GetEscapedElement(number,stringToEscape)
Returns: Escaped string

Description: Takes a path string with special characters and returns the string with escaped Values.
The number parameter is reserved for future use, so just enter 0.

GetNumElements()
Returns: Number

Description: Gets the number of elements in the path.

86804bapp02.indd 77386804bapp02.indd 773 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

774

 Part VI Appendixes

RemoveLeafElement()
Returns: Error status

Description: Removes the last element from the path.

Retrieve(formatType)
Returns: AdsPath string

Description: Retrieves a path with a specific format. Formats are:

ADS_FORMAT_WINDOWS■ or 1

ADS_FORMAT_WINDOWS_NO_SERVER■ or 2

ADS_FORMAT_WINDOWS_DN■ or 3

ADS_FORMAT_WINDOWS_PARENT■ or 4

ADS_FORMAT_X500■ or 5

ADS_FORMAT_X500_NO_SERVER■ or 6

ADS_FORMAT_X500_DN■ or 7

ADS_FORMAT_X500_PARENT■ or 8

ADS_FORMAT_SERVER■ or 9

ADS_FORMAT_PROVIDER■ or 10

ADS_FORMAT_NAMESPACE■ or 10

ADS_FORMAT_LEAF■ or 11

Set(“AdsPath”,optionType)
Returns: Error status

Description: Sets an AdsPath string with specific type. Option types are:

ADS_SETTYPE_FULL■ or 1

ADS_SETTYPE_PROVIDER■ or 2

ADS_SETTYPE_NAMESPACE■ or 2

ADS_SETTYPE_SERVER■ or 3

ADS_SETTYPE_DN■ or 4

SetDisplayType(displayType)
Returns: Error status

Description: Determines how a path is to be displayed. Display types are:

ADS_DISPLAY_FULL■ or 1

ADS_DISPLAY_VALUE_ONLY■ or 2

86804bapp02.indd 77486804bapp02.indd 774 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

775

 Core ADSI Reference B

IADsPostalAddress
The IADsPostalAddress interface is used to access the Postal Address attribute in Novell NetWare
Directory Services (NDS).

Properties

PostalAddress
Value: Array Gettable: Yes Settable: Yes

Description: The postal address of the user.

IADsPrintJob
The IADsPrintJob interface represents print jobs. Use the IADsPrintJobOperations interface
to manage print jobs. You can access this interface through a PrintQueue object, as follows:

Set pq = GetObject(“WinNT://zeta/HPDeskJe”)
Set pqo = pq
For Each pj in pqo.PrintJobs
 WScript.Echo pj.class
 WScript.Echo pj.description
 WScript.Echo pj.HostPrintQueue
 Set pjo = pj
 If Hex(pjo.status) = 10 Then
 ‘ if document is printing; pause it
 pjo.Pause
 Else
 pjo.Resume
 End If
Next

Properties

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of the print job.

HostPrintQueue
Value: String Gettable: Yes Settable: No

Description: An ADsPath string that names the print queue processing this print job.

Notify
Value: String Gettable: Yes Settable: Yes

Description: The user to be notified when the job is completed.

86804bapp02.indd 77586804bapp02.indd 775 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

776

 Part VI Appendixes

NotifyPath
Value: String Gettable: Yes Settable: Yes

Description: An AdsPath string for the user to be notified when the job is completed.

Priority
Value: Number Gettable: Yes Settable: Yes

Description: The priority of the print job.

Size
Value: Number Gettable: Yes Settable: No

Description: The size of the print job in bytes.

StartTime
Value: Date Gettable: Yes Settable: Yes

Description: The earliest time when the print job should be started.

TimeSubmitted
Value: Date Gettable: Yes Settable: No

Description: The time when the job was submitted to the print queue.

TotalPages
Value: Number Gettable: Yes Settable: No

Description: The total number of pages in the print job.

UntilTime
Value: Date Gettable: Yes Settable: Yes

Description: The time when the print job should be stopped.

User
Value: String Gettable: Yes Settable: No

Description: The name of user who submitted the print job.

UserPath
Value: String Gettable: Yes Settable: No

Description: The AdsPath string for the user who submitted the print job.

86804bapp02.indd 77686804bapp02.indd 776 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

777

 Core ADSI Reference B

IADsPrintJobOperations
The IADsPrintJobOperations interface provides extended functions for print jobs. You can use
this interface when you obtain a PrintJob object, as follows:

Set pqo = GetObject(“WinNT://zeta/HPDeskJe”)
For each pj in pqo.PrintJobs
 set pjo = pj
 WScript.Echo “Print job status: “ & Hex(pjo.status)
Next

Properties

PagesPrinted
Value: Number Gettable: Yes Settable: No

Description: The total number of pages printed for the current job.

Position
Value: Number Gettable: Yes Settable: Yes

Description: The numeric position of print job in the print queue.

Status
Value: Number Gettable: Yes Settable: Yes

Description: The status of print job as a hexadecimal Value. The values are:

ADS_JOB_PAUSED■ or 0x00000001

ADS_JOB_ERROR■ or 0x00000002

ADS_JOB_DELETING■ or 0x00000004

ADS_JOB_PRINTING ■ or 0x00000010

ADS_JOB_OFFLINE■ or 0x00000020

ADS_JOB_PAPEROUT■ or 0x00000040

ADS_JOB_PRINTED■ or 0x00000080

ADS_JOB_DELETED■ or 0x00000100

TimeElapsed
Value: Number Gettable: Yes Settable: No

Description: The elapsed time in seconds since the job started printing.

86804bapp02.indd 77786804bapp02.indd 777 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

778

 Part VI Appendixes

Methods

Pause()
Returns: Error status

Description: Pauses the print job.

Resume()
Returns: Error status

Description: Resumes the print job.

IADsPrintQueue
The IADsPrintQueue interface represents a printer on a network. You can use the
IADsPrintQueueOperations interface to control printer queues. You can use the interface when
you obtain a PrintQueue object, as follows:

Set pq = GetObject(“WinNT://zeta/HPDeskJe”)

You could examine all print queues as follows:

Set comp = GetObject(“WinNT://zeta,computer”)
comp.Filter = Array(“PrintQueue”)
For Each p In comp
 Set pq = GetObject(p.ADsPath)
 WScript.Echo pq.Name & “ is a “ & pq.Model
Next

Properties

BannerPage
Value: String Gettable: Yes Settable: Yes

Description: The file path to a banner-page file used to separate print jobs.

Datatype
Value: String Gettable: Yes Settable: Yes

Description: The data type that can be processed by the print queue.

DefaultJobPriority
Value: Number

or String
Gettable: Yes Settable: Yes

Description: The default priority assigned to each print job.

86804bapp02.indd 77886804bapp02.indd 778 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

779

 Core ADSI Reference B

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of the print queue.

Location
Value: String Gettable: Yes Settable: Yes

Description: A description of the print queue location.

Model
Value: String Gettable: Yes Settable: Yes

Description: The name of the driver used by the print queue.

NetAddresses
Value: Array Gettable: Yes Settable: Yes

Description: The network IP addresses for the printer (if applicable).

PrintDevices
Value: Array Gettable: Yes Settable: Yes

Description: The names of print devices that the print queue uses as spooling devices.

PrinterPath
Value: String Gettable: Yes Settable: Yes

Description: The network path (for a shared printer).

PrintProcessor
Value: String Gettable: Yes Settable: Yes

Description: The print processor associated with the print queue.

Priority
Value: Number Gettable: Yes Settable: Yes

Description: The priority of this printer object’s job queue.

StartTime
Value: Date Gettable: Yes Settable: Yes

Description: The time when the print queue starts processing jobs.

86804bapp02.indd 77986804bapp02.indd 779 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

780

 Part VI Appendixes

UntilTime
Value: Date Gettable: Yes Settable: Yes

Description: The time at which the print queue stops processing jobs.

IADsPrintQueueOperations
The IADsPrintQueueOperations interface provides extended features for print queues. You can
work with this interface by getting a pointer to a PrintQueue object, as follows:

Set pqo = GetObject(“WinNT://zeta/HPDeskJe”)
If pqo.Status = ADS_PRINTER_TONER_LOW Then
 WScript.Echo “The printer is low on toner.”
End If

Property

Status
Value: Number Gettable: Yes Settable: No

Description: The current status of the print queue. Valid status codes are:

ADS_PRINTER_PAUSED■ or 0x00000001

ADS_PRINTER_PENDING_DELETION■ or 0x00000002

ADS_PRINTER_ERROR■ or 0x00000003

ADS_PRINTER_PAPER_JAM ■ or 0x00000004

ADS_PRINTER_PAPER_OUT■ or 0x00000005

ADS_PRINTER_MANUAL_FEED■ or 0x00000006

ADS_PRINTER_PAPER_PROBLEM■ or 0x00000007

ADS_PRINTER_OFFLINE■ or 0x00000008

ADS_PRINTER_IO_ACTIVE■ or 0x00000100

ADS_PRINTER_BUSY■ or 0x00000200

ADS_PRINTER_PRINTING■ or 0x00000400

ADS_PRINTER_OUTPUT_BIN_FULL■ or 0x00000800

ADS_PRINTER_NOT_AVAILABLE■ or 0x00001000

ADS_PRINTER_WAITING■ or 0x00002000

ADS_PRINTER_PROCESSING■ or 0x00004000

ADS_PRINTER_INITIALIZING■ or 0x00008000

ADS_PRINTER_WARMING_UP■ or 0x00010000

ADS_PRINTER_TONER_LOW■ or 0x00020000

86804bapp02.indd 78086804bapp02.indd 780 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

781

 Core ADSI Reference B

ADS_PRINTER_NO_TONER■ or 0x00040000

ADS_PRINTER_PAGE_PUNT■ or 0x00080000

ADS_PRINTER_USER_INTERVENTION■ or 0x00100000

ADS_PRINTER_OUT_OF_MEMORY■ or 0x00200000

ADS_PRINTER_DOOR_OPEN■ or 0x00400000

ADS_PRINTER_SERVER_UNKNOWN■ or 0x00800000

ADS_PRINTER_POWER_SAVE■ or 0x01000000

Methods

Pause()
Returns: Error status

Description: Pauses the print queue.

PrintJobs()
Returns: Print Job Collection

Description: Retrieves a pointer to a collection of print jobs that are managed by the print queue.

Purge()
Returns: Error status

Description: Deletes all jobs from the print queue.

Resume()
Returns: Error status

Description: Resumes the print queue.

IADsProperty
The IADsProperty interface is designed for managing attributes for schema objects. You gain
access to an object’s properties by binding to the parent schema object, as follows:

Set obj = GetObject(“WinNT://zeta,computer”)
Set cl = GetObject(obj.Schema)
Set sc = GetObject(cl.Parent)
Set prop = sc.GetObject(“Property”,”Owner”)
WScript.Echo “Attribute: “ & prop.Name
WScript.Echo “Syntax: “ & prop.Syntax
WScript.Echo “MaxRange: “ & prop.MaxRange
WScript.Echo “MinRange: “ & prop.MinRange
WScript.Echo “Multivalued:” & prop.Multivalued

86804bapp02.indd 78186804bapp02.indd 781 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

782

 Part VI Appendixes

Properties

MaxRange
Value: Number Gettable: Yes Settable: Yes

Description: The upper limit of Values for the property.

MinRange
Value: Number Gettable: Yes Settable: Yes

Description: The lower limit of Values for the property.

MultiValued
Value: Boolean Gettable: Yes Settable: Yes

Description: The Boolean Value indicates whether this property supports multiple values.

OID
Value: String Gettable: Yes Settable: Yes

Description: The directory-specific object identifier.

Syntax
Value: String Gettable: Yes Settable: Yes

Description: The property type, such as String.

Method

Qualifiers()
Returns: Collection of ADSI objects

Description: Method obtains a collection with additional provider-specific limits on the property.

IADsPropertyEntry
The IADsPropertyEntry interface allows a user to specify how a property’s Values can be manipu-
lated. To access a property entry, use the Item property or call the GetPropertyItem method on
the IADsPropertyList interface, as in the following:

Set plist = GetObject(“LDAP://zeta/DC=TVPRESS,DC=com”)
plist.GetInfo
Set pentry = plist.GetPropertyItem(“dc”, ADSTYPE_CASE_IGNORE_STRING)

86804bapp02.indd 78286804bapp02.indd 782 1/21/09 1:22:48 PM1/21/09 1:22:48 PM

783

 Core ADSI Reference B

Properties

ADS_Type
Value: String Gettable: Yes Settable: Yes

Description: The data type of the property.

ControlCode
Value: String Gettable: Yes Settable: Yes

Description: A constant that specifies the operation to be performed on the property. These con-
stants are ADS_PROPERTY_CLEAR, ADS_PROPERTY_UPDATE, ADS_PROPERTY_APPEND, and
ADS_PROPERTY_DELETE.

Name
Value: String Gettable: Yes Settable: Yes

Description: The name of the property entry.

Values
Value: Array Gettable: Yes Settable: Yes

Description: Array representing the Values of the property.

IADsPropertyList
The IADsPropertyList interface is used to manage property entries in the property cache. You
gain access to this interface when you load an object’s properties into the property cache, as follows:

Set plist = GetObject(“LDAP://zeta/DC=TVPRESS,DC=com”)
plist.GetInfo

Property

PropertyCount
Value: String Gettable: Yes Settable: No

Description: The number of properties in the property list.

Methods

GetPropertyItem(“propertyName”,propertyTypeConstant)
Returns: Property entry

Description: Use this method to obtain a property entry. The normal constant is
ADSTYPE_CASE_IGNORE_STRING.

86804bapp02.indd 78386804bapp02.indd 783 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

784

 Part VI Appendixes

Item(propertyNameOrIndex)
Returns: Property entry

Description: Obtains a property entry by name or index.

Next()
Returns: Property entry

Description: Obtains the next item in the cached property list.

PurgePropertyList()
Returns: Error status

Description: Deletes the cached property list for the object.

PutPropertyItem(propertyEntry)
Returns: Error status

Description: Updates a Value in the cached property list.

Reset()
Returns: Error status

Description: Moves back to the start of the cached property list.

ResetPropertyItem(propertyNameOrIndex)
Returns: Error status

Description: Removes a property from the cached property list by name or by index.

Skip(numberToSkip)
Returns: Error status

Description: Skips a specified number of items in the cached property list.

IADsPropertyValue
The IADsPropertyValue interface represents a property value in a property entry. You can obtain
this interface through the Values property of IADsPropertyEntry, as follows:

Set plist = GetObject(“WinNT://tvpress/zeta/administrator,user”)
plist.GetInfo

Set pentry = plist.GetPropertyItem(“description”, ADSTYPE_CASE_IGNORE_
STRING)

86804bapp02.indd 78486804bapp02.indd 784 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

785

 Core ADSI Reference B

For Each v In pentry.Values
 Set pval = v
 WScript.Echo pval.CaseIgnoreString
 pval.Clear
Next

Properties

ADsType
Value: Number Gettable: Yes Settable: Yes

Description: A constant representing a property’s data type.

Boolean
Value: Boolean Gettable: Yes Settable: Yes

Description: A Boolean Value.

CaseExactString
Value: String Gettable: Yes Settable: Yes

Description: A case-sensitive string.

CaseIgnoreString
Value: String Gettable: Yes Settable: Yes

Description: A case-insensitive string.

DNString
Value: String Gettable: Yes Settable: Yes

Description: An object’s distinguished name.

Integer
Value: Number Gettable: Yes Settable: Yes

Description: An integer Value.

LargeInteger
Value: Number Gettable: Yes Settable: Yes

Description: A large integer Value.

NumericString
Value: String Gettable: Yes Settable: Yes

Description: A string to be treated as a number.

86804bapp02.indd 78586804bapp02.indd 785 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

786

 Part VI Appendixes

OctetString
Value: String Gettable: Yes Settable: Yes

Description: A string of eight-bit characters.

PrintableString
Value: String Gettable: Yes Settable: Yes

Description: A printable string.

SecurityDescriptor
Value: Interface

Pointer
Gettable: Yes Settable: Yes

Description: A security descriptor of type IADsSecurityDescriptor.

UTCTime
Value: String Gettable: Yes Settable: Yes

Description: A date in Coordinated Universal Time format.

Method

Clear()
Returns: Error status

Description: Clears the current Values of the PropertyValue object.

IADsPropertyValue2
The IADsPropertyValue2 interface represents a property value in a property entry, including new
and custom-defined data types. You can obtain this interface through the Values property of
IADsPropertyEntry, as follows:

Set plist = GetObject(“LDAP://server18/DC=cpandl,DC=com”)
plist.GetInfo

Set pentry = plist.GetPropertyItem(“description”, ADSTYPE_CASE_IGNORE_
STRING)

For Each v In pentry.Values
 Set pval = v
 WScript.Echo pval.GetObjectProperty
 pval.Clear
Next

86804bapp02.indd 78686804bapp02.indd 786 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

787

 Core ADSI Reference B

Properties

GetObjectProperty
Value: Variant Gettable: Yes Settable: No

Description: A pointer to a Variant that receives the requested attribute Value.

PutObjectProperty
Value: Variant Gettable: No Settable: Yes

Description: A pointer to a Variant that contains the new attribute Value.

IADsReplicaPointer
The IADsReplicaPointer interface is used to access the Replica Pointer attribute in Novell
NetWare Directory Services (NDS).

Properties

Count
Value: Number Gettable: Yes Settable: Yes

Description: The number of existing replicas.

ReplicaAddressHints
Value: Array Gettable: Yes Settable: Yes

Description: A network address suggested as a node where a name server might be located.

ReplicaNumber
Value: Number Gettable: Yes Settable: Yes

Description: The ID number of the replica.

ReplicaType
Value: Number Gettable: Yes Settable: Yes

Description: A Value indicating the type of replica as master, secondary, or read-only.

ServerName
Value: String Gettable: Yes Settable: Yes

Description: The name of the server holding the replica.

86804bapp02.indd 78786804bapp02.indd 787 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

788

 Part VI Appendixes

IADsResource
The IADsResource interface is used to manage open resources for a file service. You can obtain a
collection of resources through the FileService object, as follows:

Set fso = GetObject(“WinNT://zeta/LanmanServer”)
If (IsEmpty(fso) = False) Then
 For Each resource In fso.resources
 WScript.Echo “Resource name: “ & resource.name
 WScript.Echo “Resource path: “ & resource.path
 Next
End If

Properties

LockCount
Value: Number Gettable: Yes Settable: No

Description: The number of locks on a resource.

Path
Value: String Gettable: Yes Settable: No

Description: The file path of the resource.

User
Value: String Gettable: Yes Settable: No

Description: The name of the user who opened the resource.

UserPath
Value: String Gettable: Yes Settable: No

Description: The AdsPath string of the user object that is accessing the resource.

IADsSession
The IADsSession interface is used to manage active user sessions for the file service. You can
access this interface through the FileService object, as follows:

Set fso = GetObject(“WinNT://zeta/LanmanServer”)
Set s = fso.Sessions

86804bapp02.indd 78886804bapp02.indd 788 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

789

 Core ADSI Reference B

Properties

Computer
Value: String Gettable: Yes Settable: No

Description: The name of the client workstation from which the session initiated.

ComputerPath
Value: String Gettable: Yes Settable: No

Description: The ADsPath of the related computer object.

ConnectTime
Value: Number Gettable: Yes Settable: No

Description: The number of minutes since the session began.

IdleTime
Value: Number Gettable: Yes Settable: No

Description: The number of minutes that the session has been idle.

User
Value: String Gettable: Yes Settable: No

Description: The name of user who initiated the session.

UserPath
Value: String Gettable: Yes Settable: No

Description: The ADsPath of the related user object.

IADsService
The IADsService interface is used to manage services on a computer. Services are accessed
through the IADsComputer interface, as follows:

Set comp = GetObject(“WinNT://seattle/zeta/alerter,service”)

The IADsFileService and IADsFileServiceOperations interfaces provide additional features
for file services.

86804bapp02.indd 78986804bapp02.indd 789 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

790

 Part VI Appendixes

Properties

Dependencies
Value: Array Gettable: Yes Settable: Yes

Description: An array of services that must be running before this service can run.

DisplayName
Value: String Gettable: Yes Settable: Yes

Description: The display name of this service.

ErrorControl
Value: Number Gettable: Yes Settable: Yes

Description: The actions taken in case of service failure. Permissible actions are:

ADS_SERVICE_ERROR_IGNORE■ or 0x00000000

ADS_SERVICE_ERROR_NORMAL■ or 0x00000001

ADS_SERVICE_ERROR_SEVERE■ or 0x00000002

ADS_SERVICE_ERROR_CRITICAL■ or 0x00000003

HostComputer
Value: String Gettable: Yes Settable: Yes

Description: The AdsPath string of the host computer running the service.

LoadOrderGroup
Value: String Gettable: Yes Settable: Yes

Description: The load order group of which the service is a member.

Path
Value: String Gettable: Yes Settable: Yes

Description: The path and filename of the executable for the service.

ServiceAccountName
Value: String Gettable: Yes Settable: Yes

Description: The name of the account used by the service at startup.

86804bapp02.indd 79086804bapp02.indd 790 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

791

 Core ADSI Reference B

ServiceAccountPath
Value: String Gettable: Yes Settable: Yes

Description: The AdsPath string of the startup account.

ServiceType
Value: Number Gettable: Yes Settable: Yes

Description: The process type in which the service runs. Valid types are:

ADS_SERVICE_KERNEL_DRIVER■ or 0x00000001

ADS_SERVICE_FILE_SYSTEM_DRIVER■ or 0x00000002

ADS_SERVICE_OWN_PROCESS■ or 0x00000010

ADS_SERVICE_SHARE_PROCESS■ or 0x00000020

StartType
Value: Number Gettable: Yes Settable: Yes

Description: The start type for the service. Valid types are:

ADSI Service Start Type■

ADS_SERVICE_BOOT_START
ADS_SERVICE_SYSTEM_START
ADS_SERVICE_AUTO_START
ADS_SERVICE_DEMAND_START
ADS_SERVICE_DISABLED

Win32 Service Start Type■

ADS_SERVICE_BOOT_START
ADS_SERVICE_SYSTEM_START
ADS_SERVICE_AUTO_START
ADS_SERVICE_DEMAND_START
ADS_SERVICE_DISABLED

StartupParameters
Value: String Gettable: Yes Settable: Yes

Description: Parameters passed to the service at startup.

Version
Value: String Gettable: Yes Settable: Yes

Description: The version of the service.

86804bapp02.indd 79186804bapp02.indd 791 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

792

 Part VI Appendixes

IADsServiceOperations
The IADsServiceOperations interface provides extended features for services. File service and
file-service operations are managed through IADsFileService and IADsFileService
Operations. You can access this interface through the Services object, as follows:

Set comp = GetObject(“WinNT://zeta,computer”)
Set serv = comp.GetObject(“Service”, “alerter”)

Property

Status
Value: Number Gettable: Yes Settable: No

Description: The current status of the service. Valid status codes are:

ADS_SERVICE_STOPPED■ or 0x00000001

ADS_SERVICE_START_PENDING■ or 0x00000002

ADS_SERVICE_STOP_PENDING■ or 0x00000003

ADS_SERVICE_RUNNING■ or 0x00000004

ADS_SERVICE_CONTINUE_PENDING■ or 0x00000005

ADS_SERVICE_PAUSE_PENDING■ or 0x00000006

ADS_SERVICE_PAUSED■ or 0x00000007

ADS_SERVICE_ERROR■ or 0x00000008

Methods

Start()
Returns: Error status

Description: Starts the service.

Stop()
Returns: Error status

Description: Stops the service.

Pause()
Returns: Error status

Description: Pauses the service.

86804bapp02.indd 79286804bapp02.indd 792 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

793

 Core ADSI Reference B

Continue()
Returns: Error status

Description: Resumes a paused service.

SetPassword(“newPassword”)
Returns: Error status

Description: Sets a new password to be used with the service startup account.

IADsSyntax
The IADsSyntax interface is designed for managing syntax in the schema. You obtain a pointer to
this interface when you bind to a property of a schema object, as follows:

Set obj = GetObject(“WinNT://zeta,computer”)
Set cl = GetObject(obj.Schema)
Set sc = GetObject(cl.Parent)
Set prop = sc.GetObject(“Property”,”Owner”)
Set synt = GetObject(sc.ADsPath & “/” & prop.Syntax)
WScript.Echo “Automation data type: “ & synt.OleAutoDataType

Property

OleAutoDataType
Value: Number Gettable: Yes Settable: Yes

Description: Indicates the virtual type constant for the property.

IADsTimestamp
The IADsTimestamp interface is used to access the Timestamp attribute in Novell NetWare
Directory Services (NDS).

EventID
Value: Number Gettable: Yes Settable: Yes

Description: An event identifier.

WholeSeconds
Value: Number Gettable: Yes Settable: Yes

Description: The number of whole seconds relative to 12:00 a.m., 1 January, 1970, Universal Time
Coordinate (UTC).

86804bapp02.indd 79386804bapp02.indd 793 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

794

 Part VI Appendixes

IADsTypedName
The IADsTypedName interface is used to access the Typed Name attribute in Novell NetWare
Directory Services (NDS).

Properties

Interval
Value: Number Gettable: Yes Settable: Yes

Description: The frequency of object references.

Level
Value: Number Gettable: Yes Settable: Yes

Description: The priority level of the object.

ObjectName
Value: String Gettable: Yes Settable: Yes

Description: The name of the object.

