Companion Web Site

¢ Code files for all projects in the book

The book you need to succeed!

Flex’ 3 Bible

Flex 3 Bible

David Gassner

WILEY

Wiley Publishing, Inc.

Flex® 3 Bible

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-28764-4

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought. Neither the publisher
nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or Website may provide or recommendations it may make. Further, readers should be
aware that Internet Websites listed in this work may have changed or disappeared between when this work was written
and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2008930827

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Flex is
a registered trademark of Adobe Systems Incorporated. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

www.wiley.com

About the Author

David Gassner is president of Bardo Technical Services, an Authorized Adobe Training Center in
Seattle, Washington and an Adobe Systems Rapid Engagement Services partner for Adobe Flex. As
an author for Lynda.com, he has recorded video training titles on Flex, AIR, ColdFusion, and
Dreamweaver. He holds Adobe developer and instructor certifications in Flex, ColdFusion, Flash,
and Dreamweaver, and has been a regular speaker at Allaire, Macromedia, and Adobe conferences.
As a contributor to ColdFusion Journal and XML Journal, he has assisted many developers with the
integration of ColdFusion with Java, XML, and other development technologies.

David earned a B.A. from Pitzer College in Claremont, California (his home town), and an M.EA. from
the Professional Theater Training Program at U.C. San Diego. In his copious free time (and putting his
M.EA. to good use), he is Artistic Director of Theater Schmeater (www . schmeater . org), one of
Seattle’s oldest fringe theater companies. He shares his home with his wonderful wife Jackie (Go Mets!)
and a feline comedian named Sylvester, and he receives occasional visits from his thoroughly adult
kids, Thad, Jason, and Jenny.

For Jackie, who always says “why not?”

Credits

Senior Acquisitions Editor
Stephanie McComb

Project Editor
Martin V. Minner

Technical Editor
Drew Falkman

Copy Editor
Gwenette Gaddis Goshert

Editorial Manager
Robyn Siesky

Business Manager
Amy Knies

Sr. Marketing Manager
Sandy Smith

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher

Bob Ipsen

Vice President and Publisher
Barry Pruett

Senior Project Coordinator
Kristie Rees

Graphics and Production Specialists
Carrie Cesavice, Abby Westcott

Quality Control Technicians
John Greenough, Jessica Kramer

Proofreading
Christine Sabooni

Indexing
Infodex Indexing Services

Cover Design
Michael Trent

Cover Illustration
Joyce Haughey

PrIACE e XXV

Partl: Flex Fundamentalst ennen.. 1

Chapter 11 ADOUL FLEX 3.t 3
Chapter 2: Using Flex BUIlder 3cooiiiiiiii i 29
Chapter 3: Building a Basic Flex AppLicationcocoociiiiiiiiiiiiiiiiiic e 67
Chapter 4: Understanding the Anatomy of a Flex Applicationcccccooiiiiiiiiniiiii 91
Chapter 5: Using Bindings and COMPONENLScccciiiiiiiiiiiiiiiiiiiieceec e 123
Chapter 6: Debugging Flex APpliCationsccooiiiiiiiiiiiiiiii e 151
Chapter 7: Working With EVETIESooiiiiiiiiiiiiii e 179

Part Il: The Flex Class Library 000 .. 213

Chapter 8: Using Flex CONLIOLS ...ttt 215
Chapter 9: Using Layout CONLAINETSccooiiiiiiiiiiiiiiiiiiiic et 255
Chapter 10: Using Cascading Style Sheets ... 283
Chapter 11: Working with TeXtocoiiiiiiii i 315
Chapter 12: Managing Application Navigationocoeviiiiiiiiiiiiiiieei e 341
Chapter 13: Working with POp-up WINAOWSociiiiiiiiiiiii i 373
Chapter 14: Controlling ANIMAtiONcoociiiiiiii it 401
Chapter 15: Managing VIEW STALESccooiiiiiiieit ettt 437

Part Ill: WorkingwithData461

Chapter 16: Modeling and Managing Datac.ocoiiiiiiiii e 463
Chapter 17: Using List CONIIOLSo.uiiiiiiiiiieiceic et 497
Chapter 18: Using Advanced List CONLIOLS.ocoviiiiiiiiiiiiii e 525
Chapter 19: Using the Flex Charting COmntrolscoocoiiiiiiiiiiiii e 561
Chapter 20: Working with Data ENtry FOTIMSocooiiiiiiiiiii e 587
Chapter 21: Working with HTTPService and XML..........ccccooiiiiiiiiiiiiic e 619
Chapter 22: Managing XML with E4X ..o 645

viii

Part IV: Integrating Flex Applications with
Application Servers and the Desktop669

Chapter 23: Working with SOAP-Based Web Servicescocooiiiiiiiiiiiiiiiee 671
Chapter 24: Integrating Flex Applications with BlazeDS and Javacccocoooviiiiiiiin, 701
Chapter 25: Using the Message Service with BlazeDS............ccoociiiiiiiiiiie, 739
Chapter 26: Integrating Flex Applications with ColdFusion...............cccooioiiiiiiiiiie, 763
Chapter 27: Using the ColdFusion Extensions for Flex Builderccooiiiiiinin, 793
Chapter 28: Integrating Flex Applications with ASPNETociiiiiiiiiiiiiiece 825
Chapter 29: Integrating Flex Applications with PHP ... 857
Chapter 30: Deploying Desktop Applications with AIRocooiiiiiiiiiiiiiie 895
GLOSSATY ... 925
TILAEX L. 929

ix

Part I: Flex Fundamentals 1
Chapter 1: About Flex3. oo 3
Learning the Fundamentals of FIeX ... 4
Getting to know Flex appliCationsccoiiiiiiiiiiiiiii e 4

Flex versus Flash developrmentccooooiiiiiiiii i 7

Flex and Object-Oriented Programiminig.............cocooioiiiioiiiaiiiiie e 9
Understanding the Flash Player ... 15
Learning a little history about the Flash Playerccccocooiiiiiiiii 16

Flash Player penetration StatiStiCscceiiiiiiiiiiiiiiiieieet e 18

The Debug Flash Playercocoiiiiiiiiiii e, 18

Flash Player installationcocoiiiii 19

Flex 3 development tOOLScc.ooiiiiiiiiiiiiiiit e 23
Getting HeIP....o oo 26
SUIMIMIATY ...ttt et 27
Chapter 2: Using Flex Builder 3. 29
Getting Flex BUilder 3 ..ot 29
Installing Flex Builder 3cooiiiiiiiiiiiiii e 30
Installing Flex Builder with the standalone configurationc.ccoociinii 30
Installing Flex Builder with the Eclipse workbench ... 32
Getting to Know the Eclipse FEaturesocoiviiiiiiiiiiii e 36
The Eclipse WOTKSPACEiouiiiiiiiiiiiee e 36
Configuring ECHPSEvioiiiiiiiii oo 43
Touring the Flex Builder Interface ... 45
Creating FleX PrOJECTSiviiiiiiiiot oo 45

The Flex Builder user interface ..., 49
Getting HEIP. ..o 54
Exploring the Help CONLENLSooiiiiiiiiiiiiii e 54
Searching for Help teIMS ..ottt 55
Using Dynamic Help ... 58
Searching for COeoiiiiiiiii e 60
Using Eclipse search t00IS............ooiiiiiiiiii i 60
Using Flex Builder code model search toolsccociiiiiiiiiiiiiiiee 62
SUITIIIIATY ..ottt ettt ettt ettt en 66

Xi

xii

Contents

Chapter 3: Building a Basic Flex Application. 67

Creating a “Hello World” Applicationccocooiiiiiiiiiiiii e,
Switching workspaces.....................
Creating the project
Saying hello ...

Understanding the html-template Folder
HTML template fllesoooiiiiiiii e

Deploying the APPICALIONooiiiiiiii i
Creating the release VETSIOMc.cciiiiiiiiiiiii i
Testing the Telease VEISIONccooiiiiiiiiiiiit oo
Deploying the release VEISIONcociviiiiiiiiii it
Integrating an application into an existing Web pageccocooooiiviiiiiiii 84
Integrating Flex applications with Dreamweaver CS3ccociiiiiiiiiiin, 86

SUIMIMATY ..o 90

Chapter 4: Understanding the Anatomy of a Flex Application 91

MXML and ACHONSCIIPE 3 ..ottt

Understanding MXML ...
MXML is XML ...
MXML and containershipcccocioiiiiiiiiiiie e
MXML and non-visual classes.............cocciiiiiiiiiiii

Understanding ACHONSCTIPE 3oiiiiiiiiiii i
ACHONSCTIPE SYTILAX ...ttt
Declaring variablesccooiiiiiiiii i
Conditional SLALEIMETIES ...t
Loopingcooooviiiiiiiiiiiii

Combining MXML and ActionScript
The <mx:Script> tagccoovvverrnn,
Using external ActionScript files
Managing ActionScript code with Flex Builder

Using the Application CONLAINETcoociiiiiiiiiiiii i
Passing application Parametersccooiiiiiiiiiiiiie e
Controlling application dimensionscccoceriiiiiiiiiit e
Setting the 1ayout PrOPETLYc.oviiiiiii i

Summary

Chapter 5: Using Bindings and Components

Using Binding EXPIESSIONSc.cuiiiiiiiiiiiiiiiiiiieic e
Shorthand MXML binding eXpressions..............occociioioiiiiiiiiiiiiececeeec e
Using <mx:Binding>............ccocooiiiiiiiiiiiin,

Making expressions bindable

Using MXML Components........................
Creating MXML COMPONIEIILSioiiiiiiiiiiiiiit et
Instantiating MXML COMPONENLSoiiiiiiiiiiiiiiiiiii e

Contents

Adding Properties and Methods to COMPONENLScocuiiiiiiiiiiiiiiiiiiiiiec e 136
COmMPONENt PrOPETHESvivvevrieiieiiiieieiieeit e
Component methods ...,
Using Component Libraries
Creating component libraries
Incorporating component HDIariesccooiiiiiiiiiii e 146
SUITIIIIATY ..ttt ettt ettt 149

Chapter 6: Debugging Flex Applications 151

DebUg@ING BASICS ...t 152
The debug version of the applicationcocooiiiiiiiii i 152
Running an application in debug modeoociiiiiiiiiii 152

Using trace() and the Logging APLcooiiiiiiiiiiii i
Using the trace() function......................
Using the Logging APL ...

Using Breakpointsccocoevviriiiiiniinn,
Setting and clearing breakpoints
Setting and removing breakpoints in an MXML or ActionScript editor 163
Using the Breakpoints VIEWcccooiiiiiiiiiiiiiiiiiiii e 165
Using breakpoints in a debugging session................cc.cccoiiiiiiiiiiiiie 169
Inspecting variables and eXpresSionscccooiiiiiiiiiiii 170
Controlling application execution with the Debug viewccooiviiiiiiiiin 173

Profiling Flex APPHCAIONSo.oiiiiiiiiit e 175

SUITIITIATY ..ttt ettt et 177

Chapter 7: Working withEvents.

The Flex Event ATCRIteCtUTeociiiiiiii e
Handling Events in MXML ...
Creating event handlers in MXML
Working with event objects
Handling Events with addEventListener()
Setting up an eVent LiSLETIEToiiii it
UsIng event NAMe COMSTATIESuiiiiiiiiieiiiiee ittt
Removing an event lSteNeroiiiiiiiii e
Using Event Bubbling............coooiiiiiiii i,
Using Custom EVENTs ...
Declaring custom events........................
Dispatching custom events....................
Handling custom events
Using Custom EVent ClASSEScuiiiiiiiiiioiiioii et
Creating the ACHONSCIIPL ClASScviiiiiiiii e
Overriding the clone() method ..o
Dispatching a custom event Classcoocooiiiiiiiiiii e
Handling a custom event class ...
SUIMIMIATY ..o

Contents

Part 11: The Flex Class Library 213

Chapter 8: Using FlexControls

Instantiating and Customizing CONLIOLSccooiiiiiii i
Instantiating controls with MXML and ActionScript
Setting control properties and Stylesccooiiiiiiiiiiiiii
Understanding the UIComponent class

Using Text CONtrolscoocooiiiiiiiiii i
Common properties of text controls
Text display controls
Text entry controls

UsIng Layout COTITOLS ...ttt
HRule and VRULEocoiiiiiiiii e
The SPacer CONIIOL ...ttt

Using BUtton CONLIOLSc.oiiiiiiiiiiiii it
The BUtton CONETOL ...ttt
The LinkButton CONtrol ...
The CheckBox control
Using RadioButton controls

Other Data Entry Controls
The NumericStepper control
DAte CONLIOLS ...ttt

Using Interactive COMITOLSiiviiiiiiiiiiiit oot
The ScrollBar controls
The Slider controls

Working With IMagesc.ooiiiiiiiii e
Using the Image control
Resizing imagescccccoeoeen
Embedding imagescco...
Changing images at runtime

Summary

Chapter 9: Using Layout Containers.

Using Simple BoX CONAITETSiviiiiiiiiiieic ettt
Using vertical and horizontal layout containerscccccocoiiiiiiiiiiine,
Using the Canvas CONLAINETcccouoiiiiiiiiiiiiiiic e
Using container styles

Using the Panel Container
Panel properties
Panel styles
The ControlBar container

Using Constraint-Based Layoutccccocoeeiiviiiiininininn,

Positioning components in Design view
UsIng CONSIaint PrOPETTIESoiiiiiiiiiiii it

Xiv

Contents

Sizing Containers and COMNLTOLSccooiiiiiiiiiiiiiii e 274
Content-based SIZINEcocciiiiiiiiiiiiii e 275
ADSOIULE SIZINE ... 276
Percentage SIZINGcccooiiiiiiiiiiiiiii e 276
Constraint-based SIZINGcovoiiiiiiii e 278

Using Advanced CONSITAINLSooiiiiiiiit ittt 279
Declaring constraint rows and COIUMIINSocooiiiiiiiiiiit e 279
Placing and sizing components with advanced constraintsc..cocoeveriiennn. 280

SUITIIIIATY ..ottt et 282

Chapter 10: Using Cascading Style Sheets 283

About Cascading Style SRSc.oiiiiiiiiiii i 283

What Is @ Style Sheet? ..o 284

Using Inline Style Declarationsoouiiiiiiiiiiiiii e 285

USING SEY1E SELECLOTS ...ttt 286
USINE LYPE SEIECLOTS ...ttt 286
Using style name selectors ..o 288
Using the global selector........ ..o 289
Using embedded style sheetsccociiiiiiiiiiiiiii 289
Using external style Sheets ... 291

Using Compiled Style Sheets ..., 297
Compiling style Sheets ..ottt 297
Loading compiled style Sheetsccocooiiiiiiiiiii e 298

Controlling Styles With ACHONSCIIPL........iviiiiiiiit e 300
Setting and getting style information ..o 300
Modifying style selectors at TUNTIMEc.ooiiiiiiiiiiiiit e 301

Graphical Skinning of Visual COMPONENLScociviiiiiiiiiiiiice e, 303
Creating graphical SKINSocoiiiiiiiiiii 303
Using bitmap graphics as sKins..............cccccoiiiiiiiiiii 303
Creating vector-based skins in Flash CS3 ... 306
Declaring Flash-based SKinscccoccoviiiiiiiii i 310
Importing sKin artWork ..ot 310

SUIIIIIIATY ..ottt ettt ettt 314

Chapter 11: WorkingwithText 315

Controlling Fonts with Cascading Style Sheetsocociiiiiiiiiiiiiiii e 316

SEleCUINE FOTIS ...t 316
Using device fONESooiiiiiiiiiii e 317
Using embedded fONLSccooiiiiiiiii e 318

Manipulating Embedded FONUS ... 330
ROLAUNE FOTILS ...ttt 330
Using advanced anti-aliaSingcccooooviiiiiiiiiiiiii e 334

Formatting TeXt VAIUESooiiiiiii i 335
Creating formatter ObJECTSooiiiiiiiiiii e 336
Setting fOrmatter PrOPETTeScoviiiiiiiiiiiii ittt 336

XV

XVvi

Contents

Using formatters in binding eXpressionsccccociiiiiiiiiiiiiiice e 337
Using formatters in static methods
SUMMATY ..o

Chapter 12: Managing Application Navigation. 341

Classic Web NAVIZALIOTLooviiiiiiiiiii et
Understanding Flex Navigation
Using Navigator CONLAINETS ...
Declaring a ViewStack in MXML...........coiiiii
Using custom components in a navigator container
Creating a ViewStack in Design VIEWcccocoiiiiiiiiiiiiioiet e
Working with navigator containers in ACtionSCript...........ocevvvriiiiiiiiiiiiiee.
Managing Creation POLICYcovioiiiiiiiii ittt
Managing navigator container dimensions
Using Navigator Bar Containers
Using an Array as a dataProvider ...
Handling navigator bar eVentsccccoiiiiiiiiiiiiiiii e
Using a ViewStack as a dataProvider.............coocoiiiiiiiiiiiiie,
Managing navigator bar presentationcocooiiiiiiioiiiiii
USINgG MeNU COMLTOLS ..ottt
Menu data PIOVIAETS .. .c..ioiiiiiiit et
Handling memnu eVENLSooiiiiiiii ittt
Using the Menu CONLIOLociiiiiiiiiiii i
Using the MenuBar CONIOl............oooiiiiiiiiii
Using Other Navigator Containers
The TabNavigator container
The Accordion containercccocooviiiiiiiienn,
TabNavigator and Accordion keyboard shortcutsc.ocooooiiiiiiiii
SUIMITIATY ..ottt et

Chapter 13: Working with Pop-up Windows . . .

Using the ALert CLASSooviiiiiiiii e
Presenting pop-up windows with Alert.show()ccoocooiiiiiiiii
Controlling Alert window modalitycccoiiiiiiiiiiii
Managing Alert window DULLONS............coooiiiiiiiii i
Handling Alert Window eVentscocooiiiiiiiiiiii e
Using a custom graphical iconcccccociiinn.

Using CSS selectors with the Alert class

Using the PopUpMenuButton Controlccoccoooonien.

Creating a data PrOVIAETcoiiiiiiiiiii i
Handling @VeILSoouiiiiiiio e

Using the POPUPBULLON COMLTOL ...ttt
Declaring the pop-Up WINAOWoociiiiiiiiiii i
Handling events and managing pop-up behavior ..o

Contents

Working with Custom Pop-up WINAOWScccoeiiiiiiiiiiiiiii e 391
Defining a custom pop-Up WINAOWccciiiiiiiiiiiiiiiiii e 391
Using the PopUpManager Class..............ccooccoiiiiiiiiiiiiiiiiiiiii e 395
Using the TitleWindow containeroocooiiiiiiiii 398

SUITIITIATY ... e 400

Chapter 14: Controlling Animation 401

USING EMIECLS ... 402
Using effect Classesooiiiiiiiiiiiii e 403
Modifying effect class Properties...........cooviioiiiiiiiiiieie e 403
Using behaviors and triggers............ooiiiiiiiiiiiec e 404
Playing effects in ACHONSCIIPL.ooiiiiiiiii e 408
Using tweening and masking effects ... 410
Using composite effectscooiiiiiiii 420
Using easing fUNCHONSooiiiiiiii i 424

Using Drag-and-Drop OPeTations.............couoiiiiiiiiiiiitie ettt 426
Implementing drag-and-drop with List controlsc.cccoceoiiiiiiiiniiiie, 426
Implementing custom drag-and-drop operationsccococeciiieiiiniiiiiiin, 429

SUIMIMATY ... e 436

Chapter 15: ManagingView States 437

Understanding VIEW STALESo.iiiiiiiii ittt 438

Defining View States in Design VIEWccoociiiiiiiiiiiiiiiie e 439
Creating @ TIEW SLALEc.ooiuiiiiiiiie it 439
Defining a view state’s OVerTidesccocooiiiiiiiiiiiiiiii e 441

Switching View States at RUNEME.oooiiiiiiiiiii e, 444

Declaring View States in MXML ..o, 446
Adding COMPONETILS ...ttt 446
REMOVING COMPOTIEIILS ...t 448
Overriding properties and Styles ..ottt 448
Overriding event handlers ..o 449

Declaring View States with ACHONSCIIPLoviiiiiiiiiei et 453
Setting override PrOPETTIESccviiiiiiiiiiii ittt 453
Overriding event handlerscocoiiiiiiii 454

Managing View States in COMPONENLSccoooiiiiiiiii i i 456

Using TranSitions ... e 457
Declaring a transitionccooiiiiiiiiiiiiii e 458
Using Parallel and Sequence effects in transitionscccccocooriiiiiiiiiiine 458

SUTITIITIATY .ttt ettt ettt et 460

Part 11l: Working with Data 461
Chapter 16: Modeling and ManagingData 463

Creating a Data Modelocooiiiiiiii e 464

Using the <mxiModel> tagcoociiiiiiiiii e 465

Contents

USING Value ODJECLS ...t
Using the New ActionScript Class wizard
Value object class syntax............c.cccocooiiioiiiiiienn,
Instantiating value object classes
Using Data COIECIONSo.viiiiiii it
Declaring an ArrayColleCtioncooiiiiiiiii i
Setting an ArrayCollection object’s source property
Accessing data at TUNTIMEooiiiiiiii e
Managing data at TUINLINEoouiiiioiiiiii et
USING data CUISOTSooiiiiiiiiis e,
SUIMIMATY ..o

Chapter 17: Using ListControls

Using Data PrOVIALTSoiiiiiiiiiii e
Using hard-coded data providers
Using dynamic data providers

Controlling List Ttem Labelsccoociiiiiiiii i
Using the labelField Propertycococooiiiiiiiiiiiiiiii e,

List Control Events and ProOpertiesocooioiiiiiiiiiiiiiiiic e

Handling User Data SeleCtionsoociiiiiiiiii i
Using the change event.................coiii
Using the selectedltem PIrOPEILYc.ooiiiiiiiiiiiieiiii et
Using the selectedIndeX PrOPETLYc.coiiiiiiiiiiiiiiiiiieiieic et
Selecting complex data ODJECTSocoiiiiiiiiii i

Using Custom Item Renderers
Using drop-in item renderers
Using inline renderers and editors ..
Using component item renderers

SUIMIMATY ..o

Chapter 18: Using Advanced ListControls

Using the ComboB0OX COMUIIOL ..ottt
Using an editable COmbBOBOXccoooiiiiiiiiiiiii
Using a bindable ComboBOXcooiiiiiiiiiii

Using the DataGrid COMNLIOLooiiiiiiiiiiii i
Customizing DataGrid displayc.cccooiiiiiiiiiiiii
Generating custom labels with DataGrid columns

Advanced Item Renderers and Editors
Using the dataChange event

USING 1M €AILOTS ..ottt
Using HorizontalList and TileList CONLIOLSooiiiiiiiiiiiiiic e
Using the AdvancedDataGrid CONLIOLocooiiiiiiiiii i

Hierarchical data displayccociiiiiiiiiiii i

Grouping flat datacoocooiiii i
SUIMIMATY ..o

xviii

Contents

Chapter 19: Using the Flex Charting Controls 561

Understanding Flex’s Types of Charts
Declaring Chart Controls ...
Setting Chart Properties and Styles..................
Using pie charts ...
Using financial Charts ...
Using bar, column, line, and area chartsoccooiiiiiii
SUITIIIIATY ..ottt

Chapter 20: Working with DataEntry Forms

Using the FOrm CONtaINeTrcooiiiiiii i
Using the FormHeading control ...
Using the Formltem CONtAINeTcccoviiiiiiiiiiiiiioi et
Setting a default DULLON ..o

Using Custom Form Components
Creating a custom Form component......
Adding controls to a Form component .. .

Validating Data EILTYoooiiiiiiiiiii e
Creating a validator ODJECTccooiiiiiiiiiiiiii e
Controlling validation with trigger eVents..............ccccocoiiiiiiiiiiiiiiiie e,
Controlling validation with ActionScript...........ccoooooiiiiiiii
Controlling validation rules and error MEeSSAZESc.eevvrviiriiiiiiieiei e

Sharing Data with the APPLICAtIONccooiiiiiiiiii i
Modeling Form data with a value objectccocoociiiiiiiiiiiiii
Dispatching a CUSIOM @VETILo.iiiiiiiiiii it

SUITIIIIATY ..ttt ettt

Chapter 21Working with HTTPServiceand XML.

Using RPC and REST Architecturescoccoiiiiiiiiiiiiii e
Understanding the Representational State Transfer architecture
Understanding the Remote Procedure Call architecturecccccoociiiiin, .

Declaring and Configuring HTTPService ODbJectscccociviiiiiiiiiiiaieieiiieieee
Creating an HTTPService ODJECco.ioviiiiiiiiiiiiet et
Essential HTTPSeIviCe PrOPeTtiesoviiviiiiiiiiiiiiiiieic ettt

Sending and Receiving DAtacc.ooiiiiiiiiiiiii e
Understanding asynchronous communications.................c.ococoooiiiiiiiiioe,
Handling HTTPSeIVice T@SPOIISEScviuiiiiiiiiiiioiiiieicieit e
Working with ItemResponder and AsyncTokenccocooiiiiiiiiiie

Working with Valtue ObJeCtsS ..ot

Passing Parameters to Server Pages..................
Using named parameters
Using bound parameters........................

Handling Cross-Domain Policy Issues

SUITIIIIATY ..ttt ettt

Xix

XX

Contents

Chapter 22: Managing XML withE4X. 645
USING XML CLASSES ...t 646
Creating an XML ODJECouoiiiiiiiiiii i 647

Using the XMLLISE Classccooiiiiiiiiiiiiiiiii i 650

Using the XMLListCollection €lassccoooiiiiiiiiiiiii e 651

Using E4X EXPIeSSIONISuiiiiiiiiiiiit e 652
Extracting data from XML ODJeCtS........coiiiiiiiiiiiiiiiiece 653

Modifying data in XML ODJECEScviivioiiiiiiiiiiieit et 660

Working wWith NAMESPACESo.iiiiiii oottt 665
SUIIMATY ©. ittt ettt e 668

Part IV: Integrating Flex Applications with Application

Servers and the Desktop 669
Chapter 23: Working with SOAP-Based Web Services. 671
Understanding SOAP ..ot 672
Understanding WSDLiiiiiiiiiiii oo 674
Using the WebService COMPOIIEIIEoouiiiiiiiiiiiieii et 677
Installing ColdFUSION 8ccocciiiiiiiiiiii e 677

Creating a WebService ObJECtcciouiiiiiiiiiiiiiiiceic e 677

Handling Web service Tesultsocoiiiiiiiiiiiiiii e 679

Passing parameters to Web service operationscccoocooiiiiiiiiiiii 687

Using Web Service INIIOSPECHIONiiiiiiiiiiiit ittt 689
IMPOTting @ Web SEIVICEiouiiiiiiiiii it 689

Managing Web SEIVICES..........o.iiiiiiiiiii it 692

Using generated Web service proxy classesococooiiviiiiiiiiiiiiiiiiee 694

SUINIMATY ..ttt 699
Chapter 24: Integrating Flex Applications with BlazeDS and Java. 701
USING BlAaZEDS ..o 703
Understanding supported platformsoocooiiiiiiiiii 703

Getting started with BlazeDSocooiiiiiiiiii i 704

Creating Flex Projects for Use with BlazeDScccooiiiiiiiiiiii e 709
Using the PrOXy SETVICE ..ottt 711
Configuring the PrOXY SETVICEccooiiiiiiiiiiiiiiei it 713

Using the default destinationcccooiiiiiiiiiiii i, 713

Using named destinations.ccooieiiiiiiiiiiiiic e 717

Using the RemMOtNG SEIVICEcociiiiiiiiiiiiiiiiiei e 719
Creating and exposing Java classescocoiiiiiiiiiiiiii 720
Configuring Remoting Service destinations.............c.oooovioiiiiioiiiiiiiecec e 723

Using the RemoteObject COMPOTIETLLcuviiiiiiiiiiaiiieieeic ettt 725
Instantiating the RemoteObject COMPOMNETTccoiiiiiiiiiiiiiit e 725

Calling remote methodsccoooiiiiiiii 725

Handling RemoteObject TeSULLSccoiiiiiiiiiiiiie 726

Contents

Passing arguments to remote Methodscooiiiiiiiiiiiiiiiiiii e 731
Passing data between ActionScript and Javaccococoiiiiiiiiiiii 733
Using value object Classesot 734
SUITIITIATY ... 737
Chapter 25: Using the Message Service with BlazeDS. 739
Understanding the Message SETVICEociiiiiiiiiiiiiiiiii i, 740
Configuring Messaging on the SeTVeTccioiiiiiiiiiiiiiiii e, 741
Configuring channels for messagingc.cocooiiiiiiiiii e, 742
Configuring messaging adaptors and destinationscccocoocovoiiiiiiciienn, 744
Creating a Flex Messaging APPliCAtIONcoiiiiiiiiiiiiiieec e 746
Creating @ FIEX PrOJECT ...oviiiiiiiiiiii e 746
SENAINE THESSAZES ...ttt 747
Receiving and processing MESSAZEScvovirviiiriiiiiiiieet ettt 748
Sending and Receiving Complex Dataccoooiiiiiiiiiiiiii e 752
Filtering Messages 0n the SETVET............ciiiiiiiiiiiit e 755
Using the Selector PIOPETLYcooiiiiiiiiiiiiiiiei ettt 755
USING SUDLOPICS ... 756
Tracing Messaging Traffic ... 760
SUITIIMIATY ... 761
Chapter 26: Integrating Flex Applications with ColdFusion 763
Understanding Flash Remoting and ColdFusion 8ocociiiiiiiiiiiii e, 764
Creating a Flex project for use with ColdFusionccccocoioiiiiiiiiniiiin, 765
Configuring Flash Remoting on the SeTvercccocoiiiiiiiiiiiiiiie e, 767
Creating ColdFusion Components for Flexcccocociiiiiiiiiiiiiiiiee, 769
Using CFCs with the RemoteObject COmMPONENtc.ccooviioiiiiiiiiiiiieceeeee, 770
Setting the SOUTCE PIOPETLYo.oiiiiiiiiiiiii i 771
Creating a RemoteObject INSLANCEcoviviiiiiiiiii i 771
Calling CFC fUNCHONSottt 772
Handling CFC Function RESUILSoiiiiiiiiiiic e 773
Using binding eXPreSSionsc.ocioiiiiiiiiiiii it 773
UsIng the TeSULt @VETI........oiuiiiiii it 774
Handling results from multiple CFC functionsccccocooieiiiiiiiiniiiin, 778
Passing Arguments to CFC FUnctions. ... 780
Using expliCit arGUMENILScocciiiiiiiiiiiiiiiiie e 780
Using bound argUmentsccocuoiiiiiiiiiiiiec e 780
Using named argUIMeNtsooviiuiiiiiit ettt 781
Using Value ObJect CLASSEScuiiiiiiiiiiii ettt 783
Creating a ColdFusion value objectccoocoiiiiiiiiiiiii i 783
Creating an ActionScript value ObJeCtooiiiiiiiiiii e 784
Returning value objects from ColdFusion to FIexccccocooiiiiiiiiiiii 785
Receiving value objects from ColdFusioncocooeiviiiiiiiiiieeee 786
Passing value object arguments to CFC functionsccccococeoiiiiiiiiinns. 788

xxi

Contents

Working with RemoteObject FAUlLsccocoiiiiiiiiiiiiiii e 789
Handling the fault event ... 789
Generating custom exceptions from a CFC function..........c.cccococeoiiiiiiiie, 790

SUIMIMIATY <.ttt et 792

Chapter 27: Using the ColdFusion Extensions for Flex Builder 793

Understanding ColdFusion Extension Featurescccoccoiiiiiiiiiiiiiiicie e 794

Installing the ColdFusion Extensions for Flex Builder ... 795

Configuring RDS SETVETSoiiiiiiiiiiiiitiiit ettt 797

Connecting to ColdFusion Data SOUICESccoiiiiiiiiiiiiiiiie e 800
INSPeCting & data SOUTTEeiuiieiiiiiiiit ettt 801
Viewing table dataccooiiiiiiiiiii 803
Using the Visual Query Builder ..ot 804

Using the CFC Value Object Wizard.............ocoooiiiiiiiiiii e 807
Preparing to use the CFC Value Object wizardccoocooiiiiiiiiiiii 807
Running the CFC Value Object Wizardccoooiiiiiiiiiiiiiiiii e 809
Understanding generated value object classes..............cccooiiiiiiiiiiiii 811
Using the gateway CFCccooiiiiiiiiiiiiiiiii e 817
A conclusion about the CFC Value Object wizard..............c..cocociiiiii 824

SUIMIMIATY ..ottt 824

Chapter 28: Integrating Flex Applications with ASP.NET. 825

InStalling ASPINET ..ottt 826

Creating an XML Web SeTVICEcccciiiiiiiiiiiiiie e 828
Creating a gateway file ... 828
Creating a code-behind moduleccoooiiiiiii 829

Generating a Web Service in Flex Builder 3 ... 831
Creating a Flex project with ASPNETccoiiiiiiiiiii e 832
Creating an SQL Server database CONNECHONcc.oviiviiiiiiiiiiiii e 833
Generating a Flex/ASPNET application.............coocoiiiiiiiiiiiiiiiic e 836
Understanding and using the generated codeocociiiiiiiiiii 838

Building Web Services with Visual Web Developer 2008cccocooiiviiiiiiiiiie, 843
Creating @ Web SETVICEo.ooiiiiiiiiii e 844
Configuring the development Web Server.............cccccioiiiiiiiiiiiiiiiieeeee 846
Testing @ Web SETVICEcouiiiiiiiiiiiiiiiie e 848

Exchanging Data with XML Web Servicesccccoiiiiiiiiiiiiiiiiiiiiiiceec, 849
Setting up the sample files ...t 849
Returning data from INET ..o 850
Passing value objects to .NET service Operationscccccevveriioiiviiaiiiiienisieene 854

SUIITIATY ©. ettt ettt et 856

Chapter 29: Integrating Flex Applications withPHP 857

Installing PHPoiiiiii e 858
Installing WAMP on WINAOWScoooiiiiiiiiiiiiiioic e 859
Managing WAMP Servers ... 861

xxii

Contents

Installing MAMP 0n Mac OS Xoouiiiiiiiiiiiii e
Managing MAMP servers
Creating a Flex Project for Use with PHP
Using PHP with HTTPService and XML
Using the PHP SimpleXML extension
Retrieving XML data with HTTPSeIVICecccooiiiiiiiiiiiiiiiieieeee e 869
Generating PHP Code with Flex Builder 3 ... 870
Importing a database to MySQLoccoiiiiiiiiii e 870
Creating a MySQL database CONNECtONcoviviiiiiiiiiiii e 873
Generating a Flex/PHP applicationccooiiioiiiiiiiiiiiiiice e 874
Understanding and using the generated code877
Using PHP and Remoting with AMFPHP
Installing AMFPHP ...
Creating an AMFPHP service in PHP
Configuring AMFPHP Remoting in Flex Builder...............ccocoooiiiiiii 887
Calling an AMFPHP service with RemoteODbjectcoocooiiiiiiiiiiiiiii, 889
Returning complex data from AMFPHP ... 890
SUITIIIIATY ..ttt ettt 892
Chapter 30: Deploying Desktop Applications withAIR 895
Understanding AIR Architecture.............ocoooiiiiiiiiiiiiiii e, 896
Installing the Adobe Integrated RUNUMEocooioiiiiiiiiiiiic e, 897
Downloading the ATR installer ... 897
Installing and uninstalling AIR on Windows.............ccccooiiiiiiiiiiii 898
Installing and uninstalling AIR on Mac OS X899
Creating a Flex Desktop Applicationccococeeiiiiiiiiiinin,900
Creating a Flex desktop application project900
Using the application descriptor file ..o 904
Packaging a release version of an AIR applicationcccoooiiiiiiiiiiiis, 907
Installing ATR appliCAtioNscociiiiiiiiiiiii e 911
Uninstalling ATR applicationsc.ooiiiiiiiiiiii e 912
Flex Application Tips and Tricks with AIRccoocoiiiiiiiii 913
Debugging AIR applications in Flex Buildercccoooiiiiiiiiii 913
Working with HTML-based CONeNtccoociiiiiiiiiiiiiiiiie e 914
Using the WindowedApplication COMPONENtccocooioiiiiiiieieiaieeee e 919
Creating Remoting channels at runtime 920
A Conclusion about AIR ...922
SUIMIMIATY ..o 923

Glossary. i e e e 925

hen Macromedia first released Flash MX in 2002, the product was branded as the new

way to build Rich Internet Applications (known by the acronym RIA). The term was

invented at Macromedia to describe a new class of applications that would offer the
benefits of being connected to the Internet, including access to various types of Web-based ser-
vices, but would solve many of the nagging issues that had been inherent in browser-based appli-
cations since the mid-1990s. By using Flash Player to host graphically rich applications delivered
as Flash documents, issues such as the ongoing differences between Web browsers in implementa-
tion of Cascading Style Sheets (CSS) and JavaScript would be overcome. And because such applica-
tions would be able to leverage Flash Player’ original strengths, including animation and delivery
of rich media (audio and video) to the desktop, the applications could be both functional and visu-
ally compelling.

The first push into the new frontier of RIAs met with mixed success. Products built and delivered
with Flash MX and ColdFusion MX (Macromedia’s recommended middleware application server
software at the time) could be very impressive. Perhaps the best known of this class was the
iHotelier hotel reservations application, still used by many large hotels around the world to present
a Flash-based interface that allows customers to find and reserve hotel rooms from a visually intu-
itive single-screen interface. Users could input information and get nearly instantaneous response
without having to navigate the multi-page interface of classic HTML-based Web applications.

Meanwhile, developers who were creating these applications were madly pulling their hair out.
Building data-centric applications in Flash meant that you were working with a binary source file,
making it difficult to integrate with source control systems. At the time, ActionScript wasn't partic-
ularly object-oriented (although this part of the situation improved drastically with the release of
ActionScript 2 in Flash MX 2004), and there was no enforcement of code placement standards. Its
loose data typing and lack of strong compile-time error checking or debugging tools led to phe-
nomena such as “silent failure” — the moment when something that's supposed to happen doesn,
and no information is offered as to the reason.

In large multi-developer environments, figuring out where to put the code in a Flash document
was a significant part of the application planning, because the product wasn’t really designed for
application development. And the ActionScript editor built into Flash gave experienced developers
fits. Particularly for Java developers who were used to sophisticated code editors, working in Flash
slowed productivity and increased developer frustration.

Flex 1 was Macromedia’ first response to these issues. Released initially as a server-based product,
Flex was designed to let enterprise application developers use a workflow they were accustomed
to. Flex Builder 1, built on top of the Dreamweaver code base, was a first stab at providing a better

XXV

XXVi

Preface

code editor, and was included for those organizations that purchased a server license. Issues
remained, but developers who were accustomed to building applications in source code were able
to use their usual workflows, and multiple developers could collaborate more easily, because Flex
applications were built as source code files that could be shared.

Flex 2 went further with the delivery of ActionScript 3, a true object-oriented language. The Flex 2
SDK was free, and Flex Builder 2 was the first version of the IDE delivered as an Eclipse plug-in.
The IDES licensing changed to a per-developer model, identical to the model used by other suc-
cessful developer tools. For enterprise application developers, the situation got better and better.

Now, with the release of Flex 3, Adobe offers developers the ability not only to build better Web-
based applications, but also to leverage their skills to deliver desktop applications using the Adobe
Integrated Runtime. Anything you can do in Flex on the Web, you can now do in Flex on the
desktop. The Flex 3 SDK has expanded with new classes, such as the AdvancedDataGrid. And
Flex Builder 3 is compatible with the latest release of the Eclipse workbench.

This book offers a comprehensive overview of Flex application development. Detailed explanations
of building applications using the Flex framework (the class library containing the building blocks
of Flex applications) are combined with explorations of how to integrate applications with the
most popular Web service architectures and application servers. The book is not designed as a
replacement for the Flex 3 documentation (which at last count included multiple publications and
over 2,000 pages). Instead, it offers a combination of reference, tutorial, and tips for building and
delivering Flex application to the Web and the desktop that take you through learning Flex in a
natural sequence.

Many other books may be helpful as you learn Flex. The ActionScript programming language is
worthy of an entire book and is described admirably in the ActionScript 3 Bible by Roger Braunstein,
Mims H. Wright, and Joshua J. Noble. The AIR Bible by Peter Else, Benjamin Gorton, Ryan Taylor,
and Jeff Yamada offers a deep dive into the unique capabilities of the Adobe Integrated Runtime.
And for those who want to understand more about Flash Player, the venerable Flash CS3
Professional Bible by Robert Reinhardt and Snow Dowd is an invaluable reference.

Finally, for those like to listen as they learn, check out my own video training titles at Lynda.com
(www . lynda . com), Flex 3 Essential Training, Flex 3 Beyond the Basics, AIR Essential Training, and
AIR for Flex Developers Beyond the Basics.

Getting the most out of this book

Most chapters are accompanied by sample Flex applications and other source code that you can
download from the Wiley.com Web site at www .wiley.com/go/£flex3. Each chapters sample
files are independent from other chapters, so if you want to jump to a particular subject, you don't
first have to go through the sample code for all the preceding chapters.

Many of the files from the Web site are delivered in Flex Project Archives. A Flex Project Archive is
a new feature of Flex Builder 3, a file in .zip format that contains everything you need to import an

Preface

existing project into Flex Builder. It’s portable between operating systems, so you can import the
file into any version of Flex Builder 3, whether on Windows, Mac OS X, or the new version for
Linux that was in public beta at the time this was written.

If you're using the free Flex SDK (rather than Flex Builder), you can still use the Flex Project
Archive files. Just extract them to a folder somewhere on your system. Following current best-prac-
tice recommendations, the project’s application source code files are always in a subfolder of the
archive root named src.

For chapters that deal with application servers such as BlazeDS, ColdFusion, ASPNET, or PHP,
you'll need to download and install that software to run the sample applications from the Web site.
Each relevant chapter includes the URL from which the software can be downloaded and complete
installation instructions. For these chapters, you typically are instructed to create a Flex project
from scratch and then extract files from a .zip file from the Web site into the project (rather than
importing a Flex Project Archive file).

Finally, you can let us know about issues you find in the book or offer suggestions for subjects
you'd like to see covered in a future edition. Visit www . bardotech.com/flexbible to ask
questions and offer feedback.

Using the book’s icons

The following margin icons help you get the most out of this book:

Notes highlight useful information that you should take into consideration.

MWOTE

TP Tips provide additional bits of advice that make particular features quicker or easier
to use.

~, ==~ Cautions warn you of potential problems before you make a mistake.
ALY - N

The New Feature icon highlights features that are new to Flex 3.

Watch for the Cross-Ref icon to learn where in another chapter you can go to find more
information on a particular topic.

This icon points you toward related files on the book’s Web site,
www.wiley.com/go/flex3.

Orlthe YEE

>, ~jz The Web Resource icon directs you to other material available online.
Nek

XXVii

ts a truism, and it also true, that no book of any length can be completed without the support
and sufferance of family, friends, and colleagues.

First, I'd like to thank the great folks at Wiley Publishing who always took my calls. Stephanie
McComb and Marty Minner were always willing to hear the newest idea and help me figure out
what was next. Gwenette Gaddis Goshert pointed out grammatical faux pas that made this former
English major blush. And Drew Falkman, fellow Flex instructor at Bardo Tech and aspiring
screenwriter, ferreted out the technical issues without regard for my sensitive side.

The Adobe Certified Instructors who join me at Bardo Tech in teaching Adobe Flex to the world
have taught me more about Flex than just about anyone. Thanks to Simeon Bateman, Drew
Falkman (again), Alex Hearnz, Spike Milligan, and Jeanette Stallons.

Neil Salkind and Heather Brown at Studio B relieved me of having to worry about the business
details.

Since early in this century, I've worked as a technical trainer and courseware developer with an
extraordinary crew, the Adobe instructional development team members who have moved from
Allaire to Macromedia to Adobe and never lost their stride: Matt Boles, Robert Crooks, Tina
Goodine, Sue Hove, Deborah Prewitt, James Talbot, and Leo Schuman. They're always willing to
discuss and argue the teaching points. And thanks also to other Adobe Flex instructors who are
always willing to share their knowledge and insights: Emily Kim, David Hussein, Simon Slooten,
and Jun Heider.

Members of the Adobe Flex product management team, including Matt Chotin and Phil Costa,
pointed me in the right direction more times than they know. Jeff Vroom of the LiveCycle Data
Services development team humbled himself to be my teaching assistant at a couple of Adobe con-
ferences and is more the master of this material than 1.

And finally, for my family who dealt with my being pretty much unavailable for anything at all for
this long: my kids, Thad, Jason, and Jenny, and my extraordinary wife and best friend in the whole
world, Jackie.

XXIX

Flex Fundamentals

IN THIS PART

Chapter 1
About Flex 3

Chapter 2
Using Flex Builder 3

Chapter 3
Building a Basic Flex Application

Chapter 4
Understanding the Anatomy of a
Flex Application

Chapter 5
Using Bindings and Components

Chapter 6
Debugging Flex Applications

Chapter 7
Working with Events

About Flex 3

lex 3 is the most recent version of a platform for developing and IN THIS CHAPTER
deploying software applications that run on top of the Adobe Flash

Player. While such tools have existed for many years, the most recent Understanding the fundamentals
toolkit from Adobe Systems allows programmers with object-oriented back- of Flex
grounds to become productive very quickly using the skills they already have
learned in other programming languages and platforms. Getting to know Flex
applications

Since the release of Flex 2, the Flex development environment has encour-

aged a development workflow similar to that used in other desktop develop- B ol exyeruslilesl

ment environments such as Visual Studio, Delphi, and JBuilder. The Using Flex with object-oriented
developer writes source code and compiles an application locally and then programming

uploads the finished application to a Web server for access by the user. That

isn’t how Flex started, however. Understanding the Flash Player

Learning the history of the Flash

Flex was originally released by Macromedia as a server-based application B
ayer

deployment and hosting platform. In the early versions of the Flex product
line, an MXML/ActionScript compiler was included in a Java-based Web Making the most of Flex 3
application hosted on a Java 2 Enterprise Edition (J2EE) server. Application
source code was stored on the server. When a user made a request to the
server, the application was compiled “on request” and delivered to the user’s Getting help
browser, and hosted by the Flash Player.

development tools

This server-based compilation and application deployment model is still
available in the most recent version of the server software now known as
LiveCycle Data Services ES. But the version of the compiler that’s delivered in
LiveCycle Data Services isn't necessarily the same as the one that’s available
in both the Flex 3 Software Developers Kit (SDK) and Flex Builder 3. And
most developers find it simpler to use the primary “local compilation” devel-
opment model.

22170 M Flex Fundamentals

In this chapter, I describe the nature of Flex applications, the relationship between Flex applications
and the Flash Player, and how Flex leverages the nearly ubiquitous distribution of Flash Player on
multiple operating systems. I also describe how Flex applications can be packaged for deployment
as desktop applications using the Adobe Integrated Runtime (AIR), formerly known as Apollo.

Learning the Fundamentals of Flex

The Flex product line allows developers to deploy applications that run on the Flash Player as Web
applications and on the Adobe Integrated Runtime (AIR) as desktop applications. The compiled
applications that you create with Flex are the same as those produced by the Adobe Flash authoring
environment (such as Adobe Flash CS3), but the process of creating the applications is very different.

Getting to know Flex applications

A Flex application is software that you create using the various pieces of the Adobe Flex 3 product
line, which includes the following;

B The Flex 3 Software Developers Kit (SDK)
B Flex Builder 3

One major difference between the SDK and Flex Builder is that the SDK is free, while Flex Builder
is available only through a license that you purchase from Adobe Systems. But in addition to the
Flex SDK thats at the core of Flex Builder, the complete development environment includes many
tools that will make your application development more productive and less error-prone than
working with the SDK and another editing environment.

Flex Builder 3 Professional (the more complete and expensive of the available Flex Builder licenses)
also includes a set of components known as the Data Visualization Toolkit that aren’t included in
the SDK. The Data Visualization Toolkit includes the Flex Charting components for presenting data
as interactive visual charts and a new component called the AdvancedDataGrid that presents
relational data with groups, summaries, multi-column sorting, and other advanced features.

LIEVY EEATURE The Flex Charting Controls were available as a separately licensed product in the Flex 2
L1 rks == product line. With Flex 3, the Charting Controls, the AdvancedDataGrid component,
and other advanced controls are now available only as part of a Flex Builder 3 Professional license.

Flex programming languages
Flex 3 applications are written using two programming languages — ActionScript 3 and MXML:

B ActionScript 3 is the most recent version of the ActionScript language to evolve in the
Flash authoring environment over the lifetime of the product. A complete object-oriented
language, ActionScript 3 is based on the ECMAScript edition 4 draft language specifica-
tion. It includes most of the elements of object-oriented languages, including class
definition syntax, class package structuring, strong data typing of variables, and class
inheritance.

About Flex 3 _

Flex as Open Source

In April 2007, Adobe Systems announced its intention to migrate the Flex SDK to an open-source
project, to be licensed under the Mozilla Public License (MPL). This license allows developers to
modify and extend source code, and to distribute components of the code (or the entire SDK). Any
changes that developers make to the ActionScript files that make up the Flex SDK must in turn be
made available to other developers. This does not affect the developer’s own proprietary code. You
still own the MXML and ActionScript code you write for your own applications.

Not all components in the Flex SDK are available in the open-source package. Some components,
such as the Flex Charting Components and AdvancedbataGrid, are available only through com-
mercial licenses. Also, Flex Builder is available only through a license that you purchase from
Adobe.

The open-source Flex SDK is managed through the http://opensource.adobe.com/wiki/
display/flexsdk/ Web site. Additional information and ongoing discussion of the Flex open-
source project is available at these Web sites:

B http://groups.google.com/group/flex-open-source
B http://flex.org/

To get a copy of the Mozilla Public License, visit www.mozilla.org/MPL/.

B MXML is a pure XML-based markup language that is used to define a Flex application
and many of its components. Most of the elements in MXML correspond to an
ActionScript 3 class that’s delivered as part of the Flex class library.

When you compile a Flex application, your MXML code is rewritten in the background into pure
ActionScript 3. MXML can be described as a “convenience language” for ActionScript 3 that makes
it easier and faster to write your applications than if you had to code completely in ActionScript.

W ICJTE ActionScript 3 also is used in the Flash CS3 authoring environment for logical code, cre-
‘ - ating class definitions, and other programming tasks. Unlike Flex 3, which uses only ver-
sion 3 of ActionScript, you can create Flash documents in Flash CS3 that use older versions of the
language, such as ActionScript 2.

The diagram in Figure 1.1 describes the relationship between the Flex SDK’s command-line com-
piler, Flex Builder, the MXML and ActionScript programming languages, and the Flash Player and
Adobe Integrated Runtime.

MXML versus ActionScript 3

MXML and ActionScript can be used interchangeably in many situations. MXML is commonly
used to declare visual layout of an application and many objects, but it’s usually your choice as a
developer as to when to use each language.

2148 8 Flex Fundamentals

The Flex SDK and Flex Builder both compile source code in MXML and ActionScript, producing exe-
cutable applications that are hosted by the Flash Player on the Web or the Adobe Integrated Runtime
(“AIR”) on the desktop.

Development tools

Flex 3 SDK Flex Builder 3
(Free) (Commercial license)
Programming languages
MXML ActionScript 3
(Used XML structure) (Based on ECMAScript)

Runtime platforms

Flash Player 9 Adobe Integrated Runtime
(Web applications) (Desktop applications)

In these examples, I'm declaring an instance of an ActionScript class named Label. The Label
class is part of the Flex class library that’s included with both the Flex SDK and Flex Builder 3. Its
purpose is to present a single line of text in a Flex application.

Declaring objects in MXML

The Label class is represented in MXML as a tag named <mx : Label/>. To create an instance of
the Label class using MXML and set its text property to a value of Hello World, declare the
tag and set the property as an XML attribute:

<mx:Label id="myLabel" text="Hello World"/>

This results in creating an instance of the Label class that is displayed in the application.

Declaring objects in ActionScript 3

The Label class also can be instantiated using ActionScript 3. When using the ActionScript 3 cod-
ing model, you first create the object using the class’s constructor method and then add the object
to the application’s display list so it becomes visible. You can set the text property anytime after
creating the object:

import mx.controls.Label;

var myLabel:Label = new Label();
myLabel.text = "Hello World";
this.addChild (myLabel) ;

About Flex 3 _

This ActionScript code accomplishes exactly the same steps as the MXML code in the first example.
Notice that it takes four lines of ActionScript instead of the single line of MXML code. The amount
of code needed to accomplish any particular task is a common difference and one of the reasons
MXML exists. MXML can significantly reduce the amount of code in your application without
compromising its features or performance.

L IOSTE Assuming that the ActionScript code above is in a main application file, the prefix this
‘ - in the method call this.addchild () would refer to the Application itself. If the
same code were in an MXML component or ActionScript class, this would refer to the current
instance of that component or class.

Flex versus Flash development
Developers tend to use Flex instead of Flash when they want to create software applications that
have these characteristics:

B High level of interactivity with the user

B Use of dynamic data with application servers such as ColdFusion, ASPNET, PHP, or J2EE

B Highly scaled applications in terms of the number of views, or screens, from which the
user can select

In contrast, developers tend to use Flash when they are creating documents with these characteristics:

B Documents whose main purpose is to present visual animation
B Marketing presentations

B Hosting of Web-based video

Many applications that are built in Flash CS3 could be built in Flex, and vice versa. The selection
of development environment, then, is frequently driven by a developer’s background and existing
skill set.

Developing in Flash

As described above, developers who use Flash are frequently focused on presenting animation,
hosting video, and the like. Flash is generally considered superior for animation work because of
its use of a timeline to control presentations over a designated period of time. Flash supports a
variety of animation techniques that make use of the timeline, including these:

B Frame by frame animation

B Motion tweening

B Shape tweening
Flash also allows you to create animations using pure ActionScript code, but that approach also
can be used in Flex. Developers who come from a graphic design background and are used to

thinking visually appreciate the precision and visual feedback that the Flash development environ-
ment provides.

