
Build cross-platform
applications rapidly

Create desktop
applications with AIR™

Integrate using Java®,
ColdFusion® or PHP

Gassner

The book you need to succeed!

Flex your development muscles
with this hefty guide

Write programs using familiar workflows, deliver rich
applications for Web or desktop, and integrate with a
variety of application servers using ColdFusion, PHP, and
others—all with the new Flex Builder 3 toolkit and the
comprehensive tutorials in this packed reference. You’ll
learn the basics of Flex 3, then quickly start using MXML,
ActionScript, CSS, and other tools to create applications
that can run on any browser or operating system.

Shelving Category:
COMPUTERS / Internet /
Web Page Design

Reader Level:
Beginning to Advanced

$44.99 USA
$48.99 Canada

www.wiley.com/go/flex3

Spine: 2.02"

David Gassner
is the President of Bardo Technical
Services, an Adobe Systems
Authorized Training Partner. He
holds Adobe developer certifi cations
in Flex, AIR, ColdFusion, Flash, and
Dreamweaver. David is the author
of technical training videos from
Lynda.com on Adobe Flex, AIR,
ColdFusion, and Dreamweaver,
and he is a regular contributor
to ColdFusion Journal and XML
Journal.

Companion
Web Site
Visit www.wiley.com/go/fl ex3 to
access code fi les for the projects
in the book.

B
a

Create
applica

Integra
ColdFu

Gassner

F
lex

® 3
A

d
o

b
e

®

David Gassner

Adobe®

cross-platform
ations rapidly

Build c
applica

Flex® 3

Companion Web Site
• Code files for all projects in the book

Embed Flex applications in
HTML pages

Learn the Flex Builder
interface

Build and deploy custom
Flex applications

Companion
Web Site

• Install and learn how to use Flex® Builder™ 3
• Explore MXML, ActionScript® 3, and the anatomy of a Flex application
• Lay out Flex controls and containers, and use Cascading Style Sheets

(CSS) to create look and feel
• Incorporate Advanced List controls, Flex charting components, and

data entry forms
• Integrate your Flex applications with a variety of application servers
• Create cross-operating system desktop applications with Adobe

Integrated Runtime (AIR)

01_287644 ffirs.qxp 6/23/08 11:22 PM Page ii

Flex® 3 Bible

01_287644 ffirs.qxp 6/23/08 11:22 PM Page i

01_287644 ffirs.qxp 6/23/08 11:22 PM Page ii

Flex® 3 Bible

David Gassner

01_287644 ffirs.qxp 6/23/08 11:22 PM Page iii

Flex® 3 Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-28764-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought. Neither the publisher
nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or Website may provide or recommendations it may make. Further, readers should be
aware that Internet Websites listed in this work may have changed or disappeared between when this work was written
and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2008930827

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Flex is
a registered trademark of Adobe Systems Incorporated. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

01_287644 ffirs.qxp 6/23/08 11:22 PM Page iv

www.wiley.com

About the Author
David Gassner is president of Bardo Technical Services, an Authorized Adobe Training Center in
Seattle, Washington and an Adobe Systems Rapid Engagement Services partner for Adobe Flex. As
an author for Lynda.com, he has recorded video training titles on Flex, AIR, ColdFusion, and
Dreamweaver. He holds Adobe developer and instructor certifications in Flex, ColdFusion, Flash,
and Dreamweaver, and has been a regular speaker at Allaire, Macromedia, and Adobe conferences.
As a contributor to ColdFusion Journal and XML Journal, he has assisted many developers with the
integration of ColdFusion with Java, XML, and other development technologies.

David earned a B.A. from Pitzer College in Claremont, California (his home town), and an M.F.A. from
the Professional Theater Training Program at U.C. San Diego. In his copious free time (and putting his
M.F.A. to good use), he is Artistic Director of Theater Schmeater (www.schmeater.org), one of
Seattle’s oldest fringe theater companies. He shares his home with his wonderful wife Jackie (Go Mets!)
and a feline comedian named Sylvester, and he receives occasional visits from his thoroughly adult
kids, Thad, Jason, and Jenny.

01_287644 ffirs.qxp 6/23/08 11:22 PM Page v

01_287644 ffirs.qxp 6/23/08 11:22 PM Page vi

Credits
Senior Acquisitions Editor
Stephanie McComb

Project Editor
Martin V. Minner

Technical Editor
Drew Falkman

Copy Editor
Gwenette Gaddis Goshert

Editorial Manager
Robyn Siesky

Business Manager
Amy Knies

Sr. Marketing Manager
Sandy Smith

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Barry Pruett

Senior Project Coordinator
Kristie Rees

Graphics and Production Specialists
Carrie Cesavice, Abby Westcott

Quality Control Technicians
John Greenough, Jessica Kramer

Proofreading
Christine Sabooni

Indexing
Infodex Indexing Services

Cover Design
Michael Trent

Cover Illustration
Joyce Haughey

For Jackie, who always says “why not?”

01_287644 ffirs.qxp 6/23/08 11:22 PM Page vii

viii

Preface ..xxv

Part I: Flex Fundamentals . 1
Chapter 1: About Flex 3..3
Chapter 2: Using Flex Builder 3 ..29
Chapter 3: Building a Basic Flex Application ..67
Chapter 4: Understanding the Anatomy of a Flex Application ..91
Chapter 5: Using Bindings and Components ..123
Chapter 6: Debugging Flex Applications ..151
Chapter 7: Working with Events ..179

Part II: The Flex Class Library . 213
Chapter 8: Using Flex Controls ..215
Chapter 9: Using Layout Containers ..255
Chapter 10: Using Cascading Style Sheets ..283
Chapter 11: Working with Text ..315
Chapter 12: Managing Application Navigation..341
Chapter 13: Working with Pop-up Windows ..373
Chapter 14: Controlling Animation ..401
Chapter 15: Managing View States ..437

Part III: Working with Data . 461
Chapter 16: Modeling and Managing Data ..463
Chapter 17: Using List Controls ..497
Chapter 18: Using Advanced List Controls..525
Chapter 19: Using the Flex Charting Controls ..561
Chapter 20: Working with Data Entry Forms..587
Chapter 21: Working with HTTPService and XML..619
Chapter 22: Managing XML with E4X ..645

02_287644 ftoc.qxp 6/23/08 11:23 PM Page viii

Part IV: Integrating Flex Applications with
Application Servers and the Desktop . 669
Chapter 23: Working with SOAP-Based Web Services ..671
Chapter 24: Integrating Flex Applications with BlazeDS and Java ..701
Chapter 25: Using the Message Service with BlazeDS..739
Chapter 26: Integrating Flex Applications with ColdFusion..763
Chapter 27: Using the ColdFusion Extensions for Flex Builder ..793
Chapter 28: Integrating Flex Applications with ASP.NET ..825
Chapter 29: Integrating Flex Applications with PHP ..857
Chapter 30: Deploying Desktop Applications with AIR ..895

Glossary ..925
Index ..929

ix

02_287644 ftoc.qxp 6/23/08 11:23 PM Page ix

02_287644 ftoc.qxp 6/23/08 11:23 PM Page x

Preface. xxv

Part I: Flex Fundamentals 1

Chapter 1: About Flex 3. 3
Learning the Fundamentals of Flex ..4

Getting to know Flex applications ..4
Flex versus Flash development ..7
Flex and Object-Oriented Programming ..9

Understanding the Flash Player ..15
Learning a little history about the Flash Player ..16
Flash Player penetration statistics ..18
The Debug Flash Player ..18
Flash Player installation ..19
Flex 3 development tools ..23

Getting Help..26
Summary ..27

Chapter 2: Using Flex Builder 3. 29
Getting Flex Builder 3 ..29
Installing Flex Builder 3 ..30

Installing Flex Builder with the standalone configuration ..30
Installing Flex Builder with the Eclipse workbench ..32

Getting to Know the Eclipse Features ..36
The Eclipse workspace ..36
Configuring Eclipse ..43

Touring the Flex Builder Interface ..45
Creating Flex projects ..45
The Flex Builder user interface ..49

Getting Help..54
Exploring the Help contents ..54
Searching for Help terms ..55
Using Dynamic Help ..58

Searching for Code ..60
Using Eclipse search tools..60
Using Flex Builder code model search tools ..62

Summary ..66

xi

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xi

Chapter 3: Building a Basic Flex Application. 67
Creating a “Hello World” Application ..68

Switching workspaces..68
Creating the project ..68
Saying hello ..72

Understanding the html-template Folder ..73
HTML template files ..74

Deploying the Application ..81
Creating the release version ..81
Testing the release version ..82
Deploying the release version ..83
Integrating an application into an existing Web page ..84
Integrating Flex applications with Dreamweaver CS3 ..86

Summary ..90

Chapter 4: Understanding the Anatomy of a Flex Application 91
MXML and ActionScript 3 ..92
Understanding MXML ..95

MXML is XML! ..95
MXML and containership ..100
MXML and non-visual classes..101

Understanding ActionScript 3 ..102
ActionScript syntax..103
Declaring variables ..103
Conditional statements ..105
Looping ..107

Combining MXML and ActionScript ..107
The <mx:Script> tag ..107
Using external ActionScript files ..108
Managing ActionScript code with Flex Builder ..111

Using the Application Container ..117
Passing application parameters ..118
Controlling application dimensions ..119
Setting the layout property ..120

Summary ..122

Chapter 5: Using Bindings and Components 123
Using Binding Expressions ..124

Shorthand MXML binding expressions ..124
Using <mx:Binding>..125
Making expressions bindable ..125

Using MXML Components ..126
Creating MXML components ..126
Instantiating MXML components ..131

xii

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xii

Adding Properties and Methods to Components ..136
Component properties ..136
Component methods ..139

Using Component Libraries ..142
Creating component libraries ..142
Incorporating component libraries ..146

Summary ..149

Chapter 6: Debugging Flex Applications 151
Debugging Basics ..152

The debug version of the application ..152
Running an application in debug mode ..152

Using trace() and the Logging API ..155
Using the trace() function..156
Using the Logging API ..158

Using Breakpoints ..163
Setting and clearing breakpoints..163
Setting and removing breakpoints in an MXML or ActionScript editor163
Using the Breakpoints view ..165
Using breakpoints in a debugging session..169
Inspecting variables and expressions ..170
Controlling application execution with the Debug view ..173

Profiling Flex Applications ..175
Summary ..177

Chapter 7: Working with Events . 179
The Flex Event Architecture ..180
Handling Events in MXML ..182

Creating event handlers in MXML ..182
Working with event objects ..185

Handling Events with addEventListener() ..192
Setting up an event listener..192
Using event name constants ..194
Removing an event listener..196

Using Event Bubbling..196
Using Custom Events ..198

Declaring custom events ..199
Dispatching custom events ..201
Handling custom events ..203

Using Custom Event Classes ..204
Creating the ActionScript class ..205
Overriding the clone() method ..208
Dispatching a custom event class ..209
Handling a custom event class ..211

Summary ..212

xiii

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xiii

Part II: The Flex Class Library 213

Chapter 8: Using Flex Controls . 215
Instantiating and Customizing Controls ..216

Instantiating controls with MXML and ActionScript ..216
Setting control properties and styles ..216
Understanding the UIComponent class ..217

Using Text Controls ..219
Common properties of text controls ..219
Text display controls..224
Text entry controls ..226

Using Layout Controls ..231
HRule and VRule ..232
The Spacer control ..233

Using Button Controls ..234
The Button control ..235
The LinkButton control ..237
The CheckBox control ..238
Using RadioButton controls ..239

Other Data Entry Controls ..241
The NumericStepper control ..241
Date controls ..242

Using Interactive Controls ..244
The ScrollBar controls..245
The Slider controls ..247

Working with Images ..249
Using the Image control ..249
Resizing images ..250
Embedding images ..251
Changing images at runtime ..252

Summary ..253

Chapter 9: Using Layout Containers. 255
Using Simple Box Containers ..256

Using vertical and horizontal layout containers ..256
Using the Canvas container ..259
Using container styles..261

Using the Panel Container ..264
Panel properties ..264
Panel styles ..266
The ControlBar container ..268

Using Constraint-Based Layout ..270
Positioning components in Design view ..270
Using constraint properties..273

xiv

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xiv

Sizing Containers and Controls ..274
Content-based sizing ..275
Absolute sizing ..276
Percentage sizing ..276
Constraint-based sizing ..278

Using Advanced Constraints ..279
Declaring constraint rows and columns ..279
Placing and sizing components with advanced constraints280

Summary ..282

Chapter 10: Using Cascading Style Sheets 283
About Cascading Style Sheets ..283
What Is a Style Sheet? ..284
Using Inline Style Declarations ..285
Using Style Selectors ..286

Using type selectors ..286
Using style name selectors ..288
Using the global selector..289
Using embedded style sheets ..289
Using external style sheets ..291

Using Compiled Style Sheets ..297
Compiling style sheets ..297
Loading compiled style sheets ..298

Controlling Styles with ActionScript..300
Setting and getting style information ..300
Modifying style selectors at runtime ..301

Graphical Skinning of Visual Components ..303
Creating graphical skins ..303
Using bitmap graphics as skins..303
Creating vector-based skins in Flash CS3 ..306
Declaring Flash-based skins ..310
Importing skin artwork ..310

Summary ..314

Chapter 11: Working with Text . 315
Controlling Fonts with Cascading Style Sheets ..316
Selecting Fonts ..316

Using device fonts ..317
Using embedded fonts ..318

Manipulating Embedded Fonts ..330
Rotating fonts ..330
Using advanced anti-aliasing ..334

Formatting Text Values ..335
Creating formatter objects ..336
Setting formatter properties ..336

xv

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xv

Using formatters in binding expressions ..337
Using formatters in static methods ..339

Summary ..340

Chapter 12: Managing Application Navigation 341
Classic Web Navigation ..342
Understanding Flex Navigation ..343
Using Navigator Containers ..343

Declaring a ViewStack in MXML..344
Using custom components in a navigator container ..344
Creating a ViewStack in Design view ..345
Working with navigator containers in ActionScript..349
Managing creation policy ..354
Managing navigator container dimensions ..355

Using Navigator Bar Containers ..356
Using an Array as a dataProvider ..356
Handling navigator bar events ..357
Using a ViewStack as a dataProvider..359
Managing navigator bar presentation ..360

Using Menu Controls ..362
Menu data providers..362
Handling menu events ..363
Using the Menu control ..364
Using the MenuBar control ..365

Using Other Navigator Containers ..367
The TabNavigator container ..367
The Accordion container ..369
TabNavigator and Accordion keyboard shortcuts ..371

Summary ..372

Chapter 13: Working with Pop-up Windows 373
Using the Alert Class ..374

Presenting pop-up windows with Alert.show() ..374
Controlling Alert window modality ..375
Managing Alert window buttons..376
Handling Alert window events ..378
Using a custom graphical icon ..380
Using CSS selectors with the Alert class ..383

Using the PopUpMenuButton Control ..385
Creating a data provider ..385
Handling events ..386

Using the PopUpButton control ..388
Declaring the pop-up window ..388
Handling events and managing pop-up behavior ..389

xvi

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xvi

Working with Custom Pop-up Windows ..391
Defining a custom pop-up window ..391
Using the PopUpManager class..395
Using the TitleWindow container ..398

Summary ..400

Chapter 14: Controlling Animation . 401
Using Effects ..402

Using effect classes ..403
Modifying effect class properties ..403
Using behaviors and triggers..404
Playing effects in ActionScript..408
Using tweening and masking effects ..410
Using composite effects ..420
Using easing functions ..424

Using Drag-and-Drop Operations..426
Implementing drag-and-drop with List controls ..426
Implementing custom drag-and-drop operations ..429

Summary ..436

Chapter 15: Managing View States . 437
Understanding View States ..438
Defining View States in Design View ..439

Creating a new state ..439
Defining a view state’s overrides ..441

Switching View States at Runtime..444
Declaring View States in MXML ..446

Adding components ..446
Removing components ..448
Overriding properties and styles ..448
Overriding event handlers ..449

Declaring View States with ActionScript ..453
Setting override properties ..453
Overriding event handlers ..454

Managing View States in Components ..456
Using Transitions ..457

Declaring a transition ..458
Using Parallel and Sequence effects in transitions ..458

Summary ..460

Part III: Working with Data 461

Chapter 16: Modeling and Managing Data 463
Creating a Data Model ..464

Using the <mx:Model> tag ..465

xvii

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xvii

Using Value Objects ..469
Using the New ActionScript Class wizard ..469
Value object class syntax..470
Instantiating value object classes..477

Using Data Collections ..480
Declaring an ArrayCollection ..481
Setting an ArrayCollection object’s source property..481
Accessing data at runtime ..482
Managing data at runtime..483
Using data cursors ..489

Summary ..496

Chapter 17: Using List Controls . 497
Using Data Providers ..500

Using hard-coded data providers ..500
Using dynamic data providers ..502

Controlling List Item Labels ..504
Using the labelField property ..504

List Control Events and Properties ..509
Handling User Data Selections ..510

Using the change event..510
Using the selectedItem property ..510
Using the selectedIndex property ..512
Selecting complex data objects ..513

Using Custom Item Renderers ..515
Using drop-in item renderers ..516
Using inline renderers and editors ..518
Using component item renderers ..521

Summary ..524

Chapter 18: Using Advanced List Controls 525
Using the ComboBox Control ..525

Using an editable ComboBox ..526
Using a bindable ComboBox ..528

Using the DataGrid Control ..531
Customizing DataGrid display ..533
Generating custom labels with DataGrid columns ..537

Advanced Item Renderers and Editors ..541
Using the dataChange event ..541
Using item editors ..543

Using HorizontalList and TileList Controls ..551
Using the AdvancedDataGrid Control ..555

Hierarchical data display ..556
Grouping flat data ..558

Summary ..560

xviii

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xviii

Chapter 19: Using the Flex Charting Controls 561
Understanding Flex’s Types of Charts ..563
Declaring Chart Controls ..564
Setting Chart Properties and Styles ..566

Using pie charts ..566
Using financial charts ..575
Using bar, column, line, and area charts ..579

Summary ..586

Chapter 20: Working with Data Entry Forms 587
Using the Form Container ..588

Using the FormHeading control ..589
Using the FormItem container ..592
Setting a default button ..593

Using Custom Form Components ..595
Creating a custom Form component..595
Adding controls to a Form component ..597

Validating Data Entry ..600
Creating a validator object ..600
Controlling validation with trigger events ..601
Controlling validation with ActionScript..604
Controlling validation rules and error messages ..608

Sharing Data with the Application ..610
Modeling Form data with a value object ..610
Dispatching a custom event ..611

Summary ..617

Chapter 21Working with HTTPService and XML 619
Using RPC and REST Architectures ..620

Understanding the Representational State Transfer architecture620
Understanding the Remote Procedure Call architecture ..621

Declaring and Configuring HTTPService Objects ..622
Creating an HTTPService object ..622
Essential HTTPService properties ..623

Sending and Receiving Data ..626
Understanding asynchronous communications..626
Handling HTTPService responses ..626
Working with ItemResponder and AsyncToken ..634

Working with Value Objects ..637
Passing Parameters to Server Pages..639

Using named parameters ..639
Using bound parameters..640

Handling Cross-Domain Policy Issues ..641
Summary ..643

xix

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xix

Chapter 22: Managing XML with E4X . 645
Using XML Classes ..646

Creating an XML object ..647
Using the XMLList class ..650
Using the XMLListCollection class ..651

Using E4X Expressions..652
Extracting data from XML objects..653
Modifying data in XML objects ..660

Working with Namespaces ..665
Summary ..668

Part IV: Integrating Flex Applications with Application
Servers and the Desktop 669

Chapter 23: Working with SOAP-Based Web Services 671
Understanding SOAP ..672
Understanding WSDL ..674
Using the WebService Component ..677

Installing ColdFusion 8 ..677
Creating a WebService object ..677
Handling Web service results ..679
Passing parameters to Web service operations ..687

Using Web Service Introspection ..689
Importing a Web service ..689
Managing Web services..692
Using generated Web service proxy classes ..694

Summary ..699

Chapter 24: Integrating Flex Applications with BlazeDS and Java. 701
Using BlazeDS ..703

Understanding supported platforms ..703
Getting started with BlazeDS ..704

Creating Flex Projects for Use with BlazeDS ..709
Using the Proxy Service ..711

Configuring the Proxy Service ..713
Using the default destination ..713
Using named destinations..717

Using the Remoting Service ..719
Creating and exposing Java classes ..720
Configuring Remoting Service destinations..723

Using the RemoteObject Component ..725
Instantiating the RemoteObject component ..725
Calling remote methods ..725
Handling RemoteObject results ..726

xx

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xx

Passing arguments to remote methods ..731
Passing data between ActionScript and Java ..733
Using value object classes ..734

Summary ..737

Chapter 25: Using the Message Service with BlazeDS 739
Understanding the Message Service ..740
Configuring Messaging on the Server ..741

Configuring channels for messaging ..742
Configuring messaging adaptors and destinations ..744

Creating a Flex Messaging Application ..746
Creating a Flex project ..746
Sending messages ..747
Receiving and processing messages..748

Sending and Receiving Complex Data ..752
Filtering Messages on the Server..755

Using the selector property..755
Using subtopics ..756

Tracing Messaging Traffic ..760
Summary ..761

Chapter 26: Integrating Flex Applications with ColdFusion 763
Understanding Flash Remoting and ColdFusion 8 ..764

Creating a Flex project for use with ColdFusion ..765
Configuring Flash Remoting on the server ..767

Creating ColdFusion Components for Flex ..769
Using CFCs with the RemoteObject Component ..770

Setting the source property..771
Creating a RemoteObject instance ..771
Calling CFC functions ..772

Handling CFC Function Results ..773
Using binding expressions ..773
Using the result event ..774
Handling results from multiple CFC functions ..778

Passing Arguments to CFC Functions..780
Using explicit arguments ..780
Using bound arguments ..780
Using named arguments ..781

Using Value Object Classes..783
Creating a ColdFusion value object ..783
Creating an ActionScript value object ..784
Returning value objects from ColdFusion to Flex ..785
Receiving value objects from ColdFusion ..786
Passing value object arguments to CFC functions ..788

xxi

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xxi

Working with RemoteObject Faults ..789
Handling the fault event ..789
Generating custom exceptions from a CFC function..790

Summary ..792

Chapter 27: Using the ColdFusion Extensions for Flex Builder 793
Understanding ColdFusion Extension Features ..794
Installing the ColdFusion Extensions for Flex Builder ..795
Configuring RDS Servers ..797
Connecting to ColdFusion Data Sources ..800

Inspecting a data source ..801
Viewing table data ..803
Using the Visual Query Builder ..804

Using the CFC Value Object Wizard..807
Preparing to use the CFC Value Object wizard ..807
Running the CFC Value Object wizard ..809
Understanding generated value object classes ..811
Using the gateway CFC ..817
A conclusion about the CFC Value Object wizard..824

Summary ..824

Chapter 28: Integrating Flex Applications with ASP.NET. 825
Installing ASP.NET ..826
Creating an XML Web Service ..828

Creating a gateway file ..828
Creating a code-behind module ..829

Generating a Web Service in Flex Builder 3 ..831
Creating a Flex project with ASP.NET ..832
Creating an SQL Server database connection ..833
Generating a Flex/ASP.NET application..836
Understanding and using the generated code ..838

Building Web Services with Visual Web Developer 2008 ..843
Creating a Web service ..844
Configuring the development Web server..846
Testing a Web service ..848

Exchanging Data with XML Web Services ..849
Setting up the sample files ..849
Returning data from .NET ..850
Passing value objects to .NET service operations ..854

Summary ..856

Chapter 29: Integrating Flex Applications with PHP 857
Installing PHP ..858

Installing WAMP on Windows ..859
Managing WAMP servers ..861

xxii

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xxii

Installing MAMP on Mac OS X ..862
Managing MAMP servers ..863

Creating a Flex Project for Use with PHP ..866
Using PHP with HTTPService and XML ..868

Using the PHP SimpleXML extension ..868
Retrieving XML data with HTTPService ..869

Generating PHP Code with Flex Builder 3 ..870
Importing a database to MySQL ..870
Creating a MySQL database connection ..873
Generating a Flex/PHP application ..874
Understanding and using the generated code ..877

Using PHP and Remoting with AMFPHP ..884
Installing AMFPHP..884
Creating an AMFPHP service in PHP ..885
Configuring AMFPHP Remoting in Flex Builder ..887
Calling an AMFPHP service with RemoteObject ..889
Returning complex data from AMFPHP ..890

Summary ..892

Chapter 30: Deploying Desktop Applications with AIR 895
Understanding AIR Architecture..896
Installing the Adobe Integrated Runtime ..897

Downloading the AIR installer ..897
Installing and uninstalling AIR on Windows..898
Installing and uninstalling AIR on Mac OS X ..899

Creating a Flex Desktop Application ..900
Creating a Flex desktop application project ..900
Using the application descriptor file ..904
Packaging a release version of an AIR application ..907
Installing AIR applications ..911
Uninstalling AIR applications ..912

Flex Application Tips and Tricks with AIR ..913
Debugging AIR applications in Flex Builder ..913
Working with HTML-based content ..914
Using the WindowedApplication component ..919
Creating Remoting channels at runtime ..920

A Conclusion about AIR..922
Summary ..923

Glossary . 925

Index . 929

xxiii

Contents

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xxiii

02_287644 ftoc.qxp 6/23/08 11:23 PM Page xxiv

When Macromedia first released Flash MX in 2002, the product was branded as the new
way to build Rich Internet Applications (known by the acronym RIA). The term was
invented at Macromedia to describe a new class of applications that would offer the

benefits of being connected to the Internet, including access to various types of Web-based ser-
vices, but would solve many of the nagging issues that had been inherent in browser-based appli-
cations since the mid-1990s. By using Flash Player to host graphically rich applications delivered
as Flash documents, issues such as the ongoing differences between Web browsers in implementa-
tion of Cascading Style Sheets (CSS) and JavaScript would be overcome. And because such applica-
tions would be able to leverage Flash Player’s original strengths, including animation and delivery
of rich media (audio and video) to the desktop, the applications could be both functional and visu-
ally compelling.

The first push into the new frontier of RIAs met with mixed success. Products built and delivered
with Flash MX and ColdFusion MX (Macromedia’s recommended middleware application server
software at the time) could be very impressive. Perhaps the best known of this class was the
iHotelier hotel reservations application, still used by many large hotels around the world to present
a Flash-based interface that allows customers to find and reserve hotel rooms from a visually intu-
itive single-screen interface. Users could input information and get nearly instantaneous response
without having to navigate the multi-page interface of classic HTML-based Web applications.

Meanwhile, developers who were creating these applications were madly pulling their hair out.
Building data-centric applications in Flash meant that you were working with a binary source file,
making it difficult to integrate with source control systems. At the time, ActionScript wasn’t partic-
ularly object-oriented (although this part of the situation improved drastically with the release of
ActionScript 2 in Flash MX 2004), and there was no enforcement of code placement standards. Its
loose data typing and lack of strong compile-time error checking or debugging tools led to phe-
nomena such as “silent failure” — the moment when something that’s supposed to happen doesn’t,
and no information is offered as to the reason.

In large multi-developer environments, figuring out where to put the code in a Flash document
was a significant part of the application planning, because the product wasn’t really designed for
application development. And the ActionScript editor built into Flash gave experienced developers
fits. Particularly for Java developers who were used to sophisticated code editors, working in Flash
slowed productivity and increased developer frustration.

Flex 1 was Macromedia’s first response to these issues. Released initially as a server-based product,
Flex was designed to let enterprise application developers use a workflow they were accustomed
to. Flex Builder 1, built on top of the Dreamweaver code base, was a first stab at providing a better

xxv

03_287644 fpref.qxp 6/23/08 11:26 PM Page xxv

code editor, and was included for those organizations that purchased a server license. Issues
remained, but developers who were accustomed to building applications in source code were able
to use their usual workflows, and multiple developers could collaborate more easily, because Flex
applications were built as source code files that could be shared.

Flex 2 went further with the delivery of ActionScript 3, a true object-oriented language. The Flex 2
SDK was free, and Flex Builder 2 was the first version of the IDE delivered as an Eclipse plug-in.
The IDE’s licensing changed to a per-developer model, identical to the model used by other suc-
cessful developer tools. For enterprise application developers, the situation got better and better.

Now, with the release of Flex 3, Adobe offers developers the ability not only to build better Web-
based applications, but also to leverage their skills to deliver desktop applications using the Adobe
Integrated Runtime. Anything you can do in Flex on the Web, you can now do in Flex on the
desktop. The Flex 3 SDK has expanded with new classes, such as the AdvancedDataGrid. And
Flex Builder 3 is compatible with the latest release of the Eclipse workbench.

This book offers a comprehensive overview of Flex application development. Detailed explanations
of building applications using the Flex framework (the class library containing the building blocks
of Flex applications) are combined with explorations of how to integrate applications with the
most popular Web service architectures and application servers. The book is not designed as a
replacement for the Flex 3 documentation (which at last count included multiple publications and
over 2,000 pages). Instead, it offers a combination of reference, tutorial, and tips for building and
delivering Flex application to the Web and the desktop that take you through learning Flex in a
natural sequence.

Many other books may be helpful as you learn Flex. The ActionScript programming language is
worthy of an entire book and is described admirably in the ActionScript 3 Bible by Roger Braunstein,
Mims H. Wright, and Joshua J. Noble. The AIR Bible by Peter Else, Benjamin Gorton, Ryan Taylor,
and Jeff Yamada offers a deep dive into the unique capabilities of the Adobe Integrated Runtime.
And for those who want to understand more about Flash Player, the venerable Flash CS3
Professional Bible by Robert Reinhardt and Snow Dowd is an invaluable reference.

Finally, for those like to listen as they learn, check out my own video training titles at Lynda.com
(www.lynda.com), Flex 3 Essential Training, Flex 3 Beyond the Basics, AIR Essential Training, and
AIR for Flex Developers Beyond the Basics.

Getting the most out of this book
Most chapters are accompanied by sample Flex applications and other source code that you can
download from the Wiley.com Web site at www.wiley.com/go/flex3. Each chapter’s sample
files are independent from other chapters, so if you want to jump to a particular subject, you don’t
first have to go through the sample code for all the preceding chapters.

Many of the files from the Web site are delivered in Flex Project Archives. A Flex Project Archive is
a new feature of Flex Builder 3, a file in .zip format that contains everything you need to import an

xxvi

Preface

03_287644 fpref.qxp 6/23/08 11:26 PM Page xxvi

existing project into Flex Builder. It’s portable between operating systems, so you can import the
file into any version of Flex Builder 3, whether on Windows, Mac OS X, or the new version for
Linux that was in public beta at the time this was written.

If you’re using the free Flex SDK (rather than Flex Builder), you can still use the Flex Project
Archive files. Just extract them to a folder somewhere on your system. Following current best-prac-
tice recommendations, the project’s application source code files are always in a subfolder of the
archive root named src.

For chapters that deal with application servers such as BlazeDS, ColdFusion, ASP.NET, or PHP,
you’ll need to download and install that software to run the sample applications from the Web site.
Each relevant chapter includes the URL from which the software can be downloaded and complete
installation instructions. For these chapters, you typically are instructed to create a Flex project
from scratch and then extract files from a .zip file from the Web site into the project (rather than
importing a Flex Project Archive file).

Finally, you can let us know about issues you find in the book or offer suggestions for subjects
you’d like to see covered in a future edition. Visit www.bardotech.com/flexbible to ask
questions and offer feedback.

Using the book’s icons
The following margin icons help you get the most out of this book:

Notes highlight useful information that you should take into consideration.

Tips provide additional bits of advice that make particular features quicker or easier
to use.

Cautions warn you of potential problems before you make a mistake.

The New Feature icon highlights features that are new to Flex 3.

Watch for the Cross-Ref icon to learn where in another chapter you can go to find more
information on a particular topic.

This icon points you toward related files on the book’s Web site,
www.wiley.com/go/flex3.

The Web Resource icon directs you to other material available online.WEB RESOURCEWEB RESOURCE

ON the WEBON the WEB

CROSS-REFCROSS-REF

NEW FEATURENEW FEATURE

CAUTION CAUTION

TIPTIP

NOTENOTE

xxvii

Preface

03_287644 fpref.qxp 6/23/08 11:26 PM Page xxvii

03_287644 fpref.qxp 6/23/08 11:26 PM Page xxviii

It’s a truism, and it’s also true, that no book of any length can be completed without the support
and sufferance of family, friends, and colleagues.

First, I’d like to thank the great folks at Wiley Publishing who always took my calls. Stephanie
McComb and Marty Minner were always willing to hear the newest idea and help me figure out
what was next. Gwenette Gaddis Goshert pointed out grammatical faux pas that made this former
English major blush. And Drew Falkman, fellow Flex instructor at Bardo Tech and aspiring
screenwriter, ferreted out the technical issues without regard for my sensitive side.

The Adobe Certified Instructors who join me at Bardo Tech in teaching Adobe Flex to the world
have taught me more about Flex than just about anyone. Thanks to Simeon Bateman, Drew
Falkman (again), Alex Hearnz, Spike Milligan, and Jeanette Stallons.

Neil Salkind and Heather Brown at Studio B relieved me of having to worry about the business
details.

Since early in this century, I’ve worked as a technical trainer and courseware developer with an
extraordinary crew, the Adobe instructional development team members who have moved from
Allaire to Macromedia to Adobe and never lost their stride: Matt Boles, Robert Crooks, Tina
Goodine, Sue Hove, Deborah Prewitt, James Talbot, and Leo Schuman. They’re always willing to
discuss and argue the teaching points. And thanks also to other Adobe Flex instructors who are
always willing to share their knowledge and insights: Emily Kim, David Hussein, Simon Slooten,
and Jun Heider.

Members of the Adobe Flex product management team, including Matt Chotin and Phil Costa,
pointed me in the right direction more times than they know. Jeff Vroom of the LiveCycle Data
Services development team humbled himself to be my teaching assistant at a couple of Adobe con-
ferences and is more the master of this material than I.

And finally, for my family who dealt with my being pretty much unavailable for anything at all for
this long: my kids, Thad, Jason, and Jenny, and my extraordinary wife and best friend in the whole
world, Jackie.

xxix

04_287644 flast.qxp 6/23/08 11:26 PM Page xxix

04_287644 flast.qxp 6/23/08 11:26 PM Page xxx

Flex Fundamentals

IN THIS PART
Chapter 1
About Flex 3

Chapter 2
Using Flex Builder 3

Chapter 3
Building a Basic Flex Application

Chapter 4
Understanding the Anatomy of a
Flex Application

Chapter 5
Using Bindings and Components

Chapter 6
Debugging Flex Applications

Chapter 7
Working with Events

05_287644-pp01.qxp 6/23/08 11:27 PM Page 1

05_287644-pp01.qxp 6/23/08 11:27 PM Page 2

Flex 3 is the most recent version of a platform for developing and
deploying software applications that run on top of the Adobe Flash
Player. While such tools have existed for many years, the most recent

toolkit from Adobe Systems allows programmers with object-oriented back-
grounds to become productive very quickly using the skills they already have
learned in other programming languages and platforms.

Since the release of Flex 2, the Flex development environment has encour-
aged a development workflow similar to that used in other desktop develop-
ment environments such as Visual Studio, Delphi, and JBuilder. The
developer writes source code and compiles an application locally and then
uploads the finished application to a Web server for access by the user. That
isn’t how Flex started, however.

Flex was originally released by Macromedia as a server-based application
deployment and hosting platform. In the early versions of the Flex product
line, an MXML/ActionScript compiler was included in a Java-based Web
application hosted on a Java 2 Enterprise Edition (J2EE) server. Application
source code was stored on the server. When a user made a request to the
server, the application was compiled “on request” and delivered to the user’s
browser, and hosted by the Flash Player.

This server-based compilation and application deployment model is still
available in the most recent version of the server software now known as
LiveCycle Data Services ES. But the version of the compiler that’s delivered in
LiveCycle Data Services isn’t necessarily the same as the one that’s available
in both the Flex 3 Software Developers Kit (SDK) and Flex Builder 3. And
most developers find it simpler to use the primary “local compilation” devel-
opment model.

3

IN THIS CHAPTER
Understanding the fundamentals
of Flex

Getting to know Flex
applications

Developing in Flex versus Flash

Using Flex with object-oriented
programming

Understanding the Flash Player

Learning the history of the Flash
Player

Making the most of Flex 3
development tools

Getting help

About Flex 3

06_287644-ch01.qxp 6/23/08 11:28 PM Page 3

In this chapter, I describe the nature of Flex applications, the relationship between Flex applications
and the Flash Player, and how Flex leverages the nearly ubiquitous distribution of Flash Player on
multiple operating systems. I also describe how Flex applications can be packaged for deployment
as desktop applications using the Adobe Integrated Runtime (AIR), formerly known as Apollo.

Learning the Fundamentals of Flex
The Flex product line allows developers to deploy applications that run on the Flash Player as Web
applications and on the Adobe Integrated Runtime (AIR) as desktop applications. The compiled
applications that you create with Flex are the same as those produced by the Adobe Flash authoring
environment (such as Adobe Flash CS3), but the process of creating the applications is very different.

Getting to know Flex applications
A Flex application is software that you create using the various pieces of the Adobe Flex 3 product
line, which includes the following:

� The Flex 3 Software Developers Kit (SDK)

� Flex Builder 3

One major difference between the SDK and Flex Builder is that the SDK is free, while Flex Builder
is available only through a license that you purchase from Adobe Systems. But in addition to the
Flex SDK that’s at the core of Flex Builder, the complete development environment includes many
tools that will make your application development more productive and less error-prone than
working with the SDK and another editing environment.

Flex Builder 3 Professional (the more complete and expensive of the available Flex Builder licenses)
also includes a set of components known as the Data Visualization Toolkit that aren’t included in
the SDK. The Data Visualization Toolkit includes the Flex Charting components for presenting data
as interactive visual charts and a new component called the AdvancedDataGrid that presents
relational data with groups, summaries, multi-column sorting, and other advanced features.

The Flex Charting Controls were available as a separately licensed product in the Flex 2
product line. With Flex 3, the Charting Controls, the AdvancedDataGrid component,

and other advanced controls are now available only as part of a Flex Builder 3 Professional license.

Flex programming languages
Flex 3 applications are written using two programming languages — ActionScript 3 and MXML:

� ActionScript 3 is the most recent version of the ActionScript language to evolve in the
Flash authoring environment over the lifetime of the product. A complete object-oriented
language, ActionScript 3 is based on the ECMAScript edition 4 draft language specifica-
tion. It includes most of the elements of object-oriented languages, including class
definition syntax, class package structuring, strong data typing of variables, and class
inheritance.

NEW FEATURENEW FEATURE

4

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 4

� MXML is a pure XML-based markup language that is used to define a Flex application
and many of its components. Most of the elements in MXML correspond to an
ActionScript 3 class that’s delivered as part of the Flex class library.

When you compile a Flex application, your MXML code is rewritten in the background into pure
ActionScript 3. MXML can be described as a “convenience language” for ActionScript 3 that makes
it easier and faster to write your applications than if you had to code completely in ActionScript.

ActionScript 3 also is used in the Flash CS3 authoring environment for logical code, cre-
ating class definitions, and other programming tasks. Unlike Flex 3, which uses only ver-

sion 3 of ActionScript, you can create Flash documents in Flash CS3 that use older versions of the
language, such as ActionScript 2.

The diagram in Figure 1.1 describes the relationship between the Flex SDK’s command-line com-
piler, Flex Builder, the MXML and ActionScript programming languages, and the Flash Player and
Adobe Integrated Runtime.

MXML versus ActionScript 3
MXML and ActionScript can be used interchangeably in many situations. MXML is commonly
used to declare visual layout of an application and many objects, but it’s usually your choice as a
developer as to when to use each language.

NOTENOTE

5

About Flex 3 1

Flex as Open Source

In April 2007, Adobe Systems announced its intention to migrate the Flex SDK to an open-source
project, to be licensed under the Mozilla Public License (MPL). This license allows developers to

modify and extend source code, and to distribute components of the code (or the entire SDK). Any
changes that developers make to the ActionScript files that make up the Flex SDK must in turn be
made available to other developers. This does not affect the developer’s own proprietary code. You
still own the MXML and ActionScript code you write for your own applications.

Not all components in the Flex SDK are available in the open-source package. Some components,
such as the Flex Charting Components and AdvancedDataGrid, are available only through com-
mercial licenses. Also, Flex Builder is available only through a license that you purchase from
Adobe.

The open-source Flex SDK is managed through the http://opensource.adobe.com/wiki/
display/flexsdk/ Web site. Additional information and ongoing discussion of the Flex open-
source project is available at these Web sites:

� http://groups.google.com/group/flex-open-source

� http://flex.org/

To get a copy of the Mozilla Public License, visit www.mozilla.org/MPL/.

06_287644-ch01.qxp 6/23/08 11:28 PM Page 5

FIGURE 1.1

The Flex SDK and Flex Builder both compile source code in MXML and ActionScript, producing exe-
cutable applications that are hosted by the Flash Player on the Web or the Adobe Integrated Runtime
(“AIR”) on the desktop.

In these examples, I’m declaring an instance of an ActionScript class named Label. The Label
class is part of the Flex class library that’s included with both the Flex SDK and Flex Builder 3. Its
purpose is to present a single line of text in a Flex application.

Declaring objects in MXML
The Label class is represented in MXML as a tag named <mx:Label/>. To create an instance of
the Label class using MXML and set its text property to a value of Hello World, declare the
tag and set the property as an XML attribute:

<mx:Label id=”myLabel” text=”Hello World”/>

This results in creating an instance of the Label class that is displayed in the application.

Declaring objects in ActionScript 3
The Label class also can be instantiated using ActionScript 3. When using the ActionScript 3 cod-
ing model, you first create the object using the class’s constructor method and then add the object
to the application’s display list so it becomes visible. You can set the text property anytime after
creating the object:

import mx.controls.Label;
var myLabel:Label = new Label();
myLabel.text = “Hello World”;
this.addChild(myLabel);

Flex 3 SDK
(Free)

Development tools

Flex Builder 3
(Commercial license)

MXML
(Used XML structure)

Programming languages

ActionScript 3
(Based on ECMAScript)

Flash Player 9
(Web applications)

Runtime platforms

Adobe Integrated Runtime
(Desktop applications)

6

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 6

This ActionScript code accomplishes exactly the same steps as the MXML code in the first example.
Notice that it takes four lines of ActionScript instead of the single line of MXML code. The amount
of code needed to accomplish any particular task is a common difference and one of the reasons
MXML exists. MXML can significantly reduce the amount of code in your application without
compromising its features or performance.

Assuming that the ActionScript code above is in a main application file, the prefix this
in the method call this.addChild() would refer to the Application itself. If the

same code were in an MXML component or ActionScript class, this would refer to the current
instance of that component or class.

Flex versus Flash development
Developers tend to use Flex instead of Flash when they want to create software applications that
have these characteristics:

� High level of interactivity with the user

� Use of dynamic data with application servers such as ColdFusion, ASP.NET, PHP, or J2EE

� Highly scaled applications in terms of the number of views, or screens, from which the
user can select

In contrast, developers tend to use Flash when they are creating documents with these characteristics:

� Documents whose main purpose is to present visual animation

� Marketing presentations

� Hosting of Web-based video

Many applications that are built in Flash CS3 could be built in Flex, and vice versa. The selection
of development environment, then, is frequently driven by a developer’s background and existing
skill set.

Developing in Flash
As described above, developers who use Flash are frequently focused on presenting animation,
hosting video, and the like. Flash is generally considered superior for animation work because of
its use of a timeline to control presentations over a designated period of time. Flash supports a
variety of animation techniques that make use of the timeline, including these:

� Frame by frame animation

� Motion tweening

� Shape tweening

Flash also allows you to create animations using pure ActionScript code, but that approach also
can be used in Flex. Developers who come from a graphic design background and are used to
thinking visually appreciate the precision and visual feedback that the Flash development environ-
ment provides.

NOTENOTE

7

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 7

One drawback that application developers encounter with Flash is that the primary source docu-
ment used in Flash, the .fla file format, is binary. As a result, it doesn’t work well with the source
control systems that application developers commonly use to manage their development projects,
because you can’t easily “diff,” or discover differences between, different versions of a binary file.

Developing in Flex
Developers who use Flex to build their applications commonly have a background in some other
programming language. Documents can be created and made useful in Flash without any program-
ming, but a Flex application is almost entirely code-based. Animations are handled entirely
through ActionScript, because Flex doesn’t have a timeline as part of its development toolkit.

Flex also has superior tools for handling large-scale applications that have dozens or hundreds of
views, or screens. Although Flash CS3 has a screen document feature, this feature hasn’t received
the development attention from Adobe that would make it a compelling architectural choice for
these “enterprise” applications.

Finally, Flex applications are built in source code, which is stored in text files. These text files are
easy to manage in source-code control applications such as CVS and Subversion. As a result, multi-
developer teams who are dependent on these management tools find Flex development to be a nat-
ural fit to the way they already work.

The Flex Builder 3 design view feature has become more friendly and useful to graphic designers
than in previous versions, but it isn’t always intuitive to a designer who’s used to “real” graphic
design tools like Adobe’s own Photoshop, Illustrator, and Fireworks.

Table 1.1 describes some of the core differences between Flex and Flash development.

TABLE 1.1

Differences between Flex and Flash Development

Task Flex Flash

Animation Flex uses ActionScript classes called The Flash timeline allows animation
Effects to define and play animations. frame-by-frame or tweening, and also
There is no timeline. supports programmatic animation with

ActionScript.

Working with data Flex has multiple tools for working Flash can communicate with the same
with data and application servers, RPC sources as Flex, but its programming
including the RPC components tools aren’t as intuitive or robust.
(HTTPService, WebService, and
RemoteObject). It is also a natural fit
for use with LiveCycle Data Services.

8

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 8

Task Flex Flash

Design Flex has a design view for WYSIWYG Flash has very good graphic design tools,
(“What You See Is What You Get”) although not as complete a toolkit as
application layout, but has no visual Illustrator. However, it has excellent tools
tools for creating graphic objects for importing and using graphics created
from scratch. in Photoshop and Illustrator.

Programming Flex supports ActionScript 3 and MXML. Flash supports all versions of ActionScript
languages (but only one version per Flash document)

and does not support MXML.

Code management Flex applications are created as source Flash documents are binary, which
code in text files, which are completely presents problems when building
compatible with source-code applications in multi-developer
management systems. environments that require source-code

management tools.

Applications built for development in the Adobe Integrated Runtime (AIR) can be cre-
ated in either Flex or Flash. AIR applications can be created from any compiled Flash

document or from HTML-based content.

Flex and Object-Oriented Programming
Flex application development is especially compelling for developers who are already acquainted
with object-oriented programming (OOP) methodologies. Object-oriented programming is a set of
software development techniques that involve the use of software “objects” to control the behavior
of a software application.

Object-oriented programming brings many benefits to software development projects, including
these:

� Consistent structure in application architectures

� Enforcement of contracts between different modules in an application

� Easier detection and correction of software defects

� Tools that support separation of functionality in an application’s various modules

You’ll find no magic bullets in software development: You can create an application that’s difficult
to maintain and at risk of collapsing under its own weight in an OOP language just as easily as you
can create one that primarily uses procedural programming. But a good understanding of OOP
principles can contribute enormously to a successful software development project.

And because ActionScript 3 is a completely object-oriented language, it serves Flex developers well
to understand the basic concepts of OOP and how they’re implemented in Flex development.

Object-oriented programming is commonly supported by use techniques known as modularity,
encapsulation, inheritance, and polymorphism.

NOTENOTE

9

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 9

Modularity
Modularity means that an application should be built in small pieces, or modules. For example, an
application that collects data from a user should be broken into modules, each of which has a par-
ticular purpose. The code that presents a data entry form, and the code that processes the data
after it has been collected, should be stored in distinct and separate code modules. This results in
highly maintainable and robust applications, where changes in one module don’t automatically
affect behavior in another module.

The opposite of modularity is monolithic. In monolithic applications such as the example in Listing
1.1, all the code and behavior of an application are defined in a single source-code file. These
applications tend to be highly “brittle,” meaning that changes in one section of the application run
a high risk of breaking functionality in other areas. Such applications are sometimes referred to as
spaghetti code because they tend to have code of very different purposes all wrapped around each
other.

LISTING 1.1

A monolithic Flex application

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Model>
...data representation...

</mx:Model>
<mx:Script>

...ActionScript...
</mx:Script>
<mx:HBox>

<mx:DataGrid>
<mx:columns>

<mx:DataGridColumn .../>
<mx:DataGridColumn .../>
<mx:DataGridColumn .../>

</mx:columns>
</mx:DataGrid>
<mx:Form>

<mx:FormItem label=”First Name:”>
<TextInput id=”fnameInput”/>

</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<TextInput id=”lnameInput”/>
</mx:FormItem>
<mx:FormItem label=”Address:”>

<TextInput id=”addressInput”/>
</mx:FormItem>

</mx:Form>
</mx:HBox>

</mx:Application>

10

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 10

In the above application, all the application’s functionality is mixed together: data modeling, data
collection, and logical scripting. Although the application might work, making changes without
introducing bugs will be difficult, especially for a multi-developer team trying to work together on
the application without constantly disrupting each other’s work.

A modular application such as the version in Listing 1.2 breaks up functionality into modules that
each handle one part of the application’s requirements. This architecture is easier to maintain
because the programmer knows immediately which module requires changes for any particular
feature.

LISTING 1.2

A modular Flex application

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script source=”scriptFunctions.as”/>
<valueObjects:AValueObject id=”vo”/>
<views:ADataGrid id=”grid”/>
<forms:AForm id=”form”/>

</mx:Application>

Flex implements modularity through the use of MXML components and ActionScript classes that
together implement the bulk of an application’s functionality.

Encapsulation
Encapsulation means that a software object should hide as much of its internal implementation
from the rest of the application as possible, and should expose its functionality only through pub-
licly documented “members” of the object. A class definition that’s properly encapsulated exposes
and documents these object members to allow the application to set properties, call methods, han-
dle events, and refer to constants. The documentation of the object members is known as the
application programming interface (API) of the class.

In the Flex class library, class members include:

� Properties: Data stored within the object

� Methods: Functions you can call to execute certain actions of the object

� Events: Messages the object can send to the rest of the application to share information
about the user’s actions and/or data it wants to share

� Constants: Properties whose values never change

In Flex, encapsulation is fully implemented in ActionScript 3. Each member that you define in a
class can be marked using an access modifier to indicate whether the particular method or prop-
erty is public, private, protected, or internal. A public method, for example, allows

11

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 11

the application to execute functionality that’s encapsulated within the class, without the program-
mer who’s calling the method having to know the details of how the action is actually executed.

For example, imagine a class that knows how to display a video in the Flash Player and allows the
developer to start, stop, and pause the video, and control the video’s audio volume. The code that
executes these functions would have to know lots about how video is handled in Flash and the
particular calls that would need to be made to make the audio louder or softer. The API of the
class, however, could be extremely simple, including methods to execute each of these actions.

public class VideoPlayer()
{

public function VideoPlayer(video:String):null
{ ... call video libraries to load a video ... }

public function start()
{ ... call video libraries to play the video ... }

public function stop()
{ ... call video libraries to stop the video ... }

public function setVolume(volume:int):null
{ ... call video libraries to reset the volume ... }

}

The application that instantiates and uses the class wouldn’t need to know any of the details; it just
needs to know how to call the methods:

var myVideoPlayer:VideoPlayer = new VideoPlayer(“myvideo.flv”);
myVideoPlayer.start();
myVideoPlayer.setVolume(1);

We say, then, that the VideoPlayer class encapsulates complex behavior, hiding the details of
the implementation from the rest of the application.

Inheritance
Inheritance refers to the ability of any class to extend any other class and thereby inherit that class’s
properties, methods, and so on. An inheritance model allows the developer to define classes with
certain members (properties, methods, and so on) and then to share those members with the
classes that extend them.

In an inheritance relationship, the class that already has the capabilities you want to inherit is
called the superclass, or base class, or parent class. The class that extends that class is known as the
subclass, or derived class, or child class. Unified Modeling Language (UML) is a standardized visual
language for visually describing class relationships and structures. In this book, I frequently use
UML diagrams such as the example in Figure 1.2 to describe how a class is built or its relationship
to other classes.

12

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 12

FIGURE 1.2

This is an example of a UML diagram that describes a relationship between a base and a derived class.

One class can extend a class that in turn extends another. UML diagrams can be extended to
describe these relationships as well. The UML diagram in Figure 1.3 describes a three-tier inheri-
tance relationship between a superclass named Animal and subclasses named Dog and Poodle.

FIGURE 1.3

This diagram describes a three-part inheritance relationship.

Animal

+ name

+ sleep()
+ eat()

Dog

+ bark()
+ eat()

Poodle

+ bark()

Animal

Dog

13

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 13

In Figure 1.2, methods of the superclass Animal are inherited by the subclass Dog. Dog has addi-
tional methods and properties that aren’t shared with its superclass and that can override the
superclass’s existing methods with its own implementations. The same relationship exists between
Dog and Poodle.

Because all versions of Animal sleep in the same way, calling Dog.sleep() or
Poodle.sleep() actually calls the version of the method implemented in Animal. But because
Dog has its own run() method, calling Dog.run() or Poodle.run() calls that version of the
method. And finally, because all dogs bark in a different way, calling Poodle.bark() calls a
unique version of the bark() method that’s implemented in that particular class.

Inheritance allows you to grow an application over time, creating new subclasses as the need for
differing functionality becomes apparent.

In Flex, the ActionScript inheritance model allows you to create extended versions of the compo-
nents included in the Flex class library without modifying the original versions. Then, if an
upgraded version of the original class is delivered by Adobe, a simple recompilation of the applica-
tion that uses the extended class will automatically receive the upgraded features.

Polymorphism
Polymorphism means that you can write methods that accept arguments, or parameters, data typed
as instances of a superclass, but then pass an instance of a subclass to the same method. Because all
subclasses that extend a particular superclass share the same set of methods, properties, and other
object members, the method that expects an instance of the superclass also can accept instances of
the subclass and know that those methods can be called safely.

Polymorphism also can be used with a programming model known as an interface. An interface is
essentially an abstract class that can’t be directly instantiated. Its purpose is to define a set of meth-
ods and other object members and to describe how those methods should be written. But in an
interface such as the one described in Figure 1.4, the method isn’t actually implemented; it only
describes the arguments and return data types that any particular method should have.

A class “implements” an interface by creating concrete versions of the interface’s methods that actu-
ally do something. As with the relationship between super and subclasses, a method might be writ-
ten that accepts an instance of the interface as an argument. At runtime, you actually pass an
instance of the implementing class.

For example, you might decide that Animal should be abstract; that is, you would never create an
instance of an Animal, only of a particular species. The following code describes the interface:

public interface Animal
{

public function sleep()
{}

}

14

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 14

FIGURE 1.4

This UML diagram describes the relationship between an interface and an implementing class.

The interface doesn’t actually implement these methods. Its purpose is to define the method names
and structures. A class that implements the interface might look like this:

public class Dog implements Animal
{

public function sleep()
{ ... actual code to make the dog sleep ... }
public function bark()
{ ... actual code to make the dog bark ... }

}

Notice that a class that implements an interface can add other methods that the interface doesn’t
require. This approach is sometimes known as contract-based programming. The interface consti-
tutes a contract between the method that expects a particular set of methods and the object that
implements those methods.

Flex supports polymorphism both through the relationship between superclasses and subclasses
and through creation and implementation of interfaces in ActionScript 3.

Understanding the Flash Player
Flex applications are executed at runtime by the Flash Player or the Adobe Integrated Runtime. In
either case, they start as applications compiled to the .swf file format.

When you deploy a Flex application through the Web, it’s downloaded from a Web server at run-
time as a result of a request from a Web browser. The browser starts the Flash Player, which in turn
runs the application.

<<interface>>

Animal

+ move()
+ eat()
+ sleep()

+ move()
+ eat()
+ sleep()

Dog

15

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 15

The Adobe Integrated Runtime includes the Flash Player as one of its critical components. Other
components include a Web browser kernel to execute HTML, CSS and JavaScript, and APIs for
local file access and data storage. But the version of the Flash Player that’s included with AIR is the
same as the one that runs on users’ systems as a Web browser plug-in or ActiveX control. As a
result, any functionality that you include in a Flex application should work the same regardless of
whether the application is deployed to the Web or the desktop.

The diagram in Figure 1.5 describes the architectural difference between the Flash Player’s deploy-
ment in a Web browser versus the Adobe Integrated Runtime.

FIGURE 1.5

Flash Player installed with a Web browser versus the Adobe Integrated Runtime

Learning a little history about the Flash Player
FutureWave Software originally created a product called Future Splash Animator, which in turn
evolved from a product called SmartSketch. The player for the animations was Java-based and was
the ancestor of the current Adobe Flash Player. After its purchase by Macromedia, the product was
renamed and released in 1996 as Macromedia Flash 1.0.

The product went through a steady evolution, starting with basic Web animation and eventually
becoming a full-featured programming environment with rich media (video and audio) hosting
capabilities.

During its time with Macromedia, Flash (the IDE) was packaged as part the Studio bundle and
was integrated with other Studio products such as Dreamweaver and Fireworks. Macromedia

Web browser

Web deployment model

Flash
Player

Flash Player called as ActiveX or plug-in

Flash Player and Web browser
integrated into runtime

Flash
Player

Web
browser

Adobe Integrated Runtime (AIR)

Desktop deployment model

16

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 16

positioned Flash MX and MX 2004 as development environments for what the company began to
call rich internet applications (RIAs). Although the development environment that was Flash never
fully satisfied the requirements of application developers (see the discussion in the section “Flex
versus Flash development” of issues that are commonly encountered in Flash when developing
true applications), the Flash Player continued to grow in its ability to host the finished applica-
tions, however they were built.

After Adobe Systems purchased Macromedia, Flash became a part of the Adobe Creative Suite 3
(CS3) product bundles. Along with this rebundling came increased integration with other CS3
products such as Illustrator and Photoshop. Other Adobe products such as AfterEffects and
Premiere received new export features that allow their video-based output files to be integrated
into Flash-based presentations.

Table 1.2 describes the major milestones in the history of the Flash Player.

TABLE 1.2

Flash Player History

Version Year New Features

Macromedia Flash Player 1 1996 Basic Web animation

Macromedia Flash Player 2 1997 Vector graphics, some bitmap support, some audio
support; object library

Macromedia Flash Player 3 1998 The movieclip element; alpha transparency, MP3
compression; standalone player; JavaScript plug-in
integration

Macromedia Flash Player 4 1999 Advanced ActionScript; internal variables; the input field
object; streaming MP3

Macromedia Flash Player 5 2000 ActionScript 1.0; XML support; Smartclips (a component-
based architecture); HTML 1.0 text formatting

Macromedia Flash Player 6 2002 Flash remoting for integration with application servers;
screen reader support; Sorenson Sparc video codec

Macromedia Flash Player 7 2003 Streaming audio and video; ActionScript 2; first version
associated with Flex

Macromedia Flash Player 8 2005 GIF and PNG graphic loading; ON VP6 video codec;
faster performance; visual filters including blur and
drop shadow; file upload and download; improved text
rendering; new security features

Adobe Flash Player 9 2006 ActionScript 3; faster performance; E4X XML parsing;
binary sockets; regular expressions

Adobe Flash Player 9 Update3 2007 H.264 video; hardware-accelerated full-screen video
playback

17

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 17

Each new product bundling and relationship has increased the requirements for the Flash Player.
As a result, the most recent version of the Player (version 9) has all the features I’ve described:

� Object-oriented programming with ActionScript 3

� Web-based animation

� Rich media hosting and delivery

In addition to the Flash Player that’s delivered for conventional computers, Macromedia
and Adobe have released versions of Flash Lite for hosting Flash content on devices such

as cell phones and PDAs. None of the current versions of Flash Lite support ActionScript 3, so Flex
applications currently can’t be deployed on those platforms. Undoubtedly, this is a goal of future
development by Adobe.

Flash Player penetration statistics
One of the attractions of the Flash Player is its nearly ubiquitous penetration rate in the Web. Each
new version of the Player has achieved a faster rate of installation growth than each version before
it; version 9 is no different. As of December 2007 (according to statistics published on Adobe’s
Web site), the penetration rate for Flash Player 7 was 99% or greater, Flash Player 8 was at 98% or
greater, and Flash Player 9 already had a penetration rate of 93% or greater. Of course, these rates
change regularly; for the most recent information on Flash Player penetration rates, visit:

http://www.adobe.com/products/player_census/flashplayer/

Penetration rates are very important to organizations that are deciding whether to build applica-
tions in Flex, because the availability of Flash Player 9 (required to run both Flex applications and
Flash documents built with ActionScript 3) determines whether a Flex application will open
cleanly or require the user to install or upgrade the Player prior to running the application. If a
user needs to install the Flash Player, however, many ways exist to get the job done.

The Debug Flash Player
The Debug version of the Flash Player differs from the production version in a number of ways. As
described in detail below, you can install the debug version of the Flash Player from installers that
are provided with Flex Builder 3 and the Flex 3 SDK.

The Debug version of the Player includes these features:

� Integration with fdb, the command-line debugger that’s included with the Flex 3 SDK

� Integration with Flex Builder debugging tools such as the trace() function and break-
points

� Other debugging tools

To ensure that you’re running the Debug player, navigate to this Web page in any browser that you
think has the Player installed:

http://kb.adobe.com/selfservice/viewContent.do?externalId=tn_19245

NOTENOTE

18

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 18

As shown in Figure 1.6, you should see a Flash document that tells you which version of the Player
is currently installed. When you load this document with the Debug Player, it displays a message
indicating that you have the Content Debugger Player. This tool also tells you whether you’re run-
ning the ActiveX or plug-in Player and what version.

FIGURE 1.6

Discovering your Flash Player version

Flash Player installation
As of this writing, Flash Player 9 is available for these operating systems:

� Windows

� Mac OS X

� Linux

� Solaris

For up-to-date information about current operating system support, including minimum browser
and hardware requirements, visit this Web page:

http://www.adobe.com/products/flashplayer/productinfo/systemreqs/

The Flash Player can be installed on a user’s computer system in a variety of ways:

� As an integrated Web browser plug-in

� As a standalone application

� As part of the Adobe Integrated Runtime

19

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 19

Regardless of how you install the Flash Player, users who install the Flash Player must
have administrative access to their computer. On Microsoft Windows, this means that

you must be logged in as an administrator. On Mac OS X, you must have an administrator password
available during the installation.

Uninstalling the Flash Player
Before installing the Flash Player, make sure any existing installations have been removed. The
process for uninstalling the Flash Player differs from one operating system to another, but in all
cases you must close any browser windows before trying to uninstall the Player

On Windows XP, use the Control Panel’s Add or Remove Programs feature, shown in Figure 1.7,
and uninstall whatever versions of the Flash Player you find.

FIGURE 1.7

Windows XP’s Add or Remove Programs feature, listing both the plug-in and ActiveX versions of the
Flash Player

On Mac OS X, use the uninstaller application that’s available for download from this Web page:

www.adobe.com/go/tn_14157

Installation with Flex Builder
As shown in Figure 1.8, when you install Flex Builder 3, you’re prompted to install the debug version
of the Flash Player as one of the last steps in configuring the installation. You should always accept
this part of the installation, because it ensures that your system is equipped with the most recent ver-
sion of the Player that you need for building, debugging, and testing your Flex applications.

NOTENOTE

20

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 20

FIGURE 1.8

The Flex Builder installer prompts you to install the Flash Player plug-in or ActiveX control on currently
installed browsers.

Before installing Flex Builder, make sure that you’ve closed any browser windows. If the installa-
tion detects open browser windows, it prompts you to close those windows before continuing the
installation process.

Using Flex Builder installation files
If you need to reinstall the debug version of the Flash Player, you should use the version that’s
included with Flex Builder 3 or the Flex SDK. If you’ve installed Flex Builder, you can find the
installation files in a subfolder within the Flex Builder installation folder. On Windows, this folder
is named:

C:\Program Files\Adobe\Flex Builder 3\Player\Win

This folder has three files:

� Install Flash Player 9 Plugin.exe: The plug-in version for Firefox and Netscape

� Install Flash Player 9 ActiveX.exe: The ActiveX control for Internet Explorer

� FlashPlayer.exe: The standalone player (does not require installation — just run it!)

Before running any of the installers, be sure to close any open browser windows.

Installing the Flash Player from the Web
You also can get the Flash Player from the Adobe Web site. Select a download location depending
on whether you want the production or debug version of the Player.

21

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 21

Downloading the production Flash Player
End users who want to run Flex applications and other Flash-based content can download the
Flash Player installer from this Web page:

http://www.adobe.com/go/getflashplayer

When you see the page shown in Figure 1.9, you should see a link to download the Flash Player
that’s appropriate for your operating system and browser.

FIGURE 1.9

Downloading the Flash Player from Adobe.com

The Flash Player that you download from this page is the production version, rather
than the debug version. If you have the production version installed, you can test your

applications, but you can’t take advantage of debugging tools such as tracing, breakpoints, and
expressions evaluation.

The Flash Player Download Center may include a link to download the Google toolbar
or other content. You do not have to download and install this unrelated content in

order to get all the features of the Flash Player.

TIPTIP

CAUTION CAUTION

22

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 22

Downloading the debug Flash Player
To download the debug version of the Flash Player, visit this Web page:

http://www.adobe.com/support/flashplayer/downloads.html

As shown in Figure 1.10, you should see links for all versions of the Player, including both debug
and production versions for a variety of operating systems and browsers.

FIGURE 1.10

This is the Adobe Flash Player Support Center.

You might find an even more recent version of the Flash Player on the Adobe Labs Web
page at http://labs.adobe.com. Adobe Labs hosts projects that are still in devel-

opment, but that are far enough along that Adobe is sharing the current code with the community.

Flex 3 development tools
Flex developers have two sets of development tools: Flex Builder 3 and the Flex 3 SDK.

Flex Builder 3
Flex Builder 3 is an integrated development environment (IDE) for building Flex applications. This is the
tool that most developers use to build Flex applications. I describe Flex Builder 3 in detail in Chapter 2.

TIPTIP

23

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 23

The Flex Software Developers Kit (SDK)
The Flex class library and command-line tools you need to build Flex applications are completely
free. As long as you don’t need to use Flex Builder or certain components that require a license,
you can download the Flex SDK from Adobe and build and deploy as many applications as you
want. The obvious benefit is the cost. The drawback to this approach is that you’ll have to select a
text editor such Eclipse that doesn’t have the specific support for Flex application development
that you get with Flex Builder.

If you decide to use the Flex 3 SDK, download the most recent version from Adobe at www.adobe.
com/go/flex. The SDK is delivered in a zipped archive file that can be extracted to any platform.

The SDK includes most of the class library you use to build Flex applications. The following com-
ponents, however, require a license for deployment:

� Flex Charting components

� AdvancedDataGrid component

� Application profiling tools

As shown in Figure 1.11, if you decide to use these features without a license, any instances of the
charting components or AdvancedDataGrid component are displayed in your application with
a watermark indicating that you are using an evaluation version of the component.

In addition to the Flex class library, the Flex 3 SDK includes these command-line tools:

� mxmlc: A compiler for building Flex applications

� compc: A compiler for building component libraries, Runtime Shared Libraries (RSLs),
and theme files

� fdb: A debugger to debug applications

� fcsh: The Flex Compiler Shell, which you can use to execute multiple compilation tasks
without the overhead of having to launch a new Java Virtual Machine (JVM) for each task

� amxmlc: The AIR application compiler

� acompc: The AIR component compiler

� adl: The AIR debug application launcher

� optimizer: A tool for reducing ActionScript compiled file size and creating a “release
version” of an application, component, or RSL

Detailed information about how to use each of these command-line tools is available in the Adobe
publication Building and Deploying Flex Applications.

24

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 24

FIGURE 1.11

A watermarked charting component

Using MXMLC, the command-line compiler
To compile a Flex application with mxmlc, the command-line compiler, it’s a good idea to add the
location of the Flex 3 SDK bin directory to your system’s path. This allows you to run the compiler
and other tools from any folder without having to include the entire path in each command. Figure
1.12 shows the command-line compiler.

When you install Flex Builder 3 on Microsoft Windows, the installer provides a menu
choice that opens a command window and adds all directories containing Flex 3 com-

ponents to the current path. To use this tool, select All Programs ➪ Adobe ➪ Adobe Flex 3 SDK
Command Prompt from the Windows Start menu.

To compile an application from the command line, switch to the folder that contains your main
application file. If you want to try this using the exercise files that are available for download with
this book, switch to the chapter01 directory:

cd /flex3bible/chapter01

TIPTIP

25

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 25

This directory contains a file called HelloWorld.mxml, a simple Flex application. To compile the
application, run this command:

mxmlc HelloWorld.mxml

FIGURE 1.12

The command-line compiler at work

After the compilation is complete, your directory will contain a new file called HelloWorld.swf.
This is the compiled application that you deploy to your Web server.

The command-line compiler has many options for tuning your application. For complete
details on how to use the compiler, see the Adobe publication Building and Deploying

Flex Applications.

Getting Help
Documentation for Flex 3 is available from the Adobe Web site at:

www.adobe.com/support/documentation/en/flex/

The documentation is available in a variety of formats, including Acrobat PDF, HTML Help, and
ASDocs HTML files.

The documentation includes these publications, among others:

� Developing Flex Applications contains extensive documentation on the functional tools that
are available in the Flex framework.

� Building and Deploying Flex Applications focuses on application architecture, compiler
tools, and deployment strategies.

� ActionScript 3.0 Language and Components Reference contains generated documentation of
the Flex class library, including each class’s properties, methods, and so on. This docu-
mentation also includes extensive code samples.

The documentation also is delivered in indexed, searchable format with Flex Builder 3. I describe
how to explore and use this version of the documentation in Chapter 2.

TIPTIP

26

Flex FundamentalsPart I

06_287644-ch01.qxp 6/23/08 11:28 PM Page 26

Summary
In this chapter, I gave an introduction to the world of application development with Adobe Flex.
You learned the following:

� Flex applications are built as source code and compiled into Flash documents.

� Flex applications can be run as Web applications with the Flash Player, delivered through
a Web browser.

� Flex applications also can be run as desktop applications, hosted by the Adobe Integrated
Runtime (AIR).

� The Flex Software Developers Kit (SDK) is completely free and available as an open-
source project that’s managed by Adobe Systems.

� Flex Builder 3 is a commercial integrated development environment for building Flex
applications.

� Flex developers tend to have a background in object-oriented software development, but
anyone who’s willing to invest the time can become proficient in Flex application devel-
opment.

27

About Flex 3 1

06_287644-ch01.qxp 6/23/08 11:28 PM Page 27

06_287644-ch01.qxp 6/23/08 11:28 PM Page 28

Flex Builder 3 is Adobe’s preferred development tool for building appli-
cations with the Flex Framework. Flex Builder is available for both the
Windows and Mac OS X operating systems, and a Linux version of the

product is planned for future release.

Although you can develop and deploy Flex applications to the Web or the
desktop with the free Flex SDK, Flex Builder is a worthwhile investment that
can increase developer productivity, reduce bugs, speed up coding, and gener-
ally make the process of developing a Flex application much more enjoyable.

Getting Flex Builder 3
You can get Flex Builder from Adobe as a free evaluation that lasts for 60
days, or you can purchase a license. Two licenses currently are available for
Flex Builder 3:

� Flex Builder 3 Standard Edition includes everything you need to
build basic Flex applications for the desktop and the Web, but it
does not include the Flex Charting component library, the
AdvancedDataGrid control, or certain other advanced development
and testing tools.

� Flex Builder 3 Professional Edition includes the Flex Builder
Standard Edition feature set and adds data visualization tools such as
the Flex Charting components and AdvancedDataGrid control. The
Professional license also includes the Flex Test Automation frame-
work, which can be used along with Mercury QuickTest Professional
to perform automated client testing on a Flex application.

29

IN THIS CHAPTER
Getting and installing Flex
Builder 3

Installing Flex Builder as an
Eclipse plug-in

Getting to know the features of
Flex Builder

Using views and perspectives

Using workspaces and projects

Creating a Flex project using the
Help system

Searching for and refactoring
code

Using Flex Builder 3

07_287644-ch02.qxp 6/23/08 11:30 PM Page 29

Installing Flex Builder 3
Flex Builder 3 can be installed in two ways:

� As a standalone installation that includes everything you need

� As a plug-in on top of an existing installation of Eclipse

Regardless of which installation option you select, Flex Builder runs as a plug-in, or an integrated
component, of another software product called Eclipse. So, before installing Flex Builder, it’s first
important to understand the nature of Eclipse.

Flex Builder 2 had a single installation application for each operating system. After you
started the installation process, you selected whether to install Flex Builder with the

standalone or the plug-in configuration. Flex Builder 3 has separate installation applications for the
two configurations.

The plug-in installation requires Eclipse version 3.22 or later. When you select the stand-
alone configuration, Flex Builder is installed with Eclipse 3. Eclipse 3 includes many new

features that developers find valuable, including the ability to drag and drop code from one part of a
source file to another.

Installing Flex Builder with the standalone
configuration
The standalone installation of Flex Builder includes everything you need to get started building
Flex applications. The installation includes these components in a single integrated package:

� The Java Runtime Environment (JRE) when installing on Windows

� The Flex Builder plug-in

� Optional installation of the ColdFusion Extensions for Eclipse

� Optional installation of the JSEclipse plug-in for editing JavaScript files

Running the standalone installer
Start the installer, and navigate through the first few screens. When prompted for the installation
folder, select the location where you want to install the product.

On the next screen, shown in Figure 2.1, you’re asked whether you want to install the debug ver-
sion of Flash Player 9. Because this version of Flash Player is required for successful Flex applica-
tion development, you should leave the options selected for all browsers.

NOTENOTE

NEW FEATURENEW FEATURE

30

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 30

FIGURE 2.1

This installation dialog box prompts you to decide which optional components you want to include in the
Flex Builder installation.

After accepting the summary screen (shown in Figure 2.2) and clicking Finish, the installation
should be completed successfully.

FIGURE 2.2

The Pre-Installation Summary screen

31

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 31

Installing Flex Builder with the Eclipse workbench
Eclipse is an open-source software product that serves as a platform for building and deploying
application development tools. Eclipse was originally developed by IBM as a Java integrated devel-
opment environment. The software was then donated to the Eclipse Foundation, which describes
itself as a “not-for-profit, member supported corporation.” The purpose of the Eclipse Foundation
is to organize and support ongoing development of Eclipse and related software. You can visit the
Eclipse Foundation online at http://www.eclipse.org.

Eclipse is described as a workbench. It serves as a platform for many software products, each of
which is typically devoted to development in a particular language or platform. These individual
products are known as plug-ins. An Eclipse installation can host as many plug-ins as you like, for as
many different programming languages as you work in. This allows you to do your development
work in a single development environment and easily switch among Java, Flex, ColdFusion, XML,
and any other languages for which you’ve installed the appropriate plug-ins.

Hundreds of plug-ins are available for the Eclipse workbench. Table 2.1 describes some Eclipse
plug-ins that are commonly used by Flex application developers.

TABLE 2.1

Eclipse Plug-ins for Flex Developers

Plug-in Description Available From

Java Development The most commonly used http://www.eclipse.org/jdt/
Tools (JDT) Eclipse-based Java

development IDE; includes
a Java editor with code editing,
generation, debugging, and
analysis tools

Web Tools Project A set of tools for developing http://www.eclipse.org/webtools/
Web and Java EE applications

JSEclipse A development environment Included with Flex Builder
for working with JavaScript

ColdFusion Extensions A plug-in for ColdFusion Included with Flex Builder
for Eclipse developers that provides

Remote Development
Service (RDS) access to a
ColdFusion server, along with
tools to generate code for both
ColdFusion and ActionScript

CFEclipse An open-source, freely licensed http://www.cfeclipse.org
plug-in for ColdFusion developers

32

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 32

Getting Eclipse
When you install Flex Builder with the standalone installation option, you get a complete copy of
Eclipse 3.3 as part of the installation. If you want to install Flex Builder using the plug-in installa-
tion option, you first need to download and install an Eclipse distribution.

Preparing to install Eclipse
Before installing an Eclipse distribution, you need to have the Java Runtime Environment (JRE)
installed on your computer.

Mac OS X developers already have the JRE installed as part of the operating system’s default config-
uration. Windows XP and Windows Vista developers should check for an existing JRE and install it
if it isn’t found.

As of this writing, the most recent version of the JRE (version 6) has not been fully tested with
Eclipse 3.3, so I recommend that you install JRE 5 for use with Eclipse. If you’re a Java developer,
this doesn’t affect your ability to develop with the latest version of the Java programming language,
because you can always designate a different version of Java Standard Edition for any particular
development project.

You can download and install JRE 5 from http://java.sun.com/javase/downloads/
index_jdk5.jsp. Just follow the prompts to install the JRE, and you’ll be ready to install
Eclipse.

Selecting an Eclipse distribution
Many pre-packaged distributions of Eclipse are available. The basic product includes just the
workbench and allows you to completely customize your installation. Other distributions include
various combinations of plug-ins and configurations for common development scenarios.

Table 2.2 describes some of the common Eclipse distributions.

TABLE 2.2

Eclipse Distributions

Plug-in Description Available From

Eclipse IDE for Includes the JDT, a source code http://www.eclipse.org/downloads/
Java Developers management client, XML editor,

and other useful tools

Eclipse IDE for All of the above, plus Mylyn, for http://www.eclipse.org/downloads/
Java EE Developers integration with Bugzilla, Trac,

and JIRA (server environments
for source code management)

continued

33

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 33

TABLE 2.2 (continued)

Plug-in Description Available From

Eclipse Classic Includes the JDT, plus tools for http://www.eclipse.org/downloads/
developers who want to create
their own Eclipse plug-ins

Web Tools Platform Includes text and graphics http://www.eclipse.org/webtools/
All-in One editors for a variety of

languages and platforms;
enables certain features of
Flex Builder 3 for generation
of Java server-side code

Installing Eclipse
Eclipse distributions are typically delivered as compressed archive files without formal setup appli-
cations.

Eclipse on Windows
On Windows, the Eclipse distribution is in the ZIP archive format. You install Eclipse on Windows
simply by extracting the archive to any folder on your system.

For example, if you select the Eclipse IDE for J2EE Developers on Windows, version 3.3, the
installation file will be named eclipse-jee-europa-win32.zip. Extract the .zip file to any
folder on disk such as C:\eclipse.

To start Eclipse on Windows, run eclipse.exe from the Eclipse folder.

Eclipse on Mac OS X
On Mac OS X, the Eclipse distribution is in an archive format known as tarball. You install Eclipse
on Mac OS X by extracting the archive to any folder on your system.