IADsUser
The IADsUser interface is used to manage user accounts. You can bind to local and domain
accounts. To bind to local accounts, use the following syntax:

Set user = GetObject(“WinNT://computerName/userName,user”)

To bind to domain accounts, use:

Set user = GetObject(“WinNT://domainName/userName,user”)

or use:

Set user = GetObject(“LDAP://CN=userName,CN=Users, DC=ChildDomain,DC=Do
main,DC=RootDomain”)

Properties

AccountDisabled
Value: Boolean Gettable: Yes Settable: Yes

Description: Boolean that indicates whether the account is disabled.

86804bapp02.indd 79486804bapp02.indd 794 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

795

 Core ADSI Reference B

AccountExpirationDate
Value: Date Gettable: Yes Settable: Yes

Description: The expiration date and time of the user account.

BadLoginAddress
Value: String Gettable: Yes Settable: No

Description: The address that last caused a bad login for the account.

BadLoginCount
Value: Number Gettable: Yes Settable: No

Description: The number of the bad login attempts since login count was last reset.

Department
Value: String Gettable: Yes Settable: Yes

Description: The organizational unit associated with the account.

Description
Value: String Gettable: Yes Settable: Yes

Description: The description of the account.

Division
Value: String Gettable: Yes Settable: Yes

Description: The division associated with the account.

EmailAddress
Value: String Gettable: Yes Settable: Yes

Description: The e-mail address of the account.

EmployeeID
Value: String Gettable: Yes Settable: Yes

Description: The employee ID number associated with the account.

FaxNumber
Value: String or Array Gettable: Yes Settable: Yes

Description: The list of fax numbers associated with the account.

86804bapp02.indd 79586804bapp02.indd 795 1/21/09 1:22:49 PM1/21/09 1:22:49 PM

796

 Part VI Appendixes

FirstName
Value: String Gettable: Yes Settable: Yes

Description: The first name of the user.

FullName
Value: String Gettable: Yes Settable: Yes

Description: The full name of the user.

GraceLoginsAllowed
Value: Number Gettable: Yes Settable: Yes

Description: The number of times the user can log on after the password has expired.

GraceLoginsRemaining
Value: Number Gettable: Yes Settable: Yes

Description: The number of grace logins remaining.

HomeDirectory
Value: String Gettable: Yes Settable: Yes

Description: The home directory of the user.

HomePage
Value: String Gettable: Yes Settable: Yes

Description: The URL of the user’s home page.

IsAccountLocked
Value: Boolean Gettable: Yes Settable: Yes

Description: A Boolean that indicates whether the account is locked.

Languages
Value: Array Gettable: Yes Settable: Yes

Description: An array of acceptable natural languages.

LastFailedLogin
Value: Date Gettable: Yes Settable: No

Description: The date and time of the last failed login.

86804bapp02.indd 79686804bapp02.indd 796 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

797

 Core ADSI Reference B

LastLogin
Value: Date Gettable: Yes Settable: No

Description: The date and time of the last login.

LastLogoff
Value: Date Gettable: Yes Settable: No

Description: The date and time of the last logoff.

LastName
Value: String Gettable: Yes Settable: Yes

Description: The last name of the user.

LoginHours
Value: Array Gettable: Yes Settable: Yes

Description: An array of Values that indicate the time periods during each day of the week that the
user can log on.

LoginScript
Value: String Gettable: Yes Settable: Yes

Description: The login script path for the account.

LoginWorkstations
Value: Array Gettable: Yes Settable: Yes

Description: An array of computer names or IP addresses from which the user can log on.

Manager
Value: String Gettable: Yes Settable: Yes

Description: The manager of the user.

MaxLogins
Value: Number Gettable: Yes Settable: Yes

Description: The maximum number of simultaneous login sessions allowed for the account.

MaxStorage
Value: Number Gettable: Yes Settable: Yes

Description: The maximum amount of disk space allowed for the user.

86804bapp02.indd 79786804bapp02.indd 797 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

798

 Part VI Appendixes

NamePrefix
Value: String Gettable: Yes Settable: Yes

Description: The name prefix of the user, such as Mr. or Mrs.

NameSuffix
Value: String Gettable: Yes Settable: Yes

Description: The name suffix of the user, such as Jr.

OfficeLocations
Value: Array or String Gettable: Yes Settable: Yes

Description: Office locations for the user.

OtherName
Value: String Gettable: Yes Settable: Yes

Description: An additional name of the user, such as a middle name.

PasswordExpirationDate
Value: Date Gettable: Yes Settable: Yes

Description: The date and time when the account password expires.

PasswordLastChanged
Value: Date Gettable: Yes Settable: No

Description: The date and time when the password was last changed.

PasswordMinimumLength
Value: Number Gettable: Yes Settable: Yes

Description: The minimum number of characters allowed in a password.

PasswordRequired
Value: Boolean Gettable: Yes Settable: Yes

Description: Boolean Value that indicates whether a password is required.

Picture
Value: Array Gettable: Yes Settable: Yes

Description: An octet string array of bytes that hold a picture of the user.

86804bapp02.indd 79886804bapp02.indd 798 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

799

 Core ADSI Reference B

PostalAddresses
Value: Array Gettable: Yes Settable: Yes

Description: An array that holds addresses associated with the account.

PostalCodes
Value: Array Gettable: Yes Settable: Yes

Description: An array of zip codes for the postal addresses.

Profile
Value: String Gettable: Yes Settable: Yes

Description: The path to the user’s profile.

RequireUniquePassword
Value: Boolean Gettable: Yes Settable: Yes

Description: Boolean Value that indicates whether a new password must be different from ones in
the password history.

SeeAlso
Value: Array Gettable: Yes Settable: Yes

Description: Array of AdsPath strings for other objects related to this user.

TelephoneHome
Value: Array or String Gettable: Yes Settable: Yes

Description: An array of home phone numbers for the user.

TelephoneMobile
Value: Array or String Gettable: Yes Settable: Yes

Description: An array of mobile phone numbers for the user.

TelephoneNumber
Value: Array or String Gettable: Yes Settable: Yes

Description: An array of work-related phone numbers for the user.

TelephonePager
Value: Array Gettable: Yes Settable: Yes

Description: An array of pager numbers for the user.

86804bapp02.indd 79986804bapp02.indd 799 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

800

 Part VI Appendixes

Title
Value: String Gettable: Yes Settable: Yes

Description: The user’s job title.

Methods

ChangePassword(“oldPassword”,”newPassword”)
Returns: Error status

Description: Changes the password for the account.

Groups()
Returns: Error status

Description: Obtains a collection of groups (IADsMembers) to which the user account belongs.

SetPassword(“password”)
Returns: Error status

Description: Sets the password for a new account.

IDirectoryObject
The IDirectoryObject interface provides non-Automation clients with direct access to direc-
tory service objects. Only non-Automation clients can call the methods of IDirectoryObject.
Automation clients cannot use IDirectoryObject and instead use the IADs interface.

IDirectorySearch
The IDirectorySearch interface allows non-Automation clients to query the directory. Only non-
Automation clients can call the methods of IDirectorySearch. Automation clients cannot use
IDirectorySearch and instead use the IADs interface.

ADSI Error Codes
As you’ve seen in this reference, many methods return an error code. The type of error code you see
depends on the ADSI provider that you are using. With WinNT, NDS, and NWCOMPAT, you nor-
mally see error codes in the form:

0x80005xxx E_ADS_* for standard errors■

0x00005xxx S_ADS_* for severe errors■

86804bapp02.indd 80086804bapp02.indd 800 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

801

 Core ADSI Reference B

The LDAP provider, on the other hand, maps all errors to Win32 errors. Because of this, you’ll nor-
mally see error codes in the form:

0x8007xxxx LDAP_* for LDAP errors■

0x8007xxxx ERROR_* for Win32 errors■

Table B-1 summarizes standard error codes.

TABLE B-1

Standard ADSI Error Codes
Error Code Error Message Description

0x00005011 S_ADS_ERRORSOCCURRED One or more errors occurred.

0x00005012 S_ADS_NOMORE_ROWS Search operation reached the last row.

0x00005013 S_ADS_NOMORE_COLUMNS Search operation reached the last column
for the current row.

0x80005000 E_ADS_BAD_PATHNAME An invalid ADSI pathname was passed.

0x80005001 E_ADS_INVALID_DOMAIN_OBJECT An unknown ADSI domain object was
requested.

0x80005002 E_ADS_INVALID_USER_OBJECT An unknown ADSI user object was
requested.

0x80005003 E_ADS_INVALID_COMPUTER_OBJECT An unknown ADSI computer object was
requested.

0x80005004 E_ADS_UNKNOWN_OBJECT An unknown ADSI object was requested.

0x80005005 E_ADS_PROPERTY_NOT_SET The specified ADSI property was not set.

0x80005006 E_ADS_PROPERTY_NOT_SUPPORTED The specified ADSI property is not
supported.

0x80005007 E_ADS_PROPERTY_INVALID The specified ADSI property is invalid

0x80005008 E_ADS_BAD_PARAMETER One or more input parameters are invalid.

0x80005009 E_ADS_OBJECT_UNBOUND The specified ADSI object is not bound to
the remote resource.

0x8000500A E_ADS_PROPERTY_NOT_MODIFIED The specified ADSI object has not been
modified.

0x8000500B E_ADS_PROPERTY_MODIFIED The specified ADSI object has been
modified.

continued

86804bapp02.indd 80186804bapp02.indd 801 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

802

 Part VI Appendixes

Error Code Error Message Description

0x8000500C E_ADS_CANT_CONVERT_DATATYPE The data type cannot be converted.

0x8000500D E_ADS_PROPERTY_NOT_FOUND The property cannot be found in the
cache.

0x8000500E E_ADS_OBJECT_EXISTS The ADSI object exists.

0x8000500F E_ADS_SCHEMA_VIOLATION The action violates the directory service
schema rules.

0x80005010 E_ADS_COLUMN_NOT_SET The specified column in the ADSI was
not set.

0x80005014 E_ADS_INVALID_FILTER The specified search filter is invalid.

Table B-2 summarizes LDAP error codes and provides the corresponding Win32 error codes.

TABLE B-2

LDAP Error Codes with Win32
ADSI Error Code LDAP Error Message Win32 Error Message Description

0 LDAP_SUCCESS NO_ERROR Operation succeeded.

0x80070005 LDAP_INSUFFICIENT_
RIGHTS

ERROR_ACCESS_DENIED User doesn’t have sufficient
access rights.

0x80070008 LDAP_NO_MEMORY ERROR_NOT_ENOUGH_
MEMORY

System is out of memory.

0x8007001f LDAP_OTHER ERROR_GEN_FAILURE Unknown error occurred.

0x800700ea LDAP_PARTIAL_RESULTS ERROR_MORE_DATA Partial results received.

0x800700ea LDAP_MORE_RESULTS_TO_
RETURN

ERROR_MORE_DATA More results are to be
returned.

0x800704c7 LDAP_USER_CANCELLED ERROR_CANCELLED User cancelled the
operation.

0x800704c9 LDAP_CONNECT_ERROR ERROR_CONNECTION_
REFUSED

Cannot establish the
connection.

0x8007052e LDAP_INVALID_
CREDENTIALS

ERROR_LOGON_FAILURE Logon failure

0x800705b4 LDAP_TIMEOUT ERROR_TIMEOUT The search timed out.

TABLE B-1 (continued)

86804bapp02.indd 80286804bapp02.indd 802 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

803

 Core ADSI Reference B

ADSI Error Code LDAP Error Message Win32 Error Message Description

0x80071392 LDAP_ALREADY_EXISTS ERROR_OBJECT_ALREADY_
EXISTS

The object already exists.

0x8007200a LDAP_NO_SUCH_
ATTRIBUTE

ERROR_DS_NO_ATTRIBUTE_
OR_VALUE

Requested attribute does
not exist.

0x8007200b LDAP_INVALID_SYNTAX ERROR_DS_INVALID_
ATTRIBUTE_SYNTAX

The syntax is invalid.

0x8007200c LDAP_UNDEFINED_TYPE ERROR_DS_ATTRIBUTE_
TYPE_UNDEFINED

Type is not defined.

0x8007200d LDAP_ATTRIBUTE_OR_
VALUE_EXISTS

ERROR_DS_ATTRIBUTE_OR_
VALUE_EXISTS

The attribute exists or value
has been assigned.

0x8007200e LDAP_BUSY ERROR_DS_BUSY The server is busy.

0x8007200f LDAP_UNAVAILABLE ERROR_DS_UNAVAILABLE The server is not available.

0x80072014 LDAP_OBJECT_CLASS_
VIOLATION

ERROR_DS_OBJ_CLASS_
VIOLATION

Object class violation

0x80072015 LDAP_NOT_ALLOWED_ON_
NONLEAF

ERROR_DS_CANT_ON_NON_
LEAF

Operation is not allowed
on a non-leaf object.

0x80072016 LDAP_NOT_ALLOWED_ON_
RDN

ERROR_DS_CANT_ON_RDN Operation is not allowed
on relative name.

0x80072017 LDAP_NO_OBJECT_CLASS_
MODS

ERROR_DS_CANT_MOD_OBJ_
CLASS

Cannot modify object class

0x80072020 LDAP_OPERATIONS_ERROR ERROR_DS_OPERATIONS_
ERROR

Operations error occurred.

0x80072021 LDAP_PROTOCOL_ERROR ERROR_DS_PROTOCOL_
ERROR

Protocol error occurred.

0x80072022 LDAP_TIMELIMIT_
EXCEEDED

ERROR_DS_TIMELIMIT_
EXCEEDED

Time limit exceeded.

0x80072023 LDAP_SIZELIMIT_
EXCEEDED

ERROR_DS_SIZELIMIT_
EXCEEDED

Size limit exceeded

0x80072024 LDAP_ADMIN_LIMIT_
EXCEEDED

ERROR_DS_ADMIN_LIMIT_
EXCEEDED

Administration limit on the
server exceeded.

0x80072025 LDAP_COMPARE_FALSE ERROR_DS_COMPARE_FALSE Compare yielded FALSE.

0x80072026 LDAP_COMPARE_TRUE ERROR_DS_COMPARE_TRUE Compare yielded TRUE.

0x80072027 LDAP_AUTH_METHOD_NOT_
SUPPORTED

ERROR_DS_AUTH_METHOD_
NOT_SUPPORTED

Authentication method is
not supported.

continued

86804bapp02.indd 80386804bapp02.indd 803 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

804

 Part VI Appendixes

ADSI Error Code LDAP Error Message Win32 Error Message Description

0x80072028 LDAP_STRONG_AUTH_
REQUIRED

ERROR_DS_STRONG_AUTH_
REQUIRED

Strong authentication is
required.

0x80072029 LDAP_INAPPROPRIATE_
AUTH

ERROR_DS_
INAPPROPRIATE_AUTH

Authentication is
inappropriate.

0x8007202a LDAP_AUTH_UNKNOWN ERROR_DS_AUTH_UNKNOWN Unknown authentication
error occurred.

0x8007202b LDAP_REFERRAL ERROR_DS_REFERRAL Referral error

0x8007202c LDAP_UNAVAILABLE_
CRIT_EXTENSION

ERROR_DS_UNAVAILABLE_
CRIT_EXTENSION

Critical extension is
unavailable.

0x8007202d LDAP_CONFIDENTIALITY_
REQUIRED

ERROR_DS_
CONFIDENTIALITY_
REQUIRED

Confidentiality is required.

0x8007202e LDAP_INAPPROPRIATE_
MATCHING

ERROR_DS_
INAPPROPRIATE_MATCHING

Inappropriate matching
error

0x8007202f LDAP_CONSTRAINT_
VIOLATION

ERROR_DS_CONSTRAINT_
VIOLATION

Constraint violation

0x80072030 LDAP_NO_SUCH_OBJECT ERROR_DS_NO_SUCH_
OBJECT

Object does not exist.

0x80072031 LDAP_ALIAS_PROBLEM ERROR_DS_ALIAS_PROBLEM Alias is invalid.

0x80072032 LDAP_INVALID_DN_
SYNTAX

ERROR_DS_INVALID_DN_
SYNTAX

Distinguished name has an
invalid syntax.

0x80072033 LDAP_IS_LEAF ERROR_DS_IS_LEAF Object is a leaf.

0x80072034 LDAP_ALIAS_DEREF_
PROBLEM

ERROR_DS_ALIAS_DEREF_
PROBLEM

Cannot remove reference
for the alias.

0x80072035 LDAP_UNWILLING_TO_
PERFORM

ERROR_DS_UNWILLING_TO_
PERFORM

Invalid operation

0x80072036 LDAP_LOOP_DETECT ERROR_DS_LOOP_DETECT Loop was detected.

0x80072037 LDAP_NAMING_VIOLATION ERROR_DS_NAMING_
VIOLATION

Naming violation

0x80072038 LDAP_RESULTS_TOO_
LARGE

ERROR_DS_OBJECT_
RESULTS_TOO_LARGE

Results returned are too
large.

0x80072039 LDAP_AFFECTS_
MULTIPLE_DSAS

ERROR_DS_AFFECTS_
MULTIPLE_DSAS

Multiple directory service
agents are affected.

TABLE B-2 (continued)

86804bapp02.indd 80486804bapp02.indd 804 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

805

 Core ADSI Reference B

ADSI Error Code LDAP Error Message Win32 Error Message Description

0x8007203a LDAP_SERVER_DOWN ERROR_DS_SERVER_DOWN Cannot contact the LDAP
server.

0x8007203b LDAP_LOCAL_ERROR ERROR_DS_LOCAL_ERROR Local error occurred.

0x8007203c LDAP_ENCODING_ERROR ERROR_DS_ENCODING_
ERROR

Encoding error occurred.

0x8007203d LDAP_DECODING_ERROR ERROR_DS_DECODING_
ERROR

Decoding error occurred.

0x8007203e LDAP_FILTER_ERROR ERROR_DS_FILTER_
UNKNOWN

Search filter is bad.

0x8007203f LDAP_PARAM_ERROR ERROR_DS_PARAM_ERROR A bad parameter was
passed.

0x80072040 LDAP_NOT_SUPPORTED ERROR_DS_NOT_SUPPORTED Feature is not supported.

0x80072041 LDAP_NO_RESULTS_
RETURNED

ERROR_DS_NO_RESULTS_
RETURNED

Results are not returned.

0x80072042 LDAP_CONTROL_NOT_
FOUND

ERROR_DS_CONTROL_NOT_
FOUND

Control was not found.

0x80072043 LDAP_CLIENT_LOOP ERROR_DS_CLIENT_LOOP Client loop was detected.

0x80072044 LDAP_REFERRAL_LIMIT_
EXCEEDED

ERROR_DS_REFERRAL_
LIMIT_EXCEEDED

Referral limit has been
exceeded.

Table B-3 summarizes LDAP error codes and provides the corresponding Win32 error codes for
ADSI 2.0.

TABLE B-3

LDAP Error Codes with Win32 for ADSI 2.0
ADSI Error Code LDAP Error Message Win32 Error Message Description

0 LDAP_SUCCESS NO_ERROR Operation succeeded.

0x80070002 LDAP_NO_SUCH_OBJECT ERROR_FILE_NOT_FOUND Object does not exist.

0x80070005 LDAP_AUTH_METHOD_NOT_
SUPPORTED

ERROR_ACCESS_DENIED Authentication method not
supported.

0x80070005 LDAP_STRONG_AUTH_
REQUIRED

ERROR_ACCESS_DENIED Requires strong
authentication

continued

86804bapp02.indd 80586804bapp02.indd 805 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

806

 Part VI Appendixes

ADSI Error Code LDAP Error Message Win32 Error Message Description

0x80070005 LDAP_INAPPROPRIATE_
AUTH

ERROR_ACCESS_DENIED Inappropriate
authentication

0x80070005 LDAP_INSUFFICIENT_
RIGHTS

ERROR_ACCESS_DENIED User has insufficient access
rights.

0x80070005 LDAP_AUTH_UNKNOWN ERROR_ACCESS_DENIED Unknown authentication
error occurred.

0x80070008 LDAP_NO_MEMORY ERROR_NOT_ENOUGH_
MEMORY

System is out of memory.

0x8007001F LDAP_OTHER ERROR_GEN_FAILURE Unknown error occurred.

0x8007001F LDAP_LOCAL_ERROR ERROR_GEN_FAILURE Local error occurred.

0x80070037 LDAP_UNAVAILABLE ERROR_DEV_NOT_EXIST Server is not available.

0x8007003A LDAP_SERVER_DOWN ERROR_BAD_NET_RESP Cannot contact the LDAP
server.

0x8007003B LDAP_ENCODING_ERROR ERROR_UNEXP_NET_ERR Encoding error occurred.

0x8007003B LDAP_DECODING_ERROR ERROR_UNEXP_NET_ERR Decoding error occurred.

0x80070044 LDAP_ADMIN_LIMIT_
EXCEEDED

ERROR_TOO_MANY_NAMES Exceeded administration
limit on the server.

0x80070056 LDAP_INVALID_
CREDENTIALS

ERROR_INVALID_PASSWORD Invalid credential

0x80070057 LDAP_INVALID_DN_
SYNTAX

ERROR_INVALID_
PARAMETER

Distinguished name has an
invalid syntax.

0x80070057 LDAP_NAMING_VIOLATION ERROR_INVALID_
PARAMETER

Naming violation

0x80070057 LDAP_OBJECT_CLASS_
VIOLATION

ERROR_INVALID_
PARAMETER

Object class violation

0x80070057 LDAP_FILTER_ERROR ERROR_INVALID_
PARAMETER

Search filter is bad.

0x80070057 LDAP_PARAM_ERROR ERROR_INVALID_
PARAMETER

Bad parameter was passed
to a routine.

0X8007006E LDAP_OPERATIONS_ERROR ERROR_OPEN_FAILED Operation error occurred.

0x8007007A LDAP_RESULTS_TOO_
LARGE

ERROR_INSUFFICIENT_
BUFFER

Results set is too large.

TABLE B-3 (continued)

86804bapp02.indd 80686804bapp02.indd 806 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

807

 Core ADSI Reference B

ADSI Error Code LDAP Error Message Win32 Error Message Description

0x8007007B LDAP_INVALID_SYNTAX ERROR_INVALID_NAME Invalid syntax

0x8007007C LDAP_PROTOCOL_ERROR ERROR_INVALID_LEVEL Protocol error

0x800700B7 LDAP_ALREADY_EXISTS ERROR_ALREADY_EXISTS Object already exists.

0x800700EA LDAP_PARTIAL_RESULTS ERROR_MORE_DATA Partial results and referrals
received.

0x800700EA LDAP_BUSY ERROR_BUSY Server is busy.

0x800703EB LDAP_UNWILLING_TO_
PERFORM

ERROR_CAN_NOT_COMPLETE Server cannot perform
operation.

0x8007041D LDAP_TIMEOUT ERROR_SERVICE_REQUEST_
TIMEOUT

Search timed out.

0x800704B8 LDAP_COMPARE_FALSE ERROR_EXTENDED_ERROR Compare yielded FALSE.

0x800704B8 LDAP_COMPARE_TRUE ERROR_EXTENDED_ERROR Compare yielded TRUE.

0x800704B8 LDAP_REFERRAL ERROR_EXTENDED_ERROR Cannot resolve referral.

0x800704B8 LDAP_UNAVAILABLE_
CRIT_EXTENSION

ERROR_EXTENDED_ERROR Critical extension is
unavailable.

0x800704B8 LDAP_NO_SUCH_
ATTRIBUTE

ERROR_EXTENDED_ERROR Requested attribute does
not exist.

0x800704B8 LDAP_UNDEFINED_TYPE ERROR_EXTENDED_ERROR Type is not defined.

0x800704B8 LDAP_INAPPROPRIATE_
MATCHING

ERROR_EXTENDED_ERROR There was an inappropriate
matching.

0x800704B8 LDAP_CONSTRAINT_
VIOLATION

ERROR_EXTENDED_ERROR There was a constrain
violation.

0x800704B8 LDAP_ATTRIBUTE_OR_
VALUE_EXISTS

ERROR_EXTENDED_ERROR The attribute exists or the
value has been assigned.

0x800704B8 LDAP_ALIAS_PROBLEM ERROR_EXTENDED_ERROR Alias is invalid.

0x800704B8 LDAP_IS_LEAF ERROR_EXTENDED_ERROR Object is a leaf.

0x800704B8 LDAP_ALIAS_DEREF_
PROBLEM

ERROR_EXTENDED_ERROR Cannot dereference the
alias.

0x800704B8 LDAP_LOOP_DETECT ERROR_EXTENDED_ERROR Loop was detected.

0x800704B8 LDAP_NOT_ALLOWED_ON_
NONLEAF

ERROR_EXTENDED_ERROR Operation is not allowed
on a non-leaf object.

continued

86804bapp02.indd 80786804bapp02.indd 807 1/21/09 1:22:50 PM1/21/09 1:22:50 PM

808

 Part VI Appendixes

ADSI Error Code LDAP Error Message Win32 Error Message Description

0x800704B8 LDAP_NOT_ALLOWED_ON_
RDN

ERROR_EXTENDED_ERROR Operation is not allowed
on RDN.

0x800704B8 LDAP_NO_OBJECT_CLASS_
MODS

ERROR_EXTENDED_ERROR Cannot modify object class.

0x800704B8 LDAP_AFFECTS_
MULTIPLE_DSAS

ERROR_EXTENDED_ERROR Multiple directory service
agents are affected.

0x800704C7 LDAP_USER_CANCELLED ERROR_CANCELLED User has canceled the
operation.

0x80070718 LDAP_TIMELIMIT_
EXCEEDED

ERROR_NOT_ENOUGH_QUOTA Exceeded time limit.