2148 8 Flex Fundamentals

TABLE 1.1

One drawback that application developers encounter with Flash is that the primary source docu-
ment used in Flash, the .fla file format, is binary. As a result, it doesn’t work well with the source
control systems that application developers commonly use to manage their development projects,
because you can't easily “diff,” or discover differences between, different versions of a binary file.

Developing in Flex

Developers who use Flex to build their applications commonly have a background in some other
programming language. Documents can be created and made useful in Flash without any program-
ming, but a Flex application is almost entirely code-based. Animations are handled entirely
through ActionScript, because Flex doesn’t have a timeline as part of its development toolkit.

Flex also has superior tools for handling large-scale applications that have dozens or hundreds of
views, or screens. Although Flash CS3 has a screen document feature, this feature hasn’t received
the development attention from Adobe that would make it a compelling architectural choice for
these “enterprise” applications.

Finally, Flex applications are built in source code, which is stored in text files. These text files are
easy to manage in source-code control applications such as CVS and Subversion. As a result, multi-
developer teams who are dependent on these management tools find Flex development to be a nat-
ural fit to the way they already work.

The Flex Builder 3 design view feature has become more friendly and useful to graphic designers
than in previous versions, but it isn't always intuitive to a designer who’s used to “real” graphic
design tools like Adobe’s own Photoshop, Ilustrator, and Fireworks.

Table 1.1 describes some of the core differences between Flex and Flash development.

Differences between Flex and Flash Development

Task Flex Flash

Animation Flex uses ActionScript classes called The Flash timeline allows animation
Effects to define and play animations. frame-by-frame or tweening, and also
There is no timeline. supports programmatic animation with

ActionScript.

Working with data Flex has multiple tools for working Flash can communicate with the same
with data and application servers, RPC sources as Flex, but its programming
including the RPC components tools aren't as intuitive or robust.

(HTTPService, WebService, and
RemoteObject). It is also a natural fit
for use with LiveCycle Data Services.

About Flex 3 _

Task

Flex

Flash

Design

Flex has a design view for WYSIWYG
(“What You See Is What You Get”)
application layout, but has no visual
tools for creating graphic objects
from scratch.

Flash has very good graphic design tools,
although not as complete a toolkit as
Illustrator. However, it has excellent tools
for importing and using graphics created
in Photoshop and Illustrator.

Programming
languages

Flex supports ActionScript 3 and MXML.

Flash supports all versions of ActionScript
(but only one version per Flash document)
and does not support MXML.

Code management

Flex applications are created as source
code in text files, which are completely
compatible with source-code
management systems.

Flash documents are binary, which
presents problems when building
applications in multi-developer
environments that require source-code
management tools.

HNOTE

Applications built for development in the Adobe Integrated Runtime (AIR) can be cre-
ated in either Flex or Flash. AIR applications can be created from any compiled Flash
document or from HTML-based content.

Flex and Object-Oriented Programming

Flex application development is especially compelling for developers who are already acquainted

with object-oriented programming (OOP) methodologies. Object-oriented programming is a set of
software development techniques that involve the use of software “objects” to control the behavior
of a software application.

Object-oriented programming brings many benefits to software development projects, including

these:

Consistent structure in application architectures
Enforcement of contracts between different modules in an application
Easier detection and correction of software defects

Tools that support separation of functionality in an application’s various modules

You'll find no magic bullets in software development: You can create an application that’s difficult
to maintain and at risk of collapsing under its own weight in an OOP language just as easily as you
can create one that primarily uses procedural programming. But a good understanding of OOP
principles can contribute enormously to a successful software development project.

And because ActionScript 3 is a completely object-oriented language, it serves Flex developers well
to understand the basic concepts of OOP and how they’re implemented in Flex development.

Object-oriented programming is commonly supported by use techniques known as modularity,
encapsulation, inheritance, and polymorphism.

2148 8 Flex Fundamentals

Modularity

Modularity means that an application should be built in small pieces, or modules. For example, an
application that collects data from a user should be broken into modules, each of which has a par-
ticular purpose. The code that presents a data entry form, and the code that processes the data
after it has been collected, should be stored in distinct and separate code modules. This results in
highly maintainable and robust applications, where changes in one module don't automatically
affect behavior in another module.

The opposite of modularity is monolithic. In monolithic applications such as the example in Listing
1.1, all the code and behavior of an application are defined in a single source-code file. These
applications tend to be highly “brittle,” meaning that changes in one section of the application run
a high risk of breaking functionality in other areas. Such applications are sometimes referred to as
spaghetti code because they tend to have code of very different purposes all wrapped around each
other.

LISTING 1.1

A monolithic Flex application

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx :Model>
...data representation...
</mx:Model>
<mx:Script>
...ActionScript...
</mx:Script>
<mx : HBox>
<mx:DataGrid>
<mx:columns>

<mx:DataGridColumn .../>
<mx:DataGridColumn .../>
<mx:DataGridColumn .../>

</mx:columns>
</mx:DataGrid>
<mx :Form>
<mx:FormItem label="First Name:">
<TextInput id="fnameInput"/>
</mx:FormItem>
<mx:FormItem label="Last Name: ">
<TextInput id="lnameInput"/>
</mx:FormItem>
<mx:FormItem label="Address:">
<TextInput id="addressInput"/>
</mx:FormItem>
</mx:Form>
</mx :HBox>
</mx:Application>

10

About Flex 3 _

In the above application, all the application’s functionality is mixed together: data modeling, data
collection, and logical scripting. Although the application might work, making changes without
introducing bugs will be difficult, especially for a multi-developer team trying to work together on
the application without constantly disrupting each other’s work.

A modular application such as the version in Listing 1.2 breaks up functionality into modules that
each handle one part of the application’s requirements. This architecture is easier to maintain
because the programmer knows immediately which module requires changes for any particular
feature.

LISTING 1.2

A modular Flex application

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script source="scriptFunctions.as"/>
<valueObjects:AValueObject id="vo"/>
<views:ADataGrid id="grid"/>
<forms:AForm id="form"/>

</mx:Application>

Flex implements modularity through the use of MXML components and ActionScript classes that
together implement the bulk of an application’s functionality.

Encapsulation

Encapsulation means that a software object should hide as much of its internal implementation
from the rest of the application as possible, and should expose its functionality only through pub-
licly documented “members” of the object. A class definition that’s properly encapsulated exposes
and documents these object members to allow the application to set properties, call methods, han-
dle events, and refer to constants. The documentation of the object members is known as the
application programming interface (API) of the class.

In the Flex class library, class members include:

B Properties: Data stored within the object
B Methods: Functions you can call to execute certain actions of the object

B Events: Messages the object can send to the rest of the application to share information
about the user’s actions and/or data it wants to share

B Constants: Properties whose values never change

In Flex, encapsulation is fully implemented in ActionScript 3. Each member that you define in a
class can be marked using an access modifier to indicate whether the particular method or prop-
erty is public, private, protected, or internal. A public method, for example, allows

11

22170 M Flex Fundamentals

12

the application to execute functionality that’s encapsulated within the class, without the program-
mer who’s calling the method having to know the details of how the action is actually executed.

For example, imagine a class that knows how to display a video in the Flash Player and allows the
developer to start, stop, and pause the video, and control the video’s audio volume. The code that
executes these functions would have to know lots about how video is handled in Flash and the
particular calls that would need to be made to make the audio louder or softer. The API of the
class, however, could be extremely simple, including methods to execute each of these actions.

public class VideoPlayer ()
{

public function VideoPlayer (video:String) :null
{ ... call video libraries to load a video ... }

public function start()
{ ... call video libraries to play the video ... }

public function stop()
{ ... call video libraries to stop the video ... }

public function setVolume (volume:int) :null
{ ... call video libraries to reset the volume ... }

}

The application that instantiates and uses the class wouldn't need to know any of the details; it just
needs to know how to call the methods:

var myVideoPlayer:VideoPlayer = new VideoPlayer ("myvideo.flv");
myVideoPlayer.start () ;
myVideoPlayer.setVolume (1) ;

We say, then, that the VideoPlayer class encapsulates complex behavior, hiding the details of
the implementation from the rest of the application.

Inheritance

Inheritance refers to the ability of any class to extend any other class and thereby inherit that class’s
properties, methods, and so on. An inheritance model allows the developer to define classes with
certain members (properties, methods, and so on) and then to share those members with the
classes that extend them.

In an inheritance relationship, the class that already has the capabilities you want to inherit is
called the superclass, or base class, or parent class. The class that extends that class is known as the
subclass, or derived class, or child class. Unified Modeling Language (UML) is a standardized visual
language for visually describing class relationships and structures. In this book, I frequently use
UML diagrams such as the example in Figure 1.2 to describe how a class is built or its relationship
to other classes.

FIGURE 1.2

About Flex 3 _

This is an example of a UML diagram that describes a relationship between a base and a derived class.

Animal

T

Dog

One class can extend a class that in turn extends another. UML diagrams can be extended to
describe these relationships as well. The UML diagram in Figure 1.3 describes a three-tier inheri-
tance relationship between a superclass named Animal and subclasses named Dog and Poodle.

FIGURE 1.3

This diagram describes a three-part inheritance relationship.

Animal

+ name

+ sleepl()

+ eat()
T

Dog

+ bark()

+ eat()
T

Poodle

+ bark()

13

22170 M Flex Fundamentals

14

In Figure 1.2, methods of the superclass Animal are inherited by the subclass Dog. Dog has addi-
tional methods and properties that aren't shared with its superclass and that can override the
superclass’s existing methods with its own implementations. The same relationship exists between
Dog and Poodle.

Because all versions of Animal sleep in the same way, calling Dog.sleep () or

Poodle.sleep () actually calls the version of the method implemented in Animal. But because
Dog has its own run () method, calling Dog.run () or Poodle.run() calls that version of the
method. And finally, because all dogs bark in a different way, calling Poodle.bark () callsa
unique version of the bark () method thats implemented in that particular class.

Inheritance allows you to grow an application over time, creating new subclasses as the need for
differing functionality becomes apparent.

In Flex, the ActionScript inheritance model allows you to create extended versions of the compo-
nents included in the Flex class library without modifying the original versions. Then, if an
upgraded version of the original class is delivered by Adobe, a simple recompilation of the applica-
tion that uses the extended class will automatically receive the upgraded features.

Polymorphism

Polymorphism means that you can write methods that accept arguments, or parameters, data typed
as instances of a superclass, but then pass an instance of a subclass to the same method. Because all
subclasses that extend a particular superclass share the same set of methods, properties, and other
object members, the method that expects an instance of the superclass also can accept instances of
the subclass and know that those methods can be called safely.

Polymorphism also can be used with a programming model known as an interface. An interface is
essentially an abstract class that can’t be directly instantiated. Its purpose is to define a set of meth-
ods and other object members and to describe how those methods should be written. But in an
interface such as the one described in Figure 1.4, the method isn't actually implemented,; it only
describes the arguments and return data types that any particular method should have.

A class “implements” an interface by creating concrete versions of the interface’s methods that actu-
ally do something. As with the relationship between super and subclasses, a method might be writ-
ten that accepts an instance of the interface as an argument. At runtime, you actually pass an
instance of the implementing class.

For example, you might decide that Animal should be abstract; that is, you would never create an
instance of an Animal, only of a particular species. The following code describes the interface:

public interface Animal
{
public function sleep()

{1

FIGURE 1.4

About Flex 3 _

This UML diagram describes the relationship between an interface and an implementing class.

<<interface>>

Animal

+ move)
+ eat()
+ sleepl)

VAN

Dog

+ move)
+ eat()
+ sleep)

The interface doesn’t actually implement these methods. Its purpose is to define the method names

and structures. A class that implements the interface might look like this:

public class Dog implements Animal

{

public function sleep/()

actual code to make the dog sleep
public function bark()

actual code to make the dog bark ...

{

{
}

Notice that a class that implements an interface can add other methods that the interface doesn’t
require. This approach is sometimes known as contract-based programming. The interface consti-
tutes a contract between the method that expects a particular set of methods and the object that

implements those methods.

Flex supports polymorphism both through the relationship between superclasses and subclasses

and through creation and implementation of interfaces in ActionScript 3.

Understanding the Flash Player

Flex applications are executed at runtime by the Flash Player or the Adobe Integrated Runtime. In

either case, they start as applications compiled to the .swf file format.

When you deploy a Flex application through the Web, its downloaded from a Web server at run-
time as a result of a request from a Web browser. The browser starts the Flash Player, which in turn

runs the application.

15

22170 M Flex Fundamentals

FIGURE 1.5

The Adobe Integrated Runtime includes the Flash Player as one of its critical components. Other
components include a Web browser kernel to execute HTML, CSS and JavaScript, and APIs for
local file access and data storage. But the version of the Flash Player that’s included with AIR is the
same as the one that runs on users’ systems as a Web browser plug-in or ActiveX control. As a
result, any functionality that you include in a Flex application should work the same regardless of
whether the application is deployed to the Web or the desktop.

The diagram in Figure 1.5 describes the architectural difference between the Flash Player’s deploy-
ment in a Web browser versus the Adobe Integrated Runtime.

Flash Player installed with a Web browser versus the Adobe Integrated Runtime

Web deployment model

Web browser Flash

Player

Flash Player called as ActiveX or plug-in

Desktop deployment model

Adobe Integrated Runtime (AIR)

Flash Web
Player browser

16

Flash Player and Web browser

integrated into runtime

Learning a little history about the Flash Player

FutureWave Software originally created a product called Future Splash Animator, which in turn
evolved from a product called SmartSketch. The player for the animations was Java-based and was
the ancestor of the current Adobe Flash Player. After its purchase by Macromedia, the product was
renamed and released in 1996 as Macromedia Flash 1.0.

The product went through a steady evolution, starting with basic Web animation and eventually
becoming a full-featured programming environment with rich media (video and audio) hosting
capabilities.

During its time with Macromedia, Flash (the IDE) was packaged as part the Studio bundle and
was integrated with other Studio products such as Dreamweaver and Fireworks. Macromedia

About Flex 3 _

positioned Flash MX and MX 2004 as development environments for what the company began to
call rich internet applications (RIAs). Although the development environment that was Flash never
fully satisfied the requirements of application developers (see the discussion in the section “Flex
versus Flash development” of issues that are commonly encountered in Flash when developing
true applications), the Flash Player continued to grow in its ability to host the finished applica-
tions, however they were built.

After Adobe Systems purchased Macromedia, Flash became a part of the Adobe Creative Suite 3
(CS3) product bundles. Along with this rebundling came increased integration with other CS3
products such as Ilustrator and Photoshop. Other Adobe products such as AfterEffects and
Premiere received new export features that allow their video-based output files to be integrated
into Flash-based presentations.

Table 1.2 describes the major milestones in the history of the Flash Player.

TABLE 1.2

Flash Player History

Version Year New Features

Macromedia Flash Player 1 1996 Basic Web animation

Macromedia Flash Player 2 1997 Vector graphics, some bitmap support, some audio
support; object library

Macromedia Flash Player 3 1998 The movieclip element; alpha transparency, MP3
compression; standalone player; JavaScript plug-in
integration

Macromedia Flash Player 4 1999 Advanced ActionScript; internal variables; the input field
object; streaming MP3

Macromedia Flash Player 5 2000 ActionScript 1.0; XML support; Smartclips (a component-
based architecture); HTML 1.0 text formatting

Macromedia Flash Player 6 2002 Flash remoting for integration with application servers;
screen reader support; Sorenson Sparc video codec

Macromedia Flash Player 7 2003 Streaming audio and video; ActionScript 2; first version
associated with Flex

Macromedia Flash Player 8 2005 GIF and PNG graphic loading; ON VP6 video codec;

faster performance; visual filters including blur and
drop shadow; file upload and download; improved text
rendering; new security features

Adobe Flash Player 9 2006 ActionScript 3; faster performance; E4X XML parsing;
binary sockets; regular expressions

Adobe Flash Player 9 Update3 2007 H.264 video; hardware-accelerated full-screen video
playback

17

22170 M Flex Fundamentals

18

HOUTE

Each new product bundling and relationship has increased the requirements for the Flash Player.
As a result, the most recent version of the Player (version 9) has all the features I've described:

B Object-oriented programming with ActionScript 3
B Web-based animation

B Rich media hosting and delivery

In addition to the Flash Player that’s delivered for conventional computers, Macromedia
and Adobe have released versions of Flash Lite for hosting Flash content on devices such
as cell phones and PDAs. None of the current versions of Flash Lite support ActionScript 3, so Flex
applications currently can’t be deployed on those platforms. Undoubtedly, this is a goal of future
development by Adobe.

Flash Player penetration statistics

One of the attractions of the Flash Player is its nearly ubiquitous penetration rate in the Web. Each
new version of the Player has achieved a faster rate of installation growth than each version before
it; version 9 is no different. As of December 2007 (according to statistics published on Adobe’s
Web site), the penetration rate for Flash Player 7 was 99% or greater, Flash Player 8 was at 98% or
greater, and Flash Player 9 already had a penetration rate of 93% or greater. Of course, these rates
change regularly; for the most recent information on Flash Player penetration rates, visit:

http://www.adobe.com/products/player_census/flashplayer/

Penetration rates are very important to organizations that are deciding whether to build applica-
tions in Flex, because the availability of Flash Player 9 (required to run both Flex applications and
Flash documents built with ActionScript 3) determines whether a Flex application will open
cleanly or require the user to install or upgrade the Player prior to running the application. If a
user needs to install the Flash Player, however, many ways exist to get the job done.

The Debug Flash Player

The Debug version of the Flash Player differs from the production version in a number of ways. As
described in detail below, you can install the debug version of the Flash Player from installers that
are provided with Flex Builder 3 and the Flex 3 SDK.

The Debug version of the Player includes these features:

B Integration with £db, the command-line debugger that’s included with the Flex 3 SDK

B Integration with Flex Builder debugging tools such as the trace () function and break-
points

B Other debugging tools

To ensure that you're running the Debug player, navigate to this Web page in any browser that you
think has the Player installed:

http://kb.adobe.com/selfservice/viewContent.do?externalId=tn_19245

About Flex 3 _

As shown in Figure 1.6, you should see a Flash document that tells you which version of the Player
is currently installed. When you load this document with the Debug Player, it displays a message
indicating that you have the Content Debugger Player. This tool also tells you whether you're run-
ning the ActiveX or plug-in Player and what version.

FIGURE 1.6

Discovering your Flash Player version

Flash Player installation

As of this writing, Flash Player 9 is available for these operating systems:

Windows
Mac OS X

Linux

Solaris

For up-to-date information about current operating system support, including minimum browser
and hardware requirements, visit this Web page:

http://www.adobe.com/products/flashplayer/productinfo/systemreqgs/
The Flash Player can be installed on a user’s computer system in a variety of ways:

B As an integrated Web browser plug-in
B As a standalone application

B As part of the Adobe Integrated Runtime

19

22170 M Flex Fundamentals

FIGURE 1.7

HOUTE

Regardless of how you install the Flash Player, users who install the Flash Player must

have administrative access to their computer. On Microsoft Windows, this means that
you must be logged in as an administrator. On Mac OS X, you must have an administrator password
available during the installation.

Uninstalling the Flash Player

Before installing the Flash Player, make sure any existing installations have been removed. The
process for uninstalling the Flash Player differs from one operating system to another, but in all
cases you must close any browser windows before trying to uninstall the Player

On Windows XP, use the Control Panels Add or Remove Programs feature, shown in Figure 1.7,
and uninstall whatever versions of the Flash Player you find.

Windows XP’s Add or Remove Programs feature, listing both the plug-in and ActiveX versions of the
Flash Player

20

On Mac OS X, use the uninstaller application that’s available for download from this Web page:

www . adobe.com/go/tn_14157

Installation with Flex Builder

As shown in Figure 1.8, when you install Flex Builder 3, you're prompted to install the debug version
of the Flash Player as one of the last steps in configuring the installation. You should always accept
this part of the installation, because it ensures that your system is equipped with the most recent ver-
sion of the Player that you need for building, debugging, and testing your Flex applications.

About Flex 3 _

The Flex Builder installer prompts you to install the Flash Player plug-in or ActiveX control on currently
installed browsers.

Before installing Flex Builder, make sure that you've closed any browser windows. If the installa-
tion detects open browser windows, it prompts you to close those windows before continuing the
installation process.

Using Flex Builder installation files

If you need to reinstall the debug version of the Flash Player, you should use the version that’s
included with Flex Builder 3 or the Flex SDK. If you've installed Flex Builder, you can find the
installation files in a subfolder within the Flex Builder installation folder. On Windows, this folder
is named:

C:\Program Files\Adobe\Flex Builder 3\Player\Win
This folder has three files:

W Install Flash Player 9 Plugin.exe: The plug-in version for Firefox and Netscape
B Install Flash Player 9 ActiveX.exe: The ActiveX control for Internet Explorer

B FlashPlayer.exe: The standalone player (does not require installation — just run it!)
Before running any of the installers, be sure to close any open browser windows.
Installing the Flash Player from the Web

You also can get the Flash Player from the Adobe Web site. Select a download location depending
on whether you want the production or debug version of the Player.

21

22170 M Flex Fundamentals

Downloading the production Flash Player

End users who want to run Flex applications and other Flash-based content can download the
Flash Player installer from this Web page:

http://www.adobe.com/go/getflashplayer

When you see the page shown in Figure 1.9, you should see a link to download the Flash Player
that’s appropriate for your operating system and browser.

FIGURE 1.9

Downloading the Flash Player from Adobe.com

~, 1 ==~ i The Flash Player that you download from this page is the production version, rather
A N than the debug version. If you have the production version installed, you can test your
applications, but you can’t take advantage of debugging tools such as tracing, breakpoints, and
expressions evaluation.

TP The Flash Player Download Center may include a link to download the Google toolbar

or other content. You do not have to download and install this unrelated content in
order to get all the features of the Flash Player.

22

avoutrexs [N

Downloading the debug Flash Player
To download the debug version of the Flash Player, visit this Web page:

http://www.adobe.com/support/flashplayer/downloads.html

As shown in Figure 1.10, you should see links for all versions of the Player, including both debug
and production versions for a variety of operating systems and browsers.

FIGURE 1.10

This is the Adobe Flash Player Support Center.

TP You might find an even more recent version of the Flash Player on the Adobe Labs Web
page at http://labs.adobe.com. Adobe Labs hosts projects that are still in devel-
opment, but that are far enough along that Adobe is sharing the current code with the community.

Flex 3 development tools

Flex developers have two sets of development tools: Flex Builder 3 and the Flex 3 SDK.

Flex Builder 3

Flex Builder 3 is an integrated development environment (IDE) for building Flex applications. This is the
tool that most developers use to build Flex applications. I describe Flex Builder 3 in detail in Chapter 2.

23

22170 M Flex Fundamentals

24

The Flex Software Developers Kit (SDK)

The Flex class library and command-line tools you need to build Flex applications are completely
free. As long as you don’t need to use Flex Builder or certain components that require a license,
you can download the Flex SDK from Adobe and build and deploy as many applications as you
want. The obvious benefit is the cost. The drawback to this approach is that you'll have to select a
text editor such Eclipse that doesn’t have the specific support for Flex application development
that you get with Flex Builder.

If you decide to use the Flex 3 SDK, download the most recent version from Adobe at www . adobe .
com/go/flex. The SDK is delivered in a zipped archive file that can be extracted to any platform.

The SDK includes most of the class library you use to build Flex applications. The following com-
ponents, however, require a license for deployment:

B Flex Charting components

B AdvancedDataGrid component

B Application profiling tools
As shown in Figure 1.11, if you decide to use these features without a license, any instances of the

charting components or AdvancedDataGrid component are displayed in your application with
a watermark indicating that you are using an evaluation version of the component.

In addition to the Flex class library, the Flex 3 SDK includes these command-line tools:

B mxmlc: A compiler for building Flex applications

B compc: A compiler for building component libraries, Runtime Shared Libraries (RSLs),
and theme files

B fdb: A debugger to debug applications

fcsh: The Flex Compiler Shell, which you can use to execute multiple compilation tasks
without the overhead of having to launch a new Java Virtual Machine (JVM) for each task

amxmlc: The AIR application compiler
acompc: The AIR component compiler

adl: The AIR debug application launcher

optimizer: A tool for reducing ActionScript compiled file size and creating a “release
version” of an application, component, or RSL

Detailed information about how to use each of these command-line tools is available in the Adobe
publication Building and Deploying Flex Applications.

About Flex 3 _

A watermarked charting component

Using MXMLC, the command-line compiler

To compile a Flex application with mxmlc, the command-line compiler, it's a good idea to add the
location of the Flex 3 SDK bin directory to your system’s path. This allows you to run the compiler
and other tools from any folder without having to include the entire path in each command. Figure
1.12 shows the command-line compiler.

TP When you install Flex Builder 3 on Microsoft Windows, the installer provides a menu
choice that opens a command window and adds all directories containing Flex 3 com-
ponents to the current path. To use this tool, select All Programs > Adobe > Adobe Flex 3 SDK
Command Prompt from the Windows Start menu.

To compile an application from the command line, switch to the folder that contains your main
application file. If you want to try this using the exercise files that are available for download with
this book, switch to the chapter01 directory:

cd /flex3bible/chapter0l

25

22170 M Flex Fundamentals

This directory contains a file called HelloWorld.mxml, a simple Flex application. To compile the
application, run this command:

mxmlc HelloWorld.mxml

FIGURE 1.12

The command-line compiler at work

After the compilation is complete, your directory will contain a new file called HellowWorld. swf.
This is the compiled application that you deploy to your Web server.

TP The command-line compiler has many options for tuning your application. For complete
details on how to use the compiler, see the Adobe publication Building and Deploying
Flex Applications.

Getting Help

Documentation for Flex 3 is available from the Adobe Web site at:

www . adobe.com/support/documentation/en/flex/

The documentation is available in a variety of formats, including Acrobat PDF, HTML Help, and
ASDocs HTML files.

The documentation includes these publications, among others:

B Developing Flex Applications contains extensive documentation on the functional tools that
are available in the Flex framework.

B Building and Deploying Flex Applications focuses on application architecture, compiler
tools, and deployment strategies.

W ActionScript 3.0 Language and Components Reference contains generated documentation of
the Flex class library, including each class’s properties, methods, and so on. This docu-
mentation also includes extensive code samples.

The documentation also is delivered in indexed, searchable format with Flex Builder 3. I describe
how to explore and use this version of the documentation in Chapter 2.

26

About Flex 3 _

Summary

In this chapter, I gave an introduction to the world of application development with Adobe Flex.
You learned the following:

B Flex applications are built as source code and compiled into Flash documents.

B Flex applications can be run as Web applications with the Flash Player, delivered through
a Web browser.

B Flex applications also can be run as desktop applications, hosted by the Adobe Integrated
Runtime (AIR).

B The Flex Software Developers Kit (SDK) is completely free and available as an open-
source project that’s managed by Adobe Systems.

B Flex Builder 3 is a commercial integrated development environment for building Flex
applications.

B Flex developers tend to have a background in object-oriented software development, but
anyone who’s willing to invest the time can become proficient in Flex application devel-
opment.

27

Using Flex Builder 3

lex Builder 3 is Adobe’s preferred development tool for building appli- _
cations with the Flex Framework. Flex Builder is available for both the IN THIS CHAPTER

Windows and Mac OS X operating systems, and a Linux version of the Getting and installing Flex
product is planned for future release. Builder 3
Although you can develop and deploy Flex applications to the Web or the Installing Flex Builder as an
desktop with the free Flex SDK, Flex Builder is a worthwhile investment that Eclipse plug-in

can increase developer productivity, reduce bugs, speed up coding, and gener-

ally make the process of developing a Flex application much more enjoyable. sttt o Loy it (e @f

Flex Builder

Using views and perspectives
° °
G Ettl ng FI ex B ul Id er 3 Using workspaces and projects

You can get Flex Builder from Adobe as a free evaluation that lasts for 60 Creating a Flex project using the
days, or you can purchase a license. Two licenses currently are available for Help system
Flex Builder 3:

Searching for and refactoring
B Flex Builder 3 Standard Edition includes everything you need to code
build basic Flex applications for the desktop and the Web, but it
does not include the Flex Charting component library, the
AdvancedDataGrid control, or certain other advanced development
and testing tools.

W Flex Builder 3 Professional Edition includes the Flex Builder
Standard Edition feature set and adds data visualization tools such as
the Flex Charting components and AdvancedDataGrid control. The
Professional license also includes the Flex Test Automation frame-
work, which can be used along with Mercury QuickTest Professional
to perform automated client testing on a Flex application.

29

22170 M Flex Fundamentals

Installing Flex Builder 3

Flex Builder 3 can be installed in two ways:

B Asastandalone installation that includes everything you need
B Asa plug-in on top of an existing installation of Eclipse
Regardless of which installation option you select, Flex Builder runs as a plug-in, or an integrated

component, of another software product called Eclipse. So, before installing Flex Builder, it5s first
important to understand the nature of Eclipse.

LIEVY EEATURE Flex Builder 2 had a single installation application for each operating system. After you
- - =~ started the installation process, you selected whether to install Flex Builder with the
standalone or the plug-in configuration. Flex Builder 3 has separate installation applications for the
two configurations.

L IOTE The plug-in installation requires Eclipse version 3.22 or later. When you select the stand-

‘ - alone configuration, Flex Builder is installed with Eclipse 3. Eclipse 3 includes many new
features that developers find valuable, including the ability to drag and drop code from one part of a
source file to another.

Installing Flex Builder with the standalone
configuration

The standalone installation of Flex Builder includes everything you need to get started building
Flex applications. The installation includes these components in a single integrated package:

B The Java Runtime Environment (JRE) when installing on Windows

B The Flex Builder plug-in

B Optional installation of the ColdFusion Extensions for Eclipse

|

Optional installation of the JSEclipse plug-in for editing JavaScript files

Running the standalone installer

Start the installer, and navigate through the first few screens. When prompted for the installation
folder, select the location where you want to install the product.

On the next screen, shown in Figure 2.1, you're asked whether you want to install the debug ver-
sion of Flash Player 9. Because this version of Flash Player is required for successful Flex applica-
tion development, you should leave the options selected for all browsers.

30

Using Flex Builder 3

This installation dialog box prompts you to decide which optional components you want to include in the
Flex Builder installation.

After accepting the summary screen (shown in Figure 2.2) and clicking Finish, the installation
should be completed successfully.

FIGURE 2.2

The Pre-Installation Summary screen

31

22170 M Flex Fundamentals

Installing Flex Builder with the Eclipse workbench

Eclipse is an open-source software product that serves as a platform for building and deploying
application development tools. Eclipse was originally developed by IBM as a Java integrated devel-
opment environment. The software was then donated to the Eclipse Foundation, which describes
itself as a “not-for-profit, member supported corporation.” The purpose of the Eclipse Foundation
is to organize and support ongoing development of Eclipse and related software. You can visit the

Eclipse Foundation online at http: //www.eclipse.org.

Eclipse is described as a workbench. It serves as a platform for many software products, each of
which is typically devoted to development in a particular language or platform. These individual
products are known as plug-ins. An Eclipse installation can host as many plug-ins as you like, for as
many different programming languages as you work in. This allows you to do your development
work in a single development environment and easily switch among Java, Flex, ColdFusion, XML,
and any other languages for which you've installed the appropriate plug-ins.

Hundreds of plug-ins are available for the Eclipse workbench. Table 2.1 describes some Eclipse
plug-ins that are commonly used by Flex application developers.

TABLE 2.1

Plug-in

Eclipse Plug-ins for Flex Developers

Description

Available From

Java Development
Tools (JDT)

Web Tools Project
JSEclipse

ColdFusion Extensions
for Eclipse

CFEclipse

The most commonly used
Eclipse-based Java
development IDE; includes

a Java editor with code editing,
generation, debugging, and
analysis tools

A set of tools for developing
Web and Java EE applications

A development environment
for working with JavaScript

A plug-in for ColdFusion
developers that provides
Remote Development

Service (RDS) access to a
ColdFusion server, along with
tools to generate code for both
ColdFusion and ActionScript

An open-source, freely licensed
plug-in for ColdFusion developers

http://www.eclipse.org/jdt/

http://www.eclipse.org/webtools/

Included with Flex Builder

Included with Flex Builder

http://www.cfeclipse.org

32

Using Flex Builder 3

Getting Eclipse

When you install Flex Builder with the standalone installation option, you get a complete copy of
Eclipse 3.3 as part of the installation. If you want to install Flex Builder using the plug-in installa-
tion option, you first need to download and install an Eclipse distribution.

Preparing to install Eclipse
Before installing an Eclipse distribution, you need to have the Java Runtime Environment (JRE)
installed on your computer.

Mac OS X developers already have the JRE installed as part of the operating system’s default config-
uration. Windows XP and Windows Vista developers should check for an existing JRE and install it
if it isn’t found.

As of this writing, the most recent version of the JRE (version 6) has not been fully tested with
Eclipse 3.3, so I recommend that you install JRE 5 for use with Eclipse. If you're a Java developer,
this doesn’t affect your ability to develop with the latest version of the Java programming language,
because you can always designate a different version of Java Standard Edition for any particular
development project.

You can download and install JRE 5 from http://java.sun.com/javase/downloads/
index_jdk5. jsp. Just follow the prompts to install the JRE, and you'll be ready to install
Eclipse.

Selecting an Eclipse distribution

Many pre-packaged distributions of Eclipse are available. The basic product includes just the
workbench and allows you to completely customize your installation. Other distributions include
various combinations of plug-ins and configurations for common development scenarios.

Table 2.2 describes some of the common Eclipse distributions.

TABLE 2.2

Eclipse Distributions

Plug-in Description Available From
Eclipse IDE for Includes the JDT, a source code http://www.eclipse.org/downloads/
Java Developers management client, XML editor,

and other useful tools
Eclipse IDE for All of the above, plus Mylyn, for ~ http://www.eclipse.org/downloads/
Java EE Developers integration with Bugzilla, Trac,

and JIRA (server environments
for source code management)

continued

33

Flex Fundamentals

TABLE 2.2 (continued)

Plug-in Description Available From
Eclipse Classic Includes the JDT, plus tools for http://www.eclipse.org/downloads/
developers who want to create
their own Eclipse plug-ins
Web Tools Platform Includes text and graphics http://www.eclipse.org/webtools/
All-in One editors for a variety of

languages and platforms;
enables certain features of
Flex Builder 3 for generation
of Java server-side code

34

Installing Eclipse

Eclipse distributions are typically delivered as compressed archive files without formal setup appli-
cations.

Eclipse on Windows

On Windows, the Eclipse distribution is in the ZIP archive format. You install Eclipse on Windows
simply by extracting the archive to any folder on your system.

For example, if you select the Eclipse IDE for J2EE Developers on Windows, version 3.3, the
installation file will be named eclipse-jee-europa-win32.zip. Extract the .zip file to any
folder on disk such as C: \eclipse.

To start Eclipse on Windows, run eclipse.exe from the Eclipse folder.

Eclipse on Mac OS X

On Mac OS X, the Eclipse distribution is in an archive format known as tarball. You install Eclipse
on Mac OS X by extracting the archive to any folder on your system.

For example, if you select the Eclipse IDE for J2EE Developers on Mac OS X, version 3.3, the
installation file will be named eclipse-jee-europa-fall-macosx-carbon-tar.gz.
Extract the archive file to any folder on disk such as the Applications folder on your hard disk.

After installing Eclipse on Mac OS X, locate the Eclipse icon Eclipse in the Eclipse folder. Select
the icon and press Cmd+O or double-click on the icon to start Eclipse.

Installing the Flex Builder plug-in

To install Flex Builder as a plug-in on top of your existing Eclipse installation, use the appropriate
installation application for your operating system.

Using Flex Builder 3

Eclipse Licensing

clipse is licensed under the Eclipse Public License Version 1.0 (EPL). This license allows you to

freely download, install, and use Eclipse on as many computers as you like. The license is struc-
tured so that plug-ins that are created by software companies, non-profit organizations, or individu-
als can be distributed under open-source licenses (as with the Java Development Tools or CFEclipse)
or sold as commercial products (as with Flex Builder).

Start the installer, and navigate through the first few screens. The plug-in installer asks for most of
the same options as the standalone installer, but it also asks for two locations:

B The Choose Install Folder dialog box asks you to choose a location for the Flex SDK and
other supporting files. Figure 2.3 shows the installation prompt for this information.

FIGURE 2.3

This dialog box asks for the location of the Install Folder.

B The Choose Eclipse Folder to be Extended dialog box asks where you want Eclipse plug-
ins to be installed. Figure 2.4 shows the installation screen for this information.

35

22170 M Flex Fundamentals

This dialog box asks you for the location of your Eclipse installation.

On the next screen, you're asked whether you want to install the debug version of Flash Player 9.
Because this version of Flash Player is required for successful Flex application development, you
should leave the options selected for all browsers.

~a JTIUN] If you have a later version of the debug Flash Player already installed, the Flex Builder
R installation still replaces it with its own version. If you know you have a later version
already installed, deselect the option to install the Flash Player to retain your current version.

After accepting the summary screen and clicking Finish, the installation completes successfully.

Getting to Know the Eclipse Features

The Flex Builder 3 feature set combines the capabilities of the Eclipse workbench with customized
tools that increase Flex application development productivity. Figure 2.5 shows the default Flex
Builder layout the first time you open it after installation. In this section, I describe the basic tools
of Eclipse: workspaces, projects, views, editors, and perspectives.

The Eclipse workspace

An Eclipse workspace consists of a collection of development projects, plus configuration settings
for both the built-in Eclipse features and certain customized features that are part of Flex Builder.

36

Using Flex Builder 3

When Eclipse first starts up, you're prompted to select a workspace. The default workspace folder
will differ based on whether you're using Flex Builder’s standalone configuration or the plug-in,
but the location is your personal folder. Table 2.3 shows the specific locations you'll see for differ-
ent operating systems.

FIGURE 2.5

Flex Builder in the default Flex Development perspective

TABLE 2.3

Default Workspace Locations by Operating System

Operating System Default Workspace Location

Windows XP C:\Documents and Settings\[username]\My Documents\Flex Builder 3
Windows Vista C:\Users\ [username]\Documents\Flex Builder 3

Mac OS X /Users/[username]/Documents/Flex Builder 3

37

22170 M Flex Fundamentals

FIGURE 2.6

The most visible and important purpose of an Eclipse workspace is to serve as a table of contents
for a set of projects. The workspace, however, does more; it maintains all the information you need
to manage your projects, including configuration settings for Eclipse, Flex Builder, and other plug-
ins you might have installed.

Select File &> Switch Workspace from the Eclipse menu to switch workspaces. Workspaces you've
used previously may be displayed on the menu; if the workspace you want is available, just select it.

To select a different workspace (whether new or one that already exists), select Other from the sub-
menu. As shown in Figure 2.6, type the name of the workspace folder or use the folder browsing
tool to select it. If you type the name of a folder that doesn’ yet exist, it is created for you.

This dialog box asks for a new workspace location.

38

When you select a new workspace, Eclipse automatically restarts to allow any file or folder locks to
be released.

Eclipse projects

An Eclipse project contains all the resources needed for a particular application or group of related
applications. The basic Eclipse project contains only a reference to a particular root folder. Most
projects you create will be for a particular programming language or platform and will be associ-
ated with a particular Eclipse plug-in such as Flex Builder, CFEclipse, the JDT, or others.

TP A single project can be referenced in multiple workspaces.

Because the project creation process can vary widely for various plug-ins, I describe the details of
Flex project creation in a later section.

Eclipse views

An Eclipse view is a user interface panel that serves a specific function. Some of the views you use
in Flex Builder are part of the Eclipse workbench and are common to all Eclipse plug-ins. For

Using Flex Builder 3

example, the Problems view, which displays current compilation errors and warnings, is used in
most plug-ins. Other views are unique to Flex Builder and are useful only in the context of Flex
application development.

To open a view that currently isn’t displayed on the screen, select Window &> Show View &> Other.
As shown in Figure 2.7, all views from all installed plug-ins are available.

FIGURE 2.7

This dialog box allows you to select from all views from all installed plug-ins.

Managing a view’s layout
Each view can be used in either docked or detached mode. Docking positions for views include the
top, bottom, left, and right of the workspace window.

To move a docked view:

Click and drag the view’ tab.

2. Move the view until the cursor displays a black line indicating where the view will be
docked.

3. Release the mouse button to drop the view in its new location.
Figure 2.8 shows the process of docking a view.

As shown in Figure 2.9, to detach a view, right-click the view’s tab (Ctrl-click on the Mac), and
select Detached from the context menu. After a view has been detached, it can be moved anywhere
on your screen, including moving to a second monitor you use in spanned mode.

39

22170 M Flex Fundamentals

Docking a view

\

FIGURE 2.9

Detaching a view

TP To maximize a view to full screen, double-click the view’s tab. Double-clicking the tab
again restores it to its original size.

Using Flex Builder 3

Eclipse editors

An editor is special kind of view that’s designed to support development for a particular program-
ming language. The basic Eclipse installation includes a text editor that can be used to edit any text
file. Each plug-in includes its own unique editors. For example, the Flex Builder plug-in includes
editors for MXML and ActionScript files.

The editor is placed in the center of the workspace window and cannot be detached. To open mul-
tiple editors on a single file, right-click the editor tab and select New Editor. As shown in Figure
2.10, the same file is opened again in a separate editor view. When you have multiple editors open
in this way, any changes you make in one of the editors is immediately reflected in the others. In
Flex Builder, this allows you to have one editor open in Design view and the other open in Source
view simultaneously.

FIGURE 2.10

Multiple editors open to a single source file.

Document editor 1in Source view

Document editor 2 in Design view

41

22170 M Flex Fundamentals

42

Eclipse perspectives
An Eclipse perspective is a particular arrangement of views. Each plug-in typically includes one or

more predefined perspectives. For example, Flex Builder 3 includes these perspectives:

B Flex Development

B Flex Debugging

W Flex Profiling
If you install Flex Builder with the standalone configuration, the default perspective is Flex
Development. You can select a different perspective in two ways:

B From the Eclipse menu, select Window = Perspective and select a perspective.

B Asshown in Figure 2.11, use the Perspective selection tool in the upper-right corner of
the workspace window.

FIGURE 2.11

Selecting a perspective from the perspective selection tool

Using Flex Builder 3

TP After customizing the layout of views within a perspective, you can save the new layout
to a custom perspective that you can then select as needed. To create your own custom
perspective, select Window => Perspective o> Save Perspective As... from the Flex Builder menu and
give the custom perspective a descriptive name that’s easy to remember.

Configuring Eclipse

Most configuration options for Eclipse are available from the Preferences dialog box. Select
Window = Preferences from the Eclipse menu to open the dialog box shown in Figure 2.12.

FIGURE 2.12

The Eclipse Preferences dialog box

The General section of the Preferences dialog box allows you to change configurations that are
common to all Eclipse plug-ins. Some preferences that you might want to customize are deeply
buried in the tree of options. I describe some of the preferences that are frequently used, but I also
encourage you to explore this area of the product.

43

2148 8 Flex Fundamentals

Changing fonts

The standard font that’s used to present text in the MXML, ActionScript, and text editors is config-
urable in the General section of the Preferences dialog box. To find this setting in the Preferences
dialog box (shown in Figure 2.13):

Select General &> Appearance = Colors and Fonts from the tree control on the left.

In the Colors and Fonts configuration tree on the right, select Basic = Text Font.

Click the Change button, and select the font from the font selection dialog box that
appears.

4. After selecting a font, click OK to return to the Preferences dialog box, and click OK
again to save your changes.

FIGURE 2.13

Selecting a text font

Selecting a Web browser

When you test a Flex Web application, you run the application in Flash Player, hosted by a Web
browser of your choice. Flex Builder uses the Eclipse Web Browser configuration option. By
default, this option uses your system browser (the same browser that’s used when you navigate to a
URL from an e-mail client or other link on your system).

44

Using Flex Builder 3

Using the Eclipse Preferences dialog box, you can override this setting and select a specific Web
browser. With the Preferences dialog box open, select General = Web Browser from the tree of con-
figuration options. As shown in Figure 2.14, you see a list of available browsers. The default selec-
tion tells Eclipse to use the system default browser. Select the browser you prefer, and click OK to
save your changes. The next time you test a Flex application, it opens in the browser you selected.

FIGURE 2.14

Selecting a Web browser

Many other configuration options are available, but most are useful or relevant only when working
with a particular kind of file or application. I describe these options at other points in the book.

Touring the Flex Builder Interface

Flex Builder has a common set of tools that you use to create and test Flex applications, whether it
installed with the standalone or plug-in configuration. In this section, I describe the most common
tasks related to Flex application development: creating a Flex project and finding Help resources.

Creating Flex projects

An Eclipse project is a collection of application resources. When using Flex Builder, you should
create your projects as a resource known as a Flex project. In addition to standard Eclipse project
settings, a Flex project contains many configuration options that are designed specifically for Flex
developers.

45

22170 M Flex Fundamentals

Select File =& New > Flex Project from the Flex Builder menu to create a new Flex project.

In the New Flex Project wizards first screen, shown in Figure 2.15, provide the following informa-
tion:

FIGURE 2.15

This is the first screen in the New Flex Project wizard.

B The Project name can contain letters, numbers, the $ symbol, and the _ (underscore)
symbol. You can’t include spaces or any other special characters.

B The Project location can be anywhere on your disk. The default location is a folder
named just like the project, placed under the workspace folder, but you don't have to put
it there. This is where the project configuration and primary source code files, and possi-
bly compiled applications, are stored.

B The Application type is set to either Web application or Desktop application.

Selecting Web application causes the application to be delivered through the browser
and run in Flash Player.

Selecting Desktop application creates an application that installs for use with the Adobe
Integrated Runtime (“AIR”) and runs as a native application on the user’s desktop.

L IOTE Flex Builder 3 does not allow you to create a single project whose applications can be
) - deployed on either Flash Player or AIR. Each project must specify one and only one of
these deployment options. Flex Builder can share resources between multiple projects so that each
project is created as a shell for a particular deployment option, and the bulk of an application’s
resources are maintained in a third project known as a Flex Library Project.

46

Using Flex Builder 3

The options in the Server Technology section allow you to select an application server. These appli-
cation servers are directly supported by Flex Builder:

ASPNET
ColdFusion
J2EE (also known as Java EE)

|

|

|

B PHP

LIEVY EEATURE When you select ColdFusion, you also are prompted to select either LiveCycle Data

d *L Services or ColdFusion Flash Remoting as a communications option. This is because

ColdFusion 8 now includes an option to integrate LiveCycle Data Services (formerly known as Flex
Data Services) into its basic installation.

[CJTE If you are using an application server with your Flex application, make sure the applica-
) - tion server is installed and tested prior to creation of the Flex Project.

For the purposes of this section, I'll assume you’ve set the application server type to None. For
options specific to particular application servers, see Chapter 24 through Chapter 29.

The next screen of the Flex Project wizard asks you to provide the Compiled Flex application loca-
tion, also known as the Output folder. The default is a subfolder of the project root named bin.
This folder contains a compiled version of the application, which you’ll use for debugging and test-
ing. The production version of the application is created in a separate step after the project has
been created.

The last screen of the Flex Project wizard, shown in Figure 2.16, asks for this information:

B The Main source folder is where you place the .mxml and .as source code files that con-
stitute your application source. Your application .mxml files are placed in this folder. You
can also create subfolders of the Main source folder to contain component and class files.
These subfolders are known as packages.

B The Output folder URL is the http address you'll use to test the application in a Web
browser. This option appears only when you're creating a Web application. By leaving
this option blank in a Web project that doesn’t use an application server, you indicate that
you want to run the application by loading the compiled application from the hard disk.
Using this default configuration has the advantage of not requiring a Web server for test-
ing (similar to loading an HTML Web page into the browser from the local disk).

B The Application ID is a unique identifier assigned to your application. This option
appears only when you are creating a Desktop application for deployment on the Adobe
Integrated Runtime.

LIEVY EEATURE In Flex Builder 2, the Main source folder defaulted to the project root folder. In Flex
£4fres “~ Builder 3, the Main source folder is now a subfolder named src.

47

22170 M Flex Fundamentals

This dialog box asks for the source folder, the main application filename, and the Output folder URL when
creating a Web application.

B The Main application file is the source code file that defines your application. Flex appli-
cation files always have a file extension of .mxml. A single project can contain more than
one application, but you can create only a single application during project creation.
Other applications have to be created after the project is open.

L IOTE The first part of the application filename (the part before the file extension of .mxml)

) - becomes an ActionScript class name during the compilation process. This is why you
must follow class naming conventions when you name your application file. An ActionScript class
name can include letters, numbers, and the $ symbol, and the _ (underscore) symbol, but must begin
with a letter, the $ symbol, or the _ (underscore) symbol; you can’t start a class or application file-
name with a number.

To accept your project configurations, click the Finish button to create the Flex Project and the
main application file.

48

Using Flex Builder 3

The Flex Builder user interface

Flex Builder 3 adds unique tools to Eclipse to facilitate Flex application development. These tools
include Editors and Views. In this section I describe these important tools.

The MXML editor

Flex Builder includes two editors for use in creating your Flex applications. The MXML editor is
used to work with MXML files, whether they represent application files or custom components.

When you double-click a file with the .mxml file extension from the Eclipse Navigator view, the
file is opened in the MXML editor. This editor has two views of its own: Source view and Design
view. Whether the file opens initially in Design view or Source view depends on what view you've
used most recently on other files.

As shown in Figure 2.17, you select whether you want to use Source view or Design view by click-
ing one of the buttons at the top of the MXML editor.

FIGURE 2.17

Source view and Design view selection buttons

Source/Design view selector buttons

TP You can toggle between Source view and Design view with the keyboard shortcut
Ctrl+~.

49

22170 M Flex Fundamentals

The ActionScript editor

The ActionScript editor is designed for editing of files containing pure ActionScript code. This edi-
tor can be useful whether you're a Flex developer or a Flash developer, because both products now
can use the latest version of the ActionScript programming language.

When you double-click a file with the .as file extension from the Eclipse Navigator view, the file is
opened in the ActionScript editor, as shown in Figure 2.18.

FIGURE 2.18

The ActionScript editor

Both the MXML and ActionScript editors include these features to make coding faster and more
productive:

Language color-coding

Auto-import of external ActionScript classes

Auto-completion of MXML tags and attributes

Auto-completion of variable symbol names

Code hinting for function arguments and class members

Intelligent language search for symbols and their declarations

50

Using Flex Builder 3

Flex Builder views

Flex Builder 3 includes custom Eclipse views that serve particular purposes.

Flex Navigator view

The Flex Navigator view, shown in Figure 2.19, displays a tree of folders and files and allows you
to locate and open any project resource. This view is displayed by default in both the Flex
Development and the Flex Debugging perspectives. When using any of the Flex perspectives, you
can open the view by selecting Window = Flex Navigator from the Eclipse menu.

FIGURE 2.19

The Flex Navigator view

You can create new project resources directly within the Flex Navigator view by right-clicking
(Ctrl-clicking on the Mac) any project folder. From the context menu that appears, as shown in
Figure 2.20, select the kind of resource you want to create.

Outline view

The Outline view, shown in Figure 2.21, displays a tree of the objects that have been declared in an
MXML or ActionScript file. This view is displayed by default only in the Flex Development perspec-
tive. Select Window = Outline from the Eclipse menu to open this view in any other perspective.

The Outline view lets you easily locate code representing any declared variable or object, whether
the object has been declared in MXML or ActionScript.

To locate code representing any variable or object using the Outline view, click the object in the
view. The cursor in the current editor then jumps to that part of the code and selects the code that
declares the object.

51

2148 8 Flex Fundamentals

Creating a project resource from the Flex Navigator view

FIGURE 2.21

The Outline view

52

Using Flex Builder 3

Problems view

The Problems view, shown in Figure 2.22, displays current compilation errors and warnings.
When your code contains a bug, the Problems view shows you these details:

The Description of the problem (an error message)

The Resource containing the problem (a source code file)

The Path of the resource (the folder containing the problem file)

The Location of the problem (the line number)

Double-click a problem in the Problems view to jump to the problem code. If the file containing the
problem isn't currently open, Flex Builder opens the file and places the cursor in the appropriate editor.

FIGURE 2.22

The Problems view

TP Keep only one project open at a time. If you have the Build Automatically feature turned
on (the default setting), Flex Builder recompiles all open projects whenever any source
file in any of the projects has been modified and saved.

If you have any remaining errors or warnings in projects you have open but aren’t using, it slows Flex
Builder’s compilation process and keeps those errors and warnings in the Problems view until you fix
them or close the project.

Design views

These views are used only when an editor is in Design view:
B The Flex Properties view allows you to set object properties through a simple user inter-
face and generates the appropriate MXML code to represent your selections.

B The Components view allows you to drag and drop common user interface components,
including both Containers and Controls, into your application.

B The States view allows you to manage alternate presentation States through Design view
and generates code to represent the alternate states.

53

22170 M Flex Fundamentals

Debugging views
These views are primarily used when debugging a Flex application:
B The Console view displays tracing information and other detailed debugging messages.

B The Debug view contains controls for stepping through code, terminating a debugging
session, and resuming a debugging session.

B The Variables view displays the values of all pre-declared variables that are currently in
scope while application execution is stopped on a breakpoint.

B The Breakpoints view allows you to manage your breakpoints.

B The Expressions view allows you evaluate and inspect arbitrary ActionScript expressions
while application execution is stopped on a breakpoint.

These views are described in greater detail in Chapter 6.

Getting Help

The documentation for the Flex development platform is delivered as part of the Flex Builder
installation. You can access the documentation in a variety of ways:

B Explore the Help contents.

B Search for specific terms.

B Use context-sensitive Help.

Exploring the Help contents
In Flex Builder, you can get to the Help contents, shown in Figure 2.23, from the menu choice

Help = Help Contents. The Help Contents screen opens in a separate window.

The Help Contents screen contains entries for all the Flex documentation and also for any Eclipse plug-
ins you may have installed. For example, if you installed JSEclipse, the Adobe plug-in for JavaScript
development, during the installation process, you'll see an entry for that plug-in on the Help screen.