For example, if you select the Eclipse IDE for J2EE Developers on Mac OS X, version 3.3, the
installation file will be named eclipse-jee-europa-fall-macosx-carbon-tar.gz.
Extract the archive file to any folder on disk such as the Applications folder on your hard disk.

After installing Eclipse on Mac OS X, locate the Eclipse icon Eclipse in the Eclipse folder. Select
the icon and press Cmd+O or double-click on the icon to start Eclipse.

Installing the Flex Builder plug-in
To install Flex Builder as a plug-in on top of your existing Eclipse installation, use the appropriate
installation application for your operating system.

34

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 34

Start the installer, and navigate through the first few screens. The plug-in installer asks for most of
the same options as the standalone installer, but it also asks for two locations:

� The Choose Install Folder dialog box asks you to choose a location for the Flex SDK and
other supporting files. Figure 2.3 shows the installation prompt for this information.

FIGURE 2.3

This dialog box asks for the location of the Install Folder.

� The Choose Eclipse Folder to be Extended dialog box asks where you want Eclipse plug-
ins to be installed. Figure 2.4 shows the installation screen for this information.

35

Using Flex Builder 3 2

Eclipse Licensing

Eclipse is licensed under the Eclipse Public License Version 1.0 (EPL). This license allows you to
freely download, install, and use Eclipse on as many computers as you like. The license is struc-

tured so that plug-ins that are created by software companies, non-profit organizations, or individu-
als can be distributed under open-source licenses (as with the Java Development Tools or CFEclipse)
or sold as commercial products (as with Flex Builder).

07_287644-ch02.qxp 6/23/08 11:30 PM Page 35

FIGURE 2.4

This dialog box asks you for the location of your Eclipse installation.

On the next screen, you’re asked whether you want to install the debug version of Flash Player 9.
Because this version of Flash Player is required for successful Flex application development, you
should leave the options selected for all browsers.

If you have a later version of the debug Flash Player already installed, the Flex Builder
installation still replaces it with its own version. If you know you have a later version

already installed, deselect the option to install the Flash Player to retain your current version.

After accepting the summary screen and clicking Finish, the installation completes successfully.

Getting to Know the Eclipse Features
The Flex Builder 3 feature set combines the capabilities of the Eclipse workbench with customized
tools that increase Flex application development productivity. Figure 2.5 shows the default Flex
Builder layout the first time you open it after installation. In this section, I describe the basic tools
of Eclipse: workspaces, projects, views, editors, and perspectives.

The Eclipse workspace
An Eclipse workspace consists of a collection of development projects, plus configuration settings
for both the built-in Eclipse features and certain customized features that are part of Flex Builder.

CAUTION CAUTION

36

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 36

When Eclipse first starts up, you’re prompted to select a workspace. The default workspace folder
will differ based on whether you’re using Flex Builder’s standalone configuration or the plug-in,
but the location is your personal folder. Table 2.3 shows the specific locations you’ll see for differ-
ent operating systems.

FIGURE 2.5

Flex Builder in the default Flex Development perspective

TABLE 2.3

Default Workspace Locations by Operating System

Operating System Default Workspace Location

Windows XP C:\Documents and Settings\[username]\My Documents\Flex Builder 3

Windows Vista C:\Users\[username]\Documents\Flex Builder 3

Mac OS X /Users/[username]/Documents/Flex Builder 3

37

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 37

The most visible and important purpose of an Eclipse workspace is to serve as a table of contents
for a set of projects. The workspace, however, does more; it maintains all the information you need
to manage your projects, including configuration settings for Eclipse, Flex Builder, and other plug-
ins you might have installed.

Select File ➪ Switch Workspace from the Eclipse menu to switch workspaces. Workspaces you’ve
used previously may be displayed on the menu; if the workspace you want is available, just select it.

To select a different workspace (whether new or one that already exists), select Other from the sub-
menu. As shown in Figure 2.6, type the name of the workspace folder or use the folder browsing
tool to select it. If you type the name of a folder that doesn’t yet exist, it is created for you.

FIGURE 2.6

This dialog box asks for a new workspace location.

When you select a new workspace, Eclipse automatically restarts to allow any file or folder locks to
be released.

Eclipse projects
An Eclipse project contains all the resources needed for a particular application or group of related
applications. The basic Eclipse project contains only a reference to a particular root folder. Most
projects you create will be for a particular programming language or platform and will be associ-
ated with a particular Eclipse plug-in such as Flex Builder, CFEclipse, the JDT, or others.

A single project can be referenced in multiple workspaces.

Because the project creation process can vary widely for various plug-ins, I describe the details of
Flex project creation in a later section.

Eclipse views
An Eclipse view is a user interface panel that serves a specific function. Some of the views you use
in Flex Builder are part of the Eclipse workbench and are common to all Eclipse plug-ins. For

TIPTIP

38

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 38

example, the Problems view, which displays current compilation errors and warnings, is used in
most plug-ins. Other views are unique to Flex Builder and are useful only in the context of Flex
application development.

To open a view that currently isn’t displayed on the screen, select Window ➪ Show View ➪ Other.
As shown in Figure 2.7, all views from all installed plug-ins are available.

FIGURE 2.7

This dialog box allows you to select from all views from all installed plug-ins.

Managing a view’s layout
Each view can be used in either docked or detached mode. Docking positions for views include the
top, bottom, left, and right of the workspace window.

To move a docked view:

1. Click and drag the view’s tab.

2. Move the view until the cursor displays a black line indicating where the view will be
docked.

3. Release the mouse button to drop the view in its new location.

Figure 2.8 shows the process of docking a view.

As shown in Figure 2.9, to detach a view, right-click the view’s tab (Ctrl-click on the Mac), and
select Detached from the context menu. After a view has been detached, it can be moved anywhere
on your screen, including moving to a second monitor you use in spanned mode.

39

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 39

FIGURE 2.8

Docking a view

FIGURE 2.9

Detaching a view

To maximize a view to full screen, double-click the view’s tab. Double-clicking the tab
again restores it to its original size.TIPTIP

40

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 40

Eclipse editors
An editor is special kind of view that’s designed to support development for a particular program-
ming language. The basic Eclipse installation includes a text editor that can be used to edit any text
file. Each plug-in includes its own unique editors. For example, the Flex Builder plug-in includes
editors for MXML and ActionScript files.

The editor is placed in the center of the workspace window and cannot be detached. To open mul-
tiple editors on a single file, right-click the editor tab and select New Editor. As shown in Figure
2.10, the same file is opened again in a separate editor view. When you have multiple editors open
in this way, any changes you make in one of the editors is immediately reflected in the others. In
Flex Builder, this allows you to have one editor open in Design view and the other open in Source
view simultaneously.

FIGURE 2.10

Multiple editors open to a single source file.

Document editor 1 in Source view

Document editor 2 in Design view

41

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 41

Eclipse perspectives
An Eclipse perspective is a particular arrangement of views. Each plug-in typically includes one or
more predefined perspectives. For example, Flex Builder 3 includes these perspectives:

� Flex Development

� Flex Debugging

� Flex Profiling

If you install Flex Builder with the standalone configuration, the default perspective is Flex
Development. You can select a different perspective in two ways:

� From the Eclipse menu, select Window ➪ Perspective and select a perspective.

� As shown in Figure 2.11, use the Perspective selection tool in the upper-right corner of
the workspace window.

FIGURE 2.11

Selecting a perspective from the perspective selection tool

42

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 42

After customizing the layout of views within a perspective, you can save the new layout
to a custom perspective that you can then select as needed. To create your own custom

perspective, select Window ➪ Perspective ➪ Save Perspective As... from the Flex Builder menu and
give the custom perspective a descriptive name that’s easy to remember.

Configuring Eclipse
Most configuration options for Eclipse are available from the Preferences dialog box. Select
Window ➪ Preferences from the Eclipse menu to open the dialog box shown in Figure 2.12.

FIGURE 2.12

The Eclipse Preferences dialog box

The General section of the Preferences dialog box allows you to change configurations that are
common to all Eclipse plug-ins. Some preferences that you might want to customize are deeply
buried in the tree of options. I describe some of the preferences that are frequently used, but I also
encourage you to explore this area of the product.

TIPTIP

43

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 43

Changing fonts
The standard font that’s used to present text in the MXML, ActionScript, and text editors is config-
urable in the General section of the Preferences dialog box. To find this setting in the Preferences
dialog box (shown in Figure 2.13):

1. Select General ➪ Appearance ➪ Colors and Fonts from the tree control on the left.

2. In the Colors and Fonts configuration tree on the right, select Basic ➪ Text Font.

3. Click the Change button, and select the font from the font selection dialog box that
appears.

4. After selecting a font, click OK to return to the Preferences dialog box, and click OK
again to save your changes.

FIGURE 2.13

Selecting a text font

Selecting a Web browser
When you test a Flex Web application, you run the application in Flash Player, hosted by a Web
browser of your choice. Flex Builder uses the Eclipse Web Browser configuration option. By
default, this option uses your system browser (the same browser that’s used when you navigate to a
URL from an e-mail client or other link on your system).

44

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 44

Using the Eclipse Preferences dialog box, you can override this setting and select a specific Web
browser. With the Preferences dialog box open, select General ➪ Web Browser from the tree of con-
figuration options. As shown in Figure 2.14, you see a list of available browsers. The default selec-
tion tells Eclipse to use the system default browser. Select the browser you prefer, and click OK to
save your changes. The next time you test a Flex application, it opens in the browser you selected.

FIGURE 2.14

Selecting a Web browser

Many other configuration options are available, but most are useful or relevant only when working
with a particular kind of file or application. I describe these options at other points in the book.

Touring the Flex Builder Interface
Flex Builder has a common set of tools that you use to create and test Flex applications, whether it’s
installed with the standalone or plug-in configuration. In this section, I describe the most common
tasks related to Flex application development: creating a Flex project and finding Help resources.

Creating Flex projects
An Eclipse project is a collection of application resources. When using Flex Builder, you should
create your projects as a resource known as a Flex project. In addition to standard Eclipse project
settings, a Flex project contains many configuration options that are designed specifically for Flex
developers.

45

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 45

Select File ➪ New ➪ Flex Project from the Flex Builder menu to create a new Flex project.

In the New Flex Project wizard’s first screen, shown in Figure 2.15, provide the following informa-
tion:

FIGURE 2.15

This is the first screen in the New Flex Project wizard.

� The Project name can contain letters, numbers, the $ symbol, and the _ (underscore)
symbol. You can’t include spaces or any other special characters.

� The Project location can be anywhere on your disk. The default location is a folder
named just like the project, placed under the workspace folder, but you don’t have to put
it there. This is where the project configuration and primary source code files, and possi-
bly compiled applications, are stored.

� The Application type is set to either Web application or Desktop application.

� Selecting Web application causes the application to be delivered through the browser
and run in Flash Player.

� Selecting Desktop application creates an application that installs for use with the Adobe
Integrated Runtime (“AIR”) and runs as a native application on the user’s desktop.

Flex Builder 3 does not allow you to create a single project whose applications can be
deployed on either Flash Player or AIR. Each project must specify one and only one of

these deployment options. Flex Builder can share resources between multiple projects so that each
project is created as a shell for a particular deployment option, and the bulk of an application’s
resources are maintained in a third project known as a Flex Library Project.

NOTENOTE

46

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 46

The options in the Server Technology section allow you to select an application server. These appli-
cation servers are directly supported by Flex Builder:

� ASP.NET

� ColdFusion

� J2EE (also known as Java EE)

� PHP

When you select ColdFusion, you also are prompted to select either LiveCycle Data
Services or ColdFusion Flash Remoting as a communications option. This is because

ColdFusion 8 now includes an option to integrate LiveCycle Data Services (formerly known as Flex
Data Services) into its basic installation.

If you are using an application server with your Flex application, make sure the applica-
tion server is installed and tested prior to creation of the Flex Project.

For the purposes of this section, I’ll assume you’ve set the application server type to None. For
options specific to particular application servers, see Chapter 24 through Chapter 29.

The next screen of the Flex Project wizard asks you to provide the Compiled Flex application loca-
tion, also known as the Output folder. The default is a subfolder of the project root named bin.
This folder contains a compiled version of the application, which you’ll use for debugging and test-
ing. The production version of the application is created in a separate step after the project has
been created.

The last screen of the Flex Project wizard, shown in Figure 2.16, asks for this information:

� The Main source folder is where you place the .mxml and .as source code files that con-
stitute your application source. Your application .mxml files are placed in this folder. You
can also create subfolders of the Main source folder to contain component and class files.
These subfolders are known as packages.

� The Output folder URL is the http address you’ll use to test the application in a Web
browser. This option appears only when you’re creating a Web application. By leaving
this option blank in a Web project that doesn’t use an application server, you indicate that
you want to run the application by loading the compiled application from the hard disk.
Using this default configuration has the advantage of not requiring a Web server for test-
ing (similar to loading an HTML Web page into the browser from the local disk).

� The Application ID is a unique identifier assigned to your application. This option
appears only when you are creating a Desktop application for deployment on the Adobe
Integrated Runtime.

In Flex Builder 2, the Main source folder defaulted to the project root folder. In Flex
Builder 3, the Main source folder is now a subfolder named src.NEW FEATURENEW FEATURE

NOTENOTE

NEW FEATURENEW FEATURE

47

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 47

FIGURE 2.16

This dialog box asks for the source folder, the main application filename, and the Output folder URL when
creating a Web application.

� The Main application file is the source code file that defines your application. Flex appli-
cation files always have a file extension of .mxml. A single project can contain more than
one application, but you can create only a single application during project creation.
Other applications have to be created after the project is open.

The first part of the application filename (the part before the file extension of .mxml)
becomes an ActionScript class name during the compilation process. This is why you

must follow class naming conventions when you name your application file. An ActionScript class
name can include letters, numbers, and the $ symbol, and the _ (underscore) symbol, but must begin
with a letter, the $ symbol, or the _ (underscore) symbol; you can’t start a class or application file-
name with a number.

To accept your project configurations, click the Finish button to create the Flex Project and the
main application file.

NOTENOTE

48

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 48

The Flex Builder user interface
Flex Builder 3 adds unique tools to Eclipse to facilitate Flex application development. These tools
include Editors and Views. In this section I describe these important tools.

The MXML editor
Flex Builder includes two editors for use in creating your Flex applications. The MXML editor is
used to work with MXML files, whether they represent application files or custom components.

When you double-click a file with the .mxml file extension from the Eclipse Navigator view, the
file is opened in the MXML editor. This editor has two views of its own: Source view and Design
view. Whether the file opens initially in Design view or Source view depends on what view you’ve
used most recently on other files.

As shown in Figure 2.17, you select whether you want to use Source view or Design view by click-
ing one of the buttons at the top of the MXML editor.

FIGURE 2.17

Source view and Design view selection buttons

You can toggle between Source view and Design view with the keyboard shortcut
Ctrl+~.TIPTIP

Source/Design view selector buttons

49

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 49

The ActionScript editor
The ActionScript editor is designed for editing of files containing pure ActionScript code. This edi-
tor can be useful whether you’re a Flex developer or a Flash developer, because both products now
can use the latest version of the ActionScript programming language.

When you double-click a file with the .as file extension from the Eclipse Navigator view, the file is
opened in the ActionScript editor, as shown in Figure 2.18.

FIGURE 2.18

The ActionScript editor

Both the MXML and ActionScript editors include these features to make coding faster and more
productive:

� Language color-coding

� Auto-import of external ActionScript classes

� Auto-completion of MXML tags and attributes

� Auto-completion of variable symbol names

� Code hinting for function arguments and class members

� Intelligent language search for symbols and their declarations

50

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 50

Flex Builder views
Flex Builder 3 includes custom Eclipse views that serve particular purposes.

Flex Navigator view
The Flex Navigator view, shown in Figure 2.19, displays a tree of folders and files and allows you
to locate and open any project resource. This view is displayed by default in both the Flex
Development and the Flex Debugging perspectives. When using any of the Flex perspectives, you
can open the view by selecting Window ➪ Flex Navigator from the Eclipse menu.

FIGURE 2.19

The Flex Navigator view

You can create new project resources directly within the Flex Navigator view by right-clicking
(Ctrl-clicking on the Mac) any project folder. From the context menu that appears, as shown in
Figure 2.20, select the kind of resource you want to create.

Outline view
The Outline view, shown in Figure 2.21, displays a tree of the objects that have been declared in an
MXML or ActionScript file. This view is displayed by default only in the Flex Development perspec-
tive. Select Window ➪ Outline from the Eclipse menu to open this view in any other perspective.

The Outline view lets you easily locate code representing any declared variable or object, whether
the object has been declared in MXML or ActionScript.

To locate code representing any variable or object using the Outline view, click the object in the
view. The cursor in the current editor then jumps to that part of the code and selects the code that
declares the object.

51

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 51

FIGURE 2.20

Creating a project resource from the Flex Navigator view

FIGURE 2.21

The Outline view

52

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 52

Problems view
The Problems view, shown in Figure 2.22, displays current compilation errors and warnings.
When your code contains a bug, the Problems view shows you these details:

� The Description of the problem (an error message)

� The Resource containing the problem (a source code file)

� The Path of the resource (the folder containing the problem file)

� The Location of the problem (the line number)

Double-click a problem in the Problems view to jump to the problem code. If the file containing the
problem isn’t currently open, Flex Builder opens the file and places the cursor in the appropriate editor.

FIGURE 2.22

The Problems view

Keep only one project open at a time. If you have the Build Automatically feature turned
on (the default setting), Flex Builder recompiles all open projects whenever any source

file in any of the projects has been modified and saved.

If you have any remaining errors or warnings in projects you have open but aren’t using, it slows Flex
Builder’s compilation process and keeps those errors and warnings in the Problems view until you fix
them or close the project.

Design views
These views are used only when an editor is in Design view:

� The Flex Properties view allows you to set object properties through a simple user inter-
face and generates the appropriate MXML code to represent your selections.

� The Components view allows you to drag and drop common user interface components,
including both Containers and Controls, into your application.

� The States view allows you to manage alternate presentation States through Design view
and generates code to represent the alternate states.

TIPTIP

53

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 53

Debugging views
These views are primarily used when debugging a Flex application:

� The Console view displays tracing information and other detailed debugging messages.

� The Debug view contains controls for stepping through code, terminating a debugging
session, and resuming a debugging session.

� The Variables view displays the values of all pre-declared variables that are currently in
scope while application execution is stopped on a breakpoint.

� The Breakpoints view allows you to manage your breakpoints.

� The Expressions view allows you evaluate and inspect arbitrary ActionScript expressions
while application execution is stopped on a breakpoint.

These views are described in greater detail in Chapter 6.

Getting Help
The documentation for the Flex development platform is delivered as part of the Flex Builder
installation. You can access the documentation in a variety of ways:

� Explore the Help contents.

� Search for specific terms.

� Use context-sensitive Help.

Exploring the Help contents
In Flex Builder, you can get to the Help contents, shown in Figure 2.23, from the menu choice
Help ➪ Help Contents. The Help Contents screen opens in a separate window.

The Help Contents screen contains entries for all the Flex documentation and also for any Eclipse plug-
ins you may have installed. For example, if you installed JSEclipse, the Adobe plug-in for JavaScript
development, during the installation process, you’ll see an entry for that plug-in on the Help screen.

The main documentation for Flex is under Adobe Flex 3.0 Help. Under this heading, you’ll find
these links:

� Using Flex Builder 3

� Flex 3 Developer’s Guide

� Building and Deploying Flex 3 Applications

54

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 54

� Creating and Extending Flex 3 Components

� Developing AIR applications with Flex

� Programming ActionScript 3.0

� Adobe Flex 3 Language Reference

Each of these links takes you to an extensive publication describing that aspect of Flex development.

FIGURE 2.23

The Help Contents screen

Searching for Help terms
The Flex Builder Help system allows you to search for any terms you need to find. You can search
from within Flex Builder, or if you already have the Help Contents screen open, you can search
without returning to the Flex Builder interface.

55

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 55

Searching in the Flex Builder interface
In the Flex Builder interface, select Help ➪ Search from the menu. A Help view, shown in Figure
2.24, appears on the right. Enter your search terms, and click Go to execute the search.

FIGURE 2.24

Using the Help view

If your Help search is successful, a list of found links is displayed. Click any link to display that
Help page in a Help editor. As shown in Figure 2.25, when the Help page is opened, your search
terms are highlighted.

56

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 56

FIGURE 2.25

A Help page with highlighted search terms in the Eclipse interface

Searching in the Help Contents window
You also can search for terms in the Help Contents window:

1. Select Help ➪ Help Contents from the Flex Builder menu.

2. Click in the Search input box, and type a term.

3. Click the GO button.

As with searching in the Flex Builder interface, a successful search displays links to pages that con-
tain your terms, as shown in Figure 2.26. Click any link to display the Help page. The page is dis-
played in a separate pane of the Help window.

When a Help page is displayed in either the Eclipse interface or the external Help win-
dow, it’s hosted by an internal Web server component that starts up in the background.

You may find that the first Help page you open takes some time as the server starts up in the back-
ground. After it’s started, though, it stays open for the duration of your Eclipse session.

TIPTIP

57

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 57

FIGURE 2.26

Searching in the Help window

Using Dynamic Help
The Dynamic Help feature allows you to find Help topics related to the content you’re currently
editing. For example, suppose you’re working with the DataGrid component and want to find
out what properties, methods, or events are available. You can easily jump to a Help topic related
to that component and display the information in an Eclipse editor or in a separate Help window.

Displaying Dynamic Help in an Eclipse editor
To display a Dynamic Help topic in an Eclipse editor:

1. Place the cursor anywhere in the class type declaration or MXML tag for which you want
help.

2. Press F1 to display a list of related links in a Help view with the title Related Topics.

3. Click the appropriate link to display the Help topic in an editor.

As shown in Figure 2.27, Dynamic Help is displayed in a separate Help view.

58

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 58

FIGURE 2.27

Dynamic Help from an MXML editor

When you place the cursor in an ActionScript class declaration or MXML tag for which
Flex Builder has API documentation, the first link under Related Topics is usually the

ActionScript documentation for that class, listed under a heading of Relevant APIs.

After using the Dynamic Help feature, be sure to close the Help view on the right
before continuing to work on your code. If you leave it open, it continues to execute

searches each time you move the cursor to a new location in the code, creating a very “jumpy” edit-
ing experience.

Displaying Dynamic Help in a separate window
To display dynamic help in a separate window:

1. Place the cursor anywhere in the class type declaration or MXML tag for which you want
help.

2. Press Shift+F2.

The Help topic should be correctly selected and displayed in a separate Help window.

CAUTION CAUTION

TIPTIP

Press F1 with cursor in search term Search results appear in Help view

59

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 59

Searching for Code
Flex Builder and Eclipse have a number of tools that allow you to search for and locate code. Two
of the tools are part of the Eclipse workbench, and a third is part of the Flex Builder plug-in.

Using Eclipse search tools
Eclipse has two tools that allow you to search for code: Find/Replace and Find in Files. The first is
designed to locate code one file at a time; the second can search for code in multiple files.

Using Find/Replace
The Find/Replace dialog box, shown in Figure 2.28, lets you search for code in the currently
opened file. This dialog box is available only in an MXML editor that’s currently open in Source
view. Select Edit ➪ Find/Replace (keyboard shortcut Ctrl+F) from the Flex Builder menu to open
this dialog box.

FIGURE 2.28

The Find/Replace dialog box

After you execute a Find operation with the Find/Replace dialog box, you can repeat the
operation with the menu choices Find Next and Find Previous on the Flex Builder Edit

menu. The keyboard shortcuts for these operations in the standalone version of Flex Builder are
Ctrl+K for Find Next and Ctrl+Shift+K for Find Previous.

TIPTIP

60

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 60

Using Find in Files
The Find in Files dialog box, shown in Figure 2.29, also known as the File Search tool, allows you
to search across multiple files in a project, directory, or workspace. It has many options that allow
you to fine-tune your search. Select Edit ➪ Find in Files from the Flex Builder menu to open this
dialog box.

FIGURE 2.29

The Find in Files (File Search) dialog box

To use this tool, make these selections:

� Set the Containing text field to the string you want to find.

� Select case sensitivity and whether you’re searching with a regular expression.

� Set the filename patterns field to indicate what kind of files you want to search. For
example, if you want to limit your search to ActionScript files and classes, set this value
to *.as.

� Set the Scope to the Workspace, Selected resources, or Enclosing projects.

Click the Search button to execute the operation. Results are displayed in a Search view that con-
tains links to all found resources, as shown in Figure 2.30.

61

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 61

FIGURE 2.30

The Search view, presenting found resources

Using Flex Builder code model search tools
Flex Builder 3 adds new search tools that are based on the code model. With these tools you can:

� Search for object references

� Search for object declarations

� Refactor code

Searching for references
If you know where a variable or object’s declaration is located, you can use the code model tools to
locate all the object’s references:

1. In an MXML editor, place the cursor anywhere in the variable declaration.

2. Select Search ➪ References from the Flex Builder menu. Alternatively, you can right-click
the variable declaration and select References from the context menu.

3. Select the scope of the search from these options:

� Workspace

� Project

� File

The results of the search are displayed in the Search view.

62

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 62

Searching for a declaration
If you know where a variable or object is used, you can use the code model tools to locate the
object’s original declaration:

1. In an MXML editor, place the cursor anywhere in the variable reference.

2. Select Search ➪ Declarations from the Flex Builder menu. Alternatively, you can right-
click the variable declaration and select Declarations from the context menu.

3. Select the scope of the search from these options:

� Workspace

� Project

� File

The results of the search are displayed in the Search view.

Flex Builder adds a new option called Mark Occurrences. This feature causes any variable name or
type reference to be highlighted wherever it occurs in the source code file you’re editing. For exam-
ple, if you place the cursor in an <mx:Label> declaration, all <mx:Label> declarations in the
current file are highlighted. Similarly, if you place the cursor in a variable such as myVar, all refer-
ences or declarations of that variable are highlighted.

As shown in Figure 2.31, you can toggle this feature on and off from the Flex Builder toolbar by
clicking the icon with the image of a highlighter pen.

The Mark Occurrences option is a new feature in Flex Builder 3.

FIGURE 2.31

Toggle button for Mark Occurrences

Refactoring variable names
When you refactor code, you globally rename object references or types. This is very different from
a global search-and-replace operation that’s based on string values. In a global search and replace,
you can make a mess if you accidentally find substrings that are part of something else. With code
refactoring, the search is based on internal references that are known to the Flex compiler and Flex
Builder’s code modeling tools.

To globally rename a variable with the code refactoring tool:

1. Place the cursor in any of the variable’s reference or declarations.

2. Select Source ➪ Refactor ➪ Rename from the Flex Builder menu. (Or you can right-click
in the variable and select Refactor ➪ Rename from the context menu, or press the key-
board shortcut Ctrl+Alt+R.)

NEW FEATURENEW FEATURE

63

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 63

3. In the Rename Variable dialog box, shown in Figure 2.32, enter the new variable name.

FIGURE 2.32

The Rename Variable dialog box

4. You can preview refactoring changes by clicking the dialog box’s Preview button. The pre-
view dialog box, shown in Figure 2.33, displays the Original and Refactored source code.

FIGURE 2.33

Previewing refactoring changes

5. Click OK to accept the changes and globally rename the variable.

64

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 64

Refactoring source code files
Renaming ActionScript and MXML files also is considered a refactoring operation, because these
files represent ActionScript types that must be maintained consistently throughout a project.

To refactor a file, just rename the file in the Flex Navigator view, as shown in Figure 2.34:

1. Select a file, and press F2 (or right-click, and select Rename from the context menu).

2. In the Rename Class dialog box, enter a new filename.

3. Optionally preview the changes.

4. Click OK to accept the changes.

Any references to the changed file are updated through the current project, including the class dec-
laration and constructor name.

FIGURE 2.34

Renaming an ActionScript class file

If you rename an ActionScript class file from the Flex Navigator view within Flex
Builder, the class declaration and constructor method (if it exists) within the file are

updated to match the filename.

If you move an ActionScript class from one folder to another by dragging it within the
Flex Navigator view, the package declaration within the file is not updated by the code

refactoring engine; it must be updated manually.

CAUTION CAUTION

TIPTIP

65

Using Flex Builder 3 2

07_287644-ch02.qxp 6/23/08 11:30 PM Page 65

Summary
In this chapter, I described the nature and behavior of Flex Builder 3. You learned the following:

� Flex Builder 3 is a plug-in designed for the Eclipse workbench.

� Flex Builder 3 is available for the Windows and Mac OS X operating systems; a Linux
version is planned for future release.

� Flex Builder’s standalone configuration includes everything you need to build Flex appli-
cations, including Eclipse 3.3.

� Flex Builder’s plug-in installation option allows you to install Flex Builder on top of an
existing Eclipse installation.

� The Flex Builder plug-in installation requires Eclipse 3.22 or later.

� Flex Builder can be used by both Flex and Flash developers to edit their ActionScript
files.

� Flex Builder adds many tools in the form of Views and Editors to make coding faster and
more productive.

� Many tools that are a part of the Eclipse workbench are critical to effective use of Flex
Builder.

66

Flex FundamentalsPart I

07_287644-ch02.qxp 6/23/08 11:30 PM Page 66

In this chapter, I describe how to create and deploy a basic “Hello World”
Flex application.

The code samples and screen shots in this chapter assume that you’re using
Flex Builder to build the application. If you’re using the Flex SDK and your
own text editor, the steps will be similar, but you won’t have access to some
of the code completion and other productivity tools I describe.

After the application is built, I describe the fundamental nature of a Flex
application, including the relationship between the application .swf file and
the supporting HTML files. I describe the contents of the HTML “wrapper”
file that’s generated for you in Flex Builder and its associated JavaScript
library file.

Finally, I describe how to deploy the Flex application into a Web site in these
ways:

� As a distinct application that opens in its own window

� As an applet that’s displayed as part of an existing Web page

� As a desktop application deployed on the Adobe Integrated
Runtime

By the end of this chapter, you should have a good sense of what a Flex
application is and how it’s delivered to the user.

67

IN THIS CHAPTER
Creating a Hello World
application

Switching workspaces

Creating a Flex project

Understanding HTML templates

Exporting a release version

Deploying a Flex application on
the Web

Integrating Flex applications with
Web pages in Dreamweaver CS3

Building a Basic Flex
Application

08_287644-ch03.qxp 6/23/08 11:31 PM Page 67

Creating a “Hello World” Application
In all programming languages, your first task is to write a “Hello World” application. This most
simple of applications typically contains no more than a single line of text output. This simple Flex
application does a bit more: It uses XML-formatted data, presented in a DataGrid component, to
say hello to the world.

Throughout these instructions, I assume that you’re using the standalone version of Flex Builder.
Where the steps are different in the plug-in version, I provide alternative steps in a Tip.

Switching workspaces
As described in Chapter 2, your first step is to create a Flex Project. The project hosts the applica-
tion and its assets. Throughout the instructions, I assume that you have downloaded the book’s
sample files from the publisher’s Web site. Follow these steps to switch to a new workspace:

1. Open Flex Builder 3.

2. From the menu, select File ➪ Switch Workspace.

3. Select a new workspace subfolder under the flex3bible folder that contains the
downloaded book files. For example, if you are working on Microsoft Windows and the
book files are in a folder named C:\flex3bible, the name of the workspace folder
would be C:\flex3bible\workspace. When you have done this, click OK.

After selecting the workspace, you should see that Flex Builder closes and reopens. The
new workspace, shown in Figure 3.1, should display the Flex Welcome Screen and the
default Flex Development perspective. The newly created workspace is empty and con-
tains no projects.

Workspace folders are frequently created as sibling folders to the projects they refer-
ence, rather than parent folders. This is because a workspace isn’t portable. If you

change the location of your project folders, you have to re-create the workspace.

Creating the project
Follow these steps to create a project:

1. From the menu, select File ➪ New ➪ Flex Project.

If you’re using the plug-in version of Flex Builder, select File ➪ New ➪ Other. Then from
the wizard that appears, select Flex Builder ➪ Flex Project.

2. In the first screen, shown in Figure 3.2, enter a Project name of chapter03.

3. Select the Default location option as checked. On Windows, the Project location defaults
to C:\flex3bible\chapter03.

4. Set the Application type to Web application (runs in Flash Player).

5. Set the Application server type to None, and click Next.

TIPTIP

TIPTIP

68

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 68

FIGURE 3.1

The default Flex Development perspective in a new workspace

6. On the Configure Output screen, shown in Figure 3.3, accept the Output folder setting of
bin-debug. This is the location of the compiled debug version of the application and its
supporting files.

7. Click Next.

In Flex Builder 2, the default Output folder setting was bin, and the resulting folder
contained both the debug and the release version of the compiled application. In

Flex Builder 3, the Output folder defaults to bin-debug to distinguish it from the separate
bin-release folder created when you export a release version.

8. On the Create a Flex project screen, shown in Figure 3.4, accept these default settings:

� Main source folder: src

� Main application file: HelloWorld.mxml

� Output folder url: Accept the default setting, leaving it blank

NEW FEATURENEW FEATURE

Navigator view

Outline view Problems view Flex Start Page

Perspective selector tool

69

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 69

FIGURE 3.2

The first screen of the New Flex Project wizard

FIGURE 3.3

The second screen of the New Flex Project wizard

70

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 70

FIGURE 3.4

The third screen of the New Flex Project wizard

9. Click Finish to create the project and the main application file.

As shown in Figure 3.5, you should see the main application file appear in the Editor
view. If you’re working in a completely new workspace, the file should appear in Source
view; that is, you should see the application’s source code.

FIGURE 3.5

The new main application file in Source view

71

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 71

Saying hello
Follow these steps to display a simple message in your Flex application:

1. Notice that the Application tag’s layout property is set to absolute. This means
that objects placed on the application screen in Design view will maintain their absolute
positions relative to the application’s top-left corner.

2. Click Design to see what the application will look like as you build it.

When you use Design view, you see the Components view in the lower-left corner, as
shown in Figure 3.6.

FIGURE 3.6

The Components view

3. In the Components view’s tree, open the Controls leaf and locate the Label control.

4. Drag a Label object into the application, and place it approximately in the center of the
application.

5. With the Label control still selected, look at the Flex Properties view in the lower-right
corner of Flex Builder.

6. In the Common section of the Flex Properties view, shown in Figure 3.7, set the Label
control’s text property to Hello World.

7. In the Text section of the Flex Properties view, set the Label control’s fontSize to 24.

8. Save your changes with this menu selection by choosing File ➪ Save.

9. Run the application in a browser by choosing Run ➪ Run HelloWorld.

As shown in Figure 3.8, you see that the application opens in a browser window and
looks just like it did in Flex Builder’s Design view.

72

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 72

FIGURE 3.7

The Common section of the Flex Properties view with a Label control selected

FIGURE 3.8

The finished application running in a Web browser

In the standalone version of Flex Builder, you also can use the keyboard shortcut
Ctrl+F11 to run the current application.

Understanding the html-template Folder
Each Flex Project contains a folder called html-template. This folder contains models for the
HTML and supporting files that run your application in the browser. Whenever you save changes

TIPTIP

73

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 73

to your source code, Flex Builder automatically rebuilds your application using the HTML
model file to generate an HTML wrapper. At the same time, it copies the contents of the html-
template folder to the output folder that contains the compiled application. Figure 3.9 shows
the structure of the html-template folder.

The html-template folder and its contents do not need to be copied to the Web
server to deploy the application. These files are used only during the compilation

process.

FIGURE 3.9

The html-template folder structure

The Flex project has a Build Automatically property that causes your applications
to be automatically compiled every time you save changes to any source code file. If

you want your applications to be recompiled only when you choose, change the property in Flex
Builder by selecting Project ➪ Build Automatically. Use the same menu choice to turn the property
back on.

During the compilation process, most of the files in the html-template directory are simply
copied to the output folder that contains the debug version of the project’s applications. The HTML
wrapper file that you use at runtime is generated based on a model file in html-template
named index.template.html.

HTML template files
The html-template directory contains these files:

� index.template.html is a model file that is the basis for the generated HTML “wrap-
per” files that call the application at runtime.

TIPTIP

TIPTIP

74

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 74

� AC_OETags.js is a JavaScript library containing functions are used at runtime to load
Flash Player. This file also contains “sniffer” code that can discover whether Flash Player
is currently loaded on the user’s desktop and, if so, which version.

� playerProductInstall.swf is a Flash application that’s used to upgrade a user’s
system when Flash Player 6.65 or higher is installed.

� The history subfolder contains files to implement the history management feature (for
non-IE browsers only):

� historyFrame.html is a model for an HTML page that’s loaded into an <iframe>
in the main page at runtime.

� history.js is a JavaScript library containing functions that are called by
historyFrame.html.

� history.css contains Cascading Style Sheet (CSS) rules to suppress the visibility of
the history frame in the main page.

With the exception of index.template.html, all files in the html-template directory are
copied to the output folder in their exact current states whenever you compile the application. And
when you create a “release” version of the application, they’re copied to the release output folder
as well.

The HTML wrapper model file
The model HTML file contains a combination of these elements:

� HTML code

� Calls to JavaScript functions that are stored in AC_OETags.js

� The <iframe> that calls the history management files

� Placeholders for values that are passed to the generated version of the file

In this section, I describe each part of the file and its purpose.

The HTML <head> section
The <head> section of the model HTML file contains links to a set of CSS and JavaScript files. The
first <link> tag incorporates the history.css file from the history folder:

<link rel=”stylesheet” type=”text/css” href=”history/history.css”
/>

The <title> element contains a variable that’s filled in from the Application’s pageTitle
property:

<title>${title}</title>

75

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 75

To fill in this value in the generated HTML wrapper page, set the pageTitle property in the
<mx:Application> start tag:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
layout=”absolute” pageTitle=”Hello World”>

The next section is a <style> element that contains basic page formatting instructions:

<style>
body { margin: 0px; overflow:hidden }
</style>

The margin style’s value of 0px means that Flash Player won’t have any space between its borders
and the edges of the Web page. The overflow style’s setting of hidden means that if the size of
Flash Player (or another element in the page) overflows the boundaries of the page, the remainder
are hidden. If you want the page to show scrollbars instead, change the value of the overflow
style to scroll.

The HTML <body> section
The <body> element of the Web page starts by declaring JavaScript variables that determine which
version of Flash Player is required by the application:

<script language=”JavaScript” type=”text/javascript”>
<!--
// Globals
// Major version of Flash required
var requiredMajorVersion = ${version_major};
// Minor version of Flash required
var requiredMinorVersion = ${version_minor};
// Minor version of Flash required
var requiredRevision = ${version_revision};
// -->
</script>

The version_major, version_minor, and version_revision parameters can be set
through the project’s properties:

1. Select Project ➪ Properties from the Flex Builder menu.

2. In the Properties dialog box, select the Flex Compiler section, as shown in Figure 3.10.

3. In the Required Flash Player version option, change the version numbers as needed.

When you create a new Flex Project in Flex Builder 3, the required version in the proj-
ect properties is set to 9,0,28 by default. The version of Flash Player that was delivered

with the Flex Builder 3 in February 2008 was 9,0,115.

TIPTIP

76

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 76

FIGURE 3.10

Setting the required Flash Player version number

The next section of the HTML wrapper calls a JavaScript function named DetectFlashVer()
and checks whether the user has at least version 6,0,65. This is the version that’s required for use
of the Flash-based upgrade. It then calls the function again and checks whether the user has the
version required to run the application:

var hasProductInstall = DetectFlashVer(6, 0, 65);
var hasRequestedVersion = DetectFlashVer(

requiredMajorVersion, requiredMinorVersion, requiredRevision);

If the user has at least version 6,0,65, but not the version required to run the application, the
HTML wrapper runs the Flash-based installer:

if (hasProductInstall && !hasRequestedVersion) {
var MMPlayerType = (isIE == true) ? “ActiveX” : “PlugIn”;
var MMredirectURL = window.location;

document.title = document.title.slice(0, 47) +
“ - Flash Player Installation”;

var MMdoctitle = document.title;

AC_FL_RunContent(
“src”, “playerProductInstall”,
“FlashVars”, “MMredirectURL=”+MMredirectURL+’&MMplayerType=’+

MMPlayerType+’&MMdoctitle=’+MMdoctitle+””,
“width”, “${width}”,
“height”, “${height}”,

Flash Player version

77

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 77

“align”, “middle”,
“id”, “${application}”,
“quality”, “high”,
“bgcolor”, “${bgcolor}”,
“name”, “${application}”,
“allowScriptAccess”,”sameDomain”,
“type”, “application/x-shockwave-flash”,
“pluginspage”, “http://www.adobe.com/go/getflashplayer”

);
}

The JavaScript function called above runs playerProductInstall.swf, the Flash-based
upgrade installer, which tries to upgrade the user’s browser to the latest version of Flash Player
from the Adobe Web site. If any errors are encountered (if the user doesn’t have administrative
rights to his computer, for example), the Flash-based upgrade installer fails with a useful error
message (rather than just hanging and letting the user wonder what happened).

The next section of code runs the Flex application if the user has the required version of the Flash
Player:

} else if (hasRequestedVersion) {
// if we’ve detected an acceptable version
// embed the Flash Content SWF when all tests are passed
AC_FL_RunContent(

“src”, “${swf}”,
“width”, “${width}”,
“height”, “${height}”,
“align”, “middle”,
“id”, “${application}”,
“quality”, “high”,
“bgcolor”, “${bgcolor}”,
“name”, “${application}”,
“allowScriptAccess”,”sameDomain”,
“type”, “application/x-shockwave-flash”,
“pluginspage”,

“http://www.adobe.com/go/getflashplayer”);
}

The JavaScript function called above instantiates Flash Player and passes it certain parameters.
Some parameters, such as quality, types, and allowScriptAccess, have fixed values. The
following parameters’ values are set dynamically, based on information such as properties and
styles of the Flex application and the application name:

� src: The name of the application file (without the .swf extension)

� width: The width of the application as defined in the <mx:Application> tag (defaults to
100 percent)

� height: The height of the application as defined in the <mx:Application> tag (defaults
to 100 percent)

� id: The name of the application file, without the .swf extension

78

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 78

� bgcolor: The application’s backgroundColor style, as defined in the application’s
<mx:Application> tag or in a CSS declaration for the Application type selector

� name: The name of the application file, without the .swf extension

These are some other key parameters you can pass to AC_FL_RunContent() and to the embed/
object tags:

� wmode: How Flash handles layering/transparency (options include window,
transparent, and opaque)

� menu: Whether to allow the zoom/print left-click options (options include true and
false)

� allowFullScreen: To allow to go full screen (options include true and false)

� allowScriptAccess: Security for scripting. Options: never, always, and
sameDomain

The last bit of JavaScript code handles the condition that exists when Flash Player hasn’t been
installed or the user’s browser has a version older than 6,0,65:

} else { // flash is too old or we can’t detect the plugin
var alternateContent =

‘Alternate HTML content should be placed here. ‘
+ ‘This content requires the Adobe Flash Player. ‘
+ ‘Get Flash’;

document.write(alternateContent); // insert non-flash content
}

This code simply displays some HTML content to users who don’t have the right version of Flash
Player and can’t run the Flash-based upgrade installer.

You can customize this HTML as desired, but you should always do so in the HTML
model page, rather than the version that’s generated in the output folders. If you

customize the generated files directly, they’ll just be overwritten the next time you compile the
application.

The HTML <noscript> section
This <noscript> element at the bottom of the page contains code to instantiate Flash Player in
browsers that don’t support JavaScript:

<noscript>
<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
id=”${application}” width=”${width}” height=”${height}”
codebase=”http://fpdownload.macromedia.com/get/

flashplayer/current/swflash.cab”>
<param name=”movie” value=”${swf}.swf” />
<param name=”quality” value=”high” />
<param name=”bgcolor” value=”${bgcolor}” />
<param name=”allowScriptAccess” value=”sameDomain” />

CAUTION CAUTION

79

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 79

<embed src=”${swf}.swf” quality=”high” bgcolor=”${bgcolor}”
width=”${width}” height=”${height}”
name=”${application}” align=”middle”
play=”true” loop=”false”
quality=”high” allowScriptAccess=”sameDomain”
type=”application/x-shockwave-flash”

pluginspage=”http://www.adobe.com/go/getflashplayer”>
</embed>
</object>

</noscript>

This section of code is executed only in browsers that don’t support JavaScript at all or where the
user has disabled JavaScript through her browser’s security settings. This circumstance is rare, but
not unheard of, in current browser installations.

The only real drawback to loading Flash Player in this manner is that if the user is working with
Microsoft Internet Explorer, loading Flash Player without JavaScript code can result in an odd user
experience: To interact with the application, first the user must click the Flash document (the Flex
application) or press the spacebar. This is an irritant, but certainly not crippling.

If you add or change parameters, they must applied to both the JavaScript and the
embed and object tag versions in the HTML wrapper file.

The JavaScript library file
The HTML wrapper file makes calls to JavaScript functions that are stored in a JavaScript library
file named AC_OETags.js. This file appears in the html-template folder and is copied to the
output folder during the compilation process without any modifications.

The JavaScript library file defines these functions:

� ControlVersion(): Returns version of currently installed Flash Player ActiveX control
when running in Internet Explorer

� GetSwfVersion(): Returns version of currently installed Flash Player plug-in when
running in Firefox or another browser that supports the plug-in architecture

� AC_FL_RunContent(): Runs the Flash Player and calls a designated Flash document

The library also defines other supporting functions that serve purposes such as parsing arguments
to be passed to Flash Player.

History management files
The html-template folder contains a subfolder called history. This folder in turn contains
these three files:

� historyFrame.html

� history.js

� history.css

CAUTION CAUTION

80

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 80

These files are called by the HTML wrapper file from an <iframe> element. Their purpose is to
implement a feature known as history management when using a ViewStack, TabNavigator,
or Accordion container. This feature allows the user to navigate forward and backward through
an application’s view state with the browser’s Forward and Back buttons in Web browsers other
than Microsoft Internet Explorer.

Deploying the Application
You’ve created the application, and it runs beautifully in your development and testing environ-
ment. Now you want to share the applications with your users. This section describes how to cre-
ate a version of the application that’s suitable for public release and make the application available
to your audience.

Creating the release version
The version of the application that’s created in your output folder, and that you normally run dur-
ing the testing and debugging phase of development, is the “debug” version of the application. This
compiled .swf file is significantly larger than the version you’ll ultimately deploy for your users,
because it contains additional internal information and symbols that are used during the debug
process.

In Flex Builder 2, the debug and release versions of the application were placed in a sin-
gle output folder. To deploy the application, you copied all files except the HTML and

.swf files with the word debug in their filenames to the Web server. Flex Builder 3 now separates the
debug and release versions into separate folders and requires a manual export process for the release
version.

To create a release version of a Flex Web application, follow these steps:

1. From the Flex Builder menu, select Project ➪ Export Release Version.

2. In the Export Release Version dialog box, shown in Figure 3.11, make these choices:

a. Select the application you want to export.

b. Indicate whether you want to enable the View Source feature.

c. Select a folder to which you want to export the release version.

3. Click Finish to export the release version.

A release version folder contains only a single application (and its supporting files) by
default. In contrast, the bin-debug folder contains the debug versions of all applica-

tions in a project.

After exporting the release version, you should have a new folder containing the compiled applica-
tion and its supporting files. This version of the application is optimized for delivery to the user. It
doesn’t contain debug information, and as a result it’s significantly smaller than the debug version.

TIPTIP

NEW FEATURENEW FEATURE

81

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 81

FIGURE 3.11

The Export Release Version dialog box for a Web application

The size of a basic “Hello World” compiled application file with a single Label control will be
either 235k for the debug version, or 144k for the release version. Clearly, you want your users to
be downloading and using the release version!

Testing the release version
You can test the release version of a Flex Web application by opening its HTML wrapper file in a
Web browser. Here’s how:

1. From the Flex Navigator view, open the release version folder and locate the HTML
wrapper file. This file has the same name as the application itself, but with a .html file
extension.

2. Right-click the HTML file, and select Open With ➪ Web Browser.

The application opens in a Web browser nested with an Eclipse editor view, as shown in Figure 3.12.

When you run the release version as described above, the application always opens
from the local file system, rather than from any Web server you might have configured.

If you need to test the application with a Web server, you have to manually configure the server, or
place your bin-release folder within your Web server’s document root folder, then open the file from
a Web browser using the appropriate URL.

CAUTION CAUTION

82

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 82

FIGURE 3.12

Running the release version running in a Web Browser editor view

Deploying the release version
To deploy the release version of the application, just upload all files in the release version folder to
your Web site using FTP or whatever method you typically use to deploy other files to your Web
site. These files will include the following:

� The compiled application file in .swf format

� The HTML wrapper

� The JavaScript library

� playerProductInstall.swf

� The history folder

Then provide the URL of the HTML wrapper page to your users. For example, if the release
version of the application named registration is uploaded to a subfolder of my Web site,
www.bardotech.com, and the HTML wrapper file is named registration.html, then the
deployment URL is this:

http://www.bardotech.com/registration/registration.html

83

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 83

Programmers commonly make users navigate to a Flex application in a new browser
window. The new window then has a fresh “history,” which means the browser’s Back

button is disabled and the user can’t accidentally unload the application by trying to go back to a pre-
vious screen.

The following HTML code would open the application from the home page of my Web site:

Integrating an application into
an existing Web page
Some Flex applications are designed to be presented as “applets” or some application that repre-
sents only part of a Web page. This is easy to accomplish if you have some working knowledge of
HTML. Here’s how:

1. Create a region of a Web page where you want to host the application. Design it just as
you would to host an image, an ActiveX control, or a Java applet. You can use HTML
tables or more modern <div> tags with CSS to control the size and position of the host-
ing region.

2. In the Flex application code, set the Application tag’s height and width to a specific
number of pixels that will make the application size match the available space in the Web
page. For example, if you have a <div> tag in the hosting page that’s 300 pixels high and
200 pixels wide, use this code in the Flex application to size it appropriately:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
height=”300” width=”200”>

When the application is compiled, the height and width settings are passed into the
generated HTML file.

3. Copy all the JavaScript includes and initialization code from the <head> section of the
generated HTML wrapper file to the <head> section of the hosting HTML page. Be sure
to include these lines of code:

<link rel=”stylesheet” type=”text/css”
href=”history/history.css” />

<script src=”AC_OETags.js” language=”javascript”></script>
<script src=”history/history.js”

language=”javascript”></script>
<script language=”JavaScript” type=”text/javascript”>

var requiredMajorVersion = 9;
var requiredMinorVersion = 0;
var requiredRevision = 28;

</script>

The code above has been stripped of comments that appear in the generated version of
the HTML wrapper file and are not required to run the application.NOTENOTE

TIPTIP

84

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 84

4. Copy the <script> and <noscript> sections from the <body> of the HTML wrapper
into the target HTML page’s application hosting region. The complete code is in the fol-
lowing code listing.

Listing 3.1 shows the finished code in the <body> section of a hosting HTML after being extracted
and stripped of commenting.

LISTING 3.1

Code in the <body> section of a hosting HTML page

<!-- A div tag hosting a Flex application -->
<div id=”flexApp”>
<script language=”JavaScript” type=”text/javascript”>
var hasRequestedVersion = DetectFlashVer(

requiredMajorVersion, requiredMinorVersion, requiredRevision);

if (hasProductInstall && !hasRequestedVersion) {
var MMPlayerType = (isIE == true) ? “ActiveX” : “PlugIn”;
var MMredirectURL = window.location;
document.title = document.title.slice(0, 47) +

“ - Flash Player Installation”;
var MMdoctitle = document.title;

AC_FL_RunContent(“src”, “playerProductInstall”,”FlashVars”,
“MMredirectURL=”+MMredirectURL+’&MMplayerType=’+MMPlayerType+
‘&MMdoctitle=’+MMdoctitle+””,
“width”, “200”, “height”, “300”,
“align”, “middle”, “id”, “HelloWorld”,
“quality”, “high”, “bgcolor”, “#869ca7”,
“name”, “HelloWorld”, “allowScriptAccess”,”sameDomain”,
“type”, “application/x-shockwave-flash”,
“pluginspage”, “http://www.adobe.com/go/getflashplayer”);

} else if (hasRequestedVersion) {
AC_FL_RunContent(

“src”, “HelloWorld”,
“width”, “200”, “height”, “300”,
“align”, “middle”, “id”, “HelloWorld”,
“quality”, “high”, “bgcolor”, “#869ca7”,
“name”, “HelloWorld”, “allowScriptAccess”,”sameDomain”,
“type”, “application/x-shockwave-flash”,
“pluginspage”, “http://www.adobe.com/go/getflashplayer”

);
} else {

var alternateContent = ‘Alternate HTML content should be placed
here. ‘
+ ‘This content requires the Adobe Flash Player. ‘

continued

85

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 85

LISTING 3.1 (continued)

+ ‘Get Flash’;
document.write(alternateContent); // insert non-flash content

}
// -->
</script>
<noscript>

<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
id=”HelloWorld” width=”100%” height=”100%”
codebase=”http://fpdownload.macromedia.com/get/flashplayer/

current/swflash.cab”>
<param name=”movie” value=”HelloWorld.swf” />
<param name=”quality” value=”high” />
<param name=”bgcolor” value=”#869ca7” />
<param name=”allowScriptAccess” value=”sameDomain” />
<embed src=”HelloWorld.swf” quality=”high” bgcolor=”#869ca7”

width=”100%” height=”100%” name=”HelloWorld” align=”middle”
play=”true” loop=”false” quality=”high”
allowScriptAccess=”sameDomain” type=”application/x-shockwave-

flash”
pluginspage=”http://www.adobe.com/go/getflashplayer”>

</embed>
</object>

</noscript>
</div>

Because the application can be opened in a number of ways, borrowing the generated
HTML wrapper code ensures that all application properties such as height and width

are copied to all the places in the code where they’re needed.

When you deploy a hosted Flex applet to a Web server, be sure to include all the same
files as before: the JavaScript library, history files, and upgraded .swf file (player

ProductInstall.swf).

As shown in Figure 3.13, the application will look like a part of the HTML page, but will offer all
the dynamic functionality that you’ve programmed.

Integrating Flex applications with
Dreamweaver CS3
Dreamweaver CS3 is the common application of choice for Web site developers who are not neces-
sarily developers. Because compiled Flex applications are simple Flash documents, though, it’s pos-
sible to use Dreamweaver’s Web page code generation capabilities to import a Flex application into
an existing Web page.

CAUTION CAUTION

TIPTIP

86

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 86

FIGURE 3.13

A Flex application running in an HTML file as an applet

When you integrate Flex using Dreamweaver CS3, you won’t have the integrated history
management feature, because Dreamweaver treats the Flex application as though it’s a

simple Flash document.

To integrate a Flex application into a Web page with Dreamweaver CS3, follow these steps:

1. In the Flex application code, set the Application tag’s height and width to a specific
number of pixels that will make the application size match the available space in the Web
page. For example, if you have a <div> tag in the hosting page that’s 300 pixels high and
200 pixels wide, use this code in the Flex application to size it appropriately:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
height=”300” width=”200”>

2. After generating the release version of the Flex application, copy the compiled .swf appli-
cation file from the release version folder into your Dreamweaver site.

3. In Dreamweaver, place the cursor in the region where you want the Flex application to
appear.

4. Select Insert ➪ Media ➪ Flash from the Dreamweaver menu.

As shown in Figure 3.14, a browsing dialog box prompts you to select a Flash document.

CAUTION CAUTION

The Flex application

87

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 87

You can also start the process of inserting a Flash document in Dreamweaver by drag-
ging or selecting the Flash document from the Assets panel, or by pressing the keyboard

shortcut Ctrl+Alt+F.

5. Select the Flex application .swf file.

FIGURE 3.14

Selecting a Flex application as a Flash document in Dreamweaver

6. If prompted for Object Tag Accessibility Attributes, as shown in Figure 3.15, enter the
Title you want to make available to Web site visitors who use screen reader software.

FIGURE 3.15

Setting accessibility attributes in Dreamweaver

TIPTIP

88

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 88

As shown in Figure 3.16, the application initially appears as a disabled region of the page.

FIGURE 3.16

The application appearing as a disabled region in Dreamweaver’s Design view

7. With the disabled Flash document selected in Dreamweaver’s Design view, click the Play
button in the Properties panel to run the application, as shown in Figure 3.17.

FIGURE 3.17

Dreamweaver’s Properties panel with the Play button

8. Save the hosting Web page.

As shown in Figure 3.18, when you save the page, Dreamweaver informs you that it adds to the
site a file named Scripts/AC_RunContent.js. This file contains the same sort of dynamic
JavaScript functionality as the version that’s generated in Flex Builder and must be deployed to the
Web site to ensure that the Flex application is displayed correctly.

Click to play the Flex application

The disabled Flex application in Dreamweaver’s Design view

89

Building a Basic Flex Application 3

08_287644-ch03.qxp 6/23/08 11:31 PM Page 89

FIGURE 3.18

Dreamweaver added the JavaScript library to the site.

The JavaScript code that’s generated in Dreamweaver does not include the ability to
detect the user’s Flash Player version or automatically upgrade the user if he has an

older Flash Player version. Also, this code does not allow the user to control all of the parameters
passed in the embed and object versions of the code that runs the Flash Player.

Summary
In this chapter, I described how to use Flex Builder 3 to create and manage Flex projects and appli-
cations. You learned the following:

� When using Flex Builder, Flex applications are built in Flex projects.

� Flex applications are compiled into .swf files and require additional supporting files when
they’re deployed.

� The files in the html-template folder are used to model generated HTML wrapper
files.

� Compiled files in the default bin-debug folder are meant for debugging and testing and
are significantly larger than the version you deploy to your Web site.

� You should create a release version of your Flex application for deployment to a Web site.

� A release version folder normally contains the release version of a single application.

� You can integrate a Flex application into an existing Web page by sizing it correctly and
copying code from the generated HTML file into the hosting page.

� You can use Dreamweaver CS3’s Flash import tools to integrate a Flex application into a
Web page.

CAUTION CAUTION

90

Flex FundamentalsPart I

08_287644-ch03.qxp 6/23/08 11:31 PM Page 90

In this chapter, I describe the basic architecture of a Flex application from
the point of view of a developer.

In previous chapters, I described the role of Flash Player in hosting a Flex
application at runtime, regardless of whether you use the version of the
Player that’s hosted by a Web browser (a Web application) or the version
that’s embedded in the Adobe Integrated Runtime (a desktop application).

In either case, Flash Player “plays” the application with a bit of software
known as the ActionScript Virtual Machine (the AVM). Flash Player 9 (the
version that runs Flex 3 applications) includes two versions of the AVM. The
first is for older documents and applications built in Flash and Flex 1.x that
use ActionScript 1 and 2. The other, newer AVM is for documents and appli-
cations that use ActionScript 3.

Flash Player 9 can run either ActionScript 2 or ActionScript 3,
but not both simultaneously. Prior to the introduction of Flash

CS3, which supports the newer version of the language, a Flash component
built with ActionScript 2 that was incorporated into a Flex 2 application would
have its ActionScript code ignored by the Flash Player at runtime.

Flash Player is doing the work at runtime, interpreting your ActionScript
code and executing the application’s functionality. And while a Flex applica-
tion is typically built in a combination of MXML and ActionScript code,
Flash Player understands only compiled ActionScript.

NOTENOTE

91

IN THIS CHAPTER
Using Flex programming
languages

Understanding MXML

Creating application
containership with MXML

Understanding ActionScript 3

Combining MXML and
ActionScript

Using the Application
component

Understanding the Anatomy
of a Flex Application

09_287644-ch04.qxp 6/23/08 11:32 PM Page 91

As I described previously, MXML is a façade, or a convenience language, for ActionScript. In this
section of the book, I describe the relationship between the two programming languages and
explain how a Flex application is architected.

To use the sample code for this chapter, import the chapter04.zip Flex project
archive file from the Web site files into your Flex Builder workspace.

MXML and ActionScript 3
Two versions of the MXML programming language have been developed. In the first version, which
was used in Flex 1.0 and 1.5 applications, MXML was rewritten into ActionScript 2 during the com-
pilation process. In Flex 2 and 3, you use a version of MXML that compiles into ActionScript 3.

During the process that generates the compiled Flex application, MXML code is first translated into
ActionScript 3. This is all done behind the scenes so you don’t have to worry about it. You can see
how this process works by adding a compiler option to your project properties:

1. Right-click a Flex Project in the Flex Navigator view, and select Properties from the con-
text menu.

2. In the Properties dialog box, select Flex Compiler.

3. As shown in Figure 4.1, modify the Additional compiler arguments field by adding this
argument setting:

-keep-generated-actionscript=true

4. Click OK to save the changes.

5. After the project has been rebuilt, look in the Flex Navigator view in the source root. A
new generated subfolder is created that contains many ActionScript files, as shown in
Figure 4.2.

ON the WEBON the WEB

92

Flex FundamentalsPart I

Importing Flex Project Archive Files

Most of the sample files for this book from the Wiley Web site are delivered in Flex Project
Archive files that you can import directly into a Flex Builder workspace. Follow these steps to

import the archive file for each chapter that’s delivered in this format:

1. Select File Í Import Í Flex Project from the Flex Builder menu.

2. Browse and select the archive file for the current chapter from the Web site files.

3. Click Finish to import the project.

A project archive includes source code, other application assets, and project property settings. After
importing the archive file you can immediately compile and run any of its applications.

09_287644-ch04.qxp 6/23/08 11:32 PM Page 92

FIGURE 4.1

Setting a compiler argument to keep generated ActionScript code

FIGURE 4.2

The new generated code subfolder in the project source-code root folder

Keeping generated classes doesn’t have any benefit for your application’s functionality
or performance. I show the feature only to illustrate how the compiler translates MXML

code in the background.

TIPTIP

Compiler argument to keep generated ActionScript

93

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 93

Even a very simple “Hello World” application generates a large number of ActionScript files. Most
are boilerplate interpretations of internal ActionScript classes that must be available to the compiler
for every Flex application. But look for the file representing your specific application to see how
your specific MXML code is interpreted.

If you have a main application file named HelloWorld.mxml, you’ll find generated ActionScript
files named HelloWorld-generated.as and HelloWorld-interface.as in the project
source root’s generated subfolder. Helloworld_generated.as is the primary generated
application file. Review this generated code to understand how your MXML code is interpreted.

The code below is part of the generated application file in ActionScript and represents the instanti-
ation of a Flex Application at runtime with a single child Label control:

public class HelloWorld extends mx.core.Application
{
// instance variables
// type-import dummies
// Container document descriptor
private var _documentDescriptor_ : mx.core.UIComponentDescriptor

=
new mx.core.UIComponentDescriptor({
type: mx.core.Application
,
propertiesFactory: function():Object { return {

childDescriptors: [
new mx.core.UIComponentDescriptor({

type: mx.controls.Label
,
propertiesFactory: function():Object { return {

text: “Hello World”
}}

})
]

}}
})
}

Compare the generated ActionScript code with the MXML it replaces:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Label text=”Hello World”/>
</mx:Application>

That’s the power of the MXML programming language!

94

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 94

Understanding MXML
MXML is a pure XML-based markup language that is a convenience language for ActionScript 3. In
this and previous chapters, I’ve shown examples of how you can accomplish certain tasks in either
language, and in most cases the MXML version requires significantly less code.

MXML is XML!
As pure XML, MXML follows all conventions and syntax rules that are common to all such lan-
guages, including the following:

� XML is case sensitive. All element and attribute names must be declared exactly as
they’re defined in the language documentation.

� All tags must have end tags or use empty tag syntax. For instance, the <mx:Label>
element usually doesn’t need an end tag, so it’s declared as <mx:Label/>. The extra
slash character indicates that no end tag is needed.

� Element tags can’t be overlapped. In HTML, you might get away with overlapping ele-
ment tag containership, such as <i>My Text</i>. In HTML, the browser typ-
ically just figures it out and does the right thing. In XML, this sort of markup breaks the
hierarchical parent-child relationship between elements that’s required for the XML
processor to correctly parse the file.

� Every XML document has a single root element. In an MXML application file designed
for Web deployment, the root element is always <mx:Application>. For AIR applica-
tions, the root element is <mx:WindowedApplication>. In MXML component files,
the root element is whatever existing class you want to extend. But no matter what, you
must have a single root element.

� XML attribute values must be wrapped in quotation marks. This is another supposed
requirement of HTML that you can sometimes ignore in a browser environment. In XML,
if you forget the quotation marks around an attribute value, the compiler just gives up
and displays an error.

Other XML rules are important to understanding the coding requirements of MXML, including the
use of CDATA blocks and XML comments, but the bottom line is that MXML is a real XML lan-
guage. So if a rule is true for XML, it’s true for MXML as well.

XML as a programming language
Although XML was originally designed to represent data for exchange over the Internet, it isn’t the
only XML-based language to gain popularity as an application development tool. These languages
have been used effectively to build or add functionality to software applications:

� XSLT (Extensible Stylesheet Language Transformations): A language that’s defined by the
World Wide Web Consortium (W3C) and implemented in many products and platforms
to transform XML from one “flavor” into another

� XUL (XML User Interface Language): A language for defining application interfaces that’s
incorporated into the Mozilla Web browser kernel

95

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 95

� XAML (Extensible Application Markup Language): A language developed by Microsoft
that’s very similar in purpose and design to MXML, and used to define applications that
run in Microsoft’s SilverStream player

To be productive with an XML-based programming language, it’s important to understand some
basic XML concepts and how they affect programming techniques. In this section, I describe the
concepts of namespaces, reserved characters, and other XML concepts that you might find helpful.

XML namespaces
A namespace in XML gives a language designer a way of defining and binding together element
and attribute names into a language that can then be recognized by an XML processor. The string
that’s used to identify a namespace in XML is known as a URI Reference.

The technical description of XML namespaces is available at the W3C’s Web site:
www.w3.org/TR/REC-xml-names/#sec-namespaces

The URI, or Uniform Resource Identifier, that identifies an XML namespace is typically created as a
combination of the following:

� The Web address of the organization that manages the XML language

� A subdirectory structure indicating the name of the language and, optionally, the year in
which the language was defined

The namespace URI for Flex 2 and 3 applications looks like this:

http://www.adobe.com/2006/mxml

This means that this version of MXML was defined in 2006 by Adobe Systems.

An older version of the MXML language was used in Flex 1.x. The namespace URI for
that version of the language was:

http://www.macromedia.com/2004/mxml

NOTENOTE

ON the WEBON the WEB

96

Flex FundamentalsPart I

What Does MXML Stand For?

Adobe’s documentation doesn’t say whether MXML is an acronym or, if it is, what it abbreviates.
Whereas most XML-based languages have clear meanings, this one is just, well, MXML. Some

developers have guessed that it stands for “Macromedia Extensible Markup Language” because it
was invented at Macromedia prior to the company’s acquisition by Adobe. Other suggestions
include “Multidimensional XML” and “Maximum eXperience Markup Language” (based on
Macromedia’s old mantra, “Experience Matters”).

Adobe isn’t saying. So that means you get to make up your own version here. MXML stands for (write
in your vote): __.

09_287644-ch04.qxp 6/23/08 11:32 PM Page 96

This version of the language is distinguished from the current version by both the domain name (from
when Flex was owned by Macromedia) and the year of its definition.

As the first step in the Flex compilation process, the Flex compiler reads the XML markup in the
application. If it sees a namespace other than the one it expects, it generates a compiler error.

An XML namespace URI is case sensitive and must be spelled exactly as indicated in the
previous example. Changing even a single character from lowercase to uppercase causes

the compiler to fail.

Even though a namespace URI looks like a Web address, it’s really just a simple string.
The Flex compiler does not use the URI to make any requests to the Adobe Web site,

and you don’t need access to the Internet to compile a Flex application.

XML namespace prefixes
A namespace prefix is an arbitrary string that’s assigned to a namespace URI as an alias. You define
a namespace prefix with the xmlns attribute, separated from the prefix by a colon (:). Herein lies
the key benefit of namespaces: different types of XML can be used in the same document by
matching the prefix with an identifier (the URI), and the XML parser can handle each type in its
own unique way.

In a default Flex application, the <mx:Application> root element defines a namespace prefix of
mx with this syntax:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
</mx:Application>

The mx prefix is then used in every declaration of an MXML element, such as the Label:

<mx:Label text=”Hello World”/>

This means that the Label element is a member of the XML language that’s defined by the mx pre-
fix’s bound URI.

Every MXML file, including MXML component and module files, requires the standard
MXML namespace URI to be declared in the XML file’s root element.

Namespace prefixes are arbitrary. That means you can use any prefix you like, as long as
you’re consistent. The mx prefix that’s used in the Flex documentation and code samples

is in reality a recommendation, and not a technical requirement. This code would work just as well:

<?xml version=”1.0” encoding=”utf-8”?>
<harry:Application

xmlns:harry=”http://www.adobe.com/2006/mxml”>
<harry:Label text=”Hello World”/>

</harry:Application>

But it would be just plain silly. I strongly recommend that you use the mx prefix as described through-
out the product documentation and code samples.

TIPTIP

NOTENOTE

TIPTIP

CAUTION CAUTION

97

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 97

Namespace prefixes and XML child elements
You can declare any object property or event handler using XML child element syntax instead of an
XML attribute. For instance, the two following code snippets are functionally identical.

Version 1 with an attribute:

<mx:Label text=”Hello World”/>

Version 2 with a child element:

<mx:Label>
<mx:text>Hello World</mx:text>

</mx:Label>

Notice that the text property of the Label control has the same value in both cases, but observe
two significant differences in the syntax styles:

� The child element declaration of <mx:text> requires the mx namespace prefix to indi-
cate that the element is a member of the MXML language, while the XML attribute ver-
sion doesn’t need (and can’t use) the prefix.

� The attribute version requires quotation marks around the property value to satisfy the
XML requirement that all attribute values must be quoted, while the child element doesn’t
need them.

In many cases, deciding which syntax to use is a coin flip; in others, the choice is pretty clear.

Using CDATA blocks
In XML, CDATA blocks are used to protect literal characters from XML processors that would oth-
erwise interpret them as part of the XML markup, rather than the document’s content. This is par-
ticularly important in Flex when you’re trying to create ActionScript code that’s nested within an
MXML document.

In Flex Builder, when you create an <mx:Script> section to host some ActionScript, Flex Builder
adds a CDATA block automatically if you follow the right sequence in adding the tag. Try this:

1. Place the cursor in an MXML application just underneath the <mx:Application> start
tag. (The <mx:Script> section can go anywhere in the document as long as it’s a direct
child of the root element, but it’s frequently placed in this location.)

2. Type this string:

<s

You should see a list of available MXML tags.

3. Press Enter (Return on the Mac) to select the <mx:Script> tag.

4. Type a closing > character to close the tag.

98

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 98

You should see that Flex Builder auto-completes the <mx:Script> tag set and creates a CDATA
block between the tags:

<mx:Script>
<![CDATA[
]]>

</mx:Script>

The cursor is placed inside the CDATA block; this is where the ActionScript code should be placed.

The purpose of the CDATA block is to ensure that characters that are considered reserved by the
XML processor are interpreted as scripting characters, rather than XML markup. XML considers
these characters to be reserved:

< > & “ ‘

All five characters have clear meanings in both ActionScript and XML, so if you don’t protect the
code, the XML processor will think, for example, that the < character is part of the tag syntax,
rather than meaning “less than” as it does for ActionScript, and you get a parser error when you try
to compile.

CDATA blocks also are sometimes used to protect literal text in other MXML elements. For exam-
ple, the Label and Text controls support an htmlText property that allows you to present sim-
ple HTML 1.0 content. In this example, the tags are correctly interpreted because they’re
wrapped in a CDATA block:

<mx:Label>
<mx: htmlText>
<![CDATA[

This text is bold!
]]>
</mx:htmlText>

</mx:Label>

Without the CDATA block, the HTML tag characters would confuse the Flex compiler, because it
would interpret the element as part of the MXML code and not as HTML.

XML entities
On rare occasions, you’ll encounter a situation where a reserved character just has to be placed in
an XML structure, and the alternative is to write many lines of ActionScript code. To solve these
cases, XML provides the concept of entities — strings that are aliases for the characters that XML
considers to be reserved.

These are the entities for the five XML reserved characters (these may look familiar; they are the
same in HTML):

& = & (ampersand)

< = < (less than)

99

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 99

>> = (greater than)

" = “ (double quote)

' = ‘ (apostrophe/single quote)

Here’s a scenario where this comes in handy. Imagine that you want to set an object’s enabled
property using a Boolean binding expression. The object should be enabled only when a certain
value is less than 0. You might first try the binding like this:

<mx:Button label=”Click Me” enabled=”{someValue < 3}”/>

The above code will cause the compiler to fail because according to XML syntax rules, the < char-
acter isn’t permitted within an attribute value. You can solve this issue in a number of ways, but the
one with the least amount of code that also retains the same logic looks like this:

<mx:Button label=”Click Me” enabled=”{someValue < 3}”/>

The XML processor that’s at the core of the Flex compiler accepts this code and translates <,
the XML entity, to the literal < character before the ActionScript parser does its part. The code may
look odd, but it works.

MXML and containership
You can use MXML to declare both visual and non-visual objects. When using the markup lan-
guage to declare visual objects, positioning of code determines both containership and the order of
objects in the application’s visual presentation.

The Application itself is a container that contains other visual objects such as containers and
controls. In the following code, the Application contains a VBox container, and the VBox con-
tainer contains 3 Label controls. The order of presentation is determined by the order of the
code.

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#999999” layout=”absolute”>
<mx:Canvas backgroundColor=”#cccccc” width=”50%” height=”50%”

horizontalCenter=”0” verticalCenter=”0”>
<mx:VBox backgroundColor=”#eeeeee”

horizontalCenter=”0” verticalCenter=”0”
paddingTop=”20” paddingBottom=”20”
paddingRight=”20” paddingLeft=”20”>
<mx:Label text=”This is Label 1”/>
<mx:Label text=”This is Label 2”/>
<mx:Label text=”This is Label 3”/>
</mx:VBox>

</mx:Canvas>
</mx:Application>

100

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 100

In this application, the Canvas container is inside the Application; the VBox container is
inside the Canvas; the Label controls are inside the VBox; and the Label controls display in
the order in which they’re declared. The application’s visual presentation is shown in Figure 4.3.

FIGURE 4.3

An application with multiple containers and controls

If you want to move the Label controls up or down relative to each other, the easiest approach is
to change the order of the code.

The visual objects that are nested within a container such as the Application are considered to be
part of the container’s display list. This is the list of visual objects that make up what the user sees
at runtime.

You can add visual objects to the container’s display list at runtime with ActionScript
code. Every container has methods named addChild() and addChildAt() that are

designed for this purpose; another method named setChildIndex() lets you move objects around
within the container’s display list.

MXML and non-visual classes
You also can use MXML to declare non-visual ActionScript class instances. The following code
declares an instance of the WebService class that’s used to make calls to SOAP-based Web services.

<mx:WebService id=”myService”
wsdl=”http://www.bardotech.com/services/Myservice?wsdl”/>

TIPTIP

The Application

Canvas Labels

VBox

101

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 101

These sort of non-visual controls are known as faceless components, because they don’t have visual
representation in the application. Faceless components must be declared as direct child elements of
the MXML file’s root element such the <mx:Application> element in a main application file.
This code, for example, would be incorrect and would generate the compiler error shown in
Figure 4.4:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

<mx:VBox>
<mx:WebService id=”myService”

wsdl=”http://www.bardotech.com/services/Myservice?wsdl”/>
</mx:VBox>

</mx:Application>

FIGURE 4.4

The Problems view displaying a compiler error for incorrectly placed faceless controls

Since VBox is a visual container, it can contain only other visual objects. To fix this problem, move
the <mx:WebService> declaration outside the <mx:VBox> container so that it becomes a direct
child element of the <mx:Application> element.

Understanding ActionScript 3
ActionScript 3 is the most recent version of the programming language that drives both Flash and
Flex. ActionScript 3 is an implementation of the ECMAScript 4th Edition recommendation.
ECMAScript in turn was originally based on Netscape’s JavaScript.

A complete description of ActionScript 3 is beyond the scope of this book, but it’s worth an
overview of the language’s basic syntax.

A formal description of the ECMAScript 4th Edition standard is available in PDF format
at www.ecmascript.org/es4/spec/overview.pdf.

In addition to ActionScript 3, subsets of the ECMAScript 4th edition interim recommen-
dation also have been implemented in Microsoft’s JScript.NET.NOTENOTE

WEB RESOURCEWEB RESOURCE

102

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 102

ActionScript syntax
ActionScript 3, and the language recommendation on which it’s modeled, ECMAScript, share syn-
tax with languages such as C, C++, C#, and Java. Like these languages, ActionScript has these syn-
tactical features:

� All identifiers and keywords are case sensitive.

� Keywords are always lowercase.

� Statements end with a ; (semicolon) character, as in

x = 0;

� Boolean expressions used in conditional clauses are wrapped in parentheses, as in

if (aBoolean)

� {} (brace) characters are used to denote code blocks.

The semicolon character at the end of lines is optional when you code one statement
per line, but is used nearly universally to improve code readability.

Declaring variables
As in JavaScript, ActionScript 3 variables are declared with the var keyword. The variable name is
usually followed by a data type declaration using what’s known as post-colon data typing syntax.
The following ActionScript declaration creates a public variable named myValue, typed as a
String:

public var myValue:String;

The type declaration isn’t required, but if you leave it out the compiler generates a warning. If you
want to use a “loose” type declaration that allows the variable to hold values of any type, use the
wild card * character after the colon:

public var myLooseValue:*;

Using access modifiers
An access modifier is a keyword that defines a class member’s visibility and availability to the rest of
the application. In code placed outside function declarations, the variable declaration is preceded
by an access modifier keyword that determines the variable’s visibility to the rest of the application.

When you declare a variable outside a function, you’re really declaring a property of a
component or class. When the code is in the main MXML application file, the property

is a member of the Application component. This aspect of declaring object members, including
how to declare other component members such as functions and constants, is described in Chapter 5.

You can use any one of these access modifiers in a variable declaration placed outside a function:

� public: All code throughout an application can access the variable.

� private: Only code in the current component or class can access the variable.

CROSS-REFCROSS-REF

TIPTIP

103

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 103

� protected: Only code in the current component or class, or any its subclasses, can
access the variable.

� internal: Only code in the current component or class, or any other component or
class in the same package, can access the variable.

You use only one access modifier for any particular variable declaration.

If you don’t include an access modifier in a variable declaration placed outside a func-
tion, the compiler generates a warning and the access for that member is set to the

default of internal. In ActionScript 2, the same code would have resulted in a default access of
public and no compiler warning would have been generated.