0x80070718 LDAP_SIZELIMIT_
EXCEEDED

ERROR_NOT_ENOUGH_QUOTA Exceeded size limit.

TABLE B-3 (continued)

86804bapp02.indd 80886804bapp02.indd 808 1/21/09 1:22:51 PM1/21/09 1:22:51 PM

809

Essential Command-Line
Utilities for Use with WSH

Command-line utilities provide some of the most powerful and useful features you’ll find
anywhere. Using command-line utilities, you often can replace dozens of lines of code with
a few simple statements. As you explore Windows you’ll find that hundreds of utilities are

available and all of them can be run within your Windows scripts.

In this appendix, we’ve selected the top utilities that you may want to use. You’ll find a quick refer-
ence for commands as well as detailed entries on command usage and syntax. All examples show
command-line and Windows script syntax.

ARP
ARP -a [inet_addr] [-N if_addr]
ARP -d inet_addr [if_addr]
ARP -s inet_addr eth_addr [if_addr]

eth_addr Sets the physical MAC address in hexadecimal format, such as HH-HH-HH-HH-HH-HH
where H is a hexadecimal value from 0 to F. Each network adapter card has a built-in
MAC address.

if_addr Sets the IP address of the interface whose address translation table should be modi-
fied. If you don’t specify an address, the first available interface is used.

inet_addr Sets an Internet address.

-a Displays current ARP entries.

-d Deletes the specified entry.

-g Same as -a.

-N if_addr Displays the ARP entries for the network interface specified by if_addr.

-s Adds the host and associates the Internet address inet_addr with the physical
address eth_addr. The physical address is given as six hexadecimal bytes separated
by hyphens. The entry is permanent.

86804bapp03.indd 80986804bapp03.indd 809 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

810

 Part VI Appendixes

Details:
ARP displays and modifies the IP-to-physical address translation tables used by the address resolu-
tion protocol (ARP). Address Resolution Protocol (ARP) cache is maintained by Windows 2000
workstations and servers. Use the ARP command to view and manage this cache.

Use IPCONFIG to get a list of MAC addresses for a system’s network adapter cards. If you PING an IP
address on the LAN, the address is automatically added to the ARP cache.

Command Shell

arp –d 192.168.15.25

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“arp –d 192.168.15.25”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“arp –d 192.168.15.25”,0,”True”)

ASSOC
ASSOC [.ext[=[fileType]]]

.ext Specifies the file extension to associate the file type with.

fileType Specifies the file type to associate with the file extension.

Details:
ASSOC displays and modifies file associations. If you enter ASSOC by itself, it displays all file associa-
tions. If you enter ASSOC followed by a file extension, it displays the file association for that extension.

Command Shell

assoc .xml=xmfile

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“assoc .xml=xmfile”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“assoc .xml=xmfile”,0,”True”)

86804bapp03.indd 81086804bapp03.indd 810 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

811

 Essential Command-Line Utilities for Use with WSH C

AT
AT [\\computername] [[id] [/DELETE] | /DELETE [/YES]]
AT [\\computername] time [/INTERACTIVE]
AT [/EVERY:date[,...] | /NEXT:date[,...]] “command”

“command” Sets the command or script to run at the designated time.

/delete Cancels a scheduled task. If id is omitted, all scheduled commands on the
system are canceled.

/every:date[,...] Runs the command on a recurring basis on each weekday or day of the
month specified. Valid values are M, T, W, Th, F, S, Su, or 1 through 31.
Separate consecutive days with dashes. Separate non-consecutive days
with commas.

/interactive Allows the job to interact with the desktop.

/next:date[,...] Runs the task on a specific weekday or day of month. This is a non-recur-
ring task.

/yes Forces a confirmation prompt before deleting scheduled tasks.

\\computername Sets a remote computer on which the task should run. If omitted, tasks are
scheduled on the local computer.

id The identification number assigned to a scheduled task.

time Sets the time when command is to run in the format HH:MM. Time is set
on a 24-hour clock (00:00 – 23:59).

Details:
AT schedules commands and programs to execute at a specific date and time. Tasks can be sched-
uled to run on a one-time or recurring basis. To list currently scheduled tasks, enter the AT com-
mand on a line by itself. See also Schtasks.

Command Shell

at 00:15 /every:M “backup.vbs”
at 01:00 /next:Su “rm c:\temp*.tmp”
at 1 /delete

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“at 00:15 /every:M ‘backup.vbs’”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“at 00:15 /every:M ‘backup.vbs’”,0,”True”)

86804bapp03.indd 81186804bapp03.indd 811 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

812

 Part VI Appendixes

ATTRIB
ATTRIB [+R | -R] [+A | -A] [+S | -S] [+H | -H] [+I | -I]
 [drive:][path][filename] [/S [/D] [/L]]

[drive:] Sets the drive to work with.

[path]filename Sets the file path to work with.

 + Sets an attribute.

- Clears an attribute.

R Specifies that you want to set or clear the Read-only file attribute.

A Specifies that you want to set or clear the Archive file attribute.

S Specifies that you want to set or clear the System file attribute.

H Specifies that you want to set or clear the Hidden file attribute.

I Specifies that you want to set or clear the Indexed file attribute.

/D Processes folders as well as files.

/L Works on the attributes of the Symbolic Link versus the target of the
Symbolic Link.

/S Processes matching files in the current folder and subfolders.

Details:
ATTRIB displays and modifies file attributes. If you enter ATTRIB with a file path and no other
parameters, you can examine file attributes of files. You can use ATTRIB to specify whether files and
folders should be marked as read-only, hidden, and system. You can also specify whether files and
folders should be indexed.

Command Shell

attrib +R /S /D c:\data\archive

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“attrib +R /S /D c:\data\archive”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“attrib +R /S /D c:\\data\\archive”,0,”True”)

86804bapp03.indd 81286804bapp03.indd 812 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

813

 Essential Command-Line Utilities for Use with WSH C

CACLS
CACLS filepath [/T] [/M] [/L] [/S[:SDDL]] [/E] [/C] [/G user:perm]
 [/R user [...]] [/P user:perm [...]] [/D user [...]]

filepath Sets the name of the file or filepath to work with.

user Specifies the name of a user or group to work with, such as BUILTIN\Users,
BUILTIN\Administrators, NT AUTHORITY\System, or NT AUTHORITY\
Terminal Server User. For domains, you can specify a domain user account using
the format DOMAIN\Username, such as CPANDL\WilliamS for the WilliamS
account in the Cpandl.com domain.

perm Sets the permission to assign as R for Read, W for Write, C for Change, or F for
Full Control.

/C Continues processing even when you receive access denied errors.

/D user Denies specified user access.

/E Edits the ACL instead of replacing it.

/G user:perm Grant specified user access rights.

/L Works on the Symbolic Link itself instead of the link target.

/M Changes ACLs of volumes mounted to a directory.

/P user:perm Replaces specified user’s access rights.

/R user Revokes specified user’s access rights (only valid with /E).

/S Displays the SDDL string.

/S:SDDL Replaces the ACLs with those specified in the SDDL string. Not valid with /E,
/G, /R, /P, or /D.

/T Changes access control lists (ACLs) of specified files in the current directory and
all subdirectories.

Details:
CACLS displays and modifies the access control lists (ACLs) of files or folders. If you use CACLS
without parameters, you can view the ACL on the specified file or directory. When you display
ACLs, CACLS uses the following abbreviations:

CI for Container Inherit, which means the ACE will be inherited by directories.■

ID for Inherited, which means the ACE was inherited from the parent directory’s ACL.■

IO for Inherit Only, which means the ACE does not apply to the current file/directory.■

OI for Object Inherit, which means the ACE will be inherited by files.■

86804bapp03.indd 81386804bapp03.indd 813 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

814

 Part VI Appendixes

Command Shell

cacls ‘%CommonProgramFiles%\Microsoft Shared\VGX\vgx.dll’ /P BUILTIN\
Users:R BUILTIN\Administrators:F ‘NT AUTHORITY\SYSTEM:F’ ‘NT AUTHORITY\
TERMINAL SERVER USER:C’

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“cacls ‘%CommonProgramFiles%\Microsoft Shared\VGX\vgx.dll’
/P BUILTIN\Users:R BUILTIN\Administrators:F ‘NT AUTHORITY\SYSTEM:F’ ‘NT
AUTHORITY\TERMINAL SERVER USER:C’”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“cacls ‘%CommonProgramFiles%\\Microsoft Shared\\VGX\\vgx.dll’ /P
BUILTIN\\Users:R BUILTIN\\Administrators:F ‘NT AUTHORITY\\SYSTEM:F’ ‘NT
AUTHORITY\\TERMINAL SERVER USER:C’”,0,”True”)

CHKDSK
Checks a disk for errors and displays a report.

CHKDSK [drive:][[path]filename][/F][/V][/R][/X][/I][/C][/L[:size]]

[drive:] Sets the drive to check.

[path]filename Sets the files and directories to check for fragmentation (FAT only).

/C Skips checking cycles in folder structure.

/F Fixes errors on the disk.

/I On NTFS, performs basic index checks instead of extended checks.

/L:size On NTFS, changes size of the check disk log (in KB). If size is not specified,
the current size is displayed.

/R Finds bad sectors and recovers readable information.

/V Lists each file as it is checked.

/X Forces the drive to dismount if necessary before performing CHKDSK. This
option also fixes errors.

Details:
CHKDSK checks a disk for errors and displays a report.

Command Shell

chkdsk /F /R c:
chkdsk c: d:

86804bapp03.indd 81486804bapp03.indd 814 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

815

 Essential Command-Line Utilities for Use with WSH C

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“chkdsk /F /R c:”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“chkdsk /F /R c:”,0,”True”)

COMPACT
COMPACT [/C | /U] [/S[:dir]] [/A] [/I] [/F] [/Q] [filename [...]]

filename Sets the files or directories to compress.

/A Displays or compresses files with the hidden or system attributes. These files are
omitted by default.

/C Compresses the specified files, directories, and/or drives. Directories will be marked
so that files added afterward will be compressed.

/F Forces compression or decompression on all specified files and directories, even those
which are already flagged as compressed. Otherwise, flagged files and directories are
skipped by default.

/I Ignores errors. By default, COMPACT stops when an error is encountered.

/Q Sets quiet mode so only essential information is reported.

/S Includes subdirectories.

/U Decompresses the specified files, directories, and/or drives. Directories will be
marked so that files added afterward will not be compressed.

Details:
COMPACT displays or alters the compression of files on NTFS partitions. If you use COMPACT without
parameters, you can view the compression state of the current directory and any files it contains.
You can use multiple filenames and wildcards.

Command Shell

compact /I /C c:\working\scripts
compact /F /U d:\

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“compact /I /C c:\working\scripts”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“compact /I /C c:\\working\\scripts”,0,”True”)

86804bapp03.indd 81586804bapp03.indd 815 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

816

 Part VI Appendixes

CONVERT
CONVERT drive: /FS:NTFS [/V] [/X]
[/CVTAREA:filename] [/NOSECURITY]

drive: Sets the drive to convert to NTFS.

/FS:NTFS Switch needed to convert the volume to NTFS.

/V Run-in verbose mode.

/X Forces the volume to dismount if necessary.

/CVTAREA:filename Sets the name of a file in the root directory to use as a placeholder for
NTFS system files.

/NOSECURITY Removes security settings from converted files.

Details:
CONVERT converts FAT volumes to NTFS. If you try to convert the current drive or any drive being
used by the operating system, the command prompts you to convert the drive on reboot. If you
accept, a flag is set and the drive is converted the next time you reboot the system. If you decline,
the operation is canceled.

Command Shell

convert d: /FS:NTFS
convert d: /FS:NTFS /V

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“convert d: /FS:NTFS”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“convert d: /FS:NTFS”,0,”True”)

DATE
DATE [/T | mm-dd-yy]

mm-dd-yy Sets the date in MM-DD-YYYY format. mm can be 1–12. dd can be 1–31. yy can be
80–99 or 1980–2079.

/T Displays current date.

Details:
DATE displays or sets the date. Type in date and press Enter to set the date interactively.

86804bapp03.indd 81686804bapp03.indd 816 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

817

 Essential Command-Line Utilities for Use with WSH C

Command Shell

date
date 04-11-2002

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“date 04-11-2002”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“date 04-11-2002”,0,”True”)

DRIVERQUERY
DRIVERQUERY [/S system [/U username [/P [password]]]]
 [/FO format] [/NH] [/SI] [/V]

/S system Sets the remote system to connect to (if any).

/U [domain\]user Sets the alternate user context under which the command should execute.
With domain accounts, you can specify the domain user account to use in
Domain\User format, such as CPANDL\WilliamS for the WilliamS account
in the Cpandl.com domain.

/P [password] Sets the password for the alternate user context. If you don’t provide a pass-
word when you specify a user context, you are prompted for a password.

/FO format Specifies the type of output to display. Valid formats are TABLE, LIST,
and CSV.

/NH Turns off display of the column header row used with TABLE and CSV
formats.

/SI Displays information about signed drivers.

/V Displays verbose output. Not valid with /SI.

Details:
By default, DRIVERQUERY displays a list of installed device drivers by module name, display name,
driver type, and date linked. When you are working with signed drivers, DRIVERQUERY displays a
list of devices with installed drivers by device name, inf name, signing status, and manufacturer.
The standard output format is TABLE, but you can also use LIST for a formatted list of CSV for a
list with comma-separated values.

Command Shell

driverquery
driverquery /s server87 /u cpandl\williams /si

86804bapp03.indd 81786804bapp03.indd 817 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

818

 Part VI Appendixes

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“driverquery /s server87 /u cpandl\williams /si”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“driverquery /s server87 /u cpandl\williams /si”,0,”True”)

EXPAND
EXPAND [-r] source destination
EXPAND -r source [destination]
EXPAND -D source.cab [-f:files]
EXPAND source.cab –F:files destination

-D Displays list of source files.

-F:files List of files to expand from a .cab file.

-r Rename expanded files.

source Source files to be expanded.

destination Destination filepath.

Details:
EXPAND decompresses files compressed with the Microsoft distribution format or files stored in
.CAB files. You can use wildcards when specifying the source files. Also, if you don’t specify a desti-
nation path, the current directory is used.

Command Shell

expand –r setup.ex_
expand *.ex_ d:\working\distro\

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“expand –r setup.ex_”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“expand –r setup.ex_”,0,”True”)

86804bapp03.indd 81886804bapp03.indd 818 1/21/09 1:23:13 PM1/21/09 1:23:13 PM

819

 Essential Command-Line Utilities for Use with WSH C

FC
FC [/A] [/C] [/L] [/LBn] [/N] [/OFFLINE] [/T] [/U] [/W] [/nnnn]
 [drive1:][path1]filename1 [drive2:][path2]filename2
FC /B [drive1:][path1]filename1 [drive2:][path2]filename2

[drive1:][path1]
filename1

Source file for comparison.

[drive2:][path2]
filename2

Target file to use in comparison.

/nnnn When attempting to resync ASCII text files, this specifies the number of
lines that must match before the command considers an area to be identi-
cal. By default, two lines must match before the command considers an
area to be identical.

/A Displays only the first and last lines for each set of differences.

/B Performs a binary comparison.

/C Disregards whether letters in the comparison are upper- or lowercase.

/L Compares files as ASCII text.

/LBn Sets the maximum consecutive mismatches before FC cancels the
operation.

/N Displays the line numbers on an ASCII comparison.

/OFFLINE Does not skip files with the offline attribute set.

/T FC can compare tabs within files to spacing to detect differences. By
default, FC converts tabs to spaces for comparisons. To turn this feature off,
use this switch.

/U Compare files as Unicode rather than ASCII.

/W Ignores white space (tabs and spaces) for comparison. Multiple spaces and
tabs are converted to a single space for the comparison.

Details:
FC compares two files and displays the differences between them. In binary mode, FC displays all
differences. In ASCII/Unicode mode, FC looks for differences area by area. The size of these areas
are set with /nnnn, /0050 for example.

Command Shell

fc /A /LB50 /0004 attitude.txt changes.txt
fc /B cr.bin cr2.bin

86804bapp03.indd 81986804bapp03.indd 819 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

820

 Part VI Appendixes

Windows Script

compare.bat

fc /A /LB50 /0004 attitude.txt changes.txt >> log.txt
fc /B cr.bin cr2.bin >> log.txt

compare.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“compare.bat”,0,”True”)

compare.js

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“compare.bat”,0,”True”)

FORMAT
FORMAT drive: [/FS:file-system] [/V:label] [/Q | /P:passes]
 [/A:size] [/C] [/X]
FORMAT drive: [/V:label] [/Q | /P:passes] [/F:size]
FORMAT drive: [/V:label] [/Q | /P:passes] [/T:tracks /N:sectors]
FORMAT drive: [/V:label] [/Q | /P:passes]
FORMAT drive: [/Q]

drive: Sets the letter of the drive to format.

/A:size Overrides the default allocation unit size. NTFS supports 512, 1024, 2048,
4096, 8192, 16K, 32K, and 64K. FAT supports 8192, 16K, 32K, 64K, 128K,
and 256K. NTFS compression is not supported for allocation unit sizes
above 4096K.

/C Turn on file compression.

/F:size Sets the size of the floppy disk to format. Common sizes are 360 or 1.2 for
5.25-inch disks, and 1.44 or 2.88 for 3.5-inch disks.

/FS:file-system Sets the type of the file system as FAT or NTFS.

/N:sectors Sets the number of sectors per track. Used with /T and cannot be used
with /F.

/P:passes Sets the number of passes for zeroing out sectors.

/Q Performs a quick format.

/T:tracks Sets the number of tracks per disk side.

/V:label Sets the volume label.

/X Forces the drive to dismount before formatting if necessary.

86804bapp03.indd 82086804bapp03.indd 820 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

821

 Essential Command-Line Utilities for Use with WSH C

Details:
FORMAT formats a floppy disk or hard drive for use with Windows 2000.

Command Shell

format e: /FS:NTFS /C /V:Secondary
format a: /Q

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“format e: /FS:NTFS /C /V:Secondary”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“format e: /FS:NTFS /C /V:Secondary”,0,”True”)

FTP
FTP [-v] [-d] [-i] [-n] [-g] [-s:filename] [-a] [-A] [-x:sendbuffer]
 [-r:recvbuffer] [-b:asynccount] [-w:windowsize] [host]

host Sets the hostname or IP address of the remote host to which you want to
connect.

-a Uses any available local interface to bind data connection. Can sometimes
resolve connectivity problems.

-A Specifies that you want to log on anonymously.

-b:asynccount Sets the async count, overriding the default count of 3.

-d Sets debug mode, which displays all messages sent between the client and the
server.

-g Allows you to use wildcards when setting file and path names.

-i Turns off interactive mode when you are transferring multiple files. Used to
perform unattended transfers.

-n Turns off auto-login during the initial connection.

-r:recvbuffer Sets the receive buffer size, overriding the default buffer size of 8192 bytes.

-s:filename Designates a text file containing FTP commands; the commands will automati-
cally run after FTP starts.

-v Turns off display of remote server responses.

-w:buffersize Sets a new transfer buffer size, overriding the default buffer size of 4096 bytes.

-x:sendbuffer Sets the send buffer size, overriding the default buffer size of 8192 bytes.

86804bapp03.indd 82186804bapp03.indd 821 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

822

 Part VI Appendixes

Details:
FTP transfers files using FTP (File Transfer Protocol). When you transfer files in scripts using FTP,
be sure to use a transfer file which can contain any available FTP commands and to turn off interac-
tive prompts for transferring multiple files. The following FTP commands are available once you
start the utility:

! Exits to the command shell.

? Gets command help.

append Starts a download in the current directory and appends to an existing file (if avail-
able) rather than overwriting the file.

ascii Sets transfers mode to ASCII text. Use this with text file transfers to preserve end-
of-line designators.

bell Turns beep on/off for confirmation of command completion. Default setting is off.

binary Sets transfer mode to binary. Use with executables and other binary file types.

bye Exits to the command shell.

cd Changes the remote working directory.

close Closes FTP session, but doesn’t exit the FTP utility.

debug Turns debug mode on/off. Default setting is off.

delete Deletes a file.

dir Lists contents of directory on the system you are connected to for transfers.

disconnect Closes the connection to the remote system.

get Downloads a file from the remote system.

glob Allows you to use wildcards when naming files and directories.

hash Turns hash mark printing on/off. If this property is set, the # character prints each
time the buffer is transferred, providing a visual cue for progress.

lcd Changes the working directory on the local system, such as lcd c:\winnt\
system32.

literal Sends arbitrary FTP command.

ls Lists contents of remote directory. Because the command is designed after the
UNIX ls, all normal ls flags are available, such as ls –l or ls –lsa.

mdelete Deletes multiple files on the remote system.

mdir Lists contents of multiple remote directories.

mget Downloads multiple files from the remote system.

mkdir Creates a directory on the remote system.

mls Lists contents of multiple remote directories.

mput Sends multiple files to the remote system.

86804bapp03.indd 82286804bapp03.indd 822 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

823

 Essential Command-Line Utilities for Use with WSH C

open Opens a connection to a remote system specified following the command, such as
open idg.com.

prompt Turns prompt mode on/off for mget, mput, and mdelete. Default mode is off.

put Sends a file to the remote system.

pwd Prints working directory on remote machine.

quit Quits FTP sessions and exits to the command shell.

quote Sends arbitrary FTP command.

recv Downloads a file from the remote system.

remotehelp Gets help from remote server.

rename Renames a file on the remote system.

rmdir Removes a directory on the remote system.

send Sends a file to the remote system.

status Gets the current status.

trace Traces the IP route of the file transfer.

type Sets the transfer type and toggles between ASCII and binary.

user Starts logon procedure to change users while connected to a remote host.

verbose Turns verbose mode on/off. Default is off.

Command Shell

ftp –i –g –s:tranf.txt idg.com
ftp –i idg.com

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“ftp –i –g –s:tranf.txt idg.com”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“ftp –i –g –s:tranf.txt idg.com”,0,”True”)

FTYPE
FTYPE [fileType[=[command]]]

fileType Sets the file type to examine or change.

command Sets the launch command to use when opening files of this type.

86804bapp03.indd 82386804bapp03.indd 823 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

824

 Part VI Appendixes

Details:
FTYPE displays or modifies file types used in file extension associations. To display the current file
types, enter FTYPE without any parameters. To delete an existing file type, set its launch command
to an empty string, such as:

ftype perl=

If passing arguments, %0 or %1 is substituted with the filename being launched through the associa-
tion. %* gets all the parameters and %2 gets the first parameter, %3 the second, and so on. %~n gets
all the remaining parameters starting with the nth parameter, where n may be between 2 and 9.

Command Shell

ASSOC .pl=Perl
FTYPE Perl=c:\winnt\system32\perl.exe %1 %*

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“ASSOC .pl=Perl”,0,”True”)
ret = ws.Run(“FTYPE Perl=c:\winnt\system32\perl.exe %1 %*”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“ASSOC .pl=Perl”,0,”True”)
ws.Run(“FTYPE Perl=c:\\winnt\\system32\\perl.exe %1 %*”,0,”True”)

IPCONFIG
ipconfig [/allcomparments]
ipconfig [/all | /release [adapter] | /renew [adapter]
 | /release6 [adapter] | /renew6 [adapter]
 | /flushdns | /registerdns | /displaydns
 | /showclassid adapter
 | /setclassid adapter [classidtoset]
]

adapter Name of the adapter or pattern with * to match any character and ? to
match one character.

classidtoset Sets the DHCP class ID.

/all Displays full configuration information.

/allcompartments Displays information for all DNS compartments.

/displaydns Displays the contents of the DNS resolve cache.

/flushdns Flushes the DNS resolve cache.

86804bapp03.indd 82486804bapp03.indd 824 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

825

 Essential Command-Line Utilities for Use with WSH C

/registerdns Refreshes all DHCP leases and re-registers DNS names.

/release Releases the IPv4 address for the specified adapter.

/release6 Releases the IPv6 address for the specified adapter.

/renew Renews the IPv4 address for the specified adapter.

/renew6 Renews the IPv6 address for the specified adapter.

/setclassid Modifies the DHCP class ID.

/showclassid Shows all the DHCP class IDs for the adapter.

Details:
IPCONFIG displays TCP/IP configuration values. The /release and /renew switches are useful
when your network uses DHCP. /renew forces the computer to request new address information
from the DHCP server. /release forces the computer to release the dynamic IP address assigned
by the DHCP server.

Command Shell

ipconfig /renew
ipconfig /release

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“ipconfig /renew”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“ipconfig /renew”,0,”True”)

NBTSTAT
NBTSTAT [-a remotename] [-A IP_address] [-c] [-n]
 [-r] [-R] [-RR] [-s] [-S] [interval]]

interval Redisplays selected statistics, pausing interval seconds between each display.
Press Ctrl+C to stop redisplaying statistics.

-A IP_address Displays a remote computer’s statistics by IP address.

-a remotename Displays a remote computer’s statistics by NetBIOS name.

-c Displays the local computer’s name cache including IP addresses.

-n Displays local NetBIOS names.

-RR Sends release to WINS and then starts WINS refresh.

86804bapp03.indd 82586804bapp03.indd 825 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

826

 Part VI Appendixes

-R Reloads LMHOSTS after deleting the names from the NetBIOS name cache.

-r Displays statistics for names resolved by broadcast and via WINS.

-S Displays all client and server sessions by IP addresses.

-s Displays all client and server sessions, converting destination IP addresses to
hostnames via the local HOSTS file.

Details:
NBTSTAT displays status of NetBIOS over TCP/IP. NBTSTAT is useful for obtaining local and remote
system NetBIOS information.