The main documentation for Flex is under Adobe Flex 3.0 Help. Under this heading, you'll find
these links:

B Using Flex Builder 3
B Flex 3 Developers Guide
B Building and Deploying Flex 3 Applications

54

Using Flex Builder 3

Creating and Extending Flex 3 Components
Developing AIR applications with Flex

Programming ActionScript 3.0

Adobe Flex 3 Language Reference

Each of these links takes you to an extensive publication describing that aspect of Flex development.

FIGURE 2.23

The Help Contents screen

Searching for Help terms

The Flex Builder Help system allows you to search for any terms you need to find. You can search
from within Flex Builder, or if you already have the Help Contents screen open, you can search
without returning to the Flex Builder interface.

55

22170 M Flex Fundamentals

Searching in the Flex Builder interface

In the Flex Builder interface, select Help & Search from the menu. A Help view, shown in Figure
2.24, appears on the right. Enter your search terms, and click Go to execute the search.

FIGURE 2.24

Using the Help view

1f your Help search is successful, a list of found links is displayed. Click any link to display that
Help page in a Help editor. As shown in Figure 2.25, when the Help page is opened, your search
terms are highlighted.

56

Using Flex Builder 3

A Help page with highlighted search terms in the Eclipse interface

Searching in the Help Contents window
You also can search for terms in the Help Contents window:

1. Select Help = Help Contents from the Flex Builder menu.
2. Click in the Search input box, and type a term.
3. Click the GO button.

As with searching in the Flex Builder interface, a successful search displays links to pages that con-
tain your terms, as shown in Figure 2.26. Click any link to display the Help page. The page is dis-
played in a separate pane of the Help window.

TP When a Help page is displayed in either the Eclipse interface or the external Help win-
dow, it’s hosted by an internal Web server component that starts up in the background.
You may find that the first Help page you open takes some time as the server starts up in the back-
ground. After it’s started, though, it stays open for the duration of your Eclipse session.

57

22170 M Flex Fundamentals

FIGURE 2.26

Searching in the Help window

58

Using Dynamic Help

The Dynamic Help feature allows you to find Help topics related to the content you're currently
editing. For example, suppose you're working with the DataGrid component and want to find
out what properties, methods, or events are available. You can easily jump to a Help topic related
to that component and display the information in an Eclipse editor or in a separate Help window.

Displaying Dynamic Help in an Eclipse editor
To display a Dynamic Help topic in an Eclipse editor:
1. Place the cursor anywhere in the class type declaration or MXML tag for which you want
help.
Press F1 to display a list of related links in a Help view with the title Related Topics.
Click the appropriate link to display the Help topic in an editor.

As shown in Figure 2.27, Dynamic Help is displayed in a separate Help view.

Using Flex Builder 3

Dynamic Help from an MXML editor

Press F1 with cursor in search term Search results appear in Help view

TP When you place the cursor in an ActionScript class declaration or MXML tag for which
Flex Builder has APl documentation, the first link under Related Topics is usually the
ActionScript documentation for that class, listed under a heading of Relevant APIs.

After using the Dynamic Help feature, be sure to close the Help view on the right
before continuing to work on your code. If you leave it open, it continues to execute
searches each time you move the cursor to a new location in the code, creating a very “jumpy” edit-
ing experience.

S FNINCEIN NG
AU .U\

Displaying Dynamic Help in a separate window

To display dynamic help in a separate window:

1. Place the cursor anywhere in the class type declaration or MXML tag for which you want
help.

2. Press Shift+F2.

The Help topic should be correctly selected and displayed in a separate Help window.

59

22170 M Flex Fundamentals

Searching for Code

Flex Builder and Eclipse have a number of tools that allow you to search for and locate code. Two
of the tools are part of the Eclipse workbench, and a third is part of the Flex Builder plug-in.

Using Eclipse search tools

Eclipse has two tools that allow you to search for code: Find/Replace and Find in Files. The first is
designed to locate code one file at a time; the second can search for code in multiple files.

Using Find/Replace

The Find/Replace dialog box, shown in Figure 2.28, lets you search for code in the currently
opened file. This dialog box is available only in an MXML editor that’s currently open in Source
view. Select Edit = Find/Replace (keyboard shortcut Ctrl+F) from the Flex Builder menu to open
this dialog box.

FIGURE 2.28

The Find/Replace dialog box

TP After you execute a Find operation with the Find/Replace dialog box, you can repeat the
operation with the menu choices Find Next and Find Previous on the Flex Builder Edit
menu. The keyboard shortcuts for these operations in the standalone version of Flex Builder are
Ctrl+K for Find Next and Ctrl+Shift+K for Find Previous.

60

Using Flex Builder 3

Using Find in Files

The Find in Files dialog box, shown in Figure 2.29, also known as the File Search tool, allows you
to search across multiple files in a project, directory, or workspace. It has many options that allow
you to fine-tune your search. Select Edit & Find in Files from the Flex Builder menu to open this
dialog box.

FIGURE 2.29

The Find in Files (File Search) dialog box

To use this tool, make these selections:

W Set the Containing text field to the string you want to find.
W Select case sensitivity and whether you're searching with a regular expression.

B Set the filename patterns field to indicate what kind of files you want to search. For
example, if you want to limit your search to ActionScript files and classes, set this value
to *.as.

W Set the Scope to the Workspace, Selected resources, or Enclosing projects.

Click the Search button to execute the operation. Results are displayed in a Search view that con-
tains links to all found resources, as shown in Figure 2.30.

61

22170 M Flex Fundamentals

The Search view, presenting found resources

Using Flex Builder code model search tools

Flex Builder 3 adds new search tools that are based on the code model. With these tools you can:

W Search for object references
B Search for object declarations

B Refactor code

Searching for references
1f you know where a variable or object’s declaration is located, you can use the code model tools to
locate all the object’s references:

In an MXML editor, place the cursor anywhere in the variable declaration.

2. Select Search = References from the Flex Builder menu. Alternatively, you can right-click
the variable declaration and select References from the context menu.

3. Select the scope of the search from these options:

Workspace
Project

File

The results of the search are displayed in the Search view.

62

Using Flex Builder 3

Searching for a declaration

1f you know where a variable or object is used, you can use the code model tools to locate the
object’s original declaration:

In an MXML editor, place the cursor anywhere in the variable reference.

2. Select Search &> Declarations from the Flex Builder menu. Alternatively, you can right-
click the variable declaration and select Declarations from the context menu.

3. Select the scope of the search from these options:
Workspace
Project
File

The results of the search are displayed in the Search view.

Flex Builder adds a new option called Mark Occurrences. This feature causes any variable name or
type reference to be highlighted wherever it occurs in the source code file you're editing. For exam-
ple, if you place the cursor in an <mx:Label> declaration, all <mx: Label> declarations in the
current file are highlighted. Similarly, if you place the cursor in a variable such as myVar, all refer-
ences or declarations of that variable are highlighted.

As shown in Figure 2.31, you can toggle this feature on and off from the Flex Builder toolbar by
clicking the icon with the image of a highlighter pen.

LIEVY EEATURE The Mark Occurrences option is a new feature in Flex Builder 3.
—T peL

FIGURE 2.31

Toggle button for Mark Occurrences

O

Refactoring variable names

When you refactor code, you globally rename object references or types. This is very different from
a global search-and-replace operation that’s based on string values. In a global search and replace,
you can make a mess if you accidentally find substrings that are part of something else. With code
refactoring, the search is based on internal references that are known to the Flex compiler and Flex
Builder’s code modeling tools.

To globally rename a variable with the code refactoring tool:

Place the cursor in any of the variable’s reference or declarations.

2. Select Source = Refactor = Rename from the Flex Builder menu. (Or you can right-click
in the variable and select Refactor & Rename from the context menu, or press the key-
board shortcut Ctrl+Alt+R.)

63

2148 8 Flex Fundamentals

3. In the Rename Variable dialog box, shown in Figure 2.32, enter the new variable name.

FIGURE 2.32

The Rename Variable dialog box

4. You can preview refactoring changes by clicking the dialog box’s Preview button. The pre-
view dialog box, shown in Figure 2.33, displays the Original and Refactored source code.

FIGURE 2.33

Previewing refactoring changes

5. Click OK to accept the changes and globally rename the variable.

64

Using Flex Builder 3

Refactoring source code files

Renaming ActionScript and MXML files also is considered a refactoring operation, because these
files represent ActionScript types that must be maintained consistently throughout a project.

To refactor a file, just rename the file in the Flex Navigator view, as shown in Figure 2.34:

Select a file, and press F2 (or right-click, and select Rename from the context menu).
In the Rename Class dialog box, enter a new filename.

Optionally preview the changes.

2w bd =

Click OK to accept the changes.

Any references to the changed file are updated through the current project, including the class dec-
laration and constructor name.

FIGURE 2.34

Renaming an ActionScript class file

TP If you rename an ActionScript class file from the Flex Navigator view within Flex
Builder, the class declaration and constructor method (if it exists) within the file are
updated to match the filename.

If you move an ActionScript class from one folder to another by dragging it within the
Flex Navigator view, the package declaration within the file is not updated by the code
refactoring engine; it must be updated manually.

AT
AU LN

65

22170 M Flex Fundamentals

Summary

In this chapter, I described the nature and behavior of Flex Builder 3. You learned the following:

66

Flex Builder 3 is a plug-in designed for the Eclipse workbench.

Flex Builder 3 is available for the Windows and Mac OS X operating systems; a Linux
version is planned for future release.

Flex Builder’s standalone configuration includes everything you need to build Flex appli-
cations, including Eclipse 3.3.

Flex Builders plug-in installation option allows you to install Flex Builder on top of an
existing Eclipse installation.

The Flex Builder plug-in installation requires Eclipse 3.22 or later.

Flex Builder can be used by both Flex and Flash developers to edit their ActionScript
files.

Flex Builder adds many tools in the form of Views and Editors to make coding faster and
more productive.

Many tools that are a part of the Eclipse workbench are critical to effective use of Flex
Builder.

Building a Basic Flex

Application

n this chapter, I describe how to create and deploy a basic “Hello World”
Flex application.

The code samples and screen shots in this chapter assume that you're using
Flex Builder to build the application. If you're using the Flex SDK and your
own text editor, the steps will be similar, but you won't have access to some
of the code completion and other productivity tools I describe.

After the application is built, I describe the fundamental nature of a Flex
application, including the relationship between the application . swf file and
the supporting HTML files. T describe the contents of the HTML “wrapper”
file that’s generated for you in Flex Builder and its associated JavaScript
library file.

Finally, I describe how to deploy the Flex application into a Web site in these
ways:

B Asa distinct application that opens in its own window

B Asan applet thats displayed as part of an existing Web page

B Asa desktop application deployed on the Adobe Integrated

Runtime

By the end of this chapter, you should have a good sense of what a Flex
application is and how it’s delivered to the user.

67

IN THIS CHAPTER

Creating a Hello World
application

Switching workspaces

Creating a Flex project

Understanding HTML templates

Exporting a release version

Deploying a Flex application on
the Web

Integrating Flex applications with
Web pages in Dreamweaver CS3

22170 M Flex Fundamentals

68

Creating a “Hello World” Application

In all programming languages, your first task is to write a “Hello World” application. This most
simple of applications typically contains no more than a single line of text output. This simple Flex
application does a bit more: It uses XML-formatted data, presented in a DataGrid component, to
say hello to the world.

Throughout these instructions, I assume that you're using the standalone version of Flex Builder.
Where the steps are different in the plug-in version, I provide alternative steps in a Tip.

Switching workspaces

As described in Chapter 2, your first step is to create a Flex Project. The project hosts the applica-
tion and its assets. Throughout the instructions, I assume that you have downloaded the book’s
sample files from the publisher’s Web site. Follow these steps to switch to a new workspace:

Open Flex Builder 3.

From the menu, select File = Switch Workspace.

Select a new workspace subfolder under the flex3bible folder that contains the
downloaded book files. For example, if you are working on Microsoft Windows and the
book files are in a folder named C: \ flex3bible, the name of the workspace folder
would be C: \flex3bible\workspace. When you have done this, click OK.

After selecting the workspace, you should see that Flex Builder closes and reopens. The
new workspace, shown in Figure 3.1, should display the Flex Welcome Screen and the
default Flex Development perspective. The newly created workspace is empty and con-
tains no projects.

TP Workspace folders are frequently created as sibling folders to the projects they refer-
ence, rather than parent folders. This is because a workspace isn’t portable. If you
change the location of your project folders, you have to re-create the workspace.

Creating the project

Follow these steps to create a project:
1. From the menu, select File &> New &> Flex Project.

TP If you're using the plug-in version of Flex Builder, select File > New => Other. Then from
the wizard that appears, select Flex Builder => Flex Project.

In the first screen, shown in Figure 3.2, enter a Project name of chapter03.

Select the Default location option as checked. On Windows, the Project location defaults
toC:\flex3bible\chapter03.

Set the Application type to Web application (runs in Flash Player).

Set the Application server type to None, and click Next.

Building a Basic Flex Application

The default Flex Development perspective in a new workspace

Navigator view Perspective selector tool

Outline view Problems view Flex Start Page

6. On the Configure Output screen, shown in Figure 3.3, accept the Output folder setting of
bin-debug. This is the location of the compiled debug version of the application and its
supporting files.

7. Click Next.
JEVY EEATURE In Flex Builder 2, the default Output folder setting was bin, and the resulting folder
MEsS rer 2L contained both the debug and the release version of the compiled application. In

Flex Builder 3, the Output folder defaults to bin-debug to distinguish it from the separate
bin-release folder created when you export a release version.

8. On the Create a Flex project screen, shown in Figure 3.4, accept these default settings:
Main source folder: src
Main application file: HelloWorld.mxml

Output folder url: Accept the default setting, leaving it blank

69

2148 8 Flex Fundamentals

The first screen of the New Flex Project wizard

FIGURE 3.3

The second screen of the New Flex Project wizard

70

Building a Basic Flex Application

The third screen of the New Flex Project wizard

9. Click Finish to create the project and the main application file.

As shown in Figure 3.5, you should see the main application file appear in the Editor
view. If you're working in a completely new workspace, the file should appear in Source
view; that is, you should see the application’s source code.

FIGURE 3.5

The new main application file in Source view

71

22170 M Flex Fundamentals

Saying hello

Follow these steps to display a simple message in your Flex application:

72

1.

Notice that the Application tags layout property is set to absolute. This means
that objects placed on the application screen in Design view will maintain their absolute
positions relative to the application’s top-left corner.

Click Design to see what the application will look like as you build it.

When you use Design view, you see the Components view in the lower-left corner, as
shown in Figure 3.6.

FIGURE 3.6

The Components view

In the Components view’s tree, open the Controls leaf and locate the Label control.

Drag a Label object into the application, and place it approximately in the center of the
application.

With the Label control still selected, look at the Flex Properties view in the lower-right
corner of Flex Builder.

In the Common section of the Flex Properties view, shown in Figure 3.7, set the Label
controls text property to Hello World.

In the Text section of the Flex Properties view, set the Label controls fontSize to 24.
Save your changes with this menu selection by choosing File &> Save.
Run the application in a browser by choosing Run => Run HelloWorld.

As shown in Figure 3.8, you see that the application opens in a browser window and
looks just like it did in Flex Builder’s Design view.

Building a Basic Flex Application

The Common section of the Flex Properties view with a Label control selected

FIGURE 3.8

The finished application running in a Web browser

TP In the standalone version of Flex Builder, you also can use the keyboard shortcut
Ctrl+F11 to run the current application.

Understanding the html-template Folder

Each Flex Project contains a folder called html-template. This folder contains models for the
HTML and supporting files that run your application in the browser. Whenever you save changes

73

22170 M Flex Fundamentals

to your source code, Flex Builder automatically rebuilds your application using the HTML
model file to generate an HTML wrapper. At the same time, it copies the contents of the htm1-
template folder to the output folder that contains the compiled application. Figure 3.9 shows
the structure of the html-template folder.

TP The html-template folder and its contents do not need to be copied to the Web
server to deploy the application. These files are used only during the compilation
process.

FIGURE 3.9

The html-template folder structure

TP The Flex project has a Build Automatically property that causes your applications
to be automatically compiled every time you save changes to any source code file. If
you want your applications to be recompiled only when you choose, change the property in Flex
Builder by selecting Project > Build Automatically. Use the same menu choice to turn the property
back on.

During the compilation process, most of the files in the html-template directory are simply
copied to the output folder that contains the debug version of the project’s applications. The HTML
wrapper file that you use at runtime is generated based on a model file in html-template
named index.template.html.

HTML template files

The html-template directory contains these files:

B index.template.html is a model file that is the basis for the generated HTML “wrap-
per” files that call the application at runtime.

74

Building a Basic Flex Application

B AC_OETags.js is a JavaScript library containing functions are used at runtime to load
Flash Player. This file also contains “sniffer” code that can discover whether Flash Player
is currently loaded on the user’s desktop and, if so, which version.

B playerProductInstall.swf isa Flash application that’s used to upgrade a user’s
system when Flash Player 6.65 or higher is installed.

B The history subfolder contains files to implement the history management feature (for
non-IE browsers only):

historyFrame.html is a model for an HTML page thats loaded into an <iframe>
in the main page at runtime.

history.Jjs isaJavaScript library containing functions that are called by
historyFrame.html.

history.css contains Cascading Style Sheet (CSS) rules to suppress the visibility of
the history frame in the main page.

With the exception of index.template.html, all files in the html-template directory are
copied to the output folder in their exact current states whenever you compile the application. And
when you create a “release” version of the application, they’re copied to the release output folder

as well.

The HTML wrapper model file

The model HTML file contains a combination of these elements:

HTML code
Calls to JavaScript functions that are stored in AC_OETags.Jjs

The <iframe> that calls the history management files

Placeholders for values that are passed to the generated version of the file

In this section, I describe each part of the file and its purpose.

The HTML <head> section

The <head> section of the model HTML file contains links to a set of CSS and JavaScript files. The
first <1ink> tag incorporates the history.css file from the history folder:

<link rel="stylesheet" type="text/css" href="history/history.css"
/>

The <title> element contains a variable thats filled in from the Application’s pageTitle
property:

<title>${titlel}</title>

75

22170 M Flex Fundamentals

To fill in this value in the generated HTML wrapper page, set the pageTitle property in the
<mx:Application> start tag:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute" pageTitle="Hello World">

The next section is a <style> element that contains basic page formatting instructions:

<style>
body { margin: Opx; overflow:hidden }
</style>

The margin style’s value of 0px means that Flash Player won't have any space between its borders
and the edges of the Web page. The overflow styles setting of hidden means that if the size of
Flash Player (or another element in the page) overflows the boundaries of the page, the remainder
are hidden. If you want the page to show scrollbars instead, change the value of the overflow
style to scroll.

The HTML <body> section

The <body> element of the Web page starts by declaring JavaScript variables that determine which
version of Flash Player is required by the application:

<script language="JavaScript" type="text/javascript">
<!--

// Globals

// Major version of Flash required

var requiredMajorVersion = ${version_major};

// Minor version of Flash required

var requiredMinorVersion = ${version_minor};

// Minor version of Flash required

var requiredRevision = ${version_revision};

/] ==>

</script>

The version_major, version_minor, and version_revision parameters can be set
through the project’s properties:

1. Select Project & Properties from the Flex Builder menu.

2. In the Properties dialog box, select the Flex Compiler section, as shown in Figure 3.10.

3. In the Required Flash Player version option, change the version numbers as needed.

TP When you create a new Flex Project in Flex Builder 3, the required version in the proj-
ect properties is set to 9,0,28 by default. The version of Flash Player that was delivered
with the Flex Builder 3 in February 2008 was 9,0,115.

76

Building a Basic Flex Application

Setting the required Flash Player version number

Flash Player version

The next section of the HTML wrapper calls a JavaScript function named DetectFlashvVer ()
and checks whether the user has at least version 6, 0, 65. This is the version that’s required for use
of the Flash-based upgrade. It then calls the function again and checks whether the user has the
version required to run the application:

var hasProductInstall = DetectFlashver (6, 0, 65);
var hasRequestedVersion = DetectFlashVer (
requiredMajorVersion, requiredMinorVersion, requiredRevision);

If the user has at least version 6,0,65, but not the version required to run the application, the
HTML wrapper runs the Flash-based installer:

if (hasProductInstall && !hasRequestedVersion) {
var MMPlayerType = (isIE == true) ? "ActiveX" : "PlugIn";
var MMredirectURL = window.location;
document.title = document.title.slice (0, 47) +
" - Flash Player Installation";
var MMdoctitle = document.title;

AC_FL_RunContent (
"src", "playerProductInstall",
"FlashVars", "MMredirectURL="+MMredirectURL+'&MMplayerType="+
MMPlayerType+'&MMdoctitle="'+MMdoctitle+"",
"width", "${width}",
"height", "${height}",

77

22170 M Flex Fundamentals

78

"align", "middle",
"id", "${application}",
"quality", "high",
"bgcolor", "s{bgcolor}",
"name", "S${application}",
"allowScriptAccess", "sameDomain",
"type", "application/x-shockwave-flash",
"pluginspage", "http://www.adobe.com/go/getflashplayer"
)i
}

The JavaScript function called above runs playerProductInstall.swe, the Flash-based
upgrade installer, which tries to upgrade the user’s browser to the latest version of Flash Player
from the Adobe Web site. If any errors are encountered (if the user doesn't have administrative
rights to his computer, for example), the Flash-based upgrade installer fails with a useful error
message (rather than just hanging and letting the user wonder what happened).

The next section of code runs the Flex application if the user has the required version of the Flash
Player:

} else if (hasRequestedVersion) {
// i1f we've detected an acceptable version
// embed the Flash Content SWF when all tests are passed
AC_FL_RunContent (

"src", "S{swf}",

"width", "${width}",

"height", "${height}",

"align", "middle",

"id", "${application}",

"quality", "high",

"bgcolor", "${bgcolor}",

"name", "S${application}",

"allowScriptAccess", "sameDomain",

"type", "application/x-shockwave-flash",

"pluginspage",
"http://www.adobe.com/go/getflashplayer") ;

}

The JavaScript function called above instantiates Flash Player and passes it certain parameters.
Some parameters, such as quality, types, and allowScriptAccess, have fixed values. The
following parameters’ values are set dynamically, based on information such as properties and
styles of the Flex application and the application name:

B src: The name of the application file (without the .swf extension)

B width: The width of the application as defined in the <mx:Application> tag (defaults to
100 percent)

B height: The height of the application as defined in the <mx:Application> tag (defaults
to 100 percent)

B id: The name of the application file, without the .swf extension

Building a Basic Flex Application

B bgcolor: The application’s backgroundColor style, as defined in the application’s
<mx:Application> tag orin a CSS declaration for the Application type selector

B name: The name of the application file, without the . swf extension

These are some other key parameters you can pass to AC_FL_RunContent() and to the embed/
object tags:

B wmode: How Flash handles layering/transparency (options include window,
transparent, and opaque)

B menu: Whether to allow the zoom/print left-click options (options include true and
false)

B allowFullScreen: To allow to go full screen (options include true and false)

B allowScriptAccess: Security for scripting. Options: never, always, and
sameDomain

The last bit of JavaScript code handles the condition that exists when Flash Player hasn’t been
installed or the user’s browser has a version older than 6,0,65:

} else { // flash is too old or we can't detect the plugin
var alternateContent =
'Alternate HTML content should be placed here. '
+ 'This content requires the Adobe Flash Player. '
+ 'Get Flash"';
document .write(alternateContent); // insert non-flash content

}

This code simply displays some HTML content to users who don't have the right version of Flash
Player and can't run the Flash-based upgrade installer.

You can customize this HTML as desired, but you should always do so in the HTML
model page, rather than the version that’s generated in the output folders. If you
customize the generated files directly, they’ll just be overwritten the next time you compile the
application.

/W | \——\f‘\
AU LN

The HTML <noscript> section

This <noscript> element at the bottom of the page contains code to instantiate Flash Player in
browsers that don't support JavaScript:

<noscript>
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
id="${application}" width="${width}" height="${height}"
codebase="http://fpdownload.macromedia.com/get/
flashplayer/current/swflash.cab">
<param name="movie" value="S${swf}.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="${bgcolor}" />
<param name="allowScriptAccess" value="sameDomain" />

79

22170 M Flex Fundamentals

Ao - oo N

80

<embed src="${swf}.swf" quality="high" bgcolor="${bgcolor}"
width="${width}" height="${height}"
name="S${application}" align="middle"
play="true" loop="false"
quality="high" allowScriptAccess="sameDomain"
type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer">
</embed>
</object>
</noscript>

This section of code is executed only in browsers that don’t support JavaScript at all or where the
user has disabled JavaScript through her browsers security settings. This circumstance is rare, but
not unheard of, in current browser installations.

The only real drawback to loading Flash Player in this manner is that if the user is working with
Microsoft Internet Explorer, loading Flash Player without JavaScript code can result in an odd user
experience: To interact with the application, first the user must click the Flash document (the Flex
application) or press the spacebar. This is an irritant, but certainly not crippling.

-=1~ | If youadd or change parameters, they must applied to both the JavaScript and the
embed and object tag versions in the HTML wrapper file.

The JavaScript library file

The HTML wrapper file makes calls to JavaScript functions that are stored in a JavaScript library
file named AC_OETags . js. This file appears in the html-template folder and is copied to the
output folder during the compilation process without any modifications.

The JavaScript library file defines these functions:
B ControlVersion(): Returns version of currently installed Flash Player ActiveX control

when running in Internet Explorer

B GetSwfVersion (): Returns version of currently installed Flash Player plug-in when
running in Firefox or another browser that supports the plug-in architecture

B AC_FL_RunContent (): Runs the Flash Player and calls a designated Flash document

The library also defines other supporting functions that serve purposes such as parsing arguments
to be passed to Flash Player.

History management files

The html-template folder contains a subfolder called history. This folder in turn contains
these three files:

B historyFrame.html

B history.js

B history.css

Building a Basic Flex Application

These files are called by the HTML wrapper file from an <iframe> element. Their purpose is to
implement a feature known as history management when using a ViewStack, TabNavigator,
or Accordion container. This feature allows the user to navigate forward and backward through
an application’s view state with the browsers Forward and Back buttons in Web browsers other
than Microsoft Internet Explorer.

Deploying the Application

You've created the application, and it runs beautifully in your development and testing environ-
ment. Now you want to share the applications with your users. This section describes how to cre-
ate a version of the application that’ suitable for public release and make the application available
to your audience.

Creating the release version

The version of the application that’s created in your output folder, and that you normally run dur-
ing the testing and debugging phase of development, is the “debug” version of the application. This
compiled .swf file is significantly larger than the version you'll ultimately deploy for your users,
because it contains additional internal information and symbols that are used during the debug
process.

LIEVY FEATURE In Flex Builder 2, the debug and release versions of the application were placed in a sin-
- - == gle output folder. To deploy the application, you copied all files except the HTML and
.swf files with the word debug in their filenames to the Web server. Flex Builder 3 now separates the
debug and release versions into separate folders and requires a manual export process for the release
version.

To create a release version of a Flex Web application, follow these steps:

1. From the Flex Builder menu, select Project &> Export Release Version.
2. In the Export Release Version dialog box, shown in Figure 3.11, make these choices:
a. Select the application you want to export.
b. Indicate whether you want to enable the View Source feature.
c. Select a folder to which you want to export the release version.
3. Click Finish to export the release version.
TP A release version folder contains only a single application (and its supporting files) by

default. In contrast, the bin-debug folder contains the debug versions of all applica-
tions in a project.

After exporting the release version, you should have a new folder containing the compiled applica-
tion and its supporting files. This version of the application is optimized for delivery to the user. It
doesn’t contain debug information, and as a result it5 significantly smaller than the debug version.

81

22170 M Flex Fundamentals

The Export Release Version dialog box for a Web application

The size of a basic “Hello World” compiled application file with a single Label control will be
either 235k for the debug version, or 144k for the release version. Clearly, you want your users to
be downloading and using the release version!

Testing the release version

You can test the release version of a Flex Web application by opening its HTML wrapper file in a
Web browser. Here’s how:

1. From the Flex Navigator view, open the release version folder and locate the HTML
wrapper file. This file has the same name as the application itself, but with a .html file
extension.

2. Right-click the HTML file, and select Open With = Web Browser.
The application opens in a Web browser nested with an Eclipse editor view, as shown in Figure 3.12.

~, 1 ==~ I Whenyou run the release version as described above, the application always opens

A LN from the local file system, rather than from any Web server you might have configured.
If you need to test the application with a Web server, you have to manually configure the server, or
place your bin-release folder within your Web server’s document root folder, then open the file from
a Web browser using the appropriate URL.

82

Building a Basic Flex Application

Running the release version running in a Web Browser editor view

Deploying the release version

To deploy the release version of the application, just upload all files in the release version folder to
your Web site using FTP or whatever method you typically use to deploy other files to your Web
site. These files will include the following:

The compiled application file in .swf format

The HTML wrapper

|

|

B The JavaScript library

B playerProductInstall.swf
|

The history folder

Then provide the URL of the HTML wrapper page to your users. For example, if the release
version of the application named registration is uploaded to a subfolder of my Web site,
www . bardotech. com, and the HTML wrapper file is named registration.html, then the
deployment URL is this:

http://www.bardotech.com/registration/registration.html

83

22170 M Flex Fundamentals

TP Programmers commonly make users navigate to a Flex application in a new browser
window. The new window then has a fresh “history,” which means the browser’s Back
button is disabled and the user can’t accidentally unload the application by trying to go back to a pre-
vious screen.

The following HTML code would open the application from the home page of my Web site:

Integrating an application into
an existing Web page
Some Flex applications are designed to be presented as “applets” or some application that repre-

sents only part of a Web page. This is easy to accomplish if you have some working knowledge of
HTML. Here’s how:

1. Create a region of a Web page where you want to host the application. Design it just as
you would to host an image, an ActiveX control, or a Java applet. You can use HTML
tables or more modern <div> tags with CSS to control the size and position of the host-
ing region.

2. In the Flex application code, set the Application tags height and width to a specific
number of pixels that will make the application size match the available space in the Web
page. For example, if you have a <div> tag in the hosting page that’s 300 pixels high and
200 pixels wide, use this code in the Flex application to size it appropriately:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
height="300" width="200">

When the application is compiled, the height and width settings are passed into the
generated HTML file.

3. Copy all the JavaScript includes and initialization code from the <head> section of the
generated HTML wrapper file to the <head> section of the hosting HTML page. Be sure
to include these lines of code:

<link rel="stylesheet" type="text/css"
href="history/history.css" />
<script src="AC_OETags.js" language="javascript"></script>
<script src="history/history.js"
language="javascript"></script>
<script language="JavaScript" type="text/javascript">
var requiredMajorVersion = 9;
var requiredMinorVersion = 0;
var requiredRevision = 28;
</script>

L IOTE The code above has been stripped of comments that appear in the generated version of
: the HTML wrapper file and are not required to run the application.

—

84

Building a Basic Flex Application

4. Copy the <script> and <noscript> sections from the <body> of the HTML wrapper
into the target HTML page’s application hosting region. The complete code is in the fol-
lowing code listing.

Listing 3.1 shows the finished code in the <body> section of a hosting HTML after being extracted
and stripped of commenting.

LISTING 3.1

Code in the <body> section of a hosting HTML page

<!-- A div tag hosting a Flex application -->
<div id="flexApp">
<script language="JavaScript" type="text/javascript">
var hasRequestedVersion = DetectFlashVer (
requiredMajorVersion, requiredMinorVersion, requiredRevision);

if (hasProductInstall && !hasRequestedVersion) {
var MMPlayerType = (isIE == true) ? "ActiveX" : "PlugIn";
var MMredirectURL = window.location;
document.title = document.title.slice(0, 47) +
" - Flash Player Installation";
var MMdoctitle = document.title;

AC_FL_RunContent ("src", "playerProductInstall", "FlashVars",
"MMredirectURL="+MMredirectURL+'&MMplayerType="+MMPlayerType+
'&MMdoctitle="+MMdoctitle+"",

"width", "200", "height", "300",

"align", "middle", "id", "HelloWorld",

"quality", "high", "bgcolor", "#869ca7",

"name", "HelloWorld", "allowScriptAccess", "sameDomain",
"type", "application/x-shockwave-flash",

"pluginspage", "http://www.adobe.com/go/getflashplayer");

} else if (hasRequestedVersion) {
AC_FL_RunContent (

"src", "HelloWorld",

"width", "200", "height", "300",

"align", "middle", "id", "HelloWorld",

"quality", "high", "bgcolor", "#869ca7",

"name", "HelloWorld", "allowScriptAccess", "sameDomain",

"type", "application/x-shockwave-flash",

"pluginspage", "http://www.adobe.com/go/getflashplayer"
)
} else {

var alternateContent = 'Alternate HTML content should be placed
here. '

+ 'This content requires the Adobe Flash Player.

continued

85

22170 M Flex Fundamentals
LISTING 3.1 (continued)

+ 'Get Flash"';
document .write(alternateContent); // insert non-flash content

}
/] —=>
</script>
<noscript>
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
id="HelloWorld" width="100%" height="100%"
codebase="http://fpdownload.macromedia.com/get/flashplayer/
current/swflash.cab">
<param name="movie" value="HelloWorld.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="#869ca7" />
<param name="allowScriptAccess" value="sameDomain" />
<embed src="HelloWorld.swf" quality="high" bgcolor="#869ca7"
width="100%" height="100%" name="HelloWorld" align="middle"
play="true" loop="false" quality="high"
allowScriptAccess="sameDomain" type="application/x-shockwave-
flash"
pluginspage="http://www.adobe.com/go/getflashplayer">
</embed>
</object>
</noscript>
</div>

TP Because the application can be opened in a number of ways, borrowing the generated
HTML wrapper code ensures that all application properties such as height and width
are copied to all the places in the code where they’re needed.

~a UTION When you deploy a hosted Flex applet to a Web server, be sure to include all the same
R files as before: the JavaScript library, history files, and upgraded .swf file (player
ProductInstall.swf).

As shown in Figure 3.13, the application will look like a part of the HTML page, but will offer all
the dynamic functionality that you’ve programmed.

Integrating Flex applications with
Dreamweaver CS3

Dreamweaver CS3 is the common application of choice for Web site developers who are not neces-
sarily developers. Because compiled Flex applications are simple Flash documents, though, it’s pos-
sible to use Dreamweaver’s Web page code generation capabilities to import a Flex application into
an existing Web page.

86

Building a Basic Flex Application

A Flex application running in an HTML file as an applet

The Flex application

A LUTIOUN When you integrate Flex using Dreamweaver CS3, you won’t have the integrated history
bt management feature, because Dreamweaver treats the Flex application as though it’s a
simple Flash document.

To integrate a Flex application into a Web page with Dreamweaver CS3, follow these steps:

1. In the Flex application code, set the Application tags height and width to a specific
number of pixels that will make the application size match the available space in the Web
page. For example, if you have a <div> tag in the hosting page that’s 300 pixels high and
200 pixels wide, use this code in the Flex application to size it appropriately:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
height="300" width="200">

2. After generating the release version of the Flex application, copy the compiled .swf appli-
cation file from the release version folder into your Dreamweaver site.

3. In Dreamweaver, place the cursor in the region where you want the Flex application to
appeatr.
4. Select Insert &> Media = Flash from the Dreamweaver menu.

As shown in Figure 3.14, a browsing dialog box prompts you to select a Flash document.

87

22170 M Flex Fundamentals

TP You can also start the process of inserting a Flash document in Dreamweaver by drag-
ging or selecting the Flash document from the Assets panel, or by pressing the keyboard

shortcut Ctrl+Alt+F.

5. Select the Flex application .swf file.

FIGURE 3.14

Selecting a Flex application as a Flash document in Dreamweaver

6. If prompted for Object Tag Accessibility Attributes, as shown in Figure 3.15, enter the
Title you want to make available to Web site visitors who use screen reader software.

FIGURE 3.15

Setting accessibility attributes in Dreamweaver

88

Building a Basic Flex Application

As shown in Figure 3.16, the application initially appears as a disabled region of the page.

FIGURE 3.16

The application appearing as a disabled region in Dreamweaver’s Design view

e [[% L T it

Main Content Sidebari Content

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Praesent aliquam, justo convallis luctus rutrum, erat nulla
fermentum diam, at nonummy quam ante ac quam.
Maecenas urna purus, fermentum id, molestie in, commodo
porttitor, felis. Nam blandit quam ut lacus. Quisque ornare
risus quis ligula. Phasellus tristique purus a augue
condimentum adipiscing. Aenean sagittis. Etiam leo pede,
rhoncus venenatis, tristique in, vulputate at, odio. Donec
et ipsum et sapien vehicula nonummy. Suspendisse
potenti. Fusce varius urna id quam. Sed neque mi, varius
eget, tincidunt nec, suscipit id, libero. In eget purus.
Vestibulum ut nisl. Donec eu mi sed turpis feugiat feugiat.
Integer turpis arcu, pellentesque eget, cursus et,
fermentum ut, sapien. Fusce metus mi, eleifend
sollicitudin, molestie id, varius et, nibh. Donec nec libero.

H2 level heading

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Praesent aliquam, justo convallis luctus rutrum, erat nulla
fermentum diam, at nonummy quam ante ac quam.

The disabled Flex application in Dreamweaver's Design view

7. With the disabled Flash document selected in Dreamweaver’s Design view, click the Play
button in the Properties panel to run the application, as shown in Figure 3.17.

FIGURE 3.17

Dreamweaver’s Properties panel with the Play button

Click to play the Flex application

8. Save the hosting Web page.

As shown in Figure 3.18, when you save the page, Dreamweaver informs you that it adds to the
site a file named Scripts/AC_RunContent.js. This file contains the same sort of dynamic
JavaScript functionality as the version that’s generated in Flex Builder and must be deployed to the
Web site to ensure that the Flex application is displayed correctly.

89

22170 M Flex Fundamentals

FIGURE 3.18

Dreamweaver added the JavaScript library to the site.

~a
— - -

90

i)

AN

| The JavaScript code that’s generated in Dreamweaver does not include the ability to
detect the user’s Flash Player version or automatically upgrade the user if he has an

older Flash Player version. Also, this code does not allow the user to control all of the parameters
passed in the embed and object versions of the code that runs the Flash Player.

Summary

In this chapter, I described how to use Flex Builder 3 to create and manage Flex projects and appli-

cations.

You learned the following;

When using Flex Builder, Flex applications are built in Flex projects.

Flex applications are compiled into .swf files and require additional supporting files when
they’re deployed.

The files in the html -template folder are used to model generated HTML wrapper
files.

Compiled files in the default bin-debug folder are meant for debugging and testing and
are significantly larger than the version you deploy to your Web site.

You should create a release version of your Flex application for deployment to a Web site.
A release version folder normally contains the release version of a single application.

You can integrate a Flex application into an existing Web page by sizing it correctly and
copying code from the generated HTML file into the hosting page.

You can use Dreamweaver CS3% Flash import tools to integrate a Flex application into a
Web page.

Understanding the Anatomy
of a Flex Application

n this chapter, I describe the basic architecture of a Flex application from IN THIS CHAPTER
the point of view of a developer.

Using Flex programming
languages

In previous chapters, I described the role of Flash Player in hosting a Flex
application at runtime, regardless of whether you use the version of the Understanding MXML
Player that’s hosted by a Web browser (a Web application) or the version

thats embedded in the Adobe Integrated Runtime (a desktop application).

Creating application
containership with MXML

In either case, Flash Player “plays” the application with a bit of software
known as the ActionScript Virtual Machine (the AVM). Flash Player 9 (the
version that runs Flex 3 applications) includes two versions of the AVM. The Combining MXML and
first is for older documents and applications built in Flash and Flex 1.x that ActionScript

use ActionScript 1 and 2. The other, newer AVM is for documents and appli-
cations that use ActionScript 3.

Understanding ActionScript 3

Using the Application
component

L IOTTE Flash Player 9 can run either ActionScript 2 or ActionScript 3,

‘ - but not both simultaneously. Prior to the introduction of Flash
CS3, which supports the newer version of the language, a Flash component
built with ActionScript 2 that was incorporated into a Flex 2 application would
have its ActionScript code ignored by the Flash Player at runtime.

Flash Player is doing the work at runtime, interpreting your ActionScript
code and executing the application’s functionality. And while a Flex applica-
tion is typically built in a combination of MXML and ActionScript code,
Flash Player understands only compiled ActionScript.

91

22170 M Flex Fundamentals

Importing Flex Project Archive Files

ost of the sample files for this book from the Wiley Web site are delivered in Flex Project
Archive files that you can import directly into a Flex Builder workspace. Follow these steps to
import the archive file for each chapter that’s delivered in this format:

1. Select File [Import i Flex Project from the Flex Builder menu.
2. Browse and select the archive file for the current chapter from the Web site files.
3. Click Finish to import the project.

A project archive includes source code, other application assets, and project property settings. After
importing the archive file you can immediately compile and run any of its applications.

As 1 described previously, MXML is a facade, or a convenience language, for ActionScript. In this
section of the book, I describe the relationship between the two programming languages and
explain how a Flex application is architected.

To use the sample code for this chapter, import the chapter04. zip Flex project

O] the YWEE
Online y/EB archive file from the Web site files into your Flex Builder workspace.

MXML and ActionScript 3

Two versions of the MXML programming language have been developed. In the first version, which
was used in Flex 1.0 and 1.5 applications, MXML was rewritten into ActionScript 2 during the com-
pilation process. In Flex 2 and 3, you use a version of MXML that compiles into ActionScript 3.

During the process that generates the compiled Flex application, MXML code is first translated into
ActionScript 3. This is all done behind the scenes so you don't have to worry about it. You can see
how this process works by adding a compiler option to your project properties:

1. Right-click a Flex Project in the Flex Navigator view, and select Properties from the con-
text menu.
In the Properties dialog box, select Flex Compiler.

As shown in Figure 4.1, modify the Additional compiler arguments field by adding this
argument setting:

-keep-generated-actionscript=true
Click OK to save the changes.

After the project has been rebuilt, look in the Flex Navigator view in the source root. A
new generated subfolder is created that contains many ActionScript files, as shown in
Figure 4.2.

92

Understanding the Anatomy of a Flex Application _

FIGURE 4.1

Setting a compiler argument to keep generated ActionScript code

Compiler argument to keep generated ActionScript

FIGURE 4.2

The new generated code subfolder in the project source-code root folder

TP Keeping generated classes doesn’t have any benefit for your application’s functionality
or performance. | show the feature only to illustrate how the compiler translates MXML
code in the background.

93

22170 M Flex Fundamentals

Even a very simple “Hello World” application generates a large number of ActionScript files. Most
are boilerplate interpretations of internal ActionScript classes that must be available to the compiler
for every Flex application. But look for the file representing your specific application to see how
your specific MXML code is interpreted.

If you have a main application file named HelloWorld.mxml, you'll find generated ActionScript
files named HelloWorld-generated.as and HelloWorld-interface.as in the project
source roots generated subfolder. Helloworld_generated.as is the primary generated
application file. Review this generated code to understand how your MXML code is interpreted.

The code below is part of the generated application file in ActionScript and represents the instanti-
ation of a Flex Application at runtime with a single child Label control:

public class HelloWorld extends mx.core.Application
{
// instance variables
// type-import dummies
// Container document descriptor
private var _documentDescriptor_ : mx.core.UIComponentDescriptor
new mx.core.UIComponentDescriptor ({
type: mx.core.Application
propertiesFactory: function() :0bject { return {
childDescriptors: [
new mx.core.UIComponentDescriptor ({
type: mx.controls.Label
propertiesFactory: function() :0bject { return {
text: "Hello World"
}}

Compare the generated ActionScript code with the MXML it replaces:

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Label text="Hello World"/>

</mx:Application>

That’s the power of the MXML programming language!

Understanding the Anatomy of a Flex Application _

Understanding MXML

MXML is a pure XML-based markup language that is a convenience language for ActionScript 3. In
this and previous chapters, I've shown examples of how you can accomplish certain tasks in either
language, and in most cases the MXML version requires significantly less code.

MXML is XML!

As pure XML, MXML follows all conventions and syntax rules that are common to all such lan-
guages, including the following:

B XML is case sensitive. All element and attribute names must be declared exactly as
they’re defined in the language documentation.

B All tags must have end tags or use empty tag syntax. For instance, the <mx: Label>
element usually doesn’t need an end tag, so its declared as <mx : Label/>. The extra
slash character indicates that no end tag is needed.

B FElement tags can’t be overlapped. In HTML, you might get away with overlapping ele-
ment tag containership, such as <i>My Text</i>. In HTML, the browser typ-
ically just figures it out and does the right thing. In XML, this sort of markup breaks the
hierarchical parent-child relationship between elements that’s required for the XML
processor to correctly parse the file.

B Every XML document has a single root element. In an MXML application file designed
for Web deployment, the root element is always <mx : Application>. For AIR applica-
tions, the root element is <mx:WindowedApplication>. In MXML component files,
the root element is whatever existing class you want to extend. But no matter what, you
must have a single root element.

B XML attribute values must be wrapped in quotation marks. This is another supposed
requirement of HTML that you can sometimes ignore in a browser environment. In XML,
if you forget the quotation marks around an attribute value, the compiler just gives up
and displays an error.

Other XML rules are important to understanding the coding requirements of MXML, including the
use of CDATA blocks and XML comments, but the bottom line is that MXML is a real XML lan-
guage. So if a rule is true for XML, its true for MXML as well.

XML as a programming language

Although XML was originally designed to represent data for exchange over the Internet, it isn't the
only XML-based language to gain popularity as an application development tool. These languages
have been used effectively to build or add functionality to software applications:

B XSLT (Extensible Stylesheet Language Transformations): A language that’s defined by the
World Wide Web Consortium (W3C) and implemented in many products and platforms
to transform XML from one “flavor” into another

B XUL (XML User Interface Language): A language for defining application interfaces that’s
incorporated into the Mozilla Web browser kernel

95

22170 M Flex Fundamentals

O1 | ihe YYE

96

What Does MXML Stand For?

dobe’s documentation doesn’t say whether MXML is an acronym or, if it is, what it abbreviates.

Whereas most XML-based languages have clear meanings, this one is just, well, MXML. Some
developers have guessed that it stands for “Macromedia Extensible Markup Language” because it
was invented at Macromedia prior to the company’s acquisition by Adobe. Other suggestions
include “Multidimensional XML” and “Maximum eXperience Markup Language” (based on
Macromedia’s old mantra, “Experience Matters”).

Adobe isn’t saying. So that means you get to make up your own version here. MXML stands for (write
in your vote):

B XAML (Extensible Application Markup Language): A language developed by Microsoft
that’s very similar in purpose and design to MXML, and used to define applications that
run in Microsofts SilverStream player

To be productive with an XML-based programming language, it’s important to understand some
basic XML concepts and how they affect programming techniques. In this section, I describe the
concepts of namespaces, reserved characters, and other XML concepts that you might find helpful.

XML namespaces

A namespace in XML gives a language designer a way of defining and binding together element
and attribute names into a language that can then be recognized by an XML processor. The string
that’s used to identify a namespace in XML is known as a URI Reference.

The technical description of XML namespaces is available at the W3C'’s Web site:
www.w3.org/TR/REC-xml-names/#sec-namespaces

The URI, or Uniform Resource Identifier, that identifies an XML namespace is typically created as a
combination of the following:

B The Web address of the organization that manages the XML language

B A subdirectory structure indicating the name of the language and, optionally, the year in
which the language was defined

The namespace URI for Flex 2 and 3 applications looks like this:
http://www.adobe.com/2006/mxml
This means that this version of MXML was defined in 2006 by Adobe Systems.

L IOTE An older version of the MXML language was used in Flex 1.x. The namespace URI for
: - that version of the language was:

http://www.macromedia.com/2004 /mxml

Understanding the Anatomy of a Flex Application _

This version of the language is distinguished from the current version by both the domain name (from
when Flex was owned by Macromedia) and the year of its definition.

As the first step in the Flex compilation process, the Flex compiler reads the XML markup in the
application. If it sees a namespace other than the one it expects, it generates a compiler error.

N An XML namespace URI is case sensitive and must be spelled exactly as indicated in the
- previous example. Changing even a single character from lowercase to uppercase causes
the compiler to fail.

L=
|

[y
N

TP Even though a namespace URI looks like a Web address, it’s really just a simple string.
The Flex compiler does not use the URI to make any requests to the Adobe Web site,
and you don’t need access to the Internet to compile a Flex application.

XML namespace prefixes

A namespace prefix is an arbitrary string that’s assigned to a namespace URI as an alias. You define
a namespace prefix with the xmlns attribute, separated from the prefix by a colon (:). Herein lies
the key benefit of namespaces: different types of XML can be used in the same document by
matching the prefix with an identifier (the URI), and the XML parser can handle each type in its
own unique way.

In a default Flex application, the <mx : Application> root element defines a namespace prefix of
mx with this syntax:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
</mx:Application>

The mx prefix is then used in every declaration of an MXML element, such as the Label:

<mx:Label text="Hello World"/>

This means that the Label element is a member of the XML language that’s defined by the mx pre-

fix’s bound URI.
- Every MXML file, including MXML component and module files, requires the standard
MNOTE , ® P ;

MXML namespace URI to be declared in the XML file’s root element.

TP Namespace prefixes are arbitrary. That means you can use any prefix you like, as long as
you’re consistent. The mx prefix that’s used in the Flex documentation and code samples
is in reality a recommendation, and not a technical requirement. This code would work just as well:

<?xml version="1.0" encoding="utf-8"7?>
<harry:Application
xmlns:harry="http://www.adobe.com/2006/mxml">
<harry:Label text="Hello World"/>
</harry:Application>

But it would be just plain silly. I strongly recommend that you use the mx prefix as described through-
out the product documentation and code samples.

97

22170 M Flex Fundamentals

98

Namespace prefixes and XML child elements

You can declare any object property or event handler using XML child element syntax instead of an
XML attribute. For instance, the two following code snippets are functionally identical.

Version 1 with an attribute:
<mx:Label text="Hello World"/>
Version 2 with a child element:

<mx :Label>
<mx:text>Hello World</mx:text>
</mx:Label>

Notice that the text property of the Label control has the same value in both cases, but observe
two significant differences in the syntax styles:

B The child element declaration of <mx : text> requires the mx namespace prefix to indi-
cate that the element is a member of the MXML language, while the XML attribute ver-
sion doesn't need (and can't use) the prefix.

B The attribute version requires quotation marks around the property value to satisfy the
XML requirement that all attribute values must be quoted, while the child element doesn’t
need them.

In many cases, deciding which syntax to use is a coin flip; in others, the choice is pretty clear.

Using CDATA blocks

In XML, CDATA blocks are used to protect literal characters from XML processors that would oth-
erwise interpret them as part of the XML markup, rather than the document’s content. This is par-
ticularly important in Flex when you're trying to create ActionScript code that’s nested within an
MXML document.

In Flex Builder, when you create an <mx: Script> section to host some ActionScript, Flex Builder
adds a CDATA block automatically if you follow the right sequence in adding the tag. Try this:

1. Place the cursor in an MXML application just underneath the <mx : Application> start
tag. (The <mx: Script> section can go anywhere in the document as long as it’s a direct
child of the root element, but it’s frequently placed in this location.)

2. Type this string:
<s
You should see a list of available MXML tags.
Press Enter (Return on the Mac) to select the <mx: Script> tag.

Type a closing > character to close the tag.

Understanding the Anatomy of a Flex Application _

You should see that Flex Builder auto-completes the <mx: Script> tag set and creates a CDATA
block between the tags:

<mx:Script>
<! [CDATA[
11>

</mx:Script>
The cursor is placed inside the CDATA block; this is where the ActionScript code should be placed.

The purpose of the CDATA block is to ensure that characters that are considered reserved by the
XML processor are interpreted as scripting characters, rather than XML markup. XML considers
these characters to be reserved:

<> & "

All five characters have clear meanings in both ActionScript and XML, so if you don’t protect the
code, the XML processor will think, for example, that the < character is part of the tag syntax,
rather than meaning “less than” as it does for ActionScript, and you get a parser error when you try
to compile.

CDATA blocks also are sometimes used to protect literal text in other MXML elements. For exam-
ple, the Label and Text controls support an htmlText property that allows you to present sim-
ple HTML 1.0 content. In this example, the tags are correctly interpreted because they're
wrapped in a CDATA block:

<mx:Label>
<mx: htmlText>
<! [CDATA[
This text is bold!
11>
</mx:htmlText>
</mx:Label>

Without the CDATA block, the HTML tag characters would confuse the Flex compiler, because it
would interpret the element as part of the MXML code and not as HTML.

XML entities

On rare occasions, you'll encounter a situation where a reserved character just has to be placed in
an XML structure, and the alternative is to write many lines of ActionScript code. To solve these
cases, XML provides the concept of entities — strings that are aliases for the characters that XML
considers to be reserved.

These are the entities for the five XML reserved characters (these may look familiar; they are the
same in HTML):

& = & (ampersand)

&1t; = < (less than)

99

22170 M Flex Fundamentals

100

> ;> = (greater than)
" = " (double quote)

' = ' (apostrophe/single quote)

Here’s a scenario where this comes in handy. Imagine that you want to set an object’s enabled
property using a Boolean binding expression. The object should be enabled only when a certain
value is less than 0. You might first try the binding like this:

<mx:Button label="Click Me" enabled="{someValue < 3}"/>

The above code will cause the compiler to fail because according to XML syntax rules, the < char-
acter isn't permitted within an attribute value. You can solve this issue in a number of ways, but the
one with the least amount of code that also retains the same logic looks like this:

<mx:Button label="Click Me" enabled="{someValue < 3}"/>

The XML processor thats at the core of the Flex compiler accepts this code and translates &1t ;,
the XML entity, to the literal < character before the ActionScript parser does its part. The code may
look odd, but it works.

MXML and containership

You can use MXML to declare both visual and non-visual objects. When using the markup lan-
guage to declare visual objects, positioning of code determines both containership and the order of
objects in the application’s visual presentation.