Unlike in JavaScript, where the presence or absence of the var keyword can determine
variable lifetime and visibility, in ActionScript var is required whenever you declare a

variable or an object property (described in Chapter 5).

Declaring variables within functions
Variables declared within functions don’t require or accept access modifiers. By declaring the vari-
able within the function, you restrict its visibility and lifetime to the duration of the function itself.
This ActionScript code declares a variable within a function:

private function myFunction()
{

var myVar:String;
}

Once the function has completed execution, any variables declared within its body expire.

Initializing variable values
You can set initial values in a variable declaration by adding the assignment operator (a single =
character) and the value after the variable name. The following code creates a variable named
myValue and assigns its initial value at the same time:

public var myValue:String = “Hello World!”;

Variable declarations, including those that set declare and set a variable’s initial value,
can be placed either inside or outside functions. Code that modifies an existing vari-

able’s value, however, must be placed inside a function.

Using ActionScript operators
ActionScript shares operators with languages such as C, C++, C#, and Java. Table 4.1 lists common
mathematical and comparison operators that work in all of these languages.

TIPTIP

TIPTIP

CAUTION CAUTION

104

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 104

TABLE 4.1

ActionScript 3 Operators

Operator Purpose Example

+ Mathematical addition and string Addition:
concatenation var result:Number = 1 + 1;

Concatenation:
var result:String = “Hello “ +
“world”;

- Mathematical subtraction var result:Number = 20 - 10;

/ Mathematical division var result:Number = 20 / 2;

* Mathematical multiplication var result:Number = 20 * 2;

% Modulus (returns remainder from integer var result:int = 12 % 5;
division)

== Equals var is:Boolean=
(value1 == value2)

!= Assignment var value:Number=1;

> Greater than if (value > 3) {}

< Less than if (value < 3) {}

&& Logical AND if (value1 > 3 && value1 < 10) {}

|| Logical OR if (value1 < 3 || value2 > 10) {}

The language includes many more operators, categorized as Logical, Relational, Assignment, and
Bitwise operators. Again, if you have a background in C, Java, or similar languages, you can let that
experience be your guide.

Conditional statements
ActionScript uses two types of conditional statements. The more common formulation uses an if
keyword with a Boolean expression to determine whether code will be executed. You can then
optionally add else and else if clauses to the statement.

A simple if statement looks like this:

if (some Boolean expression)
{
... do something ...
}

105

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 105

For example, if you want to evaluate whether a user has selected a row in a DataGrid or List
control, you might code it like this:

if (myDataGrid.selectedIndex != -1)
{

var myData:Object = myDataGrid.selectedItem;
}

The Boolean expression works because DataGrid and List controls have a selectedIndex
property that indicates the ordinal position of the currently selected data element. If nothing is
selected, this property always returns _1.

You can optionally add else and else if clauses to an if statement like this:

if (some Boolean expression)
{

... do this!
}
else if (some other expression)
{

... do that!
}
else
{

... do something else!
}

When using these optional clauses, you can have as many else if clauses as you need and a sin-
gle else clause that is always at the end of the whole code section.

private function onLoad():void
{

if (str == “dfsd”)
Alert.show(“dfsd”)

else if (str == “kks”)
Alert.show(“kks”)

else if (str == “yes”)
Alert.show(“yes”)

}

You can also use switch statements to evaluate a single expression against multiple possible values:

switch (some expression)
{

case value1:
... do something ...
break

case value2:
... do something else ...

106

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 106

default:
... do another thing ...

}

The expression you evaluate with a switch statement can be of any data type.

Looping
Looping constructs look basically the same as in Java, JavaScript, C, and other similar languages. A
for loop allows you to loop a given number of times.

for (var i:int=0; i<10; i++)
{

... do this 10 times ...
}

The for statement establishes a counter variable (named i in the above example); in the second
part of the expression, it causes the loop to continue as long as i is less than 10; and in the third
part, it increments the variable’s value by 1 each time through the loop.

You also can use a while statement to execute a loop:

var i:int = 0;
while (i<10)
{

do this 10 times!
i++;

}

In this example, the while statement is used to loop a specific number of times. It also can be
used to evaluate any Boolean expression and determine whether to continue the looping process or
break out of the loop and continue with the remainder of the code.

In many cases, the choice of a for or a while loop is a style choice that’s completely
up to the programmer.

Combining MXML and ActionScript
Many tasks can be accomplished with either MXML or ActionScript code, and only a few are
restricted to one language or the other. Most Flex applications use both. The main application file
is always in MXML, and that file can then contain or refer to ActionScript code in a variety of ways.

The <mx:Script> tag
The <mx:Script> tag set can wrap ActionScript code that becomes a part of the Application or
component that the current MXML file represents. The advantage of including the scripting in the
MXML file is that all the code for a particular component is in one place. Disadvantages include:

TIPTIP

107

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 107

� Some developers find that mixing declarative (MXML) and programmatic (ActionScript)
syntax in a single file can look odd and be a bit confusing.

� Because Flex Builder 3 provides code management tools for ActionScript stored in exter-
nal files that aren’t available in MXML files, you might find that you want to take advan-
tage of these tools.

In terms of functionality and application performance, either of these approaches works fine. So it’s
purely a question of style and preference.

If you decide to include ActionScript in an MXML file, create the <mx:Script> element as a pair
of tags wrapped around a CDATA block. Then place all your scripting inside the CDATA block:

<mx:Script>
<![CDATA[

Scripting goes here
]]>

</mx:Script>

To insert a CDATA block into a source code file, place the cursor where you want the
CDATA to appear, and then select Source ➪ Insert CDATA Block from the Flex Builder

menu. Or use the keyboard shortcut Ctrl+Shift+D.

Using external ActionScript files
You can link an MXML file to an external ActionScript file with the source property of the
<mx:Script/> element. The ActionScript file should have a file extension of .as and can con-
tain as much ActionScript code as you need.

Any code in the external file is considered to be a part of the MXML file and the ActionScript class
it represents. And because the external file isn’t in XML format, you don’t need the <mx:Script>
element or the CDATA block to protect the code.

Follow these steps to create an external ActionScript file:

1. Select File ➪ New ➪ ActionScript File from the Flex Builder menu. (Don’t select
ActionScript Class — that’s a different sort of file I’ll describe in a later chapter.)

2. In the New ActionScript File dialog box, select the folder in which you want to create the
file. External ActionScript files can go anywhere in the project, because you’ll explicitly
refer to the file’s location when you link to it from an MXML file. I usually place the file in
the same folder as the MXML file it’s linked to.

3. Enter the name of the file. It should have a file extension of .as, but the rest of the file-
name is up to you. I usually match the name of the MXML file it’s linked to, so for an
application named HelloWorld.mxml, the name of the external ActionScript file would
be helloWorld.as.

4. Click Finish to create the file.

TIPTIP

108

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 108

Notice that in this usage, the external ActionScript filename starts with a lowercase
character. This doesn’t have any technical effect on the code, but it’s a way of indicating

that it’s a simple file containing ActionScript code, as opposed to an ActionScript class (which, by
object-oriented programming conventions, has an initial uppercase character).

After the file has been created, you link to it from the MXML file with the <mx:Script> element
and add a source property pointing to the external file. The application in Listing 4.1 embeds its
ActionScript code in an <mx:Style> tag set.

Any particular <mx:Script> element can contain nested ActionScript or use the
source property to link to an external ActionScript file, but it cannot do both at the

same time. You can, however, have as many <mx:Script> declarations in a single MXML file as you
need.

LISTING 4.1

An MXML application CalculatorWithScript.mxml with nested ActionScript

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
layout=”vertical” xmlns:components=”components.*”>

<mx:Script>
<![CDATA[

[Bindable]
private var currentResult:Number;
[Bindable]
private var currentInput:String;

private function initApp():void
{

input.addEventListener(“click”, clickHandler);
input.addEventListener(“calculate”, calculate);

}

private function calculate(event:Event):void
{

currentResult += Number(currentInput);
}

private function clickHandler(event:TextEvent):void
{

currentInput += event.text;
}

]]>

continued

CAUTION CAUTION

TIPTIP

109

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 109

LISTING 4.1 (continued)

</mx:Script>

<components:ButtonTile id=”input”/>
<components:ResultOutput id=”output”/>

</mx:Application>

The code in Listing 4.1 is available in the Web site files in the chapter04 project’s src
folder as CalculatorWithScript.mxml.

Listing 4.2 shows the same application after the ActionScript has been moved to an external file.

LISTING 4.2

MXML application Calculator.mxml with linked ActionScript file

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical” xmlns:components=”components.*”>

<mx:Script source=”calculator.as”/>

<components:ButtonTile id=”input”/>
<components:ResultOutput id=”output”/>

</mx:Application>

The code in Listing 4.2 is available in the Web site files in the chapter04 project’s src
folder as Calculator.mxml.

You have just as much code to manage, but the XML markup is cleaner and easier to read. And, as
shown in Listing 4.3, the ActionScript file now contains only the programmatic code:

LISTING 4.3

External ActionScript file calculator.as

// ActionScript file
[Bindable]
private var currentResult:Number;

[Bindable]

ON the WEBON the WEB

ON the WEBON the WEB

110

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 110

private var currentInput:String;

private function initApp():void
{

input.addEventListener(“click”, clickHandler);
input.addEventListener(“calculate”, calculate);

}

private function calculate(event:Event):void
{

currentResult += Number(currentInput);
}

private function clickHandler(event:TextEvent):void
{

currentInput += event.text;
}

The code in Listing 4.3 is available in the Web site files in the chapter04 project’s src
folder as calculator.as.

Managing ActionScript code with Flex Builder
Whether you’re working with MXML or ActionScript, Flex Builder’s Outline view allows you to
easily find function and variable declarations within the source code. The Outline view appears in
the lower-right corner of Flex Builder in the default Flex Development perspective.

Using Outline view with ActionScript
When working with MXML, the default Outline view displays a tree of MXML elements. As shown
in Figure 4.5, the <mx:Script> element shows up as a single selectable object.

FIGURE 4.5

Flex Builder’s Outline view in MXML mode

ON the WEBON the WEB

111

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 111

To navigate to a specific function or variable declaration using the Outline view, click the Show
class view icon at the top of the view. As shown in Figure 4.6, you’re now able to click a declara-
tion and jump to that bit of code.

FIGURE 4.6

Outline view and the Class view buttons

When using the Outline’s Class view, you can change the display with these other options that are
accessed from buttons at the top of the Outline view:

� Sort displays variables and functions in alphabetical order.

� Hide Static Functions and Variables hides variables and functions that are marked with
the static modifier.

� Hide Non-Public Members hides variables and functions that aren’t marked with the
public access modifier.

You need to click an item only once in the Outline view to jump to the matching code.

From any object reference in the ActionScript file, hold down the Ctrl key and click the
reference to jump to that object’s declaration. This works whether the declaration is in

the ActionScript file or an external MXML file and for both custom classes and Flex library classes
whose source code has been provided by Adobe.

Managing ActionScript code in external files
When you store ActionScript code in an external file, Flex Builder gives you some additional code
management tools.

TIPTIP

TIPTIP

Class view

Sort Hide static

Hide non-public

112

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 112

Code folding
Code folding refers to the ability of the Flex Builder editor to fold, or collapse, certain sections of
code. In an MXML editor, code folding is based on the source file’s MXML elements. As shown in
Figure 4.7, an MXML file displays code folding icons at the beginning of each MXML element.
You’ll see a folding icon for the <mx:Script> tag that allows you to collapse that section of code
to a single line.

FIGURE 4.7

Code folding icons in an MXML file

Clicking the icon reduces the MXML element at that line to a single line of displayed code. Then,
when you move the cursor over the folding icon, you see a pop-up window showing the first of code
in the collapsed section, as shown in Figure 4.8. Clicking the icon again expands it to full display.

In an external ActionScript external file, because you are using Flex Builder’s ActionScript editor,
code folding lets you collapse function declarations instead of MXML elements. As shown in Figure
4.9, you can click any function’s folding icon and reduce it to a single line of code.

You also can collapse all functions in a file to single-line display:

� Right-click in the column of line numbers.

� As shown in Figure 4.10, select Folding ➪ Collapse Functions to reduce all functions to
single-line displays.

Now all functions are displayed as single lines of code, as shown in Figure 4.11.

And finally, moving the cursor over a folded icon that is in a collapsed state displays the contents of
the folded function, as shown in Figure 4.12.

Code folding icons

113

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 113

FIGURE 4.8

Displaying collapsed MXML code

FIGURE 4.9

Code folding icons in an ActionScript file

Code folding icons

114

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 114

FIGURE 4.10

Collapsing all functions

FIGURE 4.11

Functions displayed as single lines of code

FIGURE 4.12

Displaying the contents of a folded function

115

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 115

Organizing import statements
An import statement informs the compiler about the location of ActionScript classes it needs to
compile an application or component. Most ActionScript classes must be explicitly imported to be
recognized by the compiler. This import statement makes a class named ArrayCollection
available to the compiler:

import mx.collections.ArrayCollection;

In Flex Builder 2, the development environment helped you build an import list by creating
import statements for classes you referred to as you typed. But later, if you removed a class refer-
ence from the body of the code, the import statement would be left in the file. This doesn’t cause
any harm to the application (import statements on their own don’t add size or functionality to a
compiled application), but it could be confusing later when you opened the file and saw import
statements that had nothing to do with the code’s functionality.

Flex Builder 3’ ActionScript editor adds the ability to organize an ActionScript file’s import state-
ments with a simple menu selection or keyboard shortcut. When you organize imports, unused
import statements are removed and the ones you need are left in alphabetical order, grouped by
package.

Consider this list of import statements:

import mx.controls.Alert;
import flash.net.FileFilter;
import flash.net.URLRequest;
import mx.collections.ArrayCollection;
import mx.validators.Validator;
import flash.net.FileReference;

To organize this list, select Source ➪ Organize Imports from the Flex Builder menu. (Or press the
keyboard shortcut Ctrl+Shift+O.) After organization, the list now looks like this:

import flash.net.FileFilter;
import flash.net.FileReference;
import flash.net.URLRequest;

import mx.controls.Alert;
import mx.validators.Validator;

The import statement for the unused class is removed, and the remaining statements are alphabet-
ized and grouped.

This ability to organize import statements currently is available only in ActionScript
source code files and does not work in MXML files.TIPTIP

116

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 116

Using the Application Container
The Application container is always declared as the root element of an MXML application file.
It represents the top level of the application’s containership hierarchy.

Application is defined as an ActionScript class with the fully qualified name
mx.core.Application. The Application class supports these important properties that are not
part of other containers. Table 4.2 shows the application properties.

TABLE 4.2

Application Properties

Property Purpose Example

application A static property that returns a Application.application.height = 400;
reference to the current Application.

controlBar A read-only property that returns a var myCB:ApplicationControlBar =
reference to an Application this.controlBar;
ControlBar within the
Application.

frameRate The number of frames per second at <mx:Application frameRate=”60”/>
which changes are reflected in Flash
Player. The default is 24 frames/second.

pageTitle A value that’s passed through to the <mx:Application
HTML wrapper and displayed in place pageTitle=”My Flex App”/>
of the ${title} placeholder.

parameters An ActionScript Object containing Opening the application with a URL
name/value pairs that are passed into containing query string variables:
the Flash Player into a FlashVars string “flashvars”, “state=new”
passed into the Flash Player.

Reading the variable in the Flex application:
var currentState:String =
this.parameters.state;

url The URL with which the Application var currentURL:String = this.url;
.swf file was opened.

You can make typing appear to be smoother in a Flex application by increasing the
frameRate. For example, if the cursor is in a TextArea or TextInput control and

you hold down a key at 24 frames/second, the effect can be a bit “jumpy.” That is, the characters may
not appear at an even rate. Setting the frameRate to 60 or 90 frames/second may noticeably
improve this “animation.” In theory, this could have a negative effect on CPU usage on the client sys-
tem, but in testing on a modern computer, it’s difficult to see a difference.

TIPTIP

117

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 117

The url property refers to the URL through which the application .swf file was
loaded, not the HTML wrapper file. For example, when running the URLDemo.mxml

application from the local disk, the browser’s url is displayed as:

file:///C:/flex3bible/workspace/chapter04/
bin-debug/URLDemo.html

The Application.url property returns this value:

file:///C:/flex3bible/workspace/chapter04/
bin-debug/URLDemo.swf

Passing application parameters
You pass parameters to the application from the browser using a special Flash Player variable
named flashVars. If you’re using simple <object> and <embed> tags to call Flash Player
from an HTML wrapper file, the flashVars variable is passed from the HTML wrapper file in
this form:

<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
id=”${application}” width=”${width}” height=”${height}”
codebase=”http://fpdownload.macromedia.com/get/

flashplayer/current/swflash.cab”>
<param name=”movie” value=”${swf}.swf” />
<param name=”quality” value=”high” />
<param name=”bgcolor” value=”${bgcolor}” />
<param name=”allowScriptAccess” value=”sameDomain” />
<param name=”flashVars” value=”state=New” />
<embed src=”${swf}.swf” quality=”high” bgcolor=”${bgcolor}”

width=”${width}” height=”${height}” name=”${application}”
align=”middle” play=”true”
loop=”false” quality=”high”
allowScriptAccess=”sameDomain”
type=”application/x-shockwave-flash”
pluginspage=”http://www.adobe.com/go/getflashplayer”
flashVars=”state=New”>

</embed>
</object>

Notice that the flashVars property is passed twice: once for the <object> tag (for Internet
Explorer), and once for the <embed> tag (for plug-in based browsers such as Firefox).

If you’re using the JavaScript code in the HTML wrapper file that’s generated by Flex Builder, pass
the flashVars variable like this:

AC_FL_RunContent(
“src”, “${swf}”,
“width”, “${width}”,
“height”, “${height}”,
“align”, “middle”,
“id”, “${application}”,

CAUTION CAUTION

118

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 118

“quality”, “high”,
“bgcolor”, “${bgcolor}”,
“name”, “${application}”,
“allowScriptAccess”,”sameDomain”,
“type”, “application/x-shockwave-flash”,
“pluginspage”, “http://www.adobe.com/go/getflashplayer”,
“flashVars”, “state=New”);

The format of the flashVars variable is the same as the queryString portion of a URL.
Variables and their values are separated by the = character, and multiple values are separated by the
& character. You don’t need additional quotation marks around parameter values, so a flashVars
variable containing two parameters might look like this:

“flashVars”, “firstName=Bob&lastName=Smith”

This code would result in two parameters named firstName and lastName with values of Bob
and Smith.

To retrieve these values at runtime, use the Application object’s parameters property. The
parameters property is a dynamic object that allows you to address its named properties with
dot notation, as in:

private var fullName:String =
Application.application.parameters.firstName + “ “ +
Application.application.parameters.lastName;

The expression Application.application allows you to get a reference to the
application object from most locations in the application’s code. If the code you’re

writing is in the main application file, though, you can simplify it with:

private var fullName:String =
this.parameters.firstName + “ “ +
this.parameters.lastName;

Controlling application dimensions
The default values for the Application component’s width and height are both 100 percent.
These values are passed to Flash Player through the HTML wrapper file that’s generated by Flex
Builder. For example, this code:

<mx:Application height=”300” width=”200”>
</mx:Application>

results in these values being passed to Flash Player in the generated HTML wrapper page:

AC_FL_RunContent(
“src”, “HelloWorld”,
“width”, “200”,
“height”, “300”,
... other parameters ...);

TIPTIP

119

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 119

These dimension properties also are passed into, and are part of, the .swf application file.

You can pass different explicit values into the HTML wrapper code that calls Flash
Player by modifying the HTML template. This causes the Flex application to be stretched

or compressed to match Flash Player’s dimensions.

Setting the layout property
The Application component’s layout property controls how its nested visual objects are laid
out on the screen. The layout property has these possible values:

� vertical (the default)

� horizontal

� absolute

Vertical and horizontal layout
Settings of vertical and horizontal cause the application to lay out its nested visual objects
automatically. As shown in Figure 4.13, a layout setting of vertical makes objects in the
Application’s display list appear in a single column.

FIGURE 4.13

An application with vertical layout

The Application’s horizontalAlign style defaults to center, so objects laid out
with either horizontal or vertical layout are placed in the horizontal center of

the application. Other possible values include left and right.

Figure 4.14 shows what happens when you change the Application object’s layout property
to horizontal. Objects in the display list are laid out in a row from left to right.

TIPTIP

TIPTIP

120

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 120

FIGURE 4.14

An application with horizontal layout

A layout setting of horizontal or vertical requires the application to calculate the
quantity and size of the nested controls at runtime, and then in a second pass to place

them on the screen. This calculation has to be re-executed each time the application is resized (for
example, if the user resizes the browser). On slower computers, this process can seem a bit sluggish.
One solution to improve client-side performance in this situation is to switch to absolute layout,
because the application then doesn’t have to do this calculation.

Absolute layout
An application with absolute layout allows each object to be placed in a specific position relative
to the top-left corner of the application. As shown in Figure 4.15, absolute layout has the addi-
tional advantage of being able to overlap objects. When objects have alpha settings that allow
transparency, as is the case with default settings of the Button component, you can make objects
show through each other from back to front.

The z-index, or relative depth, of overlapping visual objects is controlled by their order
in the container’s display list. When declared in MXML, the last declared object has the

highest z-index and overlaps any other objects with which it shares screen space.

FIGURE 4.15

An application with absolute layout and overlapping

TIPTIP

TIPTIP

121

Understanding the Anatomy of a Flex Application 4

09_287644-ch04.qxp 6/23/08 11:32 PM Page 121

Other containers in the Flex framework besides Application support the layout property,
including these:

� Panel

� TitleWindow

� WindowedApplication (used only in desktop applications deployed with AIR)

I describe those in detail in Chapter 9.

Summary
In this chapter, I described the basic anatomy of a Flex application. You learned the following:

� MXML and ActionScript 3 are the two programming languages you use for Flex
development.

� ActionScript 3 is based on the ECMAScript 4th Edition recommendation.

� ActionScript’s syntax is similar to Java, JavaScript, C, C++, and C#.

� MXML is a “convenience” language that compiles into ActionScript.

� MXML is a pure XML-based language.

� You can combine MXML and ActionScript in a number of ways.

� The Application class is the root element in a Flex application designed for Web
deployment.

� The Application class’s layout property can be set to horizontal, vertical, or
absolute.

122

Flex FundamentalsPart I

09_287644-ch04.qxp 6/23/08 11:32 PM Page 122

In Chapter 1, I described the object-oriented concept of modularity and
described how dividing an application into small pieces can increase
developer productivity and improve long-term maintenance of an appli-

cation. I also described the concept of encapsulation that encourages develop-
ers to create application building blocks that hide the details of a feature’s
implementation from the rest of the application, and only expose tools in the
module’s public interface that are needed to set and get the module’s infor-
mation and execute its functions.

In this chapter, I describe some of the basic building blocks of a Flex appli-
cation that can improve its modularity and make it easier to manage over
time. I start with a look at binding expressions and describe how they help
you easily move data around an application. A binding expression can move
data from one object to another at runtime without explicit event handling
or ActionScript statements. I describe a couple of binding syntax styles and
show when to use each.

This chapter also includes a description of how to create and use custom
MXML components in a Flex application. In the last section of this chapter, I
describe how to package and manage multiple components and classes in a
component library, using a Flex Builder Library Project.

To use the sample code for this chapter, import the chap-
ter05.zip Flex project archive file from the Web site files

into your Flex Builder workspace.

ON the WEBON the WEB

123

IN THIS CHAPTER
Using binding expressions

Creating MXML components

Instantiating MXML components

Creating component properties
and methods

Using component libraries

Using Bindings and
Components

10_287644-ch05.qxp 6/23/08 11:33 PM Page 123

Using Binding Expressions
As previously described, a binding expression lets you move data from one object to another at
runtime without having to handle complex events or write lots of ActionScript code.

Binding expressions represent only one possible approach to managing data within a
Flex application. Because they generate automatic event broadcasters and listeners, they

can create significant application activity when overused. Sometimes it’s best just to assign object
properties using ActionScript code.

The purpose of a binding is to “listen” for changes to an expression and to “broadcast” the expres-
sion’s value to an object’s property. The expression that returns the value is known in a binding as
the source. The expression to which you pass the value when it changes is known as the destination.

Let’s look at this example of two Label controls.

<mx:Label id=”sourceLabel” text=”some value”/>
<mx:Label id=”destinationLabel”/>

If you want the first control’s text property value to be displayed in the second control, you
would refer to the first as the source and the second as the destination.

Flex supports three binding syntax styles:

� A simple, shorthand MXML-based version that wraps a binding expression in an attribute
of an MXML declaration

� A longhand MXML-based version that uses the <mx:Binding> tag

� A longhand ActionScript-based version that uses the
mx.binding.utils.BindingUtils class

The longhand ActionScript-based version of creating a binding has some limitations
compared to MXML. While the BindingUtils class allows you to create a binding at

runtime, it does not support the use of simple ActionScript or E4X expressions, and it doesn’t have as
good a set of error and warning detection as bindings declared in MXML.

Shorthand MXML binding expressions
In the shorthand MXML version, you start by assigning an id, or unique identifier, to the source
control. This becomes the instance name of your object for future reference:

<mx:Label id=”sourceLabel” text=”some value”/>

In the destination control’s declaration, you use an ActionScript expression that refers to the source
control’s text property, wrapped in {} characters:

<mx:Label text=”{sourceLabel.text}”/>

At runtime, if the source control’s text property changes, the destination control is updated at the
same time.

TIPTIP

TIPTIP

124

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 124

Using <mx:Binding>
The longhand MXML binding syntax uses an <mx:Binding/> tag with properties of source
and destination to define the two expressions:

<mx:Binding source=”sourceLabel.text”
destination=”sourceLabel.text”/>

The <mx:Binding> tag can be used when the destination object is declared in ActionScript code,
rather than MXML. Because shorthand syntax works only in the context of an MXML declaration,
it just doesn’t work for this case.

In the following code, a value entered into a TextInput control is passed to a pre-declared vari-
able named myVar whenever the user makes a change. That variable’s value is then passed to the
Label control using a shorthand binding expression.

<mx:Script>
<![CDATA[

[Bindable]
private var myVar:String

]]>
</mx:Script>

<mx:Binding source=”myInput.text” destination=”myVar”/>
<mx:TextInput id=”myInput”/>
<mx:Label text=”{myVar}”/>

You might not use the <mx:Binding> tag in the simplest Flex applications, but the
first time you need to pass a value to an object or expression that’s declared in

ActionScript, you’ll find it a valuable tool.

Making expressions bindable
Most object properties in the Flex framework’s library are automatically bindable, meaning that if
the property’s value changes at runtime, the new value is broadcast to the listening destination
object. When you declare your own variables in ActionScript, their values aren’t automatically
bindable; you have to mark them with a [Bindable] metadata tag to indicate that they should
share new values with the rest of the application.

Consider this code:

<mx:Script>
<![CDATA[

private var myVar:String=”Hello World”;
]]>

</mx:Script>
<mx:Label id=”destinationLabel” text=”{myVar}”/>

TIPTIP

125

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 125

The variable myVar will share its value with the destinationLabel control at application
startup, but because the variable isn’t marked as bindable, any changes at runtime won’t be passed
to the control. In fact, the compiler notices this problem and generates a compiler warning, as
shown in Figure 5.1.

FIGURE 5.1

A compiler warning for a binding to a non-bindable expression

To fix this and get rid of the compiler warning, add the [Bindable] metadata tag above the vari-
able declaration:

<mx:Script>
<![CDATA[

[Bindable]
private var myVar:String=”Hello World”;

]]>
</mx:Script>
<mx:Label id=”destinationLabel” text=”{myVar}”/>

The compiler warning disappears, and if the source expression’s value changes at runtime, the
Label control correctly displays the new value.

Using MXML Components
As described previously, modularity means that you break up an application into pieces that are
focused on particular application tasks. A modular application tends to be more stable and main-
tainable than one that mixes many types of functionality into a single source code file.

Flex supports the object-oriented concept of modularity through the use of custom MXML compo-
nents and ActionScript classes. In this section, I describe how to create and incorporate MXML
components in a Flex application.

Creating MXML components
Like the application itself, an MXML component is built in a source code file with an extension of
.mxml. At compilation time, an MXML component is turned into an ActionScript class where the

126

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 126

name of the class matches the first part of the component’s filename. So for example, if you create a
file named MyComponent.mxml, the resulting ActionScript class is named MyComponent.

I strongly recommend that you create components in subfolders of the project source
root folder, rather than the source folder itself. This allows you to group components by

purpose into packages. For example, you might have one folder for forms, another for DataGrid and
List components (data-aware components), a third for navigational tools, and so on. The names of the
folders are completely up to you.

Because an MXML component is really an ActionScript class, I recommend that you fol-
low object-oriented naming conventions for class definitions. Specifically this means

that component filenames usually start with an initial uppercase character and use mixed-case after
that. This is a convention, not a technical requirement, but it’s one that most developers follow.

Component inheritance
Each MXML component extends, or is derived from, an existing ActionScript class. You indicate
which class the current component extends with the MXML file’s root element. So a class named
MyComponent.mxml that extends the VBox container looks like this:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:VBox xmlns:mx=”http://www.adobe.com/2006/mxml”>
</mx:VBox>

Notice that the MXML component file’s root element includes the standard MXML
namespace and prefix declaration of

xmlns:mx=”http://www.adobe.com/2006/mxml”. This is required in all MXML files.

The preceding MXML code results in the inheritance relationship described by the UML diagram
in Figure 5.2.

CAUTION CAUTION

TIPTIP

TIPTIP

127

Using Bindings and Components 5

The View in Model-View-Controller

Asingle Flex application can have dozens or hundreds of “views” — that is, screens or visual rep-
resentations of data that execute particular functions, collect data, or present information to the

user. If you try to implement all of these views in a single source code file, the result can be a mess.

Similarly, the application may need to call many different external functions to get data and imple-
ment many object structures in application memory in which to hold that data at runtime. In classic
model-view-controller application architecture, these parts of the application are known as models.

You can create view components with either MXML or ActionScript, but for most purposes an MXML
component is the simplest approach. And after you create the components, you need a way to share
data with them and make them do things. In this chapter, I describe how to build the Flex applica-
tion’s views as MXML components and how to design the components to hold and receive data.

10_287644-ch05.qxp 6/23/08 11:33 PM Page 127

FIGURE 5.2

The inheritance relationship between VBox, the superclass, and the custom component, the subclass

Using the New MXML Component wizard
To create a new MXML component with Flex Builder, first create a folder in the project’s source
root to contain the component. Then use the New MXML Component wizard to create the compo-
nent source code file.

Creating a component folder
To create a component folder, follow these steps:

1. Right-click the project’s src folder in the Flex Navigator view.

2. Select New ➪ Folder.

3. Enter a new folder name of components, and click Finish.

Folder names that represent packages, by convention, are usually all lowercase. For
example, the folder containing form components should be named forms, not Forms

or FORMS.

Creating the MXML component
To create the MXML component, follow these steps:

1. Right-click the new folder in the Flex Navigator view.

2. Select New ➪ MXML Component.

3. As shown in Figure 5.3, enter a component filename of MyComponent.as.

4. Select VBox from the Based on: list.

5. Remove the default values in the Width and Height settings, leaving them blank. This
creates a VBox component that automatically resizes based on the size and quantity of its
nested controls.

TIPTIP

VBox

MyComponent

128

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 128

6. Click Finish to create the new MXML component.

The component opens in Flex Builder in either Source or Design view, depending on
what view you used most recently.

FIGURE 5.3

The New MXML Component wizard

Adding content to the component
To add content to the component, follow these steps:

1. If the component opened in Source view, click the Design button.

2. Locate the Style section of the Flex Properties view.

3. Click the background color selector’s paint bucket icon, shown in Figure 5.4, to choose a
background color.

4. In the color selector dialog box, if you know the hexadecimal value of the color you want,
enter it in the background color field (labeled with a # character). Otherwise, use the
color pallet to select a color. Then click OK to complete the selection.

129

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 129

FIGURE 5.4

The background color selector

5. Drag 3 Label components from the Components view into the Design view.

6. Double-click each Label component to edit its text property and add this custom text:

� Label 1: These Label components

� Label 2: are inside my custom

� Label 3: component.

7. Click Source to look at the generated source code. The source code for the component
looks like this:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:VBox xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#9DEDE8”>
<mx:Label text=”These Label components”/>
<mx:Label text=”are inside my custom”/>
<mx:Label text=”component.”/>

</mx:VBox>

Background color selector

130

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 130

Instantiating MXML components
You use MXML components by creating instances of the components in your application. You can
instantiate a component using either MXML or ActionScript code.

Instantiating a component with MXML
If the MXML component represents a visual object such as a container or control, it’s most com-
monly instantiated using MXML code. Before an MXML component can be instantiated, you must
declare a custom XML namespace prefix that’s associated with the folder in which the component’s
source code file is stored.

131

Using Bindings and Components 5

Reverse Domain Package Names

Some developers prefer to create their components and ActionScript classes in a folder structure
that includes their organization’s domain information and an application identifier. Instead of a

simple folder named forms, you might have a folder structure named com/bardotech/myappli-
cation/forms. Because the folder structure represents a package in class management terms, this
creates a globally unique identifying system for each group of components. A file named
MyForm.as in the above folder is known by its fully qualified name as com.bardo.tech.myap-
plication.forms.MyForm.

Notice that the domain name bardotech.com becomes a package structure of com.bardotech.
This convention of reversing the parts of a domain name in a package structure is described in the
documentation for the Java programming language and has been adopted by some Flex developers.

In Java, this practice is very strongly encouraged. Because the Java Virtual Machine searches for
classes in its classpath at runtime, as well as at the time of compilation, using globally unique class
names ensures that if a library of classes with conflicting names just happens to be in your applica-
tion’s classpath, using globally unique package identifiers reduces the possibility of class naming
conflicts.

In ActionScript, the source path is used only during the compilation process. By the time you run the
application, it’s already been compiled into the .swf byte code format. The ActionScript Virtual
Machine uses only the classes that are compiled into the application, but it doesn’t use the source
path to go searching for classes as they’re needed at runtime. As a result, this particular reason for the
globally unique package name only applies to the world of ActionScript when you incorporate third-
party code libraries in the form of .swc files (component libraries) and .rsl files (runtime shared
libraries) where you don’t control the names of the classes.

You may still want to use these sorts of package names in code libraries that are shared between mul-
tiple projects to ensure that compile-time conflicts don’t emerge. But for code that’s unique to a sin-
gle application, these deeply nested package names don’t have any technical benefit.

10_287644-ch05.qxp 6/23/08 11:33 PM Page 131

The custom namespace prefix is best declared in the MXML file’s root element start tag, the value of
which contains the folder location of your components (in dot notation) and usually ends with an
asterisk to indicate that all components in this folder are available in this namespace:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
xmlns:mycomps=”components.*”>

You then instantiate the component with standard XML syntax, using the namespace prefix and the
component name as an XML element:

<mycomps:MyComponent id=”comp1”/>

A custom namespace that you declare for a particular folder also serves as an import
declaration for all classes in that folder. If you need to refer to components or classes in

that folder in other parts of the MXML file, a separate import statement is not required.

You also can declare the namespace prefix directly within the component instantiation like this:

<mycomps:MyComponent id=”comp1” xmlns:mycomps=”components.*”/>

This works, but the namespace prefix is available only for the single component instance. When
you place the namespace prefix in the current MXML file’s root element, you can then declare as
many instances of any component in the components folder.

The namespace prefix is arbitrary; that is, you can name it anything. I recommend, however, that
you assign a prefix that’s the same as the folder name, as in:

xmlns:components=”components.*”

This has two benefits:

� Because the namespace prefix matches the folder name, you’ll recognize the component
file’s location when you look at the code.

� Flex Builder can create the second version of the namespace declaration for you if you
follow a particular sequence in coding the object. I describe this sequence in the next sec-
tion’s tutorial.

Instantiating an MXML component
Here’s how you create an application that instantiates the custom MXML component:

1. Create a new MXML application in the current project.

2. Place the cursor within the <mx:Application> root element tag set.

TIPTIP

132

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 132

3. Type the < character, and then my, the first couple of characters in the component name.
(This string is unique enough to display a small number of items in the list of available
ActionScript classes.)

As shown in Figure 5.5, the list of available classes appears and the custom component is
displayed.

FIGURE 5.5

Selecting the custom component

If the list of available classes disappears, press Ctrl+spacebar to bring it back. This works
in Flex Builder wherever code hinting is available.

4. Press Enter (Return on the Mac) to select the custom component from the list of available
ActionScript classes.

Flex Builder completes the code with the namespace prefix and the tag name:

<components:MyComponent

5. Type /> to complete the tag.

The code should now look like this:

<components:MyComponent/>

6. Look at the <mx:Application> start tag.

You should see that the <mx:Application> tag has been populated with the required
namespace prefix to support the selected component. The tag looks like this:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
layout=”vertical” xmlns:components=”components.*”>

7. Save and run the application.

Figure 5.6 shows the application with a single instance of the custom MXML component.

TIPTIP

133

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 133

FIGURE 5.6

An application with a component

Inserting a custom component instance in Design view
You also can instantiate the custom component in Design view by simply dragging it from Flex
Builder’s Components view.

1. Click Design to switch to Design view.

2. In the Components view in the lower-left corner of Flex Builder, open the Custom section.

You should see your new custom component.

3. As shown in Figure 5.7, drag the custom component from the Components view into the
application.

The component instance should appear in the application’s Design view.

When you drag a component into Design view and the component’s namespace prefix
hasn’t been previously defined, Flex Builder creates an automatically numbered name-

space prefix such ns1 (for “namespace 1”). It also creates the MXML code that instantiates the com-
ponent using paired tags, instead of the preferred empty tag syntax. The resulting generated code
looks like this:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:ns1=”components.*”>
<ns1:MyComponent>
</ns1:MyComponent>

</mx:Application>

This code works fine, but you may decide to manually change the namespace to something more
meaningful, such as the name of the folder in which the component source code is stored.

CAUTION CAUTION

134

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 134

FIGURE 5.7

Dragging a custom component into an application

Instantiating a component with ActionScript
Since an MXML component is really an ActionScript class definition, you can instantiate the com-
ponent with pure ActionScript code. As with any pre-built component in the Flex framework, you
follow these steps:

� Create an import statement that refers to the component as a class.

� Declare a variable with its data type set to the component as a class.

� Instantiate the component using a no-arguments constructor method call.

� Add the component instance to the application’s display list.

Listing 5.1 shows the code for an application that creates and displays a single instance of the cus-
tom component upon application startup.

The code in Listing 5.1 is available in the Web site files in the chapter05 project’s src
folder as UseComponentWithAS.mxml.ON the WEBON the WEB

135

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 135

LISTING 5.1

Instantiating a custom component with ActionScript

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical” creationComplete=”initApp()”>
<mx:Script>

<![CDATA[
import components.MyComponent;
private function initApp():void
{

var comp:MyComponent = new MyComponent();
this.addChild(comp);

}
]]>

</mx:Script>
</mx:Application>

Adding Properties and Methods to
Components
Components and classes can have member objects. A member object is a pre-declared item that’s
instantiated along with the class. ActionScript classes support these member types:

� Properties to hold dynamic data values

� Constants to hold fixed data values

� Methods to execute actions

� Events to send messages to other parts of the application

� Styles to controls a visual object’s presentation

In this section, I describe how to define properties, constants, and methods in an MXML compo-
nent.

Component properties
A property is a variable that’s owned by a class definition. In ActionScript 3, all variables are actu-
ally properties of some object. If you declare a variable in an application source file, that variable is
actually a property of the application object.

136

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 136

Setting properties
The syntax to declare a property looks like this:

[access modifier] var [variable name]:[data type];

A public property named currentValue with a data type of String is declared with this code:

public var currentValue:String;

You can set the property’s initial value upon object instantiation with this code:

public var currentValue:String = “Default value”;

In browser-based JavaScript, the var keyword is optional and can be used to control a
variable’s scope: A variable declared in a function with var is local to the function, while

a variable declared without var is global to the current HTML page. In ActionScript, the var key-
word is always used to mark any variable or property declaration.

The use of post-colon syntax to statically type a variable is the subject of some contro-
versy. This syntax is part of the ECMAScript recommendation and was implemented by

Macromedia with the goal of standardization with the rest of the industry. Some Java developers find
the syntax odd, because in Java static data typing is accomplished with the data type before the vari-
able name:

public String currentValue;

The data typing result is the same, but the syntax is just turned around.

The available access modifiers for variables and properties are described in Chapter 4.

As with simple variable declarations, if you don’t include an access modifier with a
property or method declaration, the compiler generates a warning and the access for

that member is set to the default of internal. In ActionScript 2, the same code would have resulted
in a default access of public and no compiler warning would have been generated.

If you want a property’s data type to be dynamic, where you can assign any value at
runtime, use this syntax:

public var myVar:*;

The * character means that the property’s data type can be anything. This is possible because, unlike
Java, ActionScript 3 is a loosely typed language that offers tools for strict typing when you need or
want them.

Static properties
A static property is a value that’s the same for all instances of the component; it also can be referred
to by other parts of the application without having to instantiate the component at all. You make a
property static by adding the static keyword after the access modifier:

public static var myStaticVar:String;

TIPTIP

CAUTION CAUTION

CROSS-REFCROSS-REF

TIPTIP

TIPTIP

137

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 137

The variable declared above will have the same value for all instances of the component in which
it’s declared.

Making a property bindable
As described earlier in this chapter, properties are bindable only if you explicitly mark them with
the [Bindable] metadata tag. A property that’s marked as bindable always broadcasts changes in
its value to objects within the component. A property that’s also marked as public broadcasts
changes to the application or other module that instantiates the component.

In Listing 5.2, a component has a bindable public variable named valueToDisplay. A Label
control within the component displays the property’s value.

LISTING 5.2

A component with a bindable public property

<?xml version=”1.0” encoding=”utf-8”?>
<mx:VBox xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

[Bindable]
public var valueToDisplay:String;

]]>
</mx:Script>

<mx:Label text=”{valueToDisplay}” fontSize=”24”/>

</mx:VBox>

The code in Listing 5.2 is available in the Web site files in the chapter05 project’s
src/components folder as CompWithBindableProp.mxml.

In an MXML component, each property that you want to be bindable needs its own
[Bindable] tag. With ActionScript class definitions, you can mark all the class’s prop-

erties as bindable with a single instance of the [Bindable] metadata tag placed before the class
declaration.

You also can declare a property with MXML. For example, this code declares the same
String property as in the previous example:

<mx:String id=”valueToDisplay”/>

A property that’s declared in this way is implicitly marked as public and bindable, so the public
access modifier and the [Bindable] metadata tag aren’t required.

TIPTIP

TIPTIP

ON the WEBON the WEB

138

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 138

Passing data to a component property
You can pass data to a component property with either dot syntax in ActionScript or MXML prop-
erty declarations. To pass data using an MXML property declaration, declare the property as an
XML attribute of the object declaration and set the value as either a literal or binding expression.

This is an example of passing a literal value:

<components:MyComponent valueToDisplay=”Hello World”/>

This is an example of using a binding expression:

<components:MyComponent valueToDisplay=”{aBindableValue}”/>

In either case, the value is passed to the public property. And because that property is marked as
bindable within the component, its new value is then passed to any control or expression that’s
bound to it.

Using constants
A constant is a property whose value is set at the time of declaration and never changes. Common
uses of constants in ActionScript include:

� Aliases for literal values within components that are referred to multiple times. For exam-
ple, this private constant represents the literal string “All Products”:

private const ALLPRODUCTS:String=”All Products”;

� Aliases for properties of objects that are used externally. For example, custom event
classes frequently have static public constants whose values are names of custom events
for which the current event class is used:

public static const SELECTED:String=”selected”;

By object-oriented convention, constant identifiers are spelled in all uppercase, as in
SELECTED. This distinguishes them in your code from property identifiers, which are

spelled with an initial lowercase character and optional mixed case thereafter.

Because a constant’s value never changes, it doesn’t make sense to make it bindable. In
fact, if you mark a constant declaration with the [Bindable] metadata tag, a com-

piler error results.

Component methods
A method is a function that belongs to a class or component definition. The dictionary meaning of
the word “method” is “a way of doing something, especially a systematic way.” This makes sense in
the context of class definitions; a method defines how a class accomplishes a particular task.

Depending on your background with various programming languages, you might think of a
method as a function or a subroutine. In fact, methods are marked in ActionScript with the func-
tion keyword.

TIPTIP

TIPTIP

139

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 139

Defining methods
Use this syntax to define a method in a component:

[access modifier] function [methodName](
[argument declarations]):[data type]
{
}

A sample method might look like this:

public function getValue():String
{

return someValue;
}

As with properties, methods are marked with one of these four access modifiers:

� public: All code through an application can call the method.

� private: Only code in the current component or class can call the method.

� protected: Only code in the current component or class, or any its subclasses, can call
the method.

� internal: Only code in the current component or class, or any other component or
class in the same package, can call the method.

As with properties, if you don’t include an access modifier with a method declaration, the access
defaults to internal.

The code in Listing 5.3 creates a component with two public properties named firstName and
lastName and one public method named getFullName() that returns a concatenated string.
The component also contains two Label controls that display the current values of the two properties.

LISTING 5.3

A component with a public method

<?xml version=”1.0” encoding=”utf-8”?>
<mx:VBox xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

[Bindable]
public var firstName:String;
[Bindable]
public var lastName:String
public function getFullName():String
{

return firstName + “ “ + lastName;
}

]]>

140

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 140

</mx:Script>
<mx:Label text=”First Name: {firstName}”/>
<mx:Label text=”Last Name: {lastName}”/>

</mx:VBox>

The code in Listing 5.3 is available in the Web site files in the chapter05 project’s
src/components folder as UseComponentWithAS.mxml.

Calling component methods
You call component methods with either ActionScript statements or binding expressions. Listing
5.4 shows an application that uses the component in Listing 5.3 and displays the concatenated
value returned from the component’s public method.

LISTING 5.4

An application calling a component method in a binding expression

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical” xmlns:components=”components.*”>

<components:CompWithMethods
id=”myComp”
firstName=”Peter”
lastName=”Programmer”/>

<mx:Label text=”{myComp.getFullName()}”/>

</mx:Application>

The code in Listing 5.4 is available in the Web site files in the chapter05 project’s src
folder as UseComponent.mxml.

When you call a component method in a binding expression, it executes only upon initial object
construction (for example, upon application startup). There’s no way in this syntax to tell the Flex
Framework that the method should be called again:

<mx:Label text=”{myComp.getFullName()}”/>

However, it’s a simple matter to call the function with an ActionScript statement. In Listing 5.5, the
component’s property values are passed in with expressions that bind to visual controls in the
application, and the application calls the component’s getFullName() method to retrieve and
display the resulting concatenated value.

ON the WEBON the WEB

ON the WEBON the WEB

141

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 141

LISTING 5.5

Calling a component method with an ActionScript statement

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical” xmlns:components=”components.*”>

<components:CompWithMethods id=”myComp”
firstName=”{firstNameInput.text}”
lastName=”{lastNameInput.text}”/>

<mx:TextInput id=”firstNameInput”/>
<mx:TextInput id=”lastNameInput”/>

<mx:Label id=”fullNameOutput”/>
<mx:Button label=”Get Full Name”

click=”fullNameOutput.text=myComp.getFullName()”/>

</mx:Application>

The code in Listing 5.4 is available in the Web site files in the chapter05 project’s src
folder as CallComponentMethodWithAS.mxml.

Using Component Libraries
A component library is an archive file in zip format that has a file extension of .swc. Component
libraries that are compatible with Flex 3 applications can be created in three tools:

� Flash CS3

� The Flex SDK’s compc command-line component compiler

� A Flex Library Project created and managed in Flex Builder

In this section, I describe how to create and use a component library in Flex Builder 3 with a Flex
Library Project.

Creating component libraries
A Flex Library Project is designed to create a component library: an archive file that contains com-
piled MXML components and ActionScript classes. Unlike a Flex Project, which contains complete
applications, a Library Project contains only the building blocks of an application. Its purpose is to
create component library files that contain pre-built ActionScript code and related assets that can
be dropped into a Flex application for immediate use.

ON the WEBON the WEB

142

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 142

Creating a library project
Follow these steps to create a Library Project in Flex Builder 3:

1. Select File ➪ New ➪ Flex Library Project from the Flex Builder menu.

If you’re using the plug-in version of Flex Builder, select File ➪ New ➪ Other from the
Eclipse menu. Then select Flex Builder ➪ Flex Library Project from the wizard dialog box.

2. In the New Flex Library Project wizard, shown in Figure 5.8, provide a Project name,
select the Use default location checkbox and the Use default SDK radio button, and indi-
cate whether AIR libraries should be included.

FIGURE 5.8

The first screen of the New Flex Library Project wizard

3. Click Next.

4. In the next screen, shown in Figure 5.9, browse to select locations for Main source folder
and Output folder.

5. If any assets such as image or XML files should be included with the component library,
click the Assets tab.

When you first create the Library Project, you may not have assets to add right away.
You can easily add assets to the project later through the Project Properties.

6. Click Finish to create the project.

TIPTIP

TIPTIP

143

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 143

FIGURE 5.9

The second screen of the New Flex Library Project wizard

When a Flex Library Project is first created, a compiler error often indicates that nothing is cur-
rently in the library, as shown in Figure 5.10.

FIGURE 5.10

A compiler error in an empty Flex Library Project

144

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 144

Creating a project’s folder structure
As with components that are built in a Flex Project, you’ll commonly create subfolders that repre-
sent the packages in which various components are stored. Unlike Flex Projects, which have a
default src folder that acts as the source code root, a Flex Library Project sets the project root as
the default source root. With this default setting, the package subfolders should be created under
the project root.

Follow these steps to create a component in a Library Project:

1. If the project doesn’t have a subfolder in which to create the component, right-click the
project in the Flex Navigator view and select New ➪ Folder.

2. In the New Folder wizard, shown in Figure 5.11, enter the new folder name and click
Finish.

FIGURE 5.11

Creating a project subfolder

145

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 145

3. Right-click the folder in which you want to create the component, and select New ➪

MXML Component.

4. Create the component using the same options as in a Flex Project: Enter the Filename,
select which component the custom component is based on, and enter or clear any
width or height properties.

5. Click Finish to create the component.

After the component has been built, look in the project’s output folder (the output folder’s default
name is bin-debug). You’ll find a new file with a name consisting of the project name and a file
extension of .swc. For example, a Library Project named MyCompLibrary generates a compo-
nent library file named MyCompLibrary.swc.

Incorporating component libraries
You incorporate component libraries into Flex applications in two ways:

� Add a component library to a Flex Project’s source path.

� Copy the component library into Flex Project’s libs folder.

Adding a component library to a project’s build path
Each Flex Project has a build path that consists of a list of folders and component libraries whose
components and classes are available to the current project. The build path includes a source path
of folders in which ActionScript and MXML source code is stored, and a library path of component
libraries. The build path is set in the project properties dialog box.

Follow these steps to add a component library to a Flex Project’s build path:

1. In the Flex Navigator view, select a Flex Project.

2. Select Project ➪ Properties from the Flex Builder menu.

You also can right-click the project in the Flex Navigator view and select Properties
from the context menu.

3. Select Flex Build Path in the Project Properties dialog box.

4. As shown in Figure 5.12, click the Library path tab.

The Library path screen allows you to add the component libraries in these ways:

� For Library Projects that are managed in the current Flex Builder workspace, click Add
Project. As shown in Figure 5.13, select the Library Project and click OK. All components
and classes in the selected Library Project become available to the current Flex Project.

� For component libraries that you’ve built in another workspace or received from another
developer, you can do either of the following:

� Add a folder containing one or more .swc files.

� Add an individual .swc file to the Flex Project build path.

TIPTIP

146

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 146

FIGURE 5.12

Setting the Flex Build Path in the Project Properties dialog box

FIGURE 5.13

Adding a Library Project to a Flex Project’s Library path

147

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 147

Using the libs folder
Every new Flex Project has a folder named libs that’s already a part of the project’s library path.

The libs folder has been added to the default Flex project structure in Flex Builder 3.
Flex Builder 2 had tools that would allow you to create such an automatically included

library folder, but didn’t do the work for you.

To use the libs folder, copy a .swc file into the project’s libs folder, as shown in Figure 5.14.
The classes and component in the component library are now immediately available to the Flex
Project.

FIGURE 5.14

A component library in a Flex Project’s libs folder

When you copy a component library file that you created into the libs folder, you
detach it from the Flex Library project that manages its source code. Each time you

modify the library’s code, you have to then re-copy the compiled library to the Flex project to make
the modified code available. The libs folder is most effectively used when you add libraries that you
have received from other developers, when you aren’t managing the library’s source code.

Regardless of how you create and use a component library, it’s a valuable architecture that lets you
package and manage one or more components for use and reuse in your Flex applications.

You can’t run an MXML application from directly within a Flex library project. During
library project development, you should create a Flex project with at least one applica-

tion that’s used to test library project components and classes.

TIPTIP

CAUTION CAUTION

Component library

NEW FEATURENEW FEATURE

148

Flex FundamentalsPart I

10_287644-ch05.qxp 6/23/08 11:33 PM Page 148

Summary
In this chapter, I described the use of binding expression and MXML components in developing
Flex applications. You learned the following:

� Bindings are used to move data between objects and expressions.

� Bindings can be created with binding expressions or the <mx:Binding/> tag.

� A binding creates a broadcaster/listener relationship between two ActionScript expres-
sions.

� An MXML component is a building block of a Flex application that encapsulates func-
tionality.

� MXML components are frequently used to create the view modules in a model-view-
controller application architecture.

� MXML components are really classes that support properties, methods, and other mem-
bers of the ActionScript class architecture.

� Component libraries can be used to package and manage components and classes.

� Component libraries are useful for sharing code with multiple projects and applications.

149

Using Bindings and Components 5

10_287644-ch05.qxp 6/23/08 11:33 PM Page 149

10_287644-ch05.qxp 6/23/08 11:33 PM Page 150

Flex Builder 3 includes powerful tools that allow you to easily debug
and fine-tune your applications. Of course, software without bugs is a
myth — at least at the beginning of a software development project. In

many cases, the question of whether you complete your application within
the time you originally estimate depends on how quickly you can find and
fix an application’s defects, or bugs.

As with many good integrated development environments, Flex Builder
includes a variety of tools to help you find and fix an application’s issues and
understand what’s happening inside the application at runtime, including
these tools:

� The trace() function sends runtime messages to the Flex Builder
console and other logging targets.

� The <mx:TraceTarget/> tag defines runtime tracing for net-
work communications.

� Breakpoints suspend application execution and allow inspection of
internal application state at runtime.

� Variable and expression tools allow you to inspect the value of vari-
ous ActionScript expressions.

� Profiling tools allow you to see what’s happening at runtime in
terms of performance and memory usage.

In this chapter, I describe the tools you can use to debug and test your Flex
applications.

To use the sample code for this chapter, import the chap-
ter06.zip Flex project archive file from the Web site files

into your Flex Builder workspace.

ON the WEBON the WEB

151

IN THIS CHAPTER
Understanding debugging basics

Starting a debugging session

Using the trace() function

Using the Logging API

Creating self-logging
components

Using breakpoints

Inspecting data

Profiling Flex applications

Debugging Flex Applications

11_287644-ch06.qxp 6/23/08 11:34 PM Page 151

Debugging Basics
Debugging simply means that when you run an application, you want special debugging informa-
tion that helps you find and fix application issues. Debugging with Flex requires the right kind of
file and the right kind of runtime environment. Before executing debugging tasks, you need to be
sure of two things:

� You are using the debug version of the application.

� You are running the application in debug mode.

The debug version of the application
When you create a Flex Project in Flex Builder 3, the New Flex Project wizard creates an output
folder in which the debug version of the application and its supporting files are created. As
described in Chapter 3, the application’s debug version file size is significantly larger than the
release version that you deploy to your Web site or users’ desktops because it includes special
information and functionality that can be used in a debugging session both by Flex Builder’s
debugging tools and by the fdb command-line debugger.

The default name of the output folder is bin-debug. The name of the compiled debug version of
the application is the same as the main application source file, but it has the .swf file extension.

In Flex Projects that don’t use an application server, this is normally a subfolder of the
project’s source root folder, such as src/bin-debug. In projects that do use an appli-

cation server, the bin-debug folder is typically created under the document root of the testing Web
server, and then made accessible in the Flex Navigator view through an Eclipse linked folder.

Running an application in debug mode
Follow these steps to run an application in debug mode:

1. Open the application you want to debug in Flex Builder.

2. Select Run ➪ Debug [application source file] from the Flex Builder menu.

If you’re using the plug-in version of Flex Builder, the Debug menu choice runs the last
debugging configuration or allows you to select from a list of configurations.

You also can debug an application with the Debug button on the toolbar. This button is next to the
Run button and can be used in two ways:

� When you click the Debug button, Flex Builder launches a debug session with the cur-
rently displayed application, or the default application if the current file is a component
or class source file.

� When you click the arrow on the edge of Debug button, as shown in Figure 6.1, you see
a list of the current project’s applications and can select one to debug.

TIPTIP

TIPTIP

152

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 152

FIGURE 6.1

Launching a debug session

When you debug a Web application, it opens in the browser with the same URL as when you run
in standard mode. You can tell that a debug session is running in Flex Builder though: As shown in
Figure 6.2, Flex Builder’s Console view appears whenever a debug session starts and displays a
debugging message indicating which file is being debugged.

FIGURE 6.2

The Console view during a debug session

Selecting an application to debug

153

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 153

Managing the Console view
The Console view in its default state displays text messages without any word wrapping. You can
change this behavior through the view’s preferences:

1. Right-click anywhere in the Console view, and select Preferences.

2. As shown in Figure 6.3, select the Fixed width console option and set a line length
between 80 characters (the default) and 1000 characters.

FIGURE 6.3

The Console view preferences dialog box

3. Change any other options, and click OK.

The Console view now word wraps long lines so you don’t have to scroll horizontally to see entire
messages.

Terminating a debugging session
You want to always explicitly terminate a debugging session before trying to run or debug an appli-
cation again. You can terminate a debugging session in many ways:

� Select Run ➪ Terminate from the Flex Builder menu.

� As shown in Figure 6.4, click the square red Terminate button in the Console view.

154

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 154

� Click the square red Terminate button in the Debug view (visible in the Flex Debugging
perspective).

� Close the browser in which the application is running (for a Web application).

� Close the application (for a desktop application).

FIGURE 6.4

The Console view’s Terminate button

When you terminate a Web application’s debugging session from within Flex Builder,
the browser sometimes closes automatically, depending on which Web browser and

operating system you’re using and whether any other tabs or browser windows are open. For exam-
ple, provided that no other sites are open, Internet Explorer and Firefox on Windows always close
automatically. Firefox on the Mac doesn’t always close automatically. The fact that this behavior dif-
fers from one operating system to another is not a cause for concern.

Using trace() and the Logging API
Flex gives you the ability to generate and send logging messages to Flex Builder and other logging
targets at runtime. Tracing is typically useful when you’re trying to get runtime information about
the following:

� Variable values

� Order of application execution

� Whether various bits of code are being executed as expected

In its simplest use, logging is accomplished through use of the trace() method. More advanced
logging techniques are also available through an interface known as the Logging API.

TIPTIP

Terminate Debugging

155

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 155

Using the trace() function
The trace() function is global to Flash Player; that is, it’s always available without your having to
reference or import an ActionScript class. The purpose of the trace() method is to send a text
message to a logging target. In its simplest form, trace is called with a String value:

trace(‘A tracing message’);

You also can pass in variables and concatenated expressions that can result in a String:

trace(“The value of myVariable is “ + myVariable);

In fact, any object that can serialize to a String can be passed to trace(). In this example, an
Array of String values is passed to trace():

trace([‘hello’, ‘world’]);

The resulting trace message looks like this:

hello,world

Trace messages in Flex Builder’s Console view
When you debug a Flex application, the value you pass into trace() is displayed in Flex
Builder’s Console view.

Calls to trace() are ignored when you run, rather than debug, an application. These
calls are also stripped from an application’s release version, so you can leave any calls

to trace() in an application without affecting runtime performance or file size.

Try these steps to see the trace() method at work:

1. Create a new Flex application with the following code:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:Button label=”Call Trace” click=”trace(‘Button
clicked’)”/>

</mx:Application>

2. Click Debug or press F11 to debug the application.

3. Click Call Trace in the application to call trace().

4. Switch back to Flex Builder, and look at the Console view.

As shown in Figure 6.5, you should see the tracing message displayed in the Console
view.

TIPTIP

156

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 156

FIGURE 6.5

A tracing message in the Console view

Sending tracing messages to flashlog.txt
Messages also can be saved to a text file named flashlog.txt. The flashlog.txt file is cre-
ated by the debug Flash Player in a particular folder on your system.

Configuring Flash Player with mm.cfg
You configure the use of flashlog.txt with another file named mm.cfg. This file contains
parameters that control what messages are sent to, and saved in, the file. The location of mm.cfg
differs by operating system. Table 6.1 shows the location for each operating system that’s supported
by Flash Player.

TABLE 6.1

Location of mm.cfg

Operating System Location

Macintosh OS X /Library/Application Support/Macromedia

Windows 95/98/ME %HOMEDRIVE%\%HOMEPATH%

Windows 2000/XP C:\Documents and Settings\username

Windows Vista C:\Users\username

Linux /home/username

To save both error reporting and tracing messages to the flashlog.txt file, add these parame-
ters on their own separate lines in mm.cfg:

ErrorReportingEnable=1
TraceOutputFileEnable=1

After these settings have been created, the next time you debug a Flex application or Flash docu-
ment, the flashlog.txt is created automatically. Each time you call trace(), the message is
saved to the file, in addition to being sent to Flex Builder’s Console view.

Tracing message in the Console view

157

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 157

Location of flashlog.txt
The flashlog.txt file is placed in a particular location that differs by operating system. Table
6.2 shows the location of flashlog.txt for each operating system on which Flash Player is sup-
ported.

TABLE 6.2

Location of flashlog.txt

Operating System Location

Macintosh OS X /Users/username/Library/Preferences/Macromedia/Flash Player/Logs/

Windows 95/98/ME/2000/XP C:\Documents and Settings\username\Application Data\Macromedia\
Flash Player\Logs

Windows Vista C:\Users\username\AppData\Roaming\Macromedia\Flash Player\Logs

Linux /home/username/.macromedia/Flash_Player/Logs/

Both mm.cfg and flashlog.txt are simple text files and can be viewed and edited
with any text editor.

Using the Logging API
The Logging API is an advanced architecture that lets you filter logging messages that are generated
by the Flex Framework, and send messages to a logging target of your choice. The Logging API
consists of an ActionScript interface named ILogger, a class that implements ILogger named
LogLogger, a singleton class named Log, and a predefined tracing target class named
TraceTarget. You can extend the API by creating your own versions of ILogger implementa-
tions and tracing targets, but you also can make very good use of the API with just these pre-built
components.

ActionScript 3 allows developers to use interfaces to define the required elements of a
class definition. An interface isn’t the same thing as a class. For example, it doesn’t

implement any code in its method definitions, and you can’t create an instance of an interface
directly. Its purpose is to establish a contract that must be fulfilled by any classes that claim to imple-
ment its members.

In the Flex framework, interfaces are always named within an initial uppercase I, followed by a
descriptive name. For example, the interface named ILogger can be described simply as “the
Logger interface.”

Using the Log class
You get started with the Logging API by creating a Logger object using the Log class’s static
getLogger() method. You can create custom logger objects that are sensitive to particular cate-
gories of events, and you can automatically include that category information in logging messages.

TIPTIP

TIPTIP

158

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 158

The syntax for getLogger() is:

private var myLogger:ILogger = Log.getLogger(“myCategory”);

The category you pass into getLogger() must be a non-blank string. If the category you provide
is registered by an existing class that implements ILogger, you get an instance of that class.
Otherwise, you get an instance of a class named mx.logging.LogLogger that implements
basic logging functions.

The Logging API supports these levels, in ascending order of panic:

� ALL

� DEBUG

� INFO

� WARN

� ERROR

� FATAL

The Log class implements these methods that allow you to determine whether a logging target has
been defined for various logging levels:

� isDebug():Boolean

� isInfo():Boolean

� isWarn():Boolean

� isError():Boolean

� isFatal():Boolean

Using Logger objects
A logger class implements the ILogger interface. The interface includes these methods to send
messages to a logging target:

� debug(message:String, ... rest):void

� error(message:String, ... rest):void

� fatal(message:String, ... rest):void

� info(message:String, ... rest):void

� warn(message:String, ... rest):void

� log(level:int, message:String, ... rest):void

After you’ve created a logger object, you send a logging message with one of the above methods.
Most methods create a message with a specific logging level. For example, to send a message with a
level of DEBUG, you call the logger object’s debug() method:

myLogger.debug(“My debug message”);

159

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 159

The debugging levels are defined as constants in a class named mx.logging.LogEventLevel.
You also can send logging messages with the logger object’s log() method and explicitly pass in
the appropriate level:

myLogger.log(LogEventLevel.DEBUG, “My debug message”);

The use of the LogEventLevel class’ constants to select a logging level is considered
a best practice. As with event names, any typos in the names of the constants result in

compiler errors, as opposed to runtime errors or silent failures that you may encounter when using
simple strings.

Logging levels are used to filter which messages are handled by various logging targets.

Self-logging components
The Logging API can be used to create a self-logging component. For example, the application in
Listing 6.1 is a Button component that logs each click event to a logging target.

LISTING 6.1

A self-logging button component

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Button xmlns:mx=”http://www.adobe.com/2006/mxml”

creationComplete=”init()”>
<mx:Script>

<![CDATA[
import mx.logging.Log;
import mx.logging.ILogger;
private var myLogger:ILogger = Log.getLogger(“Button Events”);
private function init():void {
addEventListener(MouseEvent.CLICK, logEvent);
}
private function logEvent(event:MouseEvent):void {

if (Log.isDebug()) {
myLogger.debug(“LoggingButton “ +
event.target.id + “ was clicked”);

}
}

]]>
</mx:Script>

</mx:Button>

The code in Listing 6.1 is available in the Web site files in the chapter06 project’s
src/debug folder as LoggingButton.mxml.ON the WEBON the WEB

TIPTIP

160

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 160

The code sample in Listing 6.1 uses the Flex event model to handle component events.
The event model is described in Chapter 7.

Using tracing targets
A tracing target is a class that can receive and process tracing messages. The TraceTarget class is
included in the Flex Framework and is ideally suited to use in Flex applications.

When you use the TraceTarget class, the output of the Logging API behaves just like output
you create with the trace() method. The messages appear in Flex Builder’s Console view and, if
you’ve configured Flash Player as described above, are saved in flashlog.txt.

The TraceTarget class supports these properties:

� fieldSeparator:String: A string value to separate other values included in a log-
ging message; defaults to a single space character

� includeCategory:Boolean: Indicates whether to include the logging message’s cate-
gory in the logging message

� includeDate:Boolean: Indicates whether to include the current date in the logging
message

� includeLevel:Boolean: Indicates whether to include the logging level in the logging
message

� includeTime:Boolean: Indicates whether to include the current time in the logging
message

� level:int: A logging level that this target will handle; defaults to
LogEventLevel.ALL

You can instantiate TraceTarget with either MXML or ActionScript. Use this syntax to instanti-
ate the class in its simplest form:

<mx:TraceTarget/>

The TraceTarget MXML declaration does not require an id property. Unless you
need to call its methods or properties directly, the object can be declared anonymously.

In its default form, TraceTarget becomes a tracing target that handles all logging levels.
However, the tracing messages you see include only the messages themselves and none of the other
available logging data such as date, time, level, and category. To include all that information and
separate the data elements from each other with a | (pipe) character, use this syntax:

<mx:TraceTarget id=”myTarget”
includeCategory=”true”
includeLevel=”true”
includeDate=”true”
includeTime=”true”
fieldSeparator=”|”/>

TIPTIP

CROSS-REFCROSS-REF

161

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 161

Finally, to make a tracing target display messages only for a particular logging level, use this syntax:

<mx:TraceTarget id=”myTarget”
includeCategory=”true”
includeLevel=”true”
includeDate=”true”
includeTime=”true”
fieldSeparator=”|”
level=”{LogEventLevel.DEBUG}”/>

In the last example, the LogEventLevel class would have to be imported before
being referenced in the TraceTarget.level binding expression:

import mx.logging.LogEventLevel;

The resulting trace output generated by the self-logging button component in Listing 6.1 would
look like this:

12/4/2007|12:09:39.256|[DEBUG]|buttonEvents|LoggingButton myLoggingButton was
clicked

The application in Listing 6.2 uses the self-logging button and a TraceTarget object. The
TraceTarget object is configured only to handle messages with a logging level of DEBUG and to
include all available information in each message.

LISTING 6.2

An application with a self-logging component

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical” xmlns:debug=”debug.*”>
<mx:Script>

<![CDATA[
import mx.logging.LogEventLevel;

]]>
</mx:Script>

<mx:TraceTarget id=”myTarget”
includeCategory=”true”
includeLevel=”true”
includeDate=”true”
includeTime=”true”
level=”{LogEventLevel.DEBUG}”
fieldSeparator=”|”/>

<debug:LoggingButton id=”myLoggingButton” label=”Log Click Event”/>

</mx:Application>

CAUTION CAUTION

162

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 162

The code in Listing 6.2 is available in the Web site files in the chapter06 project’s src
folder as UseLoggingButton.mxml.

The Logging API can help you build applications that keep you informed about their actions dur-
ing a debugging session without having to make constant calls to the trace() method. With
some advanced ActionScript programming, you also can create your own custom logger and trac-
ing target classes.

Using Breakpoints
A breakpoint allows you to suspend application execution at runtime and inspect the application’s
current state. Once in a breakpoint, you can look at variable values, evaluate arbitrary ActionScript
expressions, and take other actions that help you figure out what’s happening.

Setting and clearing breakpoints
Breakpoints can be set on any line that includes at least one ActionScript statement. For example,
this code declares a button component but has no ActionScript code:

<mx:Button label=”Debug”/>

If you set a breakpoint on the line containing that MXML declaration, the breakpoint is ignored by
the debugger.

If, however, the same MXML declaration includes an event handler that executes some
ActionScript code, it becomes a valid target for a breakpoint:

<mx:Button label=”Debug” click=”clickHandler()”/>

Because this version of the declaration executes an ActionScript statement, placing a breakpoint on
that line successfully suspends the application when the user clicks the button.

Setting and removing breakpoints in an MXML or
ActionScript editor
You can set or remove a breakpoint in an MXML or ActionScript editor. To do so, perform one of
these actions:

� Place the cursor on the line where you want the breakpoint, and press Ctrl+Shift+B.

� Double-click the line number in the editor.

� As shown in Figure 6.6, right-click the line number in the editor, and select Toggle
Breakpoint.

ON the WEBON the WEB

163

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 163

FIGURE 6.6

Right-click a line number to see this context menu, and select Toggle Breakpoint.

As shown in Figure 6.7, the breakpoint appears as a small dot to the left of the line number.

FIGURE 6.7

A Breakpoint represented by a small icon next to a line number

Breakpoint indicator

164

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 164

Using the Breakpoints view
Flex Builder’s Breakpoints view shows you the application’s current breakpoints and allows you to
add, remove, enable, or disable breakpoints as needed.

The Breakpoints view is displayed in the Flex Debugging perspective. To use the Breakpoints view:

1. Select Window ➪ Perspective ➪ Flex Debugging from the Flex Builder menu.

2. As shown in Figure 6.8, click the Breakpoints tab in the upper-right corner of the Flex
Builder interface.

FIGURE 6.8

The Breakpoints tab in the Flex Debugging perspective

The Breakpoints view, shown in Figure 6.9, displays all breakpoints for the current project.

The Breakpoints view

165

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 165

FIGURE 6.9

The Breakpoints view

The Breakpoints view includes these tools:

� Remove: Removes the currently selected breakpoint

� Remove All: Removes all breakpoints in the current project

� Show Breakpoints: Supported by Selected Target: shows breakpoints only for a selected
debug target

� Go to File for Breakpoint: Opens file for current breakpoint and moves cursor to that posi-
tion

� Skip All Breakpoints: Causes debugging session to ignore breakpoints

Click the appropriate button to use any of the above tools. The Remove All Breakpoints tool
requires you to confirm the operation.

Exporting breakpoints to an external file
The Breakpoints view allows you to export and import breakpoint definitions to external files. A
breakpoints file has a file extension of .bkpt. Follow these steps to export breakpoints:

1. Right-click anywhere in the Breakpoints view, and select Export Breakpoints from the
context menu.

2. In the Export Breakpoints dialog box, shown in Figure 6.10, select the following:

� Which breakpoints you want to export

� The file to which you want to export breakpoints

� The Overwrite existing file without warning checkbox (if you want to overwrite your
existing file)

3. Click Finish to create the breakpoints file.

Skip AllRemove

Go to FileRemove All

Show Breakpoints Supported
 by Selected Target

166

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 166

FIGURE 6.10

The Export Breakpoints dialog box

A breakpoints export file is in XML format. Listing 6.3 shows the contents of a typical breakpoints file.

LISTING 6.3

An exported breakpoints file

<?xml version=”1.0” encoding=”UTF-8”?>
<breakpoints>
<breakpoint enabled=”true” persistant=”true” registered=”true”>
<resource path=”/chapter06/src/application1.mxml” type=”1”/>
<marker lineNumber=”4”

type=”com.adobe.flexbuilder.debug.flash.lineBreakpoint.marker”>
<attrib name=”org.eclipse.debug.core.enabled” value=”true”/>
<attrib name=”org.eclipse.debug.core.id”
value=”com.adobe.flexbuilder.debug”/>
<attrib name=”message”
value=”Line breakpoint: application1.mxml [line: 4]”/>
<attrib
name=”com.adobe.flexbuilder.debug.flash.instantiationInfoCount”
value=”1”/>

</marker>
</breakpoint>

continued

167

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 167

LISTING 6.3 (continued)

<breakpoint enabled=”true” persistant=”true” registered=”true”>
<resource path=”/chapter06/src/application2.mxml” type=”1”/>
<marker lineNumber=”7”
type=”com.adobe.flexbuilder.debug.flash.lineBreakpoint.marker”>
<attrib name=”org.eclipse.debug.core.enabled” value=”true”/>
<attrib name=”org.eclipse.debug.core.id”
value=”com.adobe.flexbuilder.debug”/>
<attrib name=”message”
value=”Line breakpoint: application2.mxml [line: 7]”/>
<attrib
name=”com.adobe.flexbuilder.debug.flash.instantiationInfoCount”
value=”0”/>
<attrib

name=”com.adobe.flexbuilder.debug.flash.instantiationOkCount”
value=”0”/>

</marker>
</breakpoint>
</breakpoints>

Importing breakpoints from an external breakpoint file
Follow these steps to import an external breakpoints file:

1. Right-click anywhere in the Breakpoints view, and select Import Breakpoints from the
context menu.

2. In the Import Breakpoints dialog box, shown in Figure 6.11, select these options, if
appropriate:

� Whether you want to update existing breakpoints

� Whether you want to automatically create breakpoint working sets

3. Click Finish to import the breakpoints file.

The breakpoints in the external file are imported and are immediately available in the Breakpoints
view.

168

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 168

FIGURE 6.11

Importing a breakpoints file

Using breakpoints in a debugging session
After you’ve set breakpoints, you can use them during a debugging session by executing the code
on which the breakpoints are set.

When an application is running in debug mode and is suspended at a breakpoint, Flex Builder
tries to take system focus. If you are not currently using the Flex Debugging perspective, a dialog
box, shown in Figure 6.12, prompts you to switch to that perspective.

FIGURE 6.12

When a breakpoint has been activated, you’re prompted to open the Flex Debugging perspective with the
Confirm Perspective Switch dialog box.

169

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 169

The Confirm Perspective Switch dialog box has an option that allows you to remember
the decision to switch to the Flex Debugging perspective when you encounter a break-

point. If you select this option, Flex Builder always switches to this perspective automatically in future
uses of breakpoints. This can be turned on and off by checking an option in the Run/Debug section of
Flex Builder’s Preferences dialog box.

After a breakpoint has been activated, Flex Builder shows you the current code execution position
with the Debug Current Instruction Pointer, shown in Figure 6.13. If you move the cursor over the
pointer icon, you see a pop-up window displaying information about the current line.

FIGURE 6.13

The Debug Current Instruction Pointer and current line information

Inspecting variables and expressions
When a breakpoint is active during a debugging session, Flex Builder allows you to inspect values
of variables and objects that are in the application’s scope. You can use two views for this purpose:

� The Variables view

� The Expressions view

Using the Variables view
The Variables view displays a tree of declared variables and object properties that are in scope at
the point of the current instruction. Information in the Variables view is available only during a
breakpoint; when you resume application execution, the Variables view no longer displays data.

The Variables view always has a tree item labeled this. The item refers to the application when
the breakpoint is on a line of code in the Application scope, or to the current component or class
when the breakpoint is in that scope.

As shown in Figure 6.14, when you click the expansion icon with the + character next to this, you
see a list of all properties of the application or current object. A tree item representing an object has
an inherited branch that displays properties declared in the current object’s inheritance hierarchy.

TIPTIP

170

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 170

Flex Builder 3 added the inherited branch to separate properties that are declared
within the current class from those declared in its superclasses.

FIGURE 6.14

The Variables view

The Variables tree is recursive; that is, you can click down to any object within the
application, and then click the inherited➪$parent item under the button and

return to the Application object.

When you place a breakpoint inside a function, the Variables view displays tree items for any vari-
ables that are declared within the function. For example, the following code declares a variable
named myVar data typed as a Number:

private function myFunction():void
{

var myVar:Number=1;
} //place breakpoint here

When you stop code execution with a breakpoint on the function’s final line, the resulting
Variables view displays the value of myVar as 1, as shown in Figure 6.15.

TIPTIP

NEW FEATURENEW FEATURE

171

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 171

FIGURE 6.15

Displaying a local variable in the Variables view

Using the Expressions view
In many cases, evaluating an arbitrary ActionScript expression is useful. Here are some cases that
come to mind:

� An expression that’s deeply nested in the Variable view and hard to locate

� A compound expression that executes calculations that aren’t pre-declared in the applica-
tion code

The Expressions view is available in the Flex Debugging perspective and lets you evaluate these
expressions easily. As with the Variables view, information in the Expressions view is available only
during a breakpoint; when you resume application execution, the Expressions view no longer dis-
plays data.

To use the Expressions view, first click the Expressions tab in the Flex Debugging perspective’s
upper-right area, shown in Figure 6.16.

FIGURE 6.16

The Expressions tab

Expressions tab

A local variable

172

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 172

Adding an expression
You can add an expression either in the Expressions view or in the MXML or ActionScript editor
that refers to an expression.