Command Shell

nbtstat –a mars1
nbtstat –A 192.152.16.8
nbtstat -c

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“nbtstat –A 192.152.16.8”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“nbtstat –A 192.152.16.8”,0,”True”)

NET ACCOUNTS
NET ACCOUNTS [/FORCELOGOFF:{minutes | NO}] [/MINPWLEN:length]
 [/MAXPWAGE:{days | UNLIMITED}] [/MINPWAGE:days]
 [/UNIQUEPW:number] [/DOMAIN]

/DOMAIN Specifies that the operation should be performed on the primary domain
controller of the current domain. Otherwise, the operation is performed
on the local computer. (Applies only to Windows 2000 workstations that
are members of an NT domain. By default, Windows 2000 servers per-
form operations on the primary domain controller.)

/FORCELOGOFF:
{minutes | NO}

Sets the time, in minutes, before a user is forced to log off when the
account expires or valid logon hours expire. Users receive a warning prior
to being logged off. By default, the option is set to NO, which prevents
forced log off.

/MAXPWAGE:
{days | UNLIMITED}

Sets the number of days that a password is valid. The default is 90 days
and the range is 1–49,710 days.

86804bapp03.indd 82686804bapp03.indd 826 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

827

 Essential Command-Line Utilities for Use with WSH C

/MINPWAGE:days Sets the minimum number of days before a user can change a password.
The default is 0, which sets no minimum time. The range is 0–49710.

/MINPWLEN:length Sets the minimum number of characters for a password. The default is 6
characters and the range is 0–14.

/UNIQUEPW:number Specifies the number of unique passwords a user must use before being
able to reuse a password. The default is 5 and the range is 0–24.

Details:
NET ACCOUNTS manages user account and password policies. Use NET ACCOUNTS to manage user
and password policies. To manage the accounts themselves, use NET USER, NET GROUP, or NET
LOCALGROUP.

Command Shell

net accounts /domain /minpwlen:8 /maxpwage:45 /minpwage:10

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net accounts /domain /minpwlen:8 /maxpwage:45 /
minpwage:10”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net accounts /domain /minpwlen:8 /maxpwage:45 /
minpwage:10”,0,”True”)

NET COMPUTER
NET COMPUTER \\computername {/ADD | /DEL}

\\computername Sets the computer to add or delete from the domain.

/ADD Adds the specified computer to the domain.

/DEL Removes the specified computer from the domain.

Details:
NET COMPUTER adds or removes computers from a domain. The command is available only on
Windows 2000 servers and is only applicable to the default domain.

Command Shell

net computer \\pluto8 /del
net computer \\saturn /add

86804bapp03.indd 82786804bapp03.indd 827 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

828

 Part VI Appendixes

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net computer \\saturn /add”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net computer \\\\saturn /add”,0,”True”)

NET CONFIG SERVER
NET CONFIG SERVER [/AUTODISCONNECT:time] [/SRVCOMMENT:”text”]
 [/HIDDEN:{YES | NO}]

/AUTODISCONNECT:time Sets the number of minutes a user’s session can be inactive before it is
disconnected. The default is 15 minutes. The range is –1 to 65535
minutes. Use –1 to have the service never disconnect user sessions.

/SRVCOMMENT:”text” Adds a comment for the server that is displayed in browse lists such
as in Server Manager or NET VIEW. Enclose the comments in quota-
tion marks and use up to 48 characters.

/HIDDEN:{YES | NO} Allows you to prevent the server from being displayed in browser
lists. The default is NO. Although a server is hidden from view, it is
still accessible.

Details:
NET CONFIG SERVER displays or modifies configuration information for the server service. Enter
NET CONFIG SERVER on a line by itself to see the current configuration of the server service.

Command Shell

net config server
net config server /autodisconnect:10 /hidden:yes

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net config server /autodisconnect:10 /
hidden:yes”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net config server /autodisconnect:10 /hidden:yes”,0,”True”)

86804bapp03.indd 82886804bapp03.indd 828 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

829

 Essential Command-Line Utilities for Use with WSH C

NET CONFIG WORKSTATION
NET CONFIG WORKSTATION [/CHARCOUNT:bytes]
 [/CHARTIME:msec]
 [/CHARWAIT:sec]

/CHARCOUNT:bytes Sets the number of bytes Windows 2000 collects before sending the data to
a communication device. The default is 16 bytes and the range is 0–65535
bytes. If /CHARTIME:msec is also set, Windows 2000 acts on whichever
condition is satisfied first.

/CHARTIME:msec Sets the amount of time in milliseconds that Windows 2000 collects data
before sending the data to a communication device. The default is 250 milli-
seconds and the range is 0–65535000 milliseconds. If /CHARCOUNT:bytes is
also set, Windows 2000 acts on whichever condition is satisfied first.

/CHARWAIT:sec Sets the number of seconds that Windows 2000 waits for a communication
device to become available. The default is 3600 seconds and the range is
0–65535 seconds.

Details:
NET CONFIG WORKSTATION displays or modifies configuration information for the workstation ser-
vice. Enter NET CONFIG WORKSTATION on a line by itself to see the current configuration of the
workstation service.

Command Shell

net config workstation
net config workstation /charcount:32

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net config workstation /charcount:32”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net config workstation /charcount:32”,0,”True”)

NET CONTINUE
NET CONTINUE service

service The service to resume.

86804bapp03.indd 82986804bapp03.indd 829 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

830

 Part VI Appendixes

Details:
Use NET CONTINUE to resume a paused service. Services that can be paused and resumed include:
File Server For Macintosh, Lpdsvc, Net Logon, Network DDE, Network DDE DSDM, NT LM Security
Support Provider, Remote Access Server, Server, Simple TCP/IP Services, Task Scheduler, and
Workstation.

Command Shell

net continue “file server for macintosh”

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net continue ‘file server for macintosh’”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net continue ‘file server for macintosh’”,0,”True”)

NET FILE
NET FILE [id [/CLOSE]]

id The open file’s identification number.

/CLOSE Closes an open file and releases locked records.

Details:
NET FILE manages open files on a server. Enter NET FILE by itself to display a complete listing of
open files, which includes the name of the user who has the file open and the number of file locks (if
applicable).

Command Shell

net file
net file 0001 /CLOSE

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net file 0001 /CLOSE”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net file 0001 /CLOSE”,0,”True”)

86804bapp03.indd 83086804bapp03.indd 830 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

831

 Essential Command-Line Utilities for Use with WSH C

NET GROUP
NET GROUP [groupname [/COMMENT:”text”]] [/DOMAIN]
NET GROUP groupname {/ADD [/COMMENT:”text”] | /DELETE}
 [/DOMAIN]
NET GROUP groupname username [...] {/ADD | /DELETE} [/DOMAIN]

groupname Sets the name of the global group to work with. To view a list of users in the
global group, specify only the group name.

username[...] Lists one or more usernames to add to or remove from a global group. Use
spaces to separate multiple usernames.

/ADD Creates a global group, or adds a username to an existing global group.

/COMMENT:”text” Adds an optional description for the global group. The comment can have
up to 48 characters and must be enclosed in quotation marks.

/DELETE Removes a global group, or removes a username from a global group.

/DOMAIN Specifies that the operation should be performed on the primary domain
controller of the current domain. Otherwise, the operation is performed on
the local computer. (Applies only to Windows 2000 workstations that are
members of an NT domain. By default, Windows 2000 servers perform
operations on the primary domain controller.)

Details:
NET GROUP manages global groups. Enter NET GROUP by itself to see a list of all global groups. Be
sure to use quotation marks in group or usernames that have spaces.

Command Shell

net group “domain admins”
net group “domain admins” wrstanek /add

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net group ‘domain admins’ wrstanek /add”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net group ‘domain admins’ wrstanek /add”,0,”True”)

NET LOCALGROUP
NET LOCALGROUP [groupname [/COMMENT:”text”]] [/DOMAIN]
NET LOCALGROUP groupname {/ADD [/COMMENT:”text”] | /DELETE}

86804bapp03.indd 83186804bapp03.indd 831 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

832

 Part VI Appendixes

 [/DOMAIN]
NET LOCALGROUP groupname name [...] {/ADD | /DELETE} [/DOMAIN]

groupname Sets the name of the local group to work with. To view a list of users in the
local group, specify only the group name.

username[...] Lists one or more usernames to add to or remove from a local group. Use
spaces to separate multiple usernames.

/ADD Creates a local group, or adds a username to an existing local group.

/COMMENT:”text” Adds an optional description for the local group. The comment can have up
to 48 characters and must be enclosed in quotation marks.

/DELETE Removes a local group, or removes a username from a local group.

/DOMAIN Specifies that the operation should be performed on the primary domain
controller of the current domain. Otherwise, the operation is performed on
the local computer. (Applies only to Windows 2000 workstations that are
members of an NT domain. By default, Windows 2000 servers perform oper-
ations on the primary domain controller.)

Details:
NET LOCALGROUP manages local groups. Enter NET LOCALGROUP by itself to see a list of all local
groups. Be sure to use quotation marks in group or usernames that have spaces.

Command Shell

net localgroup “account operators”
net localgroup “account operators” wrstanek /add

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net localgroup ‘account operators’ wrstanek /
add”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net localgroup ‘account operators’ wrstanek /add”,0,”True”)

NET PAUSE
NET PAUSE service

service The service to put on hold.

86804bapp03.indd 83286804bapp03.indd 832 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

833

 Essential Command-Line Utilities for Use with WSH C

Details:
NET PAUSE suspends a service and puts it on hold. When you use NET PAUSE to pause a service,
you can use NET CONTINUE to resume it. Services that can be paused and resumed include File
Server For Macintosh, Lpdsvc, Net Logon, Network DDE, Network DDE DSDM, NT LM Security
Support Provider, Remoteboot, Remote Access Server, Server, Simple TCP/IP Services, Task
Scheduler, and Workstation.

Command Shell

net pause “task scheduler”

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net pause ‘task scheduler’”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net pause ‘task scheduler’”,0,”True”)

NET PRINT
NET PRINT \\computername\sharename
NET PRINT [\computername] job# [/HOLD | /RELEASE | /DELETE]

\\computername The name of the computer sharing the printer queue.

sharename The name of the shared printer queue.

job# The number assigned to the print job in the print queue.

/DELETE Removes a job from a queue.

/HOLD Pauses the print job.

/RELEASE Releases a print job that is held.

Details:
NET PRINT displays print jobs and shared queues. Use NET PRINT to manage shared printer
queues and display queue status. To manage the shared printers themselves, use NET SHARE.

Command Shell

net print \\zeta\eng1
net print 0043 /delete

86804bapp03.indd 83386804bapp03.indd 833 1/21/09 1:23:14 PM1/21/09 1:23:14 PM

834

 Part VI Appendixes

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net print 0043 /delete”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net print 0043 /delete”,0,”True”)

NET SESSION
NET SESSION [\\computername] [/DELETE]

\\computername The name of the Windows 2000 server you want to examine.

/DELETE Disconnects the local computer and the designated workstation or server, clos-
ing all open files for the session. If you don’t specify a computer name, all ses-
sions are ended.

Details:
NET SESSION lists or disconnects sessions between the local computer and other computers on the
network. Enter NET SESSION to examine the local computer’s sessions. Enter NET SESSION com-
putername to examine sessions on another computer. This command works only on servers.

Command Shell

net session \\pluto
net session \\jupiter /delete

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net session \\jupiter /delete”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net session \\\\jupiter /delete”,0,”True”)

NET SHARE
NET SHARE sharename
NET SHARE sharename=drive:path [/USERS:number | /UNLIMITED]
 [/REMARK:”text”]
 [/CACHE:Manual | Automatic | No]
NET SHARE sharename [/USERS:number | /UNLIMITED]

86804bapp03.indd 83486804bapp03.indd 834 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

835

 Essential Command-Line Utilities for Use with WSH C

 [/REMARK:”text”]
 [/CACHE:Manual | Automatic | No]
NET SHARE {sharename | devicename | drive:path} /DELETE

devicename Sets one or more printers shared by sharename. You can use LPT1: through
LPT9:.

drive:path Sets the complete path of the directory to be shared.

sharename Sets the network name of the shared resource.

/CACHE:Automatic Enables offline client caching with automatic updates.

/CACHE:Manual Enables offline client caching with manual updates.

/CACHE:No Disables offline client caching.

/DELETE Stops sharing the specified resource.

/REMARK:”text” Adds an optional comment about the shared resource. Quotation marks are
mandatory.

/UNLIMITED Specifies that an unlimited number of users can simultaneously access the
shared resource.

/USERS:number Sets the maximum number of users who can simultaneously access the
shared resource.

Details:
NET SHARE manages shared printers and directories. Enter NET SHARE with a share name only to
display information about the specified share.

Command Shell

net share netdata=”r:\network\data\” /unlimited
net share netdata /delete

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net share netdata /delete”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net share netdata /delete”,0,”True”)

NET START
NET START [service]

service The service to start. Enclose service names that have spaces in quotation marks.

86804bapp03.indd 83586804bapp03.indd 835 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

836

 Part VI Appendixes

Details:
NET START starts network services or lists network services that are running. Enter NET START
by itself to list running services. Services you can start on workstations and servers include Alerter,
Client Service For Netware, Clipbook Server, Computer Browser, DHCP Client, Directory Replicator,
Eventlog, LPDSVC, Messenger, Net Logon, Network DDE, Network DDE DSDM, Network Monitoring
Agent, NT LM Security Support Provider, Plug and Play, Remote Access Connection Manager, Remote
Access ISNSAP Service, Remote Access Server, Remote Procedure Call (RPC) Locator, Remote
Procedure Call (RPC) Service, Server, Simple TCP/IP Services, SNMP, Spooler, Task Scheduler,
TCPIP NetBIOS Helper, Ups, and Workstation.

These additional services are available only on Windows 2000 servers: File Server For Macintosh,
Gateway Service For Netware, Microsoft DHCP Server, Print Server For Macintosh, and Windows
Internet Name Service.

NET START can also start network services not provided with the Windows 2000 operating system.

Command Shell

net start “Microsoft DHCP Server”
net start “Windows Internet Name Service”

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net start ‘Windows Internet Name Service’”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net start ‘Windows Internet Name Service’”,0,”True”)

NET STATISTICS
NET STATISTICS [WORKSTATION | SERVER]

SERVER Displays Server service statistics.

WORKSTATION Displays Workstation service statistics.

Details:
NET STATISTICS displays workstation and server statistics. Enter NET STATISTICS by itself to list
the services for which statistics are currently available.

Command Shell

net statistics workstation
net statistics server

86804bapp03.indd 83686804bapp03.indd 836 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

837

 Essential Command-Line Utilities for Use with WSH C

Windows Script
stats.bat

net statistics workstation >> log.txt
net statistics server >> log.txt

compare.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“stats.bat”,0,”True”)

compare.js

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“stats.bat”,0,”True”)

NET STOP
NET STOP service

service The service to stop. Enclose service names with spaces in quotation marks.

Details:
NET STOP stops network services. Stopping a service cancels any network connections that the ser-
vice is running. You must have administrator privileges to stop services. The EventLog service can-
not be stopped.

Services you can stop on workstations and servers include: Alerter, Client Service For Netware,
Clipbook Server, Computer Browser, DHCP Client, Directory Replicator, LPDSVC, Messenger, Net
Logon, Network DDE, Network DDE DSDM, Network Monitoring Agent, NT LM Security Support
Provider, Plug and Play, Remote Access Connection Manager, Remote Access ISNSAP Service, Remote
Access Server, Remote Procedure Call (RPC) Locator, Remote Procedure Call (RPC) Service, Server,
Simple TCP/IP Services, SNMP, Spooler, Task Scheduler, TCPIP NetBIOS Helper, Ups, and Workstation.

These additional services are available only on Windows 2000 servers: File Server For Macintosh,
Gateway Service For NetWare, Microsoft DHCP Server, Print Server For Macintosh, and Windows
Internet Name Service.

NET STOP can also start network services not provided with Windows 2000.

Command Shell

net stop “Microsoft DHCP Server”
net stop “Windows Internet Name Service”

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net stop ‘Windows Internet Name Service’”,0,”True”)

86804bapp03.indd 83786804bapp03.indd 837 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

838

 Part VI Appendixes

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net stop ‘Windows Internet Name Service’”,0,”True”)

NET TIME
NET TIME [\\computername | /DOMAIN[:domainname] |
 /RTSDOMAIN[:domainname]] [/SET]
 [\\computername] /QUERYSNTP
 [\\computername] /SETSNTP[:server_list]

\\computername The name of a server with which you want to check or synchronize.

/DOMAIN[:domainname] Specifies that the computer should synchronize with the Primary
Domain Controller for the designated domain.

/RTSDOMAIN[:domainname] Specifies that the computer should synchronize with a Reliable
Time Server for the designated domain.

/SET Synchronizes the computer’s time with the time on the specified
server or domain.

/QUERYSNTP Displays the currently configured NTP server for the computer.

/SETSNTP: server_list Sets the NTP time servers that the computer should use. Enter DNS
names or IP addresses separated by spaces.

Details:
NET TIME displays time and synchronizes time with remote computers. Enter NET TIME by itself to
display the current date and time on the network’s timeserver (which is normally the primary
domain controller).

Command Shell

net time /SETSNTP:pluto.tvpress.com

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net time /SETSNTP:pluto.tvpress.com”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net time /SETSNTP:pluto.tvpress.com”,0,”True”)

86804bapp03.indd 83886804bapp03.indd 838 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

839

 Essential Command-Line Utilities for Use with WSH C

NET USE
NET USE [devicename | *] [\\computername\sharename[\volume]
 [password | *]] [/USER:[domainname\]username]
 [/USER:[username@domainname]
 [[/DELETE] | [/PERSISTENT:{YES | NO}]]
NET USE [devicename | *] [password | *]] [/HOME]
NET USE [/PERSISTENT:{YES | NO}]

Prompts for a required password are as follows:

\\computername The UNC name of the server to connect to. If the computer name contains
blank characters, enclose the double backslash (\\) and the computer name
and enclose the share in quotation marks, such as “\\PLUTO\NETDATA”.

devicename Assigns a device to connect to or disconnect from. A device name is either a disk
drive (lettered D: through Z:) or a printer (LPT1: through LPT9:). Type an aster-
isk instead of a specific device name to assign the next available device name.

domainname Sets a domain. Otherwise, the current domain is used.

password The password needed to access the shared resource.

username The username with which to log on.

/DELETE Disconnects the specified connection.

/HOME Connects a user to their home directory.

/PERSISTENT Determines whether the connection is persistent. The default is the last
setting used.

\sharename The network name of the shared resource.

/USER Used to set the username for the connection (if it is different than the currently
logged in user’s name).

\volume Sets a NetWare volume on the server. Client Services for Netware or Gateway
Service for Netware must be running.

YES Makes connections persistent, which saves connections as they are made and
restores them at next logon.

NO Makes a temporary connection, which is disconnected when the user logs off.

Details:
NET USE manages remote connections. Enter NET USE by itself to display a list of network
connections.

Command Shell

net use \\pluto\netdata * /persistent
net use \\pluto\netdata /delete

86804bapp03.indd 83986804bapp03.indd 839 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

840

 Part VI Appendixes

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net use \\pluto\netdata /delete”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net use \\\\pluto\\netdata /delete”,0,”True”)

NET USER
NET USER [username [password | *] [options]] [/DOMAIN]
NET USER username {password | *} /ADD [options] [/DOMAIN]
NET USER username [/DELETE] [/DOMAIN]

The following are prompts for the password:

password Assigns or changes a password for a user account.

username Sets the name of the user account to create, view, or modify.

/ADD Adds a user account.

/DELETE Removes a user account.

/DOMAIN Specifies that the operation should be performed on the primary domain controller of
the current domain. Otherwise, the operation is performed on the local computer.
(Applies only to Windows 2000 workstations that are members of an NT domain. By
default, Windows 2000 servers perform operations on the primary domain controller.)

Options:
/ACTIVE:{YES | NO} Enables or disables a user account. If the account is not active, the

user cannot log on. The default is YES.

/COMMENT:”text” Sets a description of up to 48 characters for the account. Enclose
the text in quotation marks.

/COUNTRYCODE:nnn Sets the operating system country code for the user’s help and
error messages. A value of 0 is the default.

/EXPIRES:{date | NEVER} Determines whether the user’s account expires. The default is
NEVER. Expiration dates can be in mm/dd/yy or dd/mm/yy,
depending on the country code.

/FULLNAME:”name” Sets the user’s full name. Enclose the name in quotation marks.

/HOMEDIR:pathname Sets the path of the user’s home directory. The path must exist
before you can use it.

/PASSWORDCHG:{YES | NO} Determines whether users can change their own password.
The default is YES.

86804bapp03.indd 84086804bapp03.indd 840 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

841

 Essential Command-Line Utilities for Use with WSH C

/PASSWORDREQ:{YES | NO} Determines whether a user account must have a password.
The default is YES.

/PROFILEPATH[:path] Sets a path for the user’s logon profile.

/SCRIPTPATH:pathname Sets the location of the user’s logon script.

/TIMES:{times | ALL} Specifies the times and days a user is allowed to log on. Times are
expressed as day[-day][,day[-day]],time[-time][,time [-time]] and
limited to one-hour increments. Days can be spelled out or abbre-
viated (M, T, W, Th, F, Sa, Su). Hours can be 12- or 24-hour nota-
tion. For 12-hour notation, use AM or PM. The value ALL means a
user can always log on. A null value (blank) means a user can
never log on. Separate day and time entries with commas, and
units of time with semicolons.

/USERCOMMENT:”text” Allows a user comment to be added or changed.

/WORKSTATIONS:{computer
name[,...] | *}

Lists as many as eight workstations from which a user can log on
to the network. If /WORKSTATIONS has no list, or if the list is *,
the user can log on from any computer.

Details:
NET USER manages user accounts. Enter NET USER by itself to list the user accounts for the server.
The command works only on servers.

When you want to create or modify domain accounts, be sure to enter /DOMAIN.

Command Shell

net user wrstanek happydayz /ADD
net user wrstanek /DELETE

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“net user wrstanek /DELETE”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“net user wrstanek /DELETE”,0,”True”)

NET VIEW
NET VIEW [\\computername | /DOMAIN[:domainname]]
NET VIEW /NETWORK:NW [\\computername]

86804bapp03.indd 84186804bapp03.indd 841 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

842

 Part VI Appendixes

\\computername Specifies the computer whose shared resources you want to view.

/DOMAIN:domainname Sets the domain for which you want to view computers that have
resources available. If the domain name is omitted, all domains on the
network are listed.

/NETWORK:NW Displays all the servers on a NetWare network. If a computer name is
specified, only the resources available on that computer are displayed.

Details:
NET VIEW displays available network resources. Enter NET VIEW without options to display a list of
computers in the current domain or network.

Command Shell

net view \\delta
net view /domain:engineering

Windows Script

view.bat

net view \\delta >> log.txt
net view /domain:engineering >> log.txt

compare.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“view.bat”,0,”True”)

compare.js

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“view.bat”,0,”True”)

NETSTAT
NETSTAT [-a] [-b] [-e] [-f] [-n] [-o] [-p protocol] [-r] [-s] [-t]
[interval]

interval Redisplays selected statistics, pausing between each display. Press CTRL+C to stop
redisplaying statistics. If this option is omitted, information is only displayed once.

-a Displays connections and listening ports.

-b Displays the executable that created each connection or listening port.

-e Displays Ethernet statistics. This may be combined with –s to obtain additional details.

-f Displays the fully qualified domain name for foreign addresses.

-n Displays IP addresses and port numbers rather than computer names.

86804bapp03.indd 84286804bapp03.indd 842 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

843

 Essential Command-Line Utilities for Use with WSH C

-o Displays the ID of the owning process for each connection.

-p
protocol

Shows connections for the specified protocol (TCP or UDP). If the –s option is used
with –p, you can view protocol information for TCP, UDP, ICMP, or IP.

-r Displays the contents of the routing table.

-s Displays per-protocol statistics. By default, statistics are shown for TCP, UDP, ICMP,
and IP. Use with –p to examine a specific protocol.

-t Displays the current offload state of each connection.

Details:
NETSTAT displays status of network connections as well as protocol statistics. Unlike most other
commands, most options provide completely different types of information. TCP/IP networking
must be installed.

Command Shell

netstat -a
netstat –s –p TCP

Windows Script

nstats.bat

netstat -a >> log.txt
netstat –s –p TCP >> log.txt

compare.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“nstats.bat”,0,”True”)

compare.js

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“nstats.bat”,0,”True”)

NSLOOKUP
NSLOOKUP [-option] [computer | server]

-option An option to perform a query with; in the form –command=value or –command. The
most commonly used command is querytype, which sets the type of record you want
to examine. Record types include A, CNAME, MX, NS, PTR, and SOA.

computer The hostname or IP address you want to look up in DNS.

server The DNS server to use for the lookup. If you don’t specify a server, the default name
server is used.

86804bapp03.indd 84386804bapp03.indd 843 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

844

 Part VI Appendixes

Details:
NSLOOKUP shows the status of Domain Name System (DNS) for servers and workstations with DNS
resolution. To use this command, TCP/IP networking must be configured. DNS lookup can be per-
formed interactively or non-interactively. DNS lookups are most useful if you need to look up the IP
address of a known host or examine DNS entries. If you want to see if a particular Internet host is
available, PING is a better command to use.

Command Shell

nslookup www.tvpress.com
nslookup -querytype=mx tvpress.com

Windows Script

ns.bat

nslookup www.tvpress.com >> log.txt
nslookup -querytype=mx tvpress.com >> log.txt

compare.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“ns.bat”,0,”True”)

compare.js

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“ns.bat”,0,”True”)

PATH
PATH [[drive:]path[;...][;%PATH%]
PATH ;

[drive:] Sets the drive to check.

path Sets the directory path.