The Application itself is a container that contains other visual objects such as containers and
controls. In the following code, the Application contains a VBox container, and the VBox con-
tainer contains 3 Label controls. The order of presentation is determined by the order of the
code.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
backgroundColor="#999999" layout="absolute">
<mx:Canvas backgroundColor="#cccccc" width="50%" height="50%"
horizontalCenter="0" verticalCenter="0">
<mx :VBox backgroundColor="#ececeeee"
horizontalCenter="0" verticalCenter="0"
paddingTop="20" paddingBottom="20"
paddingRight="20" paddingLeft="20">
<mx:Label text="This is Label 1"/>
<mx:Label text="This is Label 2"/>
<mx:Label text="This is Label 3"/>
</mx:VBox>
</mx:Canvas>
</mx:Application>

Understanding the Anatomy of a Flex Application _

In this application, the Canvas container is inside the Application; the VBox container is
inside the Canvas; the Label controls are inside the VBox; and the Label controls display in
the order in which they’re declared. The application’ visual presentation is shown in Figure 4.3.

FIGURE 4.3

An application with multiple containers and controls

The Application VBox

Canvas Labels

If you want to move the Label controls up or down relative to each other, the easiest approach is
to change the order of the code.

The visual objects that are nested within a container such as the Application are considered to be
part of the container’s display list. This is the list of visual objects that make up what the user sees
at runtime.

TP You can add visual objects to the container’s display list at runtime with ActionScript
code. Every container has methods named addchild () and addchildat () that are
designed for this purpose; another method named setChildIndex () lets you move objects around
within the container’s display list.

MXML and non-visual classes

You also can use MXML to declare non-visual ActionScript class instances. The following code
declares an instance of the WebService class that’s used to make calls to SOAP-based Web services.

<mx :WebService id="myService"
wsdl="http://www.bardotech.com/services/Myservice?wsdl" />

101

22170 M Flex Fundamentals

These sort of non-visual controls are known as faceless components, because they don't have visual
representation in the application. Faceless components must be declared as direct child elements of
the MXML file’s root element such the <mx : Application> element in a main application file.
This code, for example, would be incorrect and would generate the compiler error shown in

Figure 4.4:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
<mx:VBox>
<mx :WebService id="myService"
wsdl="http://www.bardotech.com/services/Myservice?wsdl" />
</mx:VBox>
</mx:Application>

FIGURE 4.4

The Problems view displaying a compiler error for incorrectly placed faceless controls

Since VBox is a visual container, it can contain only other visual objects. To fix this problem, move
the <mx :WebService> declaration outside the <mx : VBox> container so that it becomes a direct
child element of the <mx: Application> element.

Understanding ActionScript 3

ActionScript 3 is the most recent version of the programming language that drives both Flash and
Flex. ActionScript 3 is an implementation of the ECMAScript 4th Edition recommendation.
ECMAScript in turn was originally based on Netscape’s JavaScript.

A complete description of ActionScript 3 is beyond the scope of this book, but its worth an
overview of the language’s basic syntax.

- A formal description of the ECMAScript 4th Edition standard is available in PDF format
at www.ecmascript.org/esd4/spec/overview.pdf.

In addition to ActionScript 3, subsets of the ECMAScript 4th edition interim recommen-
dation also have been implemented in Microsoft’s JScript.NET.

102

Understanding the Anatomy of a Flex Application

ActionScript syntax
ActionScript 3, and the language recommendation on which it’s modeled, ECMAScript, share syn-
tax with languages such as C, C++, C#, and Java. Like these languages, ActionScript has these syn-
tactical features:
B All identifiers and keywords are case sensitive.
B Keywords are always lowercase.
B Statements end with a ; (semicolon) character, as in
x = 0;
W Boolean expressions used in conditional clauses are wrapped in parentheses, as in
if (aBoolean)
B {} (brace) characters are used to denote code blocks.

TP The semicolon character at the end of lines is optional when you code one statement
per line, but is used nearly universally to improve code readability.

Declaring variables

As in JavaScript, ActionScript 3 variables are declared with the var keyword. The variable name is
usually followed by a data type declaration using what's known as post-colon data typing syntax.
The following ActionScript declaration creates a public variable named myValue, typed as a
String:

public var myValue:String;

The type declaration isn't required, but if you leave it out the compiler generates a warning. If you
want to use a “loose” type declaration that allows the variable to hold values of any type, use the
wild card * character after the colon:

public var myLooseValue:*;

Using access modifiers

An access modifier is a keyword that defines a class member’s visibility and availability to the rest of
the application. In code placed outside function declarations, the variable declaration is preceded
by an access modifier keyword that determines the variable’s visibility to the rest of the application.

When you declare a variable outside a function, you're really declaring a property of a
component or class. When the code is in the main MXML application file, the property
is a member of the Application component. This aspect of declaring object members, including
how to declare other component members such as functions and constants, is described in Chapter 5.

You can use any one of these access modifiers in a variable declaration placed outside a function:

B public: All code throughout an application can access the variable.

B private: Only code in the current component or class can access the variable.

103

22170 M Flex Fundamentals

B protected: Only code in the current component or class, or any its subclasses, can
access the variable.

B internal: Only code in the current component or class, or any other component or
class in the same package, can access the variable.

You use only one access modifier for any particular variable declaration.

~, ==~ i [Ifyoudon’tinclude an access modifier in a variable declaration placed outside a func-
A LN tion, the compiler generates a warning and the access for that member is set to the
default of internal. In ActionScript 2, the same code would have resulted in a default access of
public and no compiler warning would have been generated.

TP Unlike in JavaScript, where the presence or absence of the var keyword can determine
variable lifetime and visibility, in ActionScript var is required whenever you declare a
variable or an object property (described in Chapter 5).

Declaring variables within functions

Variables declared within functions don't require or accept access modifiers. By declaring the vari-
able within the function, you restrict its visibility and lifetime to the duration of the function itself.
This ActionScript code declares a variable within a function:

private function myFunction ()

{

var myVar:String;

}

Once the function has completed execution, any variables declared within its body expire.

Initializing variable values

You can set initial values in a variable declaration by adding the assignment operator (a single =
character) and the value after the variable name. The following code creates a variable named
myValue and assigns its initial value at the same time:

public var myValue:String = "Hello World!";

-_[-J 5 Variable declarations, including those that set declare and set a variable’s initial value,
can be placed either inside or outside functions. Code that modifies an existing vari-
able’s value, however, must be placed inside a function.

Using ActionScript operators

ActionScript shares operators with languages such as C, C++, C#, and Java. Table 4.1 lists common
mathematical and comparison operators that work in all of these languages.

104

Understanding the Anatomy of a Flex Application _

TABLE 4.1

ActionScript 3 Operators

Operator Purpose Example
+ Mathematical addition and string Addition:
concatenation var result:Number =1 +1;

Concatenation:
var result:String = "Hello " +

"world";
- Mathematical subtraction var result :Number = 20 - 10;
/ Mathematical division var result:Number =20 / 2;
* Mathematical multiplication var result:Number = 20 * 2;
% Modulus (returns remainder from integer var result:int =12 % 5;
division)
== Equals var is:Boolean=
(valuel == value2)
1= Assignment var value:Number=1;
> Greater than if (value > 3) {}
< Less than if (value<3) {}
&& Logical AND if (valuel > 3 && valuel < 10) {}
Il Logical OR if (valuel <3 || value2>10) {}

The language includes many more operators, categorized as Logical, Relational, Assignment, and
Bitwise operators. Again, if you have a background in C, Java, or similar languages, you can let that
experience be your guide.

Conditional statements

ActionScript uses two types of conditional statements. The more common formulation uses an 1 £
keyword with a Boolean expression to determine whether code will be executed. You can then
optionally add else and else if clauses to the statement.

A simple if statement looks like this:
if (some Boolean expression)

{

do something

105

22170 M Flex Fundamentals

For example, if you want to evaluate whether a user has selected a row in a DataGrid or List
control, you might code it like this:

if (myDataGrid.selectedIndex != -1)
{

var myData:0bject = myDataGrid.selectedItem;
}

The Boolean expression works because DataGrid and List controls have a selectedIndex
property that indicates the ordinal position of the currently selected data element. If nothing is
selected, this property always returns _1.

You can optionally add else and else if clauses to an if statement like this

if (some Boolean expression)

{
do this!
}
else if (some other expression)
{
do that!
}
else
{
do something else!
}

When using these optional clauses, you can have as many else if clauses as you need and a sin-
gle else clause that is always at the end of the whole code section.

private function onlLoad() :void
{
if (str == "dfsd")
Alert.show("dfsd")
else if (str == "kks")
Alert.show("kks")
else if (str == "yes")
Alert.show("yes")
}

You can also use switch statements to evaluate a single expression against multiple possible values:

switch (some expression)
{
case valuel:
do something
break
case valuel:
do something else

106

Understanding the Anatomy of a Flex Application _

default:
do another thing
}

The expression you evaluate with a switch statement can be of any data type.

Looping
Looping constructs look basically the same as in Java, JavaScript, C, and other similar languages. A
for loop allows you to loop a given number of times.

for (var i:int=0; i<10; i++)
{

do this 10 times
}

The for statement establishes a counter variable (named i in the above example); in the second
part of the expression, it causes the loop to continue as long as i is less than 10; and in the third
part, it increments the variable’s value by 1 each time through the loop.

You also can use a while statement to execute a loop:

var i:int = 0;
while (i<10)
{
do this 10 times!
i++;

}

In this example, the while statement is used to loop a specific number of times. It also can be
used to evaluate any Boolean expression and determine whether to continue the looping process or
break out of the loop and continue with the remainder of the code.

TP In many cases, the choice of a for or a while loop is a style choice that's completely
up to the programmer.

Combining MXML and ActionScript

Many tasks can be accomplished with either MXML or ActionScript code, and only a few are
restricted to one language or the other. Most Flex applications use both. The main application file
is always in MXML, and that file can then contain or refer to ActionScript code in a variety of ways.

The <mx:Script> tag

The <mx: Script> tag set can wrap ActionScript code that becomes a part of the Application or
component that the current MXML file represents. The advantage of including the scripting in the
MXML file is that all the code for a particular component is in one place. Disadvantages include:

107

22170 M Flex Fundamentals

B Some developers find that mixing declarative (MXML) and programmatic (ActionScript)
syntax in a single file can look odd and be a bit confusing.

B Because Flex Builder 3 provides code management tools for ActionScript stored in exter-
nal files that aren’t available in MXML files, you might find that you want to take advan-
tage of these tools.

In terms of functionality and application performance, either of these approaches works fine. So it’s
purely a question of style and preference.

If you decide to include ActionScript in an MXML file, create the <mx : Script> element as a pair
of tags wrapped around a CDATA block. Then place all your scripting inside the CDATA block:

<mx:Script>
<! [CDATA[
Scripting goes here
11>
</mx:Script>

TP To insert a CDATA block into a source code file, place the cursor where you want the
CDATA to appear, and then select Source => Insert CDATA Block from the Flex Builder

menu. Or use the keyboard shortcut Ctrl+Shift+D.

Using external ActionScript files

You can link an MXML file to an external ActionScript file with the source property of the
<mx:Script/> element. The ActionScript file should have a file extension of .as and can con-
tain as much ActionScript code as you need.

Any code in the external file is considered to be a part of the MXML file and the ActionScript class
it represents. And because the external file isn't in XML format, you don’t need the <mx: Script>
element or the CDATA block to protect the code.

Follow these steps to create an external ActionScript file:

1. Select File & New = ActionScript File from the Flex Builder menu. (Don't select
ActionScript Class — that’ a different sort of file I'll describe in a later chapter.)

2. In the New ActionScript File dialog box, select the folder in which you want to create the
file. External ActionScript files can go anywhere in the project, because you'll explicitly
refer to the files location when you link to it from an MXML file. I usually place the file in
the same folder as the MXML file it’s linked to.

3. Enter the name of the file. It should have a file extension of . as, but the rest of the file-
name is up to you. I usually match the name of the MXML file it’s linked to, so for an
application named HelloWorld.mxml, the name of the external ActionScript file would
be helloWorld.as.

4. Click Finish to create the file.

108

Understanding the Anatomy of a Flex Application _

TP Notice that in this usage, the external ActionScript filename starts with a lowercase
character. This doesn’t have any technical effect on the code, but it's a way of indicating
that it’s a simple file containing ActionScript code, as opposed to an ActionScript class (which, by
object-oriented programming conventions, has an initial uppercase character).

After the file has been created, you link to it from the MXML file with the <mx: Script> element
and add a source property pointing to the external file. The application in Listing 4.1 embeds its
ActionScript code in an <mx : Style> tag set.

Any particular <mx: Script> element can contain nested ActionScript or use the
source property to link to an external ActionScript file, but it cannot do both at the
same time. You can, however, have as many <mx: Script> declarations in a single MXML file as you
need.

LISTING 4.1

An MXML application CalculatorWithScript.mxml with nested ActionScript

AR
AU .U\

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical" xmlns:components="components.*">

<mx:Script>
<! [CDATA[

[Bindable]

private var currentResult:Number;
[Bindable]

private var currentInput:String;

private function initApp() :void

{
input.addEventListener ("click", clickHandler) ;
input.addEventListener ("calculate", calculate);

}

private function calculate(event:Event) :void

{

currentResult += Number (currentInput) ;

private function clickHandler (event:TextEvent) :void

{

currentInput += event.text;

11>

continued

109

22148 8 Flex Fundamentals
LISTING 4.1 (continued)

</mx:Script>

<components:ButtonTile id="input"/>
<components:ResultOutput id="output"/>

</mx:Application>

The code in Listing 4.1 is available in the Web site files in the chapter04 project’s src

O] the YWEER
Orl VYEE folder as CalculatorWithScript .mxml.

Listing 4.2 shows the same application after the ActionScript has been moved to an external file.

LISTING 4.2

MXML application Calculator.mxml with linked ActionScript file

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical" xmlns:components="components.*">

<mx:Script source="calculator.as"/>

<components:ButtonTile id="input"/>
<components:ResultOutput id="output"/>

</mx:Application>

The code in Listing 4.2 is available in the Web site files in the chapter04 project’s src

C))] the YWEE
Orl VIEB folder as Calculator .mxml.

You have just as much code to manage, but the XML markup is cleaner and easier to read. And, as
shown in Listing 4.3, the ActionScript file now contains only the programmatic code:

LISTING 4.3

External ActionScript file calculator.as

// ActionScript file
[Bindable]
private var currentResult:Number;

[Bindable]

110

Understanding the Anatomy of a Flex Application

private var currentInput:String;

private function initApp () :void

{
input.addEventListener ("click", clickHandler) ;
input.addEventListener ("calculate", calculate);

}

private function calculate(event:Event) :void
{
currentResult += Number (currentInput) ;

}

private function clickHandler (event:TextEvent) :void
{
currentInput += event.text;

}

)] the YWEE The code in Listing 4.3 is available in the Web site files in the chapter04 project’s src
- folder as calculator.as.

Managing ActionScript code with Flex Builder

Whether you're working with MXML or ActionScript, Flex Builder’s Outline view allows you to
easily find function and variable declarations within the source code. The Outline view appears in
the lower-right corner of Flex Builder in the default Flex Development perspective.

Using Outline view with ActionScript

When working with MXML, the default Outline view displays a tree of MXML elements. As shown
in Figure 4.5, the <mx : Script> element shows up as a single selectable object.

FIGURE 4.5

Flex Builder’s Outline view in MXML mode

111

22170 M Flex Fundamentals

To navigate to a specific function or variable declaration using the Outline view, click the Show
class view icon at the top of the view. As shown in Figure 4.6, you're now able to click a declara-
tion and jump to that bit of code.

FIGURE 4.6

QOutline view and the Class view buttons

Sort Hide static

Class view Hide non-public

When using the Outline’s Class view, you can change the display with these other options that are
accessed from buttons at the top of the Outline view:

B Sort displays variables and functions in alphabetical order.

B Hide Static Functions and Variables hides variables and functions that are marked with
the static modifier.

B Hide Non-Public Members hides variables and functions that aren’t marked with the
public access modifier.

TP You need to click an item only once in the Outline view to jump to the matching code.

TP From any object reference in the ActionScript file, hold down the Ctrl key and click the
reference to jump to that object’s declaration. This works whether the declaration is in
the ActionScript file or an external MXML file and for both custom classes and Flex library classes
whose source code has been provided by Adobe.

Managing ActionScript code in external files

When you store ActionScript code in an external file, Flex Builder gives you some additional code
management tools.

112

Understanding the Anatomy of a Flex Application _

Code folding

Code folding refers to the ability of the Flex Builder editor to fold, or collapse, certain sections of
code. In an MXML editor, code folding is based on the source file's MXML elements. As shown in
Figure 4.7, an MXML file displays code folding icons at the beginning of each MXML element.
You'll see a folding icon for the <mx : Script> tag that allows you to collapse that section of code
to a single line.

FIGURE 4.7

Code folding icons in an MXML file

Code folding icons

Clicking the icon reduces the MXML element at that line to a single line of displayed code. Then,
when you move the cursor over the folding icon, you see a pop-up window showing the first of code
in the collapsed section, as shown in Figure 4.8. Clicking the icon again expands it to full display.

In an external ActionScript external file, because you are using Flex Builders ActionScript editor,
code folding lets you collapse function declarations instead of MXML elements. As shown in Figure
4.9, you can click any function’ folding icon and reduce it to a single line of code.

You also can collapse all functions in a file to single-line display:

B Right-click in the column of line numbers.

B As shown in Figure 4.10, select Folding & Collapse Functions to reduce all functions to
single-line displays.

Now all functions are displayed as single lines of code, as shown in Figure 4.11.

And finally, moving the cursor over a folded icon that is in a collapsed state displays the contents of
the folded function, as shown in Figure 4.12.

113

2148 8 Flex Fundamentals

Displaying collapsed MXML code

FIGURE 4.9

Code folding icons in an ActionScript file

Code folding icons

114

Understanding the Anatomy of a Flex Application _

FIGURE 4.10

Collapsing all functions

FIGURE 4.11

Functions displayed as single lines of code

FIGURE 4.12

Displaying the contents of a folded function

115

22170 M Flex Fundamentals

Organiging import statements

An import statement informs the compiler about the location of ActionScript classes it needs to
compile an application or component. Most ActionScript classes must be explicitly imported to be
recognized by the compiler. This import statement makes a class named ArrayCollection
available to the compiler:

import mx.collections.ArrayCollection;

In Flex Builder 2, the development environment helped you build an import list by creating
import statements for classes you referred to as you typed. But later, if you removed a class refer-
ence from the body of the code, the import statement would be left in the file. This doesn’t cause
any harm to the application (import statements on their own don’t add size or functionality to a
compiled application), but it could be confusing later when you opened the file and saw import
statements that had nothing to do with the code’s functionality.

Flex Builder 3’ ActionScript editor adds the ability to organize an ActionScript files import state-
ments with a simple menu selection or keyboard shortcut. When you organize imports, unused
import statements are removed and the ones you need are left in alphabetical order, grouped by
package.

Consider this list of import statements:

import mx.controls.Alert;

import flash.net.FileFilter;

import flash.net.URLRequest;

import mx.collections.ArrayCollection;
import mx.validators.Validator;

import flash.net.FileReference;

To organize this list, select Source & Organize Imports from the Flex Builder menu. (Or press the
keyboard shortcut Ctrl+Shift+O.) After organization, the list now looks like this:

import flash.net.FileFilter;

import flash.net.FileReference;
import flash.net.URLRequest;

import mx.controls.Alert;
import mx.validators.Validator;

The import statement for the unused class is removed, and the remaining statements are alphabet-
ized and grouped.

TP This ability to organize import statements currently is available only in ActionScript
source code files and does not work in MXML files.

116

TABLE 4.2

Understanding the Anatomy of a Flex Application

Using the Application Container

The Application container is always declared as the root element of an MXML application file.
It represents the top level of the application’s containership hierarchy.

Application is defined as an ActionScript class with the fully qualified name
mx.core.Application. The Application class supports these important properties that are not
part of other containers. Table 4.2 shows the application properties.

Application Properties

Property Purpose Example
application A static property that returns a Application.application.height = 400;
reference to the current Application.
controlBar A read-only property that returns a var myCB:ApplicationControlBar =
reference to an Application this.controlBar;
ControlBar within the
Application.
frameRate The number of frames per second at <mx:Application frameRate="60"/>
which changes are reflected in Flash
Player. The default is 24 frames/second.
pageTitle A value that’s passed through to the <mx:Application
HTML wrapper and displayed in place pageTitle="My Flex App" />
of the ${title} placeholder.
parameters An ActionScript Object containing Opening the application with a URL
name/value pairs that are passed into containing query string variables:
the Flash Player into a FlashVars string "flashvars", "state=new"
passed into the Flash Player.
Reading the variable in the Flex application:
var currentState:String =
this.parameters.state;
url The URL with which the Application var currentURL:String = this.url;

. swf file was opened.

TP

You can make typing appear to be smoother in a Flex application by increasing the
frameRate. For example, if the cursor is in a TextArea or TextInput control and
you hold down a key at 24 frames/second, the effect can be a bit “jumpy.” That is, the characters may
not appear at an even rate. Setting the frameRate to 60 or 90 frames/second may noticeably
improve this “animation.” In theory, this could have a negative effect on CPU usage on the client sys-
tem, but in testing on a modern computer, it’s difficult to see a difference.

117

22170 M Flex Fundamentals

~nr 1 ==~ | Theurl property refers to the URL through which the application . sw£ file was
NSRBI . .

loaded, not the HTML wrapper file. For example, when running the URLDemo . mxm1
application from the local disk, the browser’s url is displayed as:

file:///C:/flex3bible/workspace/chapter04/
bin-debug/URLDemo.html

The Application.url property returns this value:

file:///C:/flex3bible/workspace/chapter04/
bin-debug/URLDemo. swf

Passing application parameters

You pass parameters to the application from the browser using a special Flash Player variable
named flashvars. If you're using simple <object> and <embed> tags to call Flash Player
from an HTML wrapper file, the £lashvVars variable is passed from the HTML wrapper file in
this form:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
id="${application}" width="${width}" height="${height}"
codebase="http://fpdownload.macromedia.com/get/
flashplayer/current/swflash.cab">
<param name="movie" value="S${swf}.swf" />
<param name="quality" value="high" />
<param name="bgcolor" value="${bgcolor}" />
<param name="allowScriptAccess" value="sameDomain" />
<param name="flashVars" value="state=New" />
<embed src="${swf}.swf" quality="high" bgcolor="${bgcolor}"
width="${width}" height="${height}" name="${application}"
align="middle" play="true"
loop="false" quality="high"
allowScriptAccess="sameDomain"
type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer"
flashvVars="state=New">
</embed>
</object>

Notice that the £1lashVars property is passed twice: once for the <object> tag (for Internet
Explorer), and once for the <embed> tag (for plug-in based browsers such as Firefox).

If you're using the JavaScript code in the HTML wrapper file that’s generated by Flex Builder, pass
the flashvVars variable like this:

AC_FL_RunContent (
"src", "S{swfl",
"width", "${width}",
"height", "${height}",
"align", "middle",
"id", "${application}",

118

Understanding the Anatomy of a Flex Application _

"quality", "high",

"bgcolor", "$S{bgcolor}",

"name", "S{application}",

"allowScriptAccess", "sameDomain",

"type", "application/x-shockwave-flash",

"pluginspage", "http://www.adobe.com/go/getflashplayer",
"flashVars", "state=New") ;

The format of the f1ashvVars variable is the same as the queryString portion of a URL.
Variables and their values are separated by the = character, and multiple values are separated by the
& character. You don't need additional quotation marks around parameter values, so a flashvVars
variable containing two parameters might look like this:

"flashvVars", "firstName=Bob&lastName=Smith"

This code would result in two parameters named firstName and lastName with values of Bob
and Smith.

To retrieve these values at runtime, use the Application objects parameters property. The
parameters property is a dynamic object that allows you to address its named properties with
dot notation, as in:

private var fullName:String =
Application.application.parameters.firstName + " " +
Application.application.parameters.lastName;

-J-J _ID The expression Application.application allows you to get a reference to the
application object from most locations in the application’s code. If the code you're
writing is in the main application file, though, you can simplify it with:

private var fullName:String =
this.parameters.firstName + " " +
this.parameters.lastName;

Controlling application dimensions

The default values for the Application components width and height are both 100 percent.
These values are passed to Flash Player through the HTML wrapper file that's generated by Flex
Builder. For example, this code:

<mx:Application height="300" width="200">
</mx:Application>

results in these values being passed to Flash Player in the generated HTML wrapper page:

AC_FL_RunContent (
"src", "HelloWorld",
"width", "200",
"height", "300",
other parameters ...);

119

22170 M Flex Fundamentals

These dimension properties also are passed into, and are part of, the . swt application file.

TP You can pass different explicit values into the HTML wrapper code that calls Flash
Player by modifying the HTML template. This causes the Flex application to be stretched
or compressed to match Flash Player’s dimensions.

Setting the layout property
The Application components layout property controls how its nested visual objects are laid
out on the screen. The layout property has these possible values:

B vertical (the default)

B horizontal

B absolute

Vertical and horizontal layout

Settings of vertical and horizontal cause the application to lay out its nested visual objects
automatically. As shown in Figure 4.13, a layout setting of vertical makes objects in the
Applications display list appear in a single column.

FIGURE 4.13

An application with vertical layout

-J-J _P The Application's horizontalAlign style defaults to center, so objects laid out
with either horizontal or vertical layout are placed in the horizontal center of
the application. Other possible values include 1eft and right.

Figure 4.14 shows what happens when you change the Application object’s layout property
to horizontal. Objects in the display list are laid out in a row from left to right.

120

Understanding the Anatomy of a Flex Application _

FIGURE 4.14

An application with horizontal layout

TP A layout setting of horizontal or vertical requires the application to calculate the
quantity and size of the nested controls at runtime, and then in a second pass to place
them on the screen. This calculation has to be re-executed each time the application is resized (for
example, if the user resizes the browser). On slower computers, this process can seem a bit sluggish.
One solution to improve client-side performance in this situation is to switch to absolute layout,
because the application then doesn’t have to do this calculation.

Absolute layout

An application with absolute layout allows each object to be placed in a specific position relative
to the top-left corner of the application. As shown in Figure 4.15, absolute layout has the addi-
tional advantage of being able to overlap objects. When objects have alpha settings that allow
transparency, as is the case with default settings of the But ton component, you can make objects
show through each other from back to front.

TP The z-index, or relative depth, of overlapping visual objects is controlled by their order
in the container’s display list. When declared in MXML, the last declared object has the
highest z-index and overlaps any other objects with which it shares screen space.

FIGURE 4.15

An application with absolute layout and overlapping

121

22170 M Flex Fundamentals

122

Other containers in the Flex framework besides Application support the layout property,
including these:

B Panel
B TitleWindow

B WindowedApplication (used only in desktop applications deployed with AIR)

I describe those in detail in Chapter 9.

Summary

In this chapter, I described the basic anatomy of a Flex application. You learned the following;
B MXML and ActionScript 3 are the two programming languages you use for Flex

development.

ActionScript 3 is based on the ECMAScript 4th Edition recommendation.

ActionScript’s syntax is similar to Java, JavaScript, C, C++, and C#.

MXML is a “convenience” language that compiles into ActionScript.

MXML is a pure XML-based language.

You can combine MXML and ActionScript in a number of ways.

The Application class is the root element in a Flex application designed for Web
deployment.

The Application classs layout property can be set to horizontal, vertical, or
absolute.

Using Bindings and
Components

n Chapter 1, I described the object-oriented concept of modularity and IN THIS CHAPTER
described how dividing an application into small pieces can increase

developer productivity and improve long-term maintenance of an appli- Using binding expressions
cation. I also described the concept of encapsulation that encourages develop-
ers to create application building blocks that hide the details of a feature’s Creating MXML components

implementation from the rest of the application, and only expose tools in the

module’s public interface that are needed to set and get the module’s infor-

mation and execute its functions. Creating component properties
and methods

Instantiating MXML components

In this chapter, I describe some of the basic building blocks of a Flex appli-
cation that can improve its modularity and make it easier to manage over Using component libraries
time. I start with a look at binding expressions and describe how they help

you easily move data around an application. A binding expression can move

data from one object to another at runtime without explicit event handling

or ActionScript statements. I describe a couple of binding syntax styles and

show when to use each.

This chapter also includes a description of how to create and use custom
MXML components in a Flex application. In the last section of this chapter, 1
describe how to package and manage multiple components and classes in a
component library, using a Flex Builder Library Project.

)] the WEE To use the.sample cod‘e for th|§ che}pter, import the c‘hap.—
- ter05.zip Flex project archive file from the Web site files
into your Flex Builder workspace.

123

22170 M Flex Fundamentals

124

Using Binding Expressions

As previously described, a binding expression lets you move data from one object to another at
runtime without having to handle complex events or write lots of ActionScript code.

TP Binding expressions represent only one possible approach to managing data within a
Flex application. Because they generate automatic event broadcasters and listeners, they
can create significant application activity when overused. Sometimes it’s best just to assign object
properties using ActionScript code.

The purpose of a binding is to “listen” for changes to an expression and to “broadcast” the expres-
sion’s value to an object’s property. The expression that returns the value is known in a binding as
the source. The expression to which you pass the value when it changes is known as the destination.

Let’s look at this example of two Label controls.

<mx:Label id="sourceLabel" text="some value"/>
<mx:Label id="destinationLabel"/>

If you want the first control’s text property value to be displayed in the second control, you
would refer to the first as the source and the second as the destination.

Flex supports three binding syntax styles:
B A simple, shorthand MXML-based version that wraps a binding expression in an attribute
of an MXML declaration
B A longhand MXML-based version that uses the <mx:Binding> tag
B A longhand ActionScript-based version that uses the

mx.binding.utils.BindingUtils class

TP The longhand ActionScript-based version of creating a binding has some limitations
compared to MXML. While the BindingUtils class allows you to create a binding at
runtime, it does not support the use of simple ActionScript or E4X expressions, and it doesn’t have as
good a set of error and warning detection as bindings declared in MXML.

Shorthand MXML binding expressions

In the shorthand MXML version, you start by assigning an id, or unique identifier, to the source
control. This becomes the instance name of your object for future reference:

<mx:Label id="sourceLabel" text="some value"/>

In the destination control’s declaration, you use an ActionScript expression that refers to the source
controls text property, wrapped in {} characters:

<mx:Label text="{sourcelLabel.text}"/>

At runtime, if the source control’s text property changes, the destination control is updated at the
same time.

Using Bindings and Components

Using <mx:Binding>
The longhand MXML binding syntax uses an <mx: Binding/> tag with properties of source
and destination to define the two expressions:

<mx:Binding source="sourceLabel.text"
destination="sourceLabel.text"/>

The <mx : Binding> tag can be used when the destination object is declared in ActionScript code,
rather than MXML. Because shorthand syntax works only in the context of an MXML declaration,
it just doesn’t work for this case.

In the following code, a value entered into a TextInput control is passed to a pre-declared vari-
able named myVar whenever the user makes a change. That variable’s value is then passed to the
Label control using a shorthand binding expression.

<mx:Script>
<! [CDATA[
[Bindable]
private var myVar:String
11>

</mx:Script>

<mx:Binding source="myInput.text" destination="myVar"/>
<mx:TextInput id="myInput"/>
<mx:Label text="{myVar}"/>

TP You might not use the <mx:Binding> tag in the simplest Flex applications, but the
first time you need to pass a value to an object or expression that’s declared in
ActionScript, you’ll find it a valuable tool.

Making expressions bindable

Most object properties in the Flex framework’s library are automatically bindable, meaning that if
the property’s value changes at runtime, the new value is broadcast to the listening destination
object. When you declare your own variables in ActionScript, their values aren’t automatically
bindable; you have to mark them with a [Bindable] metadata tag to indicate that they should
share new values with the rest of the application.

Consider this code:

<mx:Script>
<! [CDATA[
private var myVar:String="Hello World";
11>
</mx:Script>
<mx:Label id="destinationLabel" text="{myVar}"/>

125

22170 M Flex Fundamentals

FIGURE 5.1

The variable myVar will share its value with the destinationLabel control at application
startup, but because the variable isn't marked as bindable, any changes at runtime won’t be passed
to the control. In fact, the compiler notices this problem and generates a compiler warning, as
shown in Figure 5.1.

A compiler warning for a binding to a non-bindable expression

126

To fix this and get rid of the compiler warning, add the [Bindable] metadata tag above the vari-
able declaration:

<mx:Script>
<! [CDATA[
[Bindable]
private var myVar:String="Hello World";
11>
</mx:Script>
<mx:Label id="destinationLabel" text="{myVar}"/>

The compiler warning disappears, and if the source expression’s value changes at runtime, the
Label control correctly displays the new value.

Using MXML Components

As described previously, modularity means that you break up an application into pieces that are
focused on particular application tasks. A modular application tends to be more stable and main-
tainable than one that mixes many types of functionality into a single source code file.

Flex supports the object-oriented concept of modularity through the use of custom MXML compo-
nents and ActionScript classes. In this section, I describe how to create and incorporate MXML
components in a Flex application.

Creating MXML components

Like the application itself, an MXML component is built in a source code file with an extension of
.mxml. At compilation time, an MXML component is turned into an ActionScript class where the

Using Bindings and Components

The View in Model-View-Controller

Asingle Flex application can have dozens or hundreds of “views” —that is, screens or visual rep-
resentations of data that execute particular functions, collect data, or present information to the
user. If you try to implement all of these views in a single source code file, the result can be a mess.

Similarly, the application may need to call many different external functions to get data and imple-
ment many object structures in application memory in which to hold that data at runtime. In classic
model-view-controller application architecture, these parts of the application are known as models.

You can create view components with either MXML or ActionScript, but for most purposes an MXML
component is the simplest approach. And after you create the components, you need a way to share
data with them and make them do things. In this chapter, | describe how to build the Flex applica-
tion’s views as MXML components and how to design the components to hold and receive data.

name of the class matches the first part of the components filename. So for example, if you create a
file named MyComponent .mxm1, the resulting ActionScript class is named MyComponent.

TP I strongly recommend that you create components in subfolders of the project source
root folder, rather than the source folder itself. This allows you to group components by
purpose into packages. For example, you might have one folder for forms, another for DataGrid and
List components (data-aware components), a third for navigational tools, and so on. The names of the
folders are completely up to you.

TP Because an MXML component is really an ActionScript class, | recommend that you fol-
low object-oriented naming conventions for class definitions. Specifically this means
that component filenames usually start with an initial uppercase character and use mixed-case after
that. This is a convention, not a technical requirement, but it’s one that most developers follow.

Component inheritance

Each MXML component extends, or is derived from, an existing ActionScript class. You indicate
which class the current component extends with the MXML file’s root element. So a class named
MyComponent .mxml that extends the VBox container looks like this:

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml">
</mx:VBox>

A lTION Notice that the MXML component file’s root element includes the standard MXML
bt namespace and prefix declaration of
xmlns :mx="http://www.adobe.com/2006/mxml". This is required in all MXML files.

The preceding MXML code results in the inheritance relationship described by the UML diagram
in Figure 5.2.

127

22170 M Flex Fundamentals

The inheritance relationship between VBox, the superclass, and the custom component, the subclass

VBox

T

MyComponent

Using the New MXML Component wizard

To create a new MXML component with Flex Builder, first create a folder in the project’s source
root to contain the component. Then use the New MXML Component wizard to create the compo-
nent source code file.

Creating a component folder
To create a component folder, follow these steps:

1. Right-click the project’s src folder in the Flex Navigator view.

2. Select New = Folder.

3. Enter a new folder name of components, and click Finish.

TP Folder names that represent packages, by convention, are usually all lowercase. For
example, the folder containing form components should be named forms, not Forms
or FORMS.

Creating the MXML component
To create the MXML component, follow these steps:

Right-click the new folder in the Flex Navigator view.
Select New &> MXML Component.

1
2
3. Asshown in Figure 5.3, enter a component filename of MyComponent.as.
4. Select VBox from the Based on: list.

5

Remove the default values in the Width and Height settings, leaving them blank. This
creates a VBox component that automatically resizes based on the size and quantity of its
nested controls.

128

6.

Using Bindings and Components

Click Finish to create the new MXML component.

The component opens in Flex Builder in either Source or Design view, depending on
what view you used most recently.

FIGURE 5.3

The New MXML Component wizard

Adding content to the component
To add content to the component, follow these steps:

1.

If the component opened in Source view, click the Design button.
Locate the Style section of the Flex Properties view.

Click the background color selector’s paint bucket icon, shown in Figure 5.4, to choose a
background color.

In the color selector dialog box, if you know the hexadecimal value of the color you want,
enter it in the background color field (labeled with a # character). Otherwise, use the
color pallet to select a color. Then click OK to complete the selection.

129

22170 M Flex Fundamentals

130

FIGURE 5.4

The background color selector

Background color selector

Drag 3 Label components from the Components view into the Design view.

Double-click each Label component to edit its text property and add this custom text:

Label 1: These Label components
Label 2: are inside my custom

Label 3: component.

Click Source to look at the generated source code. The source code for the component
looks like this:

<?xml version="1.0" encoding="utf-8"?>

<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
backgroundColor="#9DEDE8" >
<mx:Label text="These Label components"/>
<mx:Label text="are inside my custom"/>
<mx:Label text="component."/>

</mx:VBox>

Using Bindings and Components

Reverse Domain Package Names

Some developers prefer to create their components and ActionScript classes in a folder structure
that includes their organization’s domain information and an application identifier. Instead of a
simple folder named forms, you might have a folder structure named com/bardotech/myappli-
cation/forms. Because the folder structure represents a package in class management terms, this
creates a globally unique identifying system for each group of components. A file named
MyForm.as in the above folder is known by its fully qualified name as com.bardo. tech.myap-
plication. forms.MyForm.

Notice that the domain name bardotech.com becomes a package structure of com.bardotech.
This convention of reversing the parts of a domain name in a package structure is described in the
documentation for the Java programming language and has been adopted by some Flex developers.

In Java, this practice is very strongly encouraged. Because the Java Virtual Machine searches for
classes in its classpath at runtime, as well as at the time of compilation, using globally unique class
names ensures that if a library of classes with conflicting names just happens to be in your applica-
tion’s classpath, using globally unique package identifiers reduces the possibility of class naming
conflicts.

In ActionScript, the source path is used only during the compilation process. By the time you run the
application, it’s already been compiled into the .swf byte code format. The ActionScript Virtual
Machine uses only the classes that are compiled into the application, but it doesn’t use the source
path to go searching for classes as they’re needed at runtime. As a result, this particular reason for the
globally unique package name only applies to the world of ActionScript when you incorporate third-
party code libraries in the form of .swc files (component libraries) and .rsl files (runtime shared
libraries) where you don’t control the names of the classes.

You may still want to use these sorts of package names in code libraries that are shared between mul-
tiple projects to ensure that compile-time conflicts don’t emerge. But for code that’s unique to a sin-
gle application, these deeply nested package names don’t have any technical benefit.

Instantiating MXML components

You use MXML components by creating instances of the components in your application. You can
instantiate a component using either MXML or ActionScript code.

Instantiating a component with MXML

If the MXML component represents a visual object such as a container or control, it's most com-
monly instantiated using MXML code. Before an MXML component can be instantiated, you must
declare a custom XML namespace prefix that’s associated with the folder in which the components
source code file is stored.

131

22170 M Flex Fundamentals

The custom namespace prefix is best declared in the MXML file’s root element start tag, the value of
which contains the folder location of your components (in dot notation) and usually ends with an
asterisk to indicate that all components in this folder are available in this namespace:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns :mycomps="components.*">

You then instantiate the component with standard XML syntax, using the namespace prefix and the
component name as an XML element:

<mycomps :MyComponent id="compl"/>

TP A custom namespace that you declare for a particular folder also serves as an import
declaration for all classes in that folder. If you need to refer to components or classes in
that folder in other parts of the MXML file, a separate import statement is not required.

You also can declare the namespace prefix directly within the component instantiation like this:
<mycomps :MyComponent id="compl" xmlns:mycomps="components.*"/>

This works, but the namespace prefix is available only for the single component instance. When
you place the namespace prefix in the current MXML file’s root element, you can then declare as
many instances of any component in the components folder.

The namespace prefix is arbitrary; that is, you can name it anything. I recommend, however, that
you assign a prefix that's the same as the folder name, as in:

xmlns: components="components.*"
This has two benefits:

B Because the namespace prefix matches the folder name, you'll recognize the component
file’s location when you look at the code.

B Flex Builder can create the second version of the namespace declaration for you if you
follow a particular sequence in coding the object. I describe this sequence in the next sec-
tion’s tutorial.

Instantiating an MXML component
Here’s how you create an application that instantiates the custom MXML component:

1. Create a new MXML application in the current project.

2. Place the cursor within the <mx : Application> root element tag set.

132

Using Bindings and Components

3. Type the < character, and then my, the first couple of characters in the component name.
(This string is unique enough to display a small number of items in the list of available
ActionScript classes.)

As shown in Figure 5.5, the list of available classes appears and the custom component is
displayed.

FIGURE 5.5

Selecting the custom component

TP If the list of available classes disappears, press Ctrl+spacebar to bring it back. This works
in Flex Builder wherever code hinting is available.

4. Press Enter (Return on the Mac) to select the custom component from the list of available
ActionScript classes.
Flex Builder completes the code with the namespace prefix and the tag name:
<components :MyComponent

5. Type /> to complete the tag.
The code should now look like this:
<components :MyComponent />

6. Look at the <mx:Application> start tag.

You should see that the <mx : Application> tag has been populated with the required
namespace prefix to support the selected component. The tag looks like this:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical" xmlns:components="components.*">

7. Save and run the application.

Figure 5.6 shows the application with a single instance of the custom MXML component.

133

22170 M Flex Fundamentals

An application with a component

Inserting a custom component instance in Design view

You also can instantiate the custom component in Design view by simply dragging it from Flex
Builders Components view.

Click Design to switch to Design view.
2. In the Components view in the lower-left corner of Flex Builder, open the Custom section.
You should see your new custom component.

3. Asshown in Figure 5.7, drag the custom component from the Components view into the
application.

The component instance should appear in the application’s Design view.

~, ==~ | Whenyou drag a component into Design view and the component’s namespace prefix

AN hasn’t been previously defined, Flex Builder creates an automatically numbered name-
space prefix such ns1 (for “namespace 1”). It also creates the MXML code that instantiates the com-
ponent using paired tags, instead of the preferred empty tag syntax. The resulting generated code
looks like this:

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:nsl="components.*">
<nsl:MyComponent>
</nsl:MyComponent>

</mx:Application>

This code works fine, but you may decide to manually change the namespace to something more
meaningful, such as the name of the folder in which the component source code is stored.

134

Using Bindings and Components

Dragging a custom component into an application

Instantiating a component with ActionScript
Since an MXML component is really an ActionScript class definition, you can instantiate the com-

ponent with pure ActionScript code. As with any pre-built component in the Flex framework, you
follow these steps:

Create an import statement that refers to the component as a class.

Declare a variable with its data type set to the component as a class.

Instantiate the component using a no-arguments constructor method call.

Add the component instance to the application’s display list.

Listing 5.1 shows the code for an application that creates and displays a single instance of the cus-
tom component upon application startup.

The code in Listing 5.1 is available in the Web site files in the chapter05 project’s src
folder as UseComponentWithAS .mxml.

Orlthe Y/EE

135

2148 8 Flex Fundamentals

Instantiating a custom component with ActionScript

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical" creationComplete="initApp() ">
<mx:Script>
<! [CDATA[
import components.MyComponent;
private function initApp():void
{
var comp:MyComponent = new MyComponent () ;
this.addChild (comp) ;
}
11>
</mx:Script>
</mx:Application>

Adding Properties and Methods to
Components

Components and classes can have member objects. A member object is a pre-declared item that’s
instantiated along with the class. ActionScript classes support these member types:

Properties to hold dynamic data values

Constants to hold fixed data values

Methods to execute actions

Events to send messages to other parts of the application

Styles to controls a visual object’s presentation

In this section, I describe how to define properties, constants, and methods in an MXML compo-
nent.

Component properties

A property is a variable that's owned by a class definition. In ActionScript 3, all variables are actu-
ally properties of some object. If you declare a variable in an application source file, that variable is
actually a property of the application object.

136

Using Bindings and Components

Setting properties
The syntax to declare a property looks like this:

[access modifier] var [variable name]:[data typel;

A public property named currentValue with a data type of String is declared with this code:
public var currentValue:String;

You can set the property’s initial value upon object instantiation with this code:
public var currentValue:String = "Default value";

TP In browser-based JavaScript, the var keyword is optional and can be used to control a
variable’s scope: A variable declared in a function with var is local to the function, while
a variable declared without var is global to the current HTML page. In ActionScript, the var key-
word is always used to mark any variable or property declaration.

TP The use of post-colon syntax to statically type a variable is the subject of some contro-
versy. This syntax is part of the ECMAScript recommendation and was implemented by
Macromedia with the goal of standardization with the rest of the industry. Some Java developers find
the syntax odd, because in Java static data typing is accomplished with the data type before the vari-
able name:

public String currentValue;

The data typing result is the same, but the syntax is just turned around.

The available access modifiers for variables and properties are described in Chapter 4.

~

r ~r ryrr
CRROSS-EF

~amrA x| As with simple variable declarations, if you don’t include an access modifier with a

A N property or method declaration, the compiler generates a warning and the access for
that member is set to the default of internal. In ActionScript 2, the same code would have resulted
in a default access of public and no compiler warning would have been generated.

TP If you want a property’s data type to be dynamic, where you can assign any value at
runtime, use this syntax:
public var myVar:*;

The * character means that the property’s data type can be anything. This is possible because, unlike
Java, ActionScript 3 is a loosely typed language that offers tools for strict typing when you need or
want them.

Static properties

A static property is a value that’s the same for all instances of the component; it also can be referred
to by other parts of the application without having to instantiate the component at all. You make a
property static by adding the static keyword after the access modifier:

public static var myStaticVar:String;

137

22170 M Flex Fundamentals

The variable declared above will have the same value for all instances of the component in which
it’s declared.

Making a property bindable

As described earlier in this chapter, properties are bindable only if you explicitly mark them with
the [Bindable] metadata tag. A property that’s marked as bindable always broadcasts changes in
its value to objects within the component. A property that’s also marked as public broadcasts
changes to the application or other module that instantiates the component.

In Listing 5.2, a component has a bindable public variable named valueToDisplay. A Label
control within the component displays the property’s value.

LISTING 5.2

A component with a bindable public property

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Script>
<! [CDATA[
[Bindable]
public var valueToDisplay:String;
11>
</mx:Script>

<mx:Label text="{valueToDisplay}" fontSize="24"/>

</mx:VBox>

)] the YWEE The code in Listing 5.2 is available in the Web site files in the chapter05 project’s
- src/components folder as CompwithBindableProp .mxml.
TP In an MXML component, each property that you want to be bindable needs its own
[Bindable] tag. With ActionScript class definitions, you can mark all the class’s prop-
erties as bindable with a single instance of the [Bindable] metadata tag placed before the class
declaration.

TP You also can declare a property with MXML. For example, this code declares the same
String property as in the previous example:

<mx:String id="valueToDisplay"/>

A property that’s declared in this way is implicitly marked as public and bindable, so the public
access modifier and the [Bindable] metadata tag aren’t required.

138

Using Bindings and Components

Passing data to a component property

You can pass data to a component property with either dot syntax in ActionScript or MXML prop-
erty declarations. To pass data using an MXML property declaration, declare the property as an
XML attribute of the object declaration and set the value as either a literal or binding expression.

This is an example of passing a literal value:
<components :MyComponent valueToDisplay="Hello World"/>
This is an example of using a binding expression:
<components :MyComponent valueToDisplay="{aBindablevValue}"/>

In either case, the value is passed to the public property. And because that property is marked as
bindable within the component, its new value is then passed to any control or expression that’s
bound to it.

Using constants
A constant is a property whose value is set at the time of declaration and never changes. Common
uses of constants in ActionScript include:

W Aliases for literal values within components that are referred to multiple times. For exam-
ple, this private constant represents the literal string “All Products™

private const ALLPRODUCTS:String="All Products";
B Aliases for properties of objects that are used externally. For example, custom event

classes frequently have static public constants whose values are names of custom events
for which the current event class is used:

public static const SELECTED:String="selected";

TP By object-oriented convention, constant identifiers are spelled in all uppercase, as in
SELECTED. This distinguishes them in your code from property identifiers, which are
spelled with an initial lowercase character and optional mixed case thereafter.

TP Because a constant’s value never changes, it doesn’t make sense to make it bindable. In
fact, if you mark a constant declaration with the [Bindable] metadata tag, a com-
piler error results.

Component methods

A method is a function that belongs to a class or component definition. The dictionary meaning of
the word “method” is “a way of doing something, especially a systematic way.” This makes sense in
the context of class definitions; a method defines how a class accomplishes a particular task.

Depending on your background with various programming languages, you might think of a
method as a function or a subroutine. In fact, methods are marked in ActionScript with the func-
tion keyword.

139

2148 8 Flex Fundamentals

Defining methods

Use this syntax to define a method in a component:

[access modifier] function [methodName] (
[argument declarations]):[data type]

{

}

A sample method might look like this:

public function getValue () :String
{
return someValue;

}
As with properties, methods are marked with one of these four access modifiers:

B public: All code through an application can call the method.
B private: Only code in the current component or class can call the method.

B protected: Only code in the current component or class, or any its subclasses, can call
the method.

B internal: Only code in the current component or class, or any other component or
class in the same package, can call the method.

As with properties, if you don't include an access modifier with a method declaration, the access
defaults to internal.

The code in Listing 5.3 creates a component with two public properties named firstName and

lastName and one public method named getFullName () that returns a concatenated string.
The component also contains two Label controls that display the current values of the two properties.

LISTING 5.3

A component with a public method

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script>
<! [CDATA[
[Bindable]
public var firstName:String;
[Bindable]
public var lastName:String
public function getFullName () :String
{
return firstName + " " + lastName;
}
11>

140

Using Bindings and Components

</mx:Script>

<mx:Label text="First Name: {firstName}"/>

<mx:Label text="Last Name: {lastName}"/>
</mx:VBox>

The code in Listing 5.3 is available in the Web site files in the chapter05 project’s
src/components folder as UseComponentWithAS .mxml.

O)lthe YWEE
Calling component methods

You call component methods with either ActionScript statements or binding expressions. Listing
5.4 shows an application that uses the component in Listing 5.3 and displays the concatenated
value returned from the component’s public method.

LISTING 5.4

An application calling a component method in a binding expression

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical" xmlns:components="components.*">

<components : CompWithMethods
id="myComp"
firstName="Peter"
lastName="Programmer" />

<mx:Label text="{myComp.getFullName()}"/>

</mx:Application>

oy e, The code in Listing 5.4 is available in the Web site files in the chapter05 project’s src
O1 Line YYEE

folder as UseComponent .mxml.
When you call a component method in a binding expression, it executes only upon initial object
construction (for example, upon application startup). There’s no way in this syntax to tell the Flex
Framework that the method should be called again:

<mx:Label text="{myComp.getFullName()}"/>

However, it’s a simple matter to call the function with an ActionScript statement. In Listing 5.5, the
component’s property values are passed in with expressions that bind to visual controls in the
application, and the application calls the component’s getFullName () method to retrieve and
display the resulting concatenated value.

141

22170 M Flex Fundamentals

LISTING 5.5

Calling a component method with an ActionScript statement

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

layout="vertical" xmlns:components="components.*">

<components : CompWithMethods id="myComp"

firstName="{firstNameInput.text}"
lastName="{lastNameInput.text}"/>

<mx:TextInput id="firstNameInput"/>
<mx:TextInput id="lastNameInput"/>

<mx:Label id="fullNameOutput"/>
<mx:Button label="Get Full Name"

click="fullNameOutput.text=myComp.getFullName ()" />

</mx:Application>

Opl e YYEE

142

The code in Listing 5.4 is available in the Web site files in the chapter05 project’s src
folder as CallComponentMethodWithAS .mxml.

Using Component Libraries

A component library is an archive file in zip format that has a file extension of .swc. Component
libraries that are compatible with Flex 3 applications can be created in three tools:

W Flash CS3

B The Flex SDK’s compc command-line component compiler

B A Flex Library Project created and managed in Flex Builder

In this section, I describe how to create and use a component library in Flex Builder 3 with a Flex
Library Project.

Creating component libraries

A Flex Library Project is designed to create a component library: an archive file that contains com-
piled MXML components and ActionScript classes. Unlike a Flex Project, which contains complete
applications, a Library Project contains only the building blocks of an application. Its purpose is to
create component library files that contain pre-built ActionScript code and related assets that can
be dropped into a Flex application for immediate use.

Using Bindings and Components

Creating a library project
Follow these steps to create a Library Project in Flex Builder 3:

TP

TP

1.

2.

Select File & New > Flex Library Project from the Flex Builder menu.

If you're using the plug-in version of Flex Builder, select File > New => Other from the
Eclipse menu. Then select Flex Builder = Flex Library Project from the wizard dialog box.

In the New Flex Library Project wizard, shown in Figure 5.8, provide a Project name,
select the Use default location checkbox and the Use default SDK radio button, and indi-
cate whether AIR libraries should be included.

FIGURE 5.8

The first screen of the New Flex Library Project wizard

Click Next.

In the next screen, shown in Figure 5.9, browse to select locations for Main source folder
and Output folder.

If any assets such as image or XML files should be included with the component library,
click the Assets tab.

When you first create the Library Project, you may not have assets to add right away.
You can easily add assets to the project later through the Project Properties.

Click Finish to create the project.

143

2148 8 Flex Fundamentals

The second screen of the New Flex Library Project wizard

When a Flex Library Project is first created, a compiler error often indicates that nothing is cur-
rently in the library, as shown in Figure 5.10.

FIGURE 5.10

A compiler error in an empty Flex Library Project

144

Using Bindings and Components

Creating a project’s folder structure

As with components that are built in a Flex Project, you'll commonly create subfolders that repre-
sent the packages in which various components are stored. Unlike Flex Projects, which have a
default src folder that acts as the source code root, a Flex Library Project sets the project root as
the default source root. With this default setting, the package subfolders should be created under

the project root.
Follow these steps to create a component in a Library Project:

1. If the project doesn’t have a subfolder in which to create the component, right-click the
project in the Flex Navigator view and select New &> Folder.