To add an expression in the Expressions view, right-click anywhere in the view and select Add
Watch Expression from the context menu. Type the expression into the Add Watch Expression dia-
log box, shown in Figure 6.17.

FIGURE 6.17

Adding a watch expression

To add an expression from within an MXML ActionScript editor, right-click the expression in the
code and select Watch “<variable name>” from the context menu. You should see the expression
added to the Expressions view.

You also can evaluate a pre-coded expression during a breakpoint in an MXML or
ActionScript editor by moving the mouse over the expression. A tool tip is displayed

showing the expression’s name and current value.

Controlling application execution with the
Debug view
When a breakpoint is active in a debugging session, Flex Builder’s Debug view lets you step
through, resume, or terminate application execution. The Debug view, shown in Figure 6.18, has
these tools:

� Resume: This resumes code execution. If a breakpoint is encountered prior to allowing
you to interact with the application, you return to Flex Builder. Otherwise, you can
switch back to the application and continue interactions.

TIPTIP

173

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 173

� Suspend: When an application is running, selecting this tool suspends the application
without a predefined breakpoint and allows you to inspect variables and expressions.

� Terminate: This terminates the debugging session. The Terminate button in the Console
view is identical in appearance and function.

� Disconnect: This disconnects the debugger when debugging remotely.

� Step Into: When called with the cursor on a function call, this steps into the function
call.

� Step Over: When called with the cursor on a function call, this executes the function and
moves to the next line of code.

� Step Return: This completes the current function and stops at the next line of code after
the function has been called.

When you step through code in Flex Builder, code execution pauses on each
ActionScript statement, expression evaluation, and variable declaration. At times you’ll

find that you even step into the source code of Flex internal library classes, where available.

FIGURE 6.18

The Debug view

The Debug view tools described above also are available as menu selections and, in most cases,
keyboard shortcuts. For example, to terminate a debugging session, select Run ➪ Terminate from
the Flex Builder menu or press Ctrl+F2 on Windows or Cmd+F2 on Mac OS X. Figure 6.19 shows
the Run menu as it appears during a debugging session. Notice that each feature’s keyboard short-
cut is noted on the menu.

Resume

Suspend

Terminate

Step Over

Step Into

Disconnect

Step Return

TIPTIP

174

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 174

FIGURE 6.19

Flex Builder’s Run menu during a debugging session

Profiling Flex Applications
Flex Builder includes tools for profiling Flex applications at runtime, providing valuable informa-
tion about the frequency and duration of method calls, the size and number of object instances in
memory, and overall memory usage.

The Flex profiling tools are a new feature of Flex Builder 3. They are included only with
a Flex Builder 3 Professional license.

The profiling tools are packaged in a new Flex Builder perspective named the Flex Profiling per-
spective. You can profile an application from the Flex Builder tool bar or menu.

Follow these steps to run an application in profiling mode:

1. Close any open browser windows. (If you have a browser window already open, profiling
may not start correctly.)

2. Select Run ➪ Profile from the Flex Builder menu and select the application you want to
profile. You also can click the Profile button on the toolbar.

3. When a profiling connection has been established, you’re prompted for profiling options,
as shown in Figure 6.20. Select options and click Resume.

NEW FEATURENEW FEATURE

175

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 175

FIGURE 6.20

Selecting profiling options

4. Once the application has resumed execution in the browser, execute application func-
tions and switch back to Flex Builder to see how the application is performing internally.

As shown in Figure 6.21, the Memory Usage view displays a graph showing overall memory usage.

FIGURE 6.21

The Memory Usage view in the Flex Profiling perspective

As shown in Figure 6.22, the Live Objects view displays statistical data about objects in Flash
Player memory.

176

Flex FundamentalsPart I

11_287644-ch06.qxp 6/23/08 11:34 PM Page 176

FIGURE 6.22

The Live Objects view in the Flex Profiling perspective

Summary
In this chapter, I described tools that help you debug a Flex application. You learned the following:

� The trace() method lets you send debugging messages to Flex Builder’s Console view
at runtime.

� The flashlog.txt file also receives tracing and error messages when configured with
the mm.cfg file.

� The locations of flashlog.txt and mm.cfg differ between operating systems.

� The Logging API lets you create self-logging components and filter logging messages
based on logging level and category.

� Breakpoints let you suspend application execution so you can inspect variables and
object properties at runtime.

� The Variables view displays pre-declared variables and object property values when the
application is suspended.

� The Expressions view lets you evaluate arbitrary ActionScript expressions at runtime.

� The Debug view lets you step through code and otherwise control application execution
during a debugging session.

177

Debugging Flex Applications 6

11_287644-ch06.qxp 6/23/08 11:34 PM Page 177

11_287644-ch06.qxp 6/23/08 11:34 PM Page 178

Flex applications are event-driven, which means that with the exception
of the first phases of application startup, every action is the result of
some trigger that causes the action to take place.

Many events are produced by internal functions within the Flex framework
that don’t necessarily have anything to do with a user’s interactions with the
application. These are sometimes known as system events. Other events,
known as user events, are designed to inform you of actions taken by the
user. These actions, known as user gestures, consist of key presses or mouse
actions such as moving the mouse or pressing one of its buttons.

Regardless of how an event is generated, you can capture and handle the
event in a number of ways. During event handling, you have access to infor-
mation about the event from a variable known as an event object.

And when you need to share information between an application’s compo-
nents, you can create and dispatch your own custom events to move infor-
mation and data around the application as needed.

This chapter describes the Flex event architecture: how to find out what
events occur and when, what data you can get from them, and how to build
your own event architecture.

To use the sample code for this chapter, import the
chapter07.zip Flex project archive file from the Web site

files into your Flex Builder workspace.

ON the WEBON the WEB

179

IN THIS CHAPTER
The Flex event architecture

Handling events with MXML

Handling events with
addEventListener()

Declaring and dispatching
custom events

Creating and using custom
event classes

Working with Events

12_287644-ch07.qxp 6/23/08 11:35 PM Page 179

The Flex Event Architecture
The ActionScript objects you use to build Flex applications communicate with each other and
share data by dispatching events. For example, consider a Button control that’s declared with
MXML:

<mx:Button label=”Click Me”/>

As an instance of the mx.controls.Button class, this object supports many properties and
methods that we know as the members of the Button class. The Button is capable of generating
many events. Each of these events also is considered a member of the class.

To find out which events are supported by a particular class, look at the API documentation for that
class. To get to the API documentation quickly in Flex Builder, place the cursor anywhere in the
MXML or ActionScript component or class declaration and press F1 on Windows or Cmd + ? on Mac
OS X. Then click the links for the appropriate class documentation that appear in the Help view.

The class’s member types are listed at the top of the API documentation. Any class that is capable
of generating events displays an Events link, as shown in Figure 7.1.

FIGURE 7.1

The Events link in the API documentation for the Button class

When you click the Events link, the Help view navigates to the Events section of the documenta-
tion. As shown in Figure 7.2, you may initially see only a short list of events that are supported by
the class. These are the events that are defined locally in the current class. For example, the Button
class has three events that are defined locally: buttonDown, change, and dataChange. You
also see a Show Inherited Events link that, when clicked, expands the list to include events that are
inherited from the current class’s inheritance hierarchy.

The Events link

180

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 180

FIGURE 7.2

A list of events that are defined locally in the Button class

When you click Show Inherited Events, you see all events that are available to the current
class. For example, the Button class’s most commonly used event is named click. This event is
defined in another class named InteractiveObject, one of the Button class’s superclasses.
This information is available in the documentation, as shown in Figure 7.3.

FIGURE 7.3

The Button’s click event is defined in a superclass named InteractiveObject.

The click event The event is defined
in this class

Click to show inherited events

Locally defined events

181

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 181

Handling Events in MXML
You can handle events in two different ways in Flex applications:

� With XML attribute-based event handlers in MXML object declarations

� With the addEventListener() method

The first event handling strategy is designed for ActionScript objects that are declared in MXML;
the other works for any object, whether declared in MXML or ActionScript.

Creating event handlers in MXML
An MXML event handler uses an XML attribute where the attribute’s name matches the name of the
event being handled. For example, the Button class’s click event uses an XML attribute that’s
also named click. The value of the XML attribute is an ActionScript statement that causes some
action to take place.

Executing a single ActionScript statement in an event handler
If you need to execute a single ActionScript statement for any particular event, you can place the
ActionScript code directly in the MXML-based event handler. In the following code, when the user
clicks the Button component, the click event is handled and the ActionScript statement in the
click XML attribute is executed:

<mx:Button label=”Click Me”
click=”messageLabel.text=’You clicked the button’”/>

<mx:Label id=”messageLabel”/>

Notice in the above code that the literal string You clicked the button is wrapped
in single quotes. This is because the click XML attribute’s value (the ActionScript

statement) is wrapped in double quotes. In ActionScript, single and double quotes are interchange-
able as long as you match them up correctly.

In browser-based JavaScript, the Dynamic HTML (DHTML) equivalent of this event
architecture uses event names starting with the word “on” and finishing with the actual

event. For example, in JavaScript, you’d use this code to handle an onClick event:

<input type=”button” onClick=”doSomething()”/>

The result is the same as in MXML: The event handler consists of a markup-based attribute that calls
scripting code to be executed upon the event being dispatched. Only the event naming pattern is
different.

A simple event handling application
Follow these steps to create a simple application that uses an MXML-based event handler:

1. Create a new application with the layout property set to vertical.

2. Add a Label component to the application with an id property set to myLabel.

NOTENOTE

TIPTIP

182

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 182

3. Add a Button component to the application with a label property set to Click Me
and a click event handler with ActionScript code that changes the Label control’s
text property to a value of You Clicked!.

The completed application’s code is shown in Listing 7.1.

4. Run the application, and click the button to see the Label control’s text property change.

LISTING 7.1

An application with a simple MXML-based event handler

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Label id=”myLabel”/>
<mx:Button label=”Click Me” click=”myLabel.text=’You clicked!’”/>

</mx:Application>

The code in Listing 7.1 is available in the Web site files in the chapter07 project’s src
folder as SimpleEvent.mxml.

Handling events with ActionScript functions
When you need to execute more than a single ActionScript statement in response to an event, you
should create a custom function. The function allows you to add as much code as you need. The
event handler function can be very simple:

private function clickHandler():void
{

... add ActionScript code here ...
}

Now all the code you want to call is wrapped inside clickHandler(), so to execute the code,
call the function from the object’s event handler:

<mx:Button label=”Click Me” click=”clickHandler()”/>

You can name your event handler functions anything you like. The convention of naming
the function with word “handler” at the end isn’t a technical requirement, but it helps

you identify the function’s purpose.

If you have more than a single object whose events you need to handle, name the event handler func-
tions to identify the event that’s being handled and the object that’s dispatching the event. For exam-
ple, if you have two buttons with functions to save or cancel an operation, you might name the event
handler functions saveClickHandler() and cancelClickHandler(). To call the functions
you’d then use this code:

<mx:Button label=”Save” click=”saveClickHandler()”/>
<mx:Button label=”Cancel” click=”cancelClickHandler()”/>

TIPTIP

ON the WEBON the WEB

183

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 183

Using an event handler function
Follow these steps to create an application that uses an event handler function:

1. Create a new application with the layout property set to vertical.

2. Add a Label component to the application with an id property set to myLabel.

3. Add an <mx:Script> tag set at the top of the application.

4. Within the <mx:Script> block, add a private function named clickHandler() that
changes the Label control’s text property to a value of You Clicked!.

5. Add a Button component to the application with a label property set to Click Me.

6. In the Button component’s click event handler, call the clickHandler() function.

The completed application’s code is shown in Listing 7.2.

7. Run the application, and click the button to see the Label control’s text property
change.

LISTING 7.2

Using an event handler function

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Script>
<![CDATA[

private function clickHandler():void
{

myLabel.text=”You clicked the button”;
}

]]>
</mx:Script>
<mx:Label id=”myLabel”/>
<mx:Button label=”Click Me” click=”clickHandler()”/>

</mx:Application>

The code in Listing 7.2 is available in the Web site files in the chapter07 project’s src
folder as EventWithFunction.mxml.

Event handler functions typically return void, meaning that their purpose is to take
some action but not return any value. When using an MXML-based event handler,

this architecture is optional. As described below, when setting up an event handler with the
addEventListener() function, the return data type of void is required.

TIPTIP

ON the WEBON the WEB

184

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 184

Working with event objects
Every event that’s dispatched in the Flex framework creates a variable known as an event object.
The purpose of an event object is to share information about the nature of the event, including the
event’s name, the object that dispatched the event, the context of the event, and detailed informa-
tion that might be useful in understanding what happened.

The event object’s variable name
To handle an event and get information from the event object, you typically create an event handler
function that’s designed to receive the event object as an argument. When the event occurs, you
then call the event handler function and pass the event object as its argument. For the duration of
an MXML-based event handler, the name of the event object is always the same: event (always
spelled in lowercase). So, assuming you’ve created a clickHandler() function that’s designed
to receive an event argument, the syntax of the MXML object declaration becomes this:

<mx:Button label=”Click Me” click=”clickHandler(event)”/>

Using event object arguments
The event object is always an instance of an ActionScript class named flash.events.Event
or a subclass of this Event class. When you create an event handler function to receive an event
object, you can always data type the argument as the Event class:

private function clickHandler(event:Event):void
{

myLabel.text=”You clicked the button”;
}

Tip
All event objects can be handled as the Event class as they’re passed into an event handler func-
tion, even if their true type is a subclass of the Event class. This convenient shortcut is made pos-
sible by ActionScript’s support for polymorphism, where objects can be cast as and handled as
their superclass types. As long as you don’t need to refer to event object properties that are only
implemented in the subclass, such as MouseEvent, typing the event object as Event doesn’t
have any negative effect on the application’s performance or functionality.

Using event object properties
As shown in the UML diagram in Figure 7.4, the Event class supports properties and methods
that let you get information about the event and in some cases control its behavior. (The diagram
shows only certain key properties and methods of the Event class. See the class’s API documenta-
tion for a complete list.)

185

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 185

FIGURE 7.4

UML diagram of the Event class

These are the key properties of the Event class:

� type:String: The name of the event that was dispatched as a String. For example,
when the click event is handled, the value of the event object’s type property is “click.”

� target:Object: A reference to the object that dispatched the event. Because the
target property points to the object, any of that object’s properties are then available
with extended dot syntax. For example, a Button component’s id property would be
available as event.target.id, and its label as event.target.label.

Other key properties of the Event class are described below in the section on event
bubbling.

When you pass an event object to an event handler function as an argument, you have access to all
the event object’s properties for the duration of the function. To capture information about the
event, use the properties that are of interest:

private function clickHandler(event:Event):void
{

myLabel.text=”You clicked the button labeled “ +
event.target.label;

}

When writing code that refers to event.target, you might notice that properties like
label that aren’t available on all ActionScript classes aren’t suggested by Flex Builder

code completion tools. This is because the expression event.target is known to the Flex compiler
and to Flex Builder as an instance of the ActionScript Object class, and only properties that are
implemented in that class will be suggested for auto-completion.

If you know that event.target refers to a Button in the context of a particular event handler
function, you can safely refer to the Button class’s properties (such as label). The code will com-
pile and execute correctly, even if Flex Builder’s code completion isn’t able to help you write it.

TIPTIP

NOTENOTE

flash.events.Event

+ type : String
+ target : Object
+ currentTarget : Object
+ bubbles : Boolean
+ cancelable : Boolean

+ clone() : Object
+ stopPropagation()

186

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 186

Using event object properties in an application
Follow these steps to create an application that uses event object properties:

1. Create a new application with the layout property set to vertical.

2. Add a Label component to the application with an id property set to myLabel.

3. Add an <mx:Script> tag set at the top of the application.

4. Within the <mx:Script> block, add a private function named clickHandler() that
receives an argument named event, data typed as the Event class.

5. Add this code to clickHandler() to display the event type and the id of the event
target:

myLabel.text=”The “ + event.type +
“ event was dispatched by “ + event.target.id;

6. Add a Button component to the application with a label property set to Click Me.

7. In the Button component’s click event handler, call the clickHandler() function
and pass the event object as a function argument.

The completed application’s code is shown in Listing 7.3.

8. Run the application, and click the button to see the Label control’s text property change.

LISTING 7.3

Using event object properties

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:Script>
<![CDATA[

private function clickHandler(event:Event):void
{

myLabel.text=”The “ + event.type +
“ event was dispatched by “ + event.target.id;

}
]]>

</mx:Script>

<mx:Label id=”myLabel”/>
<mx:Button label=”Click Me” click=”clickHandler(event)”/>

</mx:Application>

The code in Listing 7.3 is available in the Web site files in the chapter07 project’s src
folder as EventObjectProperties.mxml.ON the WEBON the WEB

187

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 187

Event class inheritance
Event objects are created as specific class types depending on the nature of the event that’s dis-
patched. For example, events having to do with mouse actions are typically instances of a class
name flash.events.MouseEvent. As shown in the UML diagram in Figure 7.5,
MouseEvent, ResultEvent, TextEvent, and dozens of other classes in the Flash and
Flex class libraries are directly extended from the standard Event class.

FIGURE 7.5

All event classes are directly extended from the Event superclass

When an event class such as MouseEvent extends Event, it inherits that superclass’s basic
properties such as type and target. The subclass typically defines additional properties that are
useful for that particular event. The MouseEvent class adds properties to track button state,
mouse cursor position, and other useful information. Some of these properties include:

� altKey:Boolean: Set to true if the Alt key is held down when the event is dis-
patched; otherwise false.

� ctrlKey:Boolean: Set to true if the Ctrl key is held down when the event is dis-
patched; otherwise false.

� shiftKey:Boolean: Set to true if the Shift key is held down when the event is dis-
patched; otherwise false.

� commandKey:Boolean: Set to true if the command key on the Mac is held down
when the event is dispatched; otherwise false. Always set to false on Windows.

� localX:int: The number of pixels from the left border where the user clicked an
object dispatching the event.

� localY:int: The number of pixels from the top border where the user clicked an
object dispatching the event.

� stageX:int: The number of pixels from the left border where the user clicked the stage
(Flash Player region).

� stageY:int: The number of pixels from the top border where the user clicked the stage
(Flash Player region).

flash.events.Event

ResultEvent TextEventMouseEvent

188

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 188

� buttonDown:Boolean: Set to true if the primary mouse button is pressed when the
event is dispatched; otherwise false.

Which event class will I get?
To find out what specific class will be dispatched for a particular event, you can use one of these
strategies:

� Debug the application, and inspect the event object in the Variables view.

� Read the API documentation for the object whose event you’re handling.

� Place the mouse cursor over the event object where it’s passed into the event handler
function in Flex Builder 3 and get a tool tip describing the class name.

Debugging the event object
Follow these steps to debug the application and inspect the event object:

1. Place a breakpoint in the event handler function on a line of ActionScript code or, if the
function is empty, on the line with the function’s closing brace:

private function clickHandler(event:MouseEvent):void
{
} //place breakpoint here

2. Debug the application.

3. Trigger the event that calls the event handler function (for example, by clicking a button).

4. When the breakpoint suspends the application, inspect the function’s event argument in
the Flex Debugging perspective’s Variables view.

As shown in Figure 7.6, the Variables view displays the event object’s type and all its current prop-
erty values.

Reading the documentation
Documentation for every event in the Flex Framework includes the type of the event object that
will be dispatched when the event occurs. For example, the documentation for the Button class’s
click event shows that the event object is an instance of flash.events.MouseEvent. To find
this information:

1. Place the cursor in the object declaration in Source view.

2. Press F1 to display a list of Help subjects.

3. Click the link for the class or component you’re using.

4. In the API documentation, click the Events link.

5. Locate the event you’re interested in, and click its link.

As shown in Figure 7.7, you should see the specific type of the class that will be dispatched for
that event.

189

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 189

FIGURE 7.6

The event object’s type displayed in the Variables view

FIGURE 7.7

Documentation for the click event

The type of the click event’s event object

The event object’s properties

190

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 190

Handling specific event objects
To capture information that’s available only in one of the extended event classes, set an event
handler function’s event argument to that class. For example, this event handler function expects
an instance of MouseEvent:

private function clickHandler(event:MouseEvent):void
{

myLabel.text=”You clicked; was the alt key pressed? “ +
event.altKey;

}

The altKey property is available only because the event argument is declared as the subclass that
supports that property. If the event argument instead is declared as the Event superclass, the
altKey property isn’t recognized by the compiler and a compiler error results.

The complete application shown in Listing 7.4 is an application that captures a MouseEvent and
displays the status of the keys on the keyboard at the moment the event is dispatched.

LISTING 7.4

An application that handles a MouseEvent object

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:Script>
<![CDATA[

private function clickHandler(event:MouseEvent):void
{

myLabel.text=”The “ + event.type +
“ event was dispatched by “ + event.target.id;

altLabel.text=”Alt key pressed: “ + event.altKey;
ctrlLabel.text=”Ctrl key pressed: “ + event.ctrlKey;
shiftLabel.text=”Shift key pressed: “ + event.shiftKey;

}
]]>

</mx:Script>

<mx:Label id=”myLabel”/>
<mx:Label id=”altLabel”/>
<mx:Label id=”ctrlLabel”/>
<mx:Label id=”shiftLabel”/>

<mx:Button label=”Click Me” click=”clickHandler(event)”/>

</mx:Application>

191

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 191

The code in Listing 7.4 is available in the Web site files in the chapter07 project’s src
folder as MouseEventObjectProperties.mxml.

Handling Events with addEventListener()
You also can set up event handlers with a method named addEventListener(). This method
is defined in an ActionScript class named EventDispatcher, which appears in the inheritance
hierarchy of every ActionScript class that’s able to dispatch events. Stated more briefly, you can call
addEventListener() from any object that knows how to dispatch an event.

Setting up an event listener
The following MXML code declares a Button component with a click event handler:

<mx:Button id=”myButton” label=”Click Me”
click=”clickHandler(event)”/>

The following code calls addEventListener() instead of the MXML-based event handler:

myButton.addEventListener(“click”, clickHandler);

The first argument you pass to addEventListener() is the name of the event you’re listening
for. The second argument is the name of the function you want to call when the event is dispatched.

ON the WEBON the WEB

192

Flex FundamentalsPart I

Event Class Inheritance and Polymorphism

The fact that you can define an event handler function to expect either the specific event class
such as MouseEvent, or its superclass such as Event, is a reflection of the support for polymor-

phism in ActionScript’s implementation of object-oriented programming. The concept of polymor-
phism is described in detail in Chapter 1. Merriam-Webster defines polymorphism as “the quality or
state of existing in or assuming different forms.” In this case, the different forms the event object
takes are its native type (MouseEvent) or its superclass type (Event).

One reason some developers set an event object to the superclass is because they don’t know the
event’s native class type and don’t want to take time to look it up. It sounds like just being lazy, but
in many cases the specific properties of the native type just aren’t needed in that situation, and using
the Event superclass makes for faster programming.

Developers also can use the superclass type to make a function reusable by events that dispatch dif-
ferent native types, again where they don’t need the specific properties that are supported by the
native types. This is the true purpose of implementing polymorphism in object-oriented languages:
to support code that’s reusable in many different circumstances.

12_287644-ch07.qxp 6/23/08 11:35 PM Page 192

Notice that you pass the name of the function as the second argument, not the com-
plete code required to call the function. You’re designating which function to call,

rather than calling the function immediately.

The object from which you call addEventListener() always calls the listener function with the
same signature, passing a single argument data typed as the appropriate event class for that event.
Event listener functions designed to be used with addEventListener() always have the same
signature:

[access modifier] function [functionName](
event:[event class data type]):void

{}

So a function designed to receive an instance of MouseEvent always looks like this:

private function clickHandler(event:MouseEvent):void
{

... execute event handling code ...
}

You typically call addEventListener() during application startup, where it can replace an
MXML-based event handler definition. For example, you might set up your event listeners in a
function named initApp() that’s called upon the Application component’s
creationComplete event. The application in Listing 7.5 uses this strategy. Notice the following:

� The initApp() function returns void.

� The initApp() function is called during application startup upon the Application’s
creationComplete event.

� The MXML-based declaration of the Button component doesn’t have a click event
handler; this would be redundant and in fact would result in the event handler function
being called twice.

LISTING 7.5

An application that uses addEventListener()

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
creationComplete=”initApp()”>
<mx:Script>
<![CDATA[

private function initApp():void
{

myButton.addEventListener(“click”, clickHandler);
}
private function clickHandler(event:MouseEvent):void

continued

CAUTION CAUTION

193

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 193

LISTING 7.5 (continued)

{
myLabel.text=”The “ + event.type +

“ event was dispatched by “ + event.target.id;
}

]]>
</mx:Script>
<mx:Button id=”myButton” label=”Click Me”/>

</mx:Application>

The code in Listing 7.5 is available in the Web site files in the chapter07 project’s src
folder as UsingAddEventListener.mxml.

Using event name constants
Each event class in the Flex framework implements constants that have values equal to the names
of events for which the event class is used. For example, the MouseEvent class has many con-
stants that reflect the names of events for which this event class is dispatched (shown with their
equivalent values):

� CLICK = “click”

� MOUSE_DOWN = “mouseDown”

� MOUSE_UP = “mouseUp”

� MOUSE_MOVE = “mouseMove”

� RIGHT_CLICK = “rightClick”

� MOUSE_WHEEL = “mouseWheel”

There are more, but you get the picture. You use these constants in calls to addEventListener()
instead of phrasing the event name as a literal string. For example, instead of this code:

myButton.addEventListener(“click”, clickHandler);

you can use this:

myButton.addEventListener(MouseEvent.CLICK, clickHandler);

When you use event name constants, you reduce the risk of typing errors in your code. When you
use literal strings to indicate which event you want to listen for, it’s easy to misspell the name. For
example, this code would result in an event listener that will never be triggered, because no event
name is clik:

myButton.addEventListener(“clik”, clickHandler);

ON the WEBON the WEB

194

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 194

Because the event name is phrased as a literal string, the compiler has no way of knowing that it’s
misspelled. Of course, you can make the same mistake with an event name constant:

myButton.addEventListener(MouseEvent.CLIK, clickHandler);

But in this case, the compiler would complain, as shown in Figure 7.8, telling you that there is no
such property or constant as CLIK in the MouseEvent class, and you’d be able to find and fix the
error at a much earlier stage of development.

FIGURE 7.8

A compiler error resulting from a misspelled event name constant

Another advantage of using event name constants comes from Flex Builder’s code completion tool.
As shown in Figure 7.9, when you type the name of the MouseEvent class and add a period, you
see a list of available constants that are members of the class. You can then select the appropriate
event name and ensure that it’s typed correctly from the beginning.

FIGURE 7.9

Flex Builder’s code completion tool with event name constants

Flex Builder’s code completion with event name constants

195

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 195

Removing an event listener
You can remove an event listener that was set up with addEventListener() with the
removeEventListener() method. This method also is defined in the EventDispatcher
class and can be called from any object that dispatches events.

The basic syntax for removeEventListener() is the same as addEventListener():

myButton.removeEventListener(MouseEvent.CLICK, clickHandler);

The addEventListener() and removeEventListener() methods allow you to add and
remove event listeners as needed whenever an application’s requirements change logically at runtime.

Using Event Bubbling
Event bubbling refers to the process of dispatching events through multiple levels of inheritance.
Consider this application code, which defines a Button control inside a VBox container:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:VBox id=”myContainer”>

<mx:Button label=”Click me” id=”myButton”/>
</mx:VBox>

</mx:Application>

When the Button component is clicked, it dispatches a click event. All event objects have a
Boolean property named bubbles. When this property’s value is set to true, as it is by default
with the MouseEvent class, the event first is dispatched by the object that was clicked, then by its
container, and so on up the display tree until it’s dispatched by the application itself.

Each time the event bubbles up another containership level, the event object is cloned and the new
version contains all the original properties and the stored values of the original. But one property is
changed: Each new copy of the event object has a currentTarget property that refers to the
object that’s currently dispatching the event. In the meantime, each event object’s target property
continues to reference the object that originally dispatched the event.

The application in Listing 7.6 uses a two-level containership hierarchy: a Button inside a VBox
inside an Application. All objects handle the click event and dispatch the event object to a
clickHandler() function, where the target and currentTarget are logged.

196

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 196

LISTING 7.6

An application that tracks simple event bubbling

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
verticalAlign=”middle” click=”clickHandler(event)”>

<mx:Script>
<![CDATA[

private function clickHandler(event:Event):void
{

eventLog.text += “target=” + event.target.id +
“, currentTarget=” + event.currentTarget.id + “\n\n”;

}
]]>

</mx:Script>

<mx:Label text=”Application”/>
<mx:VBox id=”myContainer” height=”50%” width=”50%”

horizontalAlign=”center” verticalAlign=”middle”
backgroundColor=”#eeeeee”
click=”clickHandler(event)”>
<mx:Label text=”myContainer”/>
<mx:Button label=”myButton” id=”myButton”

click=”clickHandler(event)”/>
</mx:VBox>
<mx:TextArea id=”eventLog” height=”110” width=”50%”/>

</mx:Application>

The code in Listing 7.6 is available in the Web site files in the chapter07 project’s src
folder as EventBubblingSimple.mxml.

As shown in Figure 7.10, each time the event is handled, the target property always points to
the Button component, while the currentTarget changes with each new call to the event
handler function.

Event bubbling works only if the parent container declares the event you want to han-
dle. For example, if you try to handle a change event from a ComboBox in a parent

VBox in MXML, an error occurs because the compiler says there is no change event to listen for. To
overcome this limitation, create your own custom component based on the container you want to
use, and explicitly declare the selected event as a member of the new version of the container.

TIPTIP

ON the WEBON the WEB

197

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 197

FIGURE 7.10

A simple event bubbling demonstration

Using Custom Events
You use custom events to communicate information and data between application components. As
described previously, Flex applications are built with a modular architecture, with functionality
divided between multiple components. When a component needs to share information with the
rest of the application, it does so by dispatching an event.

The following MXML component displays three choices of Small, Medium, and Large in a group of
RadioButton components:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:VBox xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:RadioButtonGroup id=”sizeGroup”/>
<mx:RadioButton value=”Small” label=”Small”

groupName=”sizeGroup”/>
<mx:RadioButton value=”Medium” label=”Medium”

groupName=”sizeGroup”/>
<mx:RadioButton value=”Large” label=”Large”

groupName=”sizeGroup”/>
</mx:VBox>

The above code is available from the Web site files’ chapter07 project as
components/SizeSelectorStart.mxml.

When the user clicks a radio button to make a selection, the component can share the following
information with the rest of the application:

� The user selected something.

� The user selected a particular bit of data.

ON the WEBON the WEB

198

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 198

In order to share the information, you’ll need to follow these steps within the component:

1. Define a custom event that the MXML component is capable of dispatching.

2. Create an event object at runtime.

3. Populate the event object with data.

4. Dispatch the event object.

In the application that instantiates the custom component, you’ll follow these steps:

1. Create an event handler using either an MXML-based event attribute or the
addEventListener() method.

2. Create a custom event handler function that extracts the data from the dispatched event
object.

Declaring custom events
You declare custom events in a component with the <mx:Metadata> tag and a metadata tag
named [Event]. Start by adding the <mx:Metadata> tag set as a child of the component root:

<mx:VBox xmlns:mx=”http://www.adobe.com/2006/mxml”>
<mx:Metadata>
</mx:Metadata>
... remainder of component code ...

</mx:VBox>

Within the <mx:Metadata> tag set, add one [Event] metadata tag for each custom event you
want to declare. The syntax of the [Event] metadata tag is:

[Event(name=”[custom event name]”, type=”[event object type]”)]

The [Event] metadata tag has these two attributes:

� name: A string that identifies your custom event, and can be of any value. Just as the Flex
framework uses event names like click, change, and mouseMove, you can select any
meaningful string as long as it doesn’t contain any spaces or special characters. This value
is required.

� type: The name of an event class that will be instantiated and dispatched to an event lis-
tener. The default is the standard flash.events.Event class.

If you only need to dispatch an event that informs the event listener that the event occurred, and
don’t need to share specific data, you can use a shorthand form of the [Event] tag that omits the
type attribute:

[Event(name=”sizeSelected”)]

199

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 199

If you need to share specific data with the event listener and use a special event class that is designed
to contain that data, include the type property and refer to the fully qualified event class name:

[Event(name=”sizeSelected”, type=”flash.events.TextEvent”)]

The TextEvent class is already part of the Flash class library and has a text property
you can use to package and share a simple String value when you dispatch a custom

event. If you only need to share a String, it doesn’t make sense to create a custom event class —
you’d just be reinventing a wheel.

Adding an event declaration to a custom component and testing it
Follow these steps to add an event declaration to a custom MXML component:

1. Open components/SizeSelector.mxml from the chapter07 project from the
Web site.

2. Place the cursor after the starting <mx:VBox> tag.

3. Add an <mx:Metadata> tag set.

4. Within the <mx:Metadata> tag set, declare a custom event named sizeSelected
that dispatches an event object typed as flash.events.TextEvent. The code to
declare the event looks like this:

<mx:Metadata>
[Event(name=”sizeSelected”, type=”flash.events.Event”)]

</mx:Metadata>

5. Save the file.

6. Create a new MXML application named CustomEventApp.mxml in the chapter07
project.

7. Declare an instance of the SizeSelectorStart component with MXML:

<components:SizeSelectorStart/>

8. Place the cursor after the SizeSelector tag name and before the ending /> characters.

9. Press the spacebar to see a list of available class members.

10. Type size to filter the list.

As shown in Figure 7.11, you should see that the list displays the new sizeSelected
event as a member of the component.

11. Remove the partial event attribute size (you learn how to use this attribute in the next
section) so you have only the tag declaration with no event listener.

12. Save and run the application.

TIPTIP

200

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 200

FIGURE 7.11

A custom event shown in Flex Builder’s code completion tool

As shown in Figure 7.12, the application displays the component but isn’t yet handling the custom
event.

FIGURE 7.12

The application with the custom component

Dispatching custom events
To dispatch a custom event, follow these steps:

1. Create an instance of the event class you declared as the event type.

2. When you instantiate the event object, set its type property as the name of the custom
event. All event classes in the Flex framework have a constructor method that allows you
to set the event name as you instantiate the object:

var myEvent:Event = new Event(“[my event name]”);

201

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 201

3. Populate the event object with data, if applicable.

4. Call the component’s dispatchEvent() method, and pass the event object as the only
argument:

dispatchEvent(myEvent);

The complete code to dispatch a TextEvent class for an event named sizeChanged looks like this:

var e:TextEvent = new TextEvent(“sizeChanged”);
e.text = “some value I want to share”;
dispatchEvent(e);

Follow these steps to dispatch an event from the custom component:

1. Re-open components/SizeSelector.mxml from the chapter07 project.

2. Add an <mx:Script> tag set after the <mx:Metadata> tag set.

3. Within the script section, create a private function name clickHandler() that receives
an event argument typed as Event and returns void.

4. Add this code to the event handler function:

var e:TextEvent = new TextEvent(“sizeSelected”);
e.text = sizeGroup.selection.value as String;
dispatchEvent(e);

5. Add an event handler named itemClick to the RadioButtonGroup component, and
call the new function, passing the event object:

<mx:RadioButtonGroup id=”sizeGroup”
itemClick=”clickHandler(event)”/>

6. Save the file.

The completed component code is shown in Listing 7.7.

LISTING 7.7

A completed component that dispatches a custom event with data

<?xml version=”1.0” encoding=”utf-8”?>
<mx:VBox xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Metadata>
[Event(name=”sizeSelected”, type=”flash.events.Event”)]

</mx:Metadata>
<mx:Script>

<![CDATA[
private function clickHandler(event:Event):void
{

var e:TextEvent = new TextEvent(“sizeSelected”);
e.text = sizeGroup.selection.value as String;
dispatchEvent(e);

}

202

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 202

]]>
</mx:Script>
<mx:RadioButtonGroup id=”sizeGroup” itemClick=”clickHandler(event)”/>
<mx:RadioButton value=”Small” label=”Small” groupName=”sizeGroup”/>
<mx:RadioButton value=”Medium” label=”Medium” groupName=”sizeGroup”/>
<mx:RadioButton value=”Large” label=”Large” groupName=”sizeGroup”/>

</mx:VBox>

The code in Listing 7.7 is available in the chapter07 project from the Web site as
components/SizeSelectorComplete.mxml.

The RadioButtonGroup component’s selection.value property must be explic-
itly cast as a String, because the API declares it as an Object and the String type

is expected by the TextEvent class’s text property.

Handling custom events
Event handling with custom events looks just like handling events that are predefined by classes in
the Flex framework. You can handle a custom event in these two ways:

� With an MXML-based event attribute that executes explicit ActionScript code

� With the addEventListener() method

Handling a custom event with MXML
To handle an event with an MXML declaration, add an XML attribute named for the event to the
MXML declaration of the object that will dispatch the event. When the event is dispatched, call a
custom event handler function and pass the event object as an argument:

<components:SizeSelectorComplete
sizeSelected=”sizeSelectedHandler(event)”/>

Create a custom event handler function that expects the appropriate event class as its event argument:

private function sizeSelectedHandler(event:TextEvent):void
{

... process event data here ...
}

When the event occurs, the event handler function is executed and the data can then be appropri-
ately handled.

Follow these steps to handle a custom event with an MXML event handler:

1. Open CustomEventApp.mxml from the chapter07 project.

2. Add a Label component at the end of the application with an id of sizeMessage.

3. Add an <mx:Script> tag set to the application.

TIPTIP

ON the WEBON the WEB

203

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 203

4. Create a private function named sizeSelectedHandler() that receives an event
argument typed as TextEvent and returns void.

5. Within the event handler function, set the text property of the sizeMessage object to
the text property of the event object. The function should now look like this:

private function sizeSelectedHandler(event:TextEvent):void
{

sizeMessage.text = “You selected “ + event.text;
}

6. Save and run the application, and click a radio button.

As shown in Figure 7.13, you should see that the selected radio button’s value is displayed in the
application.

FIGURE 7.13

The completed application handling a custom event

The completed application is available in the Web site files as
CustomEventAppComplete.mxml in the chapter07 project.

Using Custom Event Classes
Custom event classes can be used when you need to share complex data with the application or
other components. For example, a data entry form component might need to share more than a
single string value when the user clicks the form’s button to indicate that data entry is complete.

An ActionScript class that’s designed to be used as an event object has these requirements:

� The custom event class must be extended from flash.events.Event.

� The custom event class’s constructor method should call the Event class’s constructor
method and pass the name of the event using a virtual method named super().

� Data elements that are wrapped inside the event class are declared as public properties.

ON the WEBON the WEB

204

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 204

� If the event class is designed to bubble upward through the container hierarchy, two addi-
tional requirements must be met:

� The custom event class’s bubbles property must be set to true.

� The custom event class must declare a clone() method that overrides the version
declared in the superclass Event.

Creating the ActionScript class
Custom event classes are designed as ActionScript classes that extend the Event class. You can place
the custom event class in any folder within a project source root; typically they’re created in a folder
simply named events.

Using the New ActionScript Class wizard
Follow these steps to create a custom event class that holds data for a Login form:

1. In the chapter07 project’s source root, right-click the events subfolder and select
New ➪ ActionScript class.

2. In the New ActionScript Class wizard, shown in Figure 7.14, enter LoginEvent as the
Name of the new class.

FIGURE 7.14

The New ActionScript Class wizard

205

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 205

3. Click Browse next to the Superclass text box.

4. In the Open Type dialog box, shown in Figure 7.15, type Event to browse to the
flash.events.Event class.

FIGURE 7.15

The Open Type dialog box

5. Click OK to select the Event class.

6. Select the Generate constructor from superclass option.

7. Click Finish to create the LoginEvent class.

The generated class code should now look like this:

package events
{

import flash.events.Event;
public class LoginEvent extends Event
{

public function LoginEvent(type:String,
bubbles:Boolean=false, cancelable:Boolean=false)

{
super(type, bubbles, cancelable);

}
}

}

206

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 206

Notice that the call to the super() method passes the type (the name of the event)
and the bubbles and cancelable properties. The last two properties are marked as

optional, by setting default values of false. This means that when you create an instance of the
LoginEvent class, you only need to pass the name of the event if you don’t need the bubbles or
cancelable properties set to true:

var myEvent:LoginEvent = new LoginEvent(“myEventName”);

Declaring public properties
Each data value you want to wrap into the custom event class should be declared as a public
property. For example, a data value for the user’s password in a login data entry form would be
declared as:

public var password:String;

Follow these steps to add user and password data elements to the custom event class:

1. In the generated LoginEvent.as file, place the cursor inside the class declaration.

2. Declare two public properties named username and password, both data typed as
String:

public var username:String;
public var password:String;

Declaring event name constants
If you know the name of certain custom events for which the custom event class is designed, you
can declare static event name constants that serve the same purpose of such constants as
MouseEvent.CLICK; they help you accurately code the rest of the application.

For example, if the LoginEvent class will be used for a custom event named login, you would
declare the event name constant with:

public static const LOGIN:String=”login”;

When you listen for the event using addEventListener(), you can use the constant with
this code:

myComponent.addEventListener(LoginEvent.LOGIN, loginHandler);

The ActionScript class in Listing 7.8 declares custom properties and event name constants.

TIPTIP

207

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 207

LISTING 7.8

The custom event class with properties and event name constants

package events
{

import flash.events.Event;
public class LoginEvent extends Event
{

public var username:String;
public var password:String;
public static const LOGIN:String=”login”;
public function LoginEvent(type:String,

bubbles:Boolean=false, cancelable:Boolean=false)
{

super(type, bubbles, cancelable);
}

}
}

The code in Listing 7.8 is available in the Web site files as events/LoginEvent.as
in the chapter07 project.

Overriding the clone() method
The Event class has a method named clone() that’s used during the bubbling process to create
new copies of the event object for each level of bubbling. As described previously, the event object’s
currentTarget property changes its value each time the event is dispatched to point to the con-
tainer or control that’s currently dispatching the event. By creating a new copy on each dispatch,
the currentTarget for previous versions of the event object doesn’t change.

When you override a method in ActionScript, you must include the override keyword in
the method declaration:

override public function superMethod():void
{}

If you don’t include the override keyword and the method name matches one that’s already declared
in the current class’s inheritance hierarchy, the compiler generates an error.

Keep in mind these rules for overriding the clone() method:

� The method must be marked with override and public.

� The method’s return data type should be Event.

CAUTION CAUTION

ON the WEBON the WEB

208

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 208

� Within the method:

� Instantiate the current custom event class.

� Populate the new copy with data from the current copy.

� Return the new copy.

The clone() method for the LoginEvent class would look like this:

override public function clone():Event
{

var newEvent:LoginEvent = new LoginEvent(type);
newEvent.username = username;
newEvent.password = password;
return newEvent;

}

Notice that the current object’s type property (the name of the current event) is passed to the new
copy of the event object in the constructor method call.

If you don’t make an event bubble, it doesn’t need a clone() method. By default,
custom event classes have their bubbles property set to false. To turn bubbling

on whenever you use the custom event class, pass a value of true to the superclass’s constructor
method’s second argument, as in:

super(type, true, cancelable);

Dispatching a custom event class
When you dispatch a custom event class, follow these steps, which are the same as for pre-built
event classes in the Flex framework:

1. Define a custom event that sets the type as the new custom ActionScript class.

2. Create an event object typed as the custom event class at runtime.

3. Populate the event object with data.

4. Dispatch the event object.

To declare a custom event named login that dispatches an instance of the LoginEvent class
described above, the code within the custom Form component would look like this:

<mx:Metadata>
[Event(name=”login”, type=”events.LoginEvent”)]

</mx:Metadata>

At runtime, you would create an instance of the event class, passing the event name into the con-
structor method:

var e:LoginEvent = new LoginEvent(“login”);

TIPTIP

209

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 209

The next step is to populate the event object with data. Assuming you have TextInput controls
with their id properties of userNameInput and passwordInput, the code would be:

e.username = userNameInput.text;
e.password = passwordInput.text;

Finally, dispatch the event just as you would with one of the pre-built event classes:

dispatchEvent(e);

Listing 7.9 shows a Form component that declares and dispatches the custom event using the cus-
tom event class.

LISTING 7.9

A Form component that dispatches a custom event object

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Form xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Metadata>
[Event(name=”login”, type=”events.LoginEvent”)]

</mx:Metadata>
<mx:Script>

<![CDATA[
import events.LoginEvent;
private function doLogin():void
{

var e:LoginEvent = new LoginEvent(“login”);
e.username = userNameInput.text;
e.password = passwordInput.text;
dispatchEvent(e);

}
]]>

</mx:Script>
<mx:FormItem label=”User Name:”>

<mx:TextInput id=”userNameInput”/>
</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput id=”passwordInput”/>
</mx:FormItem>
<mx:FormItem>

<mx:Button label=”Log In” click=”doLogin()”/>
</mx:FormItem>

</mx:Form>

The code in Listing 7.9 is available in the Web site files as
components/LoginForm.mxml in the chapter07 project.ON the WEBON the WEB

210

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 210

Handling a custom event class
You handle an event that uses a custom event class in two ways — the same as with the Flex frame-
work’s pre-built event classes:

� With an MXML-based event handler

� With addEventListener()

In either case, you create a custom event handler function that expects an event argument typed
as your custom event class:

private function loginHandler(event:LoginEvent):void
{}

Unlike the event classes in the flash.events package, your custom event classes
must be imported prior to use:

import events.LoginEvent;

Flex Builder can create import statements for you as you type. For example, as you type the string
LoginEvent in the event handler function signature, Flex Builder presents a list of classes that
match what you’ve typed. When you select your class, the import statement for that class is added
at the top of the ActionScript code.

If you don’t see the list of available classes, press Ctrl+spacebar to trigger Flex Builder’s
code completion tool.

Within the event handler function, extract data as needed. The complete event handler function
might look like this:

private function loginHandler(event:LoginEvent):void
{

messageLabel.text = “You logged as “ + event.username +
“ with a password of “ + event.password;

}

Then, to call the event handler function, use an MXML-based event handler, as in:

<components:LoginForm login=”loginHandler(event)”/>

Or, if you prefer to use addEventListener(), call this code as the application starts up:

myForm.addEventListener(LoginEvent.LOGIN, loginHandler);

Either way, the loginHandler() function is called and the data is delivered to the application.

TIPTIP

TIPTIP

211

Working with Events 7

12_287644-ch07.qxp 6/23/08 11:35 PM Page 211

Summary
In this chapter, I described the Flex event architecture and how you can create your own events to
share data between application components. You learned the following:

� Flex applications are event-driven.

� Every component that dispatches events includes EventDispatcher in its inheritance
hierarchy.

� You handle events with either MXML-based event handlers or the
addEventListener() method.

� Event handler functions receive a single event argument and return void.

� You can declare and dispatch custom events from your custom components.

� You can create custom event classes to store and send data from custom components to
the rest of the application.

� To make a custom event class bubble, set its bubble property to true and override
the Event class’s clone() method.

� You handle custom events and event classes with the same architecture as pre-built
classes in the Flex framework.

212

Flex FundamentalsPart I

12_287644-ch07.qxp 6/23/08 11:35 PM Page 212

The Flex Class
Library

IN THIS PART
Chapter 8
Using Flex Controls

Chapter 9
Using Layout Containers

Chapter 10
Using Cascading Style Sheets

Chapter 11
Working with Text

Chapter 12
Managing Application Navigation

Chapter 13
Working with Pop-up Windows

Chapter 14
Controlling Animation

Chapter 15
Managing View States

13_287644-pp02.qxp 6/23/08 11:36 PM Page 213

13_287644-pp02.qxp 6/23/08 11:36 PM Page 214

Through previous chapters, I’ve described various aspects of Flex
application development and declared instances of controls such as
Label and Button.

Flex uses two types of visual components:

� Containers are visual components that can contain other objects.

� Controls are visual components that display information or pro-
vide the application with user interaction capabilities.

A Flex control can serve two purposes:

� All controls help you create the visual presentation of the application.

� Interactive controls allow the user to provide you with information
through data entry and mouse gestures (such as moving the mouse
or clicking its buttons).

In this chapter, I describe the nature of Flex controls and show the interface
and usage of commonly used controls in data entry forms and other visual
presentations.

To use the sample code for this chapter, import the
chapter08.zip Flex project archive file from the Web site

files into your Flex Builder workspace. In addition to the specific applications
in the Listings in this chapter, the Web site files include sample applications for
most of the controls described here.

ON the WEBON the WEB

215

IN THIS CHAPTER
Understanding Flex controls

Using text controls

Using layout controls

Using button controls

Using interactive controls

Presenting images

Using Flex Controls

14_287644-ch08.qxp 6/23/08 11:37 PM Page 215

Instantiating and Customizing Controls
As described previously, a Flex control is really an ActionScript class that can be instantiated either
with an MXML tag-based declaration or an ActionScript statement.

In order to determine the behavior and use of a control, you need to know a control’s public inter-
face, or its API. Because a control is written as an ActionScript class, to get information from the
control and to be able set its appearance, you need to know the control’s members, their require-
ments, and their behavior:

� Properties

� Methods

� Events

� Styles

� Effects

� Constants

This information is available in the Flex API documentation for each of the framework’s included
controls.

Instantiating controls with MXML and ActionScript
When you instantiate a control with MXML, it’s known as declarative instantiation:

<mx:Button id=”myButton”/>

The same code in ActionScript is known as programmatic instantiation:

var myButton:Button = new Button();
this.addChild(myButton);

Either way, the result is a visual object that’s created in Flash Player memory and displayed in the
parent class. The behavior of the object is determined by its API and internal implementation.

Setting control properties and styles
A control’s properties and styles can be set in two ways:

� Upon instantiation with MXML attributes

� With ActionScript code

Properties and styles that are set with MXML attributes are done pretty much the same way. This
Label control has a text property and a color style:

<mx:Label id=”myLabel” text=”my text value” color=”#ff0000”/>

216

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 216

But when you use ActionScript code to reset the object’s properties and styles at runtime, the syn-
tax is different. Properties are set with simple dot syntax:

myLabel.width = 100;

Styles are set with a method named setStyle() that takes two arguments: the style name and its
new value:

myLabel.setStyle(“fontWeight”, “bold”);

Styles are described in more detail in Chapter 10, but you need to understand this fundamental
difference between properties and styles as you acquaint yourself with the controls that are
described in this chapter.

Understanding the UIComponent class
As with any other ActionScript class, a control’s members are a combination of those that are
declared locally in the class and those that are declared in the class’s inheritance hierarchy.

Each control, such as Label, is extended from a superclass named UIComponent. The UML dia-
gram in Figure 8.1 describes the inheritance relationship between UIComponent and classes that
extend the container and control classes.

FIGURE 8.1

This UML diagram describes the relationship between the UIComponent and the container and control
classes.

UIComponent

Container

Canvas

LabelButton

Box

HBox VBox

217

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 217

Visual components can be directly extended from UIComponent, as with Label and Button, or
they can have UIComponent as one of the classes in their inheritance hierarchy, as with VBox,
HBox, and Canvas. In this section, I describe the class’s properties and styles that are inherited by
all visual components.

UIComponent properties
Table 8.1 describes key properties that are declared in the UIComponent class and inherited by all
visual components.

TABLE 8.1

Key UIComponent Properties

Property Data Type Description

currentState String Determines which named “view state” is currently displayed.

enabled Boolean Determines whether a component can receive user interactions, and in
some cases, whether a “disabled” style will be used in its display.

height Number The height of the component in pixels. In MXML, you can also set height
to a percentage setting such as “100%,” but in ActionScript, the percentage
would be set through the percentHeight property.

id String This becomes the component’s instance (variable) name. Each component
id within the scope of the application or the current custom component
must be unique. The value of the id property cannot be reset at runtime.
Components that are instantiated in MXML without an id property are
anonymous and cannot be directly addressed in ActionScript or binding
expressions.

maxHeight Number The maximum height of the component in pixels.

maxWidth Number The maximum width of the component in pixels.

minHeight Number The minimum height of the component in pixels.

minWidth Number The minimum width of the component in pixels.

percentHeight Number Percent height relative to the component’s parent. This returns a meaningful
value only if explicitly set.

percentWidth Number Percent width relative to the component’s parent. This returns a meaningful
value only if explicitly set.

states Array An array containing one or more view state definitions. (See Chapter 15 for
more information on view states.)

styleName String A previously declared CSS style name (sometimes known as a CSS class)
whose properties the component inherits.

218

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 218

Property Data Type Description

toolTip String A string that appears in a tool tip when the mouse hovers over the
component.

transitions Array An array containing one or more view state transition definitions.

visible Boolean Whether the control is visible.

width Number The width of the control in pixels. In MXML, you also can set width to a
percentage setting such as “100%,” but in ActionScript, the percentage
would be set through the percentWidth property.

x Number The number of pixels from the left edge of the control’s parent to the left
edge of the control. This is meaningful only in a container with absolute
layout.

y Number The number of pixels from the top edge of the control’s parent to the top of
the control. This is meaningful only in a container with absolute layout.

Many more UIComponent properties are available that are used less frequently than those listed
in Table 8.1. See the API documentation for a complete list.

Using Text Controls
The Flex framework includes five controls that are designed to display or accept text:

� Label: A single-line display control

� Text: A variable-height display control

� TextInput: A single-line data entry control

� TextArea: A variable-height data entry control

� RichTextEditor: A compound data entry control that accepts text and property set-
tings and converts its content to HTML 1.0 code

Common properties of text controls
All five text controls support a common set of properties and styles, and each supports certain
properties and styles that are unique to that control’s functions and requirements.

Properties that are implemented by all text controls are described in Table 8.2.

219

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 219

TABLE 8.2

Common Properties of Text Controls

Property Data Type Description

condenseWhite Boolean Indicates whether extra white space (space characters, tabs, and line
feeds) is removed from text with HTML 1.0 markup. This is not
supported in RichTextEdit.

htmlText String Text that contains HTML 1.0 markup.

Text String Simple text that contains no HTML markup.

The text property
The text property is used to set or get simple string values with all text controls. As with all prop-
erties, its value can be accessed in either MXML or ActionScript.

To set the text property in MXML, you can use either an XML text attribute or a nested child
<mx:text> tag set. This Label control has its text property set through an attribute:

<mx:Label id=”myLabel” text=”Hello World”/>

This Label control has its text property set through a nested child element:

<mx:Label id=”myLabel”>
<mx:text>Hello World</mx:Text>

</mx:Label>

The two preceding Label declarations are functionally identical.

Notice that child elements that set properties require the mx namespace prefix.
Property, style, and event listener attributes do not require the mx namespace prefix.

To set or get the text property in ActionScript, use simple dot syntax:

myLabel.text = “A new string”;

The htmlText property
The htmlText property accepts HTML 1.0 markup that modifies the display and behavior of the
control. Although all five text controls support htmlText, both TextInput and TextArea typ-
ically support only displaying HTML (rather than accepting markup text as data entry).

Flash Player has limited HTML parsing and display capabilities. These HTML tags are supported in
Flash Player 9:

� <a> (anchor)

� (bold)

TIPTIP

220

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 220

�
 (break)

� (font)

� (image)

� <i> (italics)

� (list item)

� <p> (paragraph)

� <textformat> (text format)

� <u> (underline)

Important limitations in Flash Player HTML support include the following:

� HTML tables are not supported.

� CSS within HTML markup is not supported.

� Flash Player 9 does not support ordered (numbered) lists.

� Only a single unordered (bulleted) list style is supported.

� Wrapping text in an <a> tag set creates a hyperlink, but does not affect color or underlin-
ing of text.

� Tags must be declared in lowercase.

Because HTML markup includes tag characters that can be misinterpreted by the Flex compiler,
you usually can’t use a simple MXML attribute to set the htmlText property’s value. This Label
control tries to use htmlText to set bold text:

<mx:Label htmlText=”This text is bold”/>

The code looks like it should work, but it results in this compiler error:

The value of attribute “htmlText” must not contain the ‘<’
character.

Since < is a reserved character in XML, using HTML markup in this manner isn’t acceptable.You
can get around this issue in three ways and successfully display HTML text: with an initialization
function, with XML entities, and with a CDATA section.

Using an initialization function
An initialization function is executed during the initialization phase of an object’s life cycle. A func-
tion that sets htmlText might look like this:

private function initText():void
{

htmlLabel.htmlText = “This text is bold”;
}

221

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 221

Because the HTML markup is wrapped inside ActionScript code, the rules for XML reserved char-
acters no longer apply and you can add as many HTML tags as you need.

You call the initialization function upon the component’s initialize event:

<mx:Label id=”htmlLabel” initialize=”initText()”/>

As shown in Figure 8.2, the application displays the text as defined in the htmlText property.

FIGURE 8.2

A Label displaying HTML text

Using XML entities
As described in Chapter 4, all XML reserved characters have entities that can be used as aliases for
those characters. You can use these entities instead of their literal equivalents in the htmlText
property:

<mx:Label htmlText=”This text is bold”/>

This example results in the same display as the first, but it’s obviously very difficult to read and
generally not recommended.

Using CDATA
Instead of using XML entities to replace the reserved characters in HTML markup, you’re better off
wrapping literal HTML markup inside a CDATA section. As described in Chapter 4, the CDATA
block protects literal text from XML interpretation. To use the CDATA section, first declare the
htmlText property as a child element instead of an attribute. Then wrap the HTML text inside
the CDATA section:

<mx:Label>
<mx:htmlText>

<![CDATA[This text is bold]]>
</mx:htmlText>

</mx:Label>

Because the reserved characters are wrapped inside the CDATA section, you can add as much literal
markup text as you like without encountering XML parsing problems.

222

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 222

You can wrap existing text inside a CDATA section by first selecting the text and then
selecting Source ➪ Add CDATA Block from the Flex Builder menu.

Using the condenseWhite property
The condenseWhite property applies only to text set through the htmlText property. If
applied to a control with text set through the text property, the value of condenseWhite is
ignored. A Boolean value that defaults to false, when set to true it “normalizes” extra white
space within the text.

In this code, a Text control displays a long text value set through the htmlText property:

<mx:Text width=”200” condenseWhite=”true”>
<mx:htmlText>

<![CDATA[
The quick red

fox jumped over the lazy brown dog.
The quick red

fox jumped over the lazy brown dog.
The quick red

fox jumped over the lazy brown dog.
]]>

</mx:htmlText>
</mx:Text>

Figure 8.3 shows how the Text control is displayed with condenseWhite set to its default value
of false. Notice that the extra line feeds and spaces in the code are displayed in the application.

FIGURE 8.3

HTML text with condenseWhite set to false

Figure 8.4 shows how the Text control is displayed with condenseWhite set to true. The
extra line feeds and spaces in the code have been removed.

TIPTIP

223

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 223

FIGURE 8.4

HTML text with condenseWhite set to true

All text controls except the RichTextEdit control support the condenseWhite
property. Use this property when displaying text (rather than accepting data entry), so

when used with the TextInput or TextArea controls, it should be paired with an editable
property set to false.

Text display controls
Two controls are designed exclusively for display of text: Label and Text. They’re primarily dis-
tinguished from each other by how they handle text values that are too long to fit on a single line:
The Label control truncates long text, whereas the Text control wraps the words and grows ver-
tically as needed.

The Label control
The Label control displays a single line of text. By default, this control shrinks or grows horizon-
tally to accommodate the width of its text property.

The truncateToFit property
The Label control’s truncateToFit property is a Boolean value that determines whether text
will be truncated. When set to the default value of true, text that is longer than can fit (given the
control’s current width) is truncated, and the control displays the surviving text followed by an
ellipsis (...). In addition, when the user moves the mouse over the control, a tool tip pops up dis-
playing the control’s full text.

This Label control’s truncateToFit property is set to the default of true:

<mx:Label width=”200”
text=”The quick red fox jumped over the lazy brown dog.”/>

Figure 8.5 shows that the Label control truncates the text and adds the ellipsis at the end. When
the mouse hovers over the control, the tool tip shows the complete text.

TIPTIP

224

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 224

FIGURE 8.5

A Label with truncateToFit set to true

This Label has the same width limitation, but truncateToFit is set to false:

<mx:Label width=”200” truncateToFit=”false”
text=”The quick red fox jumped over the lazy brown dog.”/>

The result will be that the text is still truncated, but the ellipsis characters aren’t added and the tool
tip isn’t available when the mouse hovers over the control.

The selectable property
The Label and Text controls share a Boolean property named selectable. When set to
true, the user can select some or all of the control’s text, right-click to see a context menu, and
copy the selected text to the clipboard, as shown in Figure 8.6.

FIGURE 8.6

Right-click a selectable control to see the context menu

The Text control
The Text control also is used exclusively to display text, but unlike the Label, it can wrap text
and expand vertically to show as much text as necessary.

225

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 225

If you don’t set the Text control’s width property, it expands to whatever width is needed to dis-
play its value on a single line. To cause word wrapping and vertical expansion, set the width to an
absolute dimension in pixels or a percent value such as 100% of the control’s container.

This Text control has a long string value and a width set to 200 pixels:

<mx:Text width=”200”
text=”The quick red fox jumped over the lazy brown dog.”/>

As shown in Figure 8.7, the Text control wraps the text and expands vertically to display the
entire text value.

FIGURE 8.7

A Text control with long text that wraps and expands vertically

Limitations of the Label and Text controls
Both the Label and the Text control have these limitations:

� No support for background colors or images

� No support for borders

� No support for scrollbars

If you want backgrounds, borders, or scrollbars with displayed text, use the TextInput or
TextArea controls with their editable property set to false.

Text entry controls
The Flex framework includes three text entry controls: TextInput, TextArea, and
RichTextEdit.

The TextInput control
The TextInput control accepts a single line of data entry. This instance of the TextInput con-
trol is displayed with all default properties and styles:

<mx:TextInput id=”myInput”/>

226

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 226

The TextInput control doesn’t have its own label property, so it’s commonly combined with
a Label control and wrapped in an HBox, or wrapped in a FormItem container, which has its
own label. When combined with an HBox and a Label, it looks like this:

<mx:HBox>
<mx:Label text=”Enter some text:”/>
<mx:TextInput id=”myInput”/>

</mx:HBox>

As shown in Figure 8.8, the TextInput control is displayed as a rectangular region with a default
background color of white.

FIGURE 8.8

A simple TextInput control

In addition to having the same properties described previously that manage text display such as
text, htmlText, and condenseWhite, the TextInput control defines certain properties that
are of particular use in controlling data entry. Table 8.3 lists these properties.

TABLE 8.3

TextInput Properties

Property Data Type Description

displayAsPassword Boolean When set to true, causes entered characters to be displayed as
“*” characters. Defaults to false.

editable Boolean When set to false, prevents control from receiving focus or
data entry. Defaults to true.

horizontalScroll Number When the control’s content is scrolled, indicates pixel position of
Position left-most displayed content.

length Number A read-only property indicating the number of characters in the
text property that’s currently displayed.

continued

227

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 227

TABLE 8.3 (continued)

Property Data Type Description

maxChars int The maximum number of characters the control accepts. If you
exceed the maxChars value, you don’t see a visible error
message, but the control stops accepting entry.

restrict String Determines which characters the user can enter.

selectionBeginIndex int The index position of the first selected character.

selectionEndIndex int The index position of the last selected character.

Using the restrict property
The restrict property allows you to restrict which characters can be typed into a TextInput
control. The property’s value defaults to null, meaning the user can enter any character. Any
other value means the user can enter only those characters, or ranges of characters, that are listed.

The restrict property accepts either literal individual characters or ranges of characters, with
no delimiter between each selection. For example, a restrict value of abc means you can enter
any of the three characters a, b, or c.

To enter a range of characters, separate the beginning and ending characters of the range with a
hyphen. A restrict value of a-z0-9 allows any alphabetical or numeric character.

The restrict property is case-sensitive, so if its value is set to A-Z, the user can enter only
lowercase characters. Any characters that are entered in lowercase are converted to uppercase auto-
matically. To allow alphabetical characters to be entered in either uppercase or lowercase, enter the
range twice, as in A-Za-z. If you want to include the dash (-) or backslash (\) as permitted char-
acters, you must first use the escape character, the backslash (\).

When a value is typed into a text control that isn’t allowed by the control’s restrict
property, the user doesn’t see an error — the typed value is just ignored.

Using selection properties
The properties selectionBeginIndex and selectionEndIndex allow you to programmati-
cally select sections of text or find out what range of text is currently selected. This function selects
all of a TextInput control’s text and calls the control’s setFocus() method to ensure that it has
focus after the function has been executed:

private function selectText():void
{

myInput.selectionBeginIndex = 0;
myInput.selectionEndIndex = myInput.text.length;
myInput.setFocus();

}

TIPTIP

228

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 228

This function determines which text is currently selected and uses the String class’s
subString() method to get the selected text:

private function showSelectedText():void
{

var beginIndex:int = myInput.selectionBeginIndex;
var endIndex:int = myInput.selectionEndIndex;
var selectedText:String =

myInput.text.substring(beginIndex, endIndex);
myInput.setFocus();
myInput.selectionBeginIndex = beginIndex;
myInput.selectionEndIndex = endIndex;
Alert.show(selectedText, “Selected Text”);

}

When the TextInput control loses focus, its selections are lost. The code in the pre-
ceding example resets the control’s focus and selection index values to ensure that its

original state is restored after the function has been executed.

When using the selection index properties, remember that all indexing in ActionScript is
zero-based. If selectionBeginIndex is set to a value of 1, the second character is

the first one that’s selected.

The TextArea control
The TextArea control implements most properties and methods of the TextInput control, but
it works better when long values are to be entered. Unlike TextInput, it allows line feeds and
wraps text that is too long to fit on a single line.

The TextArea control automatically creates a vertical scrollbar if its text or htmlText value is too
long to be displayed given the control’s current size. This TextArea control has a specified height
and width of 150 pixels each and a text value that’s long enough to trigger a vertical scrollbar:

<mx:TextArea id=”myTextArea” width=”150” height=”150”>
<mx:text>
<![CDATA[Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Praesent aliquam, justo convallis luctus rutrum, erat
nulla fermentum diam, at nonummy quam ante ac quam. Maecenas
urna purus, fermentum id, molestie in, commodo porttitor,
felis. Nam blandit quam ut lacus. Quisque ornare risus quis
ligula.
]]>

</mx:text>
</mx:TextArea>

As shown in Figure 8.9, the TextArea displays a vertical scrollbar to accommodate the long text.

TIPTIP

NOTENOTE

229

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 229

FIGURE 8.9

A TextArea control with a vertical scrollbar

In the preceding code sample, the text value is a single unbroken string. Any spaces or
line feeds are respected and displayed the TextArea component (unless text is set

through the htmlText property with condenseWhite set to true).

The RichTextEditor control
The RichTextEditor control is a compound control that allows entry of text and these format-
ting features:

� Font family

� Font size in pixels

� Bold, italics, and underlining

� Font color

� Text alignment

� Bulleted lists

� Hyperlinks

As the user selects formatting options, they’re interpreted into HTML 1.0 markup that can be
understood by Flash Player. The value of the HTML markup is available through the control’s
htmlText property, which is a bindable value.

This RichTextEditor control’s title property results in a String value displayed in the con-
trol’s upper-left area. The Text control displays the editor’s current htmlText property through a
binding expression:

<mx:RichTextEditor id=”myEditor” title=”My Rich Text Editor”/>
<mx:Text text=”{myEditor.htmlText}” width=”400”/>

TIPTIP

230

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 230

As shown in Figure 8.10, the control’s htmlText property is displayed in the Text control as the
user makes changes.

FIGURE 8.10

The RichTextEdit control

Using Layout Controls
A layout control creates visual output, but it isn’t designed to be interactive in same way as a
Button, TextInput, or other such control. These three controls affect layout but don’t create
any interaction with the user:

� HRule: A horizontal rule

� VRule: A vertical rule

� Spacer: An invisible control that can change other components’ positions in horizontal
or vertical layout

231

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 231

HRule and VRule
The HRule and VRule controls display a single line in the application. HRule creates a horizontal
line, while VRule creates a vertical line. Each displays a primary line called the stroke and a sec-
ondary line called the shadow. You control the stroke and shadow colors and widths separately
through distinct style settings.

Both HRule and VRule support the properties described in Table 8.4 to determine the control’s
appearance.

TABLE 8.4

HRule and VRule Properties

Property Data Type Description Default

Width Number The width of the control HRule: 100
VRule: 2

Height Number The height of the control HRule: 2
VRule: 100

strokeColor uint The control’s stroke line color 0xC4CCCC

strokeWidth Number The width of the primary line in pixels 2

shadowColor uint The control’s shadow line color 0xEEEEEE

HRule and VRule objects are typically used to visually separate other visual components. This
application displays two controls in vertical layout separated with an HRule control:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

verticalGap=”25”>
<mx:RichTextEditor id=”myEditor” title=”My Rich Text Editor”/>
<mx:HRule strokeColor=”#000000” width=”{myEditor.width}”/>
<mx:Text text=”{myEditor.htmlText}” width=”{myEditor.width}”/>

</mx:Application>

As shown in Figure 8.11, the HRule appears between the other two controls.

232

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 232

FIGURE 8.11

A RichTextEditor, an HRule, and a Text control

The Spacer control
The Spacer control is invisible and “pushes” other objects in an application or other container
that uses vertical or horizontal layout. Its width and height properties, set to Number values,
dictate how much additional space they add to the layout.

The Spacer control isn’t useful in absolute layout containers, because the controls dictate
their absolute positions through x and y properties or through constraint-based layout.

This application uses a Spacer with a height of 100 pixels to add vertical separation between
two controls:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:RichTextEditor id=”myEditor” title=”My Rich Text Editor”/>
<mx:Spacer height=”100”/>
<mx:Text text=”{myEditor.htmlText}” width=”400”/>

</mx:Application>

As shown in Figure 8.12, the space between the controls includes both the size of the Spacer and
the verticalGap of the application.

TIPTIP

233

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 233

FIGURE 8.12

Two controls separated with a Spacer

Using Button Controls
The Flex framework includes these button controls that allow interaction with the user:

� Button

� LinkButton

� CheckBox

� RadioButton

� PopupButton

As shown in the UML diagram in Figure 8.13, the Button control is implemented as the super-
class for all other button controls. As a result, any event or property implemented in a Button is
available in all the other controls described in this section.

The Invisible Spacer creates this space

234

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 234

FIGURE 8.13

Button controls inheritance hierarchy

The Button control
The Button control is displayed as a rectangular object that can display a label and a graphical
icon. One of the most commonly used interactive controls, you typically use event listeners with
the Button and call ActionScript in reaction to its click event.

This simple Button control has a label of “Click Me” and a click event listener that displays an
Alert dialog box:

<mx:Button label=”Click Me” click=”Alert.show(‘You clicked’)”/>

Using a toggle Button
The Button control behaves by default as a command button to indicate that some action should
be executed. To use the Button as a control that switches between two states, set its toggle
property to true. The Button control has a Boolean property named selected that defaults
to false. When toggle is set to true, each click event causes the selected property to
switch back and forth between true and false.

This Button control’s toggle property is set to true. Each time it’s clicked, the selected
property switches between true and false. The Label displays the selected property’s
current value through a binding expression:

<mx:Button id=”toggleButton” label=”Toggle Button”
toggle=”true”/>

<mx:Label text=”Button selected: {toggleButton.selected}”/>

As shown in Figure 8.14, the control’s appearance changes depending on the value of its
selected property. If selected is false, it appears as a concave button; if true, its appear-
ance flattens to indicate that it’s selected.

Button

RadioButton PopupButtonLinkButton CheckBox

235

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 235

FIGURE 8.14

Toggle buttons with the selected property set to true and false

Using button icons
A button icon is a graphic that appears on the face of a Button control. You typically use an
embedded graphic (rather than one that is downloaded from the server at runtime) for an icon,
because embedding guarantees the best possible performance.

Button icons can be built in any supported graphic format: PNG, JPEG, GIF, and SWF. To embed a
graphic for use as an icon, first declare it in the application as a bindable Class variable using the
[Embed] metadata tag:

[Bindable]
[Embed(source=”graphics/deleteIcon.png”)]
public var myDeleteIcon:Class;

In the Button declaration, set the icon property to the embedded graphic variable using a bind-
ing expression:

<mx:Button id=”deleteButton”
label=”Delete” icon=”{myDeleteIcon}”/>

As shown in Figure 8.15, the Button control appears with the icon on the left and the label
on the right.

FIGURE 8.15

A Button with an icon

selected=false selected=true

236

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 236

Button icons sometimes require transparency to allow the control’s background colors
to show through the icon graphic. Because JPEG files don’t support transparency, use

one of the graphic formats that does: GIF, PNG, or SWF.

Controlling the label position
The Button control’s labelPlacement property determines the position of the label relative
to the position of the icon and the Button control’s dimensions. By default, the label is posi-
tioned in the center of a button with no icon, and to the right of an icon if it does exist. The pos-
sible values of labelPlacement include top, bottom, left, and right.

Figure 8.16 shows the effect of setting labelPlacement with a Button that uses a graphic icon.

FIGURE 8.16

A Button with an icon and labelPlacement set to different values

If you declare a Button object with an icon property but no label, the Button object’s
height and width are set dynamically to accommodate the size of the icon image.

The LinkButton control
The LinkButton control performs all the actions of the Button, but it has an appearance and
behavior more like a traditional HTML hyperlink.

In its initial state, the LinkButton is transparent and shows only its label and icon (if any). As
shown in Figure 8.17, when the cursor hovers over a LinkButton, its background color changes
and a mouse cursor shaped as a pointing hand appears.

Because the LinkButton control extends Button, it supports all its superclass’s
properties and methods. Some, however, aren’t very useful with the LinkButton. For

example, while the toggle property is available with LinkButton, setting it to true doesn’t cause
any difference in appearance when the user clicks it to set selected to true or false.

TIPTIP

TIPTIP

TIPTIP

237

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 237

FIGURE 8.17

The LinkButton with the mouse hovering over it

The CheckBox control
The CheckBox control allows the user to toggle its state to true or false. As shown in Figure
8.18, its selected property causes an icon shaped as a check mark inside a box to be displayed.
When selected is false, the icon appears as an empty box.

FIGURE 8.18

A Checkbox object with its selected property set to true

Just as with the Button control that it extends, CheckBox supports the label property. The
label appears by default to the right of the icon and is a clickable object; that is, clicking the icon
and the label both have the same effect of toggling selected to true or false.

This CheckBox control displays a label of “Option selected”:

<mx:CheckBox id=”myCheckBox” label=”Option selected”/>

At runtime, you determine or set whether the control is checked through its selected property:

private function checkSelected():void
{

if (myCheckBox.selected)
{

Alert.show(“You selected the CheckBox”);
}

238

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 238

else
{

Alert.show(“You didn’t select the CheckBox”);
}

}

Using RadioButton controls
RadioButton controls are designed to be used in groups of controls representing mutually exclu-
sive options. For example, this control represents the value “Small” and has its label set to the
same value:

<mx:RadioButton value=”Small” label=”Small”/>

To group multiple radio buttons, use a control named RadioButtonGroup. This control is a
non-visual object and provides a way to group RadioButton controls together so that only one
of them can be selected at any given time. The RadioButtonGroup control is assigned an id
property. Then each RadioButton joins the group by naming the RadioButtonGroup in its
groupName property.

This is a group of mutually exclusive RadioButton controls, because they all share the same
groupName property:

<mx:RadioButtonGroup id=”buttonGroup”/>
<mx:RadioButton value=”Small” label=”Small”

groupName=”buttonGroup”/>
<mx:RadioButton value=”Medium” label=”Medium”

groupName=”buttonGroup”/>
<mx:RadioButton value=”Large” label=”Large”

groupName=”buttonGroup”/>

RadioButtonGroup is implemented as an invisible control rather than a visual con-
tainer. This gives you the freedom to arrange RadioButton controls anywhere on

screen, rather than visually grouped together.

The application in Listing 8.1 displays a group of RadioButton controls grouped with a
RadioButtonGroup. When the user clicks Check Status, an Alert dialog displays the selected
value.

LISTING 8.1

A group of radio buttons

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#eeeeee”>

continued

TIPTIP

239

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 239

LISTING 8.1 (continued)

<mx:Script>
<![CDATA[

import mx.controls.Alert;
private function checkSelected():void
{

Alert.show(“You selected “ + buttonGroup.selectedValue);
}

]]>
</mx:Script>
<mx:RadioButtonGroup id=”buttonGroup”/>
<mx:VBox>

<mx:RadioButton value=”Small” label=”Small”
groupName=”buttonGroup”/>
<mx:RadioButton value=”Medium” label=”Medium”

groupName=”buttonGroup”/>
<mx:RadioButton value=”Large” label=”Large”

groupName=”buttonGroup”/>
</mx:VBox>
<mx:Button label=”Check status” click=”checkSelected()”/>

</mx:Application>

The code in Listing 8.1 is available in the Web site files in the chapter08 project’s src
folder as RadioButtonGroup.mxml.

Figure 8.19 shows the application displaying the resulting RadioButton controls.

FIGURE 8.19

An application with RadioButton controls

The RadioButtonGroup control dispatches an itemClick event whenever any of its
member RadioButton controls are selected. This allows you to handle click events

for the entire group with a single event handler.

TIPTIP

ON the WEBON the WEB

240

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 240

Other Data Entry Controls
The Flex framework includes these other controls that can be used to collect data from the applica-
tion’s user:

� NumericStepper

� DateField

� DateChooser

� ColorPicker

Each of these controls is designed to support data entry for a particular type of data.

The NumericStepper control
The NumericStepper is a compound control that’s designed for numeric data entry. It includes a
TextInput control for direct entry and a set of buttons that increment and decrement the con-
trol’s current value.

The NumericStepper doesn’t have its own label property, so it’s typically paired with a Label
or wrapped in a FormItem container, which has its own label property. This code declares a sim-
ple NumericStepper wrapped in an HBox with a Label:

<mx:HBox>
<mx:Label text=”Enter value:”/>
<mx:NumericStepper id=”myStepper”/>

</mx:HBox>

As shown in Figure 8.20, the control displays its value property and allows the user to change it.

FIGURE 8.20

A NumericStepper control

The NumericStepper supports these properties that determine its behavior:

� minimum: The minimum permitted value; defaults to 0

� maximum: The maximum permitted value; defaults to 10

241

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 241

� stepSize: The amount to increment or decrement when the control’s buttons are
clicked; defaults to 1

� maxChars: The maximum length of the value that can be directly typed into the control

This NumericStepper has a minimum value of 5, a maximum value of 25, and a stepSize of 5:

<mx:NumericStepper id=”myStepper”
minimum=”5” maximum=”25” stepSize=”5”/>

The NumericStepper control’s value property is bindable and can be used in a binding expres-
sion or ActionScript statement to get the value the user has entered:

<mx:Label text=”You entered: {myStepper.value}”/>

Date controls
Two data entry controls are designed to show or select a date value:

� DateChooser displays a calendar from which the user selects a date.