Details:
PATH displays or sets a search path for executable files. The command path is set during logon using
system and user environment variables, namely the %PATH% variable. To view current path setting,
type PATH on a line by itself and press Enter. The directory order in the command path indicates
the search order used by the command shell when looking for executables and scripts.

Update existing path information by appending a new path to the %PATH% environment variable, for
example:

path %PATH%;c:\scripts\networking

86804bapp03.indd 84486804bapp03.indd 844 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

845

 Essential Command-Line Utilities for Use with WSH C

Clear the path by entering the following:

path ;

Command Shell

path
path c:\scripts\networking;%PATH%

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“path c:\scripts\networking;%PATH%”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“path c:\\scripts\\networking;%PATH%”,0,”True”)

PING
PING [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS]
 [-r count] [-s count] [[-j host-list] | [-k host-list]]
 [-w timeout] [-R] [-S srcaddr] [-4] [-6] destination-list

destination-list A list of computers to ping; specified by hostname or IP address. If NetBIOS
resolution is enabled for the computer/domain, you can also use NetBIOS
names (the computer name is an NT domain).

-a Resolve IP addresses to hostnames when pinging.

-f Specifies that the ping packet shouldn’t be fragmented when it goes through
gateways.

-i TTL Sets a Time To Live value.

-j host-list Sets the packet route using the host list. The route doesn’t have to include all
potential gateways. Use spaces to separate hostnames.

-k host-list Sets a strict packet route using the host list. The route must be inclusive of
all gateways. Use spaces to separate hostnames.

-l size The number of bytes to send in the ping. The default is 64 and the maxi-
mum is 8192.

-n count Number of times to ping the specified computer. The default is 4.

-r count Displays the route taken by the ping packets. Count determines the number
of hops to count from 1 to 9.

-R With IPv6, uses the routing header to test the reverse route.

-s count The timestamp for the number of hops set by count.

86804bapp03.indd 84586804bapp03.indd 845 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

846

 Part VI Appendixes

-S srcaddr With IPv6, sets the source address to use.

-t Ping repeatedly until interrupted.

-v TOS Sets the type of service.

-w timeout A timeout set in milliseconds.

-4 Forces using IPv4.

-6 Forces using IPv6.

Details:
PING sends data to a computer to determine if a network connection can be established. TCP/IP net-
working must be configured. PING is a good command to use before trying to work with an Internet
resource. If the ping returns a bad IP address or host unreachable, it means the computer you want
to work with isn’t available.

Command Shell

ping –t www.idg.com
ping –n 50 www.idg.com

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“ping www.idg.com”,0,”True”)
if ret <> 0 Then
 WScript.Echo “Error!”
Else
 WScript.Echo “Success”
End If

JScript

var ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“ping www.idg.com”,0,”True”)
if (ret != 0)
 WScript.Echo(“Error!”)
else
 WScript.Echo(“Success”)

RECOVER
RECOVER [drive:][path]filename

[drive:][path]filename Sets the drive, directory, or file to recover.

Details:
RECOVER recovers readable information from a bad or defective disk.

86804bapp03.indd 84686804bapp03.indd 846 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

847

 Essential Command-Line Utilities for Use with WSH C

Command Shell

recover a:

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“recover a:”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“recover a:”,0,”True”)

ROUTE
ROUTE [-f] [-p] [-4|-6] [command [destination] [MASK netmask] [gateway]
 [METRIC metric]]

-f Clears the routing tables of gateway entries. This option is executed before
running any of the available route commands.

-p When used with the ADD command, makes the route persistent so it con-
tinues to exist when the system is restarted. When used with the PRINT
command, prints a list of persistent routes.

-4 Forces using IPv4.

-6 Forces using IPv6.

command Allows you to specify one of these route commands:

PRINT: Prints a route.

ADD: Adds a route.

DELETE: Deletes a route.

CHANGE: Modifies a route.

destination Sets the route destination host.

MASK netmask A subnet mask to associate with the route entry. The default network mask
is 255.255.255.255.

gateway The gateway for the route.

METRIC costmetric Sets a numeric cost metric for the route. Valid values are from 1 to 9999.

Details:
ROUTE manages network routing tables. If you use a hostname for the destination rather than an IP
address, ROUTE looks in the NETWORKS file to resolve the destination to an IP address. If you use a
hostname for a gateway, ROUTE looks in the HOSTS file to resolve the host to an IP address. If the
command is PRINT or DELETE, you can use wildcards for the destination and gateway.

86804bapp03.indd 84786804bapp03.indd 847 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

848

 Part VI Appendixes

The cost metric is useful in determining which route the local computer attempts to use first. Routes
with a metric of 1 are always attempted before routes with higher-cost metrics.

Command Shell

route –p add mail.idg.com 255.255.255.0 214.15.8.2 1
route delete mail.idg.com 214.*

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“route delete mail.idg.com 214.*”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“route delete mail.idg.com 214.*”,0,”True”)

SCHTASKS
SCHTASKS /parameter [arguments]

Parameter: Allows you to specify one of these route commands:

/Create: Creates a new schedule task.

/Delete: Deletes the scheduled task(s).

/Query: Displays all scheduled tasks.

/Change: Changes the properties of scheduled task.

/Run: Runs the scheduled task immediately.

/End: Stops the currently running scheduled task.

/?: Displays the help message.

Details:
SCHTASKS enables an administrator to create delete, query, change, run and end scheduled tasks on
a local or remote system. To get detailed help on each parameter, use the /?.

Command Shell

schtasks /query
time /run /?

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“schtasks /query”,1,”True”)

86804bapp03.indd 84886804bapp03.indd 848 1/21/09 1:23:15 PM1/21/09 1:23:15 PM

849

 Essential Command-Line Utilities for Use with WSH C

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“schtasks /query”,1,”True”)

TIME
TIME [time | /T]

time Sets the time in [HH:[MM:[SS.[hh]]][A|P] format.

/T Displays the current time without a prompt.

Details:
TIME displays or sets the system time. TIME is normally set on a 24-hour clock. You can also set an
AM or PM value if you use the A or P modifiers. Valid values are:

Hours: 0 to 23■

Minutes: 0 to 59■

Seconds: 0 to 59■

Hundredths: 0 to 99■

Command Shell

time /t
time 22:50

VBScript

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“time 22:50”,0,”True”)

JScript

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“time 22:50”,0,”True”)

TRACERT
TRACERT [-d] [-h maximum_hops] [-j host-list]
 [-w timeout] [-R] [-S srcaddr] [-4] [-6] target_name

target_name The remote computer to locate.

86804bapp03.indd 84986804bapp03.indd 849 1/21/09 1:23:16 PM1/21/09 1:23:16 PM

850

 Part VI Appendixes

-d Does not convert IP addresses for hops.

-h maximum_hops The maximum number of hops between the local computer and the target.

-j host-list Sets the trace route using the host list. The route doesn’t have to include all
potential gateways. Use spaces to separate hostnames.

-R With IPv6, uses the routing header to test the reverse route.

-S srcaddr With IPv6, sets the source address to use.

-w timeout Waits the specified number of milliseconds before timing out.

-4 Forces using IPv4.

-6 Forces using IPv6.

Details:
TRACERT displays the path between the local computer and a remote computer. Tracing the route
between two computers is extremely helpful in troubleshooting network routing problems.

Command Shell

tracert tvpress.com
tracert –d tvpress.com

Windows Script

trace.bat

tracert tvpress.com >> log.txt
tracert –d tvpress.com >> log.txt

compare.vbs

Set ws = WScript.CreateObject(“WScript.Shell”)
ret = ws.Run(“trace.bat”,0,”True”)

compare.js

var ws = WScript.CreateObject(“WScript.Shell”);
ws.Run(“trace.bat”,0,”True”)

86804bapp03.indd 85086804bapp03.indd 850 1/21/09 1:23:16 PM1/21/09 1:23:16 PM

851

SYMBOLS
(!) Not operator, JScript, 48
$? (automatic variable), 495
$ (dollar sign), 408
& (AND) operator, 26
&& (logical And) operator, 47–48
* (asterisk symbol), 82, 568
// (double slash), 42, 93–94
 (_) underscore character, 39
| pipe sign, 57–58
|| (Logical Or operator), 47–48
== (comparison operators), JScript, 45–46
? (question mark), 82
() parentheses, 35, 39

A
absolute fi le paths, batch scripts, 99
access control lists. See ACLs (access control lists)
access modes, opening fi les, 182
account lockout policies, 349
account management utility library, 659–684

confi guring domain account policies, 677–678
examining code for, 659–677
functions for renaming and moving accounts, 684
managing computers, 682–684
managing groups, 678–680
managing users, 680–682

AccountDisabled property
computer accounts with LDAP, 453–454
user accounts with LDAP, 476–477
user accounts with WinNT, 359–368

accountExpiration function, 682
ACLs (access control lists)

displaying and modifying using CALCS, 815–816
IADsACL working with attributes in NDS, 752
viewing and setting permissions, 531

Active Directory. See also ADSI (Active Directory Service Interfaces)
activities of, 558
getting entries with ADSI from, 559–563
logical, physical structures of, 291
making erroneous changes to, 558–559
managing extensions. See extensions, Active Directory domain
overview of, 557–558
reference guide for, 301
synchronizing system time, 268

Active Directory Service Interfaces. See ADSI (Active Directory
Service Interfaces)

Active Directory Users and Computers, 334, 335
-Activity parameter, Write-Progress cmdlet, 501
Add() method, group members, 465
Add-Content cmdlet, 533–534
AddDesktop function, 625–627
AddDesktopURL function, 625–627
Add-Member cmdlet, 507
AddPrinter function, 653
AddPrinterConnection method, 206–208
add-PsSnapIn command, 690
Add/Remove Snap-in dialog box, 293
AddStartMenu function, 625–627
AddStartMenuURL function, 625–627
AddWindowsPrinterConnection method, 206–208
administrative (default) shares, 414–415
ADS_SECURE_AUTHENTICATION fl ag, ADSI, 319–321
ADS_SECURE_CREDENTIALS fl ag, ADSI, 319
ADSI (Active Directory Service Interfaces), 301–329

accessing properties and updating objects, 322–325
architecture, 303–306
generic object binding, 317–318
handling authentication and security, 318–322
LDAP provider, 306–309
NDS provider, 312–315
NWCOMPAT provider, 315–317
overview of, 301–302
providers, 302–303
WinNT provider, 309–312
working with IADs methods, 325–329

ADSI (Active Directory Service Interfaces) core reference, 749–810
error codes. See error codes, ADSI
IADs, 750–752
IADsAcl, 752
IADsADSystemInfo, 753–754
IADsBackLink, 754–755
IADsCaseIgnoreList, 755
IADsClass, 755–757
IADsCollection, 757–758
IADsComputer, 758–760
IADsComputerOperations, 760
IADsContainer, 761–762
IADsDeleteOps, 762
IADsDomain, 762–764
IADsExtension, 764

86804bindex.indd 85186804bindex.indd 851 1/22/09 11:45:03 AM1/22/09 11:45:03 AM

852

 A Index

ADSI (Active Directory Service Interfaces) core reference (continued)
IADsFaxNumber, 764
IADsFileService, 765
IADsFileServiceOperations, 765–766
IADsFileShare, 766–767
IADsGroup, 767–768
IADsHold, 768
IADsLargeInteger, 768
IADsLocality, 769
IADsMembers, 769–770
IADsNamespaces, 770
IADsNetAddress, 770
IADsO, 771
IADsObjectOptions, 772
IADsOctetList, 772
IADsOpenDSObject, 773
IADsOU, 773–774
IADsPath, 774–776
IADsPostalAddress, 777
IADsPrintJob, 777–778
IADsPrintJobOperations, 779–780
IADsPrintQueue, 780–782
IADsPrintQueueOperations, 782–783
IADsProperty, 783–784
IADsPropertyEntry, 784–785
IADsPropertyList, 785–786
IADsPropertyValue, 786–788
IADsPropertyValue2, 788–789
IADsReplicaPointer, 789
IADsResource, 790
IADsService, 791–793
IADsServiceOperations, 794–795
IADsSession, 790–791
IADsSyntax, 795
IADsTimestamp, 795
IADsTypedName, 796
IADsUser, 796–802
IDirectoryObject, 802
IDirectorySearch, 802
using, 749–750

ADSI (Active Directory Service Interfaces), working with AD and
PowerShell, 557–579

adding to (deleting from) multivalued properties, 578–579
administering resources, 402–411
administering Windows services. See services
building library of AD functions, 570–574
creating objects, 563, 575–576
getting entries from AD with, 559–563
introduction to Active Directory, 557–559
LDAP fi lters, 568–569
managing local and domain resources, 345–346
querying directory services using, 557
setting single-valued properties, 576–578
using DirectorySearcher. See DirectorySearcher

object
using schema. See schema, ADSI

ADSI Edit utility, 444–447, 575–576
ADSpath (Active Directory Service Path), 559–561
AdsPath string

adding and removing group members, 375–376
with ADSI LDAP provider, 306–308
with ADSI NDS provider, 312–313
with ADSI NWCOMPAT provider, 315
with ADSI WinNT provider, 309–310
binding ADSI objects, 304–306
checking group membership, 374–375
working with, 322

aliases, PowerShell
changing locations, 526
copying, deleting and removing fi les, 529–530
customizing PowerShell library, 690–691
ForEach-object cmdlet, 79–80
Format-Table, 584
Get-Service , 544
getting child items, 526–529
overview of, 58–60
providers, 524–526
Stop-Service cmdlet, 545
Where-Object cmdlet, 76

-and operator, PowerShell, 80
applications, passing arguments to, 122
architecture, ADSI, 303–306
archives, event log, 244–245
arguments

CScript command-line options, 93–94
Dumpel utility, 248–249
getting for script, 115–116
link shortcut, 216–217
passing to applications, 122
AT Scheduler, 275
system time synchronization, 268

Arguments property, WshShortcut, 216–217
arithmetic operators, JScript, 44–45
arithmetic operators, VBScript, 22–23
ARP command, 811–812
arrays

JScript, 42–43
PowerShell, 73–74
PowerShell, formatting, 502
VBScript, 21–22

ASCII text mode, 182–184
assignment operators, JScript, 47
ASSOC command, 812
associations, WMI, 588–589
associative arrays

building PowerShell library with, 704–706
defi ned, 74
switching in output, 514–515
writing calculated properties as, 503

Associators of statement, WMI, 588–591
asterisk (*) symbol, 82, 568
AT command, 813

86804bindex.indd 85286804bindex.indd 852 1/22/09 11:45:04 AM1/22/09 11:45:04 AM

853

 Index C

AT Scheduler
deleting scheduled jobs, 277–278
overview of, 269
running CheckFreeSpace as nightly job, 652
using in script, 278–279
working with, 275–277

AtEndOfLine property, TextStream, 185
AtEndOfStream property, TextStream, 184–185
attachments, scripting for e-mail, 712
ATTRIB command, 814
attribute scoped queries, DirectorySearcher, 573–575
attributes

accessing PowerShell, 531
Active Directory, 557–558
managing schema, 341–342
setting and clearing fi le, 620–621
using ATTRIB to display and modify, 814
viewing in Properties dialog box, 446–447

Attributes property, File object, 171–173
authentication, ADSI, 318–322
automated jobs, creating, 280–282
automatic ($?) variable, 495
-autosize switch, format-table, 503, 583–584
AutoUnlockInterval property

defi ned, 349
viewing and setting account policies, 352–353
WinNT Domain object, 348

B
/b switch, Dumpel, 250
Back Link attribute, NDS, 754–755
background color, PowerShell library, 688–689
backups, Registry, 232
banner pages, print jobs, 422–423
batch scripts, 52–62

command-line options, 94–95
documentation and usage, 104–106
identifying job name, 97
job properties, 102–103
overview of, 8, 96–106
parsing instructions, 103
referencing external objects and type libraries, 100–102
script source code, 98–100
setting scripting language, 98

binding
ADSI objects, 303–306, 317–318
to naming contexts, 439–440

bitwise operators, JScript, 49
blank lines, writing to fi les, 194–195
Bluetooth service, confi guring, 548
break statement, JScript, 51
built-in constants, VBScript, 19–20
built-in local groups

Builtin domain container for storing, 333
creating/modifying group accounts, 373–376
defi ned, 373

built-in system variables, 117–119
built-in user variables, 117–119
buttons

adding to message boxes, 134–135
evaluating clicks, 136–137

C
CACLS command, 815–816
calculated properties, 503–504
Call statement, functions, 35
calling functions, JScript, 54–55
calling functions, VBScript, 35
Cancel button, 131–132
CanPauseAndContinue property, Suspend-Service, 547
Case Ignore List attribute, NDS, 755
case-sensitivity

comparison operators, 81–82, 535–536
constants, 20
DirectorySearcher properties, 566–567
getting entries from AD with ADSI, 559–560
JScript variables, 39–40
PowerShell variables, 68
strings, 29–30
VBScript variables, 13–14

cat command, UNIX, 533
catch statement, JScript, 148–152
CBool () function, VBScript, 17–18
CDate () function, VBScript, 17–18
certifi cates, obtaining PowerShell, 86–88
ChangePassword() method, 370–372
changePassword function, 681
characters

reading from text fi les, 187–188
skipping in text fi les, 191
writing with Write method, 194

checkComputerAccounts function, 683–684
CheckExists function, 620
CheckFreeSpace function, 652–653
checkGroupMembership function, 679–680
CheckMenu function, 623–625
CheckMenu2 function, 623–625
checkRS function, 656–657
checkService function, 654–655
checkUserAccounts function, 682
checkUserGroups function, 682
child items, getting, 526–529
CHKDSK command, 816–817
Choose-NetworkAdapter function, 698
choose-VM function, 691–694
Class property, IADs, 322
__class property, WMI objects, 597
classes

Active Directory, 557
environment variable, 119–121
Hyper-V management, 600
WMI, 581

86804bindex.indd 85386804bindex.indd 853 1/22/09 11:45:04 AM1/22/09 11:45:04 AM

854

 C Index

Clear method, VBScript, 145–146
ClearArchiveAttribute function, 620–621
ClearReadOnly function, 620–621
client, installing ADSI, 303
Close method, fi les, 193
CLSIDs, for Internet Explorer, 100–102
CMD.EXE, PowerShell vs., 11
Cmdlets, PowerShell

and aliases, 59
managing different outputs from, 494–496
overview of, 60–61
write commands, 493

CN (common-name identifi er), 334
collections

accessing through FileSystemObject, 154
defi ned, 154
managing group objects in ADSI using, 331
managing group objects with IADsMembers, 769–770
managing with IADsCollection, 331–332, 757–758

color
customizing PowerShell library, 688–689
VBScript constants, 19

Column property, TextStream, 185–186
COM objects

ADSI and, 301
building PowerShell library using, 706–711
sending mail with Microsoft Outlook, 712–714

Comma Delimited (Text) archived event log, 245
command-line

scripting options, 93–95
using aliases at, 59–60
using Dumpel at, 249–251
using piping to link commands, 57

command-line utilities, essential, 811–852
ARP, 811–812
ASSOC, 812
AT, 813
ATTRIB, 814
CACLS, 815–816
CHKDSK, 816–817
COMPACT, 817
CONVERT, 818
DATE, 818–819
DRIVERQUERY, 819–820
EXPAND, 820
FC, 821–822
FORMAT, 822–823
FTP, 823–825
FTYPE, 825–826
IPCONFIG, 826–827
NBSTAT, 827–828
NET ACCOUNTS, 828–829
NET COMPUTER, 829–830
NET CONFIG SERVER, 830
NET CONFIG WORKSTATION, 831

NET CONTINUE, 831–832
NET FILE, 832
NET GROUP, 833
NET LOCALGROUP, 833–834
NET PAUSE, 834–835
NET PRINT , 835–836
NET SESSION, 836
NET SHARE, 836–837
NET START, 837–838
NET STATISTICS, 838–839
NET STOP, 839–840
NET TIME, 840
NET USE, 841–842
NET USER, 842–843
NET VIEW, 843–844
NETSTAT, 844–845
NSLOOKUP, 845–846
PATH, 846–847
PING, 847–848
RECOVER, 848–849
ROUTE, 849–850
SCHTASKS, 850–851
TIME, 851
TRACERT, 851–852

comments
following # sign, 84
following single quotation marks, 14
removing from fi les before using Select-String, 724
skipping lines containing, 191–192
using JScript, 42

common-name identifi er (CN), 334
common-name objects, 334
Community Extensions, PowerShell, 524
COMPACT command, 817
comparison operators

JScript, 45–46
PowerShell, 81–82
for regular expressions, 721
VBScript, 24–26

compression, on NTFS partitions, 817
computer and user scripts, 289–300

alternatives to group policy, 299–300
global group policies for, 294–295
how policies are used, 290–292
local group policies for, 292–294
logon and logoff scripts for, 298–299
reasons to use, 289–290
startup and shutdown scripts for, 296–297
using policy consoles, 295–296
when policies are applied, 292

Computer Management console
accessing Event Viewer in, 242
checking Task Scheduler in Services node of, 265
managing Windows services, 377–382
viewing open fi les and user sessions, 403–404

86804bindex.indd 85486804bindex.indd 854 1/22/09 11:45:04 AM1/22/09 11:45:04 AM

855

 Index C

computers
accessing print queues through, 418–420
adding or removing using NET COMPUTER, 829–830
defi ned, 449
extended functionality with IADsComputerOperations,

760
managing services with IADsService, 791–792
managing with IADsComputer, 758–760
managing with utility library, 682–684
querying across computers, 594–596
troubleshooting network routing using TRACERT, 851–852
working with local properties, 353–356
working with service objects via, 382–386

computers, managing with LDAP provider, 448–455
Active Directory properties, 448–451
creating/deleting accounts, 451–452
enabling/disabling accounts, 454–455
moving/renaming accounts, 452–454

concatenation of strings
JScript, 41–42
VBScript, 26

conditional statements, JScript, 49–50
conditional statements, VBScript, 26–30

conditional controls and strings, 29–30
Select Case, 28–29
using comparison operators with, 24–26
using Else and ElseIf, 27–28
using If...Then, 26–27

conditions, PowerShell
overview of, 80–82
using looping to evaluate, 77–80

confi guration containers
core LDAP object model, 333
defi ned, 439
viewing default, 335–336

-Confirm parameter, PowerShell cmdlets, 494
connections

mapping printer, 206–208
removing printer, 208–209
using NET USE to manage remote, 841–842
using NETSTAT to display status of, 844–845
using PING to determine network, 847–848
for viewing event logs, 242–243

console device, output to, 483–484
console tree, Event Viewer, 242–244
Const keyword, VBScript, 20
constants, VBScript, 19–20
contacts, Active Directory

Contact object, 449
creating, 458–459
properties, 453–458

Container property, IADsClass, 337–338
containers

Active Directory, 558
checking to see if objects are, 337–338
core LDAP object model, 333–336

core WinNT object model, 331
Domain NC node, 445–447
implementing with IADsContainer, 331, 761–762

Containment property,IADsClass, 337–338
-contains operator, PowerShell, 82, 534–535
contents, fi le, 533–534
contexts, Active Directory, 558
Continue() method, services, 396–402
continue statement, JScript, 51
control fl ow with looping, JScript, 50–53
control loops, VBScript, 30–34
conversion functions, VBScript variables, 17–18
CONVERT command, 818
ConvertToDateTime script, 700
ConvertTo-HTML cmdlet, 516–517
Copy() method

single fi les, 179
single folders, 167–168

CopyFile() method, 176–177
CopyFolder() method, 165–166
Copy-item cmdlet, 529–530
core ADSI reference. See ADSI (Active Directory Service

Interfaces) core reference
core object models

LDAP, 333–336
Windows Script Host architecture, 6–8
WinNT, 332–333

Core snap-in, 12
CP/M operating system, 523
Create() method

computer accounts using LDAP, 451–452
contacts using LDAP, 457
creating groups using LDAP, 460–462
creating objects, 575–576
creating organizational units, 467–468
creating shared folders, 417–418
creating user accounts with WinNT, 368–369

createComputerAccount function, 682–683
createDLDistGroup function, 679
createDLSecGroup function, 679
createEnabledComputerAccount function, 682–683
createGDistGroup function, 679
createGSecGroup function, 679
createLocalGroup function, 679
createLocalUser function, 680–681
CreateObject() method, 102, 138–141
createShare function, 657
CreateShortcut method, Shell object, 214
CreateTextFile method, FileSystemObject, 174–175
createUDistGroup function, 679
createUSecGroup function, 679
CScript

command-line options for, 93–95
defi ned, 5
examining information, 110–111
running scripts with, 6, 92–95

86804bindex.indd 85586804bindex.indd 855 1/22/09 11:45:04 AM1/22/09 11:45:04 AM

856

 D Index

cscript command, 6
CString () function, VBScript, 17–18
CSV fi les

Export- CSV, 517–518
Import- CSV, 519–520
parsing text and, 536–537

-currentActivity parameter, Write-Progress, 501
CurrentUserCount property, FileShare object, 416–417

D
data types

JScript, 40–42
PowerShell pipe and, 63–65
PowerShell richer, 69–73
print queue properties, 424

date
DATE command, 818–819
FileTime format, 567–568
formatting codes, 487–488
VBScript constants, 19–20