2. In the New Folder wizard, shown in Figure 5.11, enter the new folder name and click
Finish.

FIGURE 5.11

Creating a project subfolder

145

22170 M Flex Fundamentals

3. Right-click the folder in which you want to create the component, and select New &>
MXML Component.

4. Create the component using the same options as in a Flex Project: Enter the Filename,
select which component the custom component is based on, and enter or clear any
width or height properties.

5. Click Finish to create the component.
After the component has been built, look in the project’s output folder (the output folders default
name is bin-debug). You'll find a new file with a name consisting of the project name and a file

extension of . swc. For example, a Library Project named MyCompLibrary generates a compo-
nent library file named MyCompLibrary . swc.

Incorporating component libraries

You incorporate component libraries into Flex applications in two ways:

B Add a component library to a Flex Project’s source path.

B Copy the component library into Flex Project’s 1ibs folder.

Adding a component library to a project’s build path

Each Flex Project has a build path that consists of a list of folders and component libraries whose
components and classes are available to the current project. The build path includes a source path
of folders in which ActionScript and MXML source code is stored, and a library path of component
libraries. The build path is set in the project properties dialog box.

Follow these steps to add a component library to a Flex Project’s build path:

1. In the Flex Navigator view, select a Flex Project.

2. Select Project @ Properties from the Flex Builder menu.

TP You also can right-click the project in the Flex Navigator view and select Properties
from the context menu.

3. Select Flex Build Path in the Project Properties dialog box.
4. Asshown in Figure 5.12, click the Library path tab.

The Library path screen allows you to add the component libraries in these ways:

W For Library Projects that are managed in the current Flex Builder workspace, click Add
Project. As shown in Figure 5.13, select the Library Project and click OK. All components
and classes in the selected Library Project become available to the current Flex Project.

B For component libraries that you've built in another workspace or received from another
developer, you can do either of the following:

Add a folder containing one or more .swc files.

Add an individual .swc file to the Flex Project build path.

146

Using Bindings and Components

Setting the Flex Build Path in the Project Properties dialog box

FIGURE 5.13

Adding a Library Project to a Flex Project’s Library path

147

22170 M Flex Fundamentals

Using the libs folder
Every new Flex Project has a folder named 1ibs that’s already a part of the project’s library path.

LIEVY FEATURE The 1ibs folder has been added to the default Flex project structure in Flex Builder 3.
NLJY R 1>= " Flex Builder 2 had tools that would allow you to create such an automatically included
library folder, but didn’t do the work for you.

To use the 1ibs folder, copy a .swc file into the projects 1ibs folder, as shown in Figure 5.14.
The classes and component in the component library are now immediately available to the Flex
Project.

FIGURE 5.14

A component library in a Flex Project’s 1ibs folder

Component library

~, ==~ | Whenyou copy a component library file that you created into the 1ibs folder, you

A N detach it from the Flex Library project that manages its source code. Each time you
modify the library’s code, you have to then re-copy the compiled library to the Flex project to make
the modified code available. The 1ibs folder is most effectively used when you add libraries that you
have received from other developers, when you aren’t managing the library’s source code.

Regardless of how you create and use a component library, it’s a valuable architecture that lets you
package and manage one or more components for use and reuse in your Flex applications.

TP You can’t run an MXML application from directly within a Flex library project. During
library project development, you should create a Flex project with at least one applica-
tion that's used to test library project components and classes.

148

Using Bindings and Components

Summary

In this chapter, I described the use of binding expression and MXML components in developing
Flex applications. You learned the following;

Bindings are used to move data between objects and expressions.
Bindings can be created with binding expressions or the <mx: Binding/> tag.

A binding creates a broadcaster/listener relationship between two ActionScript expres-
sions.

An MXML component is a building block of a Flex application that encapsulates func-
tionality.

MXML components are frequently used to create the view modules in a model-view-
controller application architecture.

MXML components are really classes that support properties, methods, and other mem-
bers of the ActionScript class architecture.

Component libraries can be used to package and manage components and classes.

Component libraries are useful for sharing code with multiple projects and applications.

149

Debugging Flex Applications

lex Builder 3 includes powerful tools that allow you to easily debug

and fine-tune your applications. Of course, software without bugs is a

myth —at least at the beginning of a software development project. In
many cases, the question of whether you complete your application within
the time you originally estimate depends on how quickly you can find and
fix an application’s defects, or bugs.

As with many good integrated development environments, Flex Builder
includes a variety of tools to help you find and fix an application’ issues and
understand what’s happening inside the application at runtime, including
these tools:

The trace () function sends runtime messages to the Flex Builder
console and other logging targets.

The <mx : TraceTarget /> tag defines runtime tracing for net-
work communications.

Breakpoints suspend application execution and allow inspection of
internal application state at runtime.

Variable and expression tools allow you to inspect the value of vari-
ous ActionScript expressions.

Profiling tools allow you to see what's happening at runtime in
terms of performance and memory usage.

In this chapter, I describe the tools you can use to debug and test your Flex
applications.

O1lihe YYE

To use the sample code for this chapter, import the chap-
ter06.zip Flex project archive file from the Web site files

into your Flex Builder workspace.

151

IN THIS CHAPTER

Understanding debugging basics

Starting a debugging session

Using the trace () function

Using the Logging API

Creating self-logging
components

Using breakpoints

Inspecting data

Profiling Flex applications

22170 M Flex Fundamentals

Debugging Basics

Debugging simply means that when you run an application, you want special debugging informa-
tion that helps you find and fix application issues. Debugging with Flex requires the right kind of
file and the right kind of runtime environment. Before executing debugging tasks, you need to be
sure of two things:

B You are using the debug version of the application.

B You are running the application in debug mode.

The debug version of the application

When you create a Flex Project in Flex Builder 3, the New Flex Project wizard creates an output
folder in which the debug version of the application and its supporting files are created. As
described in Chapter 3, the application’s debug version file size is significantly larger than the
release version that you deploy to your Web site or users” desktops because it includes special
information and functionality that can be used in a debugging session both by Flex Builder’s
debugging tools and by the £db command-line debugger.

The default name of the output folder is bin-debug. The name of the compiled debug version of
the application is the same as the main application source file, but it has the . sw¢ file extension.

TP In Flex Projects that don’t use an application server, this is normally a subfolder of the
project’s source root folder, such as src/bin-debug. In projects that do use an appli-
cation server, the bin-debug folder is typically created under the document root of the testing Web
server, and then made accessible in the Flex Navigator view through an Eclipse linked folder.

Running an application in debug mode

Follow these steps to run an application in debug mode:

1. Open the application you want to debug in Flex Builder.
2. Select Run=> Debug [application source file] from the Flex Builder menu.

TP If you're using the plug-in version of Flex Builder, the Debug menu choice runs the last
debugging configuration or allows you to select from a list of configurations.

You also can debug an application with the Debug button on the toolbar. This button is next to the
Run button and can be used in two ways:

B When you click the Debug button, Flex Builder launches a debug session with the cur-
rently displayed application, or the default application if the current file is a component
or class source file.

B When you click the arrow on the edge of Debug button, as shown in Figure 6.1, you see
a list of the current project’s applications and can select one to debug,.

152

Debugging Flex Applications _

Launching a debug session

Selecting an application to debug

When you debug a Web application, it opens in the browser with the same URL as when you run
in standard mode. You can tell that a debug session is running in Flex Builder though: As shown in
Figure 6.2, Flex Builders Console view appears whenever a debug session starts and displays a
debugging message indicating which file is being debugged.

FIGURE 6.2

The Console view during a debug session

153

2148 8 Flex Fundamentals

Managing the Console view
The Console view in its default state displays text messages without any word wrapping. You can
change this behavior through the view’s preferences:

Right-click anywhere in the Console view, and select Preferences.

2. Asshown in Figure 6.3, select the Fixed width console option and set a line length
between 80 characters (the default) and 1000 characters.

FIGURE 6.3

The Console view preferences dialog box

3. Change any other options, and click OK.
The Console view now word wraps long lines so you don't have to scroll horizontally to see entire

messages.

Terminating a debugging session
You want to always explicitly terminate a debugging session before trying to run or debug an appli-
cation again. You can terminate a debugging session in many ways:

B Select Run = Terminate from the Flex Builder menu.

B As shown in Figure 6.4, click the square red Terminate button in the Console view.

154

Debugging Flex Applications

B Click the square red Terminate button in the Debug view (visible in the Flex Debugging
perspective).

B Close the browser in which the application is running (for a Web application).

B Close the application (for a desktop application).

FIGURE 6.4

The Console view’s Terminate button

Terminate Debugging

TP When you terminate a Web application’s debugging session from within Flex Builder,
the browser sometimes closes automatically, depending on which Web browser and
operating system you're using and whether any other tabs or browser windows are open. For exam-
ple, provided that no other sites are open, Internet Explorer and Firefox on Windows always close
automatically. Firefox on the Mac doesn’t always close automatically. The fact that this behavior dif-
fers from one operating system to another is not a cause for concern.

Using trace() and the Logging API

Flex gives you the ability to generate and send logging messages to Flex Builder and other logging
targets at runtime. Tracing is typically useful when you’re trying to get runtime information about
the following;

B Variable values
B Order of application execution

B Whether various bits of code are being executed as expected

In its simplest use, logging is accomplished through use of the trace () method. More advanced
logging techniques are also available through an interface known as the Logging APL.

155

22170 M Flex Fundamentals

Using the trace() function

The trace () function is global to Flash Player; that is, it’s always available without your having to
reference or import an ActionScript class. The purpose of the trace () method is to send a text
message to a logging target. In its simplest form, trace is called with a String value:

trace('A tracing message');
You also can pass in variables and concatenated expressions that can result in a String:
trace("The value of myVariable is " + myVariable);

In fact, any object that can serialize to a String can be passed to trace (). In this example, an
Array of String values is passed to trace():

trace(['hello', 'world']l);
The resulting trace message looks like this:

hello,world

Trace messages in Flex Builder’s Console view

When you debug a Flex application, the value you pass into trace () is displayed in Flex
Builder’s Console view.

TP Calls to trace () are ignored when you run, rather than debug, an application. These
calls are also stripped from an application’s release version, so you can leave any calls
to trace () in an application without affecting runtime performance or file size.

Try these steps to see the trace () method at work:

1. Create a new Flex application with the following code:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">

<mx:Button label="Call Trace" click="trace('Button
clicked')"/>
</mx:Application>
Click Debug or press F11 to debug the application.
Click Call Trace in the application to call trace ().
Switch back to Flex Builder, and look at the Console view.

As shown in Figure 6.5, you should see the tracing message displayed in the Console
View.

156

TABLE 6.1

Debugging Flex Applications

FIGURE 6.5

A tracing message in the Console view

Tracing message in the Console view

Sending tracing messages to flashlog.txt

Messages also can be saved to a text file named £lashlog.txt. The flashlog. txt file is cre-
ated by the debug Flash Player in a particular folder on your system.

Configuring Flash Player with mm.cfg

You configure the use of flashlog. txt with another file named mm. c£g. This file contains
parameters that control what messages are sent to, and saved in, the file. The location of mm. cfg
differs by operating system. Table 6.1 shows the location for each operating system that’s supported
by Flash Player.

Location of mm.cfg

Operating System Location

Macintosh OS X /Library/Application Support/Macromedia
Windows 95/98/ME %HOMEDRIVEY%\%HOMEPATH%
Windows 2000/XP C:\Documents and Settings\username
Windows Vista C:\Users\username

Linux /home/username

To save both error reporting and tracing messages to the f£lashlog. txt file, add these parame-
ters on their own separate lines in mm. cfg:

ErrorReportingEnable=1
TraceOutputFileEnable=1

After these settings have been created, the next time you debug a Flex application or Flash docu-
ment, the flashlog. txt is created automatically. Each time you call trace (), the message is
saved to the file, in addition to being sent to Flex Builder’s Console view.

157

22170 M Flex Fundamentals

TABLE 6.2

Location of flashlog.txt

The flashlog. txt file is placed in a particular location that differs by operating system. Table
6.2 shows the location of £lashlog. txt for each operating system on which Flash Player is sup-
ported.

Location of flashlog.txt

Operating System Location

Macintosh OS X /Users/username/Library/Preferences/Macromedia/Flash Player/Logs/

Windows 95/98/ME/2000/XP C:\Documents and Settings\username\Application Data\Macromedia\

Flash Player\Logs

Windows Vista C:\Users\username\AppData\Roaming\Macromedia\Flash Player\Logs

Linux

/home/username/.macromedia/Flash_Player/Logs/

158

TP Both mm.cfg and £lashlog.txt are simple text files and can be viewed and edited
with any text editor.

Using the Logging API

The Logging API is an advanced architecture that lets you filter logging messages that are generated
by the Flex Framework, and send messages to a logging target of your choice. The Logging API
consists of an ActionScript interface named ILogger, a class that implements ILogger named
LogLogger, a singleton class named Log, and a predefined tracing target class named
TraceTarget. You can extend the API by creating your own versions of ILogger implementa-
tions and tracing targets, but you also can make very good use of the API with just these pre-built
components.

TP ActionScript 3 allows developers to use interfaces to define the required elements of a
class definition. An interface isn’t the same thing as a class. For example, it doesn’t
implement any code in its method definitions, and you can’t create an instance of an interface
directly. Its purpose is to establish a contract that must be fulfilled by any classes that claim to imple-
ment its members.

In the Flex framework, interfaces are always named within an initial uppercase I, followed by a
descriptive name. For example, the interface named ILogger can be described simply as “the
Logger interface.”

Using the Log class

You get started with the Logging API by creating a Logger object using the Log classs static
getLogger () method. You can create custom logger objects that are sensitive to particular cate-
gories of events, and you can automatically include that category information in logging messages.

Debugging Flex Applications _

The syntax for getLogger () is:
private var myLogger:ILogger = Log.getLogger ("myCategory") ;

The category you pass into getLogger () must be a non-blank string. If the category you provide
is registered by an existing class that implements ILogger, you get an instance of that class.
Otherwise, you get an instance of a class named mx . logging . LogLogger that implements
basic logging functions.

The Logging API supports these levels, in ascending order of panic:

ALL
DEBUG
INFO
WARN
ERROR

FATAL

The Log class implements these methods that allow you to determine whether a logging target has
been defined for various logging levels:

B isDebug() :Boolean
B isInfo() :Boolean
B isWarn():Boolean
B isError () :Boolean
B isFatal () :Boolean
Using Logger objects

A'logger class implements the ILogger interface. The interface includes these methods to send
messages to a logging target:

B debug(message:String, ... rest) :void

B error (message:String, ... rest) :void

B fatal (message:String, ... rest):void

B info(message:String, ... rest) :void

B warn (message:String, ... rest) :void

B log(level:int, message:String, ... rest) :void

After you've created a logger object, you send a logging message with one of the above methods.
Most methods create a message with a specific logging level. For example, to send a message with a
level of DEBUG, you call the logger object’s debug () method:

myLogger .debug ("My debug message") ;

159

22170 M Flex Fundamentals

The debugging levels are defined as constants in a class named mx . logging . LogEventLevel.
You also can send logging messages with the logger object’s 1og () method and explicitly pass in
the appropriate level:

myLogger.log (LogEventLevel .DEBUG, "My debug message") ;

TP The use of the LogEventLevel class’ constants to select a logging level is considered
a best practice. As with event names, any typos in the names of the constants result in
compiler errors, as opposed to runtime errors or silent failures that you may encounter when using
simple strings.

Logging levels are used to filter which messages are handled by various logging targets.
Self-logging components

The Logging API can be used to create a self-logging component. For example, the application in
Listing 6.1 is a But ton component that logs each click event to a logging target.

LISTING 6.1

A self-logging button component

<?xml version="1.0" encoding="utf-8"?>
<mx:Button xmlns:mx="http://www.adobe.com/2006/mxml"
creationComplete="init () ">
<mx:Script>
<! [CDATA[
import mx.logging.Log;
import mx.logging.ILogger;
private var myLogger:ILogger = Log.getLogger ("Button Events");
private function init():void {
addEventListener (MouseEvent.CLICK, logEvent) ;
}

private function logEvent (event:MouseEvent) :void {
if (Log.isDebug()) {
myLogger .debug ("LoggingButton " +
event.target.id + " was clicked");

}
11>
</mx:Script>
</mx:Button>

)] the YWEE The code in Listing 6.1 is available in the Web site files in the chapter06 project’s
- src/debug folder as LoggingButton.mxml.

160

Debugging Flex Applications _

The code sample in Listing 6.1 uses the Flex event model to handle component events.
The event model is described in Chapter 7.

Using tracing targets
A tracing target is a class that can receive and process tracing messages. The TraceTarget class is
included in the Flex Framework and is ideally suited to use in Flex applications.

When you use the TraceTarget class, the output of the Logging API behaves just like output
you create with the trace () method. The messages appear in Flex Builder’s Console view and, if
you've configured Flash Player as described above, are saved in flashlog. txt.

The TraceTarget class supports these properties:

B fieldSeparator:String: A string value to separate other values included in a log-
ging message; defaults to a single space character

B includeCategory:Boolean: Indicates whether to include the logging message’ cate-
gory in the logging message

B includeDate:Boolean: Indicates whether to include the current date in the logging
message

B includeLevel:Boolean: Indicates whether to include the logging level in the logging
message

B includeTime:Boolean: Indicates whether to include the current time in the logging
message

B level:int: A logging level that this target will handle; defaults to
LogEventLevel .ALL

You can instantiate TraceTarget with either MXML or ActionScript. Use this syntax to instanti-
ate the class in its simplest form:

<mx :TraceTarget/>

TP The TraceTarget MXML declaration does not require an id property. Unless you
need to call its methods or properties directly, the object can be declared anonymously.

In its default form, TraceTarget becomes a tracing target that handles all logging levels.
However, the tracing messages you see include only the messages themselves and none of the other
available logging data such as date, time, level, and category. To include all that information and
separate the data elements from each other with a | (pipe) character, use this syntax:

<mx:TraceTarget id="myTarget"
includeCategory="true"
includeLevel="true"
includeDate="true"
includeTime="true"
fieldSeparator="|"/>

161

22170 M Flex Fundamentals

Finally, to make a tracing target display messages only for a particular logging level, use this syntax:

<mx:TraceTarget id="myTarget"
includeCategory="true"
includeLevel="true"
includeDate="true"
includeTime="true"
fieldSeparator="|"
level="{LogEventLevel .DEBUG}" />

~, ==~ i Inthe last example, the LogEventLevel class would have to be imported before
h N being referenced in the TraceTarget . level binding expression:

import mx.logging.LogEventLevel;

The resulting trace output generated by the self-logging button component in Listing 6.1 would
look like this:

12/4/2007|12:09:39.256| [DEBUG] | buttonEvents|LoggingButton myLoggingButton was
clicked

The application in Listing 6.2 uses the self-logging button and a TraceTarget object. The
TraceTarget object is configured only to handle messages with a logging level of DEBUG and to
include all available information in each message.

LISTING 6.2

An application with a self-logging component

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical" xmlns:debug="debug.*">
<mx:Script>
<! [CDATA[
import mx.logging.LogEventLevel;
11>
</mx:Script>

<mx:TraceTarget id="myTarget"
includeCategory="true"
includelLevel="true"
includeDate="true"
includeTime="true"
level="{LogEventLevel .DEBUG}"
fieldSeparator="|"/>

<debug:LoggingButton id="myLoggingButton" label="Log Click Event"/>

</mx:Application>

162

Debugging Flex Applications _

oy e, The code in Listing 6.2 is available in the Web site files in the chapter06 project’s sxc
Oplthe Y/EE .
folder as UseLoggingButton .mxml.

The Logging API can help you build applications that keep you informed about their actions dur-
ing a debugging session without having to make constant calls to the trace () method. With
some advanced ActionScript programming, you also can create your own custom logger and trac-
ing target classes.

Using Breakpoints

A breakpoint allows you to suspend application execution at runtime and inspect the application’s
current state. Once in a breakpoint, you can look at variable values, evaluate arbitrary ActionScript
expressions, and take other actions that help you figure out whats happening.

Setting and clearing breakpoints

Breakpoints can be set on any line that includes at least one ActionScript statement. For example,
this code declares a button component but has no ActionScript code:

<mx:Button label="Debug"/>

If you set a breakpoint on the line containing that MXML declaration, the breakpoint is ignored by
the debugger.

If, however, the same MXML declaration includes an event handler that executes some
ActionScript code, it becomes a valid target for a breakpoint:

<mx:Button label="Debug" click="clickHandler()"/>

Because this version of the declaration executes an ActionScript statement, placing a breakpoint on
that line successfully suspends the application when the user clicks the button.

Setting and removing breakpoints in an MXML or
ActionScript editor
You can set or remove a breakpoint in an MXML or ActionScript editor. To do so, perform one of
these actions:

B Place the cursor on the line where you want the breakpoint, and press Ctrl+Shift+B.

B Double-click the line number in the editor.

B As shown in Figure 6.6, right-click the line number in the editor, and select Toggle
Breakpoint.

163

2148 8 Flex Fundamentals

Right-click a line number to see this context menu, and select Toggle Breakpoint.

As shown in Figure 6.7, the breakpoint appears as a small dot to the left of the line number.

FIGURE 6.7

A Breakpoint represented by a small icon next to a line number

Breakpoint indicator

164

Debugging Flex Applications _

Using the Breakpoints view

Flex Builder’s Breakpoints view shows you the application’s current breakpoints and allows you to
add, remove, enable, or disable breakpoints as needed.

The Breakpoints view is displayed in the Flex Debugging perspective. To use the Breakpoints view:

1. Select Window = Perspective = Flex Debugging from the Flex Builder menu.

2. Asshown in Figure 6.8, click the Breakpoints tab in the upper-right corner of the Flex
Builder interface.

FIGURE 6.8

The Breakpoints tab in the Flex Debugging perspective

The Breakpoints view

The Breakpoints view, shown in Figure 6.9, displays all breakpoints for the current project.

165

2148 8 Flex Fundamentals

FIGURE 6.9

The Breakpoints view

Show Breakpoints Supported

by Selected Target

Remove All | Goto File

Remove Skip All

166

The Breakpoints view includes these tools:

B Remove: Removes the currently selected breakpoint
B Remove All: Removes all breakpoints in the current project

B Show Breakpoints: Supported by Selected Target: shows breakpoints only for a selected
debug target

B Go to File for Breakpoint: Opens file for current breakpoint and moves cursor to that posi-
tion

B Skip All Breakpoints: Causes debugging session to ignore breakpoints

Click the appropriate button to use any of the above tools. The Remove All Breakpoints tool
requires you to confirm the operation.

Exporting breakpoints to an external file

The Breakpoints view allows you to export and import breakpoint definitions to external files. A
breakpoints file has a file extension of .bkpt. Follow these steps to export breakpoints:

1. Right-click anywhere in the Breakpoints view, and select Export Breakpoints from the
context menu.
2. In the Export Breakpoints dialog box, shown in Figure 6.10, select the following:
Which breakpoints you want to export
The file to which you want to export breakpoints

The Overwrite existing file without warning checkbox (if you want to overwrite your
existing file)

3. Click Finish to create the breakpoints file.

Debugging Flex Applications _

FIGURE 6.10

The Export Breakpoints dialog box

A breakpoints export file is in XML format. Listing 6.3 shows the contents of a typical breakpoints file.

LISTING 6.3

An exported breakpoints file

<?xml version="1.0" encoding="UTF-8"?>
<breakpoints>
<breakpoint enabled="true" persistant="true"
<resource path="/chapter06/src/applicationl.mxml"
<marker lineNumber="4"
type="com.adobe.flexbuilder.debug.flash.lineBreakpoint.marker">
<attrib name="org.eclipse.debug.core.enabled" value="true"/>
<attrib name="org.eclipse.debug.core.id"
value="com.adobe. flexbuilder.debug"/>
<attrib name="message"
value="Line breakpoint: applicationl.mxml [line:

<attrib
name="com.adobe. flexbuilder.debug.flash.instantiationInfoCount"

registered="true">
type="1"/>

41" />

value="1"/>
</marker>

</breakpoint>
continued

167

22148 8 Flex Fundamentals
LISTING 6.3 (continued)

<breakpoint enabled="true" persistant="true" registered="true">
<resource path="/chapter06/src/application2.mxml" type="1"/>
<marker lineNumber="7"
type="com.adobe.flexbuilder.debug.flash.lineBreakpoint.marker">
<attrib name="org.eclipse.debug.core.enabled" value="true"/>
<attrib name="org.eclipse.debug.core.id"
value="com.adobe. flexbuilder.debug"/>
<attrib name="message"
value="Line breakpoint: application2.mxml [line: 7]"/>
<attrib
name="com.adobe. flexbuilder.debug.flash.instantiationInfoCount"
value="0"/>
<attrib
name="com.adobe. flexbuilder.debug.flash.instantiationOkCount"
value="0"/>
</marker>
</breakpoint>
</breakpoints>

Importing breakpoints from an external breakpoint file
Follow these steps to import an external breakpoints file:

1. Right-click anywhere in the Breakpoints view, and select Import Breakpoints from the
context menu.
2. In the Import Breakpoints dialog box, shown in Figure 6.11, select these options, if
appropriate:
Whether you want to update existing breakpoints
Whether you want to automatically create breakpoint working sets
3. Click Finish to import the breakpoints file.

The breakpoints in the external file are imported and are immediately available in the Breakpoints
view.

168

Debugging Flex Applications _

Importing a breakpoints file

Using breakpoints in a debugging session

After you've set breakpoints, you can use them during a debugging session by executing the code
on which the breakpoints are set.

When an application is running in debug mode and is suspended at a breakpoint, Flex Builder
tries to take system focus. If you are not currently using the Flex Debugging perspective, a dialog
box, shown in Figure 6.12, prompts you to switch to that perspective.

FIGURE 6.12

When a breakpoint has been activated, you’re prompted to open the Flex Debugging perspective with the
Confirm Perspective Switch dialog box.

169

22170 M Flex Fundamentals

FIGURE 6.13

TP The Confirm Perspective Switch dialog box has an option that allows you to remember
the decision to switch to the Flex Debugging perspective when you encounter a break-
point. If you select this option, Flex Builder always switches to this perspective automatically in future
uses of breakpoints. This can be turned on and off by checking an option in the Run/Debug section of
Flex Builder’s Preferences dialog box.

After a breakpoint has been activated, Flex Builder shows you the current code execution position
with the Debug Current Instruction Pointer, shown in Figure 6.13. If you move the cursor over the
pointer icon, you see a pop-up window displaying information about the current line.

The Debug Current Instruction Pointer and current line information

170

Inspecting variables and expressions

When a breakpoint is active during a debugging session, Flex Builder allows you to inspect values
of variables and objects that are in the application’s scope. You can use two views for this purpose:

B The Variables view

B The Expressions view

Using the Variables view

The Variables view displays a tree of declared variables and object properties that are in scope at
the point of the current instruction. Information in the Variables view is available only during a
breakpoint; when you resume application execution, the Variables view no longer displays data.

The Variables view always has a tree item labeled this. The item refers to the application when
the breakpoint is on a line of code in the Application scope, or to the current component or class
when the breakpoint is in that scope.

As shown in Figure 6.14, when you click the expansion icon with the + character next to this, you
see a list of all properties of the application or current object. A tree item representing an object has
an inherited branch that displays properties declared in the current object’s inheritance hierarchy.

Debugging Flex Applications _

- rren-rrr,~ Flex Builder 3 added the inherited branch to separate properties that are declared
VIEYY FEATURE . L
- - == within the current class from those declared in its superclasses.

FIGURE 6.14

The Variables view

TP The Variables tree is recursive; that is, you can click down to any object within the
application, and then click the inherited = $parent item under the button and
return to the Application object.

When you place a breakpoint inside a function, the Variables view displays tree items for any vari-
ables that are declared within the function. For example, the following code declares a variable
named myVar data typed as a Number:

private function myFunction () :void

{
var myVar :Number=1;
} //place breakpoint here

When you stop code execution with a breakpoint on the function’s final line, the resulting
Variables view displays the value of myVar as 1, as shown in Figure 6.15.

171

2148 8 Flex Fundamentals

Displaying a local variable in the Variables view

Alocal variable

Using the Expressions view
In many cases, evaluating an arbitrary ActionScript expression is useful. Here are some cases that
come to mind:

B An expression that's deeply nested in the Variable view and hard to locate
B A compound expression that executes calculations that aren’t pre-declared in the applica-

tion code

The Expressions view is available in the Flex Debugging perspective and lets you evaluate these
expressions easily. As with the Variables view, information in the Expressions view is available only
during a breakpoint; when you resume application execution, the Expressions view no longer dis-
plays data.

To use the Expressions view, first click the Expressions tab in the Flex Debugging perspective’s
upper-right area, shown in Figure 6.16.

FIGURE 6.16

The Expressions tab

Expressions tab

172

Debugging Flex Applications _

Adding an expression
You can add an expression either in the Expressions view or in the MXML or ActionScript editor
that refers to an expression.

To add an expression in the Expressions view, right-click anywhere in the view and select Add
Watch Expression from the context menu. Type the expression into the Add Watch Expression dia-
log box, shown in Figure 6.17.

FIGURE 6.17

Adding a watch expression

To add an expression from within an MXML ActionScript editor, right-click the expression in the
code and select Watch “<variable name>” from the context menu. You should see the expression
added to the Expressions view.

TP You also can evaluate a pre-coded expression during a breakpoint in an MXML or
ActionScript editor by moving the mouse over the expression. A tool tip is displayed
showing the expression’s name and current value.

Controlling application execution with the
Debug view

When a breakpoint is active in a debugging session, Flex Builder’s Debug view lets you step
through, resume, or terminate application execution. The Debug view, shown in Figure 6.18, has
these tools:

B Resume: This resumes code execution. If a breakpoint is encountered prior to allowing
you to interact with the application, you return to Flex Builder. Otherwise, you can
switch back to the application and continue interactions.

173

22170 M Flex Fundamentals

TIP

Suspend: When an application is running, selecting this tool suspends the application
without a predefined breakpoint and allows you to inspect variables and expressions.

Terminate: This terminates the debugging session. The Terminate button in the Console
view is identical in appearance and function.

Disconnect: This disconnects the debugger when debugging remotely.

Step Into: When called with the cursor on a function call, this steps into the function
call.

Step Over: When called with the cursor on a function call, this executes the function and
moves to the next line of code.

Step Return: This completes the current function and stops at the next line of code after
the function has been called.

When you step through code in Flex Builder, code execution pauses on each
ActionScript statement, expression evaluation, and variable declaration. At times you'll

find that you even step into the source code of Flex internal library classes, where available.

FIGURE 6.18

The Debug view

Disconnect
Terminate Step Into
Suspend Step Over

Resume

Step Return

The Debug view tools described above also are available as menu selections and, in most cases,
keyboard shortcuts. For example, to terminate a debugging session, select Run &> Terminate from
the Flex Builder menu or press Ctrl+F2 on Windows or Cmd+F2 on Mac OS X. Figure 6.19 shows
the Run menu as it appears during a debugging session. Notice that each feature’s keyboard short-
cut is noted on the menu.

174

Debugging Flex Applications _

Flex Builder’s Run menu during a debugging session

Profiling Flex Applications

Flex Builder includes tools for profiling Flex applications at runtime, providing valuable informa-
tion about the frequency and duration of method calls, the size and number of object instances in
memory, and overall memory usage.

LIEVY EEATURE The Flex profiling tools are a new feature of Flex Builder 3. They are included only with
L4 rEf 2L 2 Flex Builder 3 Professional license.

The profiling tools are packaged in a new Flex Builder perspective named the Flex Profiling per-
spective. You can profile an application from the Flex Builder tool bar or menu.

Follow these steps to run an application in profiling mode:
1. Close any open browser windows. (If you have a browser window already open, profiling

may not start correctly.)

2. Select Run = Profile from the Flex Builder menu and select the application you want to
profile. You also can click the Profile button on the toolbar.

3. When a profiling connection has been established, you're prompted for profiling options,
as shown in Figure 6.20. Select options and click Resume.

175

2148 8 Flex Fundamentals

Selecting profiling options

4. Once the application has resumed execution in the browser, execute application func-
tions and switch back to Flex Builder to see how the application is performing internally.

As shown in Figure 6.21, the Memory Usage view displays a graph showing overall memory usage.

FIGURE 6.21

The Memory Usage view in the Flex Profiling perspective

As shown in Figure 6.22, the Live Objects view displays statistical data about objects in Flash
Player memory.

176

Debugging Flex Applications _

The Live Objects view in the Flex Profiling perspective

Summary

In this chapter, I described tools that help you debug a Flex application. You learned the following:

B The trace () method lets you send debugging messages to Flex Builder’s Console view
at runtime.

B The flashlog. txt file also receives tracing and error messages when configured with
the mm. cfg file.

B The locations of flashlog. txt and mm.cfg differ between operating systems.

B The Logging API lets you create self-logging components and filter logging messages
based on logging level and category.

B Breakpoints let you suspend application execution so you can inspect variables and
object properties at runtime.

B The Variables view displays pre-declared variables and object property values when the
application is suspended.

B The Expressions view lets you evaluate arbitrary ActionScript expressions at runtime.

B The Debug view lets you step through code and otherwise control application execution
during a debugging session.

177

Working with Events

lex applications are event-driven, which means that with the exception
of the first phases of application startup, every action is the result of
some trigger that causes the action to take place.

Many events are produced by internal functions within the Flex framework
that don't necessarily have anything to do with a user’s interactions with the
application. These are sometimes known as system events. Other events,
known as user events, are designed to inform you of actions taken by the
user. These actions, known as user gestures, consist of key presses or mouse
actions such as moving the mouse or pressing one of its buttons.

Regardless of how an event is generated, you can capture and handle the
event in a number of ways. During event handling, you have access to infor-
mation about the event from a variable known as an event object.

And when you need to share information between an application’s compo-
nents, you can create and dispatch your own custom events to move infor-
mation and data around the application as needed.

This chapter describes the Flex event architecture: how to find out what
events occur and when, what data you can get from them, and how to build
your own event architecture.

" To use the sample code for this chapter, import the

C)r| the WER 4

Oi e y/EE chapter07.zip Flex project archive file from the Web site
files into your Flex Builder workspace.

179

IN THIS CHAPTER

The Flex event architecture

Handling events with MXML

Handling events with
addEventListener ()

Declaring and dispatching
custom events

Creating and using custom
event classes

2148 8 Flex Fundamentals

FIGURE 7.1

The Flex Event Architecture

The ActionScript objects you use to build Flex applications communicate with each other and
share data by dispatching events. For example, consider a But ton control that’s declared with
MXML:

<mx:Button label="Click Me"/>

As an instance of the mx . controls.Button class, this object supports many properties and
methods that we know as the members of the Button class. The Button is capable of generating
many events. Each of these events also is considered a member of the class.

To find out which events are supported by a particular class, look at the API documentation for that
class. To get to the APl documentation quickly in Flex Builder, place the cursor anywhere in the
MXML or ActionScript component or class declaration and press F1 on Windows or Cmd + ? on Mac
OS X. Then click the links for the appropriate class documentation that appear in the Help view.

The class’s member types are listed at the top of the API documentation. Any class that is capable
of generating events displays an Events link, as shown in Figure 7.1.

The Events link in the APl documentation for the Button class

180

The Events link

When you click the Events link, the Help view navigates to the Events section of the documenta-
tion. As shown in Figure 7.2, you may initially see only a short list of events that are supported by
the class. These are the events that are defined locally in the current class. For example, the Button
class has three events that are defined locally: but tonDown, change, and dataChange. You
also see a Show Inherited Events link that, when clicked, expands the list to include events that are
inherited from the current class’s inheritance hierarchy.

Working with Events

A list of events that are defined locally in the Button class

Click to show inherited events
Locally defined events

When you click Show Inherited Events, you see all events that are available to the current
class. For example, the Button classs most commonly used event is named click. This event is
defined in another class named InteractiveObject, one of the Button class’s superclasses.
This information is available in the documentation, as shown in Figure 7.3.

FIGURE 7.3

The Button’s c1ick event is defined in a superclass named InteractiveObject.

The click event The event is defined
in this class

181

22170 M Flex Fundamentals

182

HNOUTE

Handling Events in MXML

You can handle events in two different ways in Flex applications:

B With XML attribute-based event handlers in MXML object declarations
B With the addEventListener () method

The first event handling strategy is designed for ActionScript objects that are declared in MXML;
the other works for any object, whether declared in MXML or ActionScript.

Creating event handlers in MXML

An MXML event handler uses an XML attribute where the attribute’s name matches the name of the
event being handled. For example, the Button classs c1ick event uses an XML attribute that’s
also named click. The value of the XML attribute is an ActionScript statement that causes some
action to take place.

Executing a single ActionScript statement in an event handler

If you need to execute a single ActionScript statement for any particular event, you can place the
ActionScript code directly in the MXML-based event handler. In the following code, when the user
clicks the Button component, the click event is handled and the ActionScript statement in the
click XML attribute is executed:

<mx:Button label="Click Me"
click="messagelLabel.text='You clicked the button'"/>
<mx:Label id="messageLabel"/>

TP Notice in the above code that the literal string You clicked the button is wrapped
in single quotes. This is because the c1ick XML attribute’s value (the ActionScript
statement) is wrapped in double quotes. In ActionScript, single and double quotes are interchange-
able as long as you match them up correctly.

In browser-based JavaScript, the Dynamic HTML (DHTML) equivalent of this event
architecture uses event names starting with the word “on” and finishing with the actual
event. For example, in JavaScript, you'd use this code to handle an onclick event:

<input type="button" onClick="doSomething()"/>

The result is the same as in MXML: The event handler consists of a markup-based attribute that calls
scripting code to be executed upon the event being dispatched. Only the event naming pattern is
different.

A simple event handling application
Follow these steps to create a simple application that uses an MXML-based event handler:

1. Create a new application with the layout property set to vertical.

2. Add aLabel component to the application with an 1d property set to myLabel.

Working with Events

3. Add aButton component to the application with a 1abel property set to Click Me
and a click event handler with ActionScript code that changes the Label control’s
text property to a value of You Clicked!.

The completed application’s code is shown in Listing 7.1.

4. Run the application, and click the button to see the Label controls text property change.

LISTING 7.1

An application with a simple MXML-based event handler

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">
<mx:Label id="myLabel"/>
<mx:Button label="Click Me" click="myLabel.text='You clicked!'"/>
</mx:Application>

)] the YWEE The code in Listing 7.1 is available in the Web site files in the chapter07 project’s src
- folder as SimpleEvent .mxml.

Handling events with ActionScript functions

When you need to execute more than a single ActionScript statement in response to an event, you
should create a custom function. The function allows you to add as much code as you need. The
event handler function can be very simple:

private function clickHandler () :void

{

add ActionScript code here

}

Now all the code you want to call is wrapped inside c1ickHandler (), so to execute the code,
call the function from the object’s event handler:

<mx:Button label="Click Me" click="clickHandler()"/>

TP You can name your event handler functions anything you like. The convention of naming
the function with word “handler” at the end isn’t a technical requirement, but it helps
you identify the function’s purpose.

If you have more than a single object whose events you need to handle, name the event handler func-
tions to identify the event that’s being handled and the object that’s dispatching the event. For exam-
ple, if you have two buttons with functions to save or cancel an operation, you might name the event
handler functions saveClickHandler () and cancelClickHandler ().To call the functions
you'd then use this code:

<mx:Button label="Save" click="saveClickHandler()"/>
<mx:Button label="Cancel" click="cancelClickHandler()"/>

183

22170 M Flex Fundamentals

Using an event handler function

Follow these steps to create an application that uses an event handler function:

Create a new application with the layout property set to vertical.
Add a Label component to the application with an id property set to myLabel.

Add an <mx: Script> tag set at the top of the application.

Ll A

Within the <mx : Script> block, add a private function named clickHandler () that
changes the Label controls text property to a value of You Clicked!.

o

Add a Button component to the application with a 1abel property set to Click Me.
In the Button component’s click event handler, call the c1ickHandler () function.
The completed application’s code is shown in Listing 7.2.

7. Run the application, and click the button to see the Label controls text property
change.

LISTING 7.2

Using an event handler function

<?xml version="1.0" encoding="utf-8"7?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">
<mx:Script>
<! [CDATA[
private function clickHandler () :void
{
myLabel.text="You clicked the button";
}
11>
</mx:Script>
<mx:Label id="myLabel"/>
<mx:Button label="Click Me" click="clickHandler()"/>
</mx:Application>

" cr, The code in Listing 7.2 is available in the Web site files in the chapter07 project’s src
Orlihe Y/EE : :
- folder as EventWithFunction.mxml.
TP Event handler functions typically return void, meaning that their purpose is to take
some action but not return any value. When using an MXML-based event handler,
this architecture is optional. As described below, when setting up an event handler with the
addEventListener () function, the return data type of void is required.

184

Working with Events

Working with event objects

Every event that’s dispatched in the Flex framework creates a variable known as an event object.
The purpose of an event object is to share information about the nature of the event, including the
event’s name, the object that dispatched the event, the context of the event, and detailed informa-
tion that might be useful in understanding what happened.

The event object’s variable name

To handle an event and get information from the event object, you typically create an event handler
function that’s designed to receive the event object as an argument. When the event occurs, you
then call the event handler function and pass the event object as its argument. For the duration of
an MXML-based event handler, the name of the event object is always the same: event (always
spelled in lowercase). So, assuming you've created a clickHandler () function that's designed

to receive an event argument, the syntax of the MXML object declaration becomes this:

<mx:Button label="Click Me" click="clickHandler (event)"/>

Using event object arguments

The event object is always an instance of an ActionScript class named flash.events.Event
or a subclass of this Event class. When you create an event handler function to receive an event
object, you can always data type the argument as the Event class:

private function clickHandler (event:Event) :void

{
myLabel.text="You clicked the button";
}

Tip

All event objects can be handled as the Event class as they're passed into an event handler func-
tion, even if their true type is a subclass of the Event class. This convenient shortcut is made pos-
sible by ActionScript’s support for polymorphism, where objects can be cast as and handled as
their superclass types. As long as you don’t need to refer to event object properties that are only
implemented in the subclass, such as MouseEvent, typing the event object as Event doesn't
have any negative effect on the application’s performance or functionality.

Using event object properties

As shown in the UML diagram in Figure 7.4, the Event class supports properties and methods
that let you get information about the event and in some cases control its behavior. (The diagram
shows only certain key properties and methods of the Event class. See the class’s API documenta-
tion for a complete list.)

185

22170 M Flex Fundamentals

FIGURE 7 .4

UML diagram of the Event class

flash.events.Event

+type : String

+target : Object

+ currentTarget : Object
+ bubbles : Boolean

+ cancelable : Boolean

+ clone() : Object
+ stopPropagation()

186

These are the key properties of the Event class:

B type:String: The name of the event that was dispatched as a String. For example,
when the click event is handled, the value of the event object’s type property is “click.”

B target:Object: A reference to the object that dispatched the event. Because the
target property points to the object, any of that object’s properties are then available
with extended dot syntax. For example, a Button component’s id property would be
available as event . target.id, and its label as event.target.label.

L IOSTE Other key properties of the Event class are described below in the section on event
\ - bubbling.

When you pass an event object to an event handler function as an argument, you have access to all
the event object’s properties for the duration of the function. To capture information about the
event, use the properties that are of interest:

private function clickHandler (event:Event) :void

{
myLabel.text="You clicked the button labeled " +
event.target.label;

TP When writing code that refers to event . target, you might notice that properties like
label that aren’t available on all ActionScript classes aren’t suggested by Flex Builder
code completion tools. This is because the expression event . target is known to the Flex compiler
and to Flex Builder as an instance of the ActionScript Object class, and only properties that are
implemented in that class will be suggested for auto-completion.

If you know that event . target refers to a Button in the context of a particular event handler
function, you can safely refer to the Button class’s properties (such as 1abel). The code will com-
pile and execute correctly, even if Flex Builder’s code completion isn’t able to help you write it.

Working with Events

Using event object properties in an application
Follow these steps to create an application that uses event object properties:

Create a new application with the layout property set to vertical.
Add a Label component to the application with an id property set to myLabel.

Add an <mx: Script> tag set at the top of the application.

Wb =

Within the <mx : Script> block, add a private function named clickHandler () that
receives an argument named event, data typed as the Event class.

5. Add this code to clickHandler () to display the event type and the id of the event
target:

myLabel.text="The " + event.type +
" event was dispatched by " + event.target.id;

Add a Button component to the application with a 1abel property set to Click Me.

In the Button component’s click event handler, call the clickHandler () function
and pass the event object as a function argument.

The completed application’s code is shown in Listing 7.3.

8. Run the application, and click the button to see the Label controls text property change.

LISTING 7.3

Using event object properties

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">

<mx:Script>
<! [CDATA[
private function clickHandler (event:Event) :void
{
myLabel.text="The " + event.type +
" event was dispatched by " + event.target.id;
}
11>

</mx:Script>

<mx:Label id="myLabel"/>
<mx:Button label="Click Me" click="clickHandler (event)"/>

</mx:Application>

The code in Listing 7.3 is available in the Web site files in the chapter07 project’s src
folder as EventObjectProperties.mxml.

Oyl the YEE

187

22170 M Flex Fundamentals

Event class inheritance

Event objects are created as specific class types depending on the nature of the event thats dis-
patched. For example, events having to do with mouse actions are typically instances of a class
name flash.events.MouseEvent. As shown in the UML diagram in Figure 7.5,
MouseEvent, ResultEvent, TextEvent, and dozens of other classes in the Flash and
Flex class libraries are directly extended from the standard Event class.

FIGURE 7.5

All event classes are directly extended from the Event superclass

flash.events.Event

VAN

[[]
MouseEvent ResultEvent TextEvent

When an event class such as MouseEvent extends Event, it inherits that superclass’s basic
properties such as type and target. The subclass typically defines additional properties that are
useful for that particular event. The MouseEvent class adds properties to track button state,
mouse cursor position, and other useful information. Some of these properties include:

B altKey:Boolean: Setto true if the Alt key is held down when the event is dis-
patched; otherwise false.

B ctrlKey:Boolean: Set to true if the Ctrl key is held down when the event is dis-
patched; otherwise false.

B shiftKey:Boolean: Set to true if the Shift key is held down when the event is dis-
patched; otherwise false.

B commandKey:Boolean: Set to true if the command key on the Mac is held down
when the event is dispatched; otherwise false. Always set to false on Windows.

B localX:int: The number of pixels from the left border where the user clicked an
object dispatching the event.

B localY:int: The number of pixels from the top border where the user clicked an
object dispatching the event.

B stageX:int: The number of pixels from the left border where the user clicked the stage
(Flash Player region).

B stageY:int: The number of pixels from the top border where the user clicked the stage
(Flash Player region).

188

Working with Events

B buttonDown:Boolean: Set to true if the primary mouse button is pressed when the
event is dispatched; otherwise false.

Which event class will | get?
To find out what specific class will be dispatched for a particular event, you can use one of these

strategies:
B Debug the application, and inspect the event object in the Variables view.
B Read the API documentation for the object whose event you're handling.

B Place the mouse cursor over the event object where its passed into the event handler
function in Flex Builder 3 and get a tool tip describing the class name.

Debugging the event object
Follow these steps to debug the application and inspect the event object:

1. Place a breakpoint in the event handler function on a line of ActionScript code or, if the
function is empty, on the line with the function’s closing brace:

private function clickHandler (event:MouseEvent) :void
{
} //place breakpoint here

Debug the application.
Trigger the event that calls the event handler function (for example, by clicking a button).
When the breakpoint suspends the application, inspect the function’s event argument in

the Flex Debugging perspective’s Variables view.

As shown in Figure 7.6, the Variables view displays the event object’s type and all its current prop-
erty values.

Reading the documentation

Documentation for every event in the Flex Framework includes the type of the event object that
will be dispatched when the event occurs. For example, the documentation for the Button class’s
click event shows that the event object is an instance of flash.events.MouseEvent. To find
this information:

Place the cursor in the object declaration in Source view.

Press F1 to display a list of Help subjects.

Click the link for the class or component you're using.

In the API documentation, click the Events link.

gk W=

Locate the event you're interested in, and click its link.

As shown in Figure 7.7, you should see the specific type of the class that will be dispatched for
that event.

189

2148 8 Flex Fundamentals

The event object’s type displayed in the Variables view

FIGURE 7.7

Documentation for the click event

The type of the click event’s event object

The event object’s properties

190

Working with Events

Handling specific event objects

To capture information that’s available only in one of the extended event classes, set an event
handler function’s event argument to that class. For example, this event handler function expects
an instance of MouseEvent:

private function clickHandler (event:MouseEvent) :void

{
myLabel.text="You clicked; was the alt key pressed? " +
event.altKey;

}

The altKey property is available only because the event argument is declared as the subclass that
supports that property. If the event argument instead is declared as the Event superclass, the
altKey property isn't recognized by the compiler and a compiler error results.

The complete application shown in Listing 7.4 is an application that captures a MouseEvent and
displays the status of the keys on the keyboard at the moment the event is dispatched.

LISTING 7.4

An application that handles a MouseEvent object

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">

<mx:Script>
<! [CDATA[
private function clickHandler (event:MouseEvent) :void
{
myLabel.text="The " + event.type +
" event was dispatched by " + event.target.id;

altLabel.text="Alt key pressed: " + event.altKey;
ctrlLabel.text="Ctrl key pressed: " + event.ctrlKey;
shiftLabel.text="Shift key pressed: " + event.shiftKey;

}
11>
</mx:Script>

<mx:Label id="myLabel"/>
<mx:Label id="altLabel"/>
<mx:Label id="ctrlLabel"/>
<mx:Label id="shiftLabel"/>

<mx:Button label="Click Me" click="clickHandler (event)"/>

</mx:Application>

191

2148 8 Flex Fundamentals

Event Class Inheritance and Polymorphism

he fact that you can define an event handler function to expect either the specific event class

such as MouseEvent, or its superclass such as Event, is a reflection of the support for polymor-
phism in ActionScript’s implementation of object-oriented programming. The concept of polymor-
phism is described in detail in Chapter 1. Merriam-Webster defines polymorphism as “the quality or
state of existing in or assuming different forms.” In this case, the different forms the event object
takes are its native type (MouseEvent) or its superclass type (Event).

One reason some developers set an event object to the superclass is because they don't know the
event’s native class type and don’t want to take time to look it up. It sounds like just being lazy, but
in many cases the specific properties of the native type just aren’t needed in that situation, and using
the Event superclass makes for faster programming.

Developers also can use the superclass type to make a function reusable by events that dispatch dif-
ferent native types, again where they don’t need the specific properties that are supported by the
native types. This is the true purpose of implementing polymorphism in object-oriented languages:
to support code that’s reusable in many different circumstances.

The code in Listing 7.4 is available in the Web site files in the chapter07 project’s src

O] the YWEB
o1l VEE folder as MouseEventObjectProperties .mxml.

Handling Events with addEventListener()

You also can set up event handlers with a method named addEventListener (). This method
is defined in an ActionScript class named EventDispatcher, which appears in the inheritance
hierarchy of every ActionScript class that’s able to dispatch events. Stated more briefly, you can call
addEventListener () from any object that knows how to dispatch an event.

Setting up an event listener

The following MXML code declares a But ton component with a click event handler:

<mx:Button id="myButton" label="Click Me"
click="clickHandler (event)"/>

The following code calls addEventListener () instead of the MXML-based event handler:
myButton.addEventListener ("click", clickHandler) ;

The first argument you pass to addEventListener () is the name of the event you're listening
for. The second argument is the name of the function you want to call when the event is dispatched.

192

Working with Events

A LUTION Notice that you pass the name of the function as the second argument, not the com-
bt plete code required to call the function. You’re designating which function to call,
rather than calling the function immediately.

The object from which you call addEventListener () always calls the listener function with the
same signature, passing a single argument data typed as the appropriate event class for that event.
Event listener functions designed to be used with addEventListener () always have the same
signature:

[access modifier] function [functionName] (
event: [event class data type]) :void

{}
So a function designed to receive an instance of MouseEvent always looks like this:

private function clickHandler (event:MouseEvent) :void
{
execute event handling code

}

You typically call addEventListener () during application startup, where it can replace an
MXML-based event handler definition. For example, you might set up your event listeners in a
function named initApp () that’s called upon the Application component’s
creationComplete event. The application in Listing 7.5 uses this strategy. Notice the following;

B The initApp () function returns void.

B The initApp () function is called during application startup upon the Application’s
creationComplete event.

B The MXML-based declaration of the But ton component doesn't have a click event
handler; this would be redundant and in fact would result in the event handler function
being called twice.

LISTING 7.5

An application that uses addEventListener()

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical"
creationComplete="initApp () ">
<mx:Script>
<! [CDATA[
private function initApp() :void
{
myButton.addEventListener ("click", clickHandler) ;
}

private function clickHandler (event:MouseEvent) :void

continued

193

22170 M Flex Fundamentals
LISTING 7.5 (continued)

{
myLabel.text="The " + event.type +
" event was dispatched by " + event.target.id;
}
11>

</mx:Script>
<mx:Button id="myButton" label="Click Me"/>

</mx:Application>

O1 |t YYEB

194

The code in Listing 7.5 is available in the Web site files in the chapter07 project’s src
folder as UsingAddEventListener .mxml.

Using event name constants

Each event class in the Flex framework implements constants that have values equal to the names
of events for which the event class is used. For example, the MouseEvent class has many con-
stants that reflect the names of events for which this event class is dispatched (shown with their
equivalent values):

CLICK = “click”

MOUSE_DOWN = “mouseDown”

MOUSE_UP = “mouseUp”

MOUSE_MOVE = “mouseMove”

RIGHT_CLICK = “rightClick”

MOUSE_WHEEL = “mouseWheel”

There are more, but you get the picture. You use these constants in calls to addEventListener ()
instead of phrasing the event name as a literal string. For example, instead of this code:

myButton.addEventListener ("click", clickHandler) ;
you can use this:
myButton.addEventListener (MouseEvent .CLICK, clickHandler) ;

When you use event name constants, you reduce the risk of typing errors in your code. When you
use literal strings to indicate which event you want to listen for, it’s easy to misspell the name. For

example, this code would result in an event listener that will never be triggered, because no event

name is clik:

myButton.addEventListener ("clik", clickHandler) ;

Working with Events

Because the event name is phrased as a literal string, the compiler has no way of knowing that it’s
misspelled. Of course, you can make the same mistake with an event name constant:

myButton.addEventListener (MouseEvent.CLIK, clickHandler) ;

But in this case, the compiler would complain, as shown in Figure 7.8, telling you that there is no
such property or constant as CLIK in the MouseEvent class, and you’d be able to find and fix the
error at a much earlier stage of development.