� DateField displays a TextInput and a small calendar icon. When either is clicked, a
calendar is displayed for date selection.

The DateChooser control
The DateChooser control presents an interactive calendar that displays a month and year and
allows the user to do the following:

� Navigate forward and back one month at a time

� Select a single date, multiple dates, or a range of dates with mouse operations

The following code declares a simple DateChooser control:

<mx:DateChooser id=”myDateChooser”/>

The DateChooser control supports Boolean properties named allowMultipleSelection
and allowDisjointSelection that respectively allow multiple and non-contiguous dates to
be selected. Changing either property causes changes in the control’s visual presentation.

As shown in Figure 8.21, the DateChooser is presented as a visual calendar from which the user
makes selections.

242

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 242

FIGURE 8.21

A DateChooser control

The DateField control
The DateField control presents the user with an input control and a small calendar icon. By
default, when the user clicks either the icon or the input, a calendar control pops up that looks the
same as the DateChooser and allows the user to make his selection. Unlike the DateChooser
component, DateField allows only a single date value to be selected.

The following code declares a simple DateField control:

<mx:DateField id=”myDateField”/>

As shown in Figure 8.22, the DateField is presented as an input control and icon which, when
clicked, present a calendar control.

FIGURE 8.22

A DateField control

243

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 243

The DateField control has a Boolean property named editable that’s set to false by
default. When set to true, the user can click into the input area and type a date value.

Date entry properties and methods
The DateChooser and DateField controls share a common set of properties that allow
you to control their behavior and collect their data. Table 8.5 describes these properties and their
capabilities.

TABLE 8.5

Date Entry Control Properties

Property Data Type Description Default

selectedDate Date The currently selected date value. Null

showToday Boolean Determines whether the current date is true
highlighted.

dayNames Array An array of String values used as labels [“S”, “M”, “T”,
for the day names. “W”, “T”, “F”,

“S”]

minYear int The minimum allowed year. 1900

maxYear int The maximum allowed year. 2100

disabledDays Array An array of integer values indicating by []
zero-based index days that aren’t selectable. Setting of [0,6]

would disable Sunday
and Saturday

disabledRanges Array A set of disabled ranges. Each range has []
of Object named properties of rangeStart and

rangeEnd typed as Date values.

selectableRange Object A selectable range. Requires named null
properties of rangeStart and rangeEnd
typed as Date values.

Other useful properties are described in the API documentation for DateField and
DateChooser.

Using Interactive Controls
Beyond the data entry controls described previously, certain controls are designed for user interac-
tion that can be used in a variety of applications. In this section, I describe the ScrollBar and
Slider controls.

244

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 244

The ScrollBar controls
There are two versions of the ScrollBar control:

� HScrollBar is for a horizontal scrollbar.

� VScrollBar is for a vertical scrollbar.

A ScrollBar control has four graphic elements: a track, a button, and two arrows. The user
changes the control’s current value by clicking and dragging the button, clicking above or below
the button, or clicking one of the arrows. The ScrollBar returns its current value through its
scrollPosition property. The scrollPosition property isn’t bindable, so typically it han-
dles ScrollBar interactions by listening for the scroll event, which is dispatched each time the
position of the button changes.

ScrollBar properties
The VScrollBar and HScrollBar are extended from the ScrollBar superclass, which imple-
ments the properties described in Table 8.6:

TABLE 8.6

ScrollBar Properties

Property Data Type Description Default

scrollPosition Number The position of the scroll button relative to the top null
of a VScrollBar or the left of an HScrollBar.
This property is bindable.

minScrollPosition Number The minimum value of scrollPosition. 0

maxScrollPosition Number The maximum value of scrollPosition. 0

pageSize Number Determines delta of change in pixels when user 0
clicks before or after the scroll button.

The scroll event
The scroll event is dispatched each time the user interacts with the ScrollBar control. Its event
object is typed as an event class named mx.events.ScrollEvent, which has a position prop-
erty containing the new scrollPosition. In the application in Listing 8.2, the HScrollBar con-
trol’s new scrollPosition is displayed in a Label control whose text property is changed each
time the scroll event is handled:

245

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 245

LISTING 8.2

An application with a horizontal scrollbar

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:Script>
<![CDATA[

import mx.events.ScrollEvent;
[Bindable]
private var scrollPos:Number;

private function scrollHandler(event:ScrollEvent):void
{

scrollPos = event.position;
}

]]>
</mx:Script>

<mx:Label id=”scrollLabel” fontSize=”18” fontWeight=”bold”
text=”Current scroll position: {scrollPos}”/>

<mx:HScrollBar id=”myScrollBar” width=”300”
minScrollPosition=”0” maxScrollPosition=”300” pageSize=”100”
scroll=”scrollHandler(event)”/>

</mx:Application>

The code in Listing 8.2 is available in the Web site files in the chapter08 project’s src
folder as ScrollBarDemo.mxml.

Figure 8.23 shows the HScrollBar and Label component in the application.

FIGURE 8.23

An HScrollBar and a Label displaying its current position

ON the WEBON the WEB

246

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 246

The Slider controls
There are two versions of the Slider control:

� HSlider is for a horizontal slider.

� VSlider is for a vertical slider.

A Slider control displays a track and a “thumb” graphic that allows the user to select a value by
clicking and dragging the thumb. You allow the slider to select any value within a range or restrict
it to selecting values at particular intervals. The control also can display two thumb icons to repre-
sent starting and ending values.

The user interacts with the Slider control by clicking and dragging the thumb icon or by click-
ing before or after the thumb. If the user clicks before or after the thumb, it slides to the selected
position. If the Slider has implemented snapping through the snapInterval property, the
thumb slides to the snapping position that’s closest to where the mouse click occurred.

The Slider controls return their current value through the value property. The value property
is bindable, so you can handle Slider interactions through either binding expressions or events.
Each time the Slider control’s value changes, it dispatches the change event.

Slider properties
The VSlider and HSlider are extended from the Slider superclass, which implements the
properties described in Table 8.7.

TABLE 8.7

Slider Properties

Property Data Type Description Default

value Number The currently selected value of the Slider based on thumb 0
position. Relevant only when thumbCount is 1.

values Array An array of values. Relevant only when thumbCount is []
greater than 1.

thumbCount int The number of thumbs that are displayed. Possible values are 1
1 and 2.

minimum Number Minimum value of the Slider. 0

maximum Number Maximum value of the Slider. 10

snapInterval Number When set, enforces snapping to particular intervals between
minimum and maximum. If set to 0, sliding is continuous. 0

continued

247

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 247

TABLE 8.7 (continued)

Property Data Type Description Default

tickInterval Number A numeric value used to calculate interval of tick marks. 9
Forexample, if minimum is 0, and maximum is 10, a
tickInterval of 2 creates 4 tick marks. The default value
of 0 displays no tick marks.

tickValues Array Determines display of tick marks on the Slider. All values undefined
should be between minimum and maximum. Use as
alternative to tickInterval.

labels Array An array of strings used as labels. Typically contains same undefined
number of items as tickValues.

The following code declares a Slider with tick marks and labels. Its value is displayed in a
Label control through a binding expression.

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Label id=”sliderLabel” fontSize=”18” fontWeight=”bold”
text=”Current slider position: {mySlider.value}”/>

<mx:HSlider id=”mySlider” width=”300”
minimum=”0” maximum=”300”
tickInterval=”50” snapInterval=”50”
labels=”{[‘0’,’50’,’100’,’150’,’200’,’250’,’300’]}”/>

</mx:Application>

Figure 8.24 shows the resulting application running in Flash Player.

FIGURE 8.24

A horizontal slider with snapping and tick marks

248

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 248

Slider events
The Slider controls also support a set of events that let you detect and handle changes to the
Slider control’s value with ActionScript event handlers. Slider events include the following:

� change: Dispatched when the control’s value property changes as a result of a user gesture

� thumbDrag: Dispatched when the user drags the thumb icon

� thumbPress: Dispatched when the user presses on the thumb icon with the left mouse
button

� thumbRelease: Dispatched when the user releases the thumb icon

All these events dispatch an event object typed as mx.events.SliderEvent.

Working with Images
The Flex framework presents images with the Image control. This control can be used to present
images that are downloaded from a server at runtime, loaded from the local hard disk at runtime
(for AIR applications only, since Flex-based Web applications don’t have access to the local file sys-
tem), or embedded in the Flex application.

Using the Image control
As with all visual controls, the Image control can be declared in either MXML or ActionScript. You
control which image is presented with the source property.

When used to load images at runtime, the source property is set to a full URL path (subject to
Flash Player security restrictions) or a location that’s relative to the application location.

For Web applications, the location is the Web server and folder from which the applica-
tion’s SWF file was downloaded. For desktop applications, the location is the disk folder

in which the binary application is installed.

Flash Player can load these types of images at runtime:

� JPEG

� GIF

� PNG

� SWF

When you load an .swf file with the Image control, it’s loaded as a static image. If the
.swf file was built in Flash, only the Flash document’s first frame is displayed. If you

want to load an .swf file built in Flex or Flash and retain its animations and other functionality, use
the SWFLoader control instead of Image.

TIPTIP

TIPTIP

249

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 249

This code declares an Image control that loads a graphic file named flower1.jpg at runtime
from a graphics subfolder of the application’s location folder:

<mx:Image source=”graphics/flower1.jpg”/>

Figure 8.25 shows the application displaying the graphic.

FIGURE 8.25

An application displaying an image with the Image control

Resizing images
The Image control sizes itself by default based on the native dimensions of the original graphic
image file. For example, if the image is 200 pixels wide by 300 pixels high and you don’t declare a
specific size, the control sizes itself to those dimensions.

You can resize images at runtime with the Image control’s height and width properties. Both
properties reflect the image size in pixels. If you set only one of these dimension properties, the
Image control automatically calculates and resets the other dimension to maintain the image’s
original aspect ratio (the ratio of width to height).

If you set both the height and width and don’t exactly match the original aspect ratio, also set the
control’s maintainAspectRatio property to false to allow it to skew the image.

250

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 250

<mx:Image source=”graphics/flower1.jpg”
height=”200” width=”400”
maintainAspectRatio=”false”/>

Figure 8.26 shows the image with explicit height and width properties and
maintainAspectRatio set to false.

FIGURE 8.26

An image with specific width and height and maintainAspectRatio set to false

Embedding images
When you embed an image in a Flex application, you expand the size of the application by the size
of the graphic file. At runtime an embedded image is displayed instantly, rather than having to be
loaded from the Web or disk; the result is an improvement in perceived application performance.

You can embed images in a Flex application in two ways. If you want to embed an image once and
always display it in the same location, use this syntax:

<mx:Image source=”@Embed(‘graphics/flower1.jpg’)”/>

Because you’re embedding the image in a particular instance of the Image control, you can’t easily
reuse the embedded image elsewhere in the application. If you want an embedded image that can
easily be bound to various controls, use the [Embed] metadata tag and a Class variable declara-
tion inside a Script section:

[Embed(source=”graphics/flower1.jpg”)]
[Bindable]
public var flowerImage:Class;

Then set the Image control’s source property to the variable name using a binding expression:

<mx:Image source=”{flowerImage}”/>

251

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 251

When you embed images with the [Embed] metadata tag, you have the freedom to dis-
play the embedded image anywhere in the application. This is the same technique

described earlier when using embedded images as Button control icons.

Changing images at runtime
You can change the source of an Image control at runtime in a few different ways. The control’s
source property can be reset to a String indicating the relative location of an image to be
loaded at runtime or to a variable that references an embedded image. This code embeds two
images and switches the source of the Image control to one of the variable references when the
button is clicked:

<mx:Script>
<![CDATA[

[Embed(source=”graphics/flower1.jpg”)]
[Bindable]
public var flowerImage1:Class;
[Embed(source=”graphics/flower2.jpg”)]
[Bindable]
public var flowerImage2:Class;

]]>
</mx:Script>

<mx:Image id=”myImage” source=”{flowerImage1}”/>
<mx:Button label=”Change Image”

click=”myImage.source=flowerImage2”/>

You also can set the source property using a binding expression. This code uses a group of
RadioButton controls to allow the user to switch between the two embedded images:

<mx:Image source=”{flowerGroup.selectedValue}”/>
<mx:RadioButton value=”{flowerImage1}” label=”Image 1”

groupName=”flowerGroup” selected=”true”/>
<mx:RadioButton value=”{flowerImage2}” label=”Image 2”

groupName=”flowerGroup”/>
<mx:RadioButtonGroup id=”flowerGroup”/>

You also can change images at runtime with the Image control’s load() method. The load()
method accepts a single argument that can be either a String for a runtime loaded image or a
variable referencing an embedded image. This code shows a Button with a click event handler
that causes a new image to be loaded at runtime:

<mx:Image id=”myImage” source=”graphics/flower1.jpg”/>
<mx:Button label=”Change Picture”

click=”myImage.load(‘graphics/flower2.jpg’)”/>

It doesn’t matter whether you use the load() method or simply change the value of
the source property. Both actions have the same effect on the Image control.TIPTIP

TIPTIP

252

The Flex Class LibraryPart II

14_287644-ch08.qxp 6/23/08 11:37 PM Page 252

Summary
In this chapter, I described the nature of Flex controls and the details of some of the most useful
controls in the Flex framework. You learned the following:

� Flex visual components consist of containers and controls.

� A container is a visual component that contains other objects.

� A control executes some feature of a Flex application.

� Controls can be used for application layout, to display data, and to collect data from
the user.

� Text controls include Label, Text, TextInput, TextArea, and RichTextEditor.

� Layout controls include HRule, VRule, and Spacer.

� Button controls include Button, CheckBox, RadioButton, and PopupButton.

� Other data entry controls include NumericStepper, DateField, DateChooser, and
ColorPicker.

� Interactive controls include HScrollBar, VScrollBar, HSlider, and VSlider.

� The Image control displays images that are loaded at runtime or embedded in the Flex
application.

253

Using Flex Controls 8

14_287644-ch08.qxp 6/23/08 11:37 PM Page 253

14_287644-ch08.qxp 6/23/08 11:37 PM Page 254

As described in Chapter 8, there are two types of visual components in
Flex:

� Containers are visual components that can contain other objects.

� Controls are visual components that display information or provide
the application with user interaction capabilities.

The layout of a Flex application is determined through a combination of the
application’s containership hierarchy and the use of absolute layout tools.
Applications are typically designed with a combination of vertical or hori-
zontal flow-style containers that lay out their nested child components auto-
matically, and absolute layout components whose nested child components
either set their positions with x and y or constraint properties.

The Flex framework includes two types of containers:

� Layout containers are rectangular regions that contain other visual
components (containers or controls). Examples of layout containers
include:

� VBox

� HBox

� Canvas

� Panel

255

IN THIS CHAPTER
Understanding containers

Using box containers

Using vertical and horizontal
layout containers

Using the panel container

Using constraint-based layout

Sizing containers and controls

Using Layout Containers

15_287644-ch09.qxp 6/23/08 11:38 PM Page 255

� Navigator containers wrap around other containers in a stack that contains the layers of
the application’s navigation system. The Flex framework includes three navigator contain-
ers:

� ViewStack

� TabNavigator

� Accordion

In this chapter, I describe the pre-built layout containers in the Flex framework and how you use
them to determine the application’s visual appearance.

To use the sample code for this chapter, import the chapter09.zip Flex project
archive file from the Web site files into your Flex Builder workspace.

Using Simple Box Containers
The three simple Box containers in the Flex framework implement different layout styles:

� VBox: A rectangular area that lays out its nested child objects in a single column from top
to bottom

� HBox: A rectangular area that lays out its nested child objects in a single row from left to
right

� Canvas: A rectangular area that places its nested child objects in specific positions rela-
tive to either top/left anchors or constraint-based anchors

These three containers support the height and width properties to determine their dimensions. If
you don’t declare these properties, the containers size themselves automatically to accommodate
their child objects.

Using vertical and horizontal layout containers
As shown in the UML diagram in Figure 9.1, the VBox and HBox components are extended from a
superclass named Box.

While you’re allowed to use the superclass Box component and set its direction
property to either vertical or horizontal, which is the only difference between

the subclasses, most often you already know which layout you want and can use the specific subclass.

The Box, VBox, and HBox components place their nested child visual components using two logi-
cal passes through the containership. In the first pass, the quantity and size of the nested child
objects are collected. In the second pass, the nested objects are placed on the screen. Each time the
Box component is resized, it re-executes this sizing and placement task.

TIPTIP

ON the WEBON the WEB

256

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 256

FIGURE 9.1

The inheritance hierarchy for Box, VBox, and HBox

The VBox container
The VBox container behaves like the Application component when its layout is set to
vertical: It lays out nested visual components in a single column from top to bottom. The
application in Listing 9.1 uses a VBox to lay out three TextInput controls.

LISTING 9.1

Using the VBox container

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Style>
TextInput { font-size:24 }

</mx:Style>
<mx:VBox

borderStyle=”solid” borderColor=”#000000” borderThickness=”4”
horizontalAlign=”center”
paddingBottom=”10” paddingLeft=”10” paddingRight=”10”

paddingTop=”10”>
<mx:TextInput text=”TextInput 1”/>
<mx:TextInput text=”TextInput 2”/>
<mx:TextInput text=”TextInput 3”/>

</mx:VBox>
</mx:Application>

The code in Listing 9.1 is available in the Web site files as VBoxDemo.mxml in the
chapter09 project.ON the WEBON the WEB

Box

VBox HBox

257

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 257

Figure 9.2 shows the resulting application running in the Web browser.

FIGURE 9.2

An application using the VBox container

The HBox container
The HBox container behaves like the Application component when its layout is set to
horizontal: It lays out nested visual components in a single column from top to bottom. The
application in Listing 9.2 uses an HBox to lay out three TextInput controls.

LISTING 9.2

Using the HBox container

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Style>
TextInput { font-size:24 }

</mx:Style>
<mx:HBox

borderStyle=”solid” borderColor=”#000000” borderThickness=”4”
horizontalAlign=”center”
paddingBottom=”10” paddingLeft=”10” paddingRight=”10”

paddingTop=”10”>
<mx:TextInput text=”TextInput 1”/>
<mx:TextInput text=”TextInput 2”/>
<mx:TextInput text=”TextInput 3”/>

</mx:HBox>
</mx:Application>

258

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 258

The code in Listing 9.2 is available in the Web site files as VBoxDemo.mxml in the
chapter09 project.

Figure 9.3 shows the resulting application running in the Web browser.

FIGURE 9.3

An application using the HBox container

Using the Canvas container
The Canvas container behaves like the Application component when its layout is set to
absolute. As shown in Figure 9.4, the Canvas container extends the Container class directly.

Objects that are nested within a Canvas determine their positions in one of these ways:

� Traditional absolute-layout properties of x and y (the number of pixels from the left and
top of the Canvas container)

� Constraint-based positioning using anchors of left, right, top, bottom,
horizontalCenter, and verticalCenter

� Advanced constraints using row-based and column-based anchors

Visual components that are nested in a Canvas can use the following properties to set their posi-
tions relative to the Canvas container’s top-left corner:

� x: The number of horizontal pixels from the Canvas container’s left border

� y: The number of vertical pixels from the Canvas container’s top border

The following code declares a Label component nested in a Canvas. The Label control’s top-
left corner is 10 pixels from the top and left of the Canvas:

<mx:Canvas>
<mx:Label x=”10” y=”10” text=”Hello World!”/>

</mx:Canvas>

ON the WEBON the WEB

259

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 259

FIGURE 9.4

The inheritance hierarchy of the Canvas container

One benefit of the Canvas, Application, and other containers that support absolute position-
ing is the ability to layer objects on top of each other. Paired with alpha styles that control trans-
parency, you can create visual effects where one object appears “behind” another, but shows
through the “top” object.

The code in Listing 9.3 declares a Canvas container wrapped around three TextInput controls
and three VBox containers. The VBox containers are arranged so that they overlap each other, and
the backgroundAlpha setting of .5 creates a 50 percent transparency effect.

LISTING 9.3

A Canvas container with overlapping objects

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Style>
TextInput { font-size:24 }

</mx:Style>
<mx:Canvas borderStyle=”solid” borderColor=”#000000”
borderThickness=”4”
width=”400” height=”313”>
<mx:TextInput text=”TextInput 1”/>
<mx:TextInput text=”TextInput 2” x=”71” y=”47”/>
<mx:TextInput text=”TextInput 3” x=”141” y=”97”/>

<mx:VBox width=”100” height=”100” backgroundColor=”#FFFFFF”
backgroundAlpha=”.5” x=”224” y=”144”/>

Container

Canvas

260

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 260

<mx:VBox width=”100” height=”100” backgroundColor=”#666666”
backgroundAlpha=”.5” x=”249” y=”169”/>

<mx:VBox width=”100” height=”100” backgroundColor=”#000000”
backgroundAlpha=”.5” x=”274” y=”194”/>

</mx:Canvas>

</mx:Application>

The code in Listing 9.3 is available in the Web site files as CanvasDemo.mxml in the
chapter09 project.

Figure 9.5 shows the resulting application displayed in a browser. Notice the overlapping objects
and the borders that show through.

FIGURE 9.5

A Canvas container with overlapping objects

Using container styles
The VBox and HBox containers support styles that help to determine placement of nested objects.
These styles, described in Table 9.1, control the alignment and the area around and between
objects nested within the container.

ON the WEBON the WEB

261

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 261

TABLE 9.1

Box Container Styles

Style Description Possible Values/ Default
Data Type Value

verticalAlign Collective vertical alignment of objects top top
within the container middle

bottom

horizontalAlign Collective horizontal alignment of objects within left left
the container center

right

verticalGap Number of vertical pixels between objects; Number 6
applies to VBox only

horizontalGap Number of vertical pixels between objects; Number 6
applies to HBox only

paddingLeft Number of pixels from left edge of container to Number 0
first nested object

paddingRight Number of pixels from right edge of container to Number 0
first nested object

paddingTop Number of pixels from top edge of container to Number 0
first nested object

paddingBottom Number of pixels from bottom edge of container Number 0
to first nested object

The application in Listing 9.4 places nested visual components within a VBox container that sets
gap, border, and padding styles using CSS syntax and MXML style attributes.

LISTING 9.4

An application with box styles

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#eeeeee”>
<mx:Style>
TextInput {

font-size:24;
border-style:solid;
border-color:black;
border-thickness:4;

262

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 262

}
</mx:Style>
<mx:Spacer height=”20”/>
<mx:VBox

borderStyle=”solid” borderColor=”#000000” borderThickness=”4”
horizontalAlign=”center”
paddingBottom=”20” paddingLeft=”20” paddingRight=”20”

paddingTop=”20”
verticalGap=”20” backgroundColor=”white”>
<mx:TextInput text=”TextInput 1”/>
<mx:TextInput text=”TextInput 2”/>
<mx:TextInput text=”TextInput 3”/>

</mx:VBox>
</mx:Application>

The code in Listing 9.4 is available in the Web site files as
VBoxGapAndPadding.mxml in the chapter09 project.

The diagram in Figure 9.6 shows the placement of gap and padding styles in a VBox container.

FIGURE 9.6

Using gap and padding styles

paddingTop

paddingLeft

paddingBottom

verticalGap paddingRight

ON the WEBON the WEB

263

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 263

The alignment, gap, and padding styles have no effect on objects nested inside a
Canvas container, because the objects’ positions are determined solely by their

absolute positioning properties.

Developers who are familiar with Cascading Style Sheets as implemented in Web
browsers might be curious about the lack of margin styles. In HTML-based CSS, the

“box model” includes padding on the inside of an object’s borders, the borders themselves, and mar-
gins outside the borders that create space outside an object. Flex-based CSS omits the margin settings
and implements only padding and border styles. The details of applying these and other styles are
described in Chapter 10.

Using the Panel Container
The Panel container creates a rectangular region that looks like a dialog box. Unlike the VBox,
HBox, and Canvas, which don’t have any default visual appearance, a Panel is used when you
want to wrap content inside a visual presentation that sets it off from the rest of the application.

A simple Panel is declared in MXML with a pair of <mx:Panel> tags. The Panel container’s
nested components are declared between the paired tags:

<mx:Panel>
... place contents here ...

</Panel>

Panel properties
The Panel shares many properties with the Application and Box containers.

Using the layout property
Like the Application component, it supports the layout property and allows the Panel con-
tainer’s nest components to be laid out with vertical, horizontal, or absolute positioning.
As with Application, the default value is vertical.

Using title and status
The Panel container has two properties that place labels in the container’s header region:

� The title property places a label in a bold font in the left side of the Panel header.

� The status property places a label in normal font in the right side of the Panel header.

The code in Listing 9.5 declares a Panel with a title and a status property, and contains a set
of Label controls.

TIPTIP

TIPTIP

264

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 264

LISTING 9.5

A Panel containing three Label controls

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#cccccc”>
<mx:Panel title=”My Panel” status=”A test panel” width=”200”>
<mx:Label text=”Label 1”/>
<mx:Label text=”Label 2”/>
<mx:Label text=”Label 3”/>

</mx:Panel>
</mx:Application>

The code in Listing 9.5 is available in the Web site files as PanelDemo.mxml in the
chapter09 project.

Figure 9.7 shows a Panel containing the three Label controls and displaying the title and
status values in the Panel header.

FIGURE 9.7

A Panel with title and status properties

While a Panel looks like a dialog box, it’s typically presented “in line” with the rest of
the application layout, rather than as a pop-up window. When you present pop-up win-

dows, you typically use the TitleWindow container or the Alert class, both of which extend the
Panel container and share its capabilities but are specifically designed for that use.

TIPTIP

ON the WEBON the WEB

265

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 265

Panel styles
The Panel container supports all the Box styles described previously and adds other styles that
are specific to its functions and abilities.

The Panel container and transparency
The Panel container has a borderAlpha style that controls the level of transparency in the con-
tainer’s title bar, control bar, and sides. Alpha values in Flex are set to a range of 0 to 1, where 0 is
fully transparent and 1 is fully opaque. The default borderAlpha for a new Panel is .4, mean-
ing that it has an opaqueness of 40 percent and the background color or image can show through
the panel’s outside area.

The Panel container displays a drop shadow by default. To remove the shadow, set the
Panel object’s dropShadowEnabled property to false.

The code in Listing 9.6 displays three Panel containers with borderAlpha settings of 0, .4 (the
default), and 1.

LISTING 9.6

Panel containers with different borderAlpha values

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#333333” layout=”horizontal”>
<mx:Panel title=”borderAlpha=0” width=”200” borderAlpha=”0”

color=”#ffffff”>
... nested labels ...

</mx:Panel>
<mx:Panel title=”borderAlpha=.4” width=”200” borderAlpha=”.4”>

... nested labels ...
</mx:Panel>
<mx:Panel title=”borderAlpha=1” width=”200” borderAlpha=”1”>

... nested labels ...
</mx:Panel>

</mx:Application>

The code in Listing 9.6 is available in the Web site files as
PanelTransparency.mxml in the chapter09 project.

Figure 9.8 shows the three Panel containers with the differing levels of transparency against a
dark Application background.

ON the WEBON the WEB

TIPTIP

266

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 266

FIGURE 9.8

Panel containers with differing borderAlpha settings

Controlling Panel corners
By default, a Panel presents rounded corners in the header and square corners in the footer. To
instead present round corners for both the header and footer, set roundedBottomCorners to
true, like this:

<mx:Panel title=”My Panel” roundedBottomCorners=”true”>
...nested content...

</mx:Panel>

The Panel container also supports the cornerRadius style, which determines the amount of curve
in the container’s corners. The default cornerRadius is 4 pixels. Setting this value to 0 results in
square corners at the top and bottom of the container; increasing the value creates a softer curve.

The code in Listing 9.7 creates a Panel container with rounded corners at both top and bottom
and a cornerRadius of 15.

LISTING 9.7

A Panel container with modified corner styles

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Panel title=”A panel with rounded corners” width=”200”
roundedBottomCorners=”true” cornerRadius=”15”>
<mx:Label text=”Label 1”/>
<mx:Label text=”Label 2”/>
<mx:Label text=”Label 3”/>

</mx:Panel>
</mx:Application>

The code in Listing 9.7 is available in the Web site files as PanelCorners.mxml in the
chapter09 project.ON the WEBON the WEB

267

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 267

Figure 9.9 shows the application with a Panel with rounded top and bottom corners and a
cornerRadius of 15.

FIGURE 9.9

A Panel with rounded top and bottom corners

The ControlBar container
The ControlBar container is designed to be nested as the last component within a Panel or a
TitleWindow. This container mimics the behavior of the HBox container, laying out its nested
components horizontally, and creates a footer region below the other Panel container’s nested
objects with a style that matches the title bar. In addition to providing a container for objects in the
Panel container’s footer, it rounds the Panel container’s bottom corners in the same manner as the
roundedBottomCorners style. The code in Listing 9.8 creates a Panel with a ControlBar.

LISTING 9.8

A Panel with a ControlBar

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#cccccc”>
<mx:Panel title=”A Panel with a ControlBar”>
<mx:Label text=”Label 1”/>
<mx:Label text=”Label 2”/>
<mx:Label text=”Label 3”/>
<mx:ControlBar>

<mx:Button label=”Button 1”/>
<mx:Button label=”Button 2”/>
<mx:Button label=”Button 3”/>

</mx:ControlBar>
</mx:Panel>

</mx:Application>

268

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 268

The code in Listing 9.8 is available in the Web site files as ControlBarDemo.mxml in
the chapter09 project.

Figure 9.10 shows the resulting application. Notice that the Button controls in the ControlBar
lay out horizontally.

FIGURE 9.10

A Panel with a ControlBar

The ControlBar container always lays out its nested components horizontally. If you
want to stack objects in a ControlBar vertically or place them with absolute posi-

tions, declare a VBox or Canvas container inside the ControlBar.

To separate controls within a ControlBar so that they “glue” themselves to the far left and right
edges, add a Spacer control between the controls with a width of 100:

<mx:ControlBar>
<mx:Button label=”Button 1”/>
<mx:Spacer width=”100%”/>
<mx:Button label=”Button “/>

</mx:ControlBar>

Figure 9.11 shows that the component after the Spacer is pushed to the far right edge of the
ControlBar.

TIPTIP

ON the WEBON the WEB

269

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 269

FIGURE 9.11

A ControlBar with a Spacer

Using Constraint-Based Layout
Constraint-based layout allows you to place objects on the screen using anchors other than a con-
tainer’s top-left corner. You can implement constraint-based layout easily using Flex Builder’s
Design and Flex Properties views or with a code-based approach. And, using the new
ConstraintRow and ConstraintColumn classes, you can anchor objects to regions other than
the borders of the container.

Constraint-based layout works only in containers that support absolute layout. When
used in the Application, Panel, or TitleWindow containers, the container’s lay-

out property must be set to absolute for constraint properties to have an effect. Because the Canvas
container always uses absolute layout, constraint properties work within that container without any
other changes to its property values. Constraint-based layout does not work in VBox, HBox,
ControlBar, or other containers that don’t support absolute layout.

Positioning components in Design view
Flex Builder’s Design view has tools that can create constraint properties through a combination of
selecting options in the Flex Properties view and dragging an object with anchors in the Design
view editor. Figure 9.12 shows the Constraints interface in the Flex Properties view. This interface
appears whenever a component in a container with absolute layout is selected in Design view.

NOTENOTE

The invisible Spacer

270

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 270

FIGURE 9.12

The Constraints interface in the Flex Properties view

Follow these steps to create an application a text logo that’s anchored to the application’s bottom-
right corner:

1. Open any Flex Builder project.

2. Select File ➪ New ➪ MXML Application from the Flex Builder menu.

3. As shown in Figure 9.13, enter UsingConstraints.mxml as the application filename and
set the layout property to absolute.

4. If the application opens in Source view, click the Design button.

5. Drag a Label control from the Components view into the application. Place it anywhere
on the screen.

6. Set the new Label control’s text property to My Logo.

7. With the Label control still selected, click the Bold button in the Flex properties view.

The Constraints user interface

271

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 271

FIGURE 9.13

Creating an application with absolute layout

8. Set the Label control’s font size to 18 pixels.

9. In the Constraints interface at the bottom of the Flex Properties view, place check marks
in the right anchor and the bottom anchor, as shown in Figure 9.14.

10. Drag the Label component toward the bottom-right corner of the Application until it
snaps to the padding alignment guides.

You should see in the Constraints interface that the number of pixels from each anchor
changes as you drag the Label control in Design view.

The completed version of the preceding exercise is available in the Web site files as
UsingConstraintsComplete.mxml in the chapter09 project.ON the WEBON the WEB

Use of constraints requires absolute layout

272

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 272

FIGURE 9.14

The Constraints interface

Using constraint properties
Each visual component supports six constraint properties. Each of the properties is data typed as a
Number and indicates the number of pixels from the named anchor:

� left: This property sets the number of pixels from the left edge of the container to the
left edge of the nested component.

� right: This property sets the number of pixels from the right edge of the container to
the right edge of the nested component.

� top: This property sets the number of pixels from the top edge of the container to the
top edge of the nested component.

� bottom: This property sets the number of pixels from the bottom edge of the container
to the bottom edge of the nested component.

� horizontalCenter: This property sets the number of pixels from the horizontal cen-
ter of the container to the horizontal center of the nested component. A positive number
offsets the component to the right of the container’s horizontal center; a negative number
offsets to the left.

The bottom anchor

The right anchor

273

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 273

� verticalCenter: This property sets the number of pixels from the vertical center of
the container to the vertical center of the nested component. A positive number offsets
the component below the container’s vertical center; a negative number offsets the com-
ponent above the vertical center.

The following code is generated by Design view as the user sets properties in the Constraints inter-
face and drags the component around the screen:

<mx:Label text=”My Logo” right=”10” bottom=”10”
fontWeight=”bold” fontSize=”18”/>

The right and bottom properties are set to values of 10 pixels each. As shown in Figure 9.15,
each time the user resizes the application, the Label control changes its position relative to the
application’s bottom-right corner.

FIGURE 9.15

A Label’s position controlled by constraint-based properties

Sizing Containers and Controls
Four strategies are available to determine the dimensions of a container or control at runtime:

� Content: Component dimensions are determined dynamically based on the cumulative
size of the component’s child objects.

� Absolute: Component dimensions are determined by its width and height properties
set to numeric values, interpreted as pixels.

10 pixels from bottom

10 pixels from right

274

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 274

� Percentage: Component dimensions are determined by percentage of available space.

� Constraints: Component dimensions are determined by constraint-based anchor
properties.

Content-based sizing
Content-based sizing means that a container or control expands to accommodate its contents. In
the absence of any other sizing properties, this happens automatically. With containers, this means
that the container sizes itself to accommodate and display its nested contents. With controls, this
means that the control sizes itself to display its internal objects. For example, if you don’t set a
Button control’s height or width properties, it sizes itself to display its full label and icon.

Default dimensions
Each container has a default height and width. For example, if you create a Panel with this
code, it has no nested components and no title property that would affect its height or width:

<mx:Panel>
</mx:Panel>

Then Panel container’s default dimensions are driven by the size of its default border, gap, and
padding styles. On my test system, the Panel container’s default height is 40 pixels and its default
width is 52 pixels.

Other containers have different default dimensions. In the absence of nested content, the VBox,
HBox, and Canvas set their height and width to 0.

Minimum and maximum dimensions
You can set properties to constrain content-based sizing. These properties set minimum and maxi-
mum dimensions to place limits on a container’s ability to dynamically grow and shrink:

� minHeight: The container’s minimum height in pixels

� minWidth: The container’s minimum width in pixels

� maxHeight: The container’s maximum height in pixels

� maxWidth: The container’s maximum width in pixels

This VBox container has a minimum width and height of 200 pixels each:

<mx:Panel minWidth=”200” minHeight=”200”>
... nested components ...
</mx:Panel>

The container can still expand if its contents require more space, but it can’t contract to less than
200 pixels in either dimension.

275

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 275

Absolute sizing
Absolute sizing means that you set a component’s width and height properties in absolute pixel
values. This Panel container is always displayed as 200 pixels high by 200 pixels wide, regardless
of its nested contents:

<mx:Panel width=”200” height=”200”>
</mx:Panel>

When you use absolute sizing and a container is too small to display its nested contents, by default
it displays scrollbars that allow the user to scroll to see the contents. Figure 9.16 shows a Panel
container with nested Label components. Because nested components can’t be displayed in
the container’s available space, it displays both vertical and horizontal scrollbars.

FIGURE 9.16

A Panel with scrollbars

Percentage sizing
Percentage sizing means that you set a dimension as a percentage of available space. When you set
a component’s size in MXML, you can declare percentage sizing with either the height and
width properties or with percentHeight and percentWidth.

Scrollbars

276

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 276

Percentage sizing with height and width
When you set percentage sizing with the height and width properties, you declare the values
with a percentage expression, such as 50%. This Label control’s width is 50 percent of the avail-
able space within its container:

<mx:Label text=”A sample Label” width=”50%”/>

Percentage sizing with percentHeight and percentWidth
When you set percentage sizing with the percentHeight and percentWidth properties, you
use numeric expressions such as 50. This Label control’s width is also 50 percent of the available
space within its container:

<mx:Label text=”A sample Label” percentWidth=”50”/>

The height and width properties cannot be set to new percentage values at runtime
with ActionScript statements. Instead, always use percentHeight and

percentWidth in ActionScript.

The percentHeight and percentWidth properties return meaningful values only if
they’ve been previously set through MXML declarations or ActionScript commands.

Their values are not recalculated at runtime.

Using percentage ratios
When you declare multiple components within a container and set sizes by percentage, you can
declare a total percentage of greater than 100 percent. This VBox contains three TextInput controls,
each with a width property of 100 percent:

<mx:HBox width=”450” borderStyle=”solid” borderColor=”#000000”
paddingBottom=”10” paddingLeft=”10”
paddingRight=”10” paddingTop=”10”>
<mx:TextInput width=”100%”/>
<mx:TextInput width=”100%”/>
<mx:TextInput width=”100%”/>

</mx:HBox>

It might seem that this means the total width of the nested component is 300 percent and would
exceed the available space. Instead, the Flex framework adds up the total percentage values and
uses the ratio of the control’s declared percentage value divided by the total to assign an actual per-
centage based on available space:

100% + 100% + 100% = 300% (the total)
For each component: 100% / 300% = 33.33%

If there is a combination of percentage-based and strict value sizing, space is allotted
first to the strict values. Then if the remaining space is not enough to fulfill the percent-

age-based items, the same ratio division is calculated and applied.

TIPTIP

TIPTIP

TIPTIP

277

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 277

Figure 9.17 shows the resulting display. Each TextInput control’s width is set dynamically to
33.33% of the available horizontal space.

FIGURE 9.17

Using percentage ratios

Constraint-based sizing
Constraint properties also can be used to control a component’s size. When a component is nested
in a container with absolute layout and two constraint properties in the vertical or horizontal
dimension are set, the component “stretches” at runtime to keep its edges the correct distance from
the two anchors. Listing 9.9 creates a Text control with right and left properties that keep its edges
50 pixels from each of the Application container’s horizontal edges.

LISTING 9.9

Using constraint-based sizing

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#eeeeee” layout=”absolute”>

<mx:Text id=”myTextArea”
left=”50” right=”50” top=”20” textAlign=”center”
height=”100%”>
<mx:text>
<![CDATA[...text...]]>
</mx:text>

</mx:Text>

</mx:Application>

Calculated percentage ratio of 33.33% each

278

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 278

The code in Listing 9.9 is available in the Web site files as ConstraintSizing.mxml
in the chapter09 project.

Figure 9.18 shows the resulting display. When the user resizes the application, the Text control
expands and contracts to keep its edges the correct distance from the constraint anchors.

FIGURE 9.18

A control with constraint-based sizing

Using Advanced Constraints
The Flex 3 framework added the ability to use constraints based on rows and columns that you
define in a container using these properties:

� constraintRows: An array of ConstraintRow instances that divide a container ver-
tically

� constraintColumns: An array of ConstraintColumn instances that divide a con-
tainer horizontally

As with all constraint-based features, constraint rows and columns work only in a con-
tainer that supports absolute layout.

Declaring constraint rows and columns
You create rows and columns using MXML declarations. To divide a container vertically, first
declare an <mx:constraintRows> tag set, then nest multiple ConstraintRow instances. Be
sure to assign an id property to each ConstraintRow.

TIPTIP

The left constraint

50

The right constraint

50

ON the WEBON the WEB

279

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 279

Constraint rows and columns are not visible to the user; they’re used only at runtime to
calculate component positions and sizes. And, unlike simple constraints, you cannot

edit advanced constraints in Design view.

Flex Builder 3’s second public beta featured a new user interface that allowed you to
create ConstraintRow and ConstraintColumn instances in Design view. This

interface was removed prior to the product’s final release, so advanced constraints must now be
directly coded.

The first ConstraintRow always starts at the top of the container, and subsequent
ConstraintRow instances are placed below the first. Each ConstraintRow instance’s height
property can be set to either an absolute numeric value indicating its height in pixels or a percent-
age value indicating its value in terms of percentage of available vertical space.

This code declares two ConstraintRow instances, each using 50 percent of the Application com-
ponent’s available vertical space:

<mx:constraintRows>
<mx:ConstraintRow id=”row1” height=”50%”/>
<mx:ConstraintRow id=”row2” height=”50%”/>

</mx:constraintRows>

Similarly, if you want to divide a container horizontally, you use ConstraintColumn instances
wrapped in the constraintColumns property. Each column starts at the left edge of the con-
tainer, and each subsequent column is added to its right. The following code sets up three
columns, each filling 100 pixels of width:

<mx:constraintColumns>
<mx:ConstraintColumn id=”column1” width=”100”/>
<mx:ConstraintColumn id=”column2” width=”100”/>
<mx:ConstraintColumn id=”column3” width=”100”/>

</mx:constraintColumns>

A container that supports absolute layout can declare both constraintColumns
and constraintRows at the same time, allowing you to divide the container into

grid-like regions.

Placing and sizing components with advanced
constraints
You place or size components with constraint rows and columns using the same constraint proper-
ties described previously: top, bottom, left, right, verticalCenter, and
horizontalCenter. Instead of assigning the property values with a simple numeric expression
(as you would with simple constraints), you use a compound expression consisting of a constraint
row or column id and a numeric value, separated with a colon. This declaration of the bottom

TIPTIP

NOTENOTE

TIPTIP

280

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 280

constraint property means that a component should be placed 10 pixels from the bottom of a
ConstraintRow with an id of row1:

bottom=”row1:10”

Just as with simple constraints, you can use multiple constraint properties to control a component’s
size and make it stretch as a row or column expands. Listing 9.10 declares two constraint rows,
each taking 50 percent of the application’s available vertical space. Each of the VBox components
sizes itself vertically, using the top and bottom constraint properties and anchoring itself to one of
the constraint rows.

LISTING 9.10

An application with advanced constraints

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#eeeeee” layout=”absolute”>

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
backgroundColor=”#eeeeee” layout=”absolute”>

<mx:constraintRows>
<mx:ConstraintRow id=”row1” height=”50%”/>
<mx:ConstraintRow id=”row2” height=”50%”/>

</mx:constraintRows>

<mx:VBox top=”row1:20” bottom=”row1:20” horizontalCenter=”0”
width=”50%”
borderStyle=”solid” backgroundColor=”#666666”/>

<mx:VBox top=”row2:20” bottom=”row2:20” horizontalCenter=”0”
width=”50%”
borderStyle=”solid” backgroundColor=”#999999”/>

</mx:Application>

The code in Listing 9.10 is available in the Web site files as
ConstraintSizing.mxml in the chapter09 project.

Figure 9.19 shows the resulting display. Each of the VBox containers uses width for horizontal
sizing and horizontalCenter for horizontal placement, and sizes and places itself vertically
with top and bottom properties that reference advanced constraint rows.

ON the WEBON the WEB

281

Using Layout Containers 9

15_287644-ch09.qxp 6/23/08 11:38 PM Page 281

FIGURE 9.19

An application using advanced constraints

Summary
In this chapter, I described the use of layout containers, how to size components, and how to use
constraint-based layout. You learned the following:

� The Flex framework uses two types of containers: layout containers to control the appli-
cation design and navigation containers to control application navigation.

� The simple Box containers include VBox, HBox, and Canvas.

� The HBox and VBox containers place their nested components on the screen dynamically
by calculating their cumulative size.

� The Canvas container always uses absolute layout to place objects based on x and y
properties or with constraints.

� The Panel container creates a dialog-box presentation and supports the absolute prop-
erty values of vertical, horizontal, and absolute.

� Constraint properties allow you to place and size objects with anchors to any of a
container’s borders or center positions.

� Components can be sized based on content, absolute dimensions, percentage dimensions,
or constraints.

� Flex 3 adds advanced constraints that allow you to divide a container into multiple rows
and columns.

VBox 2

row1

row2

VBox 1

282

The Flex Class LibraryPart II

15_287644-ch09.qxp 6/23/08 11:38 PM Page 282

Flex applications have a default visual appearance that’s determined by
a combination of graphics that are embedded in the Flex framework,
known as skins, and various visual settings that are set through

Cascading Style Sheet declarations.

About Cascading Style Sheets
Web site developers may already be familiar with the concept of Cascading
Style Sheets (CSS), because this technology has been increasingly used to
control the visual appearance of Web pages since its introduction in 1996.

The Cascading Style Sheet recommendation is created and published by
the World Wide Web Consortium (W3C), the same organization that pub-
lishes the recommendations for HTML, XML, and other critical Internet
technologies.

Information about the World Wide Web Consortium’s CSS
recommendation and other CSS resources is available at

http://www.w3.org/Style/CSS/.

It’s up to the vendors who actually create the Web browsers and other prod-
ucts to implement CSS for their own platforms. Web browsers, for example,
implement various subsets of the W3C recommendation; it’s only in recent
years that the major browsers such as Internet Explorer and Firefox have
approached compatibility in their CSS implementations.

WEB RESOURCEWEB RESOURCE

283

IN THIS CHAPTER
Understanding style sheets

Using inline style declarations

Using style selectors

Using embedded and external
style sheets

Controlling styles with
ActionScript

Graphical skinning of visual
components

Importing skin symbols from
Flash CS3

Using Cascading
Style Sheets

16_287644-ch10.qxp 6/23/08 11:39 PM Page 283

The use of CSS to control visual appearance isn’t limited to Web-based technologies. Flex applica-
tions that are installed on the desktop with the Adobe Integrated Runtime (AIR) use CSS in exactly
the same manner as Flex Web applications.

The Flex framework implements significant parts of the W3C’s CSS recommendation and adds fea-
tures that make the technology particularly effective for implementing Flex application graphic
designs.

In this chapter, I describe using CSS in Flex to control an application’s visual appearance. I start by
describing how to declare and control style sheets in a number of ways. At the end of the chapter, I
describe a particular aspect of Flex styles called skinning that allows you to replace the default
graphics that control a Flex application’s appearance.

To use the sample code for this chapter, import the chapter10.zip Flex project
archive from the Web site files into your Flex Builder workspace.

What Is a Style Sheet?
A style sheet consists of rules that constitute a set of visual settings. Any particular style sheet can
consist of three parts:

� The selector determines the scope of a set of rules that are declared in the style sheet. A
single selector can declare multiple styles, each requiring a name and a value.

� The style name determines which style is being set.

� The style value determines the new style setting.

MXML-based declarations of styles and non-style properties look the same. This VBox container
declares a width property and a backgroundColor style:

To know that one is a property and the other a style, you’d have to look it up in the product docu-
mentation. You encounter differences between styles and properties when you set their values in
ActionScript or actual style sheet declarations, or when you read about their use in the product
documentation. Table 10.1 describes some of the differences between styles and properties.

TABLE 10.1

Differences between Styles and Properties

Styles Properties

Documentation is found in the Styles section for Documentation is found in the Properties section for
each component. each component.

Styles can be applied to multiple objects through Properties can apply only to a single object.
embedded or external style sheets.

ON the WEBON the WEB

284

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 284

Styles Properties

When set at runtime with ActionScript, Properties can be set at runtime in ActionScript with
styles always use the setStyle() method. simple dot notation.

Multiple style rules can be compiled into Properties cannot be compiled into separate
.swf files and loaded at runtime. .swf files.

You can use these ways, among others, to declare styles in Flex:

� Inline styles: Declared as attributes in an object’s MXML declaration

� Embedded style sheets: Declared within an MXML file in an <mx:Style> tag set

� External style sheets: Created as text files with a file extension of .css

� Compiled style sheets: Created as .swf files and can be loaded at application runtime

Regardless of how you declare a style, the name of the style and its value are always the same. For
example, a style of fontSize is always set as a numeric value indicating the font height in terms
of pixels. This style can be set in inline, embedded, external, or compiled style sheets, and its effect
is always the same.

Unlike the HTML implementation of CSS, Flex applications do not support any unit of
measurement other than pixels. If you try to use unit-of-measurement abbreviations like

pt, em, or px, they are either ignored or result in a compiler error, depending on the context.

Using Inline Style Declarations
When you declare an object in MXML, you can declare any of its styles using XML attributes. The
attribute’s name matches the style’s name, and the style’s value is declared in various ways depend-
ing on its data type.

Unlike the Web browser implementation of CSS, Flex does not support a CSS id selec-
tor that would allow you to apply a style in an embedded or external style sheet to

a single object by its id property. If you need to apply a style to a single object, use an inline style
declaration.

This Label control declares its color style to a value of red using an inline style declaration and
a hexadecimal color code:

<mx:Label text=”Hello World” color=”#ff0000”/>

Many styles have two versions of their names. For example, the fontSize style has a
name whose syntax is sometimes described as camel case, due to the use of uppercase

characters in the middle of the style name. This style also can be declared in an embedded or external
style sheet with the hyphenated name of font-size. However, when setting styles in an inline dec-
laration, you must use the camel case version of the name, because the hyphenated version isn’t rec-
ognized by the MXML parser.

CAUTION CAUTION

NOTENOTE

NOTENOTE

285

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 285

One of XML’s fundamental syntax rules is that the order of attribute declaration isn’t
meaningful. In the MXML language, this means that you can declare property, style, and

event listener attributes in any order because the order doesn’t have any effect on the function or
performance of the object you’re declaring.

Using Style Selectors
You can declare complete style sheets either embedded within an MXML source code file or in a
separate, external .css file. Either way, the style sheet contains one or more selectors, each of
which determines the scope of a set of style declarations.

The Flex implementation of CSS has three kinds of selectors:

� Type selectors declare a set of styles that are applied to all instances of that
ActionScript type.

� Style name selectors (traditionally known as class selectors) declare a set of styles within
an arbitrarily named collection that is then applied to multiple components through the
styleName property.

� The global selector declares a set of styles that are applied to all components within the
application.

Regardless of which selector you use, the syntax is similar: the selector, followed by a block of style
declarations wrapped in braces. Each style declaration consists of a name and a value, separated by
a colon (:). The style declaration should be ended with a semicolon (;) to separate it from other
style declarations.

Using type selectors
A type selector consists of the name of an ActionScript class that represents a visual component,
followed by a code block containing one or more style declarations. This type selector declares a
set of styles that are applied to all Label controls:

Label {
color:#ff0000;
font-size:14;

}

Because ActionScript class names are case-sensitive, type selectors must be spelled exactly the same
as the names of the ActionScript visual components to which the styles are being applied.

Type selectors can be declared only in the Application, not in a custom component. If
you try to use a type selector in a component, a compiler warning is generated and the

style(s) won’t be applied.

CAUTION CAUTION

TIPTIP

286

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 286

Property names in embedded or external style sheets can use either camel case or
hyphenated syntax. Flex Builder 3’s code completion tool always suggests camel case

names in inline style declarations (which are required) and hyphenated syntax in embedded or exter-
nal styles. Because you get help with hyphenated names in the latter context, all code samples in this
chapter follow that standard.

Multiple type selectors
You can apply a set of styles to multiple types using a selector consisting of a comma-delimited
list. This declaration applies to all instances of the Label, Text, TextInput, and TextArea
controls:

Label, Text, TextInput, TextArea {
color:#ff0000;
font-size:14;

}

Type selectors and custom components
Type selectors also can be used to apply styles to instances of your own custom components. For
example, if you create a custom component in an MXML file named MyComponent.mxml, its type
is MyComponent. This style sheet applies styles to all instances of the custom component:

MyComponent {
color:#ff0000;
font-size:14;

}

Type selectors and class inheritance
When you declare a type selector in a style sheet, the selector’s inheritable styles apply to all
instances of that type and to all instances of any of the type’s subclasses. For example, because the
VBox and HBox containers are both extended from the Box superclass, the Box selector applies
its style declarations for all instances of either container:

Box {
background-color:silver;
border-style:solid;
border-color:black;
border-thickness:2;
padding-top:5;
padding-bottom:5;
padding-left:5;
padding-right:5;

}

Figure 10.1 shows the resulting application with an HBox and VBox that use the same styles.

TIPTIP

287

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 287

FIGURE 10.1

VBox and HBox using the Box selector styles

Type selectors that designate a superclass are inherited by subclasses even when the
styles used in the selector are marked in the documentation as not implementing CSS

inheritance. The documentation is describing which styles are inherited based on containership.

For example, if you apply font-based styles, which are inheritable, to a VBox selector, all text controls
nested in VBox containers use those styles. Non-inheritable styles such as the border styles shown in
the previous example are only applied to the VBox itself, and not to its nested child objects.

Class inheritance also is taken into account with custom components. If a custom component
named MyComponent is extended from the VBox or HBox containers, it also would apply the
inheritable styles declared in the Box selector.

Because the Canvas container isn’t extended from Box, to apply the same styles to this container
as well, you could use a multiple type selector:

Box, Canvas {
... style declarations ...

}

Using style name selectors
A style name selector, also sometimes known as a class selector, consists of any valid string,
prepended with a period (.). Style names are typically created with an initial lowercase character
and any mixture of uppercase and lowercase characters after that. This style name selector contains
a single style declaration:

.redFont {
color:#ff0000;

}

Style name selectors are identical in purpose and declaration syntax to the HTML con-
cept of class selectors. As with the style class in HTML, a style name defines a set of

rules that can be applied to any object arbitrarily.

TIPTIP

TIPTIP

288

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 288

A style name selector doesn’t apply its styles to any object on its own. Instead, each object “opts in”
to apply the selector’s styles with the styleName property. This Label control uses the style rules
in the redFont selector:

<mx:Label text=”Hello World” styleName=”redFont”/>

Style name selectors can be declared in the Application or within any custom component. If the
same style name selector is declared at two levels of the application’s containership and sets conflict-
ing values for any particular style, the declaration in the custom component takes precedence.

You use the period as a prefix to the style name only in the selector definition, not in
the styleName property. If you include the period in the styleName property, the

settings are ignored.

Using the global selector
The global selector has a reserved name of global (always typed in all lowercase). Styles declared
within the global selector are applied to all visual components in the entire application.

There aren’t many styles that you’d want to apply to the entire application. This feature’s
use is typically restricted to setting default font styles such as fontFamily and

color. It wouldn’t make sense, for example, to apply border or padding styles to every object in
the application.

This global declaration sets the default font family and color for the entire application:

global {
font-family:Times New Roman, Times, serif;
color:purple;

}

Using embedded style sheets
You can embed a style sheet in an MXML application or component with the <mx:Style> com-
piler tag set. As previously described, a style sheet embedded in a custom component can include
only style name selectors. Style sheets embedded in the Application can contain a mixture of
type, style name, and global selectors.

The <mx:Style> tag must be declared as a direct child element of the MXML file’s
root element. An <mx:Style> tag placed within any other child element in the MXML

containership results in a compiler error.

The code in Listing 10.1 shows an application with an embedded style sheet. The embedded style
sheet’s selectors and rules are applied to the entire application.

CAUTION CAUTION

CAUTION CAUTION

TIPTIP

289

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 289

LISTING 10.1

An embedded style sheet

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

horizontalAlign=”center”
layout=”horizontal”>

<mx:Style>

global {
font-family:Times New Roman, Times, serif;
color:purple;

}

Box {
background-color:silver;
border-style:solid;
border-color:black;
border-thickness:2;
padding-top:5;
padding-bottom:5;
padding-left:5;
padding-right:5;

}

.redFont {
color:#ff0000;

}

</mx:Style>

<mx:VBox>
<mx:Label text=”Hello World” styleName=”redFont”/>
<mx:Button label=”Click me”/>

</mx:VBox>

<mx:HBox>
<mx:Label text=”Hello World”/>
<mx:Button label=”Click me”/>

</mx:HBox>

</mx:Application>

The code in Listing 10.1 is available in the Web site files as EmbeddedStyles.mxml in
the chapter10 project.ON the WEBON the WEB

290

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 290

Using external style sheets
You can store style sheets in text files with a file extension of .css. As with embedded style sheets,
an external style sheet contains a collection of style selectors, each declaring one or more style and
value.

Flex Builder can create a new style sheet for you in a couple of ways:

� As a new blank style sheet file

� By exporting existing styles from Design view to a new external style sheet

Creating a blank style sheet
To create a new blank style sheet, select File ➪ New ➪ CSS File from the Flex Builder menu, or
right-click in the Flex Navigator view and select New ➪ CSS File. As shown in Figure 10.2, set
the filename and location of the CSS file.

FIGURE 10.2

Creating a new external style sheet

You can save external style sheets anywhere in your project. The <mx:Style> tag
styles are added to the application at compile time and are not loaded at runtime, so

the style sheet file technically doesn’t have to be in the source folder; however, I recommend that
you place it in the source folder or somewhere in its subfolder structure.

NOTENOTE

291

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 291

After you’ve created the external style sheet file, you can manually add selectors and properties. As
shown in Figure 10.3, Flex Builder provides code completion support in external style sheets that
helps you correctly type the property names and values. To get code completion help at any time,
press Ctrl+spacebar to see available properties and values.

FIGURE 10.3

Code completion in an external style sheet

Listing 10.2 shows the contents of an external style sheet file. Notice that there is no <mx:Style>
tag set, because this is no longer an MXML file.

LISTING 10.2

An external style sheet file

global {
font-family:Times New Roman, Times, serif;
color:purple;

}
Box {

background-color:silver;
border-style:solid;
border-color:black;
border-thickness:2;
padding-top:5;
padding-bottom:5;
padding-left:5;
padding-right:5;

Press Crtl+Space for code completion

292

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 292

}
.redFont {

color:#ff0000;
}

The code in Listing 10.2 is available in the Web site files as styles.css in the
chapter10 project.

To incorporate an external style sheet into an application, declare the <mx:Style> tag set with a
source property referring to the style sheet file by its name and relative location:

<mx:Style source=”styles.css”/>

When you declare <mx:Style> with a source property, you cannot also include
nested CSS declarations. You can, however, declare more than one <mx:Style> tag set

in an application or component.

Listing 10.3 shows the application now referring to an external style sheet.

LISTING 10.3

An application referring to an external style sheet

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

horizontalAlign=”center” layout=”horizontal”>
<mx:Style source=”styles.css”/>
<mx:VBox>

<mx:Label text=”Hello World” styleName=”redFont”/>
<mx:Button label=”Click me”/>

</mx:VBox>
<mx:HBox>

<mx:Label text=”Hello World”/>
<mx:Button label=”Click me”/>

</mx:HBox>
</mx:Application>

The code in Listing 10.3 is available in the Web site files as ExternalStyles.mxml in
the chapter10 project.

Exporting existing styles
Flex Builder 3 adds a new feature that allows you to export inline styles of any component instance
to an external style sheet and then link the current application to that external file.

ON the WEBON the WEB

CAUTION CAUTION

ON the WEBON the WEB

293

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 293

When you export styles from a component instance, you can define what kind of selector the styles
should be applied to the following:

� All components (the global selector)

� All components with style name

� The current specific component’s name

� The current specific component’s name plus a style name

Follow these steps to learn how this feature works:

1. Create a new MXML application named ExportStyles.mxml with its layout prop-
erty set to vertical.

2. If the application opens in Source view, switch to Design view.

3. Drag a Label from the Components view into the application.

4. In the Flex Properties view, set the Label component’s properties as follows:

� text: Hello World

� color: #ff0000

� fontSize: 14

5. Switch to Source view.

Your application code should look like this:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:Label text=”Hello World” color=”#ff0000” fontSize=”14”/>

</mx:Application>

6. Switch back to Design view, and select the Label control.

7. In the Flex Properties view, click Convert to CSS, as shown in Figure 10.4.

8. If prompted to save changes to the application, click Yes.

9. In the New Style Rule dialog box, shown in Figure 10.5, select New to create a new CSS
style sheet.

10. In the New CSS File dialog box, name the new style sheet newStyleSheet.css in the
project’s src folder and click Finish.

11. In the New Style Rule dialog box, select Specific component and click OK.

Flex Builder should now display the new CSS file in Design view.

12. Return to the application and switch to Source view.

294

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 294

FIGURE 10.4

Exporting styles from the Flex Properties view

FIGURE 10.5

The New Style Rule dialog box

Click to export styles

295

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 295

296

The Flex Class LibraryPart II

Style Data Types

When you set a style, you use syntax that’s specific to the style’s data type. Some styles require
String values, others numeric values, and still others Array values containing specific num-

bers of items.

For example, the fontSize style requires a numeric value. When you set this value in an MXML
inline attribute, you declare it as a String and it’s converted to a Number by the Flex compiler:

<mx:Label text=”Hello World” fontSize=”14”/>

Other styles require specific String values. For example, the fontWeight style requires a String,
but only accepts values of bold and normal:

<mx:Label text=”Hello World” fontWeight=”bold”/>

Styles that require color values accept a number of formats. The most common color code format is
hexadecimal and consists of a six-character string defining the amount of red, green, and blue in the
color. The string can be prefixed by either a hash or pound character (#) or by a zero and small x (0x). If
you want to store this value in a variable, you can set the hex value without quotes to an int (integer) or
uint (unsigned integer) data type. This Label sets its font color to blue with a hexadecimal code:

<mx:Label text=”Hello World” color=”0x0000FF”/>

Colors can also be declared using RGB percentage values. This syntax consists of the key word rgb,
followed by a comma-delimited set of percentage values representing the amount of red, green, and
blue. This syntax only works in embedded or external style sheets, not in inline declarations. This
style declaration means that Label controls have a font color of red:

Label {
color:rgb(100%, 0%, 0%);

}

You also can set color values with named colors. Color names that are recognized by the Flex com-
piler include Aqua, Black, Blue, Fuchsia, Gray, Green, Lime, Maroon, Navy, Olive, Purple,
Red, Silver, Teal, White, and Yellow. This Label sets its font color to teal with a named color:

<mx:Label text=”Hello World” color=”teal”/>

Style values that are typed as Array are declared in MXML as comma-delimited lists wrapped in
brackets. The Button control’s fillColors style requires an array of two colors that are then used
to create a background gradient. As with simple color values, you can use hexadecimal or named
colors:

<mx:Button label=”Click Me” fillColors=”[blue, white]”/>

When you declare the Array values in an embedded or external style sheet, you still use the comma-
delimited list, but don’t include the brackets. This style sheet declaration sets the fillColors style
for all Button controls in the application with a vertical gradient of blue and white:

Button {
fill-colors:#0000ff,#000000;

}

16_287644-ch10.qxp 6/23/08 11:39 PM Page 296

The application’s source now contains an <mx:Style> declaration pointing to the external style
sheet, and the Label control’s inline styles have been removed:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Label text=”Hello World”/>
<mx:Style source=”newStyleSheet.css”/>

</mx:Application>

The external style sheet now contains the styles that were part of the Label declaration, now
applied in a type selector:

/* CSS file */
Label
{

color: #ff0000;
fontSize: 14;

}

The complete code from the preceding exercise is available in the Web site files as
ExportStylesComplete.mxml and newStyleSheetComplete.css in the

chapter10 project.

Using Compiled Style Sheets
Style sheets can be compiled into external .swf files and then loaded at runtime.

Neither Flash Player nor the Flex framework includes a CSS parser that would allow a
Flex application to parse a “raw” CSS file at runtime. The ability to load a pre-compiled

CSS file was added to Flex in version 2.0.1.

Compiling style sheets
Flex Builder 3 can create a compiled style sheet with a simple menu selection. These steps describe
how to compile a style sheet:

1. Create a new external style sheet named compiledstyles.css in the current project’s
src folder.

2. Add a Label selector that sets the color to blue, the font-size to 18, and the
font-weight to bold:

Label {
color:blue;
font-size:18;
font-weight:bold;

}

NOTENOTE

ON the WEBON the WEB

297

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 297

3. Save the external style sheet file.

4. As shown in Figure 10.6, right-click the style sheet file in the Flex Navigator view and
select Compile CSS to SWF.

FIGURE 10.6

Using the Compile CSS to SWF option

The compiled SWF file is created in the same folder as the external style sheet, and is also copied
to the project’s output folder.

Once the Compile CSS to SWF option has been selected for any particular external
style sheet, the compilation option remains selected for that file until you deselect it.

Whenever Flex Builder rebuilds the project, the CSS file is recompiled as well.

You should see the new compiledstyles.swf file in the project source folder.

Loading compiled style sheets
The compiled style sheet file becomes an asset that can be dynamically loaded at runtime. Its styles
can then immediately be applied to existing component instances in the application.

TIPTIP

298

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 298

To load the precompiled application at runtime, use an ActionScript class named StyleManager.
The class has a method named loadStyleDeclarations() that loads compiled style sheets
and optionally updates the application’s style declarations immediately.

Follow these steps to use the StyleManager class:

1. Create a new MXML application named RuntimeStyles.css.

2. Add a Label control with a text property of Hello World.

3. Add a Button control with a label of Load Styles. Set its click event listener to exe-
cute this code:

StyleManager.loadStyleDeclarations(‘compiledstyles.swf’);

Listing 10.4 shows the completed application.

LISTING 10.4

An application loading a compiled style sheet at runtime

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:Label text=”Hello World”/>

<mx:Button label=”Load Styles”
click=”StyleManager.loadStyleDeclarations(

‘compiledstyles.swf’);”/>

</mx:Application>

The code in Listing 10.4 is available in the Web site files as
RuntimeStylesComplete.mxml in the chapter10 project.

4. Run the application.

5. Click Load Styles.

When the application first loads, the Label control is displayed with its default font
color, weight, and size. When you click Load Styles, the application loads the compiled
style sheet and updates the Label control’s presentation.

Using the StyleManager class, you also can unload styles, delay style updates, and react to vari-
ous events in the process of working with dynamic styles.

For more information on runtime loading of styles, visit http://livedocs.adobe
.com/labs/flex3/html/help.html?content=styles_10.html.WEB RESOURCEWEB RESOURCE

ON the WEBON the WEB

299

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 299

Controlling Styles with ActionScript
You can control styles at runtime in many ways. These tasks are available:

� Loading of compiled style sheets (described in the preceding section)

� Setting and getting styles for individual component instances

� Modifying selectors and their properties

� Changing a component instance’s style name

Setting and getting style information
Every visual component in the Flex framework supports methods named setStyle() and
getStyle() that allow you to set or get any particular style’s values. As described previously, you
cannot use simple dot syntax to access style information (as you might with a component prop-
erty). This code, for example, would produce a compiler error:

myLabel.fontSize=18;

The use of dot syntax to separate a component instance id and its members works with properties,
but not with styles.

Instead, use the setStyle() method to reset a style’s value at runtime:

myLabel.setStyle(“fontSize”, 18);

And use the getStyle() method to get a style’s value:

var currentSize:Number = myLabel.getStyle(“fontSize”);

The code in Listing 10.5 shows an application with Label control and two Button controls.
Clicking Change Font Size results in modifying the Label control’s font size at runtime. Clicking
Get Font Size displays the Label control’s current font size.

LISTING 10.5

Setting and getting style values

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:Label id=”myLabel” text=”Hello World” fontSize=”10”/>

<mx:Button label=”Change Font Size”
click=”myLabel.setStyle(‘fontSize’, 18)”/>

300

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 300

<mx:Button label=”Get Font Size”
click=”myLabel.text=’Current font size: ‘ +
myLabel.getStyle(‘fontSize’)”/>

</mx:Application>

The code in Listing 10.5 is available in the Web site files as
SettingAndGettingStyles.mxml in the chapter10 project.

As shown in Figure 10.7, the Label displays its own current font size when the second button is
clicked.

FIGURE 10.7

The font size changes when the ActionScript code is executed.

Styles are never bindable at runtime. This code, which tries to bind to a style’s current
value at runtime, succeeds upon application startup, but fails to execute when the tar-

get component’s style changes at runtime:

<mx:Label text=”{‘Current font size: ‘ +
myLabel.getStyle(‘fontSize’)}”/>

Modifying style selectors at runtime
You can modify style selectors at runtime with the CSSStyleDeclaration and
StyleManager classes. You can use one of these approaches:

� Create an instance of CSSStyleDeclaration bound to a style name or type selector.

� Create an instance of CSSStyleDeclaration without a selector, and then use the
StyleManager class’s setStyleDeclaration() method to bind the styles to the
selector.

CAUTION CAUTION

ON the WEBON the WEB

301

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 301

Using bound CSS declarations
To bind a CSSStyleDeclaration to a style selector, pass the selector as an argument to the
class’s constructor method:

var style:CSSStyleDeclaration = new CSSStyleDeclaration(“Label”);

Then, to change the styles in the selector, use the object’s setStyle() method using the same
syntax as with individual component instances:

style.setStyle(“fontSize”, 18);

When the setStyle() method is executed, the selector and any component instances it effects
are updated immediately.

Binding CSS declarations with the StyleManager class
You can delay updates of styles by using unbound instances of CSSStyleDeclaration. To
create an unbound style declaration, use the class’s constructor method without any arguments:

var style:CSSStyleDeclaration = new CSSStyleDeclaration();

Set the style declaration’s rules with the setStyle() method as described previously. Then, to
bind the declaration to a style selector, call StyleManager.setStyleDeclaration() with
three arguments:

� The style selector name

� The CSSStyleDeclaration instance

� A Boolean value indicating whether you want to update the styles immediately

The code in Listing 10.6 declares an unbound instance of CSSStyleDeclaration, sets two
styles, and then binds and updates the styles.

LISTING 10.6

Binding CSS declarations with StyleManager

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Script>
<![CDATA[

private function setLabelStyles(size:Number, weight:String):void
{

var style:CSSStyleDeclaration = new CSSStyleDeclaration();
style.setStyle(“fontSize”, size);
style.setStyle(“fontWeight”, weight);
StyleManager.setStyleDeclaration(“Label”, style, true);

302

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 302

}
]]>

</mx:Script>
<mx:Style>

Label {
font-size:12;

}
</mx:Style>
<mx:Label text=”Hello World”/>
<mx:Button label=”Change Label Styles”

click=”setLabelStyles(18, ‘bold’)”/>
</mx:Application>

The code in Listing 10.6 is available in the Web site files as
ChangingSelectors.mxml in the chapter10 project.

The setStyle() method is particularly resource-intensive, as it has to look up the
entire inheritance tree to be correctly applied.

Graphical Skinning of Visual Components
Skinning refers to the process of applying a set of graphics that replace a visual component’s default
appearance. You can create skins either graphically or programmatically. In this section, I describe
the process of creating and applying programmatic skins.

Creating graphical skins
A graphical skin is an image that is designed to replace the default appearance of a Flex visual com-
ponent. You can create graphical skins in these formats:

� GIF

� PNG

� JPG

� SWF

Using bitmap graphics as skins
When a skin graphic will always be displayed with the same dimensions, you can use bitmap
graphics built in any of these formats and have the freedom to use any graphical editing applica-
tion you like. Many applications successfully create .png, .gif, and .jpg format graphic files,
including Adobe Fireworks, Photoshop, and Illustrator.

CAUTION CAUTION

ON the WEBON the WEB

303

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 303

When you create a bitmap graphic to use as a skin, the original graphic should be sized exactly as
you want it to appear in Flex. For example, all the graphical skins that will be used to visually rep-
resent the CheckBox controls typically share the same dimension of width and height (to create a
square appearance).

Graphical skins are assigned to visual components through the styles API. The Styles documenta-
tion for any particular visual component will include both simple styles that require values typed
as String, Number, and Array values and skinning styles that require embedded graphics. For
example, the CheckBox component supports these graphical skins to represent the box and tick
mark area of the control:

� upIcon

� downIcon

� overIcon

� upSelectedIcon

� downSelectedIcon

� overSelectedIcon

� disabledIcon

� disabledSelectedIcon

In order to properly skin the CheckBox component, each icon style should have a graphic
assigned to it. To assign a skin, add the appropriate style name, followed by an Embed() declara-
tion that references the graphic file. This declaration means the downIcon.png graphic is dis-
played when the mouse button is down over a CheckBox with a selected property of true:

downSelectedIcon: Embed(source=”skins/downSelectedIcon.png”);

Assuming you’ve created a bitmap graphic for each button state, the CheckBox selector might
look like this:

CheckBox
{

upIcon: Embed(source=”skins/upIcon.png”);
downIcon: Embed(source=”skins/downIcon.png”);
overIcon: Embed(source=”skins/overIcon.png”);
disabledIcon: Embed(source=”skins/disabledIcon.png”);
selectedUpIcon: Embed(source=”skins/selectedUpIcon.png”);
selectedOverIcon: Embed(source=”skins/selectedOverIcon.png”);
selectedDownIcon: Embed(source=”skins/selectedDownIcon.png”);
selectedDisabledIcon:
Embed(source=”skins/selectedDisabled.png”);

}

As shown in Figure 10.8, the CheckBox component is now displayed with the graphics you
assigned.

304

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 304

FIGURE 10.8

A skinned CheckBox component

Bitmap versus vector graphics
The first three types of graphics listed here are bitmap graphics, meaning that they store informa-
tion about individual pixels in the graphic file. These types of graphics don’t always scale well
when stretched to accommodate a visual component that’s been resized. A graphic created as a
.png file may look fine when presented in its original size, but when its size is expanded at run-
time, it shows the raw pixels in a phenomenon known as pixelating or stair steps.

Figure 10.9 shows a bitmap graphic in its original size of 30 pixels height and width and the same
graphic displayed at three times its original size.

FIGURE 10.9

The effect of scaling on a bitmap graphic

With a bitmap image, the graphic is distorted and pixelated when it’s expanded to a scale greater
than 100 percent of its original size.

A Flex application file that displays the bitmap graphic is available in the Web site files
as BitMapScaling.mxml in the chapter10 project.

Vector graphics store their information mathematically instead of one pixel at a time. As a result,
when these graphics are scaled to a larger size, they don’t distort in the same way. You can create
vector graphics with either Adobe Flash or Illustrator CS3.

Figure 10.10 shows a vector graphic created in Flash with its original size of 30 pixels height and
width and the same graphic displayed at three times its original size.

ON the WEBON the WEB

Normal Size 3x normal size

A Skinned Checkbox

A Normal Checkbox

305

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 305

FIGURE 10.10

The effect of scaling on a vector graphic

With the vector graphic, the edges of the graphic are recalculated as its scale is increased. The
resulting smooth lines and gradients are clearly a better result than with the bitmap approach.

A Flex application file that displays the vector graphic is available in the Web site files as
VectorScaling.mxml in the chapter10 project.

Creating vector-based skins in Flash CS3
The Flex framework uses a skinning library built in Flash CS3 to determine a Flex application’s
default visual appearance. The Flash source file that’s used to build the graphical skinning library is
named AeonGraphical.fla and is stored in this folder under the Flex Builder installation
folder:

sdks/3.0.0/frameworks/themes/AeonGraphical/src

If you have Flash CS3, you can open this file and see how it’s built. Follow these steps to build it
yourself:

1. Open Flash CS3.

2. Open AeonGraphical.fla from sdks/3.0.0/frameworks/themes/
AeonGraphical/src under the Flex Builder installation folder. Figure 10.11 shows
the Flash file’s stage, which contains one instance of each skinning graphic.

ON the WEBON the WEB

Normal Size 3x normal size

306

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 306

FIGURE 10.11

The Flash skinning source file, AeonGraphical.fla

3. Select Window ➪ Library from the Flash menu to open the Library panel. As shown in
Figure 10.12, each skinning graphic is stored as a symbol in the Flash document library.

307

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 307

FIGURE 10.12

The Flash skinning source file’s Library panel

Follow these steps to create a new skinning graphic in Flash CS3:

1. Create a new graphic object in Flash.

2. Convert the graphic to a MovieClip symbol.

3. Add linkage to export the graphic for use in ActionScript.

4. Publish the Flash document to .swf format.

After the Flash document has been created, you’re ready to use the skinning graphic in a Flex
application.

If you’re working with Flash and have downloaded the exercise files from the Web site, follow
these steps to view a document showing simple skinning graphics for the CheckBox component:

1. Open Flash CS3.

2. Open CheckBoxSkins.fla from the chapter10 project’s src/skins subfolder. As
shown in Figure 10.13, the Flash source file displays eight symbol instances.

308

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 308

FIGURE 10.13

The Flash stage with symbol instances

3. Select Window ➪ Library to open the Library panel.

4. Double-click any symbol to open it in edit mode.

Notice that each skin consists of simple graphic and optional text elements.

To zoom in on the symbol and display it in a larger size, press Ctrl+=.

5. Click Scene 1 to return to the document stage.

6. Right-click any symbol in the library, and select Linkage.

As shown in Figure 10.14, the Linkage properties for each symbol have a class consisting of the
component name and the skinning style name, separated by an underscore (_) character.

TIPTIP

Symbol Instances

Symbols in the Library

309

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 309

FIGURE 10.14

Setting symbol Linkage properties

Flash symbols that will be used as graphical skins have these requirements:

� At least one instance of each symbol must be placed on the stage. If no instances of a
symbol are on the stage, Flash doesn’t include the symbol in the compiled .swf file.

� Each symbol must have an external class set through its Linkage properties.

� If any ActionScript code is included in the symbol, the document must be published as a
Flash 9 document using ActionScript 3, because Flash Player 9 cannot execute both
ActionScript 2 and ActionScript 3 in the same document.

After publishing a document as an .swf file, you’re ready to use the Flash symbols as graphical
skins.

Declaring Flash-based skins
As described previously, graphical skins are assigned to visual components through the styles inter-
face. When you assign a Flash symbol as a graphical skin, the syntax is similar to that for a bitmap
graphic, but you also need to tell the Flex compiler which symbol to use.

This declaration assigns the CheckBox component’s downSelectedIcon skin to the appropri-
ate symbol from a compiled Flash document:

downSelectedIcon: Embed(source=”skins/CheckBoxSkins.swf”,
symbol=”CheckBox_downSelectedIcon”);

Importing skin artwork
Flex Builder 3 adds a new feature that allows you to import bitmap or vector-based graphical skins
and create the required style sheet declarations. The resulting output is stored in an external style
sheet that can then be linked into the application with an <mx:Style> tag set.