DbFileNm value, 233–234
DCs (Domain Controllers), AD, 334, 558–562
debug output, PowerShell, 493–494
-Debug parameter

defi ned, 494
Get-Service, 544

default (administrative) shares, 414–415
default domain naming context, 562
defaultNamingContext property, RootDSE object, 439, 441
defPrinter function, 653
delete() method

deleting computer accounts with LDAP, 452
deleting contacts using LDAP, 457
deleting groups using LDAP, 462–463
deleting objects, 578–579
deleting organizational units using LDAP, 469
deleting scheduled AT jobs, 277–278
deleting shared folders, 417–418
deleting shortcuts and options, 225–226
deleting single fi les, 178–179
deleting single folders, 167
deleting startup options, 227–228
deleting user accounts with LDAP, 478–479
deleting user accounts with WinNT, 369

deleteComputerAccount function, 682–683
DeleteFile method, 175–176, 628
DeleteFolder method

deleting folders, 628
deleting menus, 226–227
deleting multiple folders, 164–165

deleteGroup function, 679
deleteLocalGroup function, 679
deleteLocalUser function, 680–681
DeleteShortcut function, 628
deleteUser function, 681

deleting
jobs, using scripts, 282–283
Registry values, using RegDelete method, 236

dependencies
accessing, 387–390
building PowerShell library, 723–727
stopping service without stopping, 397
troubleshooting service problems, 390–395

DependentServices property, 546
Description property, error code, 151–152
<description> element, XML, 735
desktop

adding shortcuts to, 625–627
setting shortcut hotkeys, 217
using special folders for shortcuts, 212–213

DHCP (Dynamic Host Confi guration Protocol), 239–241
Dim keyword, 14
directories

accessing options with IADsObjectOptions, 772
accessing services with IDirectoryObject, 802
creating and deleting, 530–531
managing shared, with NET SHARE, 836–837
querying with IDirectorySearch, 802
returning contents using Get-ChildItem, 526–527
setting for Dumpel, 248

Directory services, 301–302. See also Active Directory; ADSI
(Active Directory Service Interfaces) core reference

DirectorySearcher object, 564–574
building library of AD functions, 572–574
creation parameters, 564–565
defi ning, 564
FileTime format, 567–568
fi nding related entries in AD, 574–576
LDAP fi lters, 568–569
methods, 566
properties, 565–567
returning SearchResult object, 566–567

disableUserAccount function, 681
disabling computer accounts, 453–454
disks

checking for errors using CHKDSK, 816–817
formatting with FORMAT, 822–823
recovering information using RECOVER, 848–849

display name, service objects, 382–386
display prompts, input boxes, 131
DisplayConsolePrompt function, 636
DisplayDialog function, 636–637
-DisplayName parameter, Get-Service, 544
distribution groups

creating with utility library, 679
creating/modifying group accounts, 373–376
defi ned, 373

DLLs (Dynamically Linked Libraries), for system providers, 303
DNS (Domain Name System), using NSLOOKUP, 845–846
Do Until loops, VBScript, 33–34

86804bindex.indd 85686804bindex.indd 856 1/22/09 11:45:04 AM1/22/09 11:45:04 AM

857

 Index E

Do While loops, JScript, 51
Do While loops, VBScript, 32
documentation, batch script execution, 104–105
dollar sign ($), 408
domain account policies, 356–372

overview of, 356
preparing to view and set, 349
setting with utility library, 677–678
viewing and setting, 350–353
working with domain objects, 357–358

domain containers
binding to, 440
core LDAP object model and, 333–334
creating new, 334
defi ned, 439

Domain Controllers (DCs), AD, 334, 558–562
domain forests, 291
domain local groups, 373–376
Domain Name System (DNS), using NSLOOKUP, 845–846
Domain NC node, 444–447
Domain object, WinNT provider, 331–332, 357–358
domain trees, 291
domainDNS class, 447–448
domain-naming context

domainDNS class for domains in, 447–448
overview of, 445–447

domains
Active Directory, 558
applying group policies to, 291–292
creating security groups with utility library, 679
defi ned, 291
deleting groups, 679
managing with IADsDomain, 762–764

DOS, 57–58
dot sourced

defi ned, 84
prefi xing functions as, 689–690

drag and drop, 95
Drive collection, 154, 737–738
Drive object, 199–201
Drive property, FileSystemObject, 156
DriveExists method, FileSystemObject, 198–199
DRIVERQUERY command, 819–820
drives, 197–206

checking for, 198–199
defi ning with Get-PSDrive, 524–525
examining all system, 202–203
formatting with FORMAT, 822–823
history of, 523–524
mapping network, 204–206
network resource library functions for. See network resource

utility library
obtaining information, 197–198
PowerShell providers, 524
using Drive object, 199–201

Drives collection, 197, 202–203
Dumpel utility

accessing event logs in, 244–245
arguments for, 248–249
defi ned, 248
using, 249–251
working in scripts with, 251–253

Dynamic Host Confi guration Protocol (DHCP), 239–241
Dynamically Linked Libraries (DLLs), for system providers, 303

E
/e switch, Dumpel, 249
echo command, 109–110, 484
ElseIf statements, VBScript, 27–28
e-mail, accessing using .NET objects, 712–714
Email Address attribute, NDS, 764
enableUserAccount function, 681
enabling computer accounts

with LDAP using accountDisabled property, 454–455
using enableComputerAccount function, 682–683

-encoding switch, Get-Content cmdlet, 519
Enumerator() method, JScript, 159
environment variables, 117–121

accessing, 118–119
PowerShell variables vs., 65–66
understanding, 117–119
working with special folders using, 169–170

Err object, VBScript, 144–145, 147
error() function, 111
error codes, ADSI, 802–810

LDAP with Win32, 804–807
LDAP with Win32 for ADSI 2.0, 807–810
overview of, 802–803
standard, 803–804

Error event, 244–245
Error object, JScript, 151–152
Error[] automatic variable, 495
-ErrorAction parameter, PowerShell Cmdlets, 494
$ErrorActionPreference, cmdlets, 494
errors, 141–152

checking disks using CHKDSK, 816–817
examining with GetErrorInfo , 637
managing different outputs from cmdlet, 494–496
more on outputs, 496–499
runtime, checking for, 122–123
runtime, in JScript, 147–152
runtime, in VBScript, 141–147
setting instructions in scripts, 102–103

-ErrorVariable parameter, PowerShell Cmdlets, 494–495
event logs, 242–262

archiving, 244–245
clearing, 553
exporting, 553–554
fi nding entries in, 554–555
generating reports, 253–261

86804bindex.indd 85786804bindex.indd 857 1/22/09 11:45:04 AM1/22/09 11:45:04 AM

858

 F Index

event logs (continued)
overview of, 242
reading, 248–253
understanding entries, 243
understanding registry structure, 232–233
viewing, 242–243
writing to, 245–247

event types
overview of, 244
specifying for LogEvent method, 246

Event Viewer, 242–243
EventLog method, 244–245
events

using WriteEvent, 638
VBScript, 34
WshRemote object, 744

.EVTx format, 553
<example> element, XML, 735
-exclude parameter, Get-Service, 544
Exit Do loops, VBScript, 34
Exit For statement, VBScript, 32
Exit Function statement, 36
EXPAND command, 820
ExpandEnvironmentStrings() method, WScript.

WshShell, 108, 119
explicit outputs, PowerShell, 490–492, 515
explicit variables, declaring, 14
export- CliXML, 518–519
export- cmdlets, 515
Export- cmdlets, 517–518
Export- CSV, 517–518
exporting, event logs, 553–554
exposed objects

core WSH, 6–7
key WSH, 107–109

expressions
conditions as, 80
regular. See regular expressions
writing calculated properties with, 503

extensions
ADSI provider, 302, 303
displaying and modifying fi le types used with FTYPE,

825–826
online resources for PowerShell, 729
using IADsExtension, 764

extensions, Active Directory domain, 439–479
accessing schema, 444–448
managing computer objects with LDAP, 448–455
managing contacts with LDAP, 455–459
managing groups with LDAP, 459–465
managing user accounts with LDAP. See user accounts,

managing with LDAP
working with naming contexts and RootDSE object, 439–444
working with organizational units, 466–469

external objects, batch scripts, 100–102
external scripts, batch scripts, 99–100

F
-f (format) operator, strings followed by, 485
Facsimile Telephone Number attribute, NDS, 764
Failure Audit event, 244–245
FC command, 821–822
fi elds, selecting and sorting in PowerShell, 505–509
fi le associations, displaying and modifying, 812
fi le extensions

.PSI, 12
saving Windows scripts with appropriate, 5
for use with scripting hosts, 8

fi le I/O tasks, handling with utility library, 634–636
fi le services, managing

with IADsFileService, 765
with IADsFileServiceOperations, 765–766
open resources with IADsResource, 790
user sessions with IADsSession, 790–791

fi le time, Windows, 567–568
File Transfer Protocol (FTP), 824–825
FileExists method, FileSystemObject, 173–174, 192
FileInfo objects, 72–73
fi les, 170–180. See also folders

comparing differences between two fi les with FC, 821–822
copying, moving and deleting, 175
creating, 173–175
creating with NewFile, 627
deleting with DeleteFile, 628
issues for multiple, 175–178
issues for single, 178–180
managing open, with NET FILE, 832
manipulating with FileSystemObject, 153–156
opening, 181–184
properties, 170–173
reading text. See reading text fi les
skipping lines in, 190–192
writing to, 192–195

fi les, PowerShell cmdlets, 523–539
changing locations, 526
copying, deleting and removing fi les, 529–530
creating and deleting, 530–531
fi le properties and attributes, 531
getting child items, 526–529
parsing text, 536–537
providers, 524–526
reading content, 533–534
selecting strings and working with text data, 534–536
using PSDrives, 524–525
viewing and setting ACL permissions, 531–533
working with Registry vs., 537–539

FileService object, 404–407, 414
fi le-system utility library, 607–628

adding NewFolder and NewFile functions, 627
adding shortcuts to desktop and Start menu, 625–627
examining code for, 607–618
managing menu options, 623–625
setting and clearing fi le attributes, 620–621

86804bindex.indd 85886804bindex.indd 858 1/22/09 11:45:04 AM1/22/09 11:45:04 AM

859

 Index G

using CheckExists, 620
using DeleteFile, DeleteFolder and

DeleteShortcut, 628
using GetInfo, GetSize, and GetType, 620
using GetSubFolders, GetFiles and

GetFolderContents, 619
using special folders, shortcuts and menus, 621–623

FileSystemObject. See FSO (FileSystemObject)
fi lters

checking how script was invoked, 727–728
examining event log using, 553–554
functions vs., 84
handling piping, 701
LDAP, 568–569
overview of, 62

Find Printers dialog box, 418
FindAll() method, DirectorySearcher object, 566
FindOne() method, DirectorySearcher object, 566
fi rewalls

managing using COM objects, 706–711
sending mail with Microsoft Outlook, 712–714

fi rst defi nition wins rule, 511
fl ags

creating user accounts using LDAP, 475
setting for user accounts using LDAP, 476–478
setting group types, 578
user account control, 577–578
using with OpenDSObject, 319–321
using with PutEx() method, 327

FolderExists method, FileSystemObject, 163–164
folders, 153–170. See also shared folders

checking contents of, 157–159
copying, 164
creating, 163–164
creating with NewFolder, 627
deleting, 164
deleting with DeleteFolder, 628
FileSystemObject manipulating, 153–156
moving, 164
multiple, 164–166
properties, 159–163
shortcut, 212–214
single, 167–168
special, 168–170, 212–213
using Attributes property, 171–173

For Each loops, VBScript, 31, 158–159
For in loops, JScript, 50–51
For loops

JScript, 50, 115–116
PowerShell, 78–79
VBScript, 30–31, 115–116

ForAppending() method, 192–195
ForEach-object cmdlet, 73–74, 79–80, 513
foreground color, PowerShell library, 689
forests, AD, 558

FORMAT command, 822–823
/format switch, Dumpel, 249
format-list cmdlet, 503
formats

archived event logs, 244–245
changing PowerShell object, 509–512
disk or fl oppy drives, 822–823
event logs for viewing, 255–261
outputting in specifi c fi le, 516–518
in PowerShell, 502–505

format-table cmdlet, 75
changing scaling of, 516
displaying WMI information with, 583–586
fi nding network adapters, 695–697
formatting in PowerShell, 502–505

ForWriting method, 192–195
FreeSpace property, FileSystemObject, 199–200
fromFileTime() method, 568
FSO (FileSystemObject)

accessing objects and collections, 154
checking folder contents, 157–159
defi ned, 153
Drive property, 156
managing drives, 198–199
methods, 154–155
using, 156

FTP (File Transfer Protocol), 824–825
FTP command, 823–825
FTYPE command, 825–826
functions

building library of AD, 570–572
checking how script was invoked, 727–728
combining JScript and VBScript, 126–127
creating script libraries. See script libraries
examining script engine properties, 113–114
handling piping, 701
JScript, 53–54
PowerShell, 62, 83–85
VBScript, 17–18, 34–36

G
GC (global catalog) extension, ADSI providers, 302
generic object binding, ADSI, 317–318
GenObject, 308
Get() method

defi ned, 325
using Multivalued property with, 345–346
using service object properties, 387
WMI objects, 599–600

GET cmdlets, supporting -NAME, 595
Get-Acl Cmdlet, 531–533
Get-Alias command, 59
getAllComputers function, 683
Get-AuthenticodeSignature, 87–88
Get-ChildItem cmdlet, 526–527, 531

86804bindex.indd 85986804bindex.indd 859 1/22/09 11:45:05 AM1/22/09 11:45:05 AM

860

 H Index

Get-Content cmdlet, 519, 533–534
getDomainComputers function, 683
GetDrive object, FileSystemObject, 199–200
GetDriveInfo function, 651–652
GetDriveName method, FileSystemObject, 198
GetErrorInfo function, 637
Get-EventLog cmdlet, 553–555
GetEx() method, IADs, 325–326
GetFiles function, 619
Get-FirewallRule, 708–711
GetFolder method, FileSystemObject, 157–159
GetFolderContents function, 619
GetInfo() method, IADs, 325, 327
GetInfo function, 620
GetInfoEx() method, IADs, 325
Get-Ipconfig cmdlet, 697–704
Get-Item cmdlet, 531
Get-Location cmdlet, 526
Get-Member function, PowerShell, 70, 72
Get-NetworkAdapter function, 693–697
GetObject method, ADSI, 303–304
GetParentFolderName property, 162–163
Get-Process cmdlet, 502–503, 549–552
Get-PSDrive command, 524–525
getResource static method, 737
GetResponse function, 637
GetScript function, 113–114
GetSEInfo function, 113–114
Get-Service (Gsv) cmdlet, 543–544
getServiceInfo function, 654–655
GetSize function, 620
GetSpecialFolder method, FileSystemObject, 169–170
GetSubFolders function, 619
GetType() method, 71
GetType function, 620
Get-WMIObject cmdlet

alias for, 582
displaying WMI information with, 583–585, 600–601
fi nding network adapters, 693–694, 696
querying across computers, 594–596
using WMI Query Language, 586–588

Global Catalog server, AD, 558–562
global groups

creating/modifying accounts, 373–376
defi ned, 373
managing with NET GROUP, 833
policies, defi ned, 291
policies, logon and logoff script, 298–299
policies, managing, 295–296

global variables, JScript, 40
group membership

checking with LDAP, 464–465
checking with WinNT provider, 370–372, 374–375
displaying with checkUserGroups, 682
implementing with IADsMember, 332
managing user accounts with LDAP, 478

managing with IADsGroup, 767–768
using checkGroupMembership, 679–680

group policies
alternatives to, 299–300
building PowerShell library, 686
global, 294–295
local, 292–294
logon and logoff scripts, 298–299
startup and shutdown scripts, 296–297
using, 290–292
using policy consoles, 295–296
view/set domain account policies, 349
when to apply, 292

Group Policy snap-in, 294, 295–296
Group-Object Cmdlet, 506
groups

creating, 575–576
implementing membership, 332
managing with IADsCollection, 331
managing with utility library, 678–680
setting types of, 578
using Group-Object, 506

groups, managing with LDAP, 459–465
AD properties, 459–460
adding members, 465
checking group membership, 464–465
creating, 460–462
deleting, 462–464
moving, 462–464
removing members, 465
renaming, 463–464

groups, managing with WinNT provider, 372–376
adding/removing members, 375–376
checking membership, 374–375
creating, 373–374
understanding Windows, 373

Groups() method
LDAP, 478
WinNT, 370–372

groupType property, 461
GUID property, IADs, 322, 324–325

H
hash tables

building PowerShell library using, 704–706
defi ned, 503
managing fi rewall using COM objects, 706
techniques for switching in output, 514–515

“Hello World”, 483–484
help fi les

manually generating errors in, 147
for message boxes, 137–138

HELPMSG sub-command, 543
Hold attribute, NDS, 768
Host, PowerShell, 687–689

86804bindex.indd 86086804bindex.indd 860 1/22/09 11:45:05 AM1/22/09 11:45:05 AM

861

 Index I

HostComputer property, FileShare, 416–417
hotkeys, link shortcut, 216–217
HTML documents

convertto-HTML cmdlet, 516
creating blank lines in, 194–195

Hyper-V
case study for WMI, 600–602
creating custom objects on demand, 512–514
getting Directory entries in PowerShell using, 560
overview of, 592
syntax, 537
for WMI, 592–594

I
IADs interface

ADSI reference guide, 750–752
defi ned, 322
working with methods of, 325–329
working with properties, 322–325

IADsAcl interface, 752
IADsADSystemInfo interface, 753–754
IADsBackLink interface, 754–755
IADsCaseIgnoreList interface, 755
IADsClass interface

ADSI reference guide, 755–757
defi ned, 332
working with schema class objects, 336–339

IADsCollection interface, 331–332, 757–758
IADsComputer interface, 758–760
IADsComputerOperations interface, 760
IADsContainer interface

ADSI reference guide, 761–762
creating user accounts with WinNT, 368–369
deleting user accounts with WinNT, 369
implementing containers with, 331

IADsDeleteOps interface, 762
IADsDomain interface, 762–764
IADsExtension interface, 764
IADsFaxNumber interface, 764
IADsFileService interface, 765
IADsFileServiceOperations interface, 765–766
IADsFileShare interface, 766–767
IADsGroup interface, 767–768
IADsHold interface, 768
IADsLargeInteger interface, 768
IADsLocality interface, 769
IADsMembers interface

ADSI reference guide, 769–770
checking group membership with LDAP, 464–465
implementing membership groups, 332

IADsNamespaces interface, 770
IADsNetAddress interface, 770
IADsO interface, 771
IADsObjectOptions interface, 772
IADsOctetList interface, 772

IADsOpenDSObject interface, 318, 773
IADsOU interface, 773–774
IADsPath interface, 774–776
IADsPostalAddress interface, 777
IADsPrintJob interface, 777–778
IADsPrintJobOperations interface, 779–780
IADsPrintQueue interface, 418–429, 780–782
IADsPrintQueueOperations interface, 418–429, 782–783
IADsProperty interface

accessing, 341–342
ADSI reference guide, 783–784
defi ned, 332
examining schema for object properties, 342–346

IADsPropertyEntry interface, 784–785
IADsPropertyList interface, 785–786
IADsPropertyValue interface, 786–788
IADsPropertyValue2 interface, 788–789
IADsReplicaPointer interface, 789
IADsResource interface, 790
IADsService interface, 404, 791–793
IADsServiceOperations interface, 794–795
IADsSession interface, 790–791
IADsSyntax interface, 332, 795
IADsTimestamp interface, 795
IADsTypedName interface, 796
IADsUser interface, 796–802
ICMP Echo requests, Ping, 704–705
icons

adding to message boxes, 135–136
setting location of shortcut, 216, 218–219

IDirectoryObject interface, 802
IDirectorySearch interface, 802
if statements, JScript, 49
If Then statement, VBScript, 145
If...Else statements, JScript, 50, 148–149
If...Then statements, VBScript, 26–27
IIS (Internet Information Services) extension, ADSI providers, 303
Image Management Service, Hyper-V, 600
implicit outputs, PowerShell, 490–492, 515
implicit variables, declaring, 14
import- CliXML, 518
Import- cmdlets, 518
Import- CSV cmdlet, 519–520, 536–537
imports, 518–520
-include parameter, Get-Service, 544
Information event, 244–245
initialization statement, 78
initializing arrays, in JScript, 43
input, PowerShell. See also I/O (input and output); I/O utility library

overview of, 518–520
selecting text, 520–521
user, 521–522

input boxes, 131–133
InputBox function, 36, 131–132
interactive mode, running scripts in, 94

86804bindex.indd 86186804bindex.indd 861 1/22/09 11:45:05 AM1/22/09 11:45:05 AM

862

 J Index

interfaces. See also ADSI (Active Directory Service Interfaces)
core reference

ADSI LDAP provider, 308–309
ADSI NDS provider, 313–315
ADSI WinNT provider, 310–312

Internet Information Services (IIS) extension, ADSI providers, 303
I/O (input and output), 129–141

overview of, 129–131
using input boxes, 131–133
using message boxes. See message boxes

I/O utility library, 629–638
examining code for, 629–634
handling fi le I/O, 634–636
handling other I/O tasks, 636–638

IP address, synchronizing system time, 268
IPCONFIG command, 697–704, 826–827
Is operator, VBScript, 25
IsAccountLocked property

using LDAP, 477
using WinNT, 359–368

IsMember() method, 373–376, 465
IsRootFolder property, 161–162
item-Properties, Registry values as, 538
items, defi ned, 537

J
<?job ?> element, XML, 102–103, 736
job element

creating batch scripts, 97
defi ned, 96
using script element within, 98

<job> element, XML, 736
.js fi les, 8, 91
JScript

case sensitivity of scripting engine, 8
creating scripts. See scripts
fi les. See fi les
folders. See folders
handling runtime errors in, 147–152
input and output, 129–133
.js fi les, 8
managing drives, 197–206
managing network printers, 206–209
objects for Windows scripting, 10
opening fi les, 181–184
reading text fi les. See reading text fi les
scripting basics. See scripts
skipping lines in fi les, 190–192
using pop-up dialog boxes, 137–141
writing to fi le, 192–195

JScript essentials, 39–55
conditional statements, 49–50
control fl ow with looping, 50–53
operators, 44–49
using arrays, 42–43

using comments, 42
using functions, 53–55
using strings, 41–42
variable data types, 40–41
variable naming conventions, 39–40

K
keys, associative array, 74
keys, Registry

creating new, 235
deleting, 236
reading, 233–234
understanding structure, 232–233
working with fi le system vs., 537
writing, 234–235

Key-Value Pair exchange, Hyper-V, 512–513

L
/l switch, Dumpel, 249
language, setting scripting, 98–100
LargeInteger type, manipulating, 768
lcase() function, 29–30
LDAP (Lightweight Directory Access Protocol)

core object model, 333–336
error codes, 803
error codes with Win32, 804–807
error codes with Win32 for ADSI 2.0, 807–810
fi lters, 568–569
getting entries from AD with ADSI, 559–562
some directory services implementing, 301

LDAP ADSI provider
core object model for, 333–336
overview of, 306–309
scripting extensions. See extensions, Active Directory domain

leaf elements, ADSI schema, 332
libraries. See script libraries
Lightweight Directory Access Protocol. See LDAP (Lightweight

Directory Access Protocol)
-like operator, PowerShell

checking for basic wildcards, 718
wildcard comparison with, 81–82
working with text data, 534–535

Line property, TextStream object, 185–186
lines

reading from text fi les, 188–189
skipping when reading text fi les, 191–192
writing blank lines to fi les, 194–195
writing to fi les, 194

link shortcuts
creating with CreateShortcut method, 214–215
creating with NewShortcut function, 622
defi ned, 214
setting arguments, 216–217
setting hotkeys, 217

86804bindex.indd 86286804bindex.indd 862 1/22/09 11:45:05 AM1/22/09 11:45:05 AM

863

 Index M

setting icon locations, 218
setting properties, 214
setting working directories, 219

-List switch, Select-String cmdlet, 724
ListSpecialFolders function, 621–622
.lnk extension, 214
local and domain resources, 347–376

creating and modifying group accounts, 372–376
creating and modifying user accounts, 356–372
domain account policies, 347–353
local computer properties, 353–356

Local Computer Policy, 292–293, 295–296
local computers, 353–356, 368–369
local group policies

defi ned, 290
managing, 292–294
managing logon and logoff scripts, 298–299

local groups
creating/modifying group accounts, 373–376
defi ned, 373
managing with NET LOCALGROUP, 833–834
managing with utility library, 679

local jobs, scheduling, 265–268
local variables, JScript, 40
locality

changing drive, 526
managing with IADsLocality, 769

LockoutObservationInterval property
defi ned, 349
viewing and setting account policies, 352–353
WinNT Domain object, 348