FIGURE 7.8

A compiler error resulting from a misspelled event name constant

Another advantage of using event name constants comes from Flex Builder’s code completion tool.
As shown in Figure 7.9, when you type the name of the MouseEvent class and add a period, you
see a list of available constants that are members of the class. You can then select the appropriate
event name and ensure that it’s typed correctly from the beginning.

FIGURE 7.9

Flex Builder’s code completion tool with event name constants

Flex Builder's code completion with event name constants

195

22170 M Flex Fundamentals

196

Removing an event listener

You can remove an event listener that was set up with addEventListener () with the
removeEventListener () method. This method also is defined in the EventDispatcher
class and can be called from any object that dispatches events.

The basic syntax for removeEventListener () is the same as addEventListener ():
myButton.removeEventListener (MouseEvent .CLICK, clickHandler) ;

The addEventListener () and removeEventListener () methods allow you to add and
remove event listeners as needed whenever an application’s requirements change logically at runtime.

Using Event Bubbling

Event bubbling refers to the process of dispatching events through multiple levels of inheritance.
Consider this application code, which defines a Button control inside a VBox container:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">
<mx:VBox id="myContainer">
<mx:Button label="Click me" id="myButton"/>
</mx:VBox>
</mx:Application>

When the Button component is clicked, it dispatches a c1ick event. All event objects have a
Boolean property named bubbles. When this property’s value is set to true, as it is by default
with the MouseEvent class, the event first is dispatched by the object that was clicked, then by its
container, and so on up the display tree until its dispatched by the application itself.

Each time the event bubbles up another containership level, the event object is cloned and the new
version contains all the original properties and the stored values of the original. But one property is
changed: Each new copy of the event object has a currentTarget property that refers to the
object that’s currently dispatching the event. In the meantime, each event object’s target property
continues to reference the object that originally dispatched the event.

The application in Listing 7.6 uses a two-level containership hierarchy: a Button inside a VBox
inside an Application. All objects handle the c1ick event and dispatch the event object to a
clickHandler () function, where the target and currentTarget are logged.

Working with Events

LISTING 7.6

An application that tracks simple event bubbling

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical"
verticalAlign="middle" click="clickHandler (event) ">

<mx:Script>
<! [CDATA[
private function clickHandler (event:Event) :void
{
eventLog.text += "target=" + event.target.id +
", currentTarget=" + event.currentTarget.id + "\n\n";

}
11>

</mx:Script>

<mx:Label text="Application"/>

<mx:VBox id="myContainer" height="50%" width="50%"
horizontalAlign="center" verticalAlign="middle"
backgroundColor="#eeeceee"
click="clickHandler (event) ">
<mx:Label text="myContainer"/>
<mx:Button label="myButton" id="myButton"

click="clickHandler (event)"/>
</mx:VBox>
<mx:TextArea id="eventLog" height="110" width="50%"/>
</mx:Application>

)] the YWEE The code in Listing 7.6 is available in the Web site files in the chapter07 project’s src
- folder as EventBubblingSimple .mxml.

As shown in Figure 7.10, each time the event is handled, the target property always points to
the Button component, while the currentTarget changes with each new call to the event
handler function.

TP Event bubbling works only if the parent container declares the event you want to han-
dle. For example, if you try to handle a change event from a ComboBox in a parent
VBox in MXML, an error occurs because the compiler says there is no change event to listen for. To
overcome this limitation, create your own custom component based on the container you want to
use, and explicitly declare the selected event as a member of the new version of the container.

197

22170 M Flex Fundamentals

A simple event bubbling demonstration

Using Custom Events

You use custom events to communicate information and data between application components. As
described previously, Flex applications are built with a modular architecture, with functionality
divided between multiple components. When a component needs to share information with the
rest of the application, it does so by dispatching an event.

The following MXML component displays three choices of Small, Medium, and Large in a group of
RadioButton components:

<?xml version="1.0" encoding="utf-8"?>

<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:RadioButtonGroup id="sizeGroup"/>
<mx:RadioButton value="Small" label="Small"

groupName="sizeGroup" />
<mx:RadioButton value="Medium" label="Medium"
groupName="sizeGroup" />
<mx:RadioButton value="Large" label="Large"
groupName="sizeGroup" />
</mx:VBox>

RIS The above code is available from the Web site files’ chapter07 project as
Ol the YEE :
components/SizeSelectorStart .mxml.

When the user clicks a radio button to make a selection, the component can share the following
information with the rest of the application:

B The user selected something.

B The user selected a particular bit of data.

198

Working with Events

In order to share the information, you'll need to follow these steps within the component:

1. Define a custom event that the MXML component is capable of dispatching.
2. Create an event object at runtime.

3. Populate the event object with data.
4.

Dispatch the event object.
In the application that instantiates the custom component, you'll follow these steps:

1. Create an event handler using either an MXML-based event attribute or the
addEventListener () method.

2. Create a custom event handler function that extracts the data from the dispatched event
object.

Declaring custom events

You declare custom events in a component with the <mx : Metadata> tag and a metadata tag
named [Event]. Start by adding the <mx : Metadata> tag set as a child of the component root:

<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Metadata>
</mx:Metadata>
remainder of component code
</mx:VBox>

Within the <mx :Metadata> tag set, add one [Event] metadata tag for each custom event you
want to declare. The syntax of the [Event] metadata tag is:

[Event (name="[custom event name]", type="[event object typel")]
The [Event] metadata tag has these two attributes:

B name: A string that identifies your custom event, and can be of any value. Just as the Flex
framework uses event names like c1ick, change, and mouseMove, you can select any
meaningful string as long as it doesn’t contain any spaces or special characters. This value
is required.

B type: The name of an event class that will be instantiated and dispatched to an event lis-
tener. The default is the standard flash.events.Event class.

If you only need to dispatch an event that informs the event listener that the event occurred, and
don’t need to share specific data, you can use a shorthand form of the [Event] tag that omits the
type attribute:

[Event (name="sizeSelected")]

199

22170 M Flex Fundamentals

If you need to share specific data with the event listener and use a special event class that is designed
to contain that data, include the type property and refer to the fully qualified event class name:

[Event (name="sizeSelected", type="flash.events.TextEvent")]

TP The TextEvent class is already part of the Flash class library and has a text property
you can use to package and share a simple string value when you dispatch a custom
event. If you only need to share a string, it doesn’t make sense to create a custom event class —
you'd just be reinventing a wheel.

Adding an event declaration to a custom component and testing it
Follow these steps to add an event declaration to a custom MXML component:

1. Open components/SizeSelector.mxml from the chapter07 project from the
Web site.

2. Place the cursor after the starting <mx : VBox> tag.

3. Addan <mx:Metadata> tag set.

4. Within the <mx :Metadata> tag set, declare a custom event named sizeSelected
that dispatches an event object typed as £lash.events.TextEvent. The code to
declare the event looks like this:

<mx :Metadata>
[Event (name="sizeSelected", type="flash.events.Event")]
</mx:Metadata>

5. Save the file.

6. Create a new MXML application named CustomEventApp .mxml in the chapter07
project.

7. Declare an instance of the SizeSelectorStart component with MXML:
<components:SizeSelectorStart/>
8. Place the cursor after the SizeSelector tag name and before the ending /> characters.
9. Press the spacebar to see a list of available class members.
10. Type size to filter the list.

As shown in Figure 7.11, you should see that the list displays the new sizeSelected
event as a member of the component.

11. Remove the partial event attribute size (you learn how to use this attribute in the next
section) so you have only the tag declaration with no event listener.

12. Save and run the application.

200

Working with Events

FIGURE 7.11

A custom event shown in Flex Builder’s code completion tool

As shown in Figure 7.12, the application displays the component but isn't yet handling the custom
event.

FIGURE 7.12

The application with the custom component

Dispatching custom events

To dispatch a custom event, follow these steps:

1. Create an instance of the event class you declared as the event type.

2. When you instantiate the event object, set its type property as the name of the custom
event. All event classes in the Flex framework have a constructor method that allows you
to set the event name as you instantiate the object:

var myEvent:Event = new Event (" [my event name]");

201

2148 8 Flex Fundamentals

3. Populate the event object with data, if applicable.

4. Call the component’s dispatchEvent () method, and pass the event object as the only
argument:

dispatchEvent (myEvent) ;
The complete code to dispatch a TextEvent class for an event named sizeChanged looks like this:

var e:TextEvent = new TextEvent ("sizeChanged") ;
e.text = "some value I want to share";
dispatchEvent (e) ;

Follow these steps to dispatch an event from the custom component:

1. Re-open components/SizeSelector.mxml from the chapter07 project.
2. Add an <mx:Script> tag set after the <mx :Metadata> tag set.

3. Within the script section, create a private function name clickHandler () that receives
an event argument typed as Event and returns void.

4. Add this code to the event handler function:

var e:TextEvent = new TextEvent ("sizeSelected");
e.text = sizeGroup.selection.value as String;
dispatchEvent (e) ;

5. Add an event handler named itemClick to the RadioButtonGroup component, and
call the new function, passing the event object:

<mx :RadioButtonGroup id="sizeGroup"
itemClick="clickHandler (event)"/>

6. Save the file.

The completed component code is shown in Listing 7.7.

LISTING 7.7

A completed component that dispatches a custom event with data

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Metadata>
[Event (name="sizeSelected", type="flash.events.Event")]
</mx:Metadata>
<mx:Script>
<! [CDATA[
private function clickHandler (event:Event) :void
{
var e:TextEvent = new TextEvent ("sizeSelected");
e.text = sizeGroup.selection.value as String;
dispatchEvent (e) ;

202

Working with Events

11>
</mx:Script>
<mx:RadioButtonGroup id="sizeGroup" itemClick="clickHandler (event)"/>
<mx:RadioButton value="Small" label="Small" groupName="sizeGroup"/>
<mx:RadioButton value="Medium" label="Medium" groupName="sizeGroup"/>
<mx:RadioButton value="Large" label="Large" groupName="sizeGroup"/>
</mx:VBox>

The code in Listing 7.7 is available in the chapter07 project from the Web site as
components/SizeSelectorComplete.mxml.

QP\;J the YWEE

TP The RadioButtonGroup component’s selection.value property must be explic-
itly cast as a String, because the API declares it as an Object and the String type
is expected by the TextEvent class’s text property.

Handling custom events
Event handling with custom events looks just like handling events that are predefined by classes in
the Flex framework. You can handle a custom event in these two ways:

B With an MXML-based event attribute that executes explicit ActionScript code

B With the addEventListener () method

Handling a custom event with MXML

To handle an event with an MXML declaration, add an XML attribute named for the event to the
MXML declaration of the object that will dispatch the event. When the event is dispatched, call a
custom event handler function and pass the event object as an argument:

<components:SizeSelectorComplete
sizeSelected="sizeSelectedHandler (event) " />

Create a custom event handler function that expects the appropriate event class as its event argument:
private function sizeSelectedHandler (event:TextEvent) :void

{

process event data here

}

When the event occurs, the event handler function is executed and the data can then be appropri-
ately handled.

Follow these steps to handle a custom event with an MXML event handler:

1. Open CustomEventApp .mxml from the chapter07 project.
2. Add a Label component at the end of the application with an id of sizeMessage.

3. Addan <mx:Script> tag set to the application.

203

22170 M Flex Fundamentals

6.

Create a private function named sizeSelectedHandler () that receives an event
argument typed as TextEvent and returns void.

Within the event handler function, set the text property of the sizeMessage object to
the text property of the event object. The function should now look like this:

private function sizeSelectedHandler (event:TextEvent) :void

{

sizeMessage.text = "You selected " + event.text;

}

Save and run the application, and click a radio button.

As shown in Figure 7.13, you should see that the selected radio button’s value is displayed in the
application.

FIGURE 7.13

The completed application handling a custom event

204

o

The completed application is available in the Web site files as
CustomEventAppComplete.mxml in the chapter07 project.

Using Custom Event Classes

Custom event classes can be used when you need to share complex data with the application or
other components. For example, a data entry form component might need to share more than a
single string value when the user clicks the form’s button to indicate that data entry is complete.

An ActionScript class that’s designed to be used as an event object has these requirements:

The custom event class must be extended from flash.events.Event.

The custom event class’s constructor method should call the Event class’s constructor
method and pass the name of the event using a virtual method named super ().

Data elements that are wrapped inside the event class are declared as public properties.

Working with Events

W If the event class is designed to bubble upward through the container hierarchy, two addi-
tional requirements must be met:

The custom event class’s bubbles property must be set to true.

The custom event class must declare a clone () method that overrides the version
declared in the superclass Event.

Creating the ActionScript class

Custom event classes are designed as ActionScript classes that extend the Event class. You can place
the custom event class in any folder within a project source root; typically they’re created in a folder
simply named events.

Using the New ActionScript Class wizard
Follow these steps to create a custom event class that holds data for a Login form:

1. In the chapter07 project’s source root, right-click the events subfolder and select
New &> ActionScript class.

2. Inthe New ActionScript Class wizard, shown in Figure 7.14, enter LoginEvent as the
Name of the new class.

FIGURE 7.14

The New ActionScript Class wizard

205

22170 M Flex Fundamentals

Click Browse next to the Superclass text box.

In the Open Type dialog box, shown in Figure 7.15, type Event to browse to the
flash.events.Event class.

FIGURE 7.15

The Open Type dialog box

5. Click OK to select the Event class.
6. Select the Generate constructor from superclass option.

7. Click Finish to create the LoginEvent class.
The generated class code should now look like this:

package events
{
import flash.events.Event;
public class LoginEvent extends Event
{
public function LoginEvent (type:String,
bubbles:Boolean=false, cancelable:Boolean=false)
{
super (type, bubbles, cancelable);

206

Working with Events

TP Notice that the call to the super () method passes the type (the name of the event)
and the bubbles and cancelable properties. The last two properties are marked as
optional, by setting default values of £alse. This means that when you create an instance of the
LoginEvent class, you only need to pass the name of the event if you don’t need the bubbles or
cancelable properties set to true:

var myEvent:LoginEvent = new LoginEvent ("myEventName") ;

Declaring public properties

Each data value you want to wrap into the custom event class should be declared as a public
property. For example, a data value for the user’s password in a login data entry form would be
declared as:

public var password:String;
Follow these steps to add user and password data elements to the custom event class:

1. In the generated LoginEvent. as file, place the cursor inside the class declaration.

2. Declare two public properties named username and password, both data typed as
String:

public var username:String;
public var password:String;

Declaring event name constants

If you know the name of certain custom events for which the custom event class is designed, you
can declare static event name constants that serve the same purpose of such constants as
MouseEvent . CLICK; they help you accurately code the rest of the application.

For example, if the LoginEvent class will be used for a custom event named login, you would
declare the event name constant with:

public static const LOGIN:String="login";

When you listen for the event using addEventListener (), you can use the constant with
this code:

myComponent .addEventListener (LoginEvent .LOGIN, loginHandler) ;

The ActionScript class in Listing 7.8 declares custom properties and event name constants.

207

22170 M Flex Fundamentals

The custom event class with properties and event name constants

package events
{
import flash.events.Event;
public class LoginEvent extends Event
{
public var username:String;
public var password:String;
public static const LOGIN:String="login";
public function LoginEvent (type:String,
bubbles:Boolean=false, cancelable:Boolean=false)

super (type, bubbles, cancelable);

VER The code in Listing 7.8 is available in the Web site files as events/LoginEvent.as
5. .
=~ in the chapter07 project.

O)] the Yy
Overriding the clone() method

The Event class has a method named clone () thats used during the bubbling process to create
new copies of the event object for each level of bubbling. As described previously, the event object’s
currentTarget property changes its value each time the event is dispatched to point to the con-
tainer or control that’s currently dispatching the event. By creating a new copy on each dispatch,
the currentTarget for previous versions of the event object doesn’t change.

~a UTION When you override a method in ActionScript, you must include the override keyword in
R the method declaration:

override public function superMethod() :void

{}

If you don’t include the override keyword and the method name matches one that’s already declared
in the current class’s inheritance hierarchy, the compiler generates an error.

Keep in mind these rules for overriding the clone () method:

B The method must be marked with override and public.

B The methods return data type should be Event.

208

Working with Events

B Within the method:
Instantiate the current custom event class.
Populate the new copy with data from the current copy.

Return the new copy.
The clone () method for the LoginEvent class would look like this:

override public function clone() :Event

{
var newEvent:LoginEvent = new LoginEvent (type);
newEvent.username = username;
newEvent .password = password;
return newEvent;
}

Notice that the current object’s type property (the name of the current event) is passed to the new
copy of the event object in the constructor method call.

-J-J _ID If you don’t make an event bubble, it doesn’t need a clone () method. By default,
custom event classes have their bubbles property set to false. To turn bubbling
on whenever you use the custom event class, pass a value of true to the superclass’s constructor
method’s second argument, as in:

super (type, true, cancelable);

Dispatching a custom event class
When you dispatch a custom event class, follow these steps, which are the same as for pre-built
event classes in the Flex framework:

1. Define a custom event that sets the type as the new custom ActionScript class.

2. Create an event object typed as the custom event class at runtime.

3. Populate the event object with data.

4. Dispatch the event object.

To declare a custom event named login that dispatches an instance of the LoginEvent class
described above, the code within the custom Form component would look like this:

<mx:Metadata>
[Event (name="login", type="events.LoginEvent")]

</mx:Metadata>

At runtime, you would create an instance of the event class, passing the event name into the con-
structor method:

var e:LoginEvent = new LoginEvent ("login");

209

22170 M Flex Fundamentals

The next step is to populate the event object with data. Assuming you have TextInput controls
with their id properties of userNameInput and passwordInput, the code would be:

e.username = userNamelnput.text;
e.password = passwordInput.text;

Finally, dispatch the event just as you would with one of the pre-built event classes:
dispatchEvent (e) ;

Listing 7.9 shows a Form component that declares and dispatches the custom event using the cus-
tom event class.

LISTING 7.9

A Form component that dispatches a custom event object

<?xml version="1.0" encoding="utf-8"7?>
<mx:Form xmlns:mx="http://www.adobe.com/2006/mxml">
<mx :Metadata>
[Event (name="1login", type="events.LoginEvent")]
</mx:Metadata>
<mx:Script>
<! [CDATA[
import events.LoginEvent;
private function doLogin() :void
{
var e:LoginEvent = new LoginEvent ("login") ;
e.username = userNamelInput.text;
e.password = passwordInput.text;
dispatchEvent (e) ;
}
11>
</mx:Script>
<mx:FormItem label="User Name:">
<mx:TextInput id="userNameInput"/>
</mx:FormItem>
<mx:FormItem label="Password:">
<mx:TextInput id="passwordInput"/>
</mx:FormItem>
<mx:FormItem>
<mx:Button label="Log In" click="doLogin()"/>
</mx:FormItem>
</mx:Form>

The code in Listing 7.9 is available in the Web site files as
components/LoginForm.mxml in the chapter07 project.

O1 | e YYEB

210

Working with Events

Handling a custom event class

You handle an event that uses a custom event class in two ways — the same as with the Flex frame-
work’s pre-built event classes:

B With an MXML-based event handler

B VWith addEventListener ()

In either case, you create a custom event handler function that expects an event argument typed
as your custom event class:

private function loginHandler (event:LoginEvent) :void

{3

TP Unlike the event classes in the £1ash.events package, your custom event classes
must be imported prior to use:

import events.LoginEvent;

Flex Builder can create import statements for you as you type. For example, as you type the string
LoginEvent in the event handler function signature, Flex Builder presents a list of classes that
match what you've typed. When you select your class, the import statement for that class is added

at the top of the ActionScript code.

TP If you don’t see the list of available classes, press Ctrl+spacebar to trigger Flex Builder’s
code completion tool.

Within the event handler function, extract data as needed. The complete event handler function
might look like this:

private function loginHandler (event:LoginEvent) :void

{

messagelabel.text = "You logged as " + event.username +
" with a password of " + event.password;

}

Then, to call the event handler function, use an MXML-based event handler, as in:
<components:LoginForm login="loginHandler (event)"/>

Or, if you prefer to use addEventListener (), call this code as the application starts up:
myForm.addEventListener (LoginEvent.LOGIN, loginHandler) ;

Either way, the loginHandler () function is called and the data is delivered to the application.

211

22170 M Flex Fundamentals

Summary

In this chapter, I described the Flex event architecture and how you can create your own events to
share data between application components. You learned the following:

W Flex applications are event-driven.

B Every component that dispatches events includes EventDispatcher in its inheritance
hierarchy.

B You handle events with either MXML-based event handlers or the
addEventListener () method.

B Event handler functions receive a single event argument and return void.
B You can declare and dispatch custom events from your custom components.

B You can create custom event classes to store and send data from custom components to
the rest of the application.

B To make a custom event class bubble, set its bubble property to true and override
the Event classs clone () method.

B You handle custom events and event classes with the same architecture as pre-built
classes in the Flex framework.

212

The Flex Class
Library

IN THIS PART

Chapter 8
Using Flex Controls

Chapter 9
Using Layout Containers

Chapter 10
Using Cascading Style Sheets

Chapter 11
Working with Text

Chapter 12
Managing Application Navigation

Chapter 13
Working with Pop-up Windows

Chapter 14
Controlling Animation

Chapter 15
Managing View States

Using Flex Controls

hrough previous chapters, I've described various aspects of Flex _
application development and declared instances of controls such as IN THIS CHAPTER

Label and Button. Understanding Flex controls
Flex uses two types of visual components: Using text controls
B Containers are visual components that can contain other objects. Using layout controls
B Controls are visual components that display information or pro- Using button controls

vide the application with user interaction capabilities.
Using interactive controls

A Flex control can serve two purposes: L.
Presenting images

B All controls help you create the visual presentation of the application.

B Interactive controls allow the user to provide you with information
through data entry and mouse gestures (such as moving the mouse
or clicking its buttons).

In this chapter, I describe the nature of Flex controls and show the interface
and usage of commonly used controls in data entry forms and other visual
presentations.

Oy] the YWEE To use the samp.le code for .this cha;?ter, ‘import the ‘

chapter08.zip Flex project archive file from the Web site
files into your Flex Builder workspace. In addition to the specific applications
in the Listings in this chapter, the Web site files include sample applications for
most of the controls described here.

215

Z{g8l |8 The Flex Class Library

Instantiating and Customizing Controls

As described previously, a Flex control is really an ActionScript class that can be instantiated either
with an MXML tag-based declaration or an ActionScript statement.

In order to determine the behavior and use of a control, you need to know a controls public inter-
face, or its APL Because a control is written as an ActionScript class, to get information from the
control and to be able set its appearance, you need to know the control’s members, their require-
ments, and their behavior:

B Properties
Methods
Events
Styles
Effects

Constants

This information is available in the Flex API documentation for each of the framework’s included
controls.

Instantiating controls with MXML and ActionScript

When you instantiate a control with MXML, it's known as declarative instantiation:
<mx:Button id="myButton"/>
The same code in ActionScript is known as programmatic instantiation:

var myButton:Button = new Button();
this.addChild (myButton) ;

Either way, the result is a visual object that’s created in Flash Player memory and displayed in the
parent class. The behavior of the object is determined by its API and internal implementation.

Setting control properties and styles

A control’s properties and styles can be set in two ways:

B Upon instantiation with MXML attributes
B With ActionScript code

Properties and styles that are set with MXML attributes are done pretty much the same way. This
Label control has a text property and a color style:

<mx:Label id="myLabel" text="my text value" color="#£ff0000"/>

216

Using Flex Controls m

But when you use ActionScript code to reset the object’s properties and styles at runtime, the syn-
tax is different. Properties are set with simple dot syntax:

myLabel.width = 100;

Styles are set with a method named setStyle () that takes two arguments: the style name and its
new value:

myLabel.setStyle("fontWeight", "bold");

Styles are described in more detail in Chapter 10, but you need to understand this fundamental
difference between properties and styles as you acquaint yourself with the controls that are
described in this chapter.

Understanding the UlIComponent class

As with any other ActionScript class, a control’s members are a combination of those that are
declared locally in the class and those that are declared in the class’s inheritance hierarchy.

Each control, such as Label, is extended from a superclass named UIComponent. The UML dia-
gram in Figure 8.1 describes the inheritance relationship between UIComponent and classes that
extend the container and control classes.

FIGURE 8.1

This UML diagram describes the relationship between the UIComponent and the container and control

classes.
UlComponent

[Zﬁ]

Button Container Label
[4 4]
Canvas Box

[Q Q]

HBox VBox

217

m The Flex Class Library

Visual components can be directly extended from UIComponent, as with Label and Button, or
they can have UIComponent as one of the classes in their inheritance hierarchy, as with VBox,
HBox, and Canvas. In this section, I describe the class’s properties and styles that are inherited by
all visual components.

UlComponent properties

Table 8.1 describes key properties that are declared in the UIComponent class and inherited by all
visual components.

TABLE 8.1

Key UlComponent Properties

Property DataType Description

currentState String Determines which named “view state” is currently displayed.

enabled Boolean Determines whether a component can receive user interactions, and in
some cases, whether a “disabled” style will be used in its display.

height Number The height of the component in pixels. In MXML, you can also set height
to a percentage setting such as “100%,” but in ActionScript, the percentage
would be set through the percentHeight property.

id String This becomes the component’s instance (variable) name. Each component
id within the scope of the application or the current custom component
must be unique. The value of the 1d property cannot be reset at runtime.
Components that are instantiated in MXML without an 1d property are
anonymous and cannot be directly addressed in ActionScript or binding
expressions.

maxHeight Number The maximum height of the component in pixels.
maxWidth Number The maximum width of the component in pixels.
minHeight Number The minimum height of the component in pixels.
minWidth Number The minimum width of the component in pixels.

percentHeight Number Percent height relative to the component’s parent. This returns a meaningful
value only if explicitly set.

percentWidth Number Percent width relative to the component’s parent. This returns a meaningful
value only if explicitly set.

states Array An array containing one or more view state definitions. (See Chapter 15 for
more information on view states.)

styleName String A previously declared CSS style name (sometimes known as a CSS class)
whose properties the component inherits.

218

Using Flex Controls m

Property DataType Description

toolTip String A string that appears in a tool tip when the mouse hovers over the
component.

transitions Array An array containing one or more view state transition definitions.

visible Boolean Whether the control is visible.

width Number The width of the control in pixels. In MXML, you also can set width to a

percentage setting such as “100%,” but in ActionScript, the percentage
would be set through the percentwidth property.

X Number The number of pixels from the left edge of the control’s parent to the left
edge of the control. This is meaningful only in a container with absolute
layout.

y Number The number of pixels from the top edge of the control’s parent to the top of

the control. This is meaningful only in a container with absolute layout.

Many more UIComponent properties are available that are used less frequently than those listed
in Table 8.1. See the API documentation for a complete list.

Using Text Controls

The Flex framework includes five controls that are designed to display or accept text:

Label: A single-line display control
Text: A variable-height display control
TextInput: A single-line data entry control

TextArea: A variable-height data entry control

RichTextEditor: A compound data entry control that accepts text and property set-
tings and converts its content to HTML 1.0 code

Common properties of text controls

All five text controls support a common set of properties and styles, and each supports certain
properties and styles that are unique to that control’s functions and requirements.

Properties that are implemented by all text controls are described in Table 8.2.

219

Z1g 8|8 The Flex Class Library

TABLE 8.2

Common Properties of Text Controls

Property Data Type Description

condenselhite Boolean Indicates whether extra white space (space characters, tabs, and line

feeds) is removed from text with HTML 1.0 markup. This is not
supported in RichTextEdit.

htmlText String Text that contains HTML 1.0 markup.
Text String Simple text that contains no HTML markup.
The text property

220

The text property is used to set or get simple string values with all text controls. As with all prop-
erties, its value can be accessed in either MXML or ActionScript.

To set the text property in MXML, you can use either an XML text attribute or a nested child
<mx : text> tag set. This Label control has its text property set through an attribute:

<mx:Label id="myLabel" text="Hello World"/>
This Label control has its text property set through a nested child element:
<mx:Label id="myLabel">
<mx:text>Hello World</mx:Text>
</mx:Label>

The two preceding Label declarations are functionally identical.

TP Notice that child elements that set properties require the mx namespace prefix.
Property, style, and event listener attributes do not require the mx namespace prefix.

To set or get the text property in ActionScript, use simple dot syntax:
myLabel.text = "A new string";

The htmliText property

The htmlText property accepts HTML 1.0 markup that modifies the display and behavior of the
control. Although all five text controls support htmlText, both Text Input and TextArea typ-
ically support only displaying HTML (rather than accepting markup text as data entry).

Flash Player has limited HTML parsing and display capabilities. These HTML tags are supported in
Flash Player 9:

B <a> (anchor)

B (bold)

Using Flex Controls m

 (break)
 (font)
 (image)
<i> (italics)
<1i> (list item)
<p> (paragraph)

<textformat> (text format)

<u> (underline)
Important limitations in Flash Player HTML support include the following:

HTML tables are not supported.
CSS within HTML markup is not supported.
Flash Player 9 does not support ordered (numbered) lists.

Only a single unordered (bulleted) list style is supported.

Wrapping text in an <a> tag set creates a hyperlink, but does not affect color or underlin-
ing of text.

W Tags must be declared in lowercase.

Because HTML markup includes tag characters that can be misinterpreted by the Flex compiler,
you usually can’t use a simple MXML attribute to set the htmlText property’s value. This Label
control tries to use htmlText to set bold text:

<mx:Label htmlText="This text is bold"/>
The code looks like it should work, but it results in this compiler error:

The value of attribute "htmlText" must not contain the '<'
character.

Since < is a reserved character in XML, using HTML markup in this manner isn’t acceptable.You
can get around this issue in three ways and successfully display HTML text: with an initialization
function, with XML entities, and with a CDATA section.

Using an initialization function
An initialization function is executed during the initialization phase of an object’s life cycle. A func-
tion that sets htmlText might look like this:

private function initText () :void

{
htmlLabel.htmlText = "This text is bold";

}

221

Z1g 8|8 The Flex Class Library

FIGURE 8.2

Because the HTML markup is wrapped inside ActionScript code, the rules for XML reserved char-
acters no longer apply and you can add as many HTML tags as you need.

You call the initialization function upon the components initialize event:
<mx:Label id="htmlLabel" initialize="initText()"/>

As shown in Figure 8.2, the application displays the text as defined in the htm1Text property.

A Label displaying HTML text

222

Using XML entities

As described in Chapter 4, all XML reserved characters have entities that can be used as aliases for
those characters. You can use these entities instead of their literal equivalents in the htmlText

property:
<mx:Label htmlText="This text is bold"/>

This example results in the same display as the first, but it's obviously very difficult to read and
generally not recommended.

Using CDATA

Instead of using XML entities to replace the reserved characters in HTML markup, you're better off
wrapping literal HTML markup inside a CDATA section. As described in Chapter 4, the CDATA
block protects literal text from XML interpretation. To use the CDATA section, first declare the
htmlText property as a child element instead of an attribute. Then wrap the HTML text inside
the CDATA section:

<mx : Label>
<mx:htmlText>
<! [CDATA[This text is bold 11>
</mx:htmlText>
</mx:Label>

Because the reserved characters are wrapped inside the CDATA section, you can add as much literal
markup text as you like without encountering XML parsing problems.

Using Flex Controls m

TP You can wrap existing text inside a CDATA section by first selecting the text and then
selecting Source > Add CDATA Block from the Flex Builder menu.

Using the condenseWhite property

The condenseWhite property applies only to text set through the htmlText property. If
applied to a control with text set through the text property, the value of condensewhite is
ignored. A Boolean value that defaults to false, when set to true it “normalizes” extra white
space within the text.

In this code, a Text control displays a long text value set through the htmlText property:

<mx:Text width="200" condenseWhite="true">
<mx:htmlText>
<! [CDATA[
The quick red
fox jumped over the lazy brown dog.
The quick red
fox jumped over the lazy brown dog.
The quick red
fox jumped over the lazy brown dog.
11>
</mx:htmlText>
</mx:Text>

Figure 8.3 shows how the Text control is displayed with condenseWhite set to its default value
of false. Notice that the extra line feeds and spaces in the code are displayed in the application.

FIGURE 8.3

HTML text with condenseWhite setto false

Figure 8.4 shows how the Text control is displayed with condenseWhite set to true. The
extra line feeds and spaces in the code have been removed.

223

Z{g8l |8 The Flex Class Library

FIGURE 8.4

HTML text with condenseWhite set to true

224

TP All text controls except the RichTextEdit control support the condenseWhite
property. Use this property when displaying text (rather than accepting data entry), so
when used with the TextInput or TextArea controls, it should be paired with an editable
property set to false.

Text display controls

Two controls are designed exclusively for display of text: Label and Text. They’re primarily dis-

tinguished from each other by how they handle text values that are too long to fit on a single line:

The Label control truncates long text, whereas the Text control wraps the words and grows ver-
tically as needed.

The Label control

The Label control displays a single line of text. By default, this control shrinks or grows horizon-
tally to accommodate the width of its text property.

The truncateToFit property

The Label controls truncateToFit property is a Boolean value that determines whether text
will be truncated. When set to the default value of true, text that is longer than can fit (given the
control’s current width) is truncated, and the control displays the surviving text followed by an
ellipsis (...). In addition, when the user moves the mouse over the control, a tool tip pops up dis-
playing the controls full text.

This Label controls truncateToFit property is set to the default of true:

<mx:Label width="200"
text="The quick red fox jumped over the lazy brown dog."/>

Figure 8.5 shows that the Label control truncates the text and adds the ellipsis at the end. When
the mouse hovers over the control, the tool tip shows the complete text.

Using Flex Controls m
FIGURE 8.5

A Label with truncateToFit setto true

This Label has the same width limitation, but truncateToFit is set to false:

<mx:Label width="200" truncateToFit="false"
text="The quick red fox jumped over the lazy brown dog."/>

The result will be that the text is still truncated, but the ellipsis characters aren’t added and the tool
tip isn’t available when the mouse hovers over the control.

The selectable property

The Label and Text controls share a Boolean property named selectable. When set to
true, the user can select some or all of the controls text, right-click to see a context menu, and
copy the selected text to the clipboard, as shown in Figure 8.6.

FIGURE 8.6

Right-click a selectable control to see the context menu

The Text control

The Text control also is used exclusively to display text, but unlike the Label, it can wrap text
and expand vertically to show as much text as necessary.

225

Z1g 8|8 The Flex Class Library

FIGURE 8.7

If you don't set the Text controls width property, it expands to whatever width is needed to dis-
play its value on a single line. To cause word wrapping and vertical expansion, set the width to an
absolute dimension in pixels or a percent value such as 100% of the control’s container.

This Text control has a long string value and a width set to 200 pixels:

<mx:Text width="200"
text="The quick red fox jumped over the lazy brown dog."/>

As shown in Figure 8.7, the Text control wraps the text and expands vertically to display the
entire text value.

A Text control with long text that wraps and expands vertically

226

Limitations of the Label and Text controls
Both the Label and the Text control have these limitations:

B No support for background colors or images
B No support for borders
B No support for scrollbars

If you want backgrounds, borders, or scrollbars with displayed text, use the TextInput or
TextArea controls with their editable property set to false.

Text entry controls

The Flex framework includes three text entry controls: Text Input, TextArea, and
RichTextEdit.

The TextInput control

The TextInput control accepts a single line of data entry. This instance of the Text Input con-
trol is displayed with all default properties and styles:

<mx:TextInput id="myInput"/>

Using Flex Controls m

The TextInput control doesn't have its own label property, so its commonly combined with
a Label control and wrapped in an HBox, or wrapped in a FormItem container, which has its
own label. When combined with an HBox and a Label, it looks like this:

<mx : HBox>

<mx:Label text="Enter some text:"/>
<mx:TextInput id="myInput"/>

</mx :HBox>

As shown in Figure 8.8, the TextInput control is displayed as a rectangular region with a default
background color of white.

FIGURE 8.8

A simple TextInput control

In addition to having the same properties described previously that manage text display such as
text, htmlText, and condenseWhite, the Text Input control defines certain properties that
are of particular use in controlling data entry. Table 8.3 lists these properties.

TABLE 8.3

TextInput Properties

Property Data Type Description

displayAsPassword Boolean When setto true, causes entered characters to be displayed as
“*” characters. Defaults to false.

editable Boolean When setto false, prevents control from receiving focus or
data entry. Defaults to true.

horizontalScroll Number When the control’s content is scrolled, indicates pixel position of

Position left-most displayed content.

length Number A read-only property indicating the number of characters in the

text property that's currently displayed.

continued

227

Z1g 8|8 The Flex Class Library

Property Data Type Description

maxChars int The maximum number of characters the control accepts. If you

exceed the maxChars value, you don't see a visible error
message, but the control stops accepting entry.

restrict String Determines which characters the user can enter.
selectionBeginIndex int The index position of the first selected character.
selectionEndIndex int The index position of the last selected character.

228

Using the restrict property

The restrict property allows you to restrict which characters can be typed into a Text Input
control. The property’s value defaults to null, meaning the user can enter any character. Any
other value means the user can enter only those characters, or ranges of characters, that are listed.

The restrict property accepts either literal individual characters or ranges of characters, with
no delimiter between each selection. For example, a restrict value of abc means you can enter
any of the three characters a, b, or c.

To enter a range of characters, separate the beginning and ending characters of the range with a
hyphen. A restrict value of a-z0-9 allows any alphabetical or numeric character.

The restrict property is case-sensitive, so if its value is set to A-Z, the user can enter only
lowercase characters. Any characters that are entered in lowercase are converted to uppercase auto-
matically. To allow alphabetical characters to be entered in either uppercase or lowercase, enter the
range twice, as in A-za-z. If you want to include the dash (-) or backslash (\) as permitted char-
acters, you must first use the escape character, the backslash (\).

TP When a value is typed into a text control that isn’t allowed by the control’s restrict
property, the user doesn’t see an error — the typed value is just ignored.

Using selection properties

The properties selectionBeginIndex and selectionEndIndex allow you to programmati-
cally select sections of text or find out what range of text is currently selected. This function selects
all of a Text Input control’s text and calls the controls setFocus () method to ensure that it has
focus after the function has been executed:

private function selectText () :void

{
myInput.selectionBeginIndex = 0;
myInput.selectionEndIndex = myInput.text.length;
myInput.setFocus () ;

Using Flex Controls m

This function determines which text is currently selected and uses the String class’s
subString () method to get the selected text:

private function showSelectedText () :void

{
var beginIndex:int = myInput.selectionBeginIndex;
var endIndex:int = myInput.selectionEndIndex;
var selectedText:String =

myInput.text.substring(beginIndex, endIndex) ;

myInput.setFocus() ;
myInput.selectionBeginIndex = beginIndex;
myInput.selectionEndIndex = endIndex;
Alert.show(selectedText, "Selected Text");

L IOTE When the TextInput control loses focus, its selections are lost. The code in the pre-
) - ceding example resets the control’s focus and selection index values to ensure that its
original state is restored after the function has been executed.

TP When using the selection index properties, remember that all indexing in ActionScript is
zero-based. If selectionBeginIndex is set to a value of 1, the second character is
the first one that’s selected.

The TextArea control

The TextArea control implements most properties and methods of the Text Input control, but
it works better when long values are to be entered. Unlike TextInput, it allows line feeds and
wraps text that is too long to fit on a single line.

The TextArea control automatically creates a vertical scrollbar if its text or htmlText value is too
long to be displayed given the control’s current size. This TextArea control has a specified height
and width of 150 pixels each and a text value that’s long enough to trigger a vertical scrollbar:

<mx:TextArea id="myTextArea" width="150" height="150">
<mx:text>
<! [CDATA[Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Praesent aliquam, justo convallis luctus rutrum, erat
nulla fermentum diam, at nonummy quam ante ac quam. Maecenas
urna purus, fermentum id, molestie in, commodo porttitor,
felis. Nam blandit quam ut lacus. Quisque ornare risus quis
ligula.
11>
</mx:text>
</mx:TextArea>

As shown in Figure 8.9, the TextArea displays a vertical scrollbar to accommodate the long text.

229

Z{g8l |8 The Flex Class Library

A TextArea control with a vertical scrollbar

TP In the preceding code sample, the text value is a single unbroken string. Any spaces or
line feeds are respected and displayed the TextArea component (unless text is set
through the htmlText property with condenseWhite set to true).

The RichTextEditor control

The RichTextEditor control is a compound control that allows entry of text and these format-
ting features:

Font family

Font size in pixels

Bold, italics, and underlining

Font color

Text alignment

Bulleted lists

Hyperlinks

As the user selects formatting options, they’re interpreted into HTML 1.0 markup that can be
understood by Flash Player. The value of the HTML markup is available through the control’s
htmlText property, which is a bindable value.

This RichTextEditor controls title property results in a String value displayed in the con-
trol’s upper-left area. The Text control displays the editor’s current htmlText property through a
binding expression:

<mx:RichTextEditor id="myEditor" title="My Rich Text Editor"/>
<mx:Text text="{myEditor.htmlText}" width="400"/>

230

Using Flex Controls m

As shown in Figure 8.10, the controls htmlText property is displayed in the Text control as the
user makes changes.

FIGURE 8.10

The RichTextEdit control

Using Layout Controls

A layout control creates visual output, but it isn't designed to be interactive in same way as a
Button, TextInput, or other such control. These three controls affect layout but don’t create

any interaction with the user:

B HRule: A horizontal rule
B VRule: A vertical rule

B Spacer: An invisible control that can change other components’ positions in horizontal
or vertical layout

231

Z1a8 |8 The Flex Class Library

HRule and VRule

The HRule and VRule controls display a single line in the application. HRule creates a horizontal
line, while VRule creates a vertical line. Each displays a primary line called the stroke and a sec-
ondary line called the shadow. You control the stroke and shadow colors and widths separately
through distinct style settings.

Both HRule and VRule support the properties described in Table 8.4 to determine the control’s
appearance.

TABLE 8.4

HRule and VRule Properties

Property Data Type Description Default
width Number The width of the control HRule: 100
VRule: 2
Height Number The height of the control HRule: 2
VRule: 100
strokeColor uint The control’s stroke line color oxc4cccec
strokeWidth Number The width of the primary line in pixels 2
shadowColor uint The control’s shadow line color OXEEEEEE

HRule and VRule objects are typically used to visually separate other visual components. This
application displays two controls in vertical layout separated with an HRule control:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
verticalGap="25">
<mx:RichTextEditor id="myEditor" title="My Rich Text Editor"/>
<mx:HRule strokeColor="#000000" width="{myEditor.width}"/>
<mx:Text text="{myEditor.htmlText}" width="{myEditor.width}"/>
</mx:Application>

As shown in Figure 8.11, the HRule appears between the other two controls.

232

Using Flex Controls m
FIGURE 8.11

A RichTextEditor, an HRule, and a Text control

The Spacer control

The Spacer control is invisible and “pushes” other objects in an application or other container
that uses vertical or horizontal layout. Its width and height properties, set to Number values,
dictate how much additional space they add to the layout.

TP The Spacer control isn’t useful in absolute layout containers, because the controls dictate
their absolute positions through x and y properties or through constraint-based layout.

This application uses a Spacer with a height of 100 pixels to add vertical separation between
two controls:

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:RichTextEditor id="myEditor" title="My Rich Text Editor"/>
<mx:Spacer height="100"/>
<mx:Text text="{myEditor.htmlText}" width="400"/>

</mx:Application>

As shown in Figure 8.12, the space between the controls includes both the size of the Spacer and
the verticalGap of the application.

233

Z1a8 |8 The Flex Class Library

Two controls separated with a Spacer

The Invisible Spacer creates this space

Using Button Controls

The Flex framework includes these button controls that allow interaction with the user:

Button
LinkButton
CheckBox

RadioButton

PopupButton

As shown in the UML diagram in Figure 8.13, the Button control is implemented as the super-
class for all other button controls. As a result, any event or property implemented in a Button is
available in all the other controls described in this section.

234

Using Flex Controls m
FIGURE 8.13

Button controls inheritance hierarchy

{> Button <}

LinkButton CheckBox RadioButton PopupButton

The Button control

The Button control is displayed as a rectangular object that can display a label and a graphical
icon. One of the most commonly used interactive controls, you typically use event listeners with
the Button and call ActionScript in reaction to its click event.

This simple Button control has a 1abel of “Click Me” and a click event listener that displays an
Alert dialog box:

<mx:Button label="Click Me" click="Alert.show('You clicked')"/>

Using a toggle Button

The Button control behaves by default as a command button to indicate that some action should
be executed. To use the Button as a control that switches between two states, set its toggle
property to true. The Button control has a Boolean property named selected that defaults
to false. When toggle is set to true, each click event causes the selected property to
switch back and forth between true and false.

This Button controls toggle property is set to true. Each time it5s clicked, the selected
property switches between true and false. The Label displays the selected property’s
current value through a binding expression:

<mx:Button id="toggleButton" label="Toggle Button"
toggle="true"/>
<mx:Label text="Button selected: {toggleButton.selected}"/>

As shown in Figure 8.14, the control’s appearance changes depending on the value of its
selected property. If selected is false, it appears as a concave button; if true, its appear-
ance flattens to indicate that it’s selected.

235

m The Flex Class Library

Toggle buttons with the selected property set to true and false

selected=false selected=true

Using button icons

A button icon is a graphic that appears on the face of a Button control. You typically use an
embedded graphic (rather than one that is downloaded from the server at runtime) for an icon,
because embedding guarantees the best possible performance.

Button icons can be built in any supported graphic format: PNG, JPEG, GIE and SWE To embed a
graphic for use as an icon, first declare it in the application as a bindable Class variable using the
[Embed] metadata tag:

[Bindable]
[Embed (source="graphics/deleteIcon.png")]
public var myDeleteIcon:Class;

In the Button declaration, set the icon property to the embedded graphic variable using a bind-
ing expression:

<mx:Button id="deleteButton"
label="Delete" icon="{myDeleteIcon}"/>

As shown in Figure 8.15, the But ton control appears with the icon on the left and the 1abel
on the right.

FIGURE 8.15

A Button with an icon

236

Using Flex Controls m

TP Button icons sometimes require transparency to allow the control’s background colors
to show through the icon graphic. Because JPEG files don’t support transparency, use
one of the graphic formats that does: GIF, PNG, or SWF.

Controlling the label position

The Button controls labelPlacement property determines the position of the 1abel relative
to the position of the icon and the Button controls dimensions. By default, the 1abel is posi-
tioned in the center of a button with no icon, and to the right of an icon if it does exist. The pos-
sible values of 1abelPlacement include top, bottom, left, and right.

Figure 8.16 shows the effect of setting 1abelPlacement with a Button that uses a graphic icon.

FIGURE 8.16

A Button with an icon and 1labelPlacement set to different values

TP If you declare a Button object with an icon property but no label, the Button object’s
height and width are set dynamically to accommodate the size of the icon image.

The LinkButton control

The LinkButton control performs all the actions of the Button, but it has an appearance and
behavior more like a traditional HTML hyperlink.

In its initial state, the LinkButton is transparent and shows only its label and icon (if any). As
shown in Figure 8.17, when the cursor hovers over a LinkButton, its background color changes
and a mouse cursor shaped as a pointing hand appears.

TP Because the LinkButton control extends Button, it supports all its superclass’s
properties and methods. Some, however, aren’t very useful with the LinkButton. For
example, while the toggle property is available with LinkButton, setting it to true doesn’t cause
any difference in appearance when the user clicks it to set selected to true or false.

237

Z1a8 |8 The Flex Class Library

The LinkButton with the mouse hovering over it

The CheckBox control

The CheckBox control allows the user to toggle its state to true or false. As shown in Figure
8.18, its selected property causes an icon shaped as a check mark inside a box to be displayed.
When selectedis false, the icon appears as an empty box.

FIGURE 8.18

A Checkbox object with its selected property set to true

Just as with the Button control that it extends, CheckBox supports the 1abel property. The
label appears by default to the right of the icon and is a clickable object; that is, clicking the icon
and the 1abel both have the same effect of toggling selected to true or false.

This CheckBox control displays a 1abel of “Option selected”:
<mx : CheckBox id="myCheckBox" label="Option selected"/>

At runtime, you determine or set whether the control is checked through its selected property:
private function checkSelected() :void

{
if (myCheckBox.selected)

{
Alert.show("You selected the CheckBox") ;

238

Using Flex Controls m

else

{
Alert.show("You didn't select the CheckBox") ;

Using RadioButton controls

RadioButton controls are designed to be used in groups of controls representing mutually exclu-
sive options. For example, this control represents the value “Small” and has its 1abel set to the
same value:

<mx:RadioButton value="Small" label="Small"/>

To group multiple radio buttons, use a control named RadioButtonGroup. This control is a
non-visual object and provides a way to group RadioButton controls together so that only one
of them can be selected at any given time. The RadioButtonGroup control is assigned an id
property. Then each RadioButton joins the group by naming the RadioButtonGroup in its
groupName property.

This is a group of mutually exclusive RadioButton controls, because they all share the same
groupName property:

<mx:RadioButtonGroup id="buttonGroup"/>

<mx:RadioButton value="Small" label="Small"
groupName="buttonGroup" />

<mx:RadioButton value="Medium" label="Medium"
groupName="buttonGroup" />

<mx:RadioButton value="Large" label="Large"
groupName="buttonGroup" />

TP RadioButtonGroup is implemented as an invisible control rather than a visual con-
tainer. This gives you the freedom to arrange RadioButton controls anywhere on
screen, rather than visually grouped together.

The application in Listing 8.1 displays a group of RadioButton controls grouped with a
RadioButtonGroup. When the user clicks Check Status, an Alert dialog displays the selected
value.

LISTING 8.1

A group of radio buttons

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical"
backgroundColor="#eeeceee">

continued

239

=148 [N The Flex Class Library

<mx:Script>
<! [CDATA[
import mx.controls.Alert;
private function checkSelected() :void
{
Alert.show("You selected " + buttonGroup.selectedvalue) ;
}
11>
</mx:Script>
<mx :RadioButtonGroup id="buttonGroup"/>
<mx:VBox>
<mx:RadioButton value="Small" label="Small"
groupName="buttonGroup" />
<mx:RadioButton value="Medium" label="Medium"
groupName="buttonGroup" />
<mx:RadioButton value="Large" label="Large"
groupName="buttonGroup" />
</mx:VBox>
<mx:Button label="Check status" click="checkSelected()"/>
</mx:Application>

The code in Listing 8.1 is available in the Web site files in the chapter08 project’s src

O] the YWEE
Ol VYEE folder as RadioButtonGroup .mxml.

Figure 8.19 shows the application displaying the resulting RadioButton controls.

FIGURE 8.19

An application with RadioButton controls

TP The RadioButtonGroup control dispatches an itemClick event whenever any of its
member RadioButton controls are selected. This allows you to handle c1ick events
for the entire group with a single event handler.

240

Using Flex Controls m

Other Data Entry Controls

The Flex framework includes these other controls that can be used to collect data from the applica-

tion’s user:
B NumericStepper
B DateField
B DateChooser
B ColorPicker

Each of these controls is designed to support data entry for a particular type of data.

The NumericStepper control

The NumericStepper is a compound control that’s designed for numeric data entry. It includes a
TextInput control for direct entry and a set of buttons that increment and decrement the con-
trols current value.

The NumericStepper doesn’t have its own label property, so it’s typically paired with a Label
or wrapped in a FormItem container, which has its own label property. This code declares a sim-
ple NumericStepper wrapped in an HBox with a Label:

<mx : HBox>

<mx:Label text="Enter value:"/>

<mx :NumericStepper id="myStepper"/>
</mx:HBox>

As shown in Figure 8.20, the control displays its value property and allows the user to change it.

FIGURE 8.20

A NumericStepper control

The NumericStepper supports these properties that determine its behavior:

B minimum: The minimum permitted value; defaults to 0

B maximum: The maximum permitted value; defaults to 10

241

Z1g 8|8 The Flex Class Library

242

B stepSize: The amount to increment or decrement when the control’s buttons are
clicked; defaults to 1

B maxChars: The maximum length of the value that can be directly typed into the control
This NumericStepper has a minimum value of 5, a maximum value of 25, and a stepSize of 5:

<mx :NumericStepper id="myStepper"
minimum="5" maximum="25" stepSize="5"/>

The NumericStepper controls value property is bindable and can be used in a binding expres-
sion or ActionScript statement to get the value the user has entered:

<mx:Label text="You entered: {myStepper.value}"/>

Date controls

Two data entry controls are designed to show or select a date value:

B DateChooser displays a calendar from which the user selects a date.

B DateField displays a TextInput and a small calendar icon. When either is clicked, a
calendar is displayed for date selection.

The DateChooser control

The DateChooser control presents an interactive calendar that displays a month and year and
allows the user to do the following:

B Navigate forward and back one month at a time

B Select a single date, multiple dates, or a range of dates with mouse operations
The following code declares a simple DateChooser control:
<mx:DateChooser id="myDateChooser"/>

The DateChooser control supports Boolean properties named allowMultipleSelection
and allowDisjointSelection that respectively allow multiple and non-contiguous dates to
be selected. Changing either property causes changes in the control’s visual presentation.

As shown in Figure 8.21, the DateChooser is presented as a visual calendar from which the user
makes selections.

Using Flex Controls m
FIGURE 8.21

A DateChooser control

The DateField control

The DateField control presents the user with an input control and a small calendar icon. By
default, when the user clicks either the icon or the input, a calendar control pops up that looks the
same as the DateChooser and allows the user to make his selection. Unlike the DateChooser
component, DateField allows only a single date value to be selected.

The following code declares a simple DateField control:
<mx:DateField id="myDateField"/>

As shown in Figure 8.22, the DateField is presented as an input control and icon which, when
clicked, present a calendar control.