You can import vector-based skins that are created in Flash CS3 or Illustrator CS3. In this section, I
describe how to prepare skins for import in Flash and then how to import them into your project.

310

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 310

Preparing symbols in Flash for import
Before you can import graphical skins with the Flex Builder skin artwork import tool, the skins
must be exported to a Flash component library. A component library is an archived file in .zip for-
mat with a file extension of .swc.

Follow these steps to export multiple MovieClip symbols from Flash CS3:

1. In the Flash document that contains the symbols, ensure that each symbol you want to
export has Linkage properties with a valid class name.

For the best import results, set the symbol’s Linkage class name as the name of the Flex
component for which the graphical icon will be used and the skin name as described in

the Flex documentation, separated by the underscore (_) character. When you import this symbol, the
import tool suggests binding the graphic to the component and skin style name with this information.
For example, the symbol for the CheckBox component’s upIcon style would have a Linkage class
name of CheckBox_upIcon.

2. Add one instance of each symbol to the stage.

3. Select all symbols you want to export, and select Modify ➪ Convert to Symbol from the
Flash menu.

4. In the Convert to Symbol dialog box, enter any descriptive string as the Name, and enter
Movie Clip as the Type.

5. Right-click the new symbol in the Library, and select Linkage from the context menu.

6. In the Linkage Properties dialog box, select Export for ActionScript.

7. As shown in Figure 10.14, set the Class to a valid ActionScript class name (no spaces or
other special characters are allowed), and click OK to save the Linkage properties.

8. Right-click the new symbol in the Library panel, and select Export SWC File.

9. Save the file into the Flex project folder.

You’re now ready to import the graphical skin symbols.

Importing skin artwork
Flex Builder’s skin artwork import tool can import graphical skins from these kinds of files:

� Flash component libraries in .swc format

� Flash .swf files created in Illustrator CS3

� Bitmap graphics in .png, .gif, and .jpg format

Follow these steps to import graphics from a Flash component library created using the steps in
the preceding section:

1. Select File ➪ Import ➪ Skin Artwork from the Flex Builder menu.

2. As shown in Figure 10.15, select the radio button for SWC or SWF file and then choose
the .swc file you created in Flash.

TIPTIP

311

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 311

3. Select a new or existing .css file in which the skin style rules should be created.

4. Select an application you want to use the graphical skins.

5. Click Next.

6. In the Import Skin Artwork dialog box, shown in Figure 10.15, select each Symbol Class
you want to import and assign it a Style Selector and a Skin Part.

FIGURE 10.15

The Import Skin Artwork dialog box

The settings shown in Figure 10.15 are assigned automatically by the import tool,
because the skin symbol class names match the component and skin style names as

described previously.

7. Click Finish to import the skin symbols.

The .css file you select now contains skin style declarations wrapped in the selectors you selected.
Listing 10.7 shows the resulting style sheet declaration code.

LISTING 10.7

Imported style sheet declarations

CheckBox
{

disabledIcon: Embed(skinClass=”CheckBox_disabledIcon”);
downIcon: Embed(skinClass=”CheckBox_downIcon”);

TIPTIP

312

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 312

overIcon: Embed(skinClass=”CheckBox_overIcon”);
selectedDisabledIcon:
Embed(skinClass=”CheckBox_selectedDisabledIcon”);
selectedDownIcon: Embed(skinClass=”CheckBox_selectedDownIcon”);
selectedOverIcon: Embed(skinClass=”CheckBox_selectedOverIcon”);
selectedUpIcon: Embed(skinClass=”CheckBox_selectedUpIcon”);
upIcon: Embed(skinClass=”CheckBox_upIcon”);

}

The code in Listing 10.7 is available in the Web site files as CheckBoxSkins.css in
the chapter10 project.

Because the skin symbols are now stored as ActionScript classes in a component library, this syntax
assigns each of them to the appropriate style name:

overIcon: Embed(skinClass=”CheckBox_overIcon”);

The import tool also explicitly adds the component library to the Flex project’s build path, as
shown in Figure 10.16. Each Flash symbol is exported as an ActionScript class in the component
library, the library is in the project’s build path, and the style declarations bind the Flash symbol
classes to the Flex visual components.

FIGURE 10.16

The Flex project build path after importing Flash-based skinning symbols

The imported skin library

ON the WEBON the WEB

313

Using Cascading Style Sheets 10

16_287644-ch10.qxp 6/23/08 11:39 PM Page 313

A complete Flash-based skin library will contain many graphic symbols wrapped in a component
library and an associated .css file that binds the symbols to the visual components during the
compilation process.

Summary
In this chapter, I described the use of Cascading Style Sheets to effect the visual presentation of
Flex applications. You learned the following:

� Cascading Style Sheets (CSS) are implemented in the Flex framework as the primary
mechanism for controlling a Flex application’s visual appearance.

� You can declare styles with inline style declarations, and with embedded or external style
sheets.

� Styles can be controlled at runtime with ActionScript code.

� Skins are one type of style that can be used to dramatically change an application’s
appearance.

� You can create skinning graphics in bitmap or vector formats.

� Vector graphics designed for use as skins can be created in Illustrator CS3 or Flash CS3.

� You can import skin artwork with Flex Builder’s import tool.

314

The Flex Class LibraryPart II

16_287644-ch10.qxp 6/23/08 11:39 PM Page 314

When you present text in a Flex application, many choices and
tools can determine how text is presented and processed. Text
values can be “hard-coded” in an application, retrieved from a

data source (such as database on a server), and stored in memory as con-
stants or variables.

When text is presented to the user in visual control, you select many font
settings, including the font typeface and its size, weight, and style. In this
chapter, I describe the various tools available for text processing and presen-
tation in Flex. I describe these strategies and techniques:

� Selecting device fonts for text display that are already installed on
the client computer.

� Embedding fonts to tightly control text display regardless of the
state of the client computer.

� Formatting of text values with the formatter family of classes

Any discussion of text presentation in Flex must include the
use of Cascading Style Sheets (CSS) to select font typefaces

and styles, and the use of visual controls that are specifically designed for text
presentation, such the Label and Text controls. Previous chapters included
detailed descriptions of both subjects. In this chapter, I describe uses of styles
that are specifically oriented around text presentation, and I expand on the use
of the Label and Text controls in presenting text to the user.

To use the sample code for this chapter, import the
chapter11.zip Flex project archive from the Web site

files into your Flex Builder workspace.

ON the WEBON the WEB

CROSS-REFCROSS-REF

315

IN THIS CHAPTER
Controlling fonts

Using device fonts

Embedding fonts

Rotating embedded fonts

Using advanced anti-aliasing

Using formatter classes

Working with Text

17_287644-ch11.qxp 6/23/08 11:39 PM Page 315

Controlling Fonts with Cascading
Style Sheets
As described in Chapter 10, CSS is one of the most important tools you have for modifying the
appearance of text on the screen. In this section, I describe specific styles and their values that you
can use to change how Label, Text, TextInput, or TextArea controls present data.

Some font styles can be used with both device and embedded fonts, while others are used only
with embedded fonts.

These styles apply to all fonts:

� fontFamily to determine the typeface

� color to determine the typeface color

� fontSize to determine the font size

� fontWeight to select a bold font

� fontStyle to select an italicized font

� textDecoration to select an underlined font

� letterSpacing to determine the horizontal space between characters

These styles have an effect only on embedded fonts:

� kerning to enable adjustments to the horizontal gap between characters

� fontAntiAliasType to enable the use of these advanced anti-aliasing styles

� fontGridType to determine whether to measure fonts based on pixels or subpixels

� fontThickness to determine the thickness of font glyph edges

� fontSharpness to determine the sharpness of font glyphs

Selecting Fonts
You select which typeface you want to use with the fontFamily (or font-family) style. This
Label control presents its text with the Arial typeface with an inline style declaration:

<mx:Label fontFamily=”Arial” text=”Hello World”/>

When you declare the fontFamily style in an embedded or external style sheet, you can use
either the camel case version of the style name, fontFamily, or the hyphenated version,
font-family. This type selector sets an application’s default font for the Label and Text
controls to Times New Roman:

316

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:39 PM Page 316

<mx:Style>
Label, Text {

font-family:”Times New Roman”;
}

</mx:Style>

When you designate a typeface that has spaces in its name, always wrap the font name
in quotation marks. If you don’t use quotes, the CSS parser squeezes the spaces out of

the font name, resulting in a font name that might not be recognized by Flash Player.

For example, a font declared with a name of Bookman Old Style Bold without surrounding quotes
is transformed internally to BookmanOldStyleBold and no longer matches up correctly with its
actual font on the client system.

If you misname a typeface in a fontFamly declaration, Flash Player renders the unrecog-
nized font as the client system’s default serif typeface, which is typically Times Roman.

Two types of fonts can be used in Flex applications:

� Device fonts are typefaces that are already installed on the client system.

� Embedded fonts are typefaces that are embedded in a compiled Flex application and
delivered to the client system as part of the application .swf file.

The pros and cons of using device versus embedded fonts are listed in Table 11.1.

TABLE 11.1

Pros and Cons of Device and Embedded Fonts

Pros Cons

Device fonts Allow you to minimize the size of the Limited to those fonts that are installed
compiled Flex application and speed the universally, so your graphic design
download of the application during startup capabilities are limited.
(for Web applications) or installation (for Do not support advanced anti-aliasing
desktop applications). and font rotation.

Embedded fonts Allow you to use any font to which you Result in a larger compiled application
have access during development. Support .swf file. If not managed carefully,
advanced ani-aliasing and font rotation. embedded fonts can result in a “bloated”

application file and significantly slow
download and installation.

Using device fonts
When you declare a device font, you should declare a list of fonts you’d like to use in order of pref-
erence. The last item in the list should be a generic device font name that selects a font based on
what’s available on the client system.

CAUTION CAUTION

TIPTIP

317

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:39 PM Page 317

This CSS declaration sets the fontFamily style as a list with a first preference of Helvetica
and a last preference of the generic font family _sans:

<mx:Style>
Label, Text {

font-family:Helvetica, Arial, “_sans”;
}

</mx:Style>

The first choice, Helvetica, is typically available on Mac OS X, but not on Windows. If that font
isn’t found by Flash Player on the client system, it then looks for the second choice, Arial, which
is installed by default on both Windows and Mac OS X. The final choice, _sans, refers to the gen-
eral family of sans serif fonts. If Flash Player doesn’t find either of the first two choices, it uses the
client system’s default font of that family.

Three generic device font names are recognized by Flash Player:

� _sans refers to smoother typefaces that are generally selected for their easy readability
on computer screens. This family includes such fonts as Arial, Helvetica, and Verdana.

� _serif refers to typefaces that have non-structural visual details added to the ends of
font lines. This font family includes such fonts as Times Roman (and its variants such as
Times New Roman) and Baskerville.

� _typewriter refers to fixed pitch typefaces that look like they were created on type-
writers. This font family includes such fonts as Courier (and its variants such as Courier
New) and Prestige Elite.

If you designate only a single typeface in a fontFamily declaration and that font
doesn’t exist on the client system, Flash Player replaces the font as needed. In this case,

the application might not appear to the user as it was originally designed.

Using embedded fonts
When you embed a font in a Flex application, you guarantee that the font will be available to the
client system.

Embedded fonts offer great advantages to graphic designers:

� You can strongly “brand” an application’s appearance with fonts that are unique to a par-
ticular company’s design standards.

� Embedded fonts can be rotated, whereas device fonts always are rendered in their default
horizontal layout.

� Embedded fonts support advanced anti-aliasing, which allows you to control the sharp-
ness of the font to a fine degree.

� Embedded fonts support transparency, whereas device fonts are always opaque.

CAUTION CAUTION

318

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:39 PM Page 318

Embedded fonts have these limitations:

� Only TrueType or OpenFace fonts can be embedded directly within Flex applications
with simple style declarations or ActionScript metadata tags.

� Embedded fonts aren’t always legible at sizes less than 10 pixels.

You can embed other font styles such as PostScript Type 1 or bitmap fonts, but these
fonts must first be embedded in a Flash document to vectorize them, and only then can

they be embedded in a Flex application.

Fonts that you’ve downloaded or purchased from a font vendor aren’t always licensed
for use in a Flash document or Flex application. Check your license for any restrictions

on a font’s use.

Declaring embedded fonts with CSS
You can embed a font with the @font-face style selector in an embedded or external style sheet.
This selector supports all font styles listed previously, plus these additional style names:

� src:local to select a device font to embed by its system font name

� src:url to select a device font by its file location

� fontFamily to designate a font name that can be used for the rest of Flex application

Each embedded font declaration must include the fontFamily to create an alias by which the
embedded font will be referenced in the rest of the application and either src:local or
src:url to designate the font to embed.

Embedding by font file location
You can embed a font that you haven’t installed in your operating system by referring to the font by
its file location. Font files can be referred to from anywhere in your file system, but for convenience
you should copy the font file somewhere in your project and then refer to it with a relative file
location.

This @font-face declaration embeds a font by its filename and assigns a fontFamily of
Goudy:

@font-face {
src:url(“../fonts/GOUDOS.TTF”);
font-family:”Goudy”;

}

After the font has been embedded, you can use the fontFamily style to use the font in a particu-
lar text control with an inline style declaration or in a set of controls with a style selector. This
Label control uses the embedded font:

<mx:Label fontFamily=”Goudy” text=”An embedded font”/>

CAUTION CAUTION

TIPTIP

319

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:39 PM Page 319

This type selector assigns the embedded font to Label and Text controls:

<mx:Style>
Label, Text {

font-family: Goudy;
}

</mx:Style>

Embedding font variations with font files
Fonts that support variations in presentation such as bold and italics are delivered as individual
font files. When embedding a font by its filename, you must declare each variation with a separate
@font-face selector. If you set all of a font’s selectors with the same fontFamily, you can then
refer to the individual fonts from an inline style declaration or a style selector by simply including
the appropriate font style.

These @font-face declarations embed all three of a font’s available variations and assign the
same fontFamily to each. The font-weight and font-style settings in each @font-face
selector determine when each font file will be used.

The application in Listing 11.1 uses the Goudy font with all its variations and a set of Label con-
trols that use the font in multiple sizes and variations of appearance.

LISTING 11.1

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”white” verticalGap=”0”>
<mx:Style>
@font-face {

src:url(“../fonts/GOUDOS.ttf”);
font-family:”Garamond”;

}
@font-face {

src:url(“../fonts/GOUDOSB.ttf”);
font-family:”Goudy Old Style”;
font-weight:bold;

}
@font-face {

src:url(“../fonts/GOUDOSI.ttf”);
font-family:”Goudy Old Style”;
font-style:italic;

}
</mx:Style>
<mx:Label text=”Goudy Old Style 18”

fontFamily=”Goudy Old Style” fontSize=”18”/>
<mx:Label text=”Goudy Old Style 30”

fontFamily=”Goudy Old Style” fontSize=”30”/>

320

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:39 PM Page 320

<mx:Label text=”Goudy Old Style 72”
fontFamily=”Goudy Old Style” fontSize=”72”/>

<mx:Label text=”Goudy Old Style italic”
fontFamily=”Goudy Old Style” fontSize=”72” fontStyle=”italic”/>

<mx:Label text=”Goudy Old Style bold”
fontFamily=”Goudy Old Style” fontSize=”72” fontWeight=”bold”/>

</mx:Application></mx:Application>

The code in Listing 11.1 is available in the Web site files as
EmbedFontByFileName.mxml in the chapter11 project.

In these examples, I’m using a font named Goudy Old Style, which is included by
default on both Windows and Mac OS X. You can download more specialized fonts from

various Web sites, including www.1001freefonts.com.

Embedding by system font name
To embed a font that’s been installed in the operating system, use the src:local style and refer
to the font by its system name. The font’s system name is usually the same as the font filename
(without the file extension), but to be sure of the system name, you can open the font file and view
the system name information. Figure 11.1 shows a font file displayed in Windows XP and the
font’s system name.

FIGURE 11.1

A font file displayed in Windows XP with the font’s system name

The system font name

WEB RESOURCEWEB RESOURCE

ON the WEBON the WEB

321

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:39 PM Page 321

On Mac OS X, fonts are stored in the system hard disk’s /System/Library/Fonts
folder. As with Windows, you can preview a font by locating and double-clicking the font

file. The font is displayed in the Font Book application, which is included with the operating system.

This declaration embeds a font using the font’s system name after the font has been installed in the
operating system:

@font-face {
src:local(“Goudy Old Style”);
font-family:”Goudy”;

}

If you type the name of a system font incorrectly, the compiler generates an error.

As with a declaration by font filename, the font-family style determines the name by which the
font is known in the rest of the application. This Label control uses the embedded font:

<mx:Label text=”Goudy Font” fontFamily=”Goudy”/>

Embedding font variations with system font names
When you embed by system font name, you still have to declare each font variation individually,
but you can use the same system font name and font-family for each declaration, and you dis-
tinguish each by the use of the font-weight or font-style declarations. The application in
Listing 11.2 declares the Goudy font with the system font name and then uses the font in a set of
text controls.

LISTING 11.2

Embedding fonts by system font name

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”white”>
<mx:Style>

@font-face {
src:local(“Goudy Old Style”);
font-family:”Goudy”;

}
@font-face {

src:local(“Goudy Old Style”);
font-family:”Goudy”;
font-weight:bold;

}
@font-face {

src:local(“Goudy Old Style”);
font-family:”Goudy”;

CAUTION CAUTION

TIPTIP

322

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:39 PM Page 322

font-style:italic;
}

</mx:Style>
<mx:Text text=”Goudy 10” fontFamily=”Goudy” fontSize=”10”/>
<mx:Text text=”Goudy 18” fontFamily=”Goudy” fontSize=”18”/>
<mx:Text text=”Goudy 30” fontFamily=”Goudy” fontSize=”30”/>
<mx:Text text=”Goudy italic” fontFamily=”Goudy” fontSize=”72”

fontStyle=”italic”/>
<mx:Text text=”Goudy bold” fontFamily=”Goudy” fontSize=”72”

fontWeight=”bold”/>
</mx:Application>

The code in Listing 11.2 is available in the Web site files as
EmbedFontBySystemName.mxml in the chapter11 project.

Figure 11.2 shows the application using the embedded font. The application’s appearance is the
same regardless of whether the fonts are embedded with file or system names.

FIGURE 11.2

A Flex application using an embedded font

Embedding fonts with Flex Builder’s Design view
Flex Builder 3’s enhanced Design view can generate a certain amount of CSS code to declare an
embedded font. These generated declarations are always created in an external style sheet and rep-
resent only the base font style (and not any variations such as font weight or style).

ON the WEBON the WEB

323

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:39 PM Page 323

The CSS Editor’s Design view is a new feature of Flex Builder 3. In addition to support-
ing preview of embedded fonts, it allows you to preview most styles when applied to the

Flex framework’s visual controls.

Follow these steps to create an external style sheet with an embedded font declaration:

1. Select File ➪ New CSS File from the Flex Builder project to create a new external style
sheet file.

2. In the New CSS File dialog box, name the new file fontStyles.css and click Finish.

3. In Source view of the CSS editor, manually add a Label selector to the file without any
style declarations. Be sure to declare a code block after the Label selector with the {}
characters. The Label selector should look like this:

Label {
}

4. Click Design to switch to Design view.

As shown in Figure 11.3, Design view previews the Label control without any custom
styles applied.

FIGURE 11.3

The CSS Design view editor previewing the Label control

5. Look at the Flex Properties view’s Text section, and locate the pull-down list of fonts, as
shown in Figure 11.4.

Notice that the pull-down list displays the standard five device fonts, and in a section at
the bottom of the list, it shows all fonts currently installed on the system listed by their
system font name.

NEW FEATURENEW FEATURE

324

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:39 PM Page 324

FIGURE 11.4

Available system fonts

6. Select a font you’d like to embed. If you’re working with the Windows operating system,
try a font that may not appear on Mac OS X, such as Comic Sans MS.

7. After selecting the font, Design view refreshes itself and the preview buttons display the
select typeface. If the refresh operation doesn’t occur, click Design view’s Refresh button.

8. Switch to Source view to view the generated style declarations.

The generated code looks like this:

/* CSS file */

Label {
fontFamily: “Comic Sans MS”;

}
@font-face
{

fontFamily: “Comic Sans MS”;
fontWeight: normal;
fontStyle: normal;
src: local(“Comic Sans MS”);

}

When you generate font style declarations in this manner, you get only a declaration for
the base font, not for such variations as bold and italics.

Installed fonts

325

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:39 PM Page 325

9. To add the bold variation for the embedded font, select the entire @font-face selector
with its nested styles and copy it to the clipboard.

10. Paste the @font-face selector at the bottom of the style sheet file.

11. Change the new selector’s font-weight style to bold.

12. Save the changes to the style sheet file.

Listing 11.4 shows the contents of the completed style sheet.

LISTING 11.4

The external style sheet after manual changes to generated code

Label {
fontFamily: “Comic Sans MS”;

}
@font-face
{

fontFamily: “Comic Sans MS”;
fontWeight: normal;
fontStyle: normal;
src: local(“Comic Sans MS”);

}
@font-face
{

fontFamily: “Comic Sans MS”;
fontWeight: bold;
fontStyle: normal;
src: local(“Comic Sans MS”);

}

The code in Listing 11.4 is available in the Web site files as
fontStylesFinishd.css in the chapter11 project.

The completed CSS file on the Web site was generated on a Windows-based develop-
ment system. If you open it on a Mac or other system that doesn’t include the Comic

Sans MS font, Flex Builder’s Design view may not preview the styles correctly.

Follow these steps to use the generated styles in a Flex application:

1. Create a new MXML application named ImportingFonts.mxml.

2. In Source view, add two Label controls as follows:

<mx:Label text=”Embedded font normal”/>
<mx:Label text=”Embedded font bold” fontWeight=”bold”/>

CAUTION CAUTION

ON the WEBON the WEB

326

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:40 PM Page 326

3. Add an <mx:Style/> tag with a source property set to the new external style sheet file:

<mx:Style source=”fontStyles.css”/>

4. Save and run the application shown in Listing 11.5.

LISTING 11.5

An application using embedded fonts in an external style sheet

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#eeeeee”>
<mx:Style source=”fontStyles.css”/>
<mx:Label text=”Embedded font normal”/>
<mx:Label text=”Embedded font bold” fontWeight=”bold”/>

</mx:Application>

The code in Listing 11.5 is available in the Web site files as
ImportingStylesFinished.mxml in the chapter11 project.

As mentioned previously, the completed sample applications on the Web site were cre-
ated on a Windows-based development system. If you open them in Flex Builder on Mac

OS X or another system that doesn’t include the application’s expected fonts, compiler errors will be
generated.

As shown in Figure 11.5, you should see that the two Label controls use the normal and bold
variations of the selected typeface.

FIGURE 11.5

An application showing two variations of an embedded font

CAUTION CAUTION

ON the WEBON the WEB

327

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:40 PM Page 327

Embedding ranges of characters in CSS
When you embed a typeface, you significantly increase the size of the compiled Flex application.
For example, in the previous example where two font files were embedded in the application, the
compiled debug version of the application increased in size from 152,533 bytes to 308,776 bytes,
or roughly twice the original size. This is because font definition files contain font outlines for
every possible character, frequently including outlines for non-Latin characters that you might
never use in your application.

You can restrict which characters of a typeface are embedded in your application by declaring the
unicodeRange style. This style takes an array of range designators, each starting and ending with
a Unicode character in hexadecimal code.

Unicode is a standard for encoding characters on computer systems that uses unique
numbers, known as code points, for each character. Flex uses the most common encod-

ing style, where each character description starts with the string U+ and ends with a 4-character
hexadecimal representation of the code point. For example, the Unicode expression U+0021 repre-
sents the exclamation point, U+005A represents an uppercase Z character, and so on.

A PDF document containing a chart of the Basic Latin alphabet in Unicode is available
at http://unicode.org/charts/PDF/U0000.pdf. Charts of other character sets

are available in PDF format at www.unicode.org/charts. Complete information about the
Unicode standard is available at www.unicode.org.

The following declaration embeds a broad range of basic Latin Unicode characters that would nor-
mally be used in an English language Flex application. The Unicode range of U+0021, represent-
ing the exclamation point (!),through U+007E, representing the the tilde (~) includes all
uppercase and lowercase alpha characters, numeric characters, and most common punctuation:

@font-face
{

fontFamily: “Comic Sans MS”;
src: local(“Comic Sans MS”);
unicodeRange:U+0021-U+007E;

}

After adding this unicodeRange setting to both embedded fonts in the preceding example, the
compiled application in the release build is 174,954 bytes — a bit larger than the application with-
out any embedded fonts (152,533 bytes), but significantly smaller than the version with both fonts
embedded with all their character outlines (308,776 bytes). The result is an application that down-
loads and installs more quickly, but still has all the text display functionality you need.

For European languages such as French, where an extended Latin alphabet is required, you can
add additional ranges of characters that include versions of the Latin alphabet characters with
accents and other required annotations. This style declaration embeds both the set of characters
known in Unicode as Basic Latin and another set of characters known as Latin Extended A:

@font-face
{

fontFamily: “Comic Sans MS”;

WEB RESOURCEWEB RESOURCE

TIPTIP

328

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:40 PM Page 328

src: local(“Comic Sans MS”);
unicodeRange:

U+0021-U+007E, //Basic Latin
U+0100-U+017F; //Latin Extended A

}

The Flex Builder installation contains a file named flash-unicode-table.xml in
the sdks/3.0.0/framesworks folder. This file contains definitions of common

Unicode character ranges. The file is not processed with the command-line compiler or Flex Builder,
but it can serve as a handy reference to common Unicode ranges.

Declaring embedded fonts with ActionScript
You also can embed fonts with the ActionScript [Embed] metadata tag by either font location or
system name. The [Embed] tag must be placed inside an <mx:Script> tag set and include
either a source attribute for fonts embedded by filename or a systemFont attribute for fonts
embedded by system name.

An [Embed] declaration also requires these attributes:

� fontName to select an alias by which the font will be known to the rest of the application

� mimeType always set to application/x-font

The [Embed] tag is always followed by a variable declaration typed as Class. This variable is
never accessed directly in ActionScript code, so its name can be anything you like. This [Embed]
tag embeds a font by filename and assigns a fontName of myEmbeddedFont:

[Embed(source=’../fonts/MyCustomFont.ttf’,
fontName=’myEmbeddedFont’,
mimeType=’application/x-font’)]

private var font1:Class;

The name of variable declared after the [Embed] metatdata tag is arbitrary and is only
used internally to store the font. It isn’t referred to in other ActionScript code, so you

can name the variable anything you like.

The [Embed] metadata tag also supports a unicodeRange attribute that can be used
to limit which font characters are embedded.

A font that’s been installed in the operating system can be embedded using the system font name
instead of the filename:

[Embed(systemName=’MyCustomFont’,
fontName=’myEmbeddedFont’,
mimeType=’application/x-font’)]

private var font1:Class;

TIPTIP

TIPTIP

TIPTIP

329

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:40 PM Page 329

In either case, you then use the font in a text control by assigning the fontFamily style to the
new font name:

<mx:Label fontFamily=”myEmbeddedFont” text=”An embedded font”/>

Declaring embedded fonts in ActionScript gives you the same benefits as CSS declarations and has
the same requirements:

� Each individual font file must be declared separately.

� Each font variation, such as bold or italics, must be declared separately even if the varia-
tion isn’t stored in a separate file.

Flex Builder’s Design view CSS editor creates a small advantage in using CSS declara-
tions over ActionScript, but you still have to customize the code that the CSS editor

generates. So the choice of embedding fonts using CSS or ActionScript is purely a coding preference
and is not driven by any strong benefits or drawbacks that might be inherent in either approach.

Manipulating Embedded Fonts
One advantage of embedded fonts over device fonts is the ability to change their visual appearance
using these tools:

� Font rotation to change the orientation of a text control

� Advanced anti-aliasing to render text in clear, high-quality resolution

Rotating fonts
You can rotate a text control that uses an embedded font with the control’s rotation property. The
value of the rotation property defaults to 0 (indicating standard control layout). A positive value
from 1 to 180 indicates that the control is rotated clockwise, while a negative value from -1 to -180
causes the control to rotate counter-clockwise. Values outside these ranges are added to or sub-
tracted from 360 to get a valid value.

The code in Listing 11.6 embeds a system font and then uses the font in a control that’s rotated 90
degrees counter-clockwise to turn the control on its side.

LISTING 11.6

A rotated control with an embedded font

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”white”>

NOTENOTE

330

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:40 PM Page 330

<mx:Style>
@font-face {

src:local(“Comic Sans MS”);
font-family:”Comic”;
unicodeRange:U+0041-U+007E;

}
</mx:Style>
<mx:Label id=”rotatedControl” text=”Rotated Text” fontFamily=”Comic”

rotation=”-90” top=”{rotatedControl.width + 10}” left=”10”
fontSize=”36”/>

</mx:Application>

The code in Listing 11.6 is available in the Web site files as RotatingFonts.mxml in
the chapter11 project.

Figure 11.6 shows the resulting application, with the control placed in the application’s upper-left
corner.

FIGURE 11.6

A rotated control using an embedded font

When you rotate a visual control, its calculated upper-left corner is still based on the control’s vir-
tual position when it isn’t rotated. A Flash developer would refer to this as the object’s “registration
point” — the point in the object from which its x and y properties are calculated. The position of

The object’s calculated position at runtime

ON the WEBON the WEB

331

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:40 PM Page 331

the x/y coordinate doesn’t change for Flex visual controls, even when the object’s font is rotated at
runtime.

To properly place such a control, you need to take into account the x and y properties and their
true meaning. The top property’s calculation used in Listing 11.6 binds to the control’s width and
uses this value to offset itself vertically. If you place the rotated control in an application with
absolute layout, as shown in Listing 11.6, in Design view it appears to run off the screen, as shown
in Figure 11.7. At runtime, the top property is calculated correctly and the object is positioned 10
pixels from the top of the application.

FIGURE 11.7

A control’s virtual and runtime display positions, shown in Flex Builder’s Design view

The rotation property can be set at runtime through bindings or through ActionScript statements.
The code in Listing 11.7 binds a Label control’s rotation property to a Slider control’s
value. As the user manipulates the Slider, the Label rotates.

LISTING 11.7

A Label control with an embedded font, rotating based on a Slider control’s value

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”white”>
<mx:Style>
@font-face {

The control’s display position

x=0, y=0 at this point The control’s virtual position

332

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:40 PM Page 332

src:local(“Comic Sans MS”);
font-family:”Comic”;
unicodeRange:U+0041-U+007E;

}
</mx:Style>

<mx:VSlider id=”mySlider”
top=”10” left=”10” height=”150”
minimum=”-180” maximum=”180” value=”0”
tickInterval=”45” snapInterval=”45”/>

<mx:Label id=”rotatedControl” text=”Rotated Text” fontFamily=”Comic”
rotation=”{mySlider.value}” top=”{this.height / 2}”
left=”{this.width / 2}” fontSize=”18” liveDragging=”true”/>

</mx:Application>

The code in Listing 11.7 is available in the Web site files as
RotatingFontsWithSlider.mxml in the chapter11 project.

Figure 11.8 shows the resulting application, with the control rotated based on the Slider con-
trol’s current value.

FIGURE 11.8

As the user manipulates the Slider control, the Label control’s rotation property updates based on
the binding expression.

ON the WEBON the WEB

333

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:40 PM Page 333

Using advanced anti-aliasing
Advanced anti-aliasing refers to the ability of Flash Player to make embedded fonts more readable
by smoothing the font’s edges during the rendering process. When you embed a font, its
fontAntiAliasType style is set to advanced by default. If you don’t want to use this feature
on a particular font, set the style’s value to normal in the embedding declaration:

@font-face {
src:source(“Garamond”);
font-family:”GaramondWithoutAntialiasing”;
font-anti-alias-type:normal;

}

When advanced anti-aliasing is enabled, you can set these styles to effect the font’s presentation:

� fontGridFitType determines how a text control fits to the pixel grid on the monitor.
Values of none, pixel, and subpixel are available. The pixel setting works only for
left-aligned text. The subpixel setting works only on LCD monitors and works for
right- and center-aligned text.

� fontSharpness determines the sharpness of the font glyph. Values from -400 to 400
are available.

� fontThickness determines the width the font glyph. Values from -200 to 200 are
available.

The code in Listing 11.8 creates an application with two embedded versions of the Garamond
font. The first embedded font supports advanced anti-aliasing, while the second has the style set to
normal. The two Label controls use the different embedded fonts. The control with advanced
anti-aliasing enabled uses the fontSharpness and fontThickness styles.

LISTING 11.8

An application with advanced anti-aliasing styles

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”white” verticalGap=”0”>
<mx:Style>

@font-face {
src:source(“Garamond”);
font-family:”GaramondWithAntialiasing”;
font-anti-alias-type:advanced;

}
@font-face {

src:source(“Garamond”);
font-family:”GaramondWithoutAntialiasing”;
font-anti-alias-type:normal;

334

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:40 PM Page 334

}
</mx:Style>
<mx:Label text=”Garamond with Advanced Antialiasing”

fontFamily=”GaramondWithAntialiasing” fontSize=”24”
fontSharpness=”-400” fontThickness=”0”/>

<mx:Label text=”Garamond without Advanced Antialiasing”
fontFamily=”GaramondWithoutAntialiasing” fontSize=”24”/>

</mx:Application>

The code in Listing 11.8 is available in the Web site files as
EmbedFontWithAntialiasing.mxml in the chapter11 project.

Figure 11.9 shows the resulting application. The first Label control has smoother, fuzzier edges
created by the advanced antialiasing, while the second shows the control’s default appearance with
a sharper appearance.

FIGURE 11.9

Label controls with and without advanced anti-aliasing

Formatting Text Values
The Flex framework includes a set of formatter classes that can be used to return particular
types of data values as formatted strings. There are six classes in this group. The formatter class
is the superclass from which all other classes are extended, and the other five classes are designed
to format particular types of values.

The Formatter classes include the following:

� CurrencyFormatter to format numeric values as currencies

� DateFormatter to format date values

� NumberFormatter for format numeric values

ON the WEBON the WEB

335

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:40 PM Page 335

� PhoneFormatter to format phone numbers

� ZipCodeFormatter to format zip codes

Each of the formatter classes has a set of properties that determine the format of the returned
string, and a format() method that’s used to process a value into a formatted string.

Creating formatter objects
You can create a formatter with either MXML or ActionScript. When declaring the class in
ActionScript, you use the class name in an MXML declaration:

<mx:DateFormatter id=”myDateFormatter”/>

The formatter classes are non-visual components, meaning that they don’t imple-
ment the IUIComponent interface. As with all non-visual components, their MXML

declarations must be placed as direct child elements of the Application or component root ele-
ment. If you declare a formatter inside a visual container, a compiler error is generated and the
application does not successfully compile.

To instantiate a formatter class in ActionScript, declare and instantiate a variable typed as the
appropriate formatter class. Flex Builder should create an import statement for the class; if not,
create it manually:

import mx.formatters.DateFormatter;
var myDateFormatter:DateFormatter = new DateFormatter();

Setting formatter properties
Each formatter class has its own set of properties that determine how it formats strings. The
DateFormatter, for example, has a single formatString property that can be used to create a
custom date format. The formatString property takes as its value a string consisting of masking
tokens, combined with literal strings. Table 11.2 describes the tokens that can be used in a
DateFormatter object’s formatString property.

TABLE 11.1

DateFormatter formatString Tokens

Pattern token Description

YY Year as a two-digit number.

YYYY Year as a four-digit number.

M Month as a one- or two-digit number without padded zeroes.

MM Month as a two-digit number with padded zero where necessary.

MMM Month as a short name. Values include “Jan”, “Feb”, and so on.

CAUTION CAUTION

336

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:40 PM Page 336

Pattern token Description

MMMM Month as a long name. Values include “January”, “February”, and so on.

D Day in month as a one- or two-digit number without padded zeroes.

DD Day in month as a two-digit number with padded zero where necessary.

E Day in week as a one- or two-digit number without padded zeroes. Sunday is
interpreted as 0, Monday as 1, and so on.

EE Day in week as a two-digit number with padded zero where necessary.

EEE Day in week as a short name. Values include “Sun”, “Mon”, and so on.

EEEE Day in week as a long name. Values include “Sunday”, “Monday”, and so on.

A Returns “AM” for morning, “PM” for afternoon/evening.

J Hour in day in 24-hour format.

H Hour in day in 12-hour format.

N Minutes in hour as a one- or two-digit number without padded zero.

NN Minutes in hour as a two-digit number with padded zero where necessary.

S Seconds in current minute.

SS Seconds in current minute with padded zero

All text used in a dateFormat property other than the supported tokens is considered to be lit-
eral text. For example, a formatString of “EEEE, MMMM D, YYYY” on the first day of 2008
returns “Tuesday, January 1, 2008”. The comma and space characters in the formatting string are
returned along with the token replacements.

In contrast, the CurrencyFormatter and NumberFormatter classes have properties that
affect thousand separators and decimal characters, the number of characters after a decimal, selec-
tion and placement of a currency symbol, and numeric rounding. The ZipCodeFormatter and
PhoneFormatter classes have properties that affect the formatting of those values.

Using formatters in binding expressions
You can use a formatter class in a binding expression to change how a value is displayed in a
text control. Follow these steps:

1. Create the formatter control, and set its formatting properties.

2. Add a text control that displays a value.

3. Set the text control’s text property with a binding expression that wraps the value in the
formatter control’s format() method.

The application in Listing 11.9 uses a DateFormatter to format the selectedDate property
of a DateChooser control.

337

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:40 PM Page 337

LISTING 11.9

An application using a DateFormatter

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”white”>
<mx:DateFormatter id=”myDateFormatter” formatString=”EEEE, MMMM D,
YYYY”/>
<mx:DateChooser id=”myDateChooser”/>
<mx:Label fontSize=”18”

text=”Selected date: {myDateFormatter.format(
myDateChooser.selectedDate)}” />

</mx:Application>

The code in Listing 11.9 is available in the Web site files as
DateFormatterDemo.mxml in the chapter11 project.

Figure 11.10 shows the resulting application with the Label control displaying the date value’s
formatted string.

FIGURE 11.10

A formatted date value displayed in a Label control

ON the WEBON the WEB

338

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:40 PM Page 338

Using formatters in static methods
You may want to use a single formatting rule throughout an application. When you create a for-
matter class for each view component in an application, it can become cumbersome to update all
the formatter object’s formatting values when they have to be changed.

You can solve this by wrapping a formatter object in a static method that can be called from
anywhere in an application. The nature of a static method is that it behaves the same in all circum-
stances, and it can be called from its class without having to first instantiate the class.

The code in Listing 11.10 shows a class with a static formatDate() method. The method
accepts a value argument typed as an ActionScript Object so that the method can accept either a
true date or a string that can be parsed as a date. It then instantiates the DateFormatter class
local to the function, sets its formatString property to control the output, and returns a format-
ted value.

LISTING 11.10

A utility class with a static method to universally format date values

package utilities
{

import mx.formatters.DateFormatter;
public class FormatUtilities
{

public static function dateFormat(value:Object):String
{

var df:DateFormatter = new DateFormatter();
df.formatString = “EEEE, MMMM D, YYYY”;
return df.format(value)

}
}

}

The code in Listing 11.10 is available in the Web site files as FormatUtilities.as in
the src/utilities folder of chapter11 project.

To use this static method in an application or component, follow these steps:

1. Declare an import statement for the ActionScript class containing the static method.

2. Wrap the value you want to format in a call to the static method.

The code in Listing 11.11 uses the static method to format the date value.

ON the WEBON the WEB

339

Working with Text 11

17_287644-ch11.qxp 6/23/08 11:40 PM Page 339

LISTING 11.11

An application using a static formatting method

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”white”>
<mx:Script>

<![CDATA[
import utilities.FormatUtilities;

]]>
</mx:Script>
<mx:DateChooser id=”myDateChooser”/>
<mx:Label text=”Selected date: {FormatUtilities.dateFormat(

myDateChooser.selectedDate)}”
fontSize=”18”/>

</mx:Application>

The code in Listing 11.11 is available in the Web site files as
FormatWithStaticMethod.mxml in the chapter11 project.

When you use a static method to wrap formatting functionality, it becomes possible to change for-
matting rules for the entire application from a single source code file. The result is an application
that’s easier to maintain.

Summary
In this chapter, I described how to use device and embedded fonts to determine which typeface is
used when displaying text. I also described the use of formatter classes to display values with spe-
cific formats. You learned the following:

� You can use device or embedded fonts to display text in various Flex controls.

� Device fonts make the compiled application as small as possible, resulting in faster down-
load and installation.

� Embedded fonts expand graphic design possibilities and provide control of formatting
choices such as control rotation and advanced anti-aliasing.

� You can select only certain ranges of characters in an embedded font to minimize the
font’s impact on the compiled application’s size.

� Formatter classes allow you to present various types of values with formatted strings.

� You can declare a formatter object with MXML or ActionScript.

� You can use a formatter in a binding expression or by wrapping it in an ActionScript
static method.

ON the WEBON the WEB

340

The Flex Class LibraryPart II

17_287644-ch11.qxp 6/23/08 11:40 PM Page 340

In any application that supports more than a single task on a single
screen, you need to provide the user with a way of navigating from one
area of the application to another. These areas of the application that can

be presented only one screen at a time are commonly known as views.

In Flex applications, you handle navigation by switching between the appli-
cation’s views, or by modifying the current state of a view. Unlike classic Web
applications, which define views as complete HTML pages that are requested
and loaded by the browser one at a time, a Flex application’s views are prede-
fined and downloaded as part of the entire application. Unless you’re using
an advanced architecture such as runtime modules, switching from one view
to another doesn’t require new requests to a Web server, as it would in a
Web site.

In this chapter, I describe how to manage navigation in a Flex application by
managing stacks of views.

The term view will be used throughout this chapter to
describe a rectangular visual presentation that presents

and/or collects information from the user. The term is taken from the applica-
tion development architecture known as model-view-controller, a way of
breaking up an application into small parts with specific functions.

NOTENOTE

341

IN THIS CHAPTER
Class Web navigation

Understanding Flex navigation

Using the ViewStack
container

Navigating with ActionScript

Using navigator bar containers

Using menu controls

Using other navigator containers

Managing Application
Navigation

18_287644-ch12.qxp 6/23/08 11:40 PM Page 341

These sites have extensive technical information about the role of views in model-view-
controller style development:

http://ootips.org/mvc-pattern.html
http://c2.com/cgi/wiki?

ModelViewControllerAsAnAggregateDesignPattern
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

To use the sample code for this chapter, import the chapter12.zip Flex project
archive from the Web site files into your Flex Builder workspace.

Classic Web Navigation
Navigation in a Web site or an application built completely as a set of HTML pages is based on the
capabilities of the Web browser. When a user clicks hyperlinks or submits information through
HTML data entry forms, the Web browser handles navigation by sending HTTP requests to a Web
server for each new page.

Classic Web applications, which dynamically generate their screens one page at a time, deliver each
application view as a separate page upon request. The application’s views don’t exist in the browser
until they’re requested and delivered. And when the browser navigates to any new page, the cur-
rent page is completely unloaded from memory.

This discussion of classic Web application architecture does not take into account AJAX-
style development, which allows you to load more than one screen into browser memory

at a time. Some, but not all, of the advantages of Flex development also can be realized with AJAX.

Classic Web application architecture has certain advantages, such as infinite scalability (measured
by the number of views that are possible in an application without negatively affecting perform-
ance). But its limitations include the following:

� Classic Web applications can’t store data persistently in client-side memory. As each page
is unloaded from the browser, the data in its memory is lost.

� Some Web architectures solve data persistence by passing data from page to page as
the user navigates through the application. ASP.NET, for example, has an architecture
known as the ViewState that passes data as part of each form post. This works with
small amounts of data, but larger data packets can cause client-side performance
issues because passing so much data to and from the server can create an impression
of sluggishness.

� Other Web architectures solve the state issue by storing session data on the server and
synchronizing client access to the data with cookies (variables generated by the server
and returned by the client on each new page request). While server-side session man-
agement relieves the client of the need to manage data persistently, server-side session
management can create user scalability issues. Each time a new user visits the applica-
tion, additional server memory is required.

NOTENOTE

ON the WEBON the WEB

WEB RESOURCEWEB RESOURCE

342

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:40 PM Page 342

� The browser has to rebuild the view each time it’s visited. Because browsers have no
inherent client-side state management, the graphical presentation of a page must be recal-
culated and rendered anew on each visit to the page. The browser offers caching of image
and other assets to speed up this process, but graphical presentation in a Web page is
necessarily limited.

� HTML and JavaScript aren’t interpreted identically by every Web browser. In fact, one of
the most costly and time-consuming aspects of classic Web application development is
testing, because you must test on each combination of operating system, browser, and
version that you want to support. Some Web application vendors handle this issue by
limiting the platforms on which an application is supported. For example, Intuit’s
QuickBooks Online, while a powerful and reliable Web application, is supported only
on Microsoft Internet Explorer on Windows — no Mac or Firefox users allowed!

Understanding Flex Navigation
Navigation in Flex applications is handled at two levels, with navigator containers and view states.
The difference between these concepts can be described as one of the scale of visual change during
a move from one presentation to another:

� Navigator containers should be used when you want to replace a rectangular region of a
Flex application (a view) with a completely different visual presentation.

� View states should be used when you want to modify an existing view, by adding or
removing visual components or by changing components’ properties, styles, or event
listeners.

In some cases, either a navigator container or a view state can get the job done, but for the most
part, the choice is clear: Use a navigator container to move from one view to another, and use a
view state to change an existing view.

Detailed information about view states is available in Chapter 15.

Using Navigator Containers
You create a stack of views using one of the navigator containers provided in the Flex framework.
The ViewStack class is the simplest of these navigator containers. You declare the ViewStack
container as a parent container that nests a collection of view components, and displays only one
of its nested views at any given time.

The ViewStack container doesn’t have any user interface controls that allow the user to select a
current view, so it’s typically controlled either with ActionScript code or with navigator bar compo-
nents that use the ViewStack as a data provider and dynamically generate interactive components
to control navigation.

CROSS-REFCROSS-REF

343

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:40 PM Page 343

Declaring a ViewStack in MXML
To create a ViewStack in MXML, declare an <mx:ViewStack> tag set. Then declare each
nested container within the <mx:ViewStack> tag set. You can nest either pre-built containers
from the Flex framework or your own custom components. The containers you nest within the
ViewStack can be either layout or navigator containers.

Only containers can be nested directly within the ViewStack, TabNavigator, or
Accordion navigator containers. This rule is enforced via the nested object’s

inheritance hierarchy: Each of the components nested directly within a ViewStack must include
mx.core.Container as one of its superclasses. If you nest a control in a ViewStack that doesn’t
extend Container, a type coercion error is generated at runtime when the framework tries to cast
the object as Container.

Each container nested within a navigator container, whether implemented as a ViewStack,
TabNavigator, or Accordion, should have a label property. The label is an arbitrary
String that’s used in many circumstances to describe the container’s purpose to the user. You
don’t always need the label property, but if you bind the stack to a navigator container that
generates interactive components such as Buttons, or if you use the TabNavigator or
Accordion containers, the value of each nested container’s label is displayed on the interactive
component that navigates to that child container.

This code creates a ViewStack with five views or layers:

<mx:ViewStack id=”views”>
<mx:HBox/>
<mx:VBox/>
<mx:Canvas/>
<mx:Panel/>
<views:MyCustomComponent/>

</mx:ViewStack>

The first four views are instances of containers from the Flex framework, and the last is an instance
of a custom component that’s extended from a container component.

Using custom components in a navigator container
The views nested within a navigator container can be defined as custom components in MXML. As
described previously, if you’re going to nest a custom component in a navigator container, it must
extend a component that includes mx.core.Container in its inheritance hierarchy. These com-
ponents include HBox, VBox, Canvas, Panel, Form, and others.

The custom component in Listing 12.1 displays a Label and a DataGrid wrapped in a VBox
container.

CAUTION CAUTION

344

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:40 PM Page 344

LISTING 12.1

A custom component suitable for use in a navigator container

<?xml version=”1.0” encoding=”utf-8”?>
<mx:VBox xmlns:mx=”http://www.adobe.com/2006/mxml” width=”400”

height=”300”
backgroundColor=”#FFFFFF”>
<mx:Label text=”Author List” styleName=”logo”/>
<mx:DataGrid id=”authorsGrid” width=”100%” height=”100%”>
<mx:columns>

<mx:DataGridColumn dataField=”title” headerText=”First Name”/>
<mx:DataGridColumn dataField=”price” headerText=”Last Name”/>

</mx:columns>
</mx:DataGrid>

</mx:VBox>

The code in Listing 12.1 is available in the Web site files as views/Authors.mxml
in the chapter12 project. View components named Books.mxml and

ShoppingCart.mxml are used in these examples also.

Creating a ViewStack in Design view
You can use Flex Builder’s Design view to visually create a ViewStack and its nested views. As
described previously, each of the nested views must be a container, as an instance of either a Flex
framework container class or a custom component that includes the Container class in its inher-
itance hierarchy.

Flex Builder’s Design view refers to the layers of a ViewStack as panes, and the docu-
mentation sometimes refers to them as panels. These terms refer to the nested view con-

tainers within the ViewStack.

The steps in this section assume that you’ve downloaded the files from the Web site and
imported the chapter12 project.

Follow these steps to create a ViewStack in Design view:

1. Open BookStore.mxml from the chapter12 project. Notice that the application
already has an instance of a custom Header component and a few visual settings:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:views=”views.*”
layout=”vertical” horizontalAlign=”left”
backgroundGradientAlphas=”[1.0, 1.0]”
backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Style source=”assets/styles.css”/>
<views:Header/>

</mx:Application>

ON the WEBON the WEB

NOTENOTE

ON the WEBON the WEB

345

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:40 PM Page 345

2. Run the application.

As shown in Figure 12.1, you should see that the Header component displays an image,
some text, and a background image.

FIGURE 12.1

The starting application with a custom Header component

3. Return to Flex Builder, and switch to Design view.

4. Look in the Components view’s Navigators section, and drag a ViewStack into the
application.

As shown in Figure 12.2, the ViewStack is represented visually by a rectangular out-
lined area and a toolbar with + and - buttons to add and remove views, and < and >
buttons to navigate from one view to the next.

5. Click the + button to add a new view to the ViewStack.

As shown in Figure 12.3, the Insert Pane dialog box prompts you to select a component
to instantiate as a layer of the ViewStack. The list of available components includes all
containers from the Flex framework and all the application’s custom components that are
eligible for use in the context of a navigator container.

6. Set the Label of the new pane as Catalog.

7. Select Books from the list of available containers.

8. Click OK to add the new pane to the ViewStack.

346

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:40 PM Page 346

FIGURE 12.2

A starting ViewStack

FIGURE 12.3

The Insert Pane dialog box

Pre-built containers

Custom components

Previous view

Add view

Remove view

Next view The ViewStack

347

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:40 PM Page 347

9. Repeat Steps 5 through 8, and add an instance of the Authors container with a label of
Authors.

10. Repeat Steps 5 through 8 again, and add an instance of the ShoppingCart container
with a label of Shopping Cart.

11. Run the application.

When the application appears, it should display the Books container, because it was the
first layer declared within the ViewStack.

The application displays only one layer at this point, because you haven’t added any
interactive components to control navigation.

12. Return to Flex Builder, and switch to Source view.

The generated ViewStack code looks like this:

<mx:ViewStack id=”viewstack1” width=”200” height=”200”>
<views:Books label=”Catalog” width=”100%” height=”100%”>
</views:Books>
<views:Authors label=”Authors” width=”100%” height=”100%”>
</views:Authors>
<views:ShoppingCart label=”Shopping Cart” width=”100%”

height=”100%”>
</views:ShoppingCart>

</mx:ViewStack>

The Design view tool for generating ViewStack code makes a great start, but has these issues:

� The ViewStack is always generated with an initial height and width of 200 pixels
each. You can change the ViewStack dimensions in Design view by dragging the
ViewStack handles, or in the Flex Properties view. And of course, you can always
change or remove the dimensions completely in Source view.

� Design view has no mechanism for visually reordering a ViewStack container’s layers. If
you want to change the order of the views, you must do so in Source view.

� All containers’ MXML declarations are generated with tag sets, such as:

<views:Books label=”Catalog” width=”100%” height=”100%”>
</views:Books>

Particularly when using custom components, the MXML code would be more efficient
with empty tag syntax:

<views:Books label=”Catalog” width=”100%” height=”100%”/>

This is purely a matter of code aesthetics though, and it doesn’t have any negative effect
on application functionality or performance.

After generating a ViewStack with Design view, be sure to revise the generated code as needed in
Source view.

NOTENOTE

348

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:40 PM Page 348

Working with navigator containers in ActionScript
When a navigator container is initially constructed and displayed, it displays the currently active
view (by default, the first view declared in the stack). You can change the active view at runtime
with ActionScript commands that reference one of these ViewStack properties:

� selectedIndex:int is the numeric index position of the active container within the
stack.

� selectedChild:Container is the object reference of the active container within
the stack.

Using selectedIndex
The selectedIndex property returns the index position of the currently active container, as
determined by the order of the ViewStack container’s display list. When declaring a ViewStack
in MXML, the display list order and the order of MXML declaration are the same.

As with all index operations in ActionScript, indexing starts at 0. So the first container with the
view stack is at position 0, the second at position 1, and so on.

To change the currently selected view by index, set the stack’s selectedIndex property to the
numeric index of the container you want to activate. This code makes the viewstack1 con-
tainer’s second layer visible and active:

<mx:Button label=”Authors” click=”viewstack1.selectedIndex=1”/>

Because indexing always begins at 0, this Button would allow the user to navigate to the first
layer of a stack:

<mx:Button label=”First Layer”
click=”viewstack1.selectedIndex=0”/>

Using numChildren
The numChildren property returns the total number of layers in the stack as an int value.
Taking into account the 0-based indexing offset, this Button would allow the user to navigate to
the last layer of a stack:

<mx:Button label=”Last Layer”
click=”viewstack1.selectedIndex=viewstack1.numChildren-1”/>

Navigating forward and backward through view stack layers
You can navigate forward and backward through layers of a view stack by incrementing or decre-
menting the stack’s selectedIndex property. This Button would allow the user to move to the
previous layer of a stack:

<mx:Button label=”Authors” click=”viewstack1.selectedIndex--”/>

349

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:40 PM Page 349

The selectedIndex property of a ViewStack can’t be set to less than 0. If the
Button control in the preceding code is clicked when the ViewStack container’s

selectedIndex is already set to 0, the command is ignored and there is no runtime error.

You also can navigate forward through a stack, but if you set the selectedIndex to a value
greater than the stack’s highest available index, an “array out of bounds” error results. You can pre-
vent this by wrapping the code to navigate forward in a conditional clause that checks to be sure
that the last container in the stack isn’t already active:

private function navForward():void
{

if (viewstack1.selectedIndex != viewstack1.numChildren-1)
{

viewstack1.selectedIndex++;
}

}

Alternatively, you can set the Button control’s enabled property to false when
selectedIndex indicates that a forward or backward navigation either wouldn’t work or would
result in a runtime error. Binding expressions that evaluate selectedIndex and return a
Boolean value to the enabled property can handle this task dynamically.

This Button control that navigates forward is enabled only when the ViewStack container’s
selectedIndex isn’t already set to the highest index:

<mx:Button label=”Next >>”
click=”viewstack1.selectedIndex++”
enabled=”{viewstack1.selectedIndex != viewstack1.numChildren-
1}”/>

Managing binding issues
In the preceding code example, the binding expression used in the enabled property might be
executed upon application startup before the ViewStack container’s numChidren property can
be correctly evaluated. If this happens, you might see that the Button controls are incorrectly
enabled and disabled upon application startup.

To fix this sort of timing issue, call the ViewStack container’s executeBindings() method
with a recursive argument of true to re-evaluate all of its dependent binding expressions. If you
call this method upon the ViewStack container’s creationComplete event, it evaluates any
bound property values such as numChildren again and the Button control’s enabled states
will be correctly calculated:

<mx:ViewStack id=”viewstack1” width=”400” height=”200”
creationComplete=”executeBindings(true)”>

<views:Books label=”Catalog” width=”100%” height=”100%”/>

TIPTIP

350

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:40 PM Page 350

<views:Authors label=”Authors” width=”100%” height=”100%”/>
<views:ShoppingCart label=”Shopping Cart” width=”100%”

height=”100%”/>
</mx:ViewStack>

The application in Listing 12.2 implements forward and backward navigation with a ViewStack
and Button controls. Each Button control has its enabled property set through a binding
expression, and the ViewStack re-executes its bindings upon its creationComplete event.

LISTING 12.2

An application using forward and backward navigation

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:views=”views.*” layout=”vertical” horizontalAlign=”left”
backgroundGradientAlphas=”[1.0, 1.0]”
backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Style source=”assets/styles.css”/>
<views:Header/>
<mx:HBox>

<mx:Button label=”<< Previous”
click=”viewstack1.selectedIndex--”
enabled=”{viewstack1.selectedIndex != 0}”/>

<mx:Button label=”Next >>”
click=”viewstack1.selectedIndex++”
enabled=”{viewstack1.selectedIndex != viewstack1.numChildren-1}”/>

</mx:HBox>
<mx:ViewStack id=”viewstack1” width=”400” height=”200”

creationComplete=”executeBindings(true)”>
<views:Books label=”Catalog” width=”100%” height=”100%”/>
<views:Authors label=”Authors” width=”100%” height=”100%”/>
<views:ShoppingCart label=”Shopping Cart” width=”100%”

height=”100%”/>
</mx:ViewStack>

</mx:Application>

The code in Listing 12.2 is available in the Web site files as
BookStoreIndexNavigation.mxml in the chapter12 project.

Figure 12.4 shows the resulting application, with Previous and Next buttons to handle backward
and forward navigation.

ON the WEBON the WEB

351

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:40 PM Page 351

FIGURE 12.4

An application with forward and backward navigation

Using selectedChild
The ViewStack container’s selectedChild property accesses the stack’s currently visible view
by its object reference. To use this property, each of the stack’s nested containers should be
assigned a unique id:

<mx:ViewStack id=”viewstack1”>
<views:Books id=”booksView”/>
<views:Authors id=”authorsView”/>
<views:ShoppingCart id=”cartView”/>

</mx:ViewStack>

To select an active view by the container’s unique id, set the ViewStack container’s
selectedChild:

<mx:Button label=”Shoppping Cart”
click=”viewstack1.selectedChild=cartView”/>

Notice that there are no quotes around the cartView container’s id when it’s assigned in this way. You’re
accessing the id as a variable or component instance id, not a String value.

352

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:40 PM Page 352

When navigating with selectedChild set to a container’s unique id, because your
navigation will be hard-coded, you typically don’t need to assign a label property to

each container. The label property becomes useful when dynamically generating user interface con-
trols for navigation.

The application in Listing 12.3 implements navigation using Button controls for each of the
nested containers in a ViewStack. Each Button control explicitly navigates to its container by
the container’s unique id.

LISTING 12.3

An application using explicit navigation by unique id

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:views=”views.*” layout=”vertical” horizontalAlign=”left”
backgroundGradientAlphas=”[1.0, 1.0]”
backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Style source=”assets/styles.css”/>
<views:Header/>
<mx:HBox>

<mx:Button label=”Catalog”
click=”viewstack1.selectedChild=booksView”/>

<mx:Button label=”Authors”
click=”viewstack1.selectedChild=authorsView”/>

<mx:Button label=”Shoppping Cart”
click=”viewstack1.selectedChild=cartView”/>

</mx:HBox>
<mx:ViewStack id=”viewstack1” width=”400” height=”200”>

<views:Books id=”booksView” width=”100%” height=”100%”/>
<views:Authors id=”authorsView” width=”100%” height=”100%”/>
<views:ShoppingCart id=”cartView” width=”100%” height=”100%”/>

</mx:ViewStack>
</mx:Application>

The code in Listing 12.3 is available in the Web site files as
BookStoreReferenceNavigation.mxml in the chapter12 project.

Figure 12.5 shows the resulting application, with explicit Button controls to handle navigation to
each nested container.

ON the WEBON the WEB

TIPTIP

353

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:40 PM Page 353

FIGURE 12.5

An application with explicit navigation by unique id

Managing creation policy
The ViewStack, TabNavigator, and Accordion containers support a property named
creationPolicy that manages the manner in which their nested view containers are instanti-
ated at runtime. These are possible values of creationPolicy:

� auto (the default)

� all

� none

� queued

When creationPolicy is set to the default of auto, only the initially active view is completely
instantiated at first. The other view containers also are instantiated, but their child controls are left
null. Any attempt to address these objects in ActionScript code while they’re not yet instantiated
results in a null error.

This behavior is known as deferred instantiation and is a strategy for optimizing client-side perform-
ance in Flash Player. In a navigator container that contains dozens of views or more, if the application

354

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:40 PM Page 354

has to instantiate all the content before the user can interact with anything, significant delays can
occur. To prevent this issue, the default behavior makes content visible as early as possible.

You see the effect of deferred instantiation when you try to initialize some property of a nested
component before the user decides to visit that content at runtime and get a runtime error. You can
solve this by setting the navigator container’s creationPolicy property to all, meaning that all
the views are instantiated during the navigator container’s instantiation. This strategy can work fine
in a small- to medium-size application that doesn’t have a large number of nested views.

Alternatively, you can set creationPolicy to none, meaning that you don’t want the nested
components ever to be instantiated automatically, and then take complete control over the process
by explicitly calling the nested container’s createComponentsFromDescriptors() method
when you see fit.

The Container class implements such methods as addChild(), addChildAt(),
and removeChild() that allow you to explicitly control the contents and order of a

container’s nested child objects at runtime. You can use these methods to control not just which
objects have been instantiated, but which are currently nested children of a navigator container.

The creationPolicy property is also implemented in layout containers. Layout con-
tainers instantiate their child objects all at the same time by default. If you prefer to

take control over the instantiation process, set the layout container’s creationPolicy property to
none, and then instantiate the child objects as necessary using with the container’s
createComponentsFromDescriptors() method.

Finally, the effect of setting creationPolicy to queued means that you want to instantiate all
objects automatically, but instead of creating all objects simultaneously (as with the setting of all),
each nested view component’s content is instantiated only after the prior component’s instantiation
has been completed.

Managing navigator container dimensions
By default, navigator containers size to the first visible child container. Any subsequent navigation
results in bumping the child container up to the top left if it is smaller than the instantiated size, or
the implementation of scrollbars if the container is larger.

You can set the height and width of a navigator container using absolute pixel dimensions, percent-
age dimensions, or dynamic sizing. You can use two common strategies for handling navigator
container sizing:

� Set the navigator container’s dimensions to specific pixel or percentage dimensions, and
then set the nested container sizes to 100 percent height and width. Each of the nested
view containers then resizes to fill the available space in the navigator container.

� Set the nested containers to specific pixel dimensions, and set the navigator container’s
resizeToContent property to true. The navigator container then resizes to accom-
modate each newly active view as the user navigates through the application.

TIPTIP

TIPTIP

355

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:41 PM Page 355

Setting resizeToContent to true forces the navigator container to re-measure and
re-draw itself as the user navigates through the application. This can cause interesting

and unintended visual effects, particularly when the navigator container has a visible border or
background.

Using Navigator Bar Containers
If you want a user to be able to navigate to any container within a ViewStack, you can use one of
the navigator bar containers that are included with the Flex framework. The framework uses four
navigator bar containers:

� ButtonBar: Generates one Button control for each nested container

� ToggleButtonBar: Generates one Button control for each nested container and
shows the current selection through the Button control’s toggle behavior

� LinkBar: Generates one LinkButton control for each nested container

� TabBar: Generates one Tab for each nested container

You won’t find a Tab component or ActionScript class in the Flex 3 documentation, but
it’s used internally as a style selector to manage a TabBar’s visual presentation. Because

each Tab is an instance of this internal class, you can change certain styles such as the amount of
padding within each Tab:

<mx:Style>
Tab {

padding-left:10;
padding-bottom:0;
padding-top:0;
padding-right:10;

}
</mx:Style>

Using an Array as a dataProvider
Each of the navigator bar containers has a dataProvider property that you bind to a
ViewStack. The navigator bar then generates one interactive component for each of the stack’s
nested containers.

Navigator bars generate nested controls based on information provided through their
dataProvider property. The dataProvider can be either an Array of values (either simple
strings or complex objects) or can be bound to a ViewStack.

TIPTIP

CAUTION CAUTION

356

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:41 PM Page 356

This code generates a LinkBar using a dataProvider set as an Array of complex objects:

<mx:LinkBar itemClick=”clickHandler(event)”>
<mx:dataProvider>

<mx:Object>
<mx:label>Adobe</mx:label>
<mx:url>http://www.adobe.com</mx:url>

</mx:Object>
<mx:Object>

<mx:label>Google</mx:label>
<mx:url>http://www.google.com</mx:url>

</mx:Object>
<mx:Object>

<mx:label>Microsoft</mx:label>
<mx:url>http://www.microsoft.com</mx:url>

</mx:Object>
</mx:dataProvider>

</mx:LinkBar>

In the preceding MXML declaration, the <mx:Object> tags are not explicitly wrapped
in an <mx:Array> tag set. This is a bit of shorthand; the MXML compiler understands

that the dataProvider requires an Array and correctly interprets the declaration of multiple
<mx:Object> tag sets as an Array of Object instances.

The label and url property names are arbitrary and not predefined in the Object
class, but the mx prefix is required because they’re declared within the <mx:Object>

tag set. The value of the label property is used in the labels of the navigator bar container’s generated
controls because the container’s labelField property defaults to label. You can use any other
named object property for this purpose by setting the labelField to the property you want to use.

Handling navigator bar events
When a navigator bar’s dataProvider is set as an Array of data, it doesn’t automatically do
anything when the user clicks one of its controls. Instead, you listen for the navigator bar’s
itemClick event and react to it by executing some ActionScript code.

The itemClick event generates an event object typed as mx.events.ItemClickEvent. This
object has an item property that references underlying data of the interactive component that was
clicked. Within an event handler function, the expression event.item returns the underlying
data, and from that point you can reference the selected object’s data properties.

With the preceding Array of Object instances as a navigator bar’s dataProvider, the expression
event.item.label returns the label property of the selected data item when an interactive con-
trol is clicked, and event.item.url returns its url property.

The application in Listing 12.4 handles the itemClick event of a LinkBar control and responds
by navigating to the selected URL.

TIPTIP

TIPTIP

357

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:41 PM Page 357

LISTING 12.4

An application using a navigator bar container with an Array as the dataProvider

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.events.ItemClickEvent;
private function clickHandler(event:ItemClickEvent):void
{

var request:URLRequest=new URLRequest(event.item.url);
navigateToURL(request);

}
]]>

</mx:Script>
<mx:LinkBar itemClick=”clickHandler(event)”>

<mx:dataProvider>
<mx:Object>

<mx:label>Adobe</mx:label>
<mx:url>http://www.adobe.com</mx:url>

</mx:Object>
<mx:Object>

<mx:label>Google</mx:label>
<mx:url>http://www.google.com</mx:url>

</mx:Object>
<mx:Object>

<mx:label>Microsoft</mx:label>
<mx:url>http://www.microsoft.com</mx:url>

</mx:Object>
</mx:dataProvider>

</mx:LinkBar>
</mx:Application>

The code in Listing 12.4 is available in the Web site files as
NavBarWithArrayData.mxml in the chapter12 project.ON the WEBON the WEB

358

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:41 PM Page 358

Using a ViewStack as a dataProvider
When you pass a ViewStack to a navigator bar as its dataProvider, the navigator bar gener-
ates one interactive control for each of the ViewStack container’s nested views. Each nested con-
tainer’s label property is passed to each generated Button, LinkButton, or Tab for display.

You set a ViewStack as a dataProvider with a binding expression:

<mx:ToggleButtonBar dataProvider=”{viewstack1}”/>

The application in Listing 12.5 uses a ToggleButtonBar that generates one toggle button for
each nested container of a ViewStack.

LISTING 12.5

An application using a navigator bar container

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:views=”views.*” layout=”vertical” horizontalAlign=”left”
backgroundGradientAlphas=”[1.0, 1.0]”
backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Style source=”assets/styles.css”/>
<views:Header/>
<mx:ToggleButtonBar dataProvider=”{viewstack1}”/>
<mx:ViewStack id=”viewstack1” width=”400” height=”200”>

<views:Books label=”Catalog” width=”100%” height=”100%”/>
<views:Authors label=”Authors” width=”100%” height=”100%”/>
<views:ShoppingCart label=”Shopping Cart” width=”100%”

height=”100%”/>
</mx:ViewStack>

</mx:Application>

The code in Listing 12.5 is available in the Web site files as BookStoreNavBar.mxml
in the chapter12 project.

Figure 12.6 shows the resulting application, with generated toggle button controls to handle navi-
gation to each nested container.

ON the WEBON the WEB

359

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:41 PM Page 359

FIGURE 12.6

An application using a navigator bar container

Managing navigator bar presentation
Each of the navigator bar containers has a direction property that can be used to lay out the con-
tainer vertically. For example, this LinkBar stacks its generated LinkButton controls vertically:

<mx:LinkBar dataProvider=”{viewstack1}” direction=”vertical”/>

The application in Listing 12.6 uses a vertical LinkBar wrapped in an HBox container. Binding
expressions are used to match the component’s width and height properties as needed.

LISTING 12.6

An application using a vertical navigator bar container

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:views=”views.*” layout=”vertical” horizontalAlign=”left”
backgroundGradientAlphas=”[1.0, 1.0]”
backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Style source=”assets/styles.css”/>
<views:Header id=”header”/>

360

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:41 PM Page 360

<mx:HBox width=”{header.width}”>
<mx:LinkBar dataProvider=”{viewstack1}”

direction=”vertical”
backgroundColor=”white” backgroundAlpha=”.8”
height=”{viewstack1.height}”/>

<mx:ViewStack id=”viewstack1” width=”100%” height=”200”>
<views:Books label=”Catalog” width=”100%” height=”100%”/>
<views:Authors label=”Authors” width=”100%” height=”100%”/>
<views:ShoppingCart label=”Shopping Cart” width=”100%”

height=”100%”/>
</mx:ViewStack>

</mx:HBox>
</mx:Application>

The code in Listing 12.6 is available in the Web site files as
BookStoreVerticalNav.mxml in the chapter12 project.

Figure 12.7 shows the resulting application, with a LinkBar displaying stacked LinkButton
controls.

FIGURE 12.7

An application using a vertical navigator bar container

ON the WEBON the WEB

361

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:41 PM Page 361

Using Menu Controls
Flex provides three menu controls that can be used to create styles of navigation interfaces. They
include the Menu, the MenuBar, and the PopupMenuButton. Of these three controls, the Menu
and MenuBar define their menus with a hierarchical data structure, represented as XML, and
notify you of user selections with both an itemClick and change event.

The PopupMenuButton control differs from the other menu controls, in that it displays only a sin-
gle-level menu and notifies you of a user selection with its change event. This section describes the
details of using the Menu and MenuBar controls. PopupMenuButton is described in Chapter 13.

You can use the Menu and MenuBar controls, combined with event listeners and ActionScript
event handler functions, to create a customized navigation interface.

Menu data providers
The data that determines the structure of a Menu or MenuBar is typically represented hierarchi-
cally and can be one of these types:

� A String containing valid XML text

� An XMLNode

� An XMLList

� Any object that implements ICollectionView

� An Array

Any other object passed as a menu data provider is automatically wrapped in an Array with the
object as its first and only item.

The most common sort of data used to determine menu structure is an XMLList. You can declare
an XMLList in the application with MXML code and nested XML markup:

<mx:XMLList id=”menuData”>
<menuitem label=”Lists”>

<menuitem label=”Catalog” view=”catalogView”/>
<menuitem label=”Authors” view=”authorsView”/>

</menuitem>
<menuitem label=”Shopping”>

<menuitem label=”Shopping Cart” view=”cartView”/>
</menuitem>

</mx:XMLList>

You can select any element and attribute names you like in the XML structure, but you should
follow these recommendations when using a menu control with a ViewStack:

� Each menu item should have a consistently named attribute to serve as the visible label
for each menu node. In the preceding example, this attribute is named label. Notice
that all menu items at all levels of the hierarchy have this attribute.

362

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:41 PM Page 362

� Menu items that cause navigation should have an attribute whose value matches the
unique id of a nested container in a ViewStack. This can help you simplify the
ActionScript code you write to handle the menu control’s events.

To use the data in a menu control, pass the XMLList structure to the control as its dataProvider
property in a binding expression. Also set the menu control’s labelField to an E4X expression
that references the label attribute in each menu node:

<mx:MenuBar id=”myMenuBar” dataProvider=”{menuData}”
labelField=”@label”/>

Detailed information about retrieving XML and parsing it with E4X is available in
Chapters 21 and 22.

If you forget to set the menu control’s labelField to a consistently named attribute
or property of the underlying data, the labels of the menu items sometimes present raw

XML because the control doesn’t have any instructions for parsing the data.

Handling menu events
When the user selects an item from either the Menu or MenuBar control, it dispatches an
itemClick event that generates an event object typed as mx.events.MenuEvent. This event
object has an item property that references the underlying data that drove the creation of the
selected menu item. Within an event handler function, the expression event.item references the
data, and the E4X expression can be used to access the selected XML node’s attributes. For exam-
ple, the expression event.item.@view references the XML node’s view attribute.

You can listen for the itemClick event with MXML or ActionScript. This MenuBar has an
attribute-based itemClick event listener that passes the event object to a custom event handler
function named menuClickHandler():

<mx:MenuBar id=”myMenuBar” dataProvider=”{menuData}”
labelField=”@label” itemClick=”menuClickHandler(event)”/>

To listen for the same event with an ActionScript statement, use the addEventListener()
method to listen for the event named by the constant MenuEvent.ITEM_CLICK:

navMenu.addEventListener(MenuEvent.ITEM_CLICK, menuClickHandler);

The custom event handler can then access the selected XML node’s attributes and use them to exe-
cute navigation. This event handler function retrieves the node’s view attribute with an array-style
expression to change the active view container of the ViewStack:

import mx.events.MenuEvent;
private function menuClickHandler(event:MenuEvent):void
{

viewstack1.selectedChild = this[event.item.@view];
}

CAUTION CAUTION

CROSS-REFCROSS-REF

363

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:41 PM Page 363

Using the Menu control
The Menu control presents a set of cascading menus in response to a user event. Because this con-
trol is always presented in response to an event, and not as a static part of the application’s visual
interface, it can be instantiated only with ActionScript, not with MXML.

To create a Menu, instantiate it with the Menu class’s static createMenu() method and pass two
arguments:

� The Menu object’s parent container

� The Menu object’s data provider

Then present the Menu with its show() method, passing optional xShow and yShow coordinates
as arguments. This event handler function responds to a mouse event by creating a Menu with a
data provider named menuData and the Application as the parent window, and then displays it at
the mouse event’s stageX and stageY coordinates.

The application in Listing 12.7 uses a Menu populated with an XMLList as its dataProvider.

LISTING 12.7

Using the Menu control

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Script>
<![CDATA[

import mx.events.MenuEvent;
import mx.controls.Alert;
import mx.controls.Menu;
private function showMenu(event:MouseEvent):void
{

var navMenu:Menu = Menu.createMenu(this, menuData);
navMenu.labelField=”@label”;
navMenu.addEventListener(MenuEvent.ITEM_CLICK,

menuClickHandler);
navMenu.show(event.stageX,event.stageY);

}

private function menuClickHandler(event:MenuEvent):void
{

Alert.show(“You selected “ + event.item.@label, “Menu
Selection”);

}
]]>

</mx:Script>

364

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:41 PM Page 364

<mx:XMLList id=”menuData”>
<menuitem label=”Lists”>

<menuitem label=”Catalog” view=”catalogView”/>
<menuitem label=”Authors” view=”authorsView”/>

</menuitem>
<menuitem label=”Shopping”>

<menuitem label=”Shopping Cart” view=”cartView”/>
</menuitem>

</mx:XMLList>
<mx:Label text=”Click for Menu” mouseUp=”showMenu(event)”/>

</mx:Application>

The code in Listing 12.7 is available in the Web site files as MenuDemo.mxml in the
chapter12 project.

Figure 12.8 shows the resulting application. The Menu pops up when the mouse button is released
while over the Label control.

FIGURE 12.8

Using the Menu control

Using the MenuBar control
The MenuBar control presents a horizontal list of menu items with cascading pull-down sub-
menus. It uses the same sort of data and generates the same events as the Menu control. Unlike the
Menu, it’s designed to be placed in a static position in the application and serve as a navigation or
functional menu, so it’s typically declared in MXML:

<mx:MenuBar id=”myMenuBar” dataProvider=”{menuData}”
labelField=”@label” itemClick=”menuClickHandler(event)”/>

The Menu control responding to a mouse event

ON the WEBON the WEB

365

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:41 PM Page 365

The application in Listing 12.8 uses a MenuBar for navigation in the sample bookstore applica-
tion. Notice that the MenuBar is wrapped in an ApplicationControlBar that “glues” the
navigation control to the top of the screen.

LISTING 12.8

Using the MenuBar control

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:views=”views.*” layout=”vertical” horizontalAlign=”left”
backgroundGradientAlphas=”[1.0, 1.0]”
backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Script>

<![CDATA[
import mx.events.MenuEvent;
private function menuClickHandler(event:MenuEvent):void
{

viewstack1.selectedChild = this[event.item.@view];
}

]]>
</mx:Script>
<mx:Style source=”assets/styles.css”/>
<mx:XMLList id=”menuData”>

<menuitem label=”Lists”>
<menuitem label=”Catalog” view=”catalogView”/>
<menuitem label=”Authors” view=”authorsView”/>

</menuitem>
<menuitem label=”Shopping”>

<menuitem label=”Shopping Cart” view=”cartView”/>
</menuitem>

</mx:XMLList>
<mx:ApplicationControlBar dock=”true”>

<mx:MenuBar id=”myMenuBar”
dataProvider=”{menuData}”
labelField=”@label” itemClick=”menuClickHandler(event)”/>

</mx:ApplicationControlBar>
<views:Header/>
<mx:ViewStack id=”viewstack1” width=”400” height=”200”>

<views:Books id=”catalogView” label=”Catalog”
width=”100%” height=”100%”/>

<views:Authors id=”authorsView” label=”Authors”
width=”100%” height=”100%”/>

<views:ShoppingCart id=”cartView” label=”Shopping Cart”
width=”100%” height=”100%”/>

</mx:ViewStack>
</mx:Application>

366

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:41 PM Page 366

The code in Listing 12.8 is available in the Web site files as
BookStoreMenuBar.mxml in the chapter12 project.