LogEvent method, WshShell, 246
logical operators, JScript, 47–48
logical structures, Active Directory, 291
logoff, managing script, 298–299
Logoff Properties dialog box, 298–299
logon

applying user-related policies during, 292
assigning as scheduled task, 300
assigning to individual user accounts, 300
changing account for Task Scheduler, 266–267
executing through shell, 299
managing scripts, 298–299
to remote computer using WMI, 595–596
setting built-in user variables at, 117

logs. See event logs
looping

JScript control fl ow with, 50–53
PowerShell, 77–80
VBScript control, 30–34

M
/m switch, Dumpel, 249
main() function, 111
MAKECERT utility, 86

MandatoryProperties, IADsClass, 337, 338–341
MapDrive function, 653
MapNetworkDrive method, Network object, 204–205
markup tags, XML. See batch scripts
-Match operator, PowerShell, 81–82, 534–535, 721
MaxBadPasswordAllowed property, 348–349, 352–353
MaxPasswordAge property, 348–351
MaxRange property, IADsProperty, 342
MaxUserCount property, FileShare object, 416–417
Measure-Object cmdlet, 506
Measure-object cmdlet, 535
members, of PowerShell objects, 70
Members() method, 464–465
menus

accessing and listing options, 221–224
confi guring, 211
creating, 220–221
deleting, 226–227
deleting shortcuts and options, 225–226
updating shortcuts and options, 224–225
using CheckMenu, CheckMenu2, 623–625
using NewMenu, AddMenuOption , 622–623
using special folders for shortcuts, 212–213

message boxes, 133–141
basics of, 133–134
buttons, 134–135
evaluating button clicks, 136–137
help fi les, 137
icons, 135–136
overview of, 133
pop-up dialog boxes, 137–141

methods
converting to and from strings in JScript, 42
defi ned, 6
defi ning objects by, 69–73
DirectorySearcher object, 566
Err object, VBScript, 145
FileService object, 404
FileSystemObject, 154–155
IADs interface, 325–329
input, output and error streams, 130–131
interface. See ADSI (Active Directory Service Interfaces)

core reference
print queues, 429–430
Script.Signer object, 741
Service objects, 396–402
StdErr stream, 739
StdIn stream, 738–739
StdOut stream, 739
WMI, 599–600
WScript, 107–108, 741
WScript.WshNetwork, 108
WScript.WshShell, 108–109
WshArguments collection, 740
WshController object, 742

86804bindex.indd 86386804bindex.indd 863 1/22/09 11:45:05 AM1/22/09 11:45:05 AM

864

 N Index

methods (continued)
WshEnvironment object, 742
WshNamed collection, 740
WshNetwork object, 743
WshRemote object, 744
WshScriptExec object, 745
WshShell object, 745–746
WshShortcut object, 746
WshSpecialFolders object, 747
WshUnnamed collection, 741
WshUrlShortcut object, 747

Microsoft Management Console (MMC), 292, 707–709
Microsoft Outlook, sending mail with, 712–714
Microsoft Windows Administrator’s Pocket Consultant, 292
MinPasswordAge property, 348–351
MinPasswordLength property, 348–350
MinRange property, IADsProperty, 342
MMC (Microsoft Management Console), 292, 707–709
modifi er keys, 217
more pipe command, 58
Move method

single fi les, 180
single folders, 168

moveAccount function, 684
MoveFile method, 177–178, 228
MoveFolder method, 166
MoveHere() method, LDAP provider

computer accounts, 452–454
contacts, 457
groups, 462–463
organizational units, 469
user accounts, 478–479

Move-item cmdlet, 529
MoveTo() method, 579
mrAccount function, 684
MsgBox function, 37
Msgbox function, 133–140
multiple dimensions, using arrays with, 21
multiple fi les

CopyFile, 176–177
DeleteFile, 175–176
MoveFile, 177–178

multiple folders
CopyFolder method, 165–166
DeleteFolder method, 164–165
issues for, 164–166
MoveFolder method, 166

multiple-line comments, JScript, 42
Multivalued property, IADsProperty, 342–343, 345–346
$MyInvocation, 727

N
-NAME, supporting wildcards, 595
Name property, IADs, 322
<named> element, XML, 736

names
obtaining service object, 382–386
obtaining shared printer, 418

__NAMESPACE property, WMI objects, 596
namespaces

confi guring default WMI, 582–583
fi nding available, 596
managing with IADsNamespaces, 770
WMI object, 581

naming contexts
binding to, 439–440
core LDAP object model and, 333
defi ned, 439
using ADSI Edit to access, 444–445

naming conventions
constants, 20
renaming computer account with LDAP, 453–454
renaming groups using LDAP, 463–464
renaming organizational units using LDAP, 469
renaming user accounts using LDAP, 478–479
variables in JScript, 39–40
variables in VBScript, 13–14

native mode, creating universal groups in, 461
NBSTAT command, 827–828
NDS (Novell NetWare Directory Services)

defi ned, 301
working with ADSI NDS provider, 312–315
working with ADSI NWCOMPAT provider, 315–317

NDS ADSI provider, 312–315, 331–332
NET ACCOUNTS command, 828–829
Net Address attribute, NDS, 770
.NET assemblies, loading into PowerShell library, 690
NET commands, history of, 524
NET COMPUTER command, 829–830
NET CONFIG SERVER command, 830
NET CONFIG WORKSTATION command, 831
NET CONTINUE command, 831–832
NET FILE command, 832
NET GROUP command, 833
NET LOCALGROUP command, 833–834
.NET objects

sending mail using, 713–714
using Web client object and XML, 714–718

NET PAUSE command, 834–835
NET PRINT command, 835–836
NET SESSION command, 836
NET SHARE command

accessing shared folders, 414
obtaining name of print queue object, 418
reference guide, 836–837

NET START command, 541–542, 837–838
NET STATISTICS command, 838–839
NET STOP command, 839–840
NET TIME command, 267–269, 840
NET USE command, 841–842
NET USER command, 842–843

86804bindex.indd 86486804bindex.indd 864 1/22/09 11:45:05 AM1/22/09 11:45:05 AM

865

 Index O

NET VIEW command, 843–844
NetBIOS, using NBTSTAT, 827–828
NET.EXE command, 541–543
NETSTAT command, 844–845
network adapters

fi nding, 693–697
sorting list of, 696–697

network address, print queue properties, 424
network resource utility library, 639–657

examining code for, 639–651
for services, 654–655
using CheckFreeSpace, 652–653
using GetDriveInfo, 651–652
using MapDrive, 653
working with printers, 653–654

network shares, utility functions for, 656–657
network utilities, customizing PowerShell library, 693–704

fi nding network adapters, 693–694
Get-Ipconfig, 697–704
managing fi rewall using COM objects, 706–711
Ping, 703–704

networks
displaying resources using NET VIEW, 844
displaying status of connections using NETSTAT, 844–845
managing printers, 206–209
managing routing tables using ROUTE, 849–850
mapping drives, 204–206
reconfi guring services through registry, 236–242
troubleshooting routing using TRACERT, 851–852

NewFile function, 627
NewFolder function, 627
New-Item cmdlet, 531, 537
New-ItemProperty Cmdlet, 539
New-PSDrive cmdlet, 525
non-exposed objects, core WSH, 7
Not (!) operator, JScript, 48
-not operator, PowerShell, 80
-NotContains operator, PowerShell, 534
Notepad, creating Windows scripts in, 5
-NotLike operator, PowerShell, 81, 534–535
-NotMatch operator, PowerShell, 535, 721
nouns

and piping, 701
and PowerShell cmdlets, 59

Novell Netware 3, 315–317
Novell NetWare Directory Services. See NDS (Novell NetWare

Directory Services)
NSLOOKUP command, 845–846
NTFS, 817, 818
null objects, in PowerShell, 80–81
Number property, error code, 151–152
numbers

constant declaration in VBScript, 20
JScript data types, 41
variables in PowerShell, 68
variables in VBScript, 15–16

NWCOMPAT ADSI provider, 315–317

O
object classes, AD, 447–448
object name, service objects, 382–386
object references, 773
<object> element, XML, 736
objects

accessing through FileSystemObject, 154
ADSI LDAP provider, 308–309
ADSI NDS provider, 313–315
ADSI WinNT provider, 310–312
binding ADSI, 303–306, 317–318
common Active Directory, 447–448
common-name, 334
core WSH, 6–8
creating, 575–576
customizing on demand, 512–514
deleting from directory store, 761–762
examining schema for properties of, 342–346
JScript, 10
key WSH, 107–109
PowerShell, richer types and .NET, 69–73
PowerShell vs. WSH, 11
service, 382–386
types, PowerShell pipe and, 63–65
updating in ADSI, 322–325
VBScript, 9

objects, WMI
discovering, 596
methods, 599
overview of, 581–582
properties, 596
updating, 596

OctetList attribute, NDS, 772–773
OID property, IADsProperty, 342
OK button

input boxes, 131–132
message boxes, 134

On Error Resume Next statement, VBScript, 141
online references

backup and restore registry, 232
PowerShell blogs, 729
PowerShell Community Extensions, 524
PowerShell extensions, 729
searching information about properties, 576
WMI objects, 582

open fi les
managing with NET FILE, 832
viewing, 403–404

open resources, 402–411
overview of, 402
utility functions for, 656–657
viewing in scripts, 404–407
viewing open fi les and user sessions, 403–404
working with Resource and Session objects, 407–411

OpenAsTextStream method, 183–184
OpenDSObject method, 318–322

86804bindex.indd 86586804bindex.indd 865 1/22/09 11:45:05 AM1/22/09 11:45:05 AM

866

 P Index

opening fi les, 181–184
OpenTextFile method, 182–183
operators

JScript, 44–49
PowerShell comparison, 81–82
VBScript, 22–26

OptionalProperties, IADsClass, 337–341
options, CScript, 93–94
-or operator, PowerShell, 80
organization, managing account with IADsO, 771
organizational unit identifi er (OU), 334–335
organizational units

applying group policies to, 291–292
creating, 467–468, 575–576
creating new domain container with, 334–335
defi ned, 291, 466
deleting, 469
extensions, 466–469
managing with IADsOU, 773–774
modifying, 468–469
moving, 469
properties for, 466–467
renaming, 469

organizationalUnit object, 449
OU (organizational unit identifi er), 334–335
Out- cmdlets, built-in, 515–516
Out-Clipboard cmdlet, 516
Out-Default cmdlet, 516
Out-File cmdlet, 516–517
Out-Host cmdlet, 515
Outlook.application COM object, 712–714
Out-Null cmdlet, 516
Out-Printer cmdlet, 516
output, PowerShell. See also I/O (input and output); I/O

utility library
changing formatting of objects, 509–512
to console, 483–484
controlling formatting, 502–505
creating custom objects on demand, 512–514
implicit and explicit, 489–492
managing from Cmdlets, 494–496, 515–516
more on error, 496–499
session transcripts, 499–500
sorting and selecting fi elds, 505–509
in specifi c fi le formats, 516–518
switching techniques, 514–515
tracking progress, 501–503
using strings, 484–489
verbose and debug, 492–494

Out-String cmdlet, 516
-OutVariable parameter, PowerShell Cmdlets, 494–495

P
<package> element, XML, 736
panels, Event Viewer, 242–243

parameters
DirectorySearcher creation, 564–565
Get-EventLog cmdlet, 552–555
NewShortcut function, 622
PowerShell commands and, 73
Select-String cmdlet, 724
standard cmdlet, 494–496
Start-Service cmdlet, 546
Stop-Service cmdlet, 545
Write-Progress cmdlet, 501

Parent property, IADs, 322
ParentFolder property, 161–162
parentheses (), 35, 39
parsing

batch scripts, 103
text fi les, 536–537

Partial Replica Set, AD, 558
partitions, AD, 558
PasswordHistoryLength property, 348–349, 351–352
passwords

confi guring domain account policies, 349, 677–678
creating users with WinNT, 368–369
managing users with LDAP, 475–476
managing users with utility library, 681–682
managing with NET ACCOUNTS, 828–829
setting user, 370, 578

PATH command, 846–847
Path property, FileShare object, 416–417
__PATH property, WMI objects, 596
paths

accessing with IADsPath, 774
cmdlets, 528–529
managing with IADsPathName, 775–776
working with special folders using, 169–170

$Paths parameter, 62
Pause() method, print jobs, 437–438
Pause() method, PrintQueue object, 429–430
Pause() method, services, 396–402
pauseService function, 655
-percentagecomplete parameter, Write-Progress, 501
permissions, computer and user script, 290
physical structures, AD, 291
PING command, 703–704
PING command, 847–848
pipe (|) symbol, 11, 57–58
piping

chaining commands using, 11, 57–58
copying, deleting and removing fi les using, 530
defi ned, 57
functions vs. fi lters and, 701
out- cmdlets using, 515
PowerShell, 63–64, 74–77

pointers, 159
policies. See domain account policies; group policies
Pop-Location Cmdlet, 690–691
PopUp() function, 138–141

86804bindex.indd 86686804bindex.indd 866 1/22/09 11:45:05 AM1/22/09 11:45:05 AM

867

 Index P

pop-up dialog boxes
creating, 137–141
displaying event log reports in, 255–261
displaying with DisplayDialog, 636

positioning, input boxes, 132
Postal Address attribute, NDS, 777
PowerShell

architecture, 10–12
fi les. See fi les, PowerShell cmdlets
inputs, 518–522
outputs. See output, PowerShell
working with WMI. See WMI (Windows Management

Instrumentation)
PowerShell, building library, 685–730

accessing mail using .NET objects, 712–714
adding more to environment, 689–691
checking how script was invoked, 727–728
customizing environment for, 685–687
generic “choose” function, 691–693
host, 687–689
managing fi rewall with COM objects, 706–711
network utilities, 693–705
prompt, 689
regular expressions, 718–722
script dependencies, 723–727
uses for hash tables, 704–706
using Web client object and XML with .NET, 714–718

PowerShell fundamentals, 57–88
aliases, 58–60
arrays, 73–74
cmdlets, 60–61
conditions, 80–82
functions and fi lters, 62
looping, 77–80
objects, types and PowerShell pipe, 63–65
pipe, 63–65
PowerShell pipe, 74–77
providers, 60–61
richer types and .NET objects, 69–73
scripts, script blocks and functions, 83–85
scripts and security, 85–88
shells, 57–58
snap-ins, 60–61
variables, 65–69

precedence, operator, 23, 45
Preserve keyword, VBScript, 22
print device, 424
print jobs, controlling, 430–438

displaying with NET PRINT, 835–836
monitoring status of, 433–436
pausing and resuming, 437–438
properties, 430–433
using IADsPrintJob, 777–778
using IADsPrintJobOperations, 779–780
using IADsPrintQueue, 780–782
using IADsPrintQueueOperations, 782–783

print processor, 424
print queues, 418–429

accessing IADsPrintJob with, 777–778
displaying shared, with NET PRINT, 835–836
examining, 418–420
general printer information, 423–424
managing, 429–430
prioritizing print jobs, 424–425
properties, 420–421
scheduling availability, 425
status of, 425–429
using banner page, 422–423
using PrintQueue object, 420–429
working with, 421–422

printers
adding connections, 206–207
managing shared, with NET SHARE, 836–837
network resource library functions for, 653
removing connections, 208–209
setting default, 206

Printers collection, 738
PrintJobs() method, PrintQueue object, 430
Priority property, print queue, 424–425
PrivateData property, Host, 687–688
procedures, VBScript, 34–37
processes, 549–552
profi le scripts, 689–691

adding more to PowerShell library, 689–691
building PowerShell library with, 685–686
host, 687–689
prompt, 689

programs, running from within scripts, 121–124
progress, tracking, 501–503
prompt function, PowerShell, 689
properties

accessing in PowerShell, 531
account lockout policy, 349
Active Directory computers, 448–451
Active Directory contacts, 453–458
Active Directory groups, 459–460
Active Directory user objects, 470–474
adding to and deleting from multivalued properties, 578–579
custom fi elds, 584–586
defi ned, 6
defi ning objects by, 69–73
DirectorySearcher object, 565–567
drive, 199–200
Drives collection, 738
Err object, VBScript, 145
fi les, 170–173
FileService object, 404–405
FileSystemObject, 156
folders, 159–163
Get-Process cmdlet, 549–552
IADs interface, 322–325
IADsClass, 337–341

86804bindex.indd 86786804bindex.indd 867 1/22/09 11:45:05 AM1/22/09 11:45:05 AM

868

 Q Index

properties (continued)
IADsProperty, 342, 784–785
IADsPropertyEntry, 784–785
IADsPropertyList, 785–786
IADsPropertyValue, 786–788
IADsPropertyValue2, 788–789
input, output and error streams, 130–131
interface. See ADSI (Active Directory Service Interfaces)

core reference
job, for batch scripts, 102–103
link shortcuts, 216
local computers, 353–356
organization units, 466–467
password policies, 349
PowerShell Host variable, 687–688
print jobs, 430–432
print queue, 420–425
Printers collection, 738
Registry, 538
Resource objects, 407
RootDSE object, 440–444
scripts, 92, 113–114
services, 386–390
Session objects, 407
setting single-valued, 574–577
shared folders, 415–416
StdIn stream, 739
task, 274
updating WMI objects, 596–599
URL shortcut, 220
user accounts, 356–368
WMI object, 596
WScript, 107–108
WScript object, 742
WScript.WshNetwork, 108
WScript.WshShell, 108–109
WshArguments collection, 740
WshEnvironment object, 743
WshNamed collection, 740
WshNetwork object, 743
WshRemote object, 744
WshRemoteError object, 744
WshScriptExec object, 745
WshShell object, 746
WshShortcut object, 746
WshSpecialFolders object, 747
WshUnnamed collection, 741
WshUrlShortcut object, 747

Properties dialog box, 446–447
providers

CMDlet snap-ins implementing, 12
PowerShell, 60–61, 524–525
PowerShell variables and, 66

providers, ADSI
accessing properties and updating objects, 322–325

ADSI LDAP provider, 306–309
ADSI NDS provider, 312–315
ADSI NWCOMPAT provider, 315–317
ADSI WinNT provider, 309–312
binding ADSI objects using, 303–306
core LDAP object model, 333–336
core WinNT object model, 332–333
extensions for, 302–303
generic object binding, 317–318
handling authentication and security, 318–322
overview of, 302–303
working with IADs methods, 325–329
working with schema class objects, 336–339

PS console fi le, and snap-ins, 686
.pscl extension, 686
.PSI fi le extension, 12
Push-Location cmdlet, 690–691
Put() method

creating objects in Active Directory, 562
overview of, 325–326
using Multivalued property with, 345–346
WMI objects, 599–600

PutEx() method
overview of, 325–330
using Multivalued property with, 345–346, 578–579

pwdLastSet property, 476

Q
Quest, 559
question mark (?), 82
Quit method, 112
quotation mark, double (‘’)

using for declaring VBScript constants, 20
using for VBScript variable types, 15
using strings with, 484–485

quotation mark, single (‘)
comments following, 14
using strings with, 484–485

R
/r switch, Dumpel, 249
Raise method, Err object, 147
Read method, 187–188
ReadAll method, 187–188, 190
ReadCharN function, 635
ReadFile function, 634–635
ReadFromKeyboard function, 636
Read-Host Cmdlet, 521–522
reading

to event logs, 248–253
registry keys and values, 233–234

reading text fi les, 184–190
characters, 187–188
entire fi le, 190

86804bindex.indd 86886804bindex.indd 868 1/22/09 11:45:06 AM1/22/09 11:45:06 AM

869

 Index S

lines, 188–189
preparing to, 184–187

ReadLine method, 187–189
ReadLineN function, 635
RECOVER command, 848–849
recovery options, services, 381–382
recurse switch, Get-ChildItem cmdlet, 526–527
ReDim function, VBScript, 22
reference guides

ADSI. See ADSI (Active Directory Service Interfaces)
core reference

command-line utilities. See command-line utilities, essential
Windows Scripting API. See Windows Scripting API

<reference> element, XML, 737
References of statement, WMI, 588–591
[regex] type accelerator, 722
Registry. See Windows Registry
Registry Editor, 100–102
RegRead method, WshShell, 233–234
regular expressions

building PowerShell library, 718–722
script dependencies and, 723–728

RegWrite method, WshShell, 234–235
relative fi le paths, batch scripts, 99
remote scripts, 124–126
remote systems

logon using WMI to, 595–596
managing remote connections with NET USE, 841–842
permissions to schedule tasks on, 275
scheduling jobs on, 265–268

Remove() method, 465
Remove-item cmdlet, 529–531
RemoveNetworkDrive method, Network object, 205–206
RemovePrinterConnection method, Network object,

208–209
Remove-PSDrive cmdlet, 525
rename command, CMD.EXE, 530
renameAccount function, 684
Rename-Item cmdlet, 530
repeated statements, for loops, 78
Replica Pointer attribute, NDS, 789
reports, event log, 253–261

creating logs, 253–255
formatting logs for viewing, 255–261

<resource> element, 105–106, 737
resources

managing open. See open resources
using NET VIEW to display network, 844

Restart-Service cmdlet, 546–554
Resume() method, print jobs, 437–438
resumeService function, 655
RO (read-only) status

defi ned, 356
NT user properties, 357–358
using service object properties, 386–387

RootDSE object
accessing System container, 446
binding to naming contexts, 440
binding to root of directory tree with LDAP, 318
getting entries from AD with ADSI, 561–562
overview of, 333
properties, 440–444

ROUTE command, 849–850
router, ADSI, 303
rules, fi rewall, 709–711
Run() method, WScript.Shell, 121–124
Run() method, WshShell, 251–253, 278–279
runtime

batch script documentation of, 104–105
checking for errors, 122–123
handling errors in JScript, 147–152
handling errors in VBScript, 141–147

<runtime> element, 735
RW (read-write) status

defi ned, 356
NT user properties, 357–358
service properties, 386–387
WinNT Domain object properties, 348

S
SAMAccountName property, 575–576
scheduled tasks, 265–287

creating scheduling manager script using, 283–287
deleting jobs using scripts, 281–282
managing using SCHTASKS, 850–851
overview of, 265–267
startup and logon scripts as, 300
using AT command, 278–279, 813
using AT Scheduler, 275–278
using automated job creation, 280–281
using Task Scheduler wizard, 269–274

Scheduled Tasks folder, 273–274
schema, AD, 444–448
schema, ADSI, 331–346

accessing with IADsProperty, 341–342
core LDAP object model, 333–336
core WinNT object model, 332–333
examining object properties, 342–346
managing attributes with IADsProperty, 783–784
managing classes, 336–341, 755–757
managing syntax with IADsSyntax, 795
overview of, 331–332

schema containers, 333, 439
Schema property, IADs, 322
SCHTASKS command, 850–851
scope

JScript variable, 40
PowerShell variable, 66

script blocks, PowerShell, 83
script element, batch scripts, 96

86804bindex.indd 86986804bindex.indd 869 1/22/09 11:45:06 AM1/22/09 11:45:06 AM

870

 S Index

script libraries
account management utility. See account management utility

library
fi le-system utility. See fi le-system utility library
I/O utility. See I/O utility library
network resource utility. See network resource utility library
PowerShell. See PowerShell, building library

<script> element, XML, 98, 737
ScriptEngine() function, 113–114
ScriptEngineBuildVersion() function, 113–114
ScriptEngineMajorVersion() function, 113–114
ScriptEngineMinorVersion() function, 113–114
ScriptFullName() property, 113–115
scripting engines

defi ned, 5
FileSystemObject as extension of, 154
properties, 113–114
in WSH architecture, 8–9

scripting hosts
examining information related to, 110–111
Windows Script Host architecture, 8
WScript or CScript components, 5

ScriptName() property, 113–115
scripts

batch. See batch scripts
checking how script was invoked, 727–728
combining JScript and VBScript, 126–128
displaying text strings, 109–110
environment variables, 117–121
examining information, 110–117
key WSH objects, 107–109
overview of, 91–92
and PowerShell, 83–88
running, 91–95
running programs, 121–124
running programs from within, 121–124
running remotely, 124–126
working with Dumpel, 251–253

scripts, scheduling jobs with
automatically, 280–282
deleting jobs, 282–283
managing, 283–287
using AT, 278–279

Script.Signer object, 741
searches, 385–386
SearchResult object, DirectorySearcher, 566–567
Search-Root directory, 573–574
-Secondsremaining parameter, Write-Progress, 501
security

ADSI, 318–322
groups, 373–376
running scripts remotely, 124–126
scripts in PowerShell and, 85–88

Security snap-in, 12
Select Case statement, VBScript, 28–29, 51–52
Select Program to Schedule dialog box, 270
Select-Object cmdlet, 505

Select-String cmdlet, 520, 722–727
servers

displaying statistics using NET STATISTICS, 838–839
showing status of DNS using NSLOOKUP, 845–846

services, 377–402
checking status and dependencies, 390–395
confi guration settings for common, 378–379
confi guring, 548
displaying confi guration information with NET CONFIG

SERVER, 830
extending with FileService object, 404–407
with IADsFileService, 791
with IADsFileServiceOperations, 794–795
with IADsService, 791–793
listing network, 837–838
managing in Services node, 377–378
pausing, 396–402, 834–835
properties, 386–390
recovery settings, 381–382
restarting, 546–547
resuming, 547–548, 831–832
starting, 396–402, 546, 837–838
stopping, 396–402, 545–546, 839–840
suspending, 547–548
using, 382–386
utility functions, 654–655
viewing and setting information, 395–396
working with, 541–545

Services console, Task Scheduler, 266
Services node, Computer Management console, 377–378
ServicesDependedOn property, 546
session transcripts, 499–500
sessions. See user sessions
Sessions node, Computer Management console, 403
Set keyword, pop-up dialog boxes, 138
setAccountLockoutInfo function, 678
Set-Acl cmdlet, 531–533
SetArchiveAttribute function, 620–621
Set-Content cmdlet, 533–534
SetDefaultPrinter method, Network object, 206
SetHiddenSystem function, 620–621
SetInfo() method, IADs, 325, 327, 329
Set-ItemProperty cmdlet, 538–539
Set-Location cmdlet, 526
setMinPasswordLength function, 677–678
SetNormalAttribute function, 620–621
setpassword() method, 370, 578
setPasswordAge function, 677–678
setPasswordHistory function, 678
SetReadOnly function, 620–621
Set-Service cmdlet, 548
shared folders

creating and deleting, 417–418
managing with IADsFileShare, 766–767
properties, 415–416
working with, 413–415