FIGURE 8.22

A DateField control

243

m The Flex Class Library

The DateField control has a Boolean property named editable thats set to false by
default. When set to true, the user can click into the input area and type a date value.

Date entry properties and methods

The DateChooser and DateField controls share a common set of properties that allow
you to control their behavior and collect their data. Table 8.5 describes these properties and their

capabilities.

TABLE 8.5

Date Entry Control Properties

Property Data Type Description Default
selectedDate Date The currently selected date value. Null
showToday Boolean Determines whether the current date is true
highlighted.
dayNames Array An array of String values used as labels ["s", "M", "T",
for the day names. "W, "T", "F",
n S "]
minYear int The minimum allowed year. 1900
maxYear int The maximum allowed year. 2100
disabledDays Array An array of integer values indicating by []
zero-based index days that aren’t selectable. Setting of [0, 6]
would disable Sunday
and Saturday
disabledRanges Array A set of disabled ranges. Each range has []
of Object named properties of rangeStart and
rangeEnd typed as Date values.
selectableRange Object A selectable range. Requires named null

properties of rangeStart and rangeEnd
typed as Date values.

Other useful properties are described in the API documentation for DateField and
DateChooser.

Using Interactive Controls

Beyond the data entry controls described previously, certain controls are designed for user interac-
tion that can be used in a variety of applications. In this section, I describe the Scrol1lBar and
Slider controls.

244

Using Flex Controls m

The ScrollBar controls

There are two versions of the Scrol1lBar control:

B HScrollBar is for a horizontal scrollbar.

B VScrollBar is for a vertical scrollbar.

A ScrollBar control has four graphic elements: a track, a button, and two arrows. The user
changes the control’s current value by clicking and dragging the button, clicking above or below
the button, or clicking one of the arrows. The ScrollBar returns its current value through its
scrollPosition property. The scrollPosition property isn't bindable, so typically it han-
dles ScrollBar interactions by listening for the scroll event, which is dispatched each time the
position of the button changes.

ScrollBar properties

The VScrollBar and HScrollBar are extended from the ScrollBar superclass, which imple-
ments the properties described in Table 8.6:

TABLE 8.6

ScrollBar Properties

Property Data Type Description Default

scrollPosition Number The position of the scroll button relative to the top null
of a VScrollBar or the left of an HScrollBar.
This property is bindable.

minScrollPosition Number The minimum value of scrollPosition. 0
maxScrollPosition Number The maximum value of scrollPosition. 0
pageSize Number Determines delta of change in pixels when user 0

clicks before or after the scroll button.

The scroll event

The scroll event is dispatched each time the user interacts with the Scrol1Bar control. Its event

object is typed as an event class named mx . events . Scrol1Event, which has a position prop-
erty containing the new scrollPosition. In the application in Listing 8.2, the HScrollBar con-
trols new scrollPosition is displayed in a Label control whose text property is changed each
time the scroll event is handled:

245

Z1g 8|8 The Flex Class Library

An application with a horizontal scrollbar

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">

<mx:Script>
<! [CDATA[
import mx.events.ScrollEvent;
[Bindable]
private var scrollPos:Number;

private function scrollHandler (event:ScrollEvent) :void

{

scrollPos = event.position;
}
11>

</mx:Script>

<mx:Label id="scrollLabel" fontSize="18" fontWeight="bold"
text="Current scroll position: {scrollPos}"/>

<mx:HScrollBar id="myScrollBar" width="300"
minScrollPosition="0" maxScrollPosition="300" pageSize="100"
scroll="scrollHandler (event) " />

</mx:Application>

The code in Listing 8.2 is available in the Web site files in the chapter08 project’s src
folder as ScrollBarDemo .mxml.

Opl e YYEE

Figure 8.23 shows the HScrollBar and Label component in the application.

FIGURE 8.23

An HScrollBar and a Label displaying its current position

246

Using Flex Controls m

The Slider controls

There are two versions of the S1ider control:

B HSlider is for a horizontal slider.

B VvSlider is for a vertical slider.

A Slider control displays a track and a “thumb” graphic that allows the user to select a value by
clicking and dragging the thumb. You allow the slider to select any value within a range or restrict
it to selecting values at particular intervals. The control also can display two thumb icons to repre-
sent starting and ending values.

The user interacts with the Slider control by clicking and dragging the thumb icon or by click-
ing before or after the thumb. If the user clicks before or after the thumb, it slides to the selected
position. If the S1ider has implemented snapping through the snapInterval property, the
thumb slides to the snapping position thats closest to where the mouse click occurred.

The Slider controls return their current value through the value property. The value property
is bindable, so you can handle S1ider interactions through either binding expressions or events.
Each time the S1ider controls value changes, it dispatches the change event.

Slider properties

The vSlider and HS1lider are extended from the S1ider superclass, which implements the
properties described in Table 8.7.

TABLE 8.7

Slider Properties

Property DataType Description Default

value Number The currently selected value of the S1ider based on thumb 0
position. Relevant only when thumbCount is 1.

values Array An array of values. Relevant only when thumbCount is []
greater than 1.

thumbCount int The number of thumbs that are displayed. Possible values are 1
1and 2.

minimum Number Minimum value of the Slider. 0

maximum Number Maximum value of the S1ider. 10

snapInterval Number When set, enforces snapping to particular intervals between
minimum and maximum. If set to 0, sliding is continuous. 0

continued

247

m The Flex Class Library
TABLE 8.7 (continued)

Property DataType Description Default

tickInterval Number A numeric value used to calculate interval of tick marks. 9
Forexample, if minimum is 0, and maximum is 10, a
tickInterval of 2 creates 4 tick marks. The default value
of 0 displays no tick marks.

tickvValues Array Determines display of tick marks on the S1ider. All values undefined
should be between minimum and maximum. Use as
alternative to tickInterval.

labels Array An array of strings used as labels. Typically contains same undefined
number of items as tickValues.

The following code declares a S1ider with tick marks and labels. Its value is displayed in a
Label control through a binding expression.

<?xml version="1.0" encoding="utf-8"7?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Label id="sliderLabel" fontSize="18" fontWeight="bold"
text="Current slider position: {mySlider.value}"/>
<mx:HSlider id="mySlider" width="300"
minimum="0" maximum="300"
tickInterval="50" snapInterval="50"
labels="{['0','50"','100','150"','200"','250"','300"']}"/>
</mx:Application>

Figure 8.24 shows the resulting application running in Flash Player.

FIGURE 8.24

A horizontal slider with snapping and tick marks

248

Using Flex Controls

Slider events
The Slider controls also support a set of events that let you detect and handle changes to the

Slider controls value with ActionScript event handlers. Slider events include the following:
B change: Dispatched when the control’s value property changes as a result of a user gesture
B thumbDrag: Dispatched when the user drags the thumb icon

B thumbPress: Dispatched when the user presses on the thumb icon with the left mouse
button

B thumbRelease: Dispatched when the user releases the thumb icon

All these events dispatch an event object typed as mx.events.SliderEvent.

Working with Images

The Flex framework presents images with the Image control. This control can be used to present
images that are downloaded from a server at runtime, loaded from the local hard disk at runtime
(for AIR applications only, since Flex-based Web applications don’t have access to the local file sys-
tem), or embedded in the Flex application.

Using the Image control
As with all visual controls, the Image control can be declared in either MXML or ActionScript. You

control which image is presented with the source property.

When used to load images at runtime, the source property is set to a full URL path (subject to
Flash Player security restrictions) or a location that’ relative to the application location.

TP For Web applications, the location is the Web server and folder from which the applica-
tion’s SWF file was downloaded. For desktop applications, the location is the disk folder
in which the binary application is installed.

Flash Player can load these types of images at runtime:

m JPEG

B GIF

H PNG

m SWF

-_” .ID When).fou load a{1 ..swf file with the Image control, it".s loaded a§ a s:tatic image. If the
. swf file was built in Flash, only the Flash document’s first frame is displayed. If you

want to load an . swf file built in Flex or Flash and retain its animations and other functionality, use
the SWFLoader control instead of Image.

249

Z1g 8|8 The Flex Class Library

This code declares an Image control that loads a graphic file named flowerl . jpg at runtime
from a graphics subfolder of the application’s location folder:

<mx:Image source="graphics/flowerl.jpg"/>

Figure 8.25 shows the application displaying the graphic.

FIGURE 8.25

An application displaying an image with the Image control

Resizing images
The Image control sizes itself by default based on the native dimensions of the original graphic

image file. For example, if the image is 200 pixels wide by 300 pixels high and you don’t declare a
specific size, the control sizes itself to those dimensions.

You can resize images at runtime with the Image controls height and width properties. Both
properties reflect the image size in pixels. If you set only one of these dimension properties, the
Image control automatically calculates and resets the other dimension to maintain the image’s
original aspect ratio (the ratio of width to height).

If you set both the height and width and don’t exactly match the original aspect ratio, also set the
controls maintainAspectRatio property to false to allow it to skew the image.

250

Using Flex Controls m

<mx:Image source="graphics/flowerl.jpg"
height="200" width="400"
maintainAspectRatio="false"/>

Figure 8.26 shows the image with explicit height and width properties and
maintainAspectRatio setto false.

FIGURE 8.26

An image with specific width and height and maintainAspectRatio setto false

Embedding images

When you embed an image in a Flex application, you expand the size of the application by the size
of the graphic file. At runtime an embedded image is displayed instantly, rather than having to be
loaded from the Web or disk; the result is an improvement in perceived application performance.

You can embed images in a Flex application in two ways. If you want to embed an image once and
always display it in the same location, use this syntax:

<mx:Image source="@Embed('graphics/flowerl.jpg')"/>

Because you're embedding the image in a particular instance of the Image control, you can't easily
reuse the embedded image elsewhere in the application. If you want an embedded image that can
easily be bound to various controls, use the [Embed] metadata tag and a Class variable declara-
tion inside a Script section:

[Embed (source="graphics/flowerl.jpg")]
[Bindable]
public var flowerImage:Class;

Then set the Image control's source property to the variable name using a binding expression:

<mx:Image source="{flowerImage}"/>

251

m The Flex Class Library

TP When you embed images with the [Embed] metadata tag, you have the freedom to dis-
play the embedded image anywhere in the application. This is the same technique
described earlier when using embedded images as Button control icons.

Changing images at runtime

You can change the source of an Image control at runtime in a few different ways. The control’s
source property can be reset to a String indicating the relative location of an image to be
loaded at runtime or to a variable that references an embedded image. This code embeds two
images and switches the source of the Image control to one of the variable references when the
button is clicked:

<mx:Script>

<! [CDATA[
[Embed (source="graphics/flowerl.jpg")]
[Bindable]
public var flowerImagel:Class;
[Embed (source="graphics/flower2.jpg")]
[Bindable]
public var flowerImage2:Class;

11>

</mx:Script>

<mx:Image id="myImage" source="{flowerImagel}"/>
<mx:Button label="Change Image"
click="myImage.source=flowerImage2"/>

You also can set the source property using a binding expression. This code uses a group of
RadioButton controls to allow the user to switch between the two embedded images:

<mx:Image source="{flowerGroup.selectedValue}"/>

<mx:RadioButton value="{flowerImagel}" label="Image 1"
groupName="flowerGroup" selected="true"/>

<mx:RadioButton value="{flowerImage2}" label="Image 2"
groupName="flowerGroup" />

<mx:RadioButtonGroup id="flowerGroup"/>

You also can change images at runtime with the Image controls 1oad () method. The load ()
method accepts a single argument that can be either a String for a runtime loaded image or a
variable referencing an embedded image. This code shows a But ton with a click event handler
that causes a new image to be loaded at runtime:

<mx:Image id="myImage" source="graphics/flowerl.jpg"/>
<mx:Button label="Change Picture"

click="myImage.load('graphics/flower2.jpg')"/>

TP It doesn’t matter whether you use the 1oad () method or simply change the value of
the source property. Both actions have the same effect on the Image control.

252

Using Flex Controls

Summary

In this chapter, I described the nature of Flex controls and the details of some of the most useful
controls in the Flex framework. You learned the following:

Flex visual components consist of containers and controls.
A container is a visual component that contains other objects.
A control executes some feature of a Flex application.

Controls can be used for application layout, to display data, and to collect data from
the user.

Text controls include Label, Text, TextInput, TextArea, and RichTextEditor.
Layout controls include HRule, VRule, and Spacer.
Button controls include But ton, CheckBox, RadioButton, and PopupButton.

Other data entry controls include NumericStepper, DateField, DateChooser, and
ColorPicker.

Interactive controls include HScrollBar, VScrollBar, HSlider, and VSlider.

The Image control displays images that are loaded at runtime or embedded in the Flex
application.

253

Using Layout Containers

s described in Chapter 8, there are two types of visual components in _
Flex: IN THIS CHAPTER

Understanding containers

B Containers are visual components that can contain other objects. Using box containers

W Controls are visual components that display information or provide

S) . . _ Using vertical and horizontal
the application with user interaction capabilities.

layout containers

The layout of a Flex application is determined through a combination of the Using the panel container
application’s containership hierarchy and the use of absolute layout tools.
Applications are typically designed with a combination of vertical or hori- Using constraint-based layout

zontal flow-style containers that lay out their nested child components auto-
matically, and absolute layout components whose nested child components
either set their positions with x and y or constraint properties.

Sizing containers and controls

The Flex framework includes two types of containers:

B Layout containers are rectangular regions that contain other visual
components (containers or controls). Examples of layout containers
include:

VBox
HBox
Canvas

Panel

255

O) [the YYE

256

m The Flex Class Library

B Navigator containers wrap around other containers in a stack that contains the layers of
the application’s navigation system. The Flex framework includes three navigator contain-
ers:

ViewStack
TabNavigator
Accordion

In this chapter, I describe the pre-built layout containers in the Flex framework and how you use
them to determine the application’s visual appearance.

To use the sample code for this chapter, import the chapter09.zip Flex project
archive file from the Web site files into your Flex Builder workspace.

o

Using Simple Box Containers

The three simple Box containers in the Flex framework implement different layout styles:

B VBox: A rectangular area that lays out its nested child objects in a single column from top
to bottom

B HBox: A rectangular area that lays out its nested child objects in a single row from left to
right

B Canvas: A rectangular area that places its nested child objects in specific positions rela-
tive to either top/left anchors or constraint-based anchors

These three containers support the height and width properties to determine their dimensions. If
you don't declare these properties, the containers size themselves automatically to accommodate
their child objects.

Using vertical and horizontal layout containers

As shown in the UML diagram in Figure 9.1, the VBox and HBox components are extended from a
superclass named Box.

TP While you're allowed to use the superclass Box component and set its direction
property to either vertical or horizontal, which is the only difference between
the subclasses, most often you already know which layout you want and can use the specific subclass.

The Box, VBox, and HBox components place their nested child visual components using two logi-
cal passes through the containership. In the first pass, the quantity and size of the nested child
objects are collected. In the second pass, the nested objects are placed on the screen. Each time the
Box component is resized, it re-executes this sizing and placement task.

Using Layout Containers m

The inheritance hierarchy for Box, VBox, and HBox

Box

AN

VBox HBox

The VBox container

The VBox container behaves like the Application component when its layout is set to
vertical: It lays out nested visual components in a single column from top to bottom. The
application in Listing 9.1 uses a VBox to lay out three Text Input controls.

LISTING 9.1

Using the VBox container

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">
<mx:Style>
TextInput { font-size:24 }
</mx:Style>
<mx:VBox
borderStyle="so0lid" borderColor="#000000" borderThickness="4"
horizontalAlign="center"
paddingBottom="10" paddingLeft="10" paddingRight="10"
paddingTop="10">
<mx:TextInput text="TextInput 1"/>
<mx:TextInput text="TextInput 2"/>
<mx:TextInput text="TextInput 3"/>
</mx:VBox>
</mx:Application>

The code in Listing 9.1 is available in the Web site files as VBoxDemo . mxm1 in the
chapter09 project.

257

m The Flex Class Library

Figure 9.2 shows the resulting application running in the Web browser.

FIGURE 9.2

An application using the VBox container

The HBox container

The HBox container behaves like the Application component when its layout is set to
horizontal: It lays out nested visual components in a single column from top to bottom. The
application in Listing 9.2 uses an HBox to lay out three TextInput controls.

LISTING 9.2

Using the HBox container

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">
<mx:Style>
TextInput { font-size:24 }
</mx:Style>
<mx : HBox
borderStyle="so0lid" borderColor="#000000" borderThickness="4"
horizontalAlign="center"
paddingBottom="10" paddingLeft="10" paddingRight="10"
paddingTop="10">
<mx:TextInput text="TextInput 1"/>
<mx:TextInput text="TextInput 2"/>
<mx:TextInput text="TextInput 3"/>
</mx:HBox>
</mx:Application>

258

Using Layout Containers _

The code in Listing 9.2 is available in the Web site files as VBoxDemo . mxm1 in the

Ol ithe YWEE .
Ol V/EB chapter09 project.

Figure 9.3 shows the resulting application running in the Web browser.

FIGURE 9.3

An application using the HBox container

Using the Canvas container
The Canvas container behaves like the Application component when its layout is set to
absolute. As shown in Figure 9.4, the Canvas container extends the Container class directly.
Objects that are nested within a Canvas determine their positions in one of these ways:
B Traditional absolute-layout properties of x and y (the number of pixels from the left and
top of the Canvas container)

B Constraint-based positioning using anchors of 1eft, right, top, bottom,
horizontalCenter, and verticalCenter

B Advanced constraints using row-based and column-based anchors

Visual components that are nested in a Canvas can use the following properties to set their posi-
tions relative to the Canvas container’s top-left corner:

B x: The number of horizontal pixels from the Canvas container’s left border

B y: The number of vertical pixels from the Canvas container’s top border

The following code declares a Label component nested in a Canvas. The Label control’s top-
left corner is 10 pixels from the top and left of the Canvas:

<mx:Canvas>

<mx:Label x="10" y="10" text="Hello World!"/>
</mx:Canvas>

259

m The Flex Class Library

The inheritance hierarchy of the Canvas container

Container

T

Canvas

One benefit of the Canvas, Application, and other containers that support absolute position-
ing is the ability to layer objects on top of each other. Paired with alpha styles that control trans-
parency, you can create visual effects where one object appears “behind” another, but shows
through the “top” object.

The code in Listing 9.3 declares a Canvas container wrapped around three Text Input controls
and three VBox containers. The VBox containers are arranged so that they overlap each other, and
the backgroundalpha setting of .5 creates a 50 percent transparency effect.

LISTING 9.3

A Canvas container with overlapping objects

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">
<mx:Style>
TextInput { font-size:24 }
</mx:Style>
<mx:Canvas borderStyle="so0lid" borderColor="#000000"
borderThickness="4"
width="400" height="313">
<mx:TextInput text="TextInput 1"/>
<mx:TextInput text="TextInput 2" x="71" y="47"/>
<mx:TextInput text="TextInput 3" x="141" y="97"/>

<mx:VBox width="100" height="100" backgroundColor="#FFFFFF"
backgroundAlpha=".5" x="224" y="144"/>

260

Using Layout Containers _

<mx:VBox width="100" height="100" backgroundColor="#666666"

backgroundAlpha=".5" x="249" y="169"/>
<mx:VBox width="100" height="100" backgroundColor="#000000"

backgroundAlpha=".5" x="274" y="194"/>
</mx:Canvas>

</mx:Application>

The code in Listing 9.3 is available in the Web site files as CanvasDemo . mxm1 in the

rJ
* chapter09 project.

I71

O] the Y

Figure 9.5 shows the resulting application displayed in a browser. Notice the overlapping objects
and the borders that show through.

FIGURE 9.5

A Canvas container with overlapping objects

Using container styles

The VBox and HBox containers support styles that help to determine placement of nested objects.
These styles, described in Table 9.1, control the alignment and the area around and between

objects nested within the container.

261

m The Flex Class Library

TABLE 9.1

Box Container Styles

Style Description Possible Values/ Default
Data Type Value
verticalAlign Collective vertical alignment of objects top top
within the container middle
bottom
horizontalAlign Collective horizontal alignment of objects within left left
the container center
right
verticalGap Number of vertical pixels between objects; Number 6
applies to VBox only
horizontalGap Number of vertical pixels between objects; Number 6
applies to HBox only
paddingLeft Number of pixels from left edge of container to Number 0
first nested object
paddingRight Number of pixels from right edge of container to Number 0
first nested object
paddingTop Number of pixels from top edge of container to Number 0
first nested object
paddingBottom Number of pixels from bottom edge of container Number 0

to first nested object

The application in Listing 9.4 places nested visual components within a VBox container that sets
gap, border, and padding styles using CSS syntax and MXML style attributes.

LISTING 9.4

An application with box styles

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical"

backgroundColor="#eceececece">

<mx:Style>

TextInput {

font-size:24;

border-style:solid;
border-color:black;
border-thickness:4;

262

Using Layout Containers m

}
</mx:Style>
<mx:Spacer height="20"/>
<mx:VBox

borderStyle="so0lid" borderColor="#000000" borderThickness="4"
horizontalAlign="center"

paddingBottom="20" paddingLeft="20" paddingRight="20"
paddingTop="20"

verticalGap="20" backgroundColor="white">
<mx:TextInput text="TextInput 1"/>
<mx:TextInput text="TextInput 2"/>

<mx:TextInput text="TextInput 3"/>
</mx:VBox>

</mx:Application>

i, e The code in Listing 9.4 is available in the Web site files as
Orlithe YWEE X .
- VBoxGapAndPadding.mxml in the chapter09 project.

The diagram in Figure 9.6 shows the placement of gap and padding styles in a VBox container.

FIGURE 9.6

Using gap and padding styles

paddingTop
paddingLeft

TextInput 1

| TextInput 2

TextInput 3

verticalGap paddingRight

paddingBottom

263

m The Flex Class Library

264

TP The alignment, gap, and padding styles have no effect on objects nested inside a
Canvas container, because the objects’ positions are determined solely by their
absolute positioning properties.

TP Developers who are familiar with Cascading Style Sheets as implemented in Web
browsers might be curious about the lack of margin styles. In HTML-based CSS, the
“box model” includes padding on the inside of an object’s borders, the borders themselves, and mar-
gins outside the borders that create space outside an object. Flex-based CSS omits the margin settings
and implements only padding and border styles. The details of applying these and other styles are
described in Chapter 10.

Using the Panel Container

The Panel container creates a rectangular region that looks like a dialog box. Unlike the VBox,
HBox, and Canvas, which don't have any default visual appearance, a Panel is used when you
want to wrap content inside a visual presentation that sets it off from the rest of the application.

A simple Panel is declared in MXML with a pair of <mx : Panel> tags. The Panel container’s
nested components are declared between the paired tags:

<mx:Panel>
. place contents here
</Panel>

Panel properties

The Panel shares many properties with the Application and Box containers.

Using the layout property

Like the Application component, it supports the layout property and allows the Panel con-
tainer’s nest components to be laid out with vertical, horizontal, or absolute positioning.
As with Application, the default value is vertical.

Using title and status
The Panel container has two properties that place labels in the container’s header region:

B The title property places a label in a bold font in the left side of the Panel header.

B The status property places a label in normal font in the right side of the Panel header.

The code in Listing 9.5 declares a Panel with a title and a status property, and contains a set
of Label controls.

Using Layout Containers _

A Panel containing three Label controls

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical"
backgroundColor="#cccccc">
<mx:Panel title="My Panel" status="A test panel" width="200">
<mx:Label text="Label 1"/>
<mx:Label text="Label 2"/>
<mx:Label text="Label 3"/>
</mx:Panel>
</mx:Application>

The code in Listing 9.5 is available in the Web site files as PanelDemo .mxm1 in the

Ol ihe YWEE .
Ol VIEE chapter09 project.

Figure 9.7 shows a Panel containing the three Label controls and displaying the title and
status values in the Panel header.

FIGURE 9.7

A Panel with title and status properties

TP While a Panel looks like a dialog box, it’s typically presented “in line” with the rest of
the application layout, rather than as a pop-up window. When you present pop-up win-
dows, you typically use the TitleWwindow container or the Alert class, both of which extend the
Panel container and share its capabilities but are specifically designed for that use.

265

Z1g 8|8 The Flex Class Library

Panel styles

The Panel container supports all the Box styles described previously and adds other styles that
are specific to its functions and abilities.

The Panel container and transparency

The Panel container has a borderAlpha style that controls the level of transparency in the con-
tainer’s title bar, control bar, and sides. Alpha values in Flex are set to a range of 0 to 1, where 0 is

fully transparent and 1 is fully opaque. The default borderAlpha for a new Panel is .4, mean-
ing that it has an opaqueness of 40 percent and the background color or image can show through

the panels outside area.

TP The Panel container displays a drop shadow by default. To remove the shadow, set the
Panel object’s dropShadowEnabled property to false.

The code in Listing 9.6 displays three Panel containers with borderaAlpha settings of 0, . 4 (the
default), and 1.

LISTING 9.6

Panel containers with different borderAlpha values

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
backgroundColor="#333333" layout="horizontal">
<mx:Panel title="borderAlpha=0" width="200" borderAlpha="0"
color="#ffffff">
nested labels
</mx:Panel>
<mx:Panel title="borderAlpha=.4" width="200" borderAlpha=".4">
nested labels
</mx:Panel>
<mx:Panel title="borderAlpha=1" width="200" borderAlpha="1">
nested labels
</mx:Panel>
</mx:Application>

The code in Listing 9.6 is available in the Web site files as

O] the YWEB X .
I J ‘//LD PanelTransparency.mxml in the chapter09 project.

Figure 9.8 shows the three Panel containers with the differing levels of transparency against a
dark Application background.

266

Using Layout Containers m

Panel containers with differing borderaAlpha settings

Controlling Panel corners

By default, a Panel presents rounded corners in the header and square corners in the footer. To
instead present round corners for both the header and footer, set roundedBottomCorners to

true, like this:

<mx:Panel title="My Panel" roundedBottomCorners="true">
...nested content...
</mx:Panel>

The Panel container also supports the cornerRadius style, which determines the amount of curve
in the container’s corners. The default cornerRadius is 4 pixels. Setting this value to 0 results in
square corners at the top and bottom of the container; increasing the value creates a softer curve.

The code in Listing 9.7 creates a Panel container with rounded corners at both top and bottom
and a cornerRadius of 15.

LISTING 9.7

A Panel container with modified corner styles

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Panel title="A panel with rounded corners" width="200"
roundedBottomCorners="true" cornerRadius="15">
<mx:Label text="Label 1"/>
<mx:Label text="Label 2"/>
<mx:Label text="Label 3"/>
</mx:Panel>
</mx:Application>

The code in Listing 9.7 is available in the Web site files as PanelCorners.mxml in the

O)]the YWEE
Orlime y/EB chapter09 project.

267

Z1a8 |8 The Flex Class Library

Figure 9.9 shows the application with a Panel with rounded top and bottom corners and a
cornerRadius of 15.

FIGURE 9.9

A Panel with rounded top and bottom corners

The ControlBar container

The ControlBar container is designed to be nested as the last component within a Panel or a
TitleWindow. This container mimics the behavior of the HBox container, laying out its nested
components horizontally, and creates a footer region below the other Panel container’s nested
objects with a style that matches the title bar. In addition to providing a container for objects in the
Panel container’ footer, it rounds the Panel container’s bottom corners in the same manner as the
roundedBottomCorners style. The code in Listing 9.8 creates a Panel with a ControlBar

LISTING 9.8

A Panel with a ControlBar

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical"
backgroundColor="#cccccc">
<mx:Panel title="A Panel with a ControlBar">
<mx:Label text="Label 1"/>
<mx:Label text="Label 2"/>
<mx:Label text="Label 3"/>
<mx:ControlBar>
<mx:Button label="Button 1"/>
<mx:Button label="Button 2"/>
<mx:Button label="Button 3"/>
</mx:ControlBar>
</mx:Panel>
</mx:Application>

268

Using Layout Containers _

The code in Listing 9.8 is available in the Web site files as ControlBarDemo . mxml in

O)plithe YWEEB .
Ol V/EB the chapter09 project.

Figure 9.10 shows the resulting application. Notice that the Button controls in the ControlBar
lay out horizontally.

FIGURE 9.10

A Panel with a ControlBar

TP The ControlBar container always lays out its nested components horizontally. If you
want to stack objects in a ControlBar vertically or place them with absolute posi-
tions, declare a VBox or Canvas container inside the ControlBar.

To separate controls within a ControlBar so that they “glue” themselves to the far left and right
edges, add a Spacer control between the controls with a width of 100:

<mx:ControlBar>
<mx:Button label="Button 1"/>
<mx:Spacer width="100%"/>
<mx:Button label="Button "/>
</mx:ControlBar>

Figure 9.11 shows that the component after the Spacer is pushed to the far right edge of the
ControlBar.

269

m The Flex Class Library

A ControlBar with a Spacer

The invisible Spacer

Using Constraint-Based Layout

Constraint-based layout allows you to place objects on the screen using anchors other than a con-
tainer’s top-left corner. You can implement constraint-based layout easily using Flex Builder’s
Design and Flex Properties views or with a code-based approach. And, using the new
ConstraintRow and ConstraintColumn classes, you can anchor objects to regions other than
the borders of the container.

L IOTE Constraint-based layout works only in containers that support absolute layout. When
\ - used in the Application, Panel, or TitleWindow containers, the container’s lay-
out property must be set to absolute for constraint properties to have an effect. Because the Canvas
container always uses absolute layout, constraint properties work within that container without any
other changes to its property values. Constraint-based layout does not work in VBox, HBox,
ControlBar, or other containers that don’t support absolute layout.

Positioning components in Design view

Flex Builders Design view has tools that can create constraint properties through a combination of
selecting options in the Flex Properties view and dragging an object with anchors in the Design
view editor. Figure 9.12 shows the Constraints interface in the Flex Properties view. This interface
appears whenever a component in a container with absolute layout is selected in Design view.

270

Using Layout Containers m

The Constraints interface in the Flex Properties view

The Constraints user interface

Follow these steps to create an application a text logo that’s anchored to the application’s bottom-
right corner:

1. Open any Flex Builder project.

2. Select File @ New = MXML Application from the Flex Builder menu.

3. Asshown in Figure 9.13, enter UsingConstraints.mxml as the application filename and
set the layout property to absolute.

4. If the application opens in Source view, click the Design button.

Drag a Label control from the Components view into the application. Place it anywhere
on the screen.

6. Set the new Label controls text property to My Logo.

7. With the Label control still selected, click the Bold button in the Flex properties view.

271

Z{g8l |8 The Flex Class Library

Creating an application with absolute layout

Use of constraints requires absolute layout

Set the Label control’s font size to 18 pixels.

In the Constraints interface at the bottom of the Flex Properties view, place check marks
in the right anchor and the bottom anchor, as shown in Figure 9.14.

10. Drag the Label component toward the bottom-right corner of the Application until it
snaps to the padding alignment guides.

You should see in the Constraints interface that the number of pixels from each anchor
changes as you drag the Label control in Design view.

The completed version of the preceding exercise is available in the Web site files as

O] the YWER s _
I ! VIEE UsingConstraintsComplete.mxml in the chapter09 project.

272

Using Layout Containers m

The Constraints interface

The right anchor

The bottom anchor

Using constraint properties

Each visual component supports six constraint properties. Each of the properties is data typed as a
Number and indicates the number of pixels from the named anchor:

B left: This property sets the number of pixels from the left edge of the container to the
left edge of the nested component.

B right: This property sets the number of pixels from the right edge of the container to
the right edge of the nested component.

B top: This property sets the number of pixels from the top edge of the container to the
top edge of the nested component.

B Dbottom: This property sets the number of pixels from the bottom edge of the container
to the bottom edge of the nested component.

B horizontalCenter: This property sets the number of pixels from the horizontal cen-
ter of the container to the horizontal center of the nested component. A positive number
offsets the component to the right of the container’s horizontal center; a negative number
offsets to the left.

273

m The Flex Class Library

B verticalCenter: This property sets the number of pixels from the vertical center of
the container to the vertical center of the nested component. A positive number offsets
the component below the container’s vertical center; a negative number offsets the com-
ponent above the vertical center.

The following code is generated by Design view as the user sets properties in the Constraints inter-
face and drags the component around the screen:

<mx:Label text="My Logo" right="10" bottom="10"
fontWeight="bold" fontSize="18"/>

The right and bottom properties are set to values of 10 pixels each. As shown in Figure 9.15,

each time the user resizes the application, the Label control changes its position relative to the
application’s bottom-right corner.

FIGURE 9.15

A Label’s position controlled by constraint-based properties

10 pixels from bottom

10 pixels from right

Sizing Containers and Controls

Four strategies are available to determine the dimensions of a container or control at runtime:

B Content: Component dimensions are determined dynamically based on the cumulative
size of the components child objects.

B Absolute: Component dimensions are determined by its width and height properties
set to numeric values, interpreted as pixels.

274

Using Layout Containers m

B Percentage: Component dimensions are determined by percentage of available space.

B Constraints: Component dimensions are determined by constraint-based anchor
properties.

Content-based sizing

Content-based sizing means that a container or control expands to accommodate its contents. In
the absence of any other sizing properties, this happens automatically. With containers, this means
that the container sizes itself to accommodate and display its nested contents. With controls, this
means that the control sizes itself to display its internal objects. For example, if you don’t set a
Button controls height or width properties, it sizes itself to display its full 1abel and icon.

Default dimensions

Each container has a default height and width. For example, if you create a Panel with this
code, it has no nested components and no title property that would affect its height or width:

<mx:Panel>
</mx:Panel>

Then Panel containers default dimensions are driven by the size of its default border, gap, and
padding styles. On my test system, the Panel container’s default height is 40 pixels and its default
width is 52 pixels.

Other containers have different default dimensions. In the absence of nested content, the VBox,
HBox, and Canvas set their height and width to 0.

Minimum and maximum dimensions

You can set properties to constrain content-based sizing. These properties set minimum and maxi-
mum dimensions to place limits on a containers ability to dynamically grow and shrink:

minHeight: The container’s minimum height in pixels
minwWidth: The container’s minimum width in pixels

|
|
B maxHeight: The containers maximum height in pixels

B maxWidth: The container’s maximum width in pixels

This VBox container has a minimum width and height of 200 pixels each:

<mx:Panel minWidth="200" minHeight="200">
nested components
</mx:Panel>

The container can still expand if its contents require more space, but it can’t contract to less than
200 pixels in either dimension.

275

Z{g8l |8 The Flex Class Library

FIGURE 9.16

Absolute sizing

Absolute sizing means that you set a component’s width and height properties in absolute pixel
values. This Panel container is always displayed as 200 pixels high by 200 pixels wide, regardless
of its nested contents:

<mx:Panel width="200" height="200">
</mx:Panel>

When you use absolute sizing and a container is too small to display its nested contents, by default
it displays scrollbars that allow the user to scroll to see the contents. Figure 9.16 shows a Panel
container with nested Label components. Because nested components can’t be displayed in

the container’s available space, it displays both vertical and horizontal scrollbars.

A Panel with scrollbars

276

Scrollbars

Percentage sizing

Percentage sizing means that you set a dimension as a percentage of available space. When you set
a component’s size in MXML, you can declare percentage sizing with either the height and
width properties or with percentHeight and percentWidth.

Using Layout Containers _

Percentage sizing with height and width

When you set percentage sizing with the height and width properties, you declare the values
with a percentage expression, such as 50%. This Label control’s width is 50 percent of the avail-
able space within its container:

<mx:Label text="A sample Label" width="50%"/>

Percentage sizing with percentHeight and percentWidth

When you set percentage sizing with the percentHeight and percentWidth properties, you
use numeric expressions such as 50. This Label control’s width is also 50 percent of the available
space within its container:

<mx:Label text="A sample Label" percentWidth="50"/>

TP The height and width properties cannot be set to new percentage values at runtime
with ActionScript statements. Instead, always use percentHeight and
percentWidth in ActionScript.

TP The percentHeight and percentWidth properties return meaningful values only if
they’ve been previously set through MXML declarations or ActionScript commands.
Their values are not recalculated at runtime.

Using percentage ratios

When you declare multiple components within a container and set sizes by percentage, you can
declare a total percentage of greater than 100 percent. This VBox contains three TextInput controls,
each with a width property of 100 percent:

<mx:HBox width="450" borderStyle="solid" borderColor="#000000"
paddingBottom="10" paddingLeft="10"
paddingRight="10" paddingTop="10">
<mx:TextInput width="100%"/>
<mx:TextInput width="100%"/>
<mx:TextInput width="100%"/>
</mx:HBox>

It might seem that this means the total width of the nested component is 300 percent and would
exceed the available space. Instead, the Flex framework adds up the total percentage values and
uses the ratio of the control’s declared percentage value divided by the total to assign an actual per-
centage based on available space:

100% + 100% + 100% = 300% (the total)
For each component: 100% / 300% = 33.33%

TP If there is a combination of percentage-based and strict value sizing, space is allotted
first to the strict values. Then if the remaining space is not enough to fulfill the percent-
age-based items, the same ratio division is calculated and applied.

277

Z1g 8|8 The Flex Class Library

Figure 9.17 shows the resulting display. Each TextInput controls width is set dynamically to
33.33% of the available horizontal space.

FIGURE 9.17

Using percentage ratios

Calculated percentage ratio of 33.33% each

Constraint-based sizing

Constraint properties also can be used to control a component’s size. When a component is nested
in a container with absolute layout and two constraint properties in the vertical or horizontal
dimension are set, the component “stretches” at runtime to keep its edges the correct distance from
the two anchors. Listing 9.9 creates a Text control with right and left properties that keep its edges
50 pixels from each of the Application container’s horizontal edges.

LISTING 9.9

Using constraint-based sizing

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
backgroundColor="#eeeeee" layout="absolute">

<mx:Text id="myTextArea"
left="50" right="50" top="20" textAlign="center"
height="100%">
<mx:text>
<! [CDATA[...text...]1>
</mx:text>
</mx:Text>

</mx:Application>

278

Using Layout Containers _

The code in Listing 9.9 is available in the Web site files as ConstraintSizing.mxml

O)plihe WEE . .
Ol V/EB in the chapter09 project.

Figure 9.18 shows the resulting display. When the user resizes the application, the Text control
expands and contracts to keep its edges the correct distance from the constraint anchors.

FIGURE 9.18

A control with constraint-based sizing

—50— —50—

The left constraint The right constraint

Using Advanced Constraints

The Flex 3 framework added the ability to use constraints based on rows and columns that you
define in a container using these properties:

B constraintRows: An array of ConstraintRow instances that divide a container ver-
tically

B constraintColumns: An array of ConstraintColumn instances that divide a con-
tainer horizontally

TP As with all constraint-based features, constraint rows and columns work only in a con-
tainer that supports absolute layout.

Declaring constraint rows and columns

You create rows and columns using MXML declarations. To divide a container vertically, first
declare an <mx: constraintRows> tag set, then nest multiple ConstraintRow instances. Be
sure to assign an id property to each ConstraintRow.

279

m The Flex Class Library

280

HOUTE

TP Constraint rows and columns are not visible to the user; they’re used only at runtime to
calculate component positions and sizes. And, unlike simple constraints, you cannot
edit advanced constraints in Design view.

Flex Builder 3’s second public beta featured a new user interface that allowed you to
create ConstraintRow and ConstraintColumn instances in Design view. This
interface was removed prior to the product’s final release, so advanced constraints must now be
directly coded.

The first ConstraintRow always starts at the top of the container, and subsequent
ConstraintRow instances are placed below the first. Each ConstraintRow instance’s height
property can be set to either an absolute numeric value indicating its height in pixels or a percent-
age value indicating its value in terms of percentage of available vertical space.

This code declares two ConstraintRow instances, each using 50 percent of the Application com-
ponent’s available vertical space:

<mx:constraintRows>
<mx:ConstraintRow id="rowl" height="50%"/>
<mx:ConstraintRow id="row2" height="50%"/>
</mx:constraintRows>

Similarly, if you want to divide a container horizontally, you use ConstraintColumn instances
wrapped in the constraintColumns property. Each column starts at the left edge of the con-
tainer, and each subsequent column is added to its right. The following code sets up three
columns, each filling 100 pixels of width:

<mx:constraintColumns>
<mx:ConstraintColumn id="columnl" width="100"/>
<mx:ConstraintColumn id="column2" width="100"/>
<mx:ConstraintColumn id="column3" width="100"/>
</mx:constraintColumns>

TP A container that supports absolute layout can declare both constraintColumns
and constraintRows at the same time, allowing you to divide the container into
grid-like regions.

Placing and sizing components with advanced
constraints

You place or size components with constraint rows and columns using the same constraint proper-
ties described previously: top, bottom, left, right, verticalCenter, and
horizontalCenter. Instead of assigning the property values with a simple numeric expression
(as you would with simple constraints), you use a compound expression consisting of a constraint
row or column id and a numeric value, separated with a colon. This declaration of the bot tom

Using Layout Containers m

constraint property means that a component should be placed 10 pixels from the bottom of a
ConstraintRow with an 1d of rowl:

bottom="rowl:10"

Just as with simple constraints, you can use multiple constraint properties to control a component’s
size and make it stretch as a row or column expands. Listing 9.10 declares two constraint rows,
each taking 50 percent of the application’s available vertical space. Each of the VBox components

sizes itself vertically, using the top and bottom constraint properties and anchoring itself to one of
the constraint rows.

LISTING 9.10

An application with advanced constraints

<?xml version="1.0" encoding="utf-8"7?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
backgroundColor="#eeeeee" layout="absolute">

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
backgroundColor="#eeeeee" layout="absolute">

<mx:constraintRows>
<mx:ConstraintRow id="rowl" height="50%"/>
<mx:ConstraintRow id="row2" height="50%"/>
</mx:constraintRows>

<mx:VBox top="rowl:20" bottom="rowl:20" horizontalCenter="0"
width="50%"

borderStyle="so0lid" backgroundColor="#666666"/>

<mx:VBox top="row2:20" bottom="row2:20" horizontalCenter="0"
width="50%"

borderStyle="so0lid" backgroundColor="#999999" />
</mx:Application>

O}] the VWEE The code in Listing 9.10 is available in the Web site files as
\J the r . .
J1LD ConstraintSizing.mxml in the chapter09 project.

Figure 9.19 shows the resulting display. Each of the VBox containers uses width for horizontal
sizing and horizontalCenter for horizontal placement, and sizes and places itself vertically
with top and bottom properties that reference advanced constraint rows.

281

Z1g 8|8 The Flex Class Library

FIGURE 9.19

An application using advanced constraints

row1

row2

VBox 2

VBox 1

282

Summary

In this chapter, I described the use of layout containers, how to size components, and how to use
constraint-based layout. You learned the following:

The Flex framework uses two types of containers: layout containers to control the appli-
cation design and navigation containers to control application navigation.

The simple Box containers include VBox, HBox, and Canvas.

The HBox and VBox containers place their nested components on the screen dynamically
by calculating their cumulative size.

The Canvas container always uses absolute layout to place objects based on x and y
properties or with constraints.

The Panel container creates a dialog-box presentation and supports the absolute prop-
erty values of vertical, horizontal, and absolute.

Constraint properties allow you to place and size objects with anchors to any of a
container’s borders or center positions.

Components can be sized based on content, absolute dimensions, percentage dimensions,
or constraints.

Flex 3 adds advanced constraints that allow you to divide a container into multiple rows
and columns.

Using Cascading
Style Sheets

lex applications have a default visual appearance that’s determined by IN THIS CHAPTER

a combination of graphics that are embedded in the Flex framework,

known as skins, and various visual settings that are set through Understanding style sheets
Cascading Style Sheet declarations.

Using inline style declarations

Using style selectors

About Cascading Style Sheets Using embedded and external

style sheets

Web site developers may already be familiar with the concept of Cascading

Style Sheets (CSS), because this technology has been increasingly used to Controlling styles with
control the visual appearance of Web pages since its introduction in 1996. ActionScript

The Cascading Style Sheet recommendation is created and published by Graphical skinning of visual
the World Wide Web Consortium (W3C), the same organization that pub- components

lishes the recommendations for HTML, XML, and other critical Internet . .

technologies. Importing skin symbols from

Flash CS3

Information about the World Wide Web Consortium’s CSS
recommendation and other CSS resources is available at
http://www.w3.0rg/Style/CSS/.

oo Ea A L, Az
YWEE RESOUNCE

It’s up to the vendors who actually create the Web browsers and other prod-
ucts to implement CSS for their own platforms. Web browsers, for example,
implement various subsets of the W3C recommendation; it’s only in recent
years that the major browsers such as Internet Explorer and Firefox have
approached compatibility in their CSS implementations.

283

Z1a8 |8 The Flex Class Library

The use of CSS to control visual appearance isn't limited to Web-based technologies. Flex applica-
tions that are installed on the desktop with the Adobe Integrated Runtime (AIR) use CSS in exactly
the same manner as Flex Web applications.

The Flex framework implements significant parts of the W3C’s CSS recommendation and adds fea-
tures that make the technology particularly effective for implementing Flex application graphic
designs.

In this chapter, [describe using CSS in Flex to control an application’s visual appearance. I start by
describing how to declare and control style sheets in a number of ways. At the end of the chapter, I
describe a particular aspect of Flex styles called skinning that allows you to replace the default
graphics that control a Flex application’s appearance.

VER To use the sample code for this chapter, import the chapter10.zip Flex project

O] the)
O ltne archive from the Web site files into your Flex Builder workspace.

What Is a Style Sheet?

A style sheet consists of rules that constitute a set of visual settings. Any particular style sheet can
consist of three parts:

B The selector determines the scope of a set of rules that are declared in the style sheet. A
single selector can declare multiple styles, each requiring a name and a value.

B The style name determines which style is being set.

B The style value determines the new style setting.

MXML-based declarations of styles and non-style properties look the same. This VBox container
declares a width property and a backgroundColor style:

To know that one is a property and the other a style, you'd have to look it up in the product docu-
mentation. You encounter differences between styles and properties when you set their values in
ActionScript or actual style sheet declarations, or when you read about their use in the product
documentation. Table 10.1 describes some of the differences between styles and properties.

TABLE 10.1

Differences between Styles and Properties

Styles Properties

Documentation is found in the Styles section for Documentation is found in the Properties section for
each component. each component.

Styles can be applied to multiple objects through Properties can apply only to a single object.

embedded or external style sheets.

284

Using Cascading Style Sheets

Styles Properties
When set at runtime with ActionScript, Properties can be set at runtime in ActionScript with
styles always use the setStyle () method. simple dot notation.
Multiple style rules can be compiled into Properties cannot be compiled into separate
.swf files and loaded at runtime. .swf files.
You can use these ways, among others, to declare styles in Flex:
B Inline styles: Declared as attributes in an objects MXML declaration
B Embedded style sheets: Declared within an MXML file in an <mx: Style> tag set
B External style sheets: Created as text files with a file extension of . css
B Compiled style sheets: Created as . swf files and can be loaded at application runtime
Regardless of how you declare a style, the name of the style and its value are always the same. For
example, a style of fontSize is always set as a numeric value indicating the font height in terms
of pixels. This style can be set in inline, embedded, external, or compiled style sheets, and its effect
is always the same.
L OTE Unlike the HTML implementation of CSS, Flex applications do not support any unit of
A - measurement other than pixels. If you try to use unit-of-measurement abbreviations like
pt, em, or px, they are either ignored or result in a compiler error, depending on the context.
L] L] Ld
Using Inline Style Declarations
When you declare an object in MXML, you can declare any of its styles using XML attributes. The
attribute’s name matches the style’s name, and the style’s value is declared in various ways depend-
ing on its data type.
L IOTE Unlike the Web browser implementation of CSS, Flex does not support a CSS id selec-

AR A
AU .U\

tor that would allow you to apply a style in an embedded or external style sheet to
a single object by its id property. If you need to apply a style to a single object, use an inline style
declaration.

This Label control declares its color style to a value of red using an inline style declaration and
a hexadecimal color code:

<mx:Label text="Hello World" color="#f££0000"/>

Many styles have two versions of their names. For example, the fontSize style has a
name whose syntax is sometimes described as camel case, due to the use of uppercase
characters in the middle of the style name. This style also can be declared in an embedded or external
style sheet with the hyphenated name of font -size. However, when setting styles in an inline dec-
laration, you must use the camel case version of the name, because the hyphenated version isn’t rec-
ognized by the MXML parser.

285

m The Flex Class Library

TP One of XML’s fundamental syntax rules is that the order of attribute declaration isn’t
meaningful. In the MXML language, this means that you can declare property, style, and
event listener attributes in any order because the order doesn’t have any effect on the function or
performance of the object you're declaring.

Using Style Selectors

You can declare complete style sheets either embedded within an MXML source code file or in a
separate, external . css file. Fither way, the style sheet contains one or more selectors, each of
which determines the scope of a set of style declarations.

The Flex implementation of CSS has three kinds of selectors:

B Type selectors declare a set of styles that are applied to all instances of that
ActionScript type.

B Style name selectors (traditionally known as class selectors) declare a set of styles within
an arbitrarily named collection that is then applied to multiple components through the
styleName property.

B The global selector declares a set of styles that are applied to all components within the
application.

Regardless of which selector you use, the syntax is similar: the selector, followed by a block of style
declarations wrapped in braces. Each style declaration consists of a name and a value, separated by
a colon (:). The style declaration should be ended with a semicolon (;) to separate it from other
style declarations.

Using type selectors

A type selector consists of the name of an ActionScript class that represents a visual component,
followed by a code block containing one or more style declarations. This type selector declares a
set of styles that are applied to all Label controls:

Label {
color:#££0000;
font-size:14;

}

Because ActionScript class names are case-sensitive, type selectors must be spelled exactly the same
as the names of the ActionScript visual components to which the styles are being applied.

~a JTIUN] Type selectors can be declared only in the Application, not in a custom component. If
AR you try to use a type selector in a component, a compiler warning is generated and the
style(s) won’t be applied.

286

Using Cascading Style Sheets

TP Property names in embedded or external style sheets can use either camel case or
hyphenated syntax. Flex Builder 3’s code completion tool always suggests camel case
names in inline style declarations (which are required) and hyphenated syntax in embedded or exter-
nal styles. Because you get help with hyphenated names in the latter context, all code samples in this
chapter follow that standard.

Multiple type selectors

You can apply a set of styles to multiple types using a selector consisting of a comma-delimited
list. This declaration applies to all instances of the Label, Text, TextInput, and TextArea
controls:

Label, Text, TextInput, TextArea ({
color:#££0000;
font-size:14;

Type selectors and custom components

Type selectors also can be used to apply styles to instances of your own custom components. For
example, if you create a custom component in an MXML file named MyComponent . mxml, its type
is MyComponent. This style sheet applies styles to all instances of the custom component:

MyComponent {
color:#££0000;
font-size:14;

Type selectors and class inheritance

When you declare a type selector in a style sheet, the selector’s inheritable styles apply to all
instances of that type and to all instances of any of the type’s subclasses. For example, because the
VBox and HBox containers are both extended from the Box superclass, the Box selector applies
its style declarations for all instances of either container:

Box {
background-color:silver;
border-style:solid;
border-color:black;
border-thickness:2;
padding-top:5;
padding-bottom:5;
padding-left:5;
padding-right:5;

}

Figure 10.1 shows the resulting application with an HBox and VBox that use the same styles.

287

m The Flex Class Library

VBox and HBox using the Box selector styles

TP Type selectors that designate a superclass are inherited by subclasses even when the
styles used in the selector are marked in the documentation as not implementing CSS
inheritance. The documentation is describing which styles are inherited based on containership.

For example, if you apply font-based styles, which are inheritable, to a VBox selector, all text controls
nested in VBox containers use those styles. Non-inheritable styles such as the border styles shown in
the previous example are only applied to the VBox itself, and not to its nested child objects.

Class inheritance also is taken into account with custom components. If a custom component
named MyComponent is extended from the VBox or HBox containers, it also would apply the
inheritable styles declared in the Box selector.

Because the Canvas container isn’t extended from Box, to apply the same styles to this container
as well, you could use a multiple type selector:

Box, Canvas {
style declarations

}

Using style name selectors

A style name selector, also sometimes known as a class selector, consists of any valid string,
prepended with a period (.). Style names are typically created with an initial lowercase character
and any mixture of uppercase and lowercase characters after that. This style name selector contains
a single style declaration:

.redFont {
color:#£f£0000;
}

TP Style name selectors are identical in purpose and declaration syntax to the HTML con-
cept of class selectors. As with the style class in HTML, a style name defines a set of
rules that can be applied to any object arbitrarily.

288

Using Cascading Style Sheets m

A style name selector doesn't apply its styles to any object on its own. Instead, each object “opts in”
to apply the selector’s styles with the styleName property. This Label control uses the style rules
in the redFont selector:

<mx:Label text="Hello World" styleName="redFont"/>

Style name selectors can be declared in the Application or within any custom component. If the
same style name selector is declared at two levels of the application’s containership and sets conflict-
ing values for any particular style, the declaration in the custom component takes precedence.

TP You use the period as a prefix to the style name only in the selector definition, not in
the styleName property. If you include the period in the styleName property, the
settings are ignored.

Using the global selector

The global selector has a reserved name of global (always typed in all lowercase). Styles declared
within the global selector are applied to all visual components in the entire application.

There aren’t many styles that you’d want to apply to the entire application. This feature’s
use is typically restricted to setting default font styles such as fontFamily and
color. It wouldn’t make sense, for example, to apply border or padding styles to every object in

the application.

~AaETA
AU LN

This global declaration sets the default font family and color for the entire application:

global {
font-family:Times New Roman, Times, serif;
color:purple;

}

Using embedded style sheets

You can embed a style sheet in an MXML application or component with the <mx: Style> com-
piler tag set. As previously described, a style sheet embedded in a custom component can include
only style name selectors. Style sheets embedded in the Application can contain a mixture of

type, style name, and global selectors.

CalTION The <mx:Style> tag must be declared as a direct child element of the MXML file’s
et root element. An <mx: Style> tag placed within any other child element in the MXML
containership results in a compiler error.

The code in Listing 10.1 shows an application with an embedded style sheet. The embedded style
sheet’s selectors and rules are applied to the entire application.