Figure 12.9 shows the resulting application, with the MenuBar nested within the
ApplicationControlBar.

FIGURE 12.9

Using the MenuBar control

Using Other Navigator Containers
The TabNavigator and Accordion navigator containers provide the same form of navigation
functionality as the ViewStack in that they nest a stack of containers and display only one of the
containers at a time. Unlike the ViewStack, though, the TabNavigator and Accordion have
their own user interface to allow the user to navigate between views.

The TabNavigator container
The TabNavigator container provides a set of tabs, similar in appearance to a TabBar, but
more visually integrated with the rest of the container. Unlike the ViewStack, which is invisible
by default, the TabNavigator has a default border.

The MenuBar control

ON the WEBON the WEB

367

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:41 PM Page 367

The MXML syntax of the TabNavigator is identical to that of the ViewStack: You wrap its
nested containers within the appropriate MXML tag set. As with the ViewStack, you can wrap
only those components within a TabNavigator that include the Container class in their
inheritance hierarchy:

<mx:TabNavigator id=”views”>
<mx:HBox/>
<mx:VBox/>
<mx:Canvas/>
<mx:Panel/>
<views:MyCustomComponent/>

</mx:TabNavigator >

For example, in the bookstore application that’s been used previously in this chapter, to use a
TabNavigator instead of a ViewStack, you’d follow these steps:

1. Change the MXML tag set wrapping the custom components from <mx:ViewStack> to
<mx:TabNavigator>.

2. Delete any navigator bar control or custom navigator controls that you might have been
using to provide a navigation interface.

Listing 12.9 shows the application using a TabNavigator instead of a ViewStack.

LISTING 12.9

An application using a TabNavigator

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:views=”views.*” layout=”vertical” horizontalAlign=”left”
backgroundGradientAlphas=”[1.0, 1.0]”
backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Style source=”assets/styles.css”/>
<views:Header/>
<mx:TabNavigator id=”viewstack1” width=”400” height=”300”>

<views:Books label=”Catalog” width=”100%” height=”100%”/>
<views:Authors label=”Authors” width=”100%” height=”100%”/>
<views:ShoppingCart label=”Shopping Cart” width=”100%”

height=”100%”/>
</mx:TabNavigator>

</mx:Application>

The code in Listing 12.9 is available in the Web site files as BookStoreTabNav.mxml
in the chapter12 project.ON the WEBON the WEB

368

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:41 PM Page 368

Figure 12.10 shows the resulting application, with a TabNavigator providing the navigation
interface. Notice that the tabs are visually integrated with the container that wraps the application
content.

FIGURE 12.10

An application using a TabNavigator

The Accordion container
The Accordion navigator container provides navigation through a set of headers that slide verti-
cally to expose or hide nested views as needed.

The Accordion container slides only vertically, not horizontally. Doug McCune has
created and shared a horizontal Accordion that you can download from http://

dougmccune.com/blog/2007/01/27/horizontal-accordion-component-for-flex.

The MXML syntax of the Accordion is identical to that of the ViewStack: You wrap its nested
containers within the appropriate MXML tag set. As with the ViewStack and TabNavigator,

WEB RESOURCEWEB RESOURCE

The TabNavigator’s dynamic tabs

369

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:41 PM Page 369

you can wrap only those components within an Accordion that include the Container class in
their inheritance hierarchy:

<mx:Accordion id=”views”>
<mx:HBox/>
<mx:VBox/>
<mx:Canvas/>
<mx:Panel/>
<views:MyCustomComponent/>

</mx:Accordion >

For example, in the bookstore application that’s been used previously as an example in this chap-
ter, to use an Accordion instead of a ViewStack, you’d follow these steps:

1. Change the MXML tag set wrapping the custom components from <mx:ViewStack> to
<mx:Accordion>.

2. Delete any navigator bar control or custom navigator controls that you might have been
using to provide a navigation interface.

Listing 12.10 shows the application using an Accordion instead of a ViewStack.

LISTING 12.10

An application using an Accordion

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:views=”views.*” layout=”vertical” horizontalAlign=”left”
backgroundGradientAlphas=”[1.0, 1.0]”
backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Style source=”assets/styles.css”/>
<views:Header/>
<mx:Accordion id=”viewstack1” width=”400” height=”300”>

<views:Books label=”Catalog” width=”100%” height=”100%”/>
<views:Authors label=”Authors” width=”100%” height=”100%”/>
<views:ShoppingCart label=”Shopping Cart” width=”100%”

height=”100%”/>
</mx:Accordion>

</mx:Application>

The code in Listing 12.10 is available in the Web site files as
BookStoreAccordion.mxml in the chapter12 project.

Figure 12.11 shows the resulting application, with an Accordion providing the navigation interface.
Notice that the tabs are visually integrated with the container that wraps the application content.

ON the WEBON the WEB

370

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:41 PM Page 370

FIGURE 12.11

An application using an Accordion

TabNavigator and Accordion keyboard shortcuts
The TabNavigator and Accordion containers support this set of keyboard shortcuts that allow
the user to navigate with key presses instead of mouse gestures:

� Page Down: Navigates to next view, wrapping from last to first.

� Down Arrow and Right Arrow: Selects next tab or header, wrapping from last to first, but
doesn’t change the active view. Pressing Enter or the spacebar then triggers navigation.

� Page Up: Navigates to previous view, wrapping from first to last.

� Up Arrow and Left Arrow: Selects previous tab or header, wrapping from first to last, but
doesn’t change the active view. Pressing Enter or the spacebar then triggers navigation.

� Home: Navigates to first view.

� End: Navigates to last view.

The Accordion container’s headers

371

Managing Application Navigation 12

18_287644-ch12.qxp 6/23/08 11:41 PM Page 371

Summary
In this chapter, I described techniques for creating navigation interfaces in Flex applications. You
learned the following:

� Class Web applications handle navigation by requesting and loading individual Web
pages into the browser one at a time.

� Flex applications contain all their views in the compiled application.

� The ViewStack container nests multiple view containers and displays only one at a time.

� You can manage navigation with ActionScript commands or with a navigator bar
container.

� The navigator bar containers automate navigation when bound to a ViewStack.

� The menu controls can be used with event listeners and ActionScript to create a naviga-
tion interface.

� The TabNavigator and Accordion containers combine ViewStack functionality
with their own navigation interfaces.

372

The Flex Class LibraryPart II

18_287644-ch12.qxp 6/23/08 11:41 PM Page 372

In applications that are built for windows-style operating systems, such as
Microsoft Windows, Mac OS X, and the various windowing interfaces on
Linux and other operating systems, pop-up windows are commonly used

to get the user’s attention, provide information, and collect data. Not all Flex
applications have or require pop-up windows, but they’re a common interface
that users of these operating systems easily recognize and know how to use.

Flex applications are able to present pop-up windows in a variety of forms.
Whether you want to display a simple information message or create a more
customized user experience, you have these options:

� The Alert class creates a simple pop-up dialog box displaying
simple String values. The Alert class also can be used to allow
the user to confirm or cancel an operation before it’s executed, and
it can include a custom graphical icon.

� The PopUpMenuButton control displays a two-part Button
control that displays a single-level pop-up menu when clicked.

� The PopUpButton control combines a Button with any other
visual component that you want to display when clicked.

� Custom pop-up windows can be created with the TitleWindow
container, and presented and managed with the PopUpManager
class.

In this chapter, I describe each of these options and provide examples of how
these classes and controls can be used.

To use the sample code for this chapter, import the
chapter13.zip Flex project archive from the Web site

files into your Flex Builder workspace.

ON the WEBON the WEB

373

IN THIS CHAPTER
Understanding pop-up windows

Using the Alert class

Using the PopUpMenuButton
control

Using the PopUpButton control

Creating and displaying custom
pop-up windows

Working with
Pop-up Windows

19_287644-ch13.qxp 6/23/08 11:41 PM Page 373

Using the Alert Class
The mx.controls.Alert class can present dialog boxes as pop-up windows that either present
simple informational messages or allow the user to accept or decline an operation. In addition,
the pop-up windows generated by the Alert class can include a custom icon graphic in their
presentation.

The Alert class displays a pop-up dialog box in response to a call to the class’s static show()
method. The syntax of the method is:

show(text:String = “”, title:String = “”,
flags:uint = 0x4, parent:Sprite = null,
closeHandler:Function = null,
iconClass:Class = null, defaultButtonFlag:uint = 0x4):Alert

All of the show() method’s arguments are optional, but you almost always pass in the
first text argument (the string you want to display in the body of the pop-up window).

Before calling the Alert class’s methods, it must be imported. You can import the
Alert class with this explicit import statement:

import mx.controls.Alert;

You also can import the class with a wildcard statement that includes all classes in the
mx.controls package:

import mx.controls.*;

Presenting pop-up windows with Alert.show()
The most common use of the Alert class is to present a simple dialog box with up to two text
messages. To present this sort of dialog box, call the class’s show() method and pass in two
String arguments:

Alert.show(“This is a simple informational message”, “Alert
Title”);

The first String argument passed into Alert.show() appears in the body of the dialog box,
and the second String appears as the dialog box title.

Figure 13.1 shows a simple Alert pop-up dialog box with the two text messages.

TIPTIP

TIPTIP

374

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:41 PM Page 374

FIGURE 13.1

A simple Alert pop-up dialog box

Controlling Alert window modality
A pop-up window that’s modal blocks the user from interacting with the rest of the application as long
as the dialog box appears on the screen. In Flex, some pop-up windows are modal and others aren’t.

When you present a pop-up dialog box with the Alert class, it’s modal by default, so the user has
to click a button or otherwise close the window before continuing his work with the rest of the
application.

Modal pop-up windows in Flex have a special feature that lets the user know the application isn’t
currently available as long as the pop-up window is visible. When the pop-up window appears on
the screen, the rest of the application is blurred so that its appearance clearly indicates to the user
that he can’t use it until he takes some action. The visual result, where the dialog box is presented
in clear resolution and the remainder of the application is blurry, is a visual indicator that the user
must take some action to continue.

The Alert pop-up window is modal by default. You can make the Alert class present a non-
modal window by passing the Alert.NONMODAL constant into the show() method as a flag. The
Alert class has constants designed for use as flags. The others are used to present specific buttons
in the pop-up dialog box.

Flags are passed into the show() method as the third argument. This code creates a non-modal
pop-up window:

Alert.show(“This is a non-modal Alert window”,
“Non-modal Alert”, Alert.NONMODAL);

Figure 13.2 shows the resulting non-modal pop-up window. Notice that the application in the
background isn’t blurry and can accept user focus.

375

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:41 PM Page 375

FIGURE 13.2

A non-modal Alert dialog box

You also can present a non-modal pop-up window with a custom container based on
TitleWindow and managed with PopUpManager.

Managing Alert window buttons
You can present a pop-up window created by the Alert class with buttons labeled Yes, No, OK,
and Cancel. You determine which buttons will be presented with the show() method’s flags
argument. To include more than one flag, separate them with the bitwise OR operator (|) and
wrap the entire expression in parentheses.

This call to Alert.show() presents a dialog box with Yes and No buttons, shown in Figure 13.3:

Alert.show(“This is an Alert dialog box with custom buttons”,
“Alert with Buttons”,
(Alert.YES | Alert.NO));

FIGURE 13.3

An Alert pop-up dialog box with custom buttons

TIPTIP

376

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:41 PM Page 376

Non-modal dialog boxes with multiple buttons
If you want to present an Alert dialog box with multiple buttons and make it non-modal, include
the Alert.NONMODAL constant in the flags argument:

Alert.show(“This is a non-modal Alert dialog box with custom
buttons”,
“Non-modal Alert with Buttons”,
(Alert.YES | Alert.NO | Alert.NONMODAL));

Setting button labels
The labels of the various buttons are determined by these static properties of the Alert class:

� yesLabel: The label on the Yes button

� noLabel: The label on the No button

� okLabel: The label on the OK button

� cancelLabel: The label on the Cancel button

These properties should be set prior to calling the Alert.show() method. In addition, because
buttons in the Alert dialog box don’t automatically resize themselves based on their labels, you
may need to explicitly set the Alert.buttonWidth property to specific width in terms of pixels:

private function alertWithButtonLabels():void
{

Alert.yesLabel = “Fer sure!!!”;
Alert.noLabel = “NO WAY!!”;
Alert.buttonWidth = 100;
Alert.show(“This is an Alert dialog box with custom button
labels”,
“Alert with Button Labels”, (Alert.YES | Alert.NO));

}

Figure 13.4 shows an Alert dialog box with custom button labels.

Changes to Alert button properties such as buttonWidth, okLabel, and
cancelLabel survive only for a single call to Alert.show(). After the method has

been called, the button labels return to their default values.

CAUTION CAUTION

377

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:41 PM Page 377

FIGURE 13.4

An Alert dialog box with custom button labels

Setting a default button
When an Alert pop-up window has multiple buttons, the first button is the default. If the user
presses Enter or Return without any other window interactions, it’s the equivalent of clicking that
button. To change the default button, pass the selected button’s flag constant in the show()
method’s seventh argument. Because you have to pass in all other arguments, just pass null in the
arguments you aren’t using:

Alert.show(“This Alert dialog box’s default button is Cancel”,
“Alert with default Button”,
(Alert.OK | Alert.CANCEL),
null, null, null,
Alert.CANCEL);

The user can click other buttons or press the Tab key to move focus from one button to another,
but if he presses Enter or Return immediately upon the pop-up dialog box’s appearance, the close
event handler indicates that the default button was clicked.

Handling Alert window events
When you add multiple buttons to an Alert dialog box, you usually want to react in some way to
whichever button the user clicks. When the user clicks any button to close the dialog box, an event
object typed as mx.events.CloseEvent is generated. To find out which button was clicked,
create a custom event handler function that accepts this event object as its only argument and
returns void. Within the event handler function, the event object’s detail property references
the flag constant representing that button.

private function alertCloseHandler(event:CloseEvent):void
{

if (event.detail == Alert.OK)

378

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:41 PM Page 378

{
Alert.show(“You clicked “ + Alert.okLabel,

“Close Event Handler”);
}
else
{

Alert.show(“You clicked “ + Alert.cancelLabel,
“Close Event Handler”);

}
}

You may want to use the close event handler function even if your pop-up window
only has a single button. For example, you can use it to store a reminder that the user

has been warned about a particular condition so you don’t have to show the pop-up window again.

You designate the event handler function by passing the function name as the show() method’s
fifth argument:

Alert.show(“An Alert dialog box with close event handler”,
“Alert Event Handler”, (Alert.OK | Alert.CANCEL),
null, alertCloseHandler);

When the user clicks any of the pop-up dialog box’s buttons, the close event is handled by the
custom event handler and you have an opportunity to execute ActionScript code.

In the resulting application, shown in Figure 13.5, the user is informed as to which button was
clicked.

FIGURE 13.5

The response to handling the Alert class close event

TIPTIP

379

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:41 PM Page 379

Using a custom graphical icon
You can display a graphical icon in the body of the Alert pop-up window with the iconClass
argument. Graphical icons must be embedded in the application, so you first declare the graphic
with the [Embed] metadata tag and assign it a Class variable name:

[Embed(source=”assets/questionicon.png”)]
private var questionIcon:Class;

In the call to Alert.show(), pass the Class variable representing the graphic as the sixth
argument:

Alert.show(“An Alert dialog box with custom icon”,
“Alert Event Handler”, 0, null, null,
questionIcon);

Figure 13.6 shows the Alert dialog box with the custom icon.

FIGURE 13.6

An Alert dialog box with a custom icon graphic

Graphics designed for use as icons in the Alert pop-up window should be small and
their backgrounds either should be transparent (a reason to use .gif, .png, or .swf files)

or should match the backgroundColor style of the window. The Alert class’s
backgroundColor style is set to #90A4AE by default.

The graphic used in this example was created in Adobe Fireworks CS3, but you can use
any graphics application you’re familiar with to create the required assets.

The application in Listing 13.1 contains demo code for all of the preceding uses of the
Alert.show() method.

NOTENOTE

TIPTIP

380

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:41 PM Page 380

LISTING 13.1

Using the Alert.show() method

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#eeeeee”>
<mx:Script>
<![CDATA[

import mx.events.CloseEvent;
import mx.controls.Alert;
[Embed(source=”assets/questionicon.png”)]
private var questionIcon:Class;
private function simpleAlert():void
{

Alert.show(“This is a simple informational message”, “Alert
Title”);

}
private function nonModalAlert():void
{

Alert.show(“This is a non-modal Alert window”, “Non-modal
Alert”,

Alert.NONMODAL);
}
private function alertWithButtons():void
{

Alert.show(“This is an Alert dialog box with multiple buttons”,
“Alert with Buttons”, (Alert.YES | Alert.NO));

}
private function alertWithButtonLabels():void
{

Alert.yesLabel = “Fer sure!!!”;
Alert.noLabel = “NO WAY!!”;
Alert.buttonWidth = 100;
Alert.show(“This is an Alert dialog box with custom button

labels”,
“Alert with Button Labels”, (Alert.YES | Alert.NO));

}
private function alertWithDefaultButton():void
{

Alert.show(“This Alert dialog box’s default button is Cancel”,
“Alert with default Button”, (Alert.OK | Alert.CANCEL),
null, null, null, Alert.CANCEL);

}
private function alertWithCloseHandler():void
{

continued

381

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:41 PM Page 381

LISTING 13.1 (continued)

Alert.show(“An Alert dialog box with close event handler”,
“Alert Event Handler”, (Alert.OK | Alert.CANCEL),
null, alertCloseHandler);

}
private function alertCloseHandler(event:CloseEvent):void
{

if (event.detail == Alert.OK)
{

Alert.show(“You clicked “ + Alert.okLabel, “Close Event
Handler”);

}
else
{

Alert.show(“You clicked “ + Alert.cancelLabel,
“Close Event Handler”);

}
}
private function alertWithCustomIcon():void
{

Alert.show(“An Alert dialog box with custom icon”,
“Alert Event Handler”, 0,null, null,
questionIcon);

}
]]>

</mx:Script>
<mx:Button label=”Show Alert Message” click=”simpleAlert()”

width=”{widestButton.width}”/>
<mx:Button label=”Show Non-modal Alert Message”
click=”nonModalAlert()”
id=”widestButton”/>

<mx:Button label=”Alert with Buttons” click=”alertWithButtons()”
width=”{widestButton.width}”/>

<mx:Button label=”Alert with event handler”
click=”alertWithCloseHandler()” width=”{widestButton.width}”/>

<mx:Button label=”Alert with Button Labels”
click=”alertWithButtonLabels()” width=”{widestButton.width}”/>

<mx:Button label=”Alert with Default Button”
click=”alertWithDefaultButton()” width=”{widestButton.width}”/>

<mx:Button label=”Alert with custom icon”
click=”alertWithCustomIcon()”
width=”{widestButton.width}”/>

</mx:Application>

382

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:41 PM Page 382

The code in Listing 13.1 is available in the Web site files as AlertDemos.mxml in the
chapter13 project. The graphic file used in the custom icon example is available as

questionicon.png in the project’s src/assets folder.

Using CSS selectors with the Alert class
You can change the Alert pop-up window’s appearance with these CSS selectors:

� The Alert type selector affects the body of the pop-up window. Most styles that you
might use with the Panel container also work on the Alert dialog box.

� The .windowStyles style name selector affects the title area of the pop-up window. You
can change the name of this class selector with the Alert class’s titleStyleName style,
but it should always be set on a global basis for the entire application. Setting this value
with setStyle() for only one call to Alert.show() can result in incorrect sizing.

These styles can be set in the Alert type selector to change the overall appearance of the window:

� Font styles such as color, fontSize, fontFamily, and so on affect the text within
the body of the window.

� Background styles such as backgroundColor, backgroundImage, and
backgroundAlpha change the background of the window’s center area.

� Window styles, including cornerRadius and roundedBottomCorners, affect the
outer edges of the window.

� Border styles such as borderStyle and borderColor affect the outer border of the
window.

Font styles also can be set in the .windowStyles selector to change the appearance of text in the
window’s header region.

The windowStyles selector is also used by the Panel and TitleWindow containers. Any
changes to the selector are applied to all instances of these containers as well as pop-up

windows created by the Alert class.

The application in Listing 13.2 contains an embedded style sheet that changes styles for both the
pop-up window’s body and title area. The window has extreme round corners at the top and
square corners at the bottom, a typewriter font in the body, and a sans serif font in the title.

LISTING 13.2

Changing the Alert window’s appearance with styles

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#eeeeee”>
<mx:Style>

continued

CAUTION CAUTION

ON the WEBON the WEB

383

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:41 PM Page 383

LISTING 13.2 (continued)

Alert {
color:#000000;
background-color:#FFFFFF;
font-family:Courier, “_typewriter”;
rounded-bottom-corners:false;
corner-radius:15;
border-color:#000000;

}
.windowStyles
{

font-family:Arial, “_sans”;
font-size:14;
font-style:italic;
color:#FFFFFF;

}
</mx:Style>
<mx:Script>

<![CDATA[
import mx.controls.Alert;

private function simpleAlert():void
{

Alert.show(“This is an Alert dialog box with styles applied”,
“Alert Title”);

}
]]>

</mx:Script>
<mx:Button label=”Alert with Style” click=”simpleAlert()”/>

</mx:Application>

The code in Listing 13.2 is available in the Web site files as AlertWithStyles.mxml
in the chapter13 project.

As shown in Figure 13.7, the Alert dialog box uses the Alert and .windowStyles selectors
to determine its visual presentation.

ON the WEBON the WEB

384

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:41 PM Page 384

FIGURE 13.7

An Alert pop-up window, customized with Cascading Style Sheets

Using the PopUpMenuButton Control
The PopUpMenuButton control combines the functionality of a Button with a menu. It’s pre-
sented as a two-part visual component including a simple Button and an icon representing a
down arrow. When the user clicks the control, it presents a menu populated with items from its
data provider.

Unlike the Menu and MenuBar controls, the PopUpMenuButton doesn’t support cas-
cading menus. It’s similar in some ways to the ComboBox control, in that it presents a

single list of available items. But whereas the ComboBox presents only a single control and behavior,
the Button control in the PopUpMenuButton supports all standard Button events.

Creating a data provider
The data provider for a PopUpMenuButton can be an XMLList, XMLListCollection,
Array, or ArrayCollection. If you use an XMLList, ensure that each of its XML nodes con-
tains only simple values in the form of attributes or child nodes with text. Because cascading
menus aren’t possible, you can’t use a deeply nested XML structure.

This XMLList is designed as a compatible data source for the PopUpMenuButton control:

<mx:XMLList id=”xSizes”>
<node label=”Small” value=”S”/>
<node label=”Medium” value=”M”/>
<node label=”Large” value=”L”/>

</mx:XMLList>

CAUTION CAUTION

385

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:41 PM Page 385

The data provider also could be expressed as this ArrayCollection:

<mx:ArrayCollection id=”acSizes”>
<mx:Object>

<mx:label>Small</mx:label>
<mx:value>Small</mx:value>

</mx:Object>
<mx:Object>

<mx:label>Medium</mx:label>
<mx:value>M</mx:value>

</mx:Object>
<mx:Object>

<mx:label>Large</mx:label>
<mx:value>L</mx:value>

</mx:Object>
</mx:ArrayCollection>

Whether you use an XML- or Array-based data set, the PopUpMenuButton displays a single-level
menu when the user clicks the control’s arrow icon, as shown in Figure 13.8.

FIGURE 13.8

A PopUpMenuButton control

Handling events
As with the Menu and MenuBar controls, the PopUpMenuButton dispatches an itemClick
event when the user selects an item from the pop-up menu. The same event is dispatched when
the user clicks the Button portion of the control (the part of the control that displays its label). The
itemClick event generates an event object typed as mx.events.MenuEvent, which has an
item property that refers to the selected data item.

Click to see menu

386

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:41 PM Page 386

In the context of an event handler method, the expression event.item refers to the data item,
and you can use E4X notation to refer to data node attributes or simple dot notation to refer to
named properties of selected objects in an ArrayCollection.

The application in Listing 13.3 uses a PopUpMenuButton control with data populated from an
XMLList. When the user clicks the Button portion of the control or selects an item from its
menu, the itemClick event is dispatched and the message displayed indicates which item has
been selected.

LISTING 13.3

Using the PopUpMenuButton control

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.events.MenuEvent;
public function itemClickHandler(event:MenuEvent):void {

Alert.show(“Menu label: “ + event.item.@label,
“Menu value: “ + event.item.@value);

}
]]>
</mx:Script>
<!-- A data provider in E4X format. -->
<mx:XMLList id=”xSizes”>

<node label=”Small” value=”S”/>
<node label=”Medium” value=”M”/>
<node label=”Large” value=”L”/>

</mx:XMLList>
<mx:Panel title=”PopUpMenuButton Demo” layout=”horizontal”

paddingTop=”10” paddingLeft=”10” paddingRight=”10”
paddingBottom=”10”>
<mx:Label text=”Select a size:”/>
<mx:PopUpMenuButton id=”p2” dataProvider=”{xSizes}”

labelField=”@label” itemClick=”itemClickHandler(event);”/>
</mx:Panel>

</mx:Application>

The code in Listing 13.3 is available in the Web site files as
PopUpMenuButtonDemo.mxml in the chapter13 project.

As shown in Figure 13.9, when the user clicks the Button portion of the control or selects an
item from the pop-up menu, the itemClick event is handled.

ON the WEBON the WEB

387

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:41 PM Page 387

FIGURE 13.9

Handling the PopUpMenuButton control’s itemClick event

Using the PopUpButton control
The PopUpButton control allows you to create a Button made up of two sub-buttons, a main
display button, and a pop-up button that, when clicked, presents any other visual control as a pop-
up window. The only requirement for the component you use as the pop-up window is that it
must include the UIComponent class in its inheritance hierarchy. You can use any pre-built
container or control or any custom component as a pop-up window.

The PopUpButton control is commonly declared in MXML code somewhere in an Application or
custom component:

<mx:PopUpButton id=”myPopup” label=”My Popup Button”/>

You then define the control’s pop-up window and the window’s events and data with ActionScript
code.

Declaring the pop-up window
The pop-up window displayed by a PopUpButton is created at runtime and is typically instanti-
ated in ActionScript code. You first create an instance of the component you want to use, but don’t
add it to the current Application or component’s display list. The component is then bound to
the PopUpButton with the popUp property.

388

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:41 PM Page 388

This code declares an instance of a DateChooser control outside any functions. Then, in a func-
tion that’s called upon application startup, the component is bound to the PopUpButton control’s
popUp property:

[Bindable]
private var myDateChooser:DateChooser = new DateChooser();

private function initPopUpButton():void {
myDateChooser.selectedDate = new Date();
myPopUpButton.popUp = myDateChooser;

}

Handling events and managing pop-up behavior
The rules for handling a PopUpButton control’s events depend on which component you use as
the pop-up window. For example, if you use a pre-built control such as the DateChooser, you
depend on that control’s data and events to manage behavior at runtime.

In the current example, when the user selects a date from the DateChooser control, it dispatches
a change event with an event object typed as mx.events.CalendarLayoutChangeEvent.
Because the DateChooser control has been instantiated with ActionScript code, any event listen-
ers must be created with the addEventListener() method:

myDateChooser.addEventListener(CalendarLayoutChangeEvent.CHANGE,
dateChangeHandler);

You can then call the PopUpButton control’s close() method to close the pop-up window:

private function dateChangeHandler(
event:CalendarLayoutChangeEvent):void {

myPopup.close();
}

Even when objects aren’t currently displayed on the screen, they still exist in application
memory, allowing you access to any of their properties. In this example, you can use the

selectedDate property of the DateChooser even after it’s no longer displayed.

The application in Listing 13.4 uses a PopUpButton to display a DateChooser control as a pop-
up window.

TIPTIP

389

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:41 PM Page 389

LISTING 13.4

Using a PopUpButton control

<?xml version=”1.0”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

creationComplete=”initPopUpButton()”>
<mx:Script>

<![CDATA[
import mx.events.CalendarLayoutChangeEvent;
import mx.controls.DateChooser;
[Bindable]
private var myDateChooser:DateChooser = new DateChooser();
private function initPopUpButton():void {

myDateChooser.selectedDate = new Date();
myDateChooser.addEventListener(

CalendarLayoutChangeEvent.CHANGE, dateChangeHandler);
myPopUpButton.popUp = myDateChooser;
myPopUpButton.executeBindings(true);

}
private function dateChangeHandler(

event:CalendarLayoutChangeEvent):void {
myPopUpButton.close();

}
]]>

</mx:Script>
<mx:DateFormatter id=”df” formatString=”M/D/YYYY”/>
<mx:Panel title=”Using the PopUpButton Control”

paddingTop=”10” paddingBottom=”10” paddingRight=”10”
paddingLeft=”10”

layout=”horizontal”>
<mx:Label text=”Select a date:”/>
<mx:PopUpButton id=”myPopUpButton” width=”135”

label=”{df.format(myDateChooser.selectedDate)}”/>
</mx:Panel>

</mx:Application>

The code in Listing 13.4 is available in the Web site files as PopUpButtonDemo.mxml
in the chapter13 project.

The PopUpButton component implements a Boolean openAlways property that can
be used to display component’s pop-up object when the user clicks the main button. The

pop-up object is always displayed when you click the pop-up button or press the spacebar, regardless
of the setting of the openAlways property.

Figure 13.10 shows the resulting application displaying the DateChooser control in response to
a user clicking the PopUpButton.

TIPTIP

ON the WEBON the WEB

390

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:42 PM Page 390

FIGURE 13.10

Using the PopUpButton control

Working with Custom Pop-up Windows
You can create custom pop-up windows in a Flex application for many purposes:

� Presenting detailed information to the user that’s too complex to easily fit into an Alert
dialog box

� Collecting configuration and preference information before executing an operation

� Providing a pop-up window that can be reused as a custom component

� Collecting data through a data entry form wrapped in a pop-up window

A custom pop-up window component must be extended from a class that implements the
IFlexDisplayObject interface. This interface is implemented by the UIComponent class,
which in turn is in the inheritance hierarchy of all Flex containers and controls. This essentially
means that any visual component can be used as a custom pop-up window.

Defining a custom pop-up window
Custom pop-up windows can be defined as custom MXML components. If you want to create a
window that looks like a dialog box, you can use either the Panel or TitleWindow container.

The TitleWindow is a subclass of the Panel that has the ability to display a close
icon in its upper-right corner and dispatch a close event when the icon is clicked. Its

details are described later in this chapter.

CROSS-REFCROSS-REF

391

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:42 PM Page 391

Creating the component
The steps for creating an MXML component that will be used as a pop-up window are the same as
for any other MXML component:

1. Create a new MXML component.

2. Select the MXML component’s base class.

3. Save the new component in your project as a file with the .mxml file extension.

The following code defines an MXML component designed to collect login information, and it
might be saved as a file named LoginWindow.mxml:

<mx:Panel xmlns:mx=”http://www.adobe.com/2006/mxml”
title=”Please Log In”>
<mx:Form>

<mx:FormItem label=”User Name:”>
<mx:TextInput id=”userInput”/>

</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput displayAsPassword=”true” id=”passwordInput”/>
</mx:FormItem>
<mx:FormItem direction=”horizontal”>

<mx:Button label=”Log In”/>
<mx:Button label=”Cancel”/>

</mx:FormItem>
</mx:Form>

</mx:Panel>

Sharing data with events
The custom component that will be used as a pop-up window should share information with the
rest of the application using custom events. The LoginWindow component described in the pre-
ceding code sample would share events for logging in and for canceling the operation. In order to
share the login information, you need to create a custom event class to contain the login data.

Listing 13.5 is a custom event class with public properties for the username and password values
that will be collected by the custom component.

LISTING 13.5

A custom event class designed for use with a custom Login component

package events
{

import flash.events.Event;
public class LoginEvent extends Event

392

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:42 PM Page 392

{
public var username:String;
public var password:String;

public function LoginEvent(type:String, bubbles:Boolean=false,
cancelable:Boolean=false)

{
super(type, bubbles, cancelable);

}

override public function clone():Event
{

var ev:LoginEvent = new LoginEvent(this.type);
ev.username = this.username;
ev.password = this.password;
return ev;

}

}
}

The code in Listing 13.5 is available in the Web site files as LoginEvent.as in the
chapter13 project’s src/events folder.

When the user clicks the custom component’s Log In button, the component shares data with the
application by constructing and dispatching a custom event object:

var event:LoginEvent = new LoginEvent(“login”);
event.username = userInput.text;
event.password = passwordInput.text;
dispatchEvent(event);

And if the user clicks Cancel, the custom component dispatches a cancel event, with the event
object typed as the standard Event class:

dispatchEvent(new Event(“cancel”));

Listing 13.6 shows a completed custom component designed for use as a pop-up window that can
share data with the application using custom events. Nothing in the preceding code indicates that
this component will be used as a pop-up window; it could just as easily be declared with an MXML
tag set in the application to appear inline in the application.

ON the WEBON the WEB

393

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:42 PM Page 393

LISTING 13.6

A custom component ready for use as a pop-up window

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Panel xmlns:mx=”http://www.adobe.com/2006/mxml” title=”Please Log

In”>
<mx:Metadata>
[Event(name=”login”, type=”events.LoginEvent”)]
[Event(name=”cancel”, type=”flash.events.Event”)]

</mx:Metadata>
<mx:Script>

<![CDATA[
import events.LoginEvent;
private function login():void
{

var event:LoginEvent = new LoginEvent(“login”);
event.username = userInput.text;
event.password = passwordInput.text;
dispatchEvent(event);

}
public function setInitialFocus():void
{

userInput.setFocus();
}

]]>
</mx:Script>
<mx:Form>

<mx:FormItem label=”User Name:”>
<mx:TextInput id=”userInput”/>

</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput displayAsPassword=”true” id=”passwordInput”/>
</mx:FormItem>
<mx:FormItem direction=”horizontal”>

<mx:Button label=”Log In” click=”login()”/>
<mx:Button label=”Cancel”

click=” dispatchEvent(new Event(‘cancel’));”/>
</mx:FormItem>

</mx:Form>
</mx:Panel>

The code in Listing 13.6 is available in the Web site files as LoginWindow.mxml in the
chapter13 project’s src/popups folder.ON the WEBON the WEB

394

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:42 PM Page 394

Figure 13.11 shows the completed data entry form as it would appear if instantiated with this
MXML code:

<popups:LoginWindow id=”myLoginWindow”/>

FIGURE 13.11

The login window as a conventional Panel component

Using the PopUpManager class
The PopUpManager is a singleton class with static methods that you use to manage custom pop-
up windows at runtime. It has two methods that can be used to present a pop-up window:

� addPopUp() adds a new top-level window using a component that’s already been
instantiated and is ready to use.

� createPopUp() creates a new instance of a component, presents the component as a
pop-up window, and returns a reference.

Of these two methods, the addPopUp() method is more useful, because it allows you to con-
struct and pre-configure a visual object prior to presenting it as a pop-up window.

The PopUpManager also has these methods that you use to manipulate the position and order of
pop-up windows:

� bringToFront() gives top-level presentation and focus to a particular window.

� centerPopUp() positions a pop-up window in the horizontal and vertical center of its
parent window.

Finally, PopUpManager has a removePopUp() method to remove top-level windows from the
display when they’re no longer needed, though they will still exist in application memory.

395

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:42 PM Page 395

Adding a pop-up window
To add a new pop-up window to the application interface at runtime using the addPopUp()
method, first declare an instance of the custom component you want to present. This declaration
should be outside of any functions so the pop-up window reference persists between function calls:

private var popup:LoginWindow;

Within a function that you call to display the pop-up window, instantiate the component and cre-
ate any required event listeners with accompanying event handler functions. The LoginWindow
component in this example dispatches events named login and cancel, so it requires two
addEventListener() calls:

popup = new LoginWindow();
popup.addEventListener(“login”, loginHandler);
popup.addEventListener(“cancel”, cancelHandler);

To present the window onscreen, call PopUpManager.addPopUp() with these arguments:

� window:IFlexDisplayObject is the component reference you just instantiated.

� parent:DisplayObject is the parent window over which the pop-up window is
displayed.

� modal:Boolean determines whether the custom pop-up window is modal. If not
passed in, it defaults to false.

� childList:String is the display child list in which you’re adding the pop-up
window. Possible values include PopUpManagerChildList.APPLICATION,
PopUpManagerChildList.POPUP, and PopUpManagerChildList.PARENT
(the default).

After adding the pop-up window to the application interface, you can center the window over its
parent window with a call to PopUpManager.centerPopUp(). If necessary, you can ensure
that the new window has top-level focus with a call to PopUpManager.bringToFront().

This makes a call to PopUpManager.addPopup() to present the LoginWindow custom com-
ponent as a modal pop-up window and then centers it on the parent component:

PopUpManager.addPopUp(popup, this, true);
PopUpManager.centerPopUp(popup);

If you don’t explicitly center the pop-up window with PopUpManager.centerPopUp(),
the window appears in the top-left corner of the parent window.

Figure 13.12 shows the resulting pop-up window. Notice the application’s blurry appearance in the
background, indicating that the user must dismiss the window before interacting with the rest of
the application.

CAUTION CAUTION

396

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:42 PM Page 396

FIGURE 13.12

The LoginWindow component as a pop-up window

Removing a pop-up window
To remove a pop-up window, use the PopUpManager class’s static removePopUp() method.
The method takes a single argument that references the pop-up window instance:

PopUpManager.removePopUp(popup);

You also can call the method from within the component to cause it to remove itself from the
interface:

PopUpManager.removePopUp(this);

The application in Listing 13.7 uses the LoginWindow component as a pop-up window. In each
of its custom event handler functions, it explicitly closes the pop-up window with a call to
PopUpManager.removePopUp().

LISTING 13.7

An application using a custom pop-up window

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import events.LoginEvent;
import mx.controls.Alert;
import mx.managers.PopUpManager;
import popups.LoginWindow;
private var popup:LoginWindow;
private function showLoginWindow():void

continued

397

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:42 PM Page 397

LISTING 13.7 (continued)

{
popup = new LoginWindow();
popup.addEventListener(“login”, loginHandler);
popup.addEventListener(“cancel”, cancelHandler);
PopUpManager.addPopUp(popup, this, true)
PopUpManager.centerPopUp(popup);
popup.setInitialFocus();

}
private function loginHandler(event:LoginEvent):void
{

Alert.show(“You logged in as “ + event.username +
“ with a password of “ + event.password, “Login Successful”);

PopUpManager.removePopUp(popup);
}
private function cancelHandler(event:Event):void
{

Alert.show(“You cancelled the login operation”, “Login
Cancelled”);

PopUpManager.removePopUp(popup);
}

]]>
</mx:Script>
<mx:Button label=”Log In” click=”showLoginWindow()”/>

</mx:Application>

The code in Listing 13.7 is available in the Web site files as
UseCustomPopUp.mxml.as in the chapter13 project.

Using the TitleWindow container
The TitleWindow container is a subclass of Panel, so it shares all of that container’s features:
It contains a title bar, a caption, a border, and a content area, and like the Panel, it can host a
ControlBar container t wizard-like buttons at the bottom.

The TitleWindow adds the ability to display a close button in its upper-right corner, creating a
common visual interface for pop-up windows. To use the TitleWindow container as a custom
pop-up window with its own close icon, create the MXML component with a root element of
<mx:TitleWindow> instead of <mx:Panel>. Then set the component’s showCloseButton
property to true:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:TitleWindow xmlns:mx=”http://www.adobe.com/2006/mxml”

title=”Please Log In” showCloseButton=”true”>
... remainder of component is the same as for a panel ...

</mx:TitleWindow>

ON the WEBON the WEB

398

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:42 PM Page 398

When the TitleWindow component is displayed as a pop-up window, it now displays the close
button, as shown in Figure 13.13.

FIGURE 13.13

A custom component extending TitleWindow and showing the close button

The TitleWindow container’s close button doesn’t actually close the pop-up window. Instead,
it dispatches a close event with an event object typed as mx.events.CloseEvent. Upon
instantiating the custom component (and prior to adding it as a pop-up window), create a listener
for the close event:

popup.addEventListener(CloseEvent.CLOSE, closeHandler);

Then, in the event handler function, call PopUpManager.removePopUp() to remove the pop-
up window from the application interface:

private function closeHandler(event:CloseEvent):void
{

Alert.show(“You canceled the login operation”, “Login
Canceled”);
PopUpManager.removePopUp(popup);

}

Versions of the pop-up window component and application that use the TitleWindow
container instead of the Panel are available in the Web site files as LoginTitle

Window.mxml and UseTitleWindow.mxml.as in the chapter13 project.

ON the WEBON the WEB

The close button

399

Working with Pop-up Windows 13

19_287644-ch13.qxp 6/23/08 11:42 PM Page 399

Summary
In this chapter, I described how to create pop-up windows as part of a Flex application interface.
You learned the following:

� Pop-up windows are typically used to present and collect information in a windowing
style application.

� The Alert class is used to present simple informational messages and to allow a user to
confirm or decline an operation.

� The PopUpMenuButton control combines a Button and single-level Menu that’s simi-
lar in presentation to a ComboBox.

� The PopUpButton control can be used to present any visual container or control as a
pop-up window.

� Custom pop-up windows are defined in the same way as any custom component.

� The Panel and TitleWindow containers present a dialog box-style interface.

� The PopUpManager singleton class is used to add and remove custom pop-up windows
at runtime.

400

The Flex Class LibraryPart II

19_287644-ch13.qxp 6/23/08 11:42 PM Page 400

Flash Player was originally created as a platform for presenting anima-
tion over the Web. Future Splash Animator, the original ancestor of
the Flash authoring environment and Flash Player, was a Java-based

software product that was integrated into the browser in much the same
manner as Flash Player is today.

Millions of Flash developers worldwide create compelling content designed
for presentation in a Web application. Animation and related visual wizardry
is the most common goal, and the most common result, of documents devel-
oped in the Flash authoring environment and distributed through Flash
Player.

Animation in Flash depends largely on use of the timeline: a visual interface
that allows the developer to create animations frame by frame or through a
process known as tweening. Flex application developers don’t have the time-
line available to them. In fact, one of Macromedia’s most important motiva-
tions in creating Flex was to free developers with a coding background from
having to work with the timeline at all. But a Flex application is still distrib-
uted and viewed through Flash Player. So when it’s time to move objects
around the screen, a Flex developer needs code-based approaches to make it
happen.

In this chapter, I describe the use of effects and triggers to define and execute
animation in a Flex application. I also describe how to implement drag-and-
drop interfaces to create an intuitive way to move data around an application.

To use the sample code for this chapter, import the
chapter14.zip Flex project archive from the Web site

files into your Flex Builder workspace.

ON the WEBON the WEB

401

IN THIS CHAPTER
Using effects

Using behaviors and triggers

Playing effects with ActionScript

Using tweening and masking
effects

Using composite effects

Implementing drag-and-drop
interfaces

Controlling Animation

20_287644-ch14.qxp 6/23/08 11:42 PM Page 401

Using Effects
An effect is an ActionScript class that defines changes in a visual component’s position, visibility,
scaling, and other properties over a period of time. The Flex framework includes many pre-built
effect classes that can be applied to visual components and played with explicit ActionScript state-
ments or upon certain built-in effect triggers.

Most pre-built effect classes in the Flex framework define changes to visual properties of control. The
following effects cause changes to one or more of a visual component’s properties over a period of time:

� AnimateProperty: Changes any numeric property of a visual component over a period
of time. Properties with numeric values include width, height, scaleX, scaleY, x, y,
and others.

� Blur: Applies a blur filter to a component. The same visual result can be accomplished
programmatically with the BlurFilter class, but declaring it as an effect in a behavior
takes less code and it can be applied gradually over time.

� Dissolve: Changes the alpha property of a component to affect transparency. An over-
lay rectangle of an arbitrary color is used to slowly hide or reveal the target component.

� Fade: Changes the alpha property of a component to affect transparency. It is similar to
the Dissolve effect, but does not apply a colored overlay.

� Glow: Applies a glow filter to a component over a period of time. The same visual result
can be achieved programmatically with the GlowFilter class, but declaring it as an
effect in a behavior takes less code and it can be applied gradually over time.

� Iris: Uses a rectangular mask to reveal or hide an object over a period of time. Unlike
the Zoom effect, this does not change the component’s dimensions.

� Move: Changes the component’s x and y properties over time. To use this effectively, the
container in which the target component is nested should be a Canvas or an
Application, Panel, or TitleWindow container with layout set to absolute.

� Resize: Changes the component’s width and height over a period of time.

� Rotate: Rotates a component around a specific point. You can control the coordinates of
the rotation point and the angle of rotation.

� WipeLeft, WipeRight, WipeUp, and WipeDown: Reveals or hides a component by
applying or removing a masking rectangle over a period of time.

� Zoom: Changes the scale of a component over time, zooming into and out of a compo-
nent’s center point.

The following effects are non-visual in nature, but are played with the same strategy as the visual
effect classes:

� Pause: Creates a time lag between multiple effects controlled in a Sequence (explained
later in this chapter).

� SoundEffect: Plays an MP3 file. The MP3 file can be embedded or can be loaded at
runtime.

402

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 402

Using effect classes
Effects can be executed automatically at runtime by assigning effect instances to special members of
visual components called triggers. When a trigger occurs, the assigned effect is played.

Each effect class in the Flex framework has its own unique set of properties that control its behav-
ior at runtime. When you pass an effect to a trigger using the effect’s class name, you’re accepting
the effect class’s default property values:

<mx:Image source=”assets/flower1.jpg”
showEffect=”Fade” hideEffect=”Fade”/>

When you pass the name of a class in an MXML attribute, you don’t wrap the class
name in a binding expression. Instead, you just pass the class name as a String and, in

some circumstances, include its package. In this case, the mx.effects package doesn’t have to be
included when it’s included in an MXML trigger declaration.

The Flex framework creates an instance of the event class at runtime and then plays it. When the
effect has been completed, the instance created by the framework is destroyed. Using effect class
names in this manner is convenient and easy for these reasons:

� You don’t have to declare an import statement for effect classes when the effect class is
used in an MXML trigger declaration.

� You don’t have to remember the effect class’s properties; when using the class in this man-
ner, you cannot change its default behavior.

However, this method precludes the ability for controlling your effects, and because you frequently
need to change an effect’s default behavior, you should know how to set the property values of an
effect’s instance class.

Modifying effect class properties
You can override the default property values of any pre-built effect class with MXML or ActionScript
code. To change the behavior of the Fade class, you can create an instance of the Fade class in
MXML. Assign the MXML declaration a unique id so you can refer to the custom effect in your
ActionScript code and binding expressions, and also set any of the class’s properties to your custom
values. This customized Fade effect has a customized duration of 2000 milliseconds:

<mx:Fade id=”myFade” duration=”2000”/>

Because an effect’s duration is measured in milliseconds, a duration of 2000 means that the
effect takes two seconds to play. The duration property’s default value is 500 milliseconds, so the
custom Fade effect plays much more slowly than the default.

To apply the custom effect to a component, reference the custom effect’s id in a binding expres-
sion, applied to the target component’s appropriate trigger. This declaration uses the custom
myFade effect for both the showEffect and the hideEffect triggers:

TIPTIP

403

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 403

<mx:Image id=”myImage” source=”assets/flower1.jpg” x=”150”
y=”100”
showEffect=”{myFade}” hideEffect=”{myFade}”/>

Each effect class in the Flex framework has an equivalent instance class. For example,
the Fade class is matched by a FadeInstance class. The instance class is used inter-

nally by the framework to create new instances of the effect each time it’s played. You should never
declare the effect instance classes directly though.

Whenever an MXML property’s value is assigned to a class instance or variable value,
it should be expressed as a binding, wrapped in brace ({}) characters. This is true for

data providers, transition targets, effect objects, and many other types of data. In some cases, the
Flex compiler allows you to omit the braces from the expression, but it’s a best practice to use them
universally.

Using behaviors and triggers
A Flex behavior is a combination of a trigger and an effect that results in a visual animation or some
other dynamic response to a change in application state.

Triggers play effects in response to a user gesture or change in application state. Triggers are similar
to events, in that they occur when a user gesture or change in state is detected and reported by the
Flex framework. But whereas an event such as mouseDown is handled with an event listener that
executes arbitrary ActionScript code of your design, a trigger such as mouseDownEffect “plays”
an effect class.

The Flex framework has many predefined triggers. Most triggers are defined in the UIComponent
class and are supported by all visual components. These triggers are described in Table 14.1.

TABLE 14.1

Commonly Used Triggers

Name Triggering Event Description

addedEffect added Played when a component is added to a container’s display list

creationComplete creation Played when a component has been completely created in Flash
Effect Complete Player memory

focusInEffect focusIn Played when a component gains keyboard focus

focusOutEffect focusOut Played when a component loses keyboard focus

hideEffect Hide Played when a component’s visible property is set to false
or becomes invisible due to a navigator container changing its
active container

TIPTIP

CAUTION CAUTION

404

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 404

Name Triggering Event Description

mouseDownEffect mouseDown Played when the user presses the mouse button while the mouse
pointer is over the component

mouseUpEffect mouseUp Played when the user releases the mouse button while the mouse
pointer is over the component

moveEffect move Played when the component is moved

removedEffect removed Played when the component is removed from a container’s
display list

resizeEffect resize Played when a component’s dimensions change

rollOutEffect rollout Played when the mouse pointer moves so that it’s no longer over
a component

rollOverEffect rollover Played when the mouse pointer moves so that it becomes
positioned over a component

showEffect show Played when a component’s visible property is set to true or
becomes visible due to a navigator container changing its active
container

In addition to the triggers defined in the UIComponent class, certain triggers are defined for specific
classes and their unique events. For example, the SWFLoader component’s completeEffect trig-
ger plays when a Flash .swf document has been completely loaded from the server.

Triggers are described in the Flex API documentation under each visual component’s
Effects section. Each trigger has an equivalent triggering event. For example, the trigger-

ing event for the mouseDownEffect trigger is mouseDown. You could accomplish the same result
as a traditional behavior by listening for the triggering event and explicitly playing an effect class, but
it would take significantly more code than a simple behavior declaration.

Declaring triggers in MXML
Triggers play effects when you apply them to a visual control. When an object is declared in
MXML, you can apply the trigger with an MXML attribute declaration. In the following code, an
Image control fades in and out of view when its visible property changes from true to false
or back again:

<mx:Image source=”assets/flower1.jpg”
showEffect=”Fade” hideEffect=”Fade”/>

By default, the Image control appears and disappears abruptly. When the control’s showEffect
and hideEffect triggers are set to play the Fade effect, the control appears and disappears
gradually.

TIPTIP

405

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 405

Listing 14.1 shows a complete application that uses the showEffect and hideEffect triggers
to play the Fade effect.

LISTING 14.1

Using a simple trigger

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute” backgroundColor=”#eeeeee”>
<mx:Image id=”myImage” source=”assets/flower1.jpg” x=”150” y=”100”
showEffect=”Fade” hideEffect=”Fade”/>

<mx:Button x=”150” y=”375” label=”Show Image”
click=”myImage.visible=true”/>

<mx:Button x=”374” y=”375” label=”Hide Image”
click=”myImage.visible=false”/>

</mx:Application>

The code in Listing 14.1 is available in the Web site files as SimpleTrigger.mxml in
the chapter14 project.

Figure 14.1 shows the resulting application in the process of fading from visible to invisible. The
screenshot on the left shows the Image control with full visibility, while the screenshot on the
right shows the Image approximately 50 percent through the playing of the Fade effect.

Declaring triggers programmatically
Triggers are implemented internally as styles, so you can set a visual component’s trigger in
ActionScript with a call to the component’s setStyle() method. The first argument in the call
to setStyle() is the name of the trigger as a String. The second argument is an instance of the
appropriate effect class.

The application in Listing 14.2 sets triggers on an Image control with the same result as in the
MXML example, but it uses ActionScript to create the control, add it to the application, and set its
behaviors.

ON the WEBON the WEB

406

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 406

FIGURE 14.1

A Fade effect in progress

407

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 407

LISTING 14.2

Setting component triggers in ActionScript

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute” backgroundColor=”#eeeeee”
creationComplete=”initApp()”>
<mx:Script>

<![CDATA[
import mx.controls.Image;
import mx.effects.Fade;
private var myImage:Image = new Image();
private function initApp():void
{

this.addChild(myImage);
myImage.source = “assets/flower1.jpg”;
myImage.x=150;
myImage.y=100;
myImage.setStyle(“showEffect”, new Fade());
myImage.setStyle(“hideEffect”, new Fade());

}
]]>

</mx:Script>
<mx:Button x=”150” y=”375” label=”Show Image”

click=”myImage.visible=true”/>
<mx:Button x=”374” y=”375” label=”Hide Image”

click=”myImage.visible=false”/>
</mx:Application>

The code in Listing 14.2 is available in the Web site files as SettingTriggers
WithAS.mxml in the chapter14 project.

When you refer to an effect class in ActionScript code, the class must be imported
before it’s referenced:

import mx.effects.Fade;

Playing effects in ActionScript
You can explicitly construct and play an effect with ActionScript code with these steps:

1. Declare an instance of an effect class as a variable.

2. Set the effect variable’s target property to refer to the component you want to animate.

3. Set other properties to modify the effect’s behavior.

4. Call the effect class’s play() method.

TIPTIP

ON the WEBON the WEB

408

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 408

The application in Listing 14.3 creates and plays customized Fade effects to handle the hiding and
showing of a visual component.

LISTING 14.3

Defining and playing an effect with ActionScript

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”#eeeeee”>
<mx:Script>
<![CDATA[

import mx.effects.Fade;
private function showImage():void
{

var myFade:Fade = new Fade();
myFade.target = myImage;
myFade.alphaFrom = 0;
myFade.alphaTo = 1;
myFade.play();

}
private function hideImage():void
{

var myFade:Fade = new Fade();
myFade.target = myImage;
myFade.alphaFrom = 1;
myFade.alphaTo = 0;
myFade.play();

}
]]>

</mx:Script>
<mx:Image id=”myImage” source=”assets/flower1.jpg” x=”150” y=”100”/>
<mx:Button x=”150” y=”375” label=”Show Image” click=”showImage()”/>
<mx:Button x=”374” y=”375” label=”Hide Image” click=”hideImage()”/>

</mx:Application>

The code in Listing 14.3 is available in the Web site files as PlayEffectWithAS.mxml
in the chapter14 project.

Effect classes also have a targets property that takes an Array of visual components.
When you call the effect class’s play() method, the framework constructs one internal

instance of the effect class for each target object and then plays them all simultaneously.

TIPTIP

ON the WEBON the WEB

409

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 409

Using tweening and masking effects
Many of the pre-built effects in the Flex framework are specifically designed to show or hide a
component with an animation instead of an abrupt appearance or disappearance.

Some of the effect classes accomplish this through a process known as tweening. A tweening effect
changes an object’s dimensions, transparency, or position over time, but doesn’t directly affect how
much of the object’s surface is visible until the effect is complete. The Flex framework includes
tween effects such as Move, Blur, Dissolve, Resize, and Rotate.

Other effect classes control a component’s visibility through masking. A masking effect doesn’t
change the object’s dimensions, transparency, or position; instead, it dynamically creates a visual
object at runtime and uses that object to obscure or reveal the target component. The Flex frame-
work includes such masking effects as Iris, WipeDown, WipeUp, WipeRight, and WipeLeft.

Both tweening and masking effects can be used to animate the process of showing or hiding a visual
component. The application in Listing 14.4 demonstrates this, allowing you to apply selected effects
to a control as its visible property is changed from true to false and back again.

LISTING 14.4

Showing and hiding a component with effects

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute” backgroundColor=”#eeeeee”
creationComplete=”changeEffect(event)”>
<mx:Script>
<![CDATA[

import mx.effects.*;
private var myEffect:Effect;
private function changeEffect(event:Event):void
{

switch (effectList.selectedItem)
{

case “Fade” : myEffect = new Fade(); break;
case “Dissolve” : myEffect = myDissolve; break;
case “Iris” : myEffect = new Iris(); break;
case “Zoom” : myEffect = new Zoom();break;
case “WipeRight” : myEffect = new WipeRight(); break;
case “WipeLeft” : myEffect = new WipeLeft(); break;
case “WipeUp” : myEffect = new WipeUp(); break;
case “WipeDown” : myEffect = new WipeDown();

}
myImage.setStyle(“showEffect”, myEffect);
myImage.setStyle(“hideEffect”, myEffect);

410

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 410

}
]]>

</mx:Script>
<mx:Dissolve id=”myDissolve” color=”red”/>
<mx:Label text=”Showing and Hiding with Effects”

fontSize=”18” x=”24” y=”10”/>
<mx:Image id=”myImage” source=”assets/flower1.jpg” x=”158” y=”72”/>
<mx:Button x=”158” y=”321” label=”Show Image”

click=”myImage.visible=true”/>
<mx:Button x=”382” y=”321” label=”Hide Image”

click=”myImage.visible=false”/>
<mx:Label x=”24” y=”46” text=”Select an Effect” fontWeight=”bold”/>
<mx:List id=”effectList” change=”changeEffect(event)”

x=”24” y=”72” width=”100” height=”241”
selectedIndex=”0”>
<mx:dataProvider>

<mx:String>Fade</mx:String>
<mx:String>Dissolve</mx:String>
<mx:String>Iris</mx:String>
<mx:String>Zoom</mx:String>
<mx:String>WipeRight</mx:String>
<mx:String>WipeLeft</mx:String>
<mx:String>WipeUp</mx:String>
<mx:String>WipeDown</mx:String>

</mx:dataProvider>
</mx:List>

</mx:Application>

The code in Listing 14.4 is available in the Web site files as ShowAndHide.mxml in the
chapter14 project.

Figure 14.2 shows the resulting application. To see the different effects:

� Select an effect from the list on the left.

� Click the buttons to show and hide the control.

Fade and Dissolve
The Fade and Dissolve effects are similar to each other in that they both affect the component’s
visibility and transparency over time. Both effect classes support properties of alphaFrom and
alphaTo that can be used to control the direction and level of change in the component’s visibil-
ity. The default values for these properties are 0 and 1, applied as appropriate to show or hide the
target component completely.

ON the WEBON the WEB

411

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 411

FIGURE 14.2

Showing and hiding a component with effects

The Fade class implements a tweening effect that modifies the component’s transparency level
over a period of time. By default, the Fade effect changes the target component’s alpha property
from 0 to 1 when revealing it, and from 1 to 0 when hiding it. Whatever color or image is
“behind” the target component shows through as its transparency level is changed.

The Dissolve class also implements a tweening effect, but it affects visibility by creating a rectan-
gle object laid over the component and then changes the rectangle’s opacity to show and hide the
underlying component. At the end of the effect, the rectangle is destroyed. The advantage of the
Dissolve effect over the Fade effect is that you can control the color of the overlaid rectangle
and more effectively blend the effect into the application’s background.

When declaring a custom Dissolve effect in MXML, set its color to match the application’s
background or any other color you like. This Dissolve effect uses a red rectangle that appears at
the end of the effect when hiding the component and at the beginning of the effect when showing it:

<mx:Dissolve id=”myDissolve” color=”red”/>

Iris and Zoom
The Iris and Zoom effects both resize a component over time, increasing its size to show it and
decreasing its size to hide it. The two effects’ resizing strategies, however, are very different.

The Iris class implements a masking effect that reveals a component from the center out and
hides it from the outer borders inward. The component’s scale doesn’t change when using the

412

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 412

Iris; only the amount of the component’s surface that’s visible to the user is modified. The Iris
class supports properties of scaleXFrom, scaleXTo, scaleYFrom, and scaleYTo. Each of
these properties’ values can be set from 0, meaning the object is completely masked, to 1, meaning
the object is completely visible.

The Zoom class implements a tweening effect that changes the scale of the component. The Zoom
effect supports properties of zoomWidthFrom, zoomWidthTo, zoomHeightFrom, and
zoomHeightTo. When hiding the component, its zoom properties go from 1 to 0.01, and when
showing the component, its scale changes from 0.01 to 1.

The application in Listing 14.5 plays an Iris and a Zoom effect simultaneously on two controls.

LISTING 14.5

Using the Iris and Zoom effects

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”#eeeeee”>

<mx:Zoom id=”myZoom” duration=”2000”/>
<mx:Iris id=”myIris” duration=”2000”/>
<mx:Image id=”irisImage” source=”assets/flower1.jpg” x=”22” y=”55”
showEffect=”{myIris}” hideEffect=”{myIris}”/>

<mx:Image id=”zoomImage” source=”assets/flower1.jpg” x=”362” y=”55”
showEffect=”{myZoom}” hideEffect=”{myZoom}”/>

<mx:Button x=”241” y=”330” label=”Show Images”
click=”zoomImage.visible=true;irisImage.visible=true;”/>

<mx:Button x=”362” y=”330” label=”Hide Images”
click=”zoomImage.visible=false;irisImage.visible=false”/>

<mx:Label x=”22” y=”24” text=”Iris Image” fontSize=”14”
fontWeight=”bold”/>

<mx:Label x=”362” y=”24” text=”Zoom Image” fontSize=”14”
fontWeight=”bold”/>

</mx:Application>

The code in Listing 14.5 is available in the Web site files as IrisAndZoom.mxml in the
chapter14 project.

Figure 14.3 shows the difference between the Iris and Zoom effects. The screenshot reflects the
appearance of two Image controls midway through playing the respective effects. The Iris effect
masks the control, displaying only part of its surface, while the Zoom effect changes the object’s
size, showing it in its entirety but in a smaller scale.

ON the WEBON the WEB

413

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 413

FIGURE 14.3

The Iris and Zoom effects at work

Blur and Glow
The Blur and Glow classes implement tweening effects that use Flash Player’s BlurFilter and
GlowFilter classes to change a component’s appearance over time. Unlike Iris, Zoom, and
other effects that can be used effectively to show and hide a component, these filtering effects typi-
cally are used just to change an object’s appearance but leave it visible.

The Blur effect supports properties of blurXFrom, blurXTo, blurYFrom, and blurYTo. The
blurX properties determine the amount of horizontal blur, and the blurY properties determine
the amount of horizontal blur.

The application in Listing 14.6 applies the Blur effect to an Image control. The effect is played
explicitly upon a button’s click event.

LISTING 14.6

Using the Blur effect

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”#eeeeee”>
<mx:Blur id=”myBlur” target=”{myBlurredImage}” blurXTo=”20”
blurYTo=”20”/>

The Iris effect masking the image

The Zoom effect scaling the image

414

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 414

<mx:Label x=”22” y=”24” text=”Blurring an image” fontSize=”14”
fontWeight=”bold”/>

<mx:Image source=”assets/flower1.jpg” x=”22” y=”55”/>
<mx:Image id=”myBlurredImage” source=”assets/flower1.jpg” x=”366”
y=”55”/>
<mx:Button x=”22” y=”315” label=”Show Images” click=”myBlur.play()”/>

</mx:Application>

The code in Listing 14.6 is available in the Web site files as BlurDemo.mxml in the
chapter14 project.

As shown in Figure 14.4, the application shows an image twice, with the Blur effect applied only
to the second.

FIGURE 14.4

The Blur effect at work

The Glow effect applies a colored glow around a component’s border. As with the Blur effect, the
blurX and blurY properties determine the amount of blurriness to the effect, but instead of
changing the whole component, only the glow area is affected.

In addition, the Glow effect supports these properties:

� color: A named color or hexadecimal color value that determines the color of the
glow area

� inner: A Boolean value which, when set to true, causes the glow to be applied
inward from the component’s border area instead of the default outward glow

ON the WEBON the WEB

415

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 415

� knockout: A Boolean value which, when set to true, causes the surface area of the
target component to be replaced with the color or component in the background

� alphaFrom and alphaTo: The amount of transparency to be applied

This Glow effect adds a red glow area around the outer edge of a target component. The alphaTo
value of .5 means that after the effect has played, the glow area remains in place with 50 percent
transparency.

<mx:Glow id=”myGlowOn”
blurXFrom=”0” blurYFrom=”0” blurXTo=”20” blurYTo=”20”
color=”#FF0000” alphaFrom=”1.0” alphaTo=”0.5”/>

When applying a Glow filter, if you don’t set alphaTo to a value less than 1, the visual
result disappears after the effect has finished playing.

The application in Listing 14.7 plays a Glow effect upon the target component’s rollOverEffect
trigger and then plays a reverse effect to remove the glow upon the rollOutEffect trigger.

LISTING 14.7

Using the Glow effect

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”#eeeeee”>
<mx:Glow id=”myGlowOn”
blurXFrom=”0” blurYFrom=”0” blurXTo=”20” blurYTo=”20”
color=”#ff0000” alphaFrom=”1.0” alphaTo=”0.5” knockout=”true”/>

<mx:Glow id=”myGlowOff”
blurXFrom=”20” blurYFrom=”20” blurXTo=”0” blurYTo=”0”
color=”#ff0000” alphaFrom=”.5” alphaTo=”1”/>

<mx:Label x=”22” y=”24” text=”Applying a Glow filter”
fontSize=”14” fontWeight=”bold”/>

<mx:Image source=”assets/flower1.jpg” x=”22” y=”55”/>
<mx:Image source=”assets/flower1.jpg” x=”366” y=”55”

rollOverEffect=”{myGlowOn}” rollOutEffect=”{myGlowOff}”/>
</mx:Application>

The code in Listing 14.7 is available in the Web site files as GlowDemo.mxml in the
chapter14 project.

Figure 14.5 shows two Image controls. The Glow effect has been played on the second through
the use of triggers.

ON the WEBON the WEB

CAUTION CAUTION

416

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 416

FIGURE 14.5

Using the Glow effect

The Move effect
The Move class implements a tweening effect that does what it says: It moves the component on
the screen to and from specific pixel positions over a period of time. The effect supports properties
of xFrom, xTo, yFrom, and yTo that define the component’s position at the beginning and end of
the effect. The object’s intermediate positions are then recalculated over the period of time defined
by the effect’s duration property.

When using the Move effect to control showing and hiding controls, you typically create two
instances of the effect: one to show and one to hide. Each defines specific starting and ending coor-
dinates and is applied to the target component’s appropriate triggers.

A Move effect’s target component should always be nested in a Canvas or other con-
tainer with absolute layout turned on. If the target component is nested in a container

with vertical or horizontal layout and the container’s dimensions change at runtime, the component’s
position is recalculated based on the container’s layout rules.

The application in Listing 14.8 defines two Move effects that show and hide a target component by
moving it on and off the application stage. Notice that the component’s positions at the start and
end of the effect are either defined as specific coordinates or calculated based on the target compo-
nent’s dimensions.

CAUTION CAUTION

417

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 417

LISTING 14.8

Using the Move effect

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”#eeeeee”>
<mx:Move id=”moveOn”
xFrom=”{0-myImage.width}” xTo=”150”
yFrom=”{0-myImage.height}” yTo=”100”/>

<mx:Move id=”moveOff”
xTo=”{0-myImage.width}” xFrom=”150”
yTo=”{0-myImage.height}” yFrom=”100”/>

<mx:Image id=”myImage” source=”assets/flower1.jpg” x=”150” y=”100”
showEffect=”{moveOn}” hideEffect=”{moveOff}”/>

<mx:Button x=”150” y=”375” label=”Show Image”
click=”myImage.visible=true”/>

<mx:Button x=”374” y=”375” label=”Hide Image”
click=”myImage.visible=false”/>

</mx:Application>

The code in Listing 14.8 is available in the Web site files as MoveDemo.mxml in the
chapter14 project.

Figure 14.6 shows the resulting application with the component in different positions as the effect
is played.

The Rotate effect
The Rotate effect causes the target component to rotate in one direction or the other. You control
the angle of rotation with the angleFrom and angleTo properties and values from 0 to 360. The
rotation axis of the target component is controlled with the originX and originY properties,
which default to the vertical and horizontal center point of the component.

This code defines a Rotate effect where the axis of rotation is dynamically calculated as the verti-
cal and horizontal center of the object:

<mx:Rotate originX=”{myImage.width/2}”
originY=”{myImage.height/2}”/>

An example of using the Rotate effect is included in the section on composite effects,
later in this chapter.CROSS-REFCROSS-REF

ON the WEBON the WEB

418

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 418

FIGURE 14.6

Playing the Move effect

419

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 419

The wiping effects
Four wiping effects can mask a component using its top, bottom, left, and right borders as posi-
tions for the animation. The WipeRight, WipeLeft, WipeUp, and WipeDown effects are proba-
bly the simplest effects to use and understand. As with all effects, they support a duration
property that controls the length of the effect.

In addition, the wiping effects support xFrom, xTo, yFrom, and yTo properties that control the
beginning and ending position of the mask.

Examples of the wiping effects are available in the Web site files ShowAndHide.mxml
in the chapter14 project.

Using composite effects
A composite effect plays two or more effects either simultaneously or consecutively. The Flex
framework has two composite effects:

� The Parallel effect plays two or more effects at the same time.

� The Sequence effect plays two or more effects consecutively, with each effect starting
after the previous effect has finished.

Both Parallel and Sequence effects can be declared in either MXML or ActionScript and can
nest as many child effects, simple or composite, as you need to get the desired visual result.

Using Parallel effects
To create a Parallel effect in MXML, declare an <mx:Parallel> tag set and assign a unique id.
Then, within the tag set, nest two or more effects that you want to play simultaneously:

<mx:Parallel id=”myParallelEffect”>
...effect 1...
...effect 2...
...etc........
</mx:Parallel>

The effects defined with the <mx:Parallel> tag set don’t need unique id properties, because
the entire effect is played either through association with a target component trigger or by an
explicit call to the Parallel class’s play() method.

The application in Listing 14.9 defines Parallel effects that include a Move and a Rotate
nested effects. The visual result is an object that appears to roll on and off the application stage.
Notice that the Rotate effect in the second Parallel has its angleFrom set to 360 and
angleTo set to 0. The result is a counterclockwise rotation.

ON the WEBON the WEB

420

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 420

LISTING 14.9

Using a Parallel effect

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”#eeeeee”>
<mx:Parallel id=”moveOn”>
<mx:Move

xFrom=”{0-myImage.width}” xTo=”150”
yFrom=”100” yTo=”100”/>

<mx:Rotate originX=”{myImage.width/2}”
originY=”{myImage.height/2}”/>
</mx:Parallel>
<mx:Parallel id=”moveOff”>
<mx:Move

xTo=”{0-myImage.width}” xFrom=”150”
yFrom=”100” yTo=”100”/>

<mx:Rotate originX=”{myImage.width/2}” originY=”{myImage.height/2}”
angleFrom=”360” angleTo=”0”/>

</mx:Parallel>
<mx:Image id=”myImage” source=”assets/flower1.jpg” x=”150” y=”100”

showEffect=”{moveOn}” hideEffect=”{moveOff}”/>
<mx:Button x=”150” y=”375” label=”Show Image”

click=”myImage.visible=true”/>
<mx:Button x=”374” y=”375” label=”Hide Image”

click=”myImage.visible=false”/>
</mx:Application>

The code in Listing 14.9 is available in the Web site files as ParallelDemo.mxml in
the chapter14 project.

Using Sequence effects
The Sequence effect plays two or more nested effects consecutively. In this code, a Sequence
wraps two Move effects. The first nested effect moves the target object horizontally, and the second
moves it vertically:

<mx:Sequence id=”moveOn” target=”{myImage}”>
<mx:Move

xFrom=”{0-myImage.width}” xTo=”150”
yFrom=”0” yTo=”0”/>

<mx:Move yTo=”100”/>
</mx:Sequence>

ON the WEBON the WEB

421

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 421

Sometimes when using a Sequence, you want to create a delay between effects. The Pause effect
is designed explicitly for this purpose: You add a Pause between other nested effects with a dura-
tion indicating how long the delay should be in milliseconds. This version of the Sequence plays
the same set of Move effects, but it adds a one-second delay between them:

<mx:Sequence id=”moveOn” target=”{myImage}”>
<mx:Move

xFrom=”{0-myImage.width}” xTo=”150”
yFrom=”0” yTo=”0”/>

<mx:Pause duration=”1000”/>
<mx:Move yTo=”100”/>

</mx:Sequence>

A Sequence effect can nest any number of child effects, allowing you to choreograph objects on
the screen in sometimes elaborate ways. The application in Listing 14.10 causes an image to
“bounce” across the screen with multiple Move effects nested within a Sequence. Notice these
features of the application:

� The Application has its horizontalScrollPolicy and verticalScroll
Policy set to off to prevent scrollbars from appearing as the visual control moves off
the visible area of the stage.

� The Sequence effect handles its effectEnd event by placing the image back in its
original starting position.

LISTING 14.10

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
horizontalScrollPolicy=”off” verticalScrollPolicy=”off”>
<mx:Script>

<![CDATA[
[Bindable]
private var stageWidth:Number;
[Bindable]
private var stageHeight:Number;
private function bounce():void
{

stageHeight = stage.height;
stageWidth = stage.width;
bouncingBall.play();

}
private function replaceBall():void
{

myImage.x = 0-myImage.width;
myImage.y = 0-myImage.height;

}
]]>

422

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 422

</mx:Script>
<mx:Sequence id=”bouncingBall” target=”{myImage}”
effectEnd=”replaceBall()”>
<mx:Move xTo=”{stageWidth/5}” yTo=”{stageHeight-myImage.height}”/>
<mx:Move xTo=”{stageWidth/5*2}” yTo=”{stageHeight-

myImage.height*4}”/>
<mx:Move xTo=”{stageWidth/5*3}” yTo=”{stageHeight-myImage.height}”/>
<mx:Move xTo=”{stageWidth/5*4}” yTo=”{stageHeight-

myImage.height*3}”/>
<mx:Move xTo=”{stageWidth}” yTo=”{stageHeight-myImage.height}”/>

</mx:Sequence>
<mx:Image id=”myImage” source=”@Embed(‘assets/ball.png’)”

x=”{0-myImage.width}” y=”{0-myImage.height}”/>
<mx:Button label=”Bounce Ball” click=”bounce()” right=”10”
bottom=”10”/>

</mx:Application>

The code in Listing 14.10 is available in the Web site files as BouncingBall.mxml in
the chapter14 project.

Figure 14.7 shows the resulting application and the various positions of the image as it moves
across the screen.

FIGURE 14.7

A Sequence effect at work

ON the WEBON the WEB

423

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 423

Using easing functions
An easing function allows you to modify the behavior of an event that transforms a component on
the screen. By default, an effect transforms an object with a linear timeline. For example, a Move
effect changes an object’s position on the screen with constant speed and motion. An easing func-
tion allows you to redefine the object’s movement mathematically and modify its rate of change
so that, for example, it appears to speed up as it moves.

Easing functions are most commonly demonstrated with object movement, but they work
with any visual effect, because all such effects transform objects over a period of time.

The easing functions included in the Flex framework are based on work by Robert
Penner. More information on easing equations, including a valuable application for visu-

alizing easing behavior, is available at his Web site at http://robertpenner.com/easing/.

The Flex framework includes a set of easing classes in the mx.effects.easing package, each of
which modifies the rate of object transformation in a different way. The Bounce class, for example,
can be used with a Move effect to cause the object to bounce against its final destination.

You use easing functions by assigning them to the effect’s easingFunction property. You can
either use the pre-built easing functions in the Flex framework, or you can define and use your
own custom functions.

To use a pre-built easing function, follow these steps:

1. In a Script section, import the class that includes the easing function you want to use.

2. Set the effect’s easingFunction property to the name of the class and function, using
dot syntax. Don’t include parentheses or pass any properties; include only the class and
function name:

easingFunction=”Bounce.easeOut”

The application in Listing 14.11 uses the Bounce.easeOut() function to cause the Image
control to bounce on a platform (created as a Canvas container) after dropping from the top of
the application.

LISTING 14.11

Using an easing function

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”#eeeeee”>
<mx:Script>
<![CDATA[

import mx.effects.easing.Bounce;

NOTENOTE

TIPTIP

424

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 424

private function dropBall():void
{

myImage.y=0-myImage.height;
bouncingBall.play();

}
]]>

</mx:Script>
<mx:Move id=”bouncingBall” target=”{myImage}”

yTo=”{platform.y-myImage.height}”
easingFunction=”Bounce.easeOut” duration=”2000”
suspendBackgroundProcessing=”true”/>

<mx:Image id=”myImage” source=”@Embed(‘assets/ball.png’)”
horizontalCenter=”0” y=”{0-myImage.height}”/>

<mx:Button label=”Bounce Ball” click=”dropBall()” right=”10”
bottom=”10”/>
<mx:Canvas id=”platform” width=”200” height=”75”
backgroundColor=”#666666” horizontalCenter=”0” bottom=”0”/>

</mx:Application>

The code in Listing 14.11 is available in the Web site files as EasingDemo.mxml in the
chapter14 project.

As shown in Figure 14.8, the image drops from the top of the application and appears to bounce
on the Canvas container.

FIGURE 14.8

Using an easing function

ON the WEBON the WEB

425

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 425

The suspendBackgroundProcessing property causes all visual processing of the
application to be suspended while an effect is being played. This can greatly improve

effect performance, especially on a slower client computer. The only reason not to set this property to
true is if the user has to be able to interact with the application while an effect is playing, or if
you’re trying to play more than one effect at the same time.

Using Drag-and-Drop Operations
Drag-and-drop interfaces allow users to give instructions to an application with simple mouse ges-
tures. Pointing to an object that a person wants to manipulate is the most human of gestures, and
grabbing and moving an object to change its current state is how we interact with the physical
world in nearly every waking minute. The mouse turns that intuitive action into a computer
instruction that graphical applications can interpret as needed.

Drag-and-drop operations can be created to represent various software operations:

� Selecting data

� Moving data from one location to another

� Deleting data

� Managing data relationships

� Modifying structures of information

As the designer and developer of a Flex application, you must select or create the drag-and-drop
architecture that makes your interface the easiest to use.

Flex applications can implement drag-and-drop operations with two different approaches:

� List-based controls such as the List and DataGrid have built-in drag-and-drop
capability.

� All visual controls can participate in drag-and-drop operations through a set of classes
and events specifically designed for this purpose.

Implementing drag-and-drop with List controls
All List-based controls in the Flex framework have built-in support for drag-and-drop opera-
tions. These controls include:

� List

� ComboBox

� DataGrid

� TitleList

TIPTIP

426

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 426

� HorizontalList

� Tree

Each of these controls supports a set of properties that turn on and control drag-and-drop operations:

� dragEnabled is a Boolean property that, when set to true, allows a user to select
one or more items from a List control and drag them (and their underlying data) to
another visual control in the application.

� dropEnabled is a Boolean property that, when set to true, allows a List control
to accept a drop operation. When the user completes the operation, the target object
adds the operation’s underlying data to its data provider. If the initiating object’s
dragMoveEnabled property is set to true, the items that were dropped in the target
object are removed from the initiating object’s data source; otherwise, the initiating
object’s data provider is left in its current state.