86804bindex.indd 87086804bindex.indd 870 1/22/09 11:45:06 AM1/22/09 11:45:06 AM

871

 Index T

shell scripts
executing logon scripts through, 299
in PowerShell, 57–58
Windows scripts vs., 5

shortcuts
adding to desktop and Start menu, 625–627
building, 214–220
creating with NewShortcut function, 622
customizing for PowerShell library, 686–687
deleting, 225–226, 628
updating, 224–225
using special folders for, 212–213

shutdown, 296–297
-SimpleMatch switch, Select-String, 722
single fi les

using Copy , 179
using Delete, 178–179
using Move, 180

single folders, 167–168
single-line comments, JScript, 42
sites

applying group policies to, 291–292
defi ned, 291

sizing arrays, JScript, 43
sizing arrays, VBScript, 21
SkipLine method, 191–192
skipping lines, fi les, 190–192
Skip(x) method, 191
SMTP server, sending mail with, 713–714
snap-ins

customizing PowerShell library, 686, 690
PowerShell, 11–12, 60–61

Sort-Object cmdlet, 506–607
special folders

adding shortcut to, 622–623
displaying list of available, 621–623
using for shortcuts, 212–213
working with, 168–170

SpecialFolders method, WScript.WshShell, 213
split() method, text strings, 692
src attribute, batch scripts, 98–100
stacks, PowerShell, 690–691
standalone attribute, <?XML ?> element, 103
standard input, 57–58
standard output, 483–484
Start() method, services, 396–402
Start menu, adding shortcuts to, 625–627
Start-Service cmdlet, 546
startService function, 655
StartTime property, print queue, 425
Start-Transcript cmdlet, 500
startup applications

adding options to, 227–228
applying computer-related policies during, 292
assigning as scheduled task, 300
defi ned, 211

managing computer scripts, 296–297
moving options, 228
setting shortcut hotkeys, 217
using special folders for shortcuts, 212–213

Startup Properties dialog box, 298–299
status

monitoring print job, 433–436
monitoring print queue, 425–429
troubleshooting service problems, 390–395

-Statuswhich parameter, Write-Progress cmdlet, 501
StdErr stream, 130–131, 739
StdIn stream, 130–131, 738–739
StdIn.ReadLine() method, 368
StdOut stream, 130–131, 739
Step keyword, For loops in VBScript, 31–32
Stop() method, services, 396–402
Stop-Process cmdlet, 551
Stop-Service cmdlet, 545–546
stopService function, 655
Stop-Transcript cmdlet, 500
streams, 130–131
strings

displaying, 109–110
JScript, 41–42
output to console using, 484
selecting, 534–536
using single and double quotes in, 484–485

strings, VBScript
conditional controls and, 29–30
declaring constants, 20
performing operations on, 26
variable types, 15–16

subnets, 291
subroutines, VBScript, 34, 37
SUBST command, 523
Success Audit event, 244–245
Suspend-Service cmdlet, 546–554
switch case statement, JScript, 51–52
switch statement, 514–515
syntax, managing with IADsSyntax, 795
Syntax property, IADsProperty, 342–343
System container, 445–446
system information, IADsSystemInfo interface, 753
system providers. See providers, ADSI

T
/t switch, Dumpel, 249
Tab Delimited (Text) archived event log, 244–245
tab expansion, PowerShell, 76
target object property, 496
TargetPath property, URL shortcuts, 220
Task Scheduler

defi ned, 265
scheduling basics, 265–267
synchronizing system time, 267–269

86804bindex.indd 87186804bindex.indd 871 1/22/09 11:45:06 AM1/22/09 11:45:06 AM

872

 U Index

Task Scheduler Wizard, 269–274
changing task properties, 274
overview of, 269
running, 269–273
synchronizing system time, 267–269
viewing tasks, 273–274

tasks. See scheduled tasks
TCP/IP

using IPCONFIG, 826–827
using NBTSTAT, 827–828

Tee-Object cmdlet, 495–496
Test-Path cmdlet, 528
Text (Comma Delimited) archived event log, 245
Text (Tab Delimited) archived event log, 244–245
text fi les

displaying strings, 109–110
input. See input, PowerShell
output. See output, PowerShell
parsing, 536–537
PowerShell variables, 67–68
reading. See reading text fi les
selecting strings and working with data, 534–536
using regular expressions, 718–722
writing to, 192–195

TextStream object, 184, 193
third-party products, managing AD with, 559
Throw keyword, 497–498
throw statement, JScript, 148–149
time

creating PowerShell library, 700
displaying with NET TIME, 840
using TIME command, 851
VBScript constants, 19–20

TIME command, 851
Timestamp attribute, NDS, 795
titles

input box, 131
message box, 134

tostring() method, 485–486
TRACERT command, 851–852
Trap keyword, 497–499
trees, Active Directory, 558
try...catch statements

JScript error-handling, 147–149
managing groups with utility library, 679

tryTest function, JScript, 148–149
TYPE command, CMD.EXE, 533
type libraries, batch scripts, 100–102
Typed Name attribute, NDS, 796

U
ucase() function, 29–30
UI property, Host, 687–688
UNC (Universal Naming Convention), 524
underscore (_) character, 39

universal groups
creating in native mode, 461–462
creating/modifying group accounts, 373–376
defi ned, 373

Universal Naming Convention (UNC), 524
Universal Resource Locators (URLs), creating batch scripts, 99
UNIX, implementation of pipe, 57–58
unlockUserAccount function, 681
<unnamed> element, XML, 736
UntilTime property, print queue, 425
Update-FormatData cmdlet, 511–512
updates

progress, 501
shortcut and menu option, 224–225
WMI object, 596–599
working with IADs properties, 322–325

Update-TypeData cmdlet, 501
.url extension, 214
URL shortcuts

creating in current working directory, 215
creating with NewShortcut function, 622
defi ned, 214
setting properties, 220

URLs (Universal Resource Locators), creating batch scripts, 99
<usage> element, XML, 105, 736
user accounts, 356–372

checking group membership, 370–372
control fl ags, 577–578
creating with WinNT, 368–369
deleting with WinNT, 369
managing with library utilities, 680–682
managing with NET ACCOUNTS, 828–829
managing with NET USER, 843
managing with WinNT, 368
overview of, 356
setting and changing passwords, 370
user properties for WinNT, 356–359
working with properties, 359–368

user accounts, managing with LDAP, 470–479
creating, 474–476
moving, renaming and deleting, 478–479
properties for, 470–474
setting fl ags, 476–478
viewing group membership, 478

user input, 521–522
user scripts. See computer and user scripts
user sessions, 402–411

listing or disconnecting using NET SESSION, 836
overview of, 402
utility functions for, 656–657
viewing in scripts, 404–407
viewing open fi les and user sessions, 403–404
working with Resource and Session objects, 407–411

UserFlags property
enabling/unlocking user accounts, 364–368

86804bindex.indd 87286804bindex.indd 872 1/22/09 11:45:06 AM1/22/09 11:45:06 AM

873

 Index W

summary of, 361–364
working with user accounts, 359

UserMustChangePassword function, 681
users

core WinNT object model, 332–333
creating, 575–576
creating user accounts. See user accounts
defi ned, 449
managing accounts with IADsUser, 796–802
managing sessions with IADsSession, 790–791
scheduling tasks to be run by designated, 273

utility libraries. See script libraries

V
values

associative array, 74
converting input, 132–133
setting for input boxes, 132

values, Registry
confi guring DHCP, 240–243
confi guring WINS, 237–239
creating new keys and assigning, 235
deleting, 236
reading keys, 233–234
understanding, 232–233
working with, 538–539
writing keys and, 234–235

var keyword, 40, 138
variables

JScript, 39–41
VBScript, 15–18

variables, PowerShell. See also environment variables
conditions as, 80
Host , 687–689
overview of, 65–69

variant data type, VBScript, 15
.vbs fi les, 8, 91
VBScript

creating scripts. See scripts
folders. See fi les; folders
handling runtime errors, 141–147
input and output. See I/O (input and output)
managing drives, 197–206
managing network printers, 206–209
objects for Windows scripting, 9
opening fi les, 181–184
reading text fi les. See reading text fi les
scripting basics. See scripts
skipping lines in fi les, 190–192
.vbs fi les, 8
writing to fi le, 192–195

VBScript, essentials
conditional statements, 26–30
control loops, 30–34
converting variable types, 17–18

declaring variables, 14–15
operators, 22–26
using procedures, 34–37
variable naming, 13–14
variable types, 15–16
working with arrays, 21–22
working with constants, 19–20

verbose output, PowerShell, 492–494
-Verbose parameter, PowerShell, 494
verbs, PowerShell cmdlets, 59
version attribute, <?XML ?> element, 103
version information, testing scripts for, 110
view pane, Event Viewer, 242–244
viewDetailedRS function, 656–657
viewing

folder contents, 157–159
resource and session usage, 408–411
resources and session objects, 404–407

viewShareInfo function, 657
Virtual Machines, 592, 600–601
Virtual Switch Management Service, Hyper-V, 600

W
Warning events, 244–245
warning messages, Outlook, 713–714
WebClient class, 714–718
WhatIf switch, PowerShell, 77
Where-Object cmdlet

fi ltering child items with, 528
piping and, 75–76
selecting strings and working with text data, 534–536
sorting and selecting fi elds, 505–507
writing queries in WQL, 587

while loops, JScript, 51
while loops, PowerShell, 78–79
While...WEnd loop, VBScript, 34
wildcards

copying multiple fi les, 177
copying multiple folders, 166
deleting multiple fi les, 176, 628
deleting multiple folders, 165, 628
Get-VM handling, 595, 601
moving multiple fi les, 178
moving multiple folders, 166
not using when copying, moving or deleting individual fi les, 178
not using when copying, moving or deleting individual

folders, 167
PowerShell comparison operators for, 81
using asterisk (*) symbol as, 568
using PowerShell -like operator to check for, 718

Win32
LDAP error codes for ADSI 2.0, 807–810
LDAP error codes with, 804–807

Win32_Service WMI object, 542–543, 548
Win32-Account object, 552

86804bindex.indd 87386804bindex.indd 873 1/22/09 11:45:06 AM1/22/09 11:45:06 AM

874

 W Index

Win32-Process object, 551
Win32-Session object, 551
window styles, programs and scripts, 123–124
Windows Explorer, 92–93
Windows fi le time, 567–568
Windows Internet Name Service (WINS), managing, 237–239
Windows Registry, 231–242

creating new keys, 235
deleting keys and values, 236
overview of, 231–232
reading keys and values, 233–234
reconfi guring network services through, 236–242
understanding environment variables, 117
understanding structure, 232–233
working with fi le system vs., 537–539
writing keys and values, 234–235

Windows Script Host. See WSH (Windows Script Host)
Windows scripting, 3–12

overview of, 3–4
Windows PowerShell architecture, 10–12
WSH architecture. See WSH (Windows Script Host)

Windows Scripting API, 735–747
drives collection, 737–738
getResource static method, 737
printers collection, 738
Script.Signer object, 741
StdErr stream, 739
StdIn stream, 738–739
StdOut stream, 739
WScript object, 741–742
WshArguments collection, 740
WshController object, 742
WshEnvironment object, 742–743
WshNamed collection, 740
WshNetwork object, 743
WshRemote object, 744
WshRemoteError object, 744
WshScriptExec object, 745
WshShell object, 745–746
WshShortcut object, 746
WshSpecialFolders object, 747
WshUnnamed collection, 740–741
WshUrlShortcut object, 747
XML elements, 735–737

Windows Server 2008 Administrator’s Pocket Consultant, 301
Windows services. See services
WinNT ADSI provider

core object model, 332–333
domain account policies, 347–353
group accounts, 372–376
local computer properties, 353–356
obtaining shared folder objects through, 415–416
overview of, 309–312
user accounts. See user accounts

WINS (Windows Internet Name Service), managing, 237–239

WMI (Windows Management Instrumentation), 581–604
accessing services through, 542–543
discovering objects, 596
displaying information, 583–586
Hyper-V case study for, 600–602
object methods, 599
object properties, 596
overview of, 581–583
queries, choosing how to write, 587–588
queries, fi nding WMI objects by association, 588–591
queries, type accelerators for, 592–594
queries across computers, 594–596
updating objects, 596

WMI Query Language (WQL), 587, 588–591
[WMICLASS], 593–594
working directory, setting link shortcut, 216, 219
workstations

using NET CONFIG WORKSTATION, 831
using NET STATISTICS, 838–839
using NSLOOKUP, 845–846

WQL (WMI Query Language), 587, 588–591
-wrap switch, format-table, 503
Write method, 194
WriteBlankLines method, 194–195
WriteChar function, 635
Write-error cmdlet, 496
WriteEvent function, 638
Write-host cmdlet, 491–492
WriteLine function, 635–636
WriteLine method, 194–195
Write-Progress cmdlet, 501–503
Write-Verbose cmdlet, 493–494
writing

events to application event logs, 245–247
to fi le, 192–195
registry keys and values, 234–235
write command in PowerShell, 493

WScript
defi ned, 5
examining information, 110–111
methods and properties, 107–108
running scripts with, 5, 91–95

WScript object, 147–152, 741–742
WScript.Shell, 121–124
WScript.WshNetwork object, 108
WScript.WshShell object, 108–109, 118–120
.wsf fi les, 8, 91, 96
WSH (Windows Script Host), 4–10

core object model, 6–8
creating scripts. See scripts
getting started with, 4–5
JScript objects for Windows scripting, 10
scripting basics. See scripts
scripting engines, 8–9
scripting hosts provided by, 8, 91–92

86804bindex.indd 87486804bindex.indd 874 1/22/09 11:45:06 AM1/22/09 11:45:06 AM

875

 Index X

using and running scripts, 5–6
VBScript objects for Windows scripting, 9
Windows Scripting API. See Windows Scripting API

WSH ActiveX control, 5
.wsh fi les, 8
WshArguments collection, 115–116, 740
WshController object, 124–126, 742
WshEnvironment object, 119–120, 742–743
WshNamed collection, 740
WshNetwork object, 743
WSH.ocx ActiveX control, 6
WshRemote object, 744
WshRemoteError object, 744
WshScriptExec object, 745
WshShell object, 745–746
WshShortcut object

defi ned, 214

properties of, 216
reference guide, 746

WshSpecialFolders object, 747
WshUnnamed collection, 740–741
WshUrlShortcut object, 214, 747

X
XML

elements, reference guide, 735–737
formatting objects in PowerShell, 509–512
handling in PowerShell, 715–718
markup tags. See batch scripts
processing in PowerShell, 518–520

<?XML ?> element, 103–104, 735
XOr comparisons, UserFlags, 364
x/y coordinates, input boxes, 132

86804bindex.indd 87586804bindex.indd 875 1/22/09 11:45:06 AM1/22/09 11:45:06 AM

Get the most out of the latest software and leading-edge technologies
with a Wiley Bible—your one-stop reference.

The books you
read to succeed.

Available wherever books are sold.

0-471-78886-4
978-0-471-78886-7

0-7645-4256-7
978-0-7645-4256-5

0-470-04030-0
978-0-470-04030-0

0-470-10089-3
978-0-470-10089-9

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc.
All other trademarks are the property of their respective owners.

86804badvert.indd 87686804badvert.indd 876 1/21/09 1:21:53 PM1/21/09 1:21:53 PM

Stanek, O’Neill,
Rosen

The book you need to succeed!

VBScript, JScript, and PowerShell—
together in a single, comprehensive
guide!
With more than 300 sample scripts and an extensive
collection of library functions, this book is the most
thorough guide to scripting the Windows operating system
on the market. You’ll discover how scripting can double
your productivity by automating repetitive tasks—and
you’ll find pages of practical VBScript, JScript, and
PowerShell solutions together, chapter by chapter,
throughout the book. With all three powerhouse
programming tools in one comprehensive 800-page
resource, this is the scripting book you need to succeed.

s

Spine: 1.82"

Companion
Web Site
Visit the book’s Web site at
www.wiley.com/go/powershellbible
and find actual code for the samples
and examples discussed in the book.

Shelving Category:
COMPUTERS /
Programming Languages / General

Reader Level:
Beginning to Advanced

$49.99 USA
$59.99 Canada

www.wiley.com/compbooks

Tap the power of
automation with scripts

Master three scripting
tools with this one guide

Script in Windows and
revolutionize your job

William R. Stanek, James O’Neill, and Jeffrey RosenP
o

w
erS

h
ell, V

B
S

crip
t,

an
d

 JS
crip

t

C

• Automate tasks, such as the creation of user accounts or data retrieval,
with scripting

• Master the essentials of the VBScript, JScript, and PowerShell

• Schedule one-time and recurring tasks with network and directory
service scripting

• Work with files, the registry, event logging, ADSI, and more with PowerShell

• Tap into Windows scripting libraries for file, network, and system utilities

• Examine all related technologies, including ActiveX®, Active Directory®,
and Windows® Management Instrumentation

• Develop prototype applications or procedures rapidly and easily using scripts

Microsoft®

M
icro

so
ft

®

PowerShell,
VBScript,
and JScript

Companion Web Site
• Examples, script code, and moreCompanion

Web Site

	Microsoft® PowerShell, VBScript, and JScript Bible
	About the Authors
	About the Technical Editor
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Part I: Getting Started with Windows Scripting
	Chapter 1: Introducing Windows Scripting
	Windows Script Host Architecture
	Windows PowerShell Architecture
	Summary

	Chapter 2: VBScript Essentials
	Working with Variables
	Working with Constants
	Working with Arrays
	VBScript Operators
	Conditional Statements
	Control Loops
	Using Procedures
	Summary

	Chapter 3: JScript Essentials
	Variables and Data Types
	Using Strings
	Using Comments
	Using Arrays
	JScript Operators
	Conditional Statements
	Control Flow with Looping
	Using Functions
	Summary

	Chapter 4: PowerShell Fundamentals
	Shell Fundamentals
	PowerShell Aliases
	Cmdlets, Snap-ins, and Providers
	Functions and Filters
	Objects and Types and the PowerShell Pipe
	Exploring PowerShell Variables
	Richer Types and .NET Objects
	Arrays
	The PowerShell Pipe
	Looping in PowerShell
	Conditions
	Scripts, Script Blocks, and Functions
	Scripts and Security
	Summary

	Part II: Windows VBScript and JScript
	Chapter 5: Creating Scripts and Scripting Files
	Running Scripts
	Creating Batch Scripts
	Summary

	Chapter 6: VBScript and JScript Scripting Basics
	Key WSH Objects
	Displaying Text Strings
	Examining Script Information
	Working with Environment Variables
	Running Programs from Within Scripts
	Running Scripts Remotely
	Combining JScript and VBScript
	Summary

	Chapter 7: Input, Output, and Error Handling with VBScript and JScript
	Input and Output Essentials
	Using Input Boxes
	Using Message Boxes
	Error Detection and Handling
	Summary

	Chapter 8: Working with Files and Folders in VBScript and JScript
	Understanding the FileSystemObject
	Working with Folders
	Using Special Folders
	Working with Files
	Summary

	Chapter 9: Reading and Writing Files
	Opening Files
	Reading Text Files
	Skipping Lines in a File
	Writing to a File
	Summary

	Chapter 10: Managing Drives and Printers with VBScript and JScript
	Managing Drives
	Obtaining Drive Information
	Mapping Network Drives
	Managing Network Printers
	Summary

	Chapter 11: Configuring Menus, Shortcuts, and Startup Applications
	Working with Menus, Desktops, and Startup Applications
	Creating Shortcuts and Menu Options
	Managing Shortcuts and Menus
	Adding and Removing Startup Applications
	Summary

	Chapter 12: Working with the Windows Registry and Event Logs
	Working with the Windows Registry
	Using Event Logs
	Writing to Event Logs
	Reading Event Logs
	Generating Event Log Reports
	Summary

	Part III: Network and Dictionary Service Scripting
	Chapter 13: Scheduling One-time and Recurring Tasks
	Scheduling Local and Remote Jobs
	Using the Graphical Task Scheduler
	Scheduling Jobs with AT
	Scheduling with Scripts
	Summary

	Chapter 14: Managing Computer and User Scripts
	Why Use Computer and User Scripts?
	Introducing Group Policies
	Working with Computer and User Scripts
	Summary

	Chapter 15: Introducing Active Directory Services Interfaces
	ADSI Essentials
	Taking Advantage of ADSI
	ADSI Provider Basics
	Summary

	Chapter 16: Using Schema to Master ADSI
	Exploring ADSI Schema
	Working with Schema Class Objects
	Viewing Property Syntax, Ranges, and Values
	Summary

	Chapter 17: Managing Local and Domain Resources with ADSI
	Managing Domain Account Policies
	Working with Local Computer Properties
	Creating and Modifying User Accounts
	Creating and Modifying Group Accounts
	Summary

	Chapter 18: Service and Resource Administration with ADSI
	Managing Windows Services
	Checking Service Status and Dependencies
	Viewing and Setting Service Information
	Starting, Stopping, and Pausing Services
	Managing Open Resources and User Sessions
	Summary

	Chapter 19: Maintaining Shared Directories, Printer Queues, and Print Jobs
	Working with Shared Folders
	Managing Print Queues
	Controlling Print Jobs
	Summary

	Chapter 20: Managing Active Directory Domain Extensions
	Working with Naming Contexts and the RootDSE Object
	Accessing Active Directory Schema
	Managing Computer Objects with LDAP
	Managing Contacts with LDAP
	Managing Groups with LDAP
	Working with Organizational Units
	Managing User Accounts with LDAP
	Summary

	Part IV: Windows PowerShell
	Chapter 21: Input, Output, and Error Handling in PowerShell
	Output to the Console
	A Little Diversion into Strings
	Implicit and Explicit Output
	Verbose and Debug Output
	Managing Different Outputs from Cmdlets
	More on Error Output
	Session Transcripts
	Tracking Progress
	Taking More Control of Formatting
	Sorting and Selecting Fields
	Changing How PowerShell Formats Objects
	Creating Custom Objects on Demand
	Techniques for Switching in Output
	Additional Output Cmdlets
	Outputting in Specific File Formats
	Every Export Has a Corresponding Import
	More on Selecting Text
	User Input
	Summary

	Chapter 22: Working with Files and the Registry in PowerShell
	Using PSDrives, Accessing the File System, Mapping Drives
	Summary

	Chapter 23: Event Logging, Services, and Process Monitoring with PowerShell
	Working with Services
	Starting, Stopping, Suspending, Resuming, and Restarting Services
	Working with Processes
	Working with Event Logs
	Summary

	Chapter 24: Working with Active Directory Using ADSI and PowerShell
	A Quick Introduction to Active Directory
	Getting Entries from AD with [ADSI]
	Creating Objects
	Getting Directory Entries with the Searcher
	Operations on Directory Entries
	Summary

	Chapter 25: Working with WMI in PowerShell
	Displaying WMI Information
	Querying WMI
	Querying Across Computers
	Discovering WMI Objects
	WMI Object Properties
	Updating WMI Objects
	WMI Object Methods
	A Case Study for WMI: Server 2008 Hyper-V
	Summary

	Part V: Windows Scripting Libraries
	Chapter 26: Library: File-System Utilities
	Examining the File-System Utility Library
	Using the File-System Utility Library
	Summary

	Chapter 27: Library: I/O Utilities
	Examining the I/O Utility Library
	Using the I/O Utility Library
	Summary

	Chapter 28: Library: Network Resource Utilities
	Examining the Network Resource Utility Library
	Using the Network Resource Utility Library
	Summary

	Chapter 29: Library: Account Management Utilities
	Building the Account Management Library
	Using the Account Management Utilities
	Summary

	Chapter 30: Library: Building a PowerShell Library
	Customizing Your PowerShell Environment
	A Generic “choose” Function
	Network Utilities
	Clever Uses for Hash Tables
	COM Objects: A Firewall Tool
	Using .NET Objects to Access Mail and Web Services
	Regular Expressions
	More Advanced Text Processing— Discovering Script Dependencies
	Scripts or Fuctions: Checking How a Script Was Invoked
	Summary

	Part VI: Appendixes
	Appendix A: Windows Scripting API
	XML Elements
	getResource Static Method
	Drives Collection
	Printers Collection
	StdIn Stream*
	StdErr Stream*
	StdOut Stream*
	WshArguments Collection
	WshNamed Collection
	WshUnnamed Collection
	Script.Signer Object
	WScript Object
	WshController Object
	WshEnvironment Object
	WshNetwork Object
	WshRemote Object
	WshRemoteError Object
	WshScriptExec Object
	WshShell Object
	WshShortcut Object
	WshSpecialFolders Object
	WshUrlShortcut Object

	Appendix B: Core ADSI Reference
	Using This Reference
	ADSI Interfaces
	ADSI Error Codes

	Appendix C: Essential Command-Line Utilities for Use with WSH
	ARP
	ASSOC
	AT
	ATTRIB
	CACLS
	CHKDSK
	COMPACT
	CONVERT
	DATE
	DRIVERQUERY
	EXPAND
	FC
	FORMAT
	FTP
	FTYPE
	IPCONFIG
	NBTSTAT
	NET ACCOUNTS
	NET COMPUTER
	NET CONFIG SERVER
	NET CONFIG WORKSTATION
	NET CONTINUE
	NET FILE
	NET GROUP
	NET LOCALGROUP
	NET PAUSE
	NET PRINT
	NET SESSION
	NET SHARE
	NET START
	NET STATISTICS
	NET STOP
	NET TIME
	NET USE
	NET USER
	NET VIEW
	NETSTAT
	NSLOOKUP
	PATH
	PING
	RECOVER
	ROUTE
	SCHTASKS
	TIME
	TRACERT

	Index