289

Z1g 8|8 The Flex Class Library

An embedded style sheet

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
horizontalAlign="center"
layout="horizontal">

<mx:Style>

global {
font-family:Times New Roman, Times, serif;
color:purple;

Box {
background-color:silver;
border-style:solid;
border-color:black;
border-thickness:2;
padding-top:5;
padding-bottom:5;
padding-left:5;
padding-right:5;

.redFont {
color:#££0000;

</mx:Style>

<mx : VBox>
<mx:Label text="Hello World" styleName="redFont"/>
<mx:Button label="Click me"/>

</mx:VBox>

<mx : HBox>
<mx:Label text="Hello World"/>
<mx:Button label="Click me"/>
</mx : HBox>

</mx:Application>

The code in Listing 10.1 is available in the Web site files as EmbeddedStyles.mxml in
the chapter10 project.

<
<
171
e

OINEE]

290

Using Cascading Style Sheets

Using external style sheets

You can store style sheets in text files with a file extension of .css. As with embedded style sheets,
an external style sheet contains a collection of style selectors, each declaring one or more style and
value.

Flex Builder can create a new style sheet for you in a couple of ways:
M As anew blank style sheet file

B By exporting existing styles from Design view to a new external style sheet

Creating a blank style sheet

To create a new blank style sheet, select File & New &> CSS File from the Flex Builder menu, or
right-click in the Flex Navigator view and select New => CSS File. As shown in Figure 10.2, set
the filename and location of the CSS file.

FIGURE 10.2

Creating a new external style sheet

L IOTE You can save external style sheets anywhere in your project. The <mx: Style> tag

) - styles are added to the application at compile time and are not loaded at runtime, so
the style sheet file technically doesn’t have to be in the source folder; however, | recommend that
you place it in the source folder or somewhere in its subfolder structure.

291

m The Flex Class Library

After you've created the external style sheet file, you can manually add selectors and properties. As
shown in Figure 10.3, Flex Builder provides code completion support in external style sheets that
helps you correctly type the property names and values. To get code completion help at any time,

press Ctrl+spacebar to see available properties and values.

FIGURE 10.3

Code completion in an external style sheet

Press Crtl+Space for code completion

Listing 10.2 shows the contents of an external style sheet file. Notice that there is no <mx: Style>
tag set, because this is no longer an MXML file.

LISTING 10.2

An external style sheet file

global {
font-family:Times New Roman, Times, serif;
color:purple;

}

Box {
background-color:silver;
border-style:solid;
border-color:black;
border-thickness:2;
padding-top:5;
padding-bottom:5;
padding-left:5;
padding-right:5;

292

Using Cascading Style Sheets

}
.redFont {
color:#f£0000;

)] the YVWEE The code in Listir}g 10.2 is available in the Web site files as styles.css in the
- chapter10 project.

To incorporate an external style sheet into an application, declare the <mx: Style> tag set with a
source property referring to the style sheet file by its name and relative location:

<mx:Style source="styles.css"/>

~L A When you declare <mx: Style> with a source property, you cannot also include
A - N

nested CSS declarations. You can, however, declare more than one <mx:Style> tag set
in an application or component.

Listing 10.3 shows the application now referring to an external style sheet.

LISTING 10.3

An application referring to an external style sheet

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
horizontalAlign="center" layout="horizontal">
<mx:Style source="styles.css"/>
<mx:VBox>
<mx:Label text="Hello World"

<mx:Button label="Click me"/>
</mx:VBox>

<mx : HBox>
<mx:Label text="Hello World"/>

<mx:Button label="Click me"/>
</mx:HBox>

</mx:Application>

styleName="redFont" />

C)] the YYE The code in Listing 10.3 is available in the Web site files as ExternalStyles.mxml in

the chapter10 project.

e

Exporting existing styles

Flex Builder 3 adds a new feature that allows you to export inline styles of any component instance
to an external style sheet and then link the current application to that external file.

293

Z1g 8|8 The Flex Class Library

When you export styles from a component instance, you can define what kind of selector the styles
should be applied to the following:

All components (the global selector)

All components with style name

The current specific component’s name

The current specific component’s name plus a style name
Follow these steps to learn how this feature works:
1. Create a new MXML application named ExportStyles.mxml with its Llayout prop-
erty set to vertical.
If the application opens in Source view, switch to Design view.
Drag a Label from the Components view into the application.
In the Flex Properties view, set the Label component’s properties as follows:
text: Hello World
color: #0000
fontSize: 14
5. Switch to Source view.

Your application code should look like this:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">

<mx:Label text="Hello World" color="#ff0000" fontSize="14"/>

</mx:Application>
Switch back to Design view, and select the Label control.
In the Flex Properties view, click Convert to CSS, as shown in Figure 10.4.

If prompted to save changes to the application, click Yes.

© ® N

In the New Style Rule dialog box, shown in Figure 10.5, select New to create a new CSS
style sheet.

10. In the New CSS File dialog box, name the new style sheet newStyleSheet.css in the
project’s src folder and click Finish.

11. In the New Style Rule dialog box, select Specific component and click OK.
Flex Builder should now display the new CSS file in Design view.

12. Return to the application and switch to Source view.

294

Using Cascading Style Sheets m

Exporting styles from the Flex Properties view

Click to export styles

FIGURE 10.5

The New Style Rule dialog box

295

m The Flex Class Library

Style Data Types

hen you set a style, you use syntax that's specific to the style’s data type. Some styles require
String values, others numeric values, and still others Array values containing specific num-
bers of items.

For example, the fontSize style requires a numeric value. When you set this value in an MXML
inline attribute, you declare it as a String and it's converted to a Number by the Flex compiler:

<mx:Label text="Hello World" fontSize="14"/>

Other styles require specific String values. For example, the fontwWeight style requires a String,
but only accepts values of bold and normal:

<mx:Label text="Hello World" fontWeight="bold"/>

Styles that require color values accept a number of formats. The most common color code format is
hexadecimal and consists of a six-character string defining the amount of red, green, and blue in the
color. The string can be prefixed by either a hash or pound character (#) or by a zero and small x (0x). If
you want to store this value in a variable, you can set the hex value without quotes to an int (integer) or
uint (unsigned integer) data type. This Label sets its font color to blue with a hexadecimal code:

<mx:Label text="Hello World" color="0x0000FF"/>

Colors can also be declared using RGB percentage values. This syntax consists of the key word rgb,
followed by a comma-delimited set of percentage values representing the amount of red, green, and
blue. This syntax only works in embedded or external style sheets, not in inline declarations. This
style declaration means that Label controls have a font color of red:

Label {
color:rgb(100%, 0%, O
}

oe

)

You also can set color values with named colors. Color names that are recognized by the Flex com-
piler include Aqua, Black, Blue, Fuchsia, Gray, Green, Lime, Maroon, Navy, Olive, Purple,
Red, Silver, Teal, White, and Yellow. This Label sets its font color to teal with a named color:

<mx:Label text="Hello World" color="teal"/>

Style values that are typed as Array are declared in MXML as comma-delimited lists wrapped in
brackets. The Button control’s fi11Colors style requires an array of two colors that are then used
to create a background gradient. As with simple color values, you can use hexadecimal or named
colors:

<mx:Button label="Click Me" fillColors="[blue, white]"/>

When you declare the Array values in an embedded or external style sheet, you still use the comma-
delimited list, but don’t include the brackets. This style sheet declaration sets the f£illColors style
for all Button controls in the application with a vertical gradient of blue and white:

Button {
fill-colors:#0000££f,#000000;

296

Using Cascading Style Sheets

The application’s source now contains an <mx: Style> declaration pointing to the external style
sheet, and the Label control’s inline styles have been removed:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">
<mx:Label text="Hello World"/>
<mx:Style source="newStyleSheet.css"/>
</mx:Application>

The external style sheet now contains the styles that were part of the Label declaration, now
applied in a type selector:

/* CSS file */
Label
{
color: #££0000;
fontSize: 14;

O}] the VWEE The complete code from the preceding exercise is available in the Web site files as
] e I .

-~ ExportStylesComplete.mxml and newStyleSheetComplete.css in the
chapter10 project.

Using Compiled Style Sheets

Style sheets can be compiled into external .swf files and then loaded at runtime.

L IOTE Neither Flash Player nor the Flex framework includes a CSS parser that would allow a
) - Flex application to parse a “raw” CSS file at runtime. The ability to load a pre-compiled
CSS file was added to Flex in version 2.0.1.

Compiling style sheets

Flex Builder 3 can create a compiled style sheet with a simple menu selection. These steps describe
how to compile a style sheet:

1. Create a new external style sheet named compiledstyles.css in the current project’s
src folder.

2. Add a Label selector that sets the color to blue, the font-size to 18, and the
font-weight to bold:

Label {
color:blue;
font-size:18;
font-weight:bold;

297

m The Flex Class Library

Save the external style sheet file.

As shown in Figure 10.6, right-click the style sheet file in the Flex Navigator view and
select Compile CSS to SWE

FIGURE 10.6

Using the Compile CSS to SWF option

The compiled SWF file is created in the same folder as the external style sheet, and is also copied
to the project’s output folder.

TP Once the Compile CSS to SWF option has been selected for any particular external
style sheet, the compilation option remains selected for that file until you deselect it.
Whenever Flex Builder rebuilds the project, the CSS file is recompiled as well.

You should see the new compiledstyles. swt file in the project source folder.

Loading compiled style sheets

The compiled style sheet file becomes an asset that can be dynamically loaded at runtime. Its styles
can then immediately be applied to existing component instances in the application.

298

Using Cascading Style Sheets m

To load the precompiled application at runtime, use an ActionScript class named StyleManager.
The class has a method named loadStyleDeclarations () that loads compiled style sheets
and optionally updates the application’ style declarations immediately.

Follow these steps to use the StyleManager class:

Create a new MXML application named RuntimeStyles.css.
Add a Label control with a text property of Hello World.

Add a Button control with a label of Load Styles. Set its click event listener to exe-
cute this code:

StyleManager.loadStyleDeclarations ('compiledstyles.swf');

Listing 10.4 shows the completed application.

LISTING 10.4

An application loading a compiled style sheet at runtime

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">

<mx:Label text="Hello World"/>

<mx:Button label="Load Styles"
click="StyleManager.loadStyleDeclarations (
'compiledstyles.swf');"/>

</mx:Application>

& e, The code in Listing 10.4 is available in the Web site files as
Orlthe Y/EE . . .
RuntimeStylesComplete.mxml in the chapter10 project.
4. Run the application.
Click Load Styles.

When the application first loads, the Label control is displayed with its default font
color, weight, and size. When you click Load Styles, the application loads the compiled
style sheet and updates the Label control’s presentation.

Using the StyleManager class, you also can unload styles, delay style updates, and react to vari-
ous events in the process of working with dynamic styles.

WEE SO UL For more information on runtime loading of styles, visit http: //1livedocs.adobe
/E F)
JIZD KIvooNes .com/labs/flex3/html/help.html?content=styles_10.html.

299

Z1g 8|8 The Flex Class Library

LISTING 10.5

Controlling Styles with ActionScript

You can control styles at runtime in many ways. These tasks are available:

Loading of compiled style sheets (described in the preceding section)
Setting and getting styles for individual component instances

Modifying selectors and their properties

Changing a component instance’s style name

Setting and getting style information

Every visual component in the Flex framework supports methods named setStyle () and
getStyle () that allow you to set or get any particular style’s values. As described previously, you
cannot use simple dot syntax to access style information (as you might with a component prop-
erty). This code, for example, would produce a compiler error:

myLabel.fontSize=18;

The use of dot syntax to separate a component instance id and its members works with properties,
but not with styles.

Instead, use the setStyle () method to reset a style’s value at runtime:
myLabel.setStyle("fontSize", 18);

And use the getStyle () method to get a style’s value:
var currentSize:Number = myLabel.getStyle("fontSize");

The code in Listing 10.5 shows an application with Label control and two Button controls.
Clicking Change Font Size results in modifying the Label control’s font size at runtime. Clicking
Get Font Size displays the Label control’s current font size.

Setting and getting style values

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

300

layout="vertical">
<mx:Label id="myLabel" text="Hello World" fontSize="10"/>

<mx:Button label="Change Font Size"
click="myLabel.setStyle('fontSize', 18)"/>

Using Cascading Style Sheets

<mx:Button label="Get Font Size"
click="myLabel.text='Current font size: ' +
myLabel.getStyle('fontSize')"/>

</mx:Application>

The code in Listing 10.5 is available in the Web site files as

O))] the YWER . .
1 ! jj:'r) SettingAndGettingStyles.mxml in the chapter10 project.

As shown in Figure 10.7, the Label displays its own current font size when the second button is
clicked.

FIGURE 10.7

The font size changes when the ActionScript code is executed.

~,1mm A~ Styles are never bindable at runtime. This code, which tries to bind to a style’s current
e value at runtime, succeeds upon application startup, but fails to execute when the tar-
get component’s style changes at runtime:

<mx:Label text="{'Current font size: ' +
myLabel .getStyle('fontSize')}"/>

Modifying style selectors at runtime
You can modify style selectors at runtime with the CSSStyleDeclaration and
StyleManager classes. You can use one of these approaches:

B Create an instance of CSSStyleDeclaration bound to a style name or type selector.

B Create an instance of CSSStyleDeclaration without a selector, and then use the
StyleManager classs setStyleDeclaration () method to bind the styles to the
selector.

301

m The Flex Class Library

Using bound CSS declarations

To bind a CSSStyleDeclaration to a style selector, pass the selector as an argument to the
class’s constructor method:

var style:CSSStyleDeclaration = new CSSStyleDeclaration("Label");

Then, to change the styles in the selector, use the objects setStyle () method using the same
syntax as with individual component instances:

style.setStyle("fontSize", 18);

When the setStyle () method is executed, the selector and any component instances it effects
are updated immediately.

Binding CSS declarations with the StyleManager class

You can delay updates of styles by using unbound instances of CSSStyleDeclaration. To
create an unbound style declaration, use the class’s constructor method without any arguments:

var style:CSSStyleDeclaration = new CSSStyleDeclaration() ;

Set the style declaration’s rules with the setStyle () method as described previously. Then, to
bind the declaration to a style selector, call StyleManager.setStyleDeclaration () with
three arguments:

B The style selector name

B The CSSStyleDeclaration instance

B A Boolean value indicating whether you want to update the styles immediately

The code in Listing 10.6 declares an unbound instance of CSSStyleDeclaration, sets two
styles, and then binds and updates the styles.

LISTING 10.6

Binding CSS declarations with StyleManager

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical">
<mx:Script>
<! [CDATA[
private function setLabelStyles(size:Number, weight:String) :void
{
var style:CSSStyleDeclaration = new CSSStyleDeclaration() ;
style.setStyle("fontSize", size);
style.setStyle("fontWeight", weight) ;
StyleManager.setStyleDeclaration("Label", style, true);

302

Using Cascading Style Sheets m

}
11>
</mx:Script>
<mx:Style>
Label {
font-size:12;
}
</mx:Style>
<mx:Label text="Hello World"/>
<mx:Button label="Change Label Styles"
click="setLabelStyles (18, 'bold')"/>
</mx:Application>

)] the VEE The code in Listing 10.6 is available in the Web site files as
| e Cr . .
] 115D ChangingSelectors.mxml in the chapter10 project.

The setstyle () method is particularly resource-intensive, as it has to look up the

f\l A [r\ \
Dkl entire inheritance tree to be correctly applied.

Graphical Skinning of Visual Components

Skinning refers to the process of applying a set of graphics that replace a visual component’s default
appearance. You can create skins either graphically or programmatically. In this section, I describe
the process of creating and applying programmatic skins.

Creating graphical skins
A graphical skin is an image that is designed to replace the default appearance of a Flex visual com-
ponent. You can create graphical skins in these formats:

B GIF

B PNG

m PG

B SWF

Using bitmap graphics as skins

When a skin graphic will always be displayed with the same dimensions, you can use bitmap
graphics built in any of these formats and have the freedom to use any graphical editing applica-
tion you like. Many applications successfully create . png, .gif, and . jpg format graphic files,
including Adobe Fireworks, Photoshop, and Illustrator.

303

Z1g 8|8 The Flex Class Library

When you create a bitmap graphic to use as a skin, the original graphic should be sized exactly as

you want it to appear in Flex. For example, all the graphical skins that will be used to visually rep-
resent the CheckBox controls typically share the same dimension of width and height (to create a
square appearance).

Graphical skins are assigned to visual components through the styles APIL. The Styles documenta-
tion for any particular visual component will include both simple styles that require values typed
as String, Number, and Array values and skinning styles that require embedded graphics. For
example, the CheckBox component supports these graphical skins to represent the box and tick
mark area of the control:

upIcon

downIcon
overIcon
upSelectedIcon
downSelectedIcon
overSelectedIcon

|
|
|
|
|
|
B disabledIcon
|

disabledSelectedIcon

In order to properly skin the CheckBox component, each icon style should have a graphic
assigned to it. To assign a skin, add the appropriate style name, followed by an Embed () declara-
tion that references the graphic file. This declaration means the downIcon.png graphic is dis-
played when the mouse button is down over a CheckBox with a selected property of true:

downSelectedIcon: Embed(source="skins/downSelectedIcon.png") ;

Assuming you've created a bitmap graphic for each button state, the CheckBox selector might
look like this:

CheckBox

{
upIcon: Embed(source="skins/upIcon.png") ;
downIcon: Embed(source="skins/downIcon.png") ;
overIcon: Embed(source="skins/overIcon.png") ;
disabledIcon: Embed(source="skins/disabledIcon.png") ;
selectedUpIcon: Embed(source="skins/selectedUpIcon.png");
selectedOverIcon: Embed(source="skins/selectedOverIcon.png") ;
selectedDownIcon: Embed(source="skins/selectedDownIcon.png") ;
selectedDisabledIcon:
Embed (source="skins/selectedDisabled.png") ;

}

As shown in Figure 10.8, the CheckBox component is now displayed with the graphics you
assigned.

304

Using Cascading Style Sheets m

A skinned CheckBox component

A Skinned Checkbox
A Normal Checkbox

Bitmap versus vector graphics

The first three types of graphics listed here are bitmap graphics, meaning that they store informa-
tion about individual pixels in the graphic file. These types of graphics don’t always scale well
when stretched to accommodate a visual component that’s been resized. A graphic created as a
.png file may look fine when presented in its original size, but when its size is expanded at run-
time, it shows the raw pixels in a phenomenon known as pixelating or stair steps.

Figure 10.9 shows a bitmap graphic in its original size of 30 pixels height and width and the same
graphic displayed at three times its original size.

FIGURE 10.9

The effect of scaling on a bitmap graphic

* ®

Normal Size 3x normal size

With a bitmap image, the graphic is distorted and pixelated when it’s expanded to a scale greater
than 100 percent of its original size.

C)] the VEE A Flex application file that displays the bitmap graphic is available in the Web site files
NEE r : H

| 112D as BitMapScaling.mxml in the chapter10 project.

Vector graphics store their information mathematically instead of one pixel at a time. As a result,
when these graphics are scaled to a larger size, they don't distort in the same way. You can create
vector graphics with either Adobe Flash or Illustrator CS3.

Figure 10.10 shows a vector graphic created in Flash with its original size of 30 pixels height and
width and the same graphic displayed at three times its original size.

305

Z{g8l |8 The Flex Class Library

FIGURE 10.10

The effect of scaling on a vector graphic

- O

Normal Size

O1lihe YWE

306

3x normal size

With the vector graphic, the edges of the graphic are recalculated as its scale is increased. The
resulting smooth lines and gradients are clearly a better result than with the bitmap approach.

A Flex application file that displays the vector graphic is available in the Web site files as
VectorScaling.mxml in the chapter10 project.

Creating vector-based skins in Flash CS3

The Flex framework uses a skinning library built in Flash CS3 to determine a Flex application’s
default visual appearance. The Flash source file that’s used to build the graphical skinning library is
named AeonGraphical. fla and is stored in this folder under the Flex Builder installation

folder:

sdks/3.0.0/frameworks/themes/AeonGraphical/src

If you have Flash CS3, you can open this file and see how it’s built. Follow these steps to build it

yourself:

Open Flash CS3.

Open AeonGraphical.fla from sdks/3.0.0/frameworks/themes/
AeonGraphical/src under the Flex Builder installation folder. Figure 10.11 shows
the Flash file’s stage, which contains one instance of each skinning graphic.

Using Cascading Style Sheets m

The Flash skinning source file, AeonGraphical. fla

3. Select Window = Library from the Flash menu to open the Library panel. As shown in
Figure 10.12, each skinning graphic is stored as a symbol in the Flash document library.

307

Z1g 8|8 The Flex Class Library

308

FIGURE 10.12

The Flash skinning source file’s Library panel

Follow these steps to create a new skinning graphic in Flash CS3:

Create a new graphic object in Flash.
Convert the graphic to a MovieClip symbol.
Add linkage to export the graphic for use in ActionScript.

A

Publish the Flash document to . swf format.

After the Flash document has been created, you're ready to use the skinning graphic in a Flex
application.

If you're working with Flash and have downloaded the exercise files from the Web site, follow
these steps to view a document showing simple skinning graphics for the CheckBox component:

1. Open Flash CS3.

2. Open CheckBoxSkins. fla from the chapter10 project’s src/skins subfolder. As
shown in Figure 10.13, the Flash source file displays eight symbol instances.

Using Cascading Style Sheets m

The Flash stage with symbol instances

Symbol Instances

Symbols in the Library

Select Window &> Library to open the Library panel.
Double-click any symbol to open it in edit mode.

Notice that each skin consists of simple graphic and optional text elements.

Tl To zoom in on the symbol and display it in a larger size, press Ctrl+=.

5. Click Scene 1 to return to the document stage.

6. Right-click any symbol in the library, and select Linkage.

As shown in Figure 10.14, the Linkage properties for each symbol have a class consisting of the
component name and the skinning style name, separated by an underscore (_) character.

309

Z1g 8|8 The Flex Class Library

FIGURE 10.14

Setting symbol Linkage properties

310

Flash symbols that will be used as graphical skins have these requirements:
W At least one instance of each symbol must be placed on the stage. If no instances of a
symbol are on the stage, Flash doesn't include the symbol in the compiled .swf file.
B Each symbol must have an external class set through its Linkage properties.

B [f any ActionScript code is included in the symbol, the document must be published as a
Flash 9 document using ActionScript 3, because Flash Player 9 cannot execute both
ActionScript 2 and ActionScript 3 in the same document.

After publishing a document as an . swf file, you're ready to use the Flash symbols as graphical
skins.

Declaring Flash-based skins

As described previously, graphical skins are assigned to visual components through the styles inter-
face. When you assign a Flash symbol as a graphical skin, the syntax is similar to that for a bitmap
graphic, but you also need to tell the Flex compiler which symbol to use.

This declaration assigns the CheckBox component’s downSelectedIcon skin to the appropri-
ate symbol from a compiled Flash document:

downSelectedIcon: Embed(source="skins/CheckBoxSkins.swf",
symbol="CheckBox_downSelectedIcon") ;

Importing skin artwork

Flex Builder 3 adds a new feature that allows you to import bitmap or vector-based graphical skins
and create the required style sheet declarations. The resulting output is stored in an external style
sheet that can then be linked into the application with an <mx: Style> tag set.

You can import vector-based skins that are created in Flash CS3 or Illustrator CS3. In this section, I
describe how to prepare skins for import in Flash and then how to import them into your project.

Using Cascading Style Sheets m

Preparing symbols in Flash for import

Before you can import graphical skins with the Flex Builder skin artwork import tool, the skins
must be exported to a Flash component library. A component library is an archived file in .zip for-
mat with a file extension of .swc.

Follow these steps to export multiple MovieClip symbols from Flash CS3:

1. In the Flash document that contains the symbols, ensure that each symbol you want to
export has Linkage properties with a valid class name.

TP For the best import results, set the symbol’s Linkage class name as the name of the Flex
component for which the graphical icon will be used and the skin name as described in
the Flex documentation, separated by the underscore () character. When you import this symbol, the
import tool suggests binding the graphic to the component and skin style name with this information.
For example, the symbol for the CheckBox component’s upIcon style would have a Linkage class
name of CheckBox_upIcon.

2. Add one instance of each symbol to the stage.

3. Select all symbols you want to export, and select Modify & Convert to Symbol from the
Flash menu.

4. In the Convert to Symbol dialog box, enter any descriptive string as the Name, and enter
Movie Clip as the Type.

Right-click the new symbol in the Library, and select Linkage from the context menu.
In the Linkage Properties dialog box, select Export for ActionScript.

As shown in Figure 10.14, set the Class to a valid ActionScript class name (no spaces or
other special characters are allowed), and click OK to save the Linkage properties.

Right-click the new symbol in the Library panel, and select Export SWC File.

Save the file into the Flex project folder.
You're now ready to import the graphical skin symbols.
Importing skin artwork
Flex Builder’s skin artwork import tool can import graphical skins from these kinds of files:

B Flash component libraries in .swc format

W Flash .swf files created in Illustrator CS3

B Bitmap graphics in .png, .gif, and .jpg format
Follow these steps to import graphics from a Flash component library created using the steps in
the preceding section:

1. Select File & Import &> Skin Artwork from the Flex Builder menu.

2. Asshown in Figure 10.15, select the radio button for SWC or SWF file and then choose
the .swec file you created in Flash.

311

Z1g 8|8 The Flex Class Library

Select a new or existing .css file in which the skin style rules should be created.
Select an application you want to use the graphical skins.
Click Next.

In the Import Skin Artwork dialog box, shown in Figure 10.15, select each Symbol Class
you want to import and assign it a Style Selector and a Skin Part.

FIGURE 10.15

o oW

The Import Skin Artwork dialog box

TP The settings shown in Figure 10.15 are assigned automatically by the import tool,
because the skin symbol class names match the component and skin style names as

described previously.

7. Click Finish to import the skin symbols.

The .css file you select now contains skin style declarations wrapped in the selectors you selected.
Listing 10.7 shows the resulting style sheet declaration code.

LISTING 10.7

Imported style sheet declarations

CheckBox

{
disabledIcon: Embed(skinClass="CheckBox_disabledIcon") ;

downIcon: Embed(skinClass="CheckBox_downIcon") ;

312

Using Cascading Style Sheets m

overIcon: Embed(skinClass="CheckBox_overIcon") ;
selectedDisabledIcon:

Embed (skinClass="CheckBox_selectedDisabledIcon") ;
selectedDownIcon: Embed(skinClass="CheckBox_selectedDownIcon") ;
selectedOverIcon: Embed(skinClass="CheckBox_selectedOverIcon") ;
selectedUpIcon: Embed (skinClass="CheckBox_selectedUpIcon") ;
upIcon: Embed(skinClass="CheckBox_upIcon") ;

" ~r, The code in Listing 10.7 is available in the Web site files as CheckBoxSkins.css in
O)lthe YWEE .
- the chapter10 project.

Because the skin symbols are now stored as ActionScript classes in a component library, this syntax
assigns each of them to the appropriate style name:

overIcon: Embed(skinClass="CheckBox_overIcon") ;

The import tool also explicitly adds the component library to the Flex project’s build path, as
shown in Figure 10.16. Each Flash symbol is exported as an ActionScript class in the component

library, the library is in the projects build path, and the style declarations bind the Flash symbol
classes to the Flex visual components.

FIGURE 10.16

The Flex project build path after importing Flash-based skinning symbols

The imported skin library

313

Z1g 8|8 The Flex Class Library

A complete Flash-based skin library will contain many graphic symbols wrapped in a component
library and an associated .css file that binds the symbols to the visual components during the
compilation process.

314

Summary

In this chapter, I described the use of Cascading Style Sheets to effect the visual presentation of
Flex applications. You learned the following:

Cascading Style Sheets (CSS) are implemented in the Flex framework as the primary
mechanism for controlling a Flex application’s visual appearance.

You can declare styles with inline style declarations, and with embedded or external style
sheets.

Styles can be controlled at runtime with ActionScript code.

Skins are one type of style that can be used to dramatically change an application’s
appearance.

You can create skinning graphics in bitmap or vector formats.
Vector graphics designed for use as skins can be created in Illustrator CS3 or Flash CS3.

You can import skin artwork with Flex Builder’s import tool.

Working with Text

hen you present text in a Flex application, many choices and IN THIS CHAPTER
tools can determine how text is presented and processed. Text

values can be “hard-coded” in an application, retrieved from a Controlling fonts
data source (such as database on a server), and stored in memory as con-
stants or variables. Using device fonts

When text is presented to the user in visual control, you select many font Embedding fonts

settings, including the font typeface and its size, weight, and style. In this
chapter, I describe the various tools available for text processing and presen-
tation in Flex. I describe these strategies and techniques: Using advanced anti-aliasing

Rotating embedded fonts

B Selecting device fonts for text display that are already installed on Using formatter classes
the client computer.

B Embedding fonts to tightly control text display regardless of the
state of the client computer.

B Formatting of text values with the formatter family of classes

oo ee Any discussion of text presentation in Flex must include the
CitUyy-iicr .
use of Cascading Style Sheets (CSS) to select font typefaces
and styles, and the use of visual controls that are specifically designed for text
presentation, such the Label and Text controls. Previous chapters included
detailed descriptions of both subjects. In this chapter, I describe uses of styles
that are specifically oriented around text presentation, and I expand on the use
of the Label and Text controls in presenting text to the user.

)] the YWEE To use the samp.le code for 'thIS cha;?ter, import the '
= chapterll.zip Flex project archive from the Web site
files into your Flex Builder workspace.

315

m The Flex Class Library

316

Controlling Fonts with Cascading
Style Sheets

As described in Chapter 10, CSS is one of the most important tools you have for modifying the
appearance of text on the screen. In this section, I describe specific styles and their values that you
can use to change how Label, Text, TextInput, or TextArea controls present data.

Some font styles can be used with both device and embedded fonts, while others are used only
with embedded fonts.

These styles apply to all fonts:

fontFamily to determine the typeface
color to determine the typeface color
fontSize to determine the font size
fontWeight to select a bold font
fontStyle to select an italicized font

textDecoration to select an underlined font

letterSpacing to determine the horizontal space between characters
These styles have an effect only on embedded fonts:

B kerning to enable adjustments to the horizontal gap between characters

B fontAntiAliasType to enable the use of these advanced anti-aliasing styles
fontGridType to determine whether to measure fonts based on pixels or subpixels
fontThickness to determine the thickness of font glyph edges

fontSharpness to determine the sharpness of font glyphs

Selecting Fonts

You select which typeface you want to use with the fontFamily (or font-family) style. This
Label control presents its text with the Arial typeface with an inline style declaration:

<mx:Label fontFamily="Arial" text="Hello World"/>

When you declare the fontFamily style in an embedded or external style sheet, you can use
either the camel case version of the style name, fontFamily, or the hyphenated version,
font-family. This type selector sets an application’s default font for the Label and Text
controls to Times New Roman:

Working with Text

<mx:Style>
Label, Text {
font-family:"Times New Roman";

}
</mx:Style>

TP When you designate a typeface that has spaces in its name, always wrap the font name
in quotation marks. If you don’t use quotes, the CSS parser squeezes the spaces out of
the font name, resulting in a font name that might not be recognized by Flash Player.

For example, a font declared with a name of Bookman 01d Style Bold without surrounding quotes
is transformed internally to BookmanoldstyleBold and no longer matches up correctly with its
actual font on the client system.

If you misname a typeface in a fontFamly declaration, Flash Player renders the unrecog-
nized font as the client system’s default serif typeface, which is typically Times Roman.

/'“4 | \--\f'\
AU LN

Two types of fonts can be used in Flex applications:

B Device fonts are typefaces that are already installed on the client system.

B Embedded fonts are typefaces that are embedded in a compiled Flex application and
delivered to the client system as part of the application .swf file.

The pros and cons of using device versus embedded fonts are listed in Table 11.1.

TABLE 11.1

Pros and Cons of Device and Embedded Fonts

Pros Cons

Device fonts Allow you to minimize the size of the Limited to those fonts that are installed

compiled Flex application and speed the
download of the application during startup
(for Web applications) or installation (for
desktop applications).

universally, so your graphic design
capabilities are limited.

Do not support advanced anti-aliasing
and font rotation.

Embedded fonts

Allow you to use any font to which you
have access during development. Support
advanced ani-aliasing and font rotation.

Result in a larger compiled application
.swf file. If not managed carefully,
embedded fonts can result in a “bloated”
application file and significantly slow
download and installation.

Using device fonts

When you declare a device font, you should declare a list of fonts you'd like to use in order of pref-
erence. The last item in the list should be a generic device font name that selects a font based on
what’s available on the client system.

317

Z{g8l |8 The Flex Class Library

~a A
AU IUN

318

This CSS declaration sets the fontFamily style as a list with a first preference of Helvetica
and a last preference of the generic font family _sans:

<mx:Style>
Label, Text {
font-family:Helvetica, Arial, "_sans";

}
</mx:Style>

The first choice, Helvetica, is typically available on Mac OS X, but not on Windows. If that font
isn’t found by Flash Player on the client system, it then looks for the second choice, Arial, which
is installed by default on both Windows and Mac OS X. The final choice, _sans, refers to the gen-
eral family of sans serif fonts. If Flash Player doesn’ find either of the first two choices, it uses the
client system’s default font of that family.

Three generic device font names are recognized by Flash Player:
B _sans refers to smoother typefaces that are generally selected for their easy readability

on computer screens. This family includes such fonts as Arial, Helvetica, and Verdana.

B _serif refers to typefaces that have non-structural visual details added to the ends of
font lines. This font family includes such fonts as Times Roman (and its variants such as
Times New Roman) and Baskerville.

B _typewriter refers to fixed pitch typefaces that look like they were created on type-
writers. This font family includes such fonts as Courier (and its variants such as Courier
New) and Prestige Elite.

 If you designate only a single typeface in a fontFamily declaration and that font
doesn’t exist on the client system, Flash Player replaces the font as needed. In this case,
the application might not appear to the user as it was originally designed.

Using embedded fonts
When you embed a font in a Flex application, you guarantee that the font will be available to the
client system.
Embedded fonts offer great advantages to graphic designers:
B You can strongly “brand” an application’s appearance with fonts that are unique to a par-
ticular company’s design standards.

B Embedded fonts can be rotated, whereas device fonts always are rendered in their default
horizontal layout.

B Embedded fonts support advanced anti-aliasing, which allows you to control the sharp-
ness of the font to a fine degree.

B Embedded fonts support transparency, whereas device fonts are always opaque.

Working with Text

Embedded fonts have these limitations:
B Only TrueType or OpenFace fonts can be embedded directly within Flex applications
with simple style declarations or ActionScript metadata tags.
B Embedded fonts aren't always legible at sizes less than 10 pixels.
TP You can embed other font styles such as PostScript Type 1 or bitmap fonts, but these

fonts must first be embedded in a Flash document to vectorize them, and only then can
they be embedded in a Flex application.

~ ' 1=r ~ | Fonts that you've downloaded or purchased from a font vendor aren’t always licensed
e for use in a Flash document or Flex application. Check your license for any restrictions
on a font’s use.

Declaring embedded fonts with CSS

You can embed a font with the @Eont-face style selector in an embedded or external style sheet.
This selector supports all font styles listed previously, plus these additional style names:

B src:local to select a device font to embed by its system font name

B src:url to select a device font by its file location

B fontFamily to designate a font name that can be used for the rest of Flex application
Each embedded font declaration must include the fontFamily to create an alias by which the

embedded font will be referenced in the rest of the application and either src:local or
src:url to designate the font to embed.

Embedding by font file location

You can embed a font that you haven’t installed in your operating system by referring to the font by
its file location. Font files can be referred to from anywhere in your file system, but for convenience
you should copy the font file somewhere in your project and then refer to it with a relative file
location.

This @font-face declaration embeds a font by its filename and assigns a fontFamily of

Goudy:
@font-face {
src:url("../fonts/GOUDOS.TTF") ;
font-family: "Goudy";

}

After the font has been embedded, you can use the fontFamily style to use the font in a particu-
lar text control with an inline style declaration or in a set of controls with a style selector. This
Label control uses the embedded font:

<mx:Label fontFamily="Goudy" text="An embedded font"/>

319

Z1g 8|8 The Flex Class Library

This type selector assigns the embedded font to Label and Text controls:

<mx:Style>
Label, Text {
font-family: Goudy;
}
</mx:Style>

Embedding font variations with font files

Fonts that support variations in presentation such as bold and italics are delivered as individual
font files. When embedding a font by its filename, you must declare each variation with a separate
@font-face selector. If you set all of a font’s selectors with the same fontFamily, you can then
refer to the individual fonts from an inline style declaration or a style selector by simply including
the appropriate font style.

These @font-face declarations embed all three of a font’s available variations and assign the
same fontFamily to each. The font-weight and font-style settings in each @font-face
selector determine when each font file will be used.

The application in Listing 11.1 uses the Goudy font with all its variations and a set of Label con-

trols that use the font in multiple sizes and variations of appearance.

LISTING 11.1

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
backgroundColor="white" verticalGap="0">
<mx:Style>

@font-face {
src:url("../fonts/GOUDOS.ttf");
font-family: "Garamond" ;

}

@font-face {
src:url("../fonts/GOUDOSB.ttf") ;
font-family: "Goudy 01d Style";
font-weight:bold;

}

@font-face {
src:url("../fonts/GOUDOSI.ttf");
font-family:"Goudy 01d Style";
font-style:italic;

}

</mx:Style>

<mx:Label text="Goudy 0ld Style 18"
fontFamily="Goudy 0ld Style" fontSize="18"/>

<mx:Label text="Goudy 01ld Style 30"
fontFamily="Goudy 01d Style" fontSize="30"/>

320

Working with Text

<mx:Label text="Goudy 01ld Style 72"
fontFamily="Goudy 01d Style" fontSize="72"/>
<mx:Label text="Goudy 01ld Style italic"
fontFamily="Goudy 0ld Style" fontSize="72" fontStyle="italic"/>
<mx:Label text="Goudy 0ld Style bold"
fontFamily="Goudy 01d Style" fontSize="72" fontWeight="bold"/>
</mx:Application></mx:Application>

. ~r, The code in Listing 11.1 is available in the Web site files as
Oyl e YEE . : :
EmbedFontByFileName.mxml in the chapterll project.
,, ~= Inthese examples, I'm using a font named Goudy Old Style, which is included by
~---= default on both Windows and Mac OS X. You can download more specialized fonts from
various Web sites, including www.1001freefonts.com.

\fER RN A
YWEE SN

Embedding by system font name

To embed a font that’s been installed in the operating system, use the src:local style and refer
to the font by its system name. The font’s system name is usually the same as the font filename
(without the file extension), but to be sure of the system name, you can open the font file and view
the system name information. Figure 11.1 shows a font file displayed in Windows XP and the
font’s system name.

FIGURE 11.1

A font file displayed in Windows XP with the font’s system name

The system font name

321

Z{g8l |8 The Flex Class Library

TP On Mac OS X, fonts are stored in the system hard disk’s /System/Library/Fonts
folder. As with Windows, you can preview a font by locating and double-clicking the font
file. The font is displayed in the Font Book application, which is included with the operating system.

This declaration embeds a font using the font’s system name after the font has been installed in the
operating system:

@font-face {
src:local ("Goudy 01d Style");
font-family: "Goudy";

~, ==~ | [Ifyou type the name of a system font incorrectly, the compiler generates an error.
NS RGNBININ

As with a declaration by font filename, the font-family style determines the name by which the
font is known in the rest of the application. This Label control uses the embedded font:

<mx:Label text="Goudy Font" fontFamily="Goudy"/>

Embedding font variations with system font names

When you embed by system font name, you still have to declare each font variation individually,
but you can use the same system font name and font-family for each declaration, and you dis-
tinguish each by the use of the font-weight or font-style declarations. The application in

Listing 11.2 declares the Goudy font with the system font name and then uses the font in a set of
text controls.

LISTING 11.2

Embedding fonts by system font name

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
backgroundColor="white">
<mx:Style>
@font-face {
src:local ("Goudy 01d Style");
font-family: "Goudy";
}
@font-face {
src:local ("Goudy 01ld Style");
font-family: "Goudy";
font-weight:bold;
}
@font-face {
src:local ("Goudy 01d Style");
font-family: "Goudy";

322

Working with Text

font-style:italic;
}
</mx:Style>
<mx:Text text="Goudy 10" fontFamily="Goudy" fontSize="10"/>
<mx:Text text="Goudy 18" fontFamily="Goudy" fontSize="18"/>
<mx:Text text="Goudy 30" fontFamily="Goudy" fontSize="30"/>
<mx:Text text="Goudy italic" fontFamily="Goudy" fontSize="72"
fontStyle="italic"/>
<mx:Text text="Goudy bold" fontFamily="Goudy" fontSize="72"
fontWeight="bold" />
</mx:Application>

The code in Listing 11.2 is available in the Web site files as

O] the YWEB . .
‘)H j‘/':‘D EmbedFontBySystemName .mxml in the chapterll project.

Figure 11.2 shows the application using the embedded font. The application’s appearance is the
same regardless of whether the fonts are embedded with file or system names.

FIGURE 11.2

A Flex application using an embedded font

Embedding fonts with Flex Builder’s Design view

Flex Builder 3's enhanced Design view can generate a certain amount of CSS code to declare an
embedded font. These generated declarations are always created in an external style sheet and rep-
resent only the base font style (and not any variations such as font weight or style).

323

Z{g8l |8 The Flex Class Library

HEYY FEATURE

324

The CSS Editor’s Design view is a new feature of Flex Builder 3. In addition to support-
ing preview of embedded fonts, it allows you to preview most styles when applied to the

Flex framework’s visual controls.

Follow these steps to create an external style sheet with an embedded font declaration:

1.

FIGURE 11.3

Select File &> New CSS File from the Flex Builder project to create a new external style

sheet file.

In the New CSS File dialog box, name the new file fontStyles.css and click Finish.

In Source view of the CSS editor, manually add a Label selector to the file without any
style declarations. Be sure to declare a code block after the Label selector with the {}
characters. The Label selector should look like this:

Label {
}

Click Design to switch to Design view.

As shown in Figure 11.3, Design view previews the Label control without any custom

styles applied.

The CSS Design view editor previewing the Label control

Look at the Flex Properties view’s Text section, and locate the pull-down list of fonts, as
shown in Figure 11.4.

Notice that the pull-down list displays the standard five device fonts, and in a section at
the bottom of the list, it shows all fonts currently installed on the system listed by their
system font name.

Working with Text

Available system fonts

Installed fonts

6. Select a font you'd like to embed. If you're working with the Windows operating system,
try a font that may not appear on Mac OS X, such as Comic Sans MS.

7. After selecting the font, Design view refreshes itself and the preview buttons display the
select typeface. If the refresh operation doesn’t occur, click Design view’s Refresh button.

8. Switch to Source view to view the generated style declarations.
The generated code looks like this:
/* CSS file */

Label {
fontFamily: "Comic Sans MS";
}
@font-face
{
fontFamily: "Comic Sans MS";
fontWeight: normal;
fontStyle: normal;
src: local ("Comic Sans MS");
}

When you generate font style declarations in this manner, you get only a declaration for
the base font, not for such variations as bold and italics.

325

Part Il BRLGEL

10.
11.
12.

ex Class Library

To add the bold variation for the embedded font, select the entire @font -face selector
with its nested styles and copy it to the clipboard.

Paste the @Eont-face selector at the bottom of the style sheet file.
Change the new selector’s font-weight style to bold.

Save the changes to the style sheet file.

Listing 11.4 shows the contents of the completed style sheet.

LISTING 11.4

The external style sheet after manual changes to generated code

Label {

fontFamily: "Comic Sans MS";

}
@font-face

{

fontFamily: "Comic Sans MS";
fontWeight: normal;

fontStyle

: normal;

src: local("Comic Sans MS");

}
@font-face
{

fontFamily: "Comic Sans MS";
fontWeight: bold;

fontStyle: normal;

src: local("Comic Sans MS") ;

Opl e YYEE

~ SRS
AU LOUN

The code in Listing 11.4 is available in the Web site files as
fontStylesFinishd.css in the chapterl1 project.

The completed CSS file on the Web site was generated on a Windows-based develop-
ment system. If you open it on a Mac or other system that doesn’t include the Comic

Sans MS font, Flex Builder’s Design view may not preview the styles correctly.

Follow these steps to use the generated styles in a Flex application:

Create a new MXML application named ImportingFonts.mxml.

2. In Source view, add two Label controls as follows:

<mx:Label text="Embedded font normal"/>
<mx:Label text="Embedded font bold" fontWeight="bold"/>

326

Working with Text

3. Addan <mx:Style/> tag with a source property set to the new external style sheet file:

<mx:Style source="fontStyles.css"/>

4. Save and run the application shown in Listing 11.5.

LISTING 11.5

An application using embedded fonts in an external style sheet

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical"

backgroundColor="#eeeceece">

<mx:Style source="fontStyles.css"/>

<mx:Label text="Embedded font normal"/>

<mx:Label text="Embedded font bold" fontWeight="bold"/>
</mx:Application>

o e, The code in Listing 11.5 is available in the Web site files as

Oy lihe YEE . . . ,
ImportingStylesFinished.mxml in the chapterll project.

As mentioned previously, the completed sample applications on the Web site were cre-

ated on a Windows-based development system. If you open them in Flex Builder on Mac

OS X or another system that doesn’t include the application’s expected fonts, compiler errors will be

generated.

~ A
CA O - UN

As shown in Figure 11.5, you should see that the two Label controls use the normal and bold
variations of the selected typeface.

FIGURE 11.5

An application showing two variations of an embedded font

327

m The Flex Class Library

Embedding ranges of characters in CSS

When you embed a typeface, you significantly increase the size of the compiled Flex application.
For example, in the previous example where two font files were embedded in the application, the
compiled debug version of the application increased in size from 152,533 bytes to 308,776 bytes,
or roughly twice the original size. This is because font definition files contain font outlines for
every possible character, frequently including outlines for non-Latin characters that you might
never use in your application.

You can restrict which characters of a typeface are embedded in your application by declaring the
unicodeRange style. This style takes an array of range designators, each starting and ending with
a Unicode character in hexadecimal code.

TP Unicode is a standard for encoding characters on computer systems that uses unique
numbers, known as code points, for each character. Flex uses the most common encod-
ing style, where each character description starts with the string U+ and ends with a 4-character
hexadecimal representation of the code point. For example, the Unicode expression U+0021 repre-
sents the exclamation point, U+005A represents an uppercase Z character, and so on.

wen mes A ~= A PDF document containing a chart of the Basic Latin alphabet in Unicode is available
WEE RESOUKXCE .
athttp://unicode.org/charts/PDF/U0000.pd£f. Charts of other character sets
are available in PDF format at www.unicode.org/charts. Complete information about the
Unicode standard is available at www.unicode.org.

The following declaration embeds a broad range of basic Latin Unicode characters that would nor-
mally be used in an English language Flex application. The Unicode range of U+0021, represent-
ing the exclamation point (!),through U+007E, representing the the tilde (~) includes all
uppercase and lowercase alpha characters, numeric characters, and most common punctuation:

@font-face

{
fontFamily: "Comic Sans MS";
src: local("Comic Sans MS") ;
unicodeRange:U+0021-U+007E;

}

After adding this unicodeRange setting to both embedded fonts in the preceding example, the
compiled application in the release build is 174,954 bytes— a bit larger than the application with-
out any embedded fonts (152,533 bytes), but significantly smaller than the version with both fonts
embedded with all their character outlines (308,776 bytes). The result is an application that down-
loads and installs more quickly, but still has all the text display functionality you need.

For European languages such as French, where an extended Latin alphabet is required, you can
add additional ranges of characters that include versions of the Latin alphabet characters with
accents and other required annotations. This style declaration embeds both the set of characters
known in Unicode as Basic Latin and another set of characters known as Latin Extended A:

@font-face

{

fontFamily: "Comic Sans MS";

328

Working with Text

src: local("Comic Sans MS");
unicodeRange:
U+0021-U+007E, //Basic Latin
U+0100-U+017F; //Latin Extended A

TP The Flex Builder installation contains a file named £lash-unicode-table.xml in
the sdks/3.0.0/framesworks folder. This file contains definitions of common
Unicode character ranges. The file is not processed with the command-line compiler or Flex Builder,
but it can serve as a handy reference to common Unicode ranges.

Declaring embedded fonts with ActionScript

You also can embed fonts with the ActionScript [Embed] metadata tag by either font location or
system name. The [Embed] tag must be placed inside an <mx: Script> tag set and include
either a source attribute for fonts embedded by filename or a systemFont attribute for fonts
embedded by system name.

An [Embed] declaration also requires these attributes:

B fontName to select an alias by which the font will be known to the rest of the application

B mimeType always set to application/x-font

The [Embed] tag is always followed by a variable declaration typed as Class. This variable is
never accessed directly in ActionScript code, so its name can be anything you like. This [Embed]
tag embeds a font by filename and assigns a fontName of myEmbeddedFont:

[Embed (source="'../fonts/MyCustomFont.ttf"',
fontName='"myEmbeddedFont ',
mimeType="'application/x-font')]

private var fontl:Class;

TP The name of variable declared after the [Embed] metatdata tag is arbitrary and is only
used internally to store the font. It isn’t referred to in other ActionScript code, so you
can name the variable anything you like.

TP The [Embed] metadata tag also supports a unicodeRange attribute that can be used
to limit which font characters are embedded.

A font that’s been installed in the operating system can be embedded using the system font name
instead of the filename:

[Embed (systemName="'MyCustomFont ',
fontName='"myEmbeddedFont ',
mimeType="'application/x-font')]

private var fontl:Class;

329

Z1g 8|8 The Flex Class Library

In either case, you then use the font in a text control by assigning the fontFamily style to the
new font name:

<mx:Label fontFamily="myEmbeddedFont" text="An embedded font"/>

Declaring embedded fonts in ActionScript gives you the same benefits as CSS declarations and has
the same requirements:

B Each individual font file must be declared separately.
B Each font variation, such as bold or italics, must be declared separately even if the varia-

tion isn't stored in a separate file.

L IOTE Flex Builder’s Design view CSS editor creates a small advantage in using CSS declara-
) - tions over ActionScript, but you still have to customize the code that the CSS editor
generates. So the choice of embedding fonts using CSS or ActionScript is purely a coding preference
and is not driven by any strong benefits or drawbacks that might be inherent in either approach.

Manipulating Embedded Fonts

One advantage of embedded fonts over device fonts is the ability to change their visual appearance
using these tools:

B Font rotation to change the orientation of a text control

B Advanced anti-aliasing to render text in clear, high-quality resolution

Rotating fonts

You can rotate a text control that uses an embedded font with the control’s rotation property. The
value of the rotation property defaults to O (indicating standard control layout). A positive value
from 1 to 180 indicates that the control is rotated clockwise, while a negative value from -1 to -180
causes the control to rotate counter-clockwise. Values outside these ranges are added to or sub-
tracted from 360 to get a valid value.

The code in Listing 11.6 embeds a system font and then uses the font in a control that’s rotated 90
degrees counter-clockwise to turn the control on its side.

LISTING 11.6

A rotated control with an embedded font

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"
backgroundColor="white">

330

Working with Text

<mx:Style>
@font-face {
src:local ("Comic Sans MS");
font-family:"Comic";
unicodeRange:U+0041-U+007E;
}

</mx:Style>
<mx:Label id="rotatedControl" text="Rotated Text" fontFamily="Comic"

rotation="-90" top="{rotatedControl.width + 10}" left="10"
fontSize="36"/>
</mx:Application>

The code in Listing 11.6 is available in the Web site files as RotatingFonts .mxml in
the chapter1l1 project.

e

O]tz YYE

Figure 11.6 shows the resulting application, with the control placed in the application’s upper-left
corner.

FIGURE 11.6

A rotated control using an embedded font

The object’s calculated position at runtime

When you rotate a visual control, its calculated upper-left corner is still based on the control’s vir-

tual position when it isn’t rotated. A Flash developer would refer to this as the object’s “registration
point” — the point in the object from which its x and y properties are calculated. The position of

331

m The Flex Class Library

the x/y coordinate doesn’t change for Flex visual controls, even when the objects font is rotated at
runtime.

To properly place such a control, you need to take into account the x and y properties and their
true meaning. The top property’ calculation used in Listing 11.6 binds to the control’s width and
uses this value to offset itself vertically. If you place the rotated control in an application with
absolute layout, as shown in Listing 11.6, in Design view it appears to run off the screen, as shown
in Figure 11.7. At runtime, the top property is calculated correctly and the object is positioned 10
pixels from the top of the application.

FIGURE 11.7

A control’s virtual and runtime display positions, shown in Flex Builder’s Design view

The control’s display position

x=0, y=0 at this point ~ The control’s virtual position

The rotation property can be set at runtime through bindings or through ActionScript statements.
The code in Listing 11.7 binds a Label controls rotation property to a Slider control’s
value. As the user manipulates the S1ider, the Label rotates.

LISTING 11.7

A Label control with an embedded font, rotating based on a Slider control’s value

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"
backgroundColor="white">
<mx:Style>
@font-face {

332

Working with Text

src:local ("Comic Sans MS") ;
font-family:"Comic";
unicodeRange:U+0041-U+007E;

}
</mx:Style>

<mx:VSlider id="mySlider"
top="10" left="10" height="150"
minimum="-180" maximum="180" value="0"
tickInterval="45" snapInterval="45"/>

<mx:Label id="rotatedControl" text="Rotated Text" fontFamily="Comic"
rotation="{mySlider.value}" top="{this.height / 2}"
left="{this.width / 2}" fontSize="18" liveDragging="true"/>

</mx:Application>

. ~r, The code in Listing 11.7 is available in the Web site files as

Orlthe Y/EE
- RotatingFontsWithSlider.mxml in the chapterl1l project.

Figure 11.8 shows the resulting application, with the control rotated based on the Slider con-

trols current value.

FIGURE 11.8

As the user manipulates the S1ider control, the Label control’s rotation property updates based on
the binding expression.

333

Z1g 8|8 The Flex Class Library

Using advanced anti-aliasing

Advanced anti-aliasing refers to the ability of Flash Player to make embedded fonts more readable
by smoothing the fonts edges during the rendering process. When you embed a font, its
fontAntiAliasType style i