� dragMoveEnabled is a Boolean property that, when set to true along with
dragEnabled, causes items dragged from a List control be removed from the initiat-
ing control’s data provider. This property also allows users to reorder data in a control’s
dataProvider if the control’s dropEnabled property is set to true.

Setting dragMoveEnabled to true without also setting dragEnabled to true
has no affect on the application. You must set dragEnabled to true to initiate a

List-based drag-and-drop operation.

The following code creates a List control and a DataGrid control. The List control can initiate
a drag-and-drop operation, and the DataGrid can accept the dropped data:

<mx:List dataProvider=”{myData}” dragEnabled=”true”/>
<mx:DataGrid dropEnabled=”true”>

Because the DataGrid control’s dragMoveEnabled property isn’t set to true, any objects
dragged to the DataGrid are still displayed in the List after the operation is completed.

The application in Listing 14.12 uses List and DataGrid controls. Notice these features of the
sample application:

� As the List row is dragged, an image of the row is generated and displayed as a visual
indicator that the drag-and-drop operation is active. This image is known as the drag proxy.

� The drag proxy initially includes a white X in a red circle, indicating that the operation
can’t be completed yet. When the cursor moves over the target control with
dropEnabled set to true, the white X and red circle disappear, indicating to the user
that the operation can be completed.

� The DataGrid control’s dragMoveEnabled property is set to true, so the data is
added to the DataGrid and removed from the initiating List when the operation is
completed.

CAUTION CAUTION

427

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 427

LISTING 14.12

Using a List-based drag-and-drop operation

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundGradientAlphas=”[1.0, 1.0]” xmlns:views=”views.*”
horizontalAlign=”left” backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Script>
<![CDATA[

import utilities.FormatUtilities;
]]>

</mx:Script>
<mx:Model id=”bookModel” source=”model/books.xml”/>
<mx:ArrayCollection id=”acBooks” source=”{bookModel.book}”/>
<mx:Style source=”assets/styles.css”/>
<views:Header/>
<mx:HBox>

<mx:Panel id=”catalogPanel” title=”Catalog”>
<mx:List dataProvider=”{acBooks}” labelField=”title”

height=”300” width=”200”
dragEnabled=”true” dragMoveEnabled=”true”/>

</mx:Panel>
<mx:Panel title=”Shopping Cart” height=”{catalogPanel.height}”

width=”100%”>
<mx:DataGrid id=”cart” width=”100%” height=”100%”

dropEnabled=”true”>
<mx:columns>

<mx:DataGridColumn dataField=”title” headerText=”Title”
width=”300”/>

<mx:DataGridColumn dataField=”price” headerText=”Price”
labelFunction=”FormatUtilities.currencyFormat”
textAlign=”right”/>

</mx:columns>
</mx:DataGrid>

</mx:Panel>
</mx:HBox>

</mx:Application>

The code in Listing 14.12 is available in the Web site files as
ListDragAndDrop.mxml in the chapter14 project.

Figure 14.9 shows the drag-and-drop operation in action.

ON the WEBON the WEB

428

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 428

FIGURE 14.9

When a user drags an object into a List control that has dropEnabled set to true, the placement of
the data in the target control’s data provider is indicated by a horizontal line that appears near the mouse
cursor’s location.

Implementing custom drag-and-drop operations
You also can implement drag-and-drop operations manually using a set of classes and events specifi-
cally designed for the purpose. The most critical tools for this job are these ActionScript classes:

� DragSource contains data and formatting information, and serves a messaging enve-
lope containing the data you want to move.

� DragManager initiates and manages drag-and-drop operations containing whatever data
you want the user to move in the application.

Initiating a drag-and-drop operation
The DragSource and DragManager classes are members respectively of the mx.core and
mx.managers packages and must be imported before use:

import mx.core.DragSource;
import mx.managers.DragManager;

Data being dragged

The dynamic drag proxy

Data placement indicator

429

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 429

Custom drag-and-drop operations can be initiated upon any mouse event; they typically
start upon a mouseDown, which indicates the user has pressed the mouse button but

hasn’t yet released it.

To initiate a custom drag-and-drop operation, follow these steps:

1. Create an instance of the DragSource class with its no-arguments constructor method.

2. Populate the DragSource class with data by calling its addData() method.

3. Call the static method DragManager.doDrag() to start the drag-and-drop operation.

In the following code, a mouseDown event on an Image control that’s generated in a Repeater
is handled with a call to a custom method that will initiate the drag-and-drop operation:

<mx:Image source=”{bookImage}” mouseDown=”initiateDrag(event)”/>

The custom initiateDrag() method starts by creating a DragSource object and filling it
with data with a call to the addData() method. DragSource.addData() has two required
arguments:

� A reference to the data that’s being moved

� A string that identifies the format of the data

When you initiate a drag-and-drop operation with a List control with dragEnabled
set to true, the name of the format is always items.

In the following method, the expression event.target.getRepeaterItem() returns a refer-
ence to the initiating object’s underlying data. The bookItem format is an arbitrary string that iden-
tifies the type of data being moved. The doDrag() method receives three required arguments: a
reference to the visual component that initiated the operation, the DragSource object containing
the data, and a reference to the MouseEvent object that was passed into the current method:

private function initiateDrag(event:MouseEvent):void
{

var source:DragSource = new DragSource();
source.addData(event.target.getRepeaterItem(),”bookItem”);
DragManager.doDrag(event.target as UIComponent, source, event);

}

You can call the DragSource class’s addData() method multiple times to pass data
in as many formats as you need. This is analogous to a clipboard operation, where data

might be shared between applications in multiple formats through a copy-and-paste operation, but
only formats that are common to the source and the target applications are used at any given time.

Creating a proxy image
A proxy image is displayed during a drag-and-drop operation as a visual indicator of the type or
content of the data being moved. When you initiate drag-and-drop with List controls, the drag

TIPTIP

TIPTIP

TIPTIP

430

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 430

proxy image is created dynamically from the current screen display. For custom drag-and-drop
operations, you’re responsible for providing the drag proxy image.

If you don’t provide a drag proxy image for a custom drag operation, a blank, partially
transparent rectangle is created by the framework of the same shape and dimension

as the object that initiates the operation. While this can work okay, the visual result is bland and
uninformative.

Drag proxy images should be embedded in the application for the best possible performance.
Follow these two steps for this part of the process:

1. Embed a graphic using the [Embed] metadata tag, and assign it a Class variable name.

2. Instantiate a BitMapClass object wrapped around a new instance of the embedded
image Class.

A class used as a proxy image must implement the IFlexDisplayObject interface.
Classes that can be used for this purpose include BitmapAsset, ButtonAsset,

MovieClipAsset, MovieClipLoaderAsset, ProgrammaticSkin, SpriteAsset,
SystemManager, TextFieldAsset, and UIComponent.

The following code embeds an image and wraps it in a BitMapAsset object that’s suitable for use
as a proxy image:

[Embed(source=”assets/book.png”)]
private var bookImage:Class;
private var bookProxy:BitmapAsset = BitmapAsset(new bookImage());

You cast the instance of the proxy image class as BitMapAsset to fulfill the requirement that the
proxy image object implements IFlexDisplayObject interface.

To use the proxy image in a drag-and-drop operation, pass the proxy object as the fourth argument
in the call to DragManager.doDrag():

DragManager.doDrag(event.target as UIComponent, source,
event, bookProxy);

You also can control the position of the drag proxy image relative to the cursor position and the
image’s level of transparency. The doDrag() method’s fifth and sixth arguments, xOffset and
yOffset, determine the image’s horizontal and vertical relative position, and the seventh argu-
ment, imageAlpha, determines the amount of transparency. This code uses the same proxy image
but ensures that it’s fully opaque and positioned to the top and left of the cursor:

DragManager.doDrag(event.target as UIComponent, source, event,
bookProxy, 20, 20, 1);

Positive offset values for the proxy image place the image above and to the left of the
cursor, while negative values place it below and to the right.TIPTIP

TIPTIP

TIPTIP

431

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 431

Handling the dragEnter event
A target control, located where the data will be dropped, detects a drag-and-drop operation by lis-
tening for the dragEnter event. When the mouse cursor moves over the target object, this event
generates a DragEvent object. The DragEvent class has a dragSource property that refer-
ences the DragSource object that contains the operation’s underlying data.

The first step in handling the dragEnter event is to determine whether the operation contains data
in a format you can deal with in the current context. You do this by calling the DragSource class’s
hasFormat() method and passing in a format string you can handle. If the selected format exists in
the drag source, you then accept the operation by calling DragManager.acceptDragDrop() and
passing in a reference to the object that accepts the operation.

This code detects a particular drag format and accepts the operation:

private function dragEnterHandler(event:DragEvent):void
{

if (event.dragSource.hasFormat(“bookItem”))
{

DragManager.acceptDragDrop(event.target as UIComponent);
}

}

When you call acceptDragDrop(), the red icon with the white X on the proxy image disap-
pears, indicating to the user that the data is ready to be dropped.

Handling the dragDrop event
When the user drops the data over an object that has already accepted the operation (as described
in the preceding section), the object dispatches a dragDrop event. This event also generates a
DragEvent object. In addition to the dragSource property described previously, this object
also has a dragInitiator property that references the object that initiated the operation.

The DragSource class has a method named dataForFormat(). To retrieve data that should be
acted upon, call the method and pass in the format of the data you want:

var dragData:Object = event.dragSource.dataForFormat(“bookItem”);

After you have a reference to the dropped data, you can manipulate it in a database, move it to
other data buckets in the application, or simply remove it. The following code handles the drag-
and-drop operation by first getting references to data through the initiating object’s repeater and
then removing the underlying data from the repeater’s data provider:

private function dragDropHandler(event:DragEvent):void
{

var dragData:Object =
event.dragSource.dataForFormat(“bookItem”);
var initiator:UIComponent = event.dragInitiator as UIComponent;

432

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 432

var bookTitle:String = initiator.getRepeaterItem().title;
acBooks.removeItemAt(initiator.repeaterIndex);
Alert.show(“Book deleted: “ + bookTitle, “Deleted!”);

}

The application in Listing 14.13 uses a custom drag-and-drop operation to allow a user to delete
data using a trash can icon.

LISTING 14.13

A custom drag-and-drop operation

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundGradientAlphas=”[1.0, 1.0]” xmlns:views=”views.*”
horizontalAlign=”left” backgroundGradientColors=”[#908D8D, #FFFFFF]”>
<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.core.BitmapAsset;
import mx.core.UIComponent;
import mx.core.DragSource;
import mx.managers.DragManager;
import mx.events.DragEvent;
import utilities.FormatUtilities;
[Embed(source=”assets/book.png”)]
[Bindable]
private var bookImage:Class;
private var bookProxy:BitmapAsset = BitmapAsset(new bookImage());
private function initiateDrag(event:MouseEvent):void
{

var source:DragSource = new DragSource();
var itemData:Object = event.currentTarget.getRepeaterItem();
source.addData(event.target.getRepeaterItem(),”bookItem”);
DragManager.doDrag(event.target as UIComponent, source, event,

bookProxy, 20, 20, 1);
}
private function dragEnterHandler(event:DragEvent):void
{

if (event.dragSource.hasFormat(“bookItem”))
{

DragManager.acceptDragDrop(event.target as UIComponent);
}

}
private function dragDropHandler(event:DragEvent):void
{

continued

433

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 433

LISTING 14.13 (continued)

var dragData:Object =
event.dragSource.dataForFormat(“bookItem”);

var initiator:UIComponent = event.dragInitiator as UIComponent;
var bookTitle:String = initiator.getRepeaterItem().title;
acBooks.removeItemAt(initiator.repeaterIndex);
Alert.show(“Book deleted: “ + bookTitle, “Deleted!”);

}
]]>

</mx:Script>
<mx:Model id=”bookModel” source=”model/books.xml”/>
<mx:ArrayCollection id=”acBooks” source=”{bookModel.book}”/>
<mx:Style source=”assets/styles.css”/>
<views:Header id=”header”/>
<mx:HBox verticalAlign=”top”>

<mx:Tile width=”{header.width}”>
<mx:Repeater id=”bookRepeater” dataProvider=”{acBooks}”

recycleChildren=”true”>
<mx:HBox width=”250”>
<mx:Image source=”{bookImage}”

mouseDown=”initiateDrag(event)”/>
<mx:Text text=”{bookRepeater.currentItem.title}”

fontSize=”10” fontWeight=”bold” width=”100%”
selectable=”false”/>

</mx:HBox>
</mx:Repeater>

</mx:Tile>
<mx:Image source=”@Embed(‘assets/garbagecan.png’)”

dragEnter=”dragEnterHandler(event)”
dragDrop=”dragDropHandler(event)”/>

</mx:HBox>
</mx:Application>

The code in Listing 14.13 is available in the Web site files as CustomDragAndDrop.mxml
in the chapter14 project.

Figure 14.10 shows the resulting application, with an embedded book graphic used both as a data
icon and as a drag proxy image. When the user drags a book to the trash can, the data is deleted
from the application.

ON the WEBON the WEB

434

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 434

FIGURE 14.10

A custom drag-and-drop operation

Custom drag-and-drop operations give you the freedom to react to user gestures in many ways.
These are some other strategies you can use in your applications:

� You can explicitly handle dragDrop events on list-based controls instead of relying on
the automatic list control behaviors. For example, you may react to the dragDrop event
by calling a Web service and manipulating server-side data.

� In the case where an item can be dragged from multiple sources, you can detect the origi-
nator of a drag–and-drop operation like this:

if (Object(event.dragInitiator).id == “bookList”)
{

... doWhatever() ...
}

� You can find out where the item is being dropped in a list-based control with
this.bookList.calculateDropIndex(event) and passing the DragEvent
object.

435

Controlling Animation 14

20_287644-ch14.qxp 6/23/08 11:42 PM Page 435

Summary
In this chapter, I described how to implement animation and drag-and-drop interfaces in Flex
applications. You learned the following:

� An effect is an ActionScript class that defines changes in a visual component’s position,
visibility, scaling, and other properties over a period of time.

� The framework has many pre-built effect classes that control animation.

� Each effect class has a set of properties you can set to control animation.

� A behavior is a combination of a trigger and an effect.

� You can play an effect with explicit ActionScript statements or by associating it with a
trigger.

� A trigger has an associated event, but it plays an effect instead of executing arbitrary
ActionScript.

� You can define triggers in both MXML and ActionScript.

� Drag-and-drop operations can be used to create an intuitive interface for managing data
in a Flex application.

� List-based controls implement drag-and-drop with the dragEnabled and
dropEnabled properties.

� You can create highly customized drag-and-drop interfaces with the DragManager and
DragSource classes.

436

The Flex Class LibraryPart II

20_287644-ch14.qxp 6/23/08 11:42 PM Page 436

Flex applications define view states as particular presentations of a
visual component. In each moment of the user’s interactions with the
application, each visual component presents itself in a particular form

known as its current view state. Flex allows you to define as many different
view states as you like for the Application and for each of its custom
MXML components using declarative code, and then it lets you switch easily
between states by setting the Application or custom component’s
currentState property.

View state management in Flex is designed primarily for application scenar-
ios where the Application or component uses a significant portion of
its33presentation in multiple situations and makes incremental changes to its
presentation for each new situation. This sort of incremental change is differ-
ent from application navigation, where the user moves between multiple
different layers, or views, that don’t share content with each other.

You can declare view states in MXML or ActionScript, although the MXML
approach is used much more often. The ActionScript code to declare view
states is long and verbose. I’ll describe it later in this chapter so you have the
syntax available, but I strongly recommend using MXML for view state man-
agement unless you have a very strong reason to work programmatically.

When you switch view states at runtime, you can make the change abruptly,
or through the use of transitions, you can choreograph the change with Flex-
based effects. (As described in Chapter 14, effects implement Flash-based
animation to make objects appear, disappear, move, or change size using
pre-defined animations.) A transition is a class that allows you to easily asso-
ciate effects with view state changes.

437

IN THIS CHAPTER
Understanding view states

Defining view states in Design
view

Switching view states at runtime

Declaring view states in MXML

Declaring view states with
ActionScript

Managing view states in
components

Using transitions to animate
view states

Managing View States

21_287644-ch15.qxp 6/23/08 11:43 PM Page 437

In this chapter, I describe how to create and use view states in Flex applications and how to use
transitions and effects to animate the changes.

To use the sample code for this chapter, import the chapter15.zip Flex project
archive from the Web site files into your Flex Builder workspace.

Understanding View States
View states are used to define incremental changes to an existing view. For example, a login form
that initially requests a user name and password can, with the addition of a few more controls, also
be used as a registration form. The initial presentation of the form is referred to as the component’s
base state. A set of incremental changes to the component is referred to as a named state.

View states are usually declared with MXML code. You can either code a view state manually or,
using Flex Builder’s Design view, generate the required code based on changes you make to a com-
ponent at design time.

View states are identified by creating new State objects and setting their name property, which is
a String value that you assign in MXML or ActionScript code. Each visual component that’s dis-
played on the screen in a Flex application has a base view state. The base state is defined by all the
object’s current property and style settings, event handlers, and in the case of containers, nested
child components in its display list, and it’s represented by the main MXML in the document. The
name of the base state is initially a blank String; all custom states must have a non-blank string as
their name.

Examples of things you can change in a view state include:

� Adding and removing nested child objects in a container

� Setting values of properties and styles

� Changing handlers for events of the component or, in the case of a container, its nested
child components

Each of these actions is known as an override: That is, you’re overriding the state on which the new
state is based.

When creating states in MXML, you can only define view states for an Application
or a separate MXML component. You can’t define view states for nested child compo-

nents within an Application or component source code file. So to get started with view states, you
first decide whether the view state will be defined at the application level or within a custom compo-
nent. However, after you have made that choice, the process of declaring and controlling the view
state is the same.

NOTENOTE

ON the WEBON the WEB

438

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 438

Defining View States in Design View
Flex Builder has a States view that shows up by default only when the Flex Development perspec-
tive is active and the current application or component is being edited in Design view. As shown in
Figure 15.1, the States view has a toolbar that includes these buttons:

� New State

� Edit State Properties

� Delete State

FIGURE 15.1

Flex Builder’s States view

Creating a new state
You can create a new view state by clicking the New State button on the toolbar, or by right-click-
ing in the States view and selecting New State from the context menu. The New State dialog box,
shown in Figure 15.2, asks for these properties:

� Name: A non-blank String value is required.

� Based on: This asks which state the new view state is based on. The default is a blank
string, meaning the Application or component’s base state.

� Set as start state: This check box allows you to assign the new state as the Application or
component’s starting state upon instantiation.

In the following example, an application contains a data entry form that asks the user for flight
departure and return dates. In the form’s default state, all information is requested. In an alterna-
tive state, controls are removed from the form for a one-way itinerary.

Delete StateNew State

Edit State Properties

439

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 439

FIGURE 15.2

The New State dialog box in Design view

Try these steps to add a new state to an existing application and then add an incremental view state:

1. Open ViewStatesDemo.mxml from the chapter15 project’s src folder.

2. Run the application in a browser.

As shown in Figure 15.3, the application displays a flight information data entry form,
similar to those seen on popular travel booking Web sites. In the application’s base state,
it displays form controls for arrival and departure dates, but it doesn’t make any changes
if the user clicks the One Way radio button.

3. Return to Flex Builder. If the application currently is displayed in Source view, switch to
Design view.

4. Locate the States view in the upper-right corner of Flex Builder.

Notice that the States view displays a single state labeled <Base state> (start).

FIGURE 15.3

The application’s base state

440

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 440

5. As shown in Figure 15.4, right-click anywhere in the States view and select New State.

FIGURE 15.4

Creating a new view state from the States view’s context menu

6. In the New State dialog box, set the new state’s name to oneway and click OK.

As with ActionScript identifiers, view state names are case-sensitive. Whatever you
name the state in this step is how you’ll refer to it in your ActionScript code.

As shown in Figure 15.5, the States view now displays the new view state and indicates with a
selection bar which view state is currently active.

FIGURE 15.5

The States view with the new state set as currently active

Defining a view state’s overrides
To define a view state’s override actions in Design view, first select the appropriate view state from
the States view or the State selector. Then make changes to the Application or component with
these design time actions:

� Add components to the state by dragging from the Components view.

� Remove components by selecting and deleting them.

� Change components’ properties and styles through the Flex Properties view.

� Change event handlers through the Flex Properties view.

You can select the current view state either from the States view or, as shown in Figure 15.6, from
the view state selection menu in the Design view editor toolbar.

CAUTION CAUTION

441

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 441

FIGURE 15.6

The State selector in the Design view editor

If the Design view editor’s width isn’t sufficient to display all its toolbar icons, Flex
Builder hides the States selector to adjust. If you don’t see the States selector, try dou-

ble-clicking the editor tab to display it in full-screen mode; the States selector should then appear.

When working with an application or component whose width or height exceeds the
available dimensions of the Design view editor, you may not see scrollbars appear.

Remember that you can use the Zoom and Pan tools to move around the design surface. Or, to gener-
ate design-time scrollbars, use the Design Area selector (in the Design view editor toolbar) to change
from the default setting of Fit to Window to a specific size such as 1024 x 768.

Follow these steps to make incremental changes to the application:

1. Reopen ViewStatesDemo.mxml in Flex Builder’s Design view.

2. Using either the States view or the State selector, set the current view state to oneway.

3. Select the Label control with the text value of Return, and press Delete to remove the
control from the view state.

4. Select the DateField control in the same area of the application, and delete it as well.

5. To test the view states in Design view, set the Base state as currently active.

You should see that the two controls you deleted are displayed in their original locations.

6. Switch back again to the oneway state.

You should see that the two controls are removed from the current display.

Figure 15.7 shows the application’s two view states in Design view, with the State selector control-
ling which state is currently active.

TIPTIP

TIPTIP

The State selector

442

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 442

FIGURE 15.7

The application in its two states

Listing 15.1 shows the application in its final state.

LISTING 15.1

The view states application

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#eeeeee” layout=”absolute”>
<mx:states>

<mx:State name=”oneway”>
<mx:RemoveChild target=”{label1}”/>
<mx:RemoveChild target=”{departDate}”/>

continued

443

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 443

LISTING 15.1 (continued)

</mx:State>
</mx:states>
<mx:Style>

Label, RadioButton { font-weight:bold }
.windowStyles { font-size:16; }

</mx:Style>
<mx:Label text=”Flight Search” fontSize=”14”

fontWeight=”bold” x=”106” y=”33”/>
<mx:Panel title=”Select travel dates”

layout=”absolute” width=”421” height=”246” id=”panel1” x=”34” y=”55”
headerHeight=”75” borderAlpha=”1” >
<mx:Label x=”10” y=”10” text=”From (city or airport):”/>
<mx:Label x=”183” y=”10” text=”To (city or airport):”/>
<mx:DateField x=”61” y=”77” id=”returnDate”/>
<mx:TextInput x=”10” y=”36” id=”departInput”/>
<mx:Label x=”10” y=”79” text=”Depart:”/>
<mx:TextInput x=”183” y=”36” id=”returnInput”/>
<mx:Label x=”183” y=”79” text=”Return:” id=”label1”/>
<mx:DateField x=”239” y=”77” id=”departDate”/>
<mx:ControlBar>

<mx:RadioButtonGroup id=”typeGroup”/>
<mx:RadioButton label=”Round Trip” selected=”true”

click=”currentState=’’”/>
<mx:RadioButton label=”One Way” click=”currentState=’oneway’”/>
<mx:Spacer width=”100%”/>
<mx:Button label=”Search”/>

</mx:ControlBar>
</mx:Panel>
<mx:Image x=”31” y=”24” source=”assets/airplane.png”/>

</mx:Application>

The code in Listing 15.1 is available in the Web site files as ViewStatesComplete.mxml
in the chapter15 project.

Switching View States at Runtime
All visual components support the currentState property to allow switching from one view state
to another at runtime. The base state is always represented by an empty String or null value. The
value of currentState is a simple String, so this code switches the current Application or
component’s state to oneway:

this.currentState = “oneway”;

ON the WEBON the WEB

444

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 444

To return to the base state, set currentState to a blank string or null:

this.currentState = null;

Try the following steps with the airfare search application described in the preceding section:

1. Reopen ViewStatesDemo.mxml in Flex Builder, and switch to Source view.

2. Locate these RadioButton control declarations:

<mx:RadioButton label=”Round Trip” selected=”true”/>
<mx:RadioButton label=”One Way”/>

3. Add a click event handler to the RadioButton control labeled One Way that changes
the currentState to oneway:

<mx:RadioButton label=”One Way” click=”currentState=’oneway’”/>

4. Add a click event handler to the RadioButton control labeled Round Trip that
changes the currentState to a blank string (presenting the Base state):

<mx:RadioButton label=”Round Trip” selected=”true”
click=”currentState=null”/>

5. Run the application, and click the RadioButton controls to switch between view states.

You should see that the two controls appear and disappear as you click the
RadioButton controls to switch view states.

You can also control view states with bindings. Instead of explicit ActionScript statements, set the
Application or component’s currentState property using a binding expression that gets its cur-
rent value from a visual control or other data source.

In the following code, two RadioButton controls are grouped together with a
RadioButtonGroup. Each RadioButton has its value set to an explicit state name or a blank
string (the Base state):

<mx:RadioButtonGroup id=”typeGroup”/>
<mx:RadioButton groupName=”typeGroup”

label=”Round Trip” value=”” selected=”true”/>
<mx:RadioButton groupName=”typeGroup”

label=”One Way” value=”oneway”/>

In the <mx:Application> start tag, the currentState is set with a binding expression that
executes each time the user clicks one of the RadioButton controls:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
currentState=”{typeGroup.selectedValue}”>

The application is functionally identical to the version using explicit ActionScript statements, but
updates its current state based on the binding expression’s evaluated result.

445

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 445

Declaring View States in MXML
A view state is represented by the <mx:State> tag set and is always assigned a name:

<mx:State name=”myNewState”>
... state declaration ...
</mx:State>

To declare one or more view states in an Application or custom component, wrap the
<mx:State> declaration tags within <mx:states> tags:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
<mx:states>

<mx:State name=”myFirstState”>
... state declaration ...
</mx:State>
<mx:State name=”mySecondState”>
... state declaration ...
</mx:State>
... additional states declared here ...

</mx:states>
</mx:Application>

The <mx:states> element must always be declared as a child element of the Application or
component root; you cannot nest state declarations within other child MXML tag sets unless they
are in an <mx:Component> tag set (used with custom item renderers and editors, which are
described in Chapters 17 and 18).

Technically speaking, it doesn’t matter whether the <mx:states> tag set is at the top,
bottom, or middle of the MXML code, as long as it’s a direct child of the MXML file’s

root element; however, the best practice is typically to declare child elements that represent compo-
nent properties at the top of the code.

Within each <mx:State> declaration, you can include any number of state operations. In the
following sections, I describe the use of each MXML tag that can be included in an <mx:State>
tag set:

� <mx:AddChild/>

� <mx:RemoveChild/>

� <mx:SetEventHandler/>

� <mx:SetProperty/>

� <mx:SetStyle/>

Adding components
The <mx:AddChild> element adds a single visual component to a view state. The visual compo-
nent can be a container that in turn contains other visual components, but only a single element
can be directly nested within the <mx:AddChild> tag set.

TIPTIP

446

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 446

The <mx:AddChild> tag has these attributes:

� relativeTo: This attribute is a reference to a container or control that’s used as an
anchor to determine placement of a component in the current application or custom
component’s display list.

� position: This attribute is a rule used in placing the added component. Possible values
include before, after, firstChild, and lastChild. All four rules can be used
relative to any component; firstChild and lastChild can be used only relative to a
container. The default value is lastChild.

� target: This attribute is a reference to an existing object in memory. You can use this
attribute instead of nesting a declaration of a new object, allowing you to refer to the object’s
methods and properties but wait to add it to the current display until the state changes.

This declaration adds a new LinkButton as the last child of a ControlBar with an id of
myControlBar:

<mx:AddChild relativeTo=”{controlbar1}” position=”lastChild”>
<mx:LinkButton label=”Log In” click=”currentState=’’”/>

</mx:AddChild>

Although you can directly nest only a single object within an <mx:AddChild> element, that
object can contain other objects. This declaration adds a FormItem container that in turn nests a
TextInput control:

<mx:AddChild relativeTo=”{form1}” position=”lastChild”>
<mx:FormItem label=”Enter password again:”>

<mx:TextInput id=”passwordInput2”/>
</mx:FormItem>

</mx:AddChild>

You can include as many <mx:AddChild> elements in an <mx:State> tag set as you need to
completely define the new view state.

Controlling the creation policy
When you declare an object within the <mx:AddChild> element, the object isn’t instantiated
immediately upon application startup. Instead, instantiation is deferred until the first time the view
state is made active. This process is identical to how a navigator container uses deferred instantia-
tion to improve client performance with multiple visual layers, and the logic is the same as well. If
a user never visits a particular view state, the state’s added components won’t ever be needed, so
the framework saves on memory and resources by waiting to see whether the component should
be instantiated.

As with a navigator container, the AddChild class supports the creationPolicy property with
a default value of auto. You can force instantiation of an object upon creation of the component
that “owns” the view states by setting the <mx:AddChild> element’s creationPolicy to all.
In this example, the FormItem and its contents are instantiated immediately; this ensures that the
TextInput control isn’t left in a null state, which might cause data collection problems:

447

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 447

<mx:AddChild relativeTo=”{form1}” position=”lastChild”
creationPolicy=”all”>
<mx:FormItem label=”Enter password again:”>

<mx:TextInput id=”passwordInput2”/>
</mx:FormItem>

</mx:AddChild>

For a more complete discussion of deferred instantiation and the creationPolicy
property, see the section on the ViewStack container in Chapter 12.

State management
The state of a control when it appears and disappears during a state change isn’t affected. For
example, the TextInput control above is visible in an incremental state and isn’t visible in the
Base state. But although invisible, its current state (such as the value the user has typed) isn’t dis-
turbed. This is because the state management framework controls visibility by adding and remov-
ing the object from its container’s display list, and not by creating or destroying it in memory. Once
a control has been instantiated as part of a change to a named state, it stays in memory unless you
explicitly remove it by setting it to null or you reset it by calling its constructor.

Removing components
The <mx:RemoveChild> element removes a component instance from an incremental view state.
This tag is much simpler than the <mx:AddChild> and has fewer options.

To apply a RemoveChild command, assign the target object a unique id. Then declare the
<mx:RemoveChild> element within the <mx:State> tag set, and assign the target property
to the object you want to remove with a binding expression:

<mx:RemoveChild target=”{objectToRemove}”/>

This tag has no other options and is applied only to a single object. If the object you remove is a
container with nested objects, all those objects are removed as well.

As described previously, when you remove an object in a view state, the object stays in memory,
but it is removed from its container’s display list.

Overriding properties and styles
You override properties and styles in a view state with the <mx:SetProperty> and
<mx:SetStyle> elements. Each of these elements supports these properties:

� target: A reference to the object whose property is being changed

� name: The name of the property or style to override as a String

� value: The new value of the property or style being changed

CROSS-REFCROSS-REF

448

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 448

This declaration changes the text property of a Label control to a new value:

<mx:SetProperty target=”{myLabel}” name=”text”
value=”New Text Value”/>

The same sort of syntax is used to change styles:

<mx:SetStyle target=”{myLabel}” name=”fontWeight”
value=”bold”/>

You must use the correct tag to change properties or styles. If you try to use
<mx:SetStyle> on a property, the code is ignored. If you try to use

<mx:SetProperty> on a style, you get a runtime error when the view state management frame-
work tries to set a property that doesn’t exist. This is different from Flex 2, where properties and styles
were both affected by the <mx:SetProperty> tag.

Overriding event handlers
You override event handlers with the <mx:SetEventHandler> tag. This tag has these properties:

� target: A reference to the object whose event handler is being changed

� name: The name of the event you want to change

� handler: ActionScript code you want to execute when the event is dispatched by the
target object

For example, in an application where the view state management is being handled in reaction to
clicks to a button, the button’s initial code might be:

<mx:LinkButton id=”stateButton” label=”Register as new user”
click=”currentState=’register’”/>

This <mx:SetEventHandler> declaration causes the stateButton control’s click event
handler to switch back to the application’s base state:

<mx:SetEventHandler target=”{stateButton}”
name=”click” handler=”currentState=’’”/>

The application in Listing 15.2 presents a login data entry form wrapped in a Panel container.

LISTING 15.2

An application prior to adding view states

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical” backgroundColor=”#eeeeee”>
<mx:Panel title=”Log In Form” id=”panel1”>

continued

CAUTION CAUTION

449

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 449

LISTING 15.2 (continued)

<mx:Form id=”form1”>
<mx:FormItem label=”User Name:”>

<mx:TextInput id=”userNameInput”/>
</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput id=”passwordInput”/>
</mx:FormItem>

</mx:Form>
<mx:ControlBar id=”controlbar1”>

<mx:Button label=”Log In”/>
<mx:Spacer width=”100%”/>
<mx:LinkButton label=”Register as new user” id=”stateButton”/>

</mx:ControlBar>
</mx:Panel>

</mx:Application>

As shown in Figure 15.8, the application’s Form contains two TextInput controls wrapped in
FormItem containers.

FIGURE 15.8

A data entry form before adding view states

The following code adds view state declarations to the application using <mx:AddChild>,
<mx:SetProperty>, and <mx:SetEventHandler> override elements:

<mx:states>
<mx:State name=”register”>

<mx:AddChild relativeTo=”{form1}” position=”lastChild”>

450

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 450

<mx:FormItem label=”Enter password again:”>
<mx:TextInput id=”passwordInput2”/>

</mx:FormItem>
</mx:AddChild>
<mx:SetProperty target=”{stateButton}” name=”label”

value=”Return to login”/>
<mx:SetEventHandler target=”{stateButton}” name=”click”

handler=”currentState=’’”/>
<mx:SetProperty target=”{panel1}” name=”title”

value=”Registration Form”/>
<mx:SetProperty target=”{button1}” name=”label”

value=”Register”/> </mx:State>
</mx:states>

Figure 15.9 shows the application running in the new register state.

FIGURE 15.9

The application with the new view state active

Listing 15.3 shows the completed application with all view state declarations and changes to the
currentState property.

Added components

Changed properties

451

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 451

LISTING 15.3

Another application with complete view state declarations

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#eeeeee”>
<mx:states>
<mx:State name=”register”>

<mx:AddChild relativeTo=”{form1}” position=”lastChild”>
<mx:FormItem label=”Enter password again:”>

<mx:TextInput id=”passwordInput2”/>
</mx:FormItem>

</mx:AddChild>
<mx:SetProperty target=”{stateButton}” name=”label”

value=”Return to login”/>
<mx:SetEventHandler target=”{stateButton}” name=”click”

handler=”currentState=’’”/>
<mx:SetProperty target=”{panel1}” name=”title”

value=”Registration Form”/>
<mx:SetProperty target=”{button1}” name=”label” value=”Register”/>

</mx:State>
</mx:states>
<mx:Panel title=”Log In Form” id=”panel1”>

<mx:Form id=”form1”>
<mx:FormItem label=”User Name:”>

<mx:TextInput id=”userNameInput”/>
</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput id=”passwordInput”/>
</mx:FormItem>

</mx:Form>
<mx:ControlBar id=”controlbar1”>

<mx:Button label=”Log In” id=”button1”/>
<mx:Spacer width=”100%”/>
<mx:LinkButton label=”Register as new user” id=”stateButton”

click=”currentState=’register’” />
</mx:ControlBar>

</mx:Panel>
</mx:Application>

The code in Listing 15.3 is available in the Web site files as UsingOverrides.mxml in
the chapter15 project.ON the WEBON the WEB

452

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 452

Declaring View States with ActionScript
You can manage view states in ActionScript as well as MXML using the same built-in classes. This
approach isn’t used as commonly as the MXML-based declarations, but it’s good to know how to
do it if your application needs to build view states dynamically.

If you’re inclined to use ActionScript instead of MXML to declare view states, consider
instead managing the current display list directly with methods such as addChild()

and removeChild().

Follow these steps to build a view state in ActionScript:

1. Import all classes in the mx.states package using a wildcard import statement:

import mx.states.*;

2. For each override in the new state, create an instance of the appropriate override
ActionScript class. Override classes include AddChild, RemoveChild, SetProperty,
SetStyle, and SetEventHandler.

3. For each override object, set its required attributes exactly as in MXML. You can set over-
ride objects upon instantiation using the class constructor method; for example, this code
creates a SetProperty object and passes all required properties:

var setLabelProp:SetProperty =
new SetProperty(myLabel, “label”, “New Value”);

The first argument in the constructor method call is a reference to the object being modi-
fied, the second is the name of the property being overridden, and the last is its new value.

4. Create an instance of the State class with its no-arguments constructor, and set its name
property:

var newState:State = new State();
newState.name=”register”;

5. Add each override object to the new State object’s overrides array:

newState.overrides.push(setLabelProp);

6. Add the new State object to the current application or component’s states array:

this.states.push(newState);

Setting override properties
When you create a new override object, you can set its properties either in the constructor method
call (as shown in the preceding example) or after object construction using dot syntax. This code
creates the same SetProperty object as in the preceding example, but it sets each of the proper-
ties explicitly after object construction:

var setLabelProp:SetProperty = new SetProperty();
setLabelProp.target = myLabel;
setLabelProp.name = myLabel;
setLabelProp.value = “New Value”;
newState.overrides.push(setLabelProp);

TIPTIP

453

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 453

Overriding event handlers
You can’t assign arbitrary event handler code in ActionScript. Just as when setting event listeners
with the addEventListener() method, you first create a custom event handler function that
expects an event object argument of the appropriate type:

private function newClickHandler(event:Event):void
{

this.currentState=””;
}

Then to use the custom event handler, create an instance of the SetEventHandler class. Assign
its target to the object that will dispatch the event and its name to the name of the event you’re lis-
tening for. Then set the object’s eventHandler property to the custom event handler function by
its name, and add it to the new State object’s overrides array:

var newEvHandler:SetEventHandler = new SetEventHandler();
newEvHandler.target = registerButton;
newEvHandler.name = “click”;
newEvHandler.handlerFunction = newClickHandler;
newState.overrides.push(newEvHandler);

At runtime, the new event handler is used instead of the object’s original event handler.

The SetEventHandler class’s handler property is designed only for use in
MXML code. You cannot use it in ActionScript to create an event handler containing

arbitrary code.

In some instances, as with more complex states, it might be worthwhile to create cus-
tom components as subclasses of the State class and then add them as needed into the

states array.

The application in Listing 15.4 declares a view state with ActionScript code upon application startup
and then exercises the new view state as a response to clicks on the form’s LinkButton controls.

LISTING 15.4

An application with a programmatically declared view state

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#eeeeee” creationComplete=”initApp()”>
<mx:Script>
<![CDATA[

import mx.states.*;
private function initApp():void
{

var newState:State = new State();
newState.name=”register”;

TIPTIP

CAUTION CAUTION

454

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 454

newState.overrides.push(
new SetProperty(panel1, “title”, “Registration Form”));

newState.overrides.push(
new SetProperty(button1, “label”, “Register”));

newState.overrides.push(
new SetProperty(registerButton, “label”, “Return to Log In”));

//Add FormItem container with TextItem control
var myFormItem:FormItem = new FormItem();
myFormItem.label = “Enter password again:”;
var passwordInput2:TextInput = new TextInput();
myFormItem.addChild(passwordInput2);
var addFormItem:AddChild =

new AddChild(form1, myFormItem, “lastChild”);
newState.overrides.push(addFormItem);

//Override the LinkButton’s event handler
var newEvHandler:SetEventHandler = new SetEventHandler();
newEvHandler.target = registerButton;
newEvHandler.name = “click”;
newEvHandler.handlerFunction = newClickHandler;
newState.overrides.push(newEvHandler);

//Add the new state
this.states.push(newState);

}
private function newClickHandler(event:Event):void
{

this.currentState=””;
}

]]>
</mx:Script>
<mx:Panel title=”Log In Form” id=”panel1”>

<mx:Form id=”form1”>
<mx:FormItem label=”User Name:”>

<mx:TextInput id=”userNameInput”/>
</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput id=”passwordInput”/>
</mx:FormItem>

</mx:Form>
<mx:ControlBar id=”controlbar1”>

<mx:Button label=”Log In” id=”button1”/>
<mx:Spacer width=”100%”/>
<mx:LinkButton id=”registerButton”

label=”Register as new user”
click=”currentState=’register’”/>

</mx:ControlBar>
</mx:Panel>

</mx:Application>

455

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 455

The code in Listing 15.4 is available in the Web site files as OverridesWith
ActionScript.mxml in the chapter15 project.

Managing View States in Components
You can declare a view state inside a custom component using either MXML or ActionScript. When
using MXML, the rules are the same as for an Application: You can only apply the view state to the
entire component, not to its nested child objects.

You can then control that component’s currentState either internally or from the component
instance parent object. Remember that code within a custom component uses this to refer to the
current instance of the component. The following code switches the currentState of the com-
ponent instance to a new state:

this.currentState = ‘myNewState’;

Listing 15.5 defines a custom Label component that has a view state named rollOverState.
When the component’s rollOver event is dispatched, it changes to the new state; when the
rollOut event occurs, it returns to its base state. The view state contains <mx:SetStyle> tags
that override the component’s color and textDecoration styles.

LISTING 15.5

A custom component with a view state

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Label xmlns:mx=”http://www.adobe.com/2006/mxml”

rollOver=”event.target.currentState=’rollover’”
rollOut=”event.target.currentState=’’”
text=”Rollover Label”>

<mx:states>
<mx:State name=”rollover”>

<mx:SetStyle name=”color” value=”#0000FF”/>
<mx:SetStyle name=”textDecoration” value=”underline”/>

</mx:State>
</mx:states>

</mx:Label>

The code in Listing 15.5 is available in the Web site files as components/RollOver
Label.mxml in the chapter15 project.ON the WEBON the WEB

ON the WEBON the WEB

456

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 456

Using the custom component is a simple matter of declaring an instance and setting any standard
Label properties or styles. The application in Listing 15.6 uses MXML to declare an instance of
the component.

LISTING 15.6

Using a custom component with view states

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#eeeeee” xmlns:components=”components.*”>
<components:RollOverLabel text=”Test Rollover Label” fontSize=”12”/>

</mx:Application>

The code in Listing 15.6 is available in the Web site files as TestRollover.mxml in
the chapter15 project.

Using Transitions
Transitions are a way of associating animations, implemented as Flex effects, with runtime changes
from one view state to another. By default, when you switch to a view state that changes the visibil-
ity, size, or position of objects on the screen, the change is visually abrupt. A transition allows you
to slow down and choreograph the change so that it’s easier and more fun to watch.

As with view states, transitions are typically declared using MXML code. Each visual component has a
transitions property. The transitions property is an Array containing multiple instances of
the Transition class. To declare transitions in MXML, you create an <mx:transitions> tag set as a
direct child of the application’s or component’s root element, often right after the <mx:states> dec-
laration. Then nest as many <mx:Transition> tag sets with <mx:transitions> as you need:

<mx:Application>
<mx:states>

...declare <mx:State> elements here...
</mx:states>
<mx:transitions>

...declare <mx:Transition> elements here...
</mx:transitions>
... declare base state here ...

</mx:Application>

ON the WEBON the WEB

457

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 457

Declaring a transition
Each transition is declared as an <mx:Transition> tag with these properties:

� fromState: The name of the starting state

� toState: The name of the ending state

Each of these properties can be set to either an explicit state name or a wildcard (*), the default for
both properties, to indicate that the transition applies to all state changes.

You then specify which animation you want to play by nesting the appropriate effect class within
the <mx:Transition> tag set. The effect should have its target or targets property set to indicate
which objects should be animated.

This transition is applied by moving from a state named state1 to a state named state2. It has
the effect of applying a Fade effect to an object that’s being added in the state:

<mx:transitions>
<mx:Transition fromState=”state1” toState=”state2”>

<mx:Fade target=”{addedObject}”/>
</mx:Transition>

</mx:transitions>

Using Parallel and Sequence effects in transitions
You also can use Parallel or Sequence effects to introduce more complex animation. This
transition causes a Move and a Zoom to play simultaneously, creating the visual effect of an object
“exploding” from the top-left corner of the application into its final position:

<mx:Transition fromState=”*” toState=”detail”>
<mx:Parallel target=”{detailImage}”>

<mx:Move xFrom=”0” yFrom=”0” xTo=”300” yTo=”50”/>
<mx:Zoom zoomHeightFrom=”0” zoomWidthFrom=”0”

zoomHeightTo=”1” zoomWidthTo=”1”/>
</mx:Parallel>

</mx:Transition>

The application in Listing 15.7 uses a Transition to animate presentation of a detail image. The
function that changes to the detail state first sets up certain conditions:

� It saves the current image filename to a bindable variable that’s then used as the source
for the detail image object.

� It sets the custom Move effect’s xFrom and yFrom properties based on the location of
the click event’s MouseEvent.stageX and MouseEvent.stageY properties. As a
result, the detail image explodes onto the stage from the coordinates of the mouseDown
event.

458

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 458

Transitions sometimes don’t work if the result defined in the transition effect doesn’t
exactly match the result defined in the ending view state. For example, if you apply a

Move effect to move an object to a coordinate of 0, and the ending view state defines a different
coordinate, the move may happen abruptly and the effect may be ignored.

LISTING 15.7

An application with a transition

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”
backgroundColor=”#eeeeee” mouseUp=”currentState=’’”>
<mx:states>
<mx:State name=”detail”>

<mx:AddChild position=”lastChild”>
<mx:Image id=”detailImage” x=”300” y=”50”

source=”assets/{currentImage}”/>
</mx:AddChild>

</mx:State>
</mx:states>
<mx:transitions>

<mx:Transition fromState=”*” toState=”detail”>
<mx:Parallel target=”{detailImage}”>

<mx:Move id=”customMove” xFrom=”0” yFrom=”0” xTo=”300”
yTo=”50”/>

<mx:Zoom zoomHeightFrom=”0” zoomWidthFrom=”0”
zoomHeightTo=”1” zoomWidthTo=”1”/>

</mx:Parallel>
</mx:Transition>

</mx:transitions>

<mx:Script>
<![CDATA[

[Bindable]
private var currentImage:String;
private function showDetail(event:MouseEvent):void
{

customMove.xFrom = event.stageX;
customMove.yFrom = event.stageY;
currentImage = event.currentTarget.getRepeaterItem();
currentState = “detail”;

}
]]>

</mx:Script>
<mx:ArrayCollection id=”acFlowers”>

<mx:String>flower1.jpg</mx:String>
<mx:String>flower2.jpg</mx:String>

continued

TIPTIP

459

Managing View States 15

21_287644-ch15.qxp 6/23/08 11:43 PM Page 459

LISTING 15.7 (continued)

<mx:String>flower3.jpg</mx:String>
<mx:String>flower4.jpg</mx:String>

</mx:ArrayCollection>
<mx:Tile x=”50” y=”50”>

<mx:Repeater id=”flowerRepeater” dataProvider=”{acFlowers}”>
<mx:Image width=”100” height=”75”

source=”assets/{flowerRepeater.currentItem}”
mouseDown=”showDetail(event)”/>

</mx:Repeater>
</mx:Tile>

</mx:Application>

The code in Listing 15.7 is available in the Web site files as TransitionDemo.mxml in
the chapter15 project.

Summary
In this chapter, I described how to use view states to manage different looks in a Flex application.
You learned the following:

� A view state is defined as a particular presentation of a visual component.

� You can declare view states in MXML or ActionScript code.

� Flex Builder’s Design view can help you generate view state code that uses MXML
declarations.

� You control which state is active at runtime by changing the value of the application or
component’s currentState property.

� You can declare view states within a custom component.

� Transitions allow you to associate effects (programmatic animations) with changes from
one view state to another.

� You declare transitions with MXML code.

� Each transition can be associated with a toState and a fromState.

� You can associate Parallel or Sequence effects with a transition for more complex
visual effects.

ON the WEBON the WEB

460

The Flex Class LibraryPart II

21_287644-ch15.qxp 6/23/08 11:43 PM Page 460

Working with Data

IN THIS PART
Chapter 16
Modeling and Managing Data

Chapter 17
Using List Controls

Chapter 18
Using Advanced List Controls

Chapter 19
Using the Flex Charting
Components

Chapter 20
Working with Data Entry Forms

Chapter 21
Working with HTTPService and
XML

Chapter 22
Managing XML with E4X

22_287644-pp03.qxp 6/23/08 11:44 PM Page 461

22_287644-pp03.qxp 6/23/08 11:44 PM Page 462

Flex applications are stateful; that is, they have the ability to remember
data persistently for the duration of the user’s session in a way that
classic Web applications usually don’t. One of the most common tasks

you must accomplish as an application developer is to create a framework
for storing data that the application can use at runtime.

The content of an application’s data can come from many sources: XML files,
databases or other server-side resources, or remote functions wrapped by
and exposed as SOAP-style or REST-style Web services. Regardless of how
the data comes to an application, though, a Flex application stores the data
in exactly the same way: as a data model.

In this chapter, I describe common techniques for modeling data in Flex
applications. I start with creating single-object data models: ActionScript
classes designed to hold one instance of a data entity at a time. (A data
instance might represent a row in a database table or a single element in an
XML file.) You can represent such data instances with the <mx:Model> tag,
a generic data object, or more commonly you create your own custom
ActionScript classes, known by the various design pattern names Value
Object and Transfer Object.

In the second part of the chapter, I describe the use of data collections:
ordered collections of data instances managed by the ArrayCollection
class. I describe how and where to declare the ArrayCollection and
then describe how to use this powerful class to filter, sort, bookmark, and
traverse data in client application memory.

To use the sample code for this chapter, import the
chapter16.zip Flex project archive from the Web site

files into your Flex Builder workspace.

ON the WEBON the WEB

463

IN THIS CHAPTER
Using the <mx:Model> tag to
model data items

Embedding data with
<mx:Model>

Creating value object classes in
ActionScript

Using the ArrayCollection
class

Filtering and sorting data

Traversing, searching, and
bookmarking data objects with
the IViewCursor interface

Modeling and Managing Data

23_287644-ch16.qxp 6/23/08 11:44 PM Page 463

Creating a Data Model
A data model is a way of representing data (information) in a client application. It’s a truism of
database applications that you can’t do much without knowing your data structure. Take an appli-
cation that represents the personal information of your contact list. Whether you store this data in
an e-mail client or a complex server-side database application such as SQL Server or mySQL, the
software that manages the data has to know its structure.

In classic relational databases, data is stored in tables. Each table has columns that represent the bits
of data that are created for each row in the table. A database table representing contact information
might have any number of columns. Each column has a name and a data type. For example, a con-
tacts table might have the data structure shown in Table 16.1.

TABLE 16.1

A Simple Database Table Structure

Column Name Primary Key Data Type Length Null OK

contactId X Integer

firstName String 50

lastName String 50

dob Date X

address String 50 x

city String 20 x

zipCode String 10 x

telephone String 15 x

When data is returned to a Flex application in this structure, you need a way to store it. The goal is
to create an object that can serve as a container for this data and can share this data structure to the
best of the Flex framework’s ability.

Figure 16.1 shows a UML diagram describing the structure of an object that would be able to hold
this data.

You can create a data model to store the data in two ways: by using the <mx:Model> tag to
declare a generic untyped data object and by creating a custom ActionScript class. Of these
approaches, the custom ActionScript version is significantly more powerful and flexible. The
<mx:Model> approach is fast and easy to code, and it might be used during early prototyping
of an application, but an application that’s built for durability and easy long-term maintenance
generally requires custom ActionScript classes to represent data in Flex application memory.

464

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 464

FIGURE 16.1

A UML diagram describing a class with data structure

Using the <mx:Model> tag
The <mx:Model> tag compiles XML into a generic ActionScript Object. The data structure
described in the UML diagram in Figure 16.1 could be implemented as a data object with this code:

<mx:Model id=”myContact”>
<data>
<contactId>1</contactId>
<firstName>Joe</firstName>
<lastName>Adams</lastName>
<address>123 Main Street</address>
<city>Anywhere</city>
<state>WA</state>
<zipCode>12345</zipCode>
<dob>11/28/1959</dob>
<telephone>555-123-4567</telephone>
</data>
</mx:Model>

You also can fill Model properties dynamically from user interface components using binding
expressions:

<mx:Model id=”myContact”>
<data>
<contactId>0</contactId>
<firstName>{firstNameInput.text}</firstName>
<lastName>{lastNameInput.text}</lastName>
<dob>{myDataField.selectedDate}</dob>
... additional elements and bindings...

</data>
</mx:Model>

At runtime, as the user interacts with form controls, the controls’ values are passed to the Model
object through the binding expressions.

Contact

− contactId : Integer
+ firstName : String
+ lastName : String
+ dob : Date
+ address : String
+ city : String
+ zipCode : String
+ telephone : String

465

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 465

The use of binding expressions to dynamically fill Model properties has an obvious
benefit of creating and filling a data object declaratively, but this technique also has a

drawback that might not be immediately apparent. When you fill a Model property from a binding
expression, its initial value is null. If you don’t explicitly set initial values with ActionScript state-
ments, you can end up sending the data object to remote server functions such as Web services where
null values can cause runtime errors. If you encounter this problem, an easy solution is to initialize
the object’s properties upon application startup in an initialization function:

myModel.firstName=””;
myModel.last Name=””;

On the other hand, setting default values is a built-in benefit of custom ActionScript classes used as
value objects, described later in this chapter.

The application in Listing 16.1 declares a single data object using the <mx:Model> tag and then
displays its values in Label controls with binding expressions.

LISTING 16.1

Declaring a data object with <mx:Model>

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#eeeeee”>

<mx:Model id=”myContact”>
<data>

<contactId>1</contactId>
<firstName>Joe</firstName>
<lastName>Adams</lastName>
<address>123 Main Street</address>
<city>Anywhere</city>
<state>WA</state>
<zipCode>12345</zipCode>
<dob>11/28/1959</dob>
<telephone>555-123-4567</telephone>

</data>
</mx:Model>

<mx:Label text=”{myContact.firstName} {myContact.lastName}”/>
<mx:Label text=”{myContact.address}”/>
<mx:Label text=”{myContact.city}, {myContact.state}
{myContact.zipCode}”/>
<mx:Label text=”{myContact.dob}”/>
<mx:Label text=”{myContact.telephone}”/>

</mx:Application>

CAUTION CAUTION

466

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 466

The code in Listing 16.1 is available in the Web site files as ModelDemo.mxml in the
chapter16 project.

Benefits of <mx:Model>
The advantage of the <mx:Model> tag is its simplicity. It’s very easy to declare a bit of hard-coded
data with these benefits:

� The object and all its properties are automatically bindable. You don’t have to include the
[Bindable] metadata tag, and you can refer to any of the object’s properties with bind-
ing expressions, as in:

<mx:Label text=”{myContact.firstName} {myContact.lastName}”/>
� The <mx:Model> tag uses simple XML syntax to declare its property names.

After a data object has been declared with the <mx:Model> tag, you refer to its data using dot
syntax. The object’s id, assigned in the <mx:Model> start tag, actually refers to the model’s root
element if there is a sole root element. In the preceding example, this element is named <data>,
but its name isn’t important; you refer to the root by the model object’s id and then to its named
properties as child objects of the model:

myContact.firstName

Drawbacks of <mx:Model>
These drawbacks of the <mx:Model> tag prevent its being truly useful to model objects in pro-
duction applications:

� The properties are always String values; the <mx:Model> architecture doesn’t give you
any way to set specific data types.

� You can declare only a single instance of an object. Unlike strongly typed ActionScript
classes, which are designed to be instantiated as many times as necessary, if you want
another data object you have to declare it explicitly.

� Because <mx:Model> is a compiler tag that doesn’t represent an ActionScript class, it has
no methods or properties.

Importing data with <mx:Model>
The <mx:Model> tag does have one very useful capability: It can be used to embed data into an
application at compile-time. This technique is useful only when two circumstances are true:

� It should be a relatively small amount of data. Large amounts of embedded data result in
an increase in the size of the compiled application. For applications that are deployed
over the Web, embedding data results in a slower download and longer delay before the
application starts for the first time. On the positive side, the data is instantly available to
the application without having to be downloaded at runtime.

ON the WEBON the WEB

467

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 467

� The data should be completely static. If any of the data under consideration might change
during the lifetime of the application, you should load the data at runtime using the
HTTPService component or another runtime loading mechanism.

To embed data with the <mx:Model> tag, first save it as an XML file. The names of the XML
file’s data elements can be anything you like; the only requirements are that the XML file be well-
formed and have a single root element. The following XML structure is suitable for use with the
<mx:Model> tag:

<?xml version=”1.0” encoding=”UTF-8”?>
<data>

<book>
<title_id>BU1032</title_id>
<title>How to Program Good</title>
<pub_id>1528</pub_id>
<au_id>409-56-7008</au_id>
<price>19.99</price>
<notes>A guide to creating great software.</notes>
<pubdate>2005-01-15</pubdate>

</book>
... additional <book> elements ...

</data>

Assuming the preceding XML markup is saved in a text file named books.xml in the project
source root’s data subfolder, the code to import and embed the data looks like this:

<mx:Model id=”bookData” source=”data/books.xml”/>

As with hard-coded data, the Model element’s id points to the XML structure’s root element.
From there, the data typing of each element depends on the number of elements with a particular
name. If the preceding structure contains two or more <book> elements, the expression
bookData.book returns an Array. If the XML structure’s root element contains only a single
child <book> element, the expression bookData.book instead returns an ActionScript Object.

To ensure that you always have an Array to work with, you can use the ArrayUtil
.toArray() method wrapped around an expression that might return an Object due

to the number of elements in the XML data structure. At application startup, declare a separate
Array variable and fill it as shown here:

import mx.utils.ArrayUtil;
[Bindable]
private var bookArray:Array;
private function initApp():void
{

bookArray = ArrayUtil.toArray(bookData.book);
}

TIPTIP

468

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 468

Using Value Objects
A value object, also known variously as a transfer object, a data transfer object, and a bean, is a class
designed to hold data for a single instance of a data entity. The design pattern is named Transfer
Object in the world of Java Enterprise Edition (JEE) application server development, where it’s
implemented as a Java class.

The Transfer Object design pattern is described in the J2EE design pattern catalog at
http://java.sun.com/blueprints/corej2eepatterns/Patterns/

TransferObject.html. In the most recent version on the Sun Web site, the graphics still refer to
the design pattern as Value Object, its old name. Don’t be confused; it’s all the same pattern!

Value object classes have these advantages over the use of the <mx:Model> tag:

� Class properties can be strongly data typed. Each property is declared with standard vari-
able declaration syntax and typically has a data type declared after the colon:

public var myDateProperty:Date;

� Class properties can have default values. As when declaring a variable inside or outside a
function, you can declare default values by appending the value after an = assignment
operator. This code declares a Date property with the default set to the current date:

public var myDateProperty:Date = new Date();

� When you integrate a Flex client application with an application server that supports
Flash Remoting or the Data Management Service, client-side value object classes defined
in ActionScript can be mapped to equivalent classes on the server (written in the server’s
native language, such as Java, ColdFusion, PHP, or C#). This allows you to pass data
between the application tiers with minimal code in both tiers.

Using the New ActionScript Class wizard
You can use Flex Builder’s ActionScript class wizard to create a simple ActionScript class. Follow
these steps to create a new value object class to represent Book data:

1. Make sure you have the chapter16 project open. Notice that the project’s source root
folder (src) contains a valueObjects subfolder.

2. Right-click the valueObjects folder, and select New ➪ ActionScript Class.

3. As shown in Figure 16.2, set the class name as Contact.

4. Under Code generation options, leave the Generate constructor from superclass option
selected.

5. Click Finish to create the new ActionScript class.

WEB RESOURCEWEB RESOURCE

469

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 469

FIGURE 16.2

The New ActionScript Class wizard

The completed ActionScript class is created in the file Contact.as in the valueObjects folder
and should appear in the Source view editor as follows:

package valueObjects
{

public class Contact
{

public function Contact()
{
}

}
}

The class is ready to fill in with properties and other functionality.

Value object class syntax
Value objects are implemented in Flex as simple ActionScript classes, and their syntax is deter-
mined by basic ActionScript syntax requirements. In this section, I describe each part of a value
object class, its purpose, and some best practice recommendations.

470

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 470

Declaring a package
A package is a collection of related classes. As in many other languages, including both Java and
ColdFusion, packages are tied to the folder structure of an application’s source code.

In ActionScript 3.0, each public ActionScript class must be wrapped inside a package declaration
that’s implemented as a code block. The package declaration tells the compiler where the class is
stored, based on its subfolder within the project’s source root folder or other locations in the pro-
ject’s build path.

As shown in Figure 16.3, the Contact value object class is stored in the valueObjects subfolder
of the project’s source root.

FIGURE 16.3

The project structure, including the valueObjects subfolder

The package declaration looks like this:

package valueObjects
{
...public class declaration here...
}

When you generate a new class file with the New ActionScript Class wizard, the pack-
age declaration is created for you. However, if you move the class source code later,

you’re responsible for manually updating the package declaration in the class source code.

Declaring the public class
The class declaration for a public class is placed inside the package code block. Value object classes
are always declared as public, so they can be used by the rest of the application. Also, value object
classes typically don’t explicitly extend any other class, as they usually don’t have to inherit existing
functionality.

The name of an ActionScript public class must match the name of the source code file in which it’s
defined. The name is case-sensitive, and by convention always has an initial upper-case character.

CAUTION CAUTION

471

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 471

The public class declaration looks like this:

package valueObjects
{

public class Contact
{

...class members declared here...
}

}

As noted in the preceding example, members of the class, including properties, functions, and con-
stants, are declared inside the class declaration’s code block.

You can declare private classes in an ActionScript class source code file. These classes
are available for use only by the public class in whose source code file the private class

is declared. The private class doesn’t actually have a private access modifier declaration, and it’s
declared outside the package declaration:

package valueObjects
{

public class Book
{

public var page1:Page = new Page();
public function Book()
{
}

}
}
class Page
{

public var pageNumber:int;
public var text:String;

}

Declaring ActionScript class properties
ActionScript class properties are declared as variables, using this syntax:

[access modifier] var [property name]:[data type];

The access modifiers at the beginning of a property declaration should be one of these keywords:

� public: Properties that can be set and read by the rest of the application

� private: Properties that can only be set and read by instances of the class in which
they’re declared

� protected: Properties that can be set and read by the current class and by any of its
subclasses

� internal: Properties that can be set and read by the current class and by any classes in
the same package

TIPTIP

472

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 472

The default access modifier is internal; if you leave the access modifier off a prop-
erty declaration, the property is available only to the current class and any other classes

in the same package. You’ll also see a compiler warning indicating that you should include an explicit
access modifier.

The name of a property is subject to naming rules for all ActionScript identifiers: It can include
alpha, numeric, and underscore characters, and it must start with an alpha character or an under-
score. The following naming conventions are considered to be best practices by most developers:

� The initial character in a property name should always be lowercase.

� Private properties have an initial underscore (_) character.

Neither of these conventions is a technical requirement, but by following them you create code
that makes sense to other developers.

To add public properties representing the data structure in Table 16.1, follow these steps:

1. Open the Contact.as file you created in the previous exercise.

2. Place the cursor inside the class declaration’s code block, but before the constructor
method.

3. Declare each of the required properties with appropriate data types, as follows:

public var contactId:int=0;
public var firstName:String;
public var lastName:String;
public var dob:Date;
public var address:String;
public var city:String;
public var zipCode:String;
public var telephone:String;

4. Save the file to disk.

Making properties bindable
Value objects benefit from having their properties marked as bindable, so that as the property val-
ues change at runtime, they can broadcast those changes to any objects with binding expressions.

You can make individual properties bindable by adding the [Bindable] metadata tag before
each property declaration. This code makes the firstName and lastName properties bindable,
but doesn’t do the same for the contactId property:

public var contactId:int=0;
[Bindable]
public var firstName:String;
[Bindable]
public var lastName:String;

TIPTIP

473

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 473

Alternatively, you can add a single [Bindable] tag above the class declaration to make all its proper-
ties bindable:

package valueObjects
{

[Bindable]
public class Contact
{

public var contactId:int=0;
... remaining property declarations ...

}
}

Follow these steps to make all the value object class’s properties bindable:

1. Open Contact.as.

2. Place the cursor above the line with the class declaration, and add a [Bindable] meta-
data tag.

3. Save the changes to disk.

Listing 16.2 shows the completed value object Contact class.

LISTING 16.2

A completed value object class

package valueObjects
{

[Bindable]
public class Contact
{

public var contactId:int=0;
public var firstName:String;
public var lastName:String;
public var dob:Date;
public var address:String;
public var city:String;
public var zipCode:String;
public var telephone:String;
public function Contact()
{
}

}
}

474

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 474

Completed similar to Listing 16.2 is available in the Web site files as
ContactComplete.as in the chapter16 project.

Using private properties and accessor methods
If you prefer, you can use private properties and set and get accessor methods. This is a preferred
syntax for some developers, because it follows the object-oriented practice of encapsulation and
hiding data members from public usage.

To declare a private property in an ActionScript class, replace the public access modifier with the
keyword private. If you like, you also can follow the practice of using an underscore (_) prefix
as the property name’s initial character:

private var _firstName:String;

To make the property accessible to the rest of the application, you then create set and get accessor
methods. In ActionScript 3, these methods use explicit set and get keywords to indicate that the
functions should be accessed by the class consumer as though they were properties.

A set accessor method receives a single argument and returns void. The body of the method sets
the corresponding private variable’s value from the argument:

public function set contactId(newValue:int):void
{

this._contactId=newValue;
}

A get accessor method receives no arguments and returns the value of its corresponding private
property:

public function get contactId():int
{

return this._contactId;
}

Unlike in Java, where set and get accessor methods are enforced by the application
frameworks that explicitly call value object methods such as getFirstName(), in

ActionScript the set and get accessor methods are recognized as named properties by the compiler.
As a result, you can’t name a private property with the same identifier as a set or get accessor
method. This is one reason the convention of prefixing private property names with the underscore
character is commonly followed: It guarantees that the identifier for the private property and for its
corresponding accessor methods are different from each other.

Listing 16.3 shows part of the ActionScript class using private properties and accessor methods,
instead of public properties.

TIPTIP

ON the WEBON the WEB

475

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 475

LISTING 16.3

Using private properties and set/get accessor methods

package valueObjects
{

[Bindable]
public class ContactPrivateVars
{

private var _contactId:int=0;
private var _firstName:String;
private var _lastName:String;
...more property declarations ...
public function ContactPrivateVars()
{
}
public function set contactId(newValue:int):void
{

this._contactId=newValue;
}
public function get contactId():int
{

return this.contactId;
}
public function set firstName(newValue:String):void
{

this.firstName = newValue;
}
public function get lastName():String
{

return this._lastName;
}
... more set and get accessor methods ...

}
}

The code in Listing 16.3 is available in the Web site files as
ContactPrivateVars.as in the chapter16 project.

If a value object class might be extended by a subclass and you want to share the super-
class’s properties, set the properties’ access modifier to protected instead of private.

Just as with public properties, you can make individual accessor method properties
bindable by adding the [Bindable] metadata tag before the method declaration:

[Bindable]
public function set firstName(newValue:String):void

TIPTIP

TIPTIP

ON the WEBON the WEB

476

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 476

{
this._firstName = newValue;

}
public function get firstName():String

{
return this._firstName;

}

If you create a get accessor method for a private property, but not a set method, the
property is considered “read-only” to the rest of the application.

Accessor methods provide an opportunity to perform other tasks in addition to just get-
ting and setting the properties. For example, if you want to use local shared objects, a

set accessor method would provide an opportunity to save the new value to disk. Or, if a property is
only available to users with a particular level of security, you can check permission before changing
or returning the property.

Instantiating value object classes
You can create instances of value object classes using either MXML or ActionScript.

Instantiating with MXML
To create an instance of a value object class in MXML, follow these steps:

1. Declare a custom namespace prefix associated with the package containing the
ActionScript class. The custom namespace prefix should be placed in the MXML file’s
root element (for example, in the <mx:Application> start tag):

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
xmlns:valueObjects=”valueObjects.*”>

</mx:Application>

2. Declare an MXML tag using the custom namespace prefix, followed by the component
name (without the .mxml extension). As with instances of pre-built components in the
Flex framework, assign an id attribute to serve the object’s unique identifier:

<valueObjects:ContactComplete id=”myContact”/>

Setting object properties in MXML
A value object’s properties can be set as either attributes or child elements. When assigning proper-
ties as XML attributes, you can include binding expressions to set values from visual components
or other data sources. For example, this instance of the Contact object gets its property values
from TextInput and other data entry controls:

<valueObjects:ContactComplete id=”myContact”
firstName=”{firstNameInput.text}”
lastName=”{lastNameInput.text}”
dob=”{dobSelector.selectedDate}”/>

TIPTIP

TIPTIP

477

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 477

Alternatively, you can declare value object properties using child element syntax:

<valueObjects:ContactComplete id=”myContact”>
<valueObjects:firstName>

{firstNameInput.text}
</valueObjects:firstName>
<valueObjects:lastName>

{lastNameInput.text}
</valueObjects:lastName>
<valueObjects:dob>

{firstNameInput.text}
</valueObjects:dob>

</valueObjects:ContactComplete>

The choice of using attributes or child elements in this case is purely one of coding
style; both approaches result in passing values from visual controls to a value object’s

properties as the user interacts with the controls. Notice, however, that when using child element
syntax, you must include the value object class’s namespace prefix on each tag, while with attribute-
style syntax the prefix isn’t required (and in fact can’t be used). As a result, attribute-style syntax is
much more concise and, unsurprisingly, more popular.

The application in Listing 16.4 declares an instance of the Contact value object class and popu-
lates its public properties with binding expressions that refer to the properties of interactive controls.

LISTING 16.4

Using a value object in MXML

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
xmlns:valueObjects=”valueObjects.*” backgroundColor=”#ffffff”>

<valueObjects:ContactComplete id=”myContact”
firstName=”{firstNameInput.text}”
lastName=”{lastNameInput.text}”
dob=”{dobSelector.selectedDate}”/>

<mx:TextInput id=”firstNameInput”/>
<mx:TextInput id=”lastNameInput”/>
<mx:DateField id=”dobSelector”/>

<mx:Label text=”{myContact.firstName}”/>
<mx:Label text=”{myContact.lastName}”/>
<mx:Label text=”{myContact.dob}”/>

</mx:Application>

TIPTIP

478

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 478

The code in Listing 16.4 is available in the Web site files as UseTransferObject.mxml
in the chapter16 project.

Instantiating value objects with ActionScript
Because a value object is an ActionScript class, you can create an instance of the class with this
simple variable declaration. If you want to be able to use binding expressions to get data out of the
class at runtime, be sure to include the [Bindable] metadata tag before the variable declaration:

private var myContact:Contact = new Contact();

You then set object properties with dot syntax:

myContact.firstName = firstNameInput.text
myContact.lastName = lastNameInput.text
myContact.dob = dobSelector.selectedDate;

Using customized constructor methods
After the value object is populated with data, you can send it to a server through a RemoteObject
or WebService request, or store it persistently in client application memory for later use.

If you’re planning to instantiate a value object class with ActionScript code, you might want to cus-
tomize the class’s constructor method to allow values to be set upon object construction. As with
all ActionScript classes, the constructor method for a value object class follows these rules:

� The name of the constructor method is the same as the class name and is case-sensitive.

� You can have only a single constructor method. ActionScript 3.0 doesn’t support method
overloading (the ability to create two or more methods that share a name but differ by the
number or data types of their arguments).

� A constructor method never returns a value and doesn’t require a return data type
declaration.

In this example, the constructor method has been customized to accept arguments containing ini-
tialization data:

public function ContactCustomConstructor(
contactId:int, firstName:String, lastName:String, dob:Date,
address:String, city:String, zipCode:String,

telephone:String)
{

this.contactId = contactId;
this.firstName = firstName;
this.lastName = lastName;
this.dob = dob;
this.address = address;
this.zipCode = zipCode;
this.telephone = telephone;

}

ON the WEBON the WEB

479

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 479

In the preceding code, the names of arguments and the names of their corresponding
public properties are identical. In the body of the constructor method, the prefix this

is used to resolve ambiguity between the public property (referred to explicitly) and the argument of
the same name. Without the prefix, the argument name takes precedence.

Using default argument values
In ActionScript 3.0, if you declare an argument in the constructor without a default value, the
argument must be passed during object instantiation. This can cause a problem with objects that
you also want to instantiate with MXML code, because this sort of instantiation always executes the
class’s constructor method but isn’t capable of passing arguments:

<valueObjects:ContactCustomConstructor id=”myContact”/>

Using the preceding constructor method signature, this MXML declaration would cause a compiler
error and prevent you from successfully building or running the application.

You can solve this problem by adding default values to each of the constructor method’s argu-
ments, as in the following example:

public function ContactCustomConstructor(
contactId:int=0, firstName:String=null, lastName:String=null,
dob:Date=null, address:String=null, city:String=null,
zipCode:String=null, telephone:String=null)

{
if (contactId != 0)

this.contactId = contactId;
if (firstName != null)

this.firstName = firstName;
... remaining property settings ...

}

If the class with this version of the constructor method is declared in MXML, the arguments are
passed with their default values. Conditional code in the constructor method can then determine
whether to pass the values to their corresponding public properties.

Using Data Collections
A data collection is an ordered list of data objects stored in client application memory. Flex pro-
vides an ActionScript class named ArrayCollection that’s designed for this purpose. More than
a simple Array, the ArrayCollection class has these advantages:

� Unlike an Array, an ArrayCollection reliably executes binding expressions that
refer to its stored data.

� The ArrayCollection class implements a set of interfaces that provide client-side data
filtering, sorting, bookmarking, and traversal.

TIPTIP

480

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 480

� An ArrayCollection can be serialized for transport over the Web in requests to Web
services, remoting services, and messaging services.

In addition to the ArrayCollection class, the Flex framework also includes a class
named XMLListCollection that serves many of the same purposes but is designed

to manage hierarchical data represented in XML format. The XMLListCollection class is
described in detail in Chapter 22.

Declaring an ArrayCollection
As with most ActionScript classes, ArrayCollection variables can be declared with either
MXML or ActionScript. To declare an ArrayCollection in MXML, use the
<mx:ArrayCollection> tag and assign an id property:

<mx:ArrayCollection id=”myData”/>

When you declare an ArrayCollection with MXML, the variable is immediately instantiated
and made bindable.

Alternatively, you can use this ActionScript code to declare and instantiate the
ArrayCollection variable:

import mx.collections.ArrayCollection;
private var myData:ArrayCollection;

The ArrayCollection class must be imported and explicitly instantiated when used
in ActionScript code. When you use the <mx:ArrayCollection>, you don’t need to

import the class, and it’s automatically instantiated.

Setting an ArrayCollection object’s source property
The ArrayCollection class has a source property that refers to a raw Array containing its
data. You can set an ArrayCollection object’s source in a number of ways:

� By passing the Array into the ArrayCollection object’s constructor method:

myData = new ArrayCollection(myArray);

� With an ActionScript statement after the ArrayCollection has been instantiated:

myData.source = [“red”, “green”, “blue”];

� In an MXML declaration, nested in <mx:source> tags:

<mx:ArrayCollection id=”acColors”>
<mx:source>

<mx:String>Red</mx:String>
<mx:String>Green</mx:String>
<mx:String>Blue</mx:String>

</mx:source>
</mx:ArrayCollection>

TIPTIP

CROSS-REFCROSS-REF

481

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 481

In the preceding MXML declaration, the ArrayCollection object’s source property
is already known by the compiler to be an Array. This is why you can then immediately

declare individual data elements in a list. A long-hand version of this code might look like this:

<mx:ArrayCollection id=”acColors”>
<mx:source>

<mx:Array>
<mx:String>Red</mx:String>
<mx:String>Green</mx:String>
<mx:String>Blue</mx:String>

</mx:Array>
</mx:source>

</mx:ArrayCollection>

If you’re working with data that’s been embedded into the application with the <mx:Model> tag,
the model’s repeating elements are exposed to the ActionScript environment as an Array. Because
you always want to wrap the Array in an ArrayCollection, this code would accomplish the
purpose:

<mx:Model id=”bookData” source=”data/books.xml”/>
<mx:ArrayCollection id=”acBooks” source=”{bookData.book}”>

Accessing data at runtime
After an ArrayCollection object has been created, you can dynamically get, add, and remove
data at runtime with the ArrayCollection class interface. The following ArrayCollection
methods and properties are designed for this purpose:

� addItem(item:Object) appends a data item to the end of the collection.

� addItemAt(item:Object, index:int) adds a data item in the collection at the
declared index position. Existing data items are shifted downward to make room for the
new data item.

� getItemAt(index:int, prefetch:int=0) returns a data item at the declared index
position. The optional prefetch argument is used when an ArrayCollection contains
managed data to indicate how many rows of data should be fetched from the server.

� removeItemAt(index:int) removes a data item from the ArrayCollection
object.

� removeAll() clears all items from the collection.

� setItemAt(item:Object, index:int) replaces a data item in the declared index
position.

� length:int returns the number of items in the ArrayCollection.

The term managed data refers to data that’s managed by and accessed through Adobe
LiveCycle Data Services’ Data Management Service. CROSS-REFCROSS-REF

TIPTIP

482

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 482

The application in Listing 16.5 shows the use of an ArrayCollection to manage data that’s
embedded from an XML file. When the user clicks the application’s Remove Item button, the
ArrayCollection object’s removeItemAt() method is called to remove the selected data item.

LISTING 16.5

Using an ArrayCollection

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:Script>
<![CDATA[

private function removeDataItem():void
{

if (booksGrid.selectedIndex != -1)
{

acBooks.removeItemAt(booksGrid.selectedIndex);
}

}
]]>

</mx:Script>

<mx:Model id=”bookData” source=”data/books.xml”/>
<mx:ArrayCollection id=”acBooks” source=”{bookData.book}”/>

<mx:DataGrid id=”booksGrid” dataProvider=”{acBooks}”/>
<mx:Button label=”Remove Data” click=”removeDataItem()”/>

</mx:Application>

The code in Listing 16.5 is available in the Web site files as
DisplayBookCollection.mxml in the chapter16 project.

Managing data at runtime
The ArrayCollection class implements a number of interfaces to allow you to dynamically
manage data in client application memory at runtime. These interfaces include:

� ICollectionView, with methods for filtering and sorting data at runtime

� IList, with the methods described previously for adding, removing, and accessing data
at runtime

ON the WEBON the WEB

483

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 483

In addition, the ArrayCollection class’s createCursor() method returns an IViewCursor
object that allows you to bookmark and traverse data in memory, much like you might do with a
server-side database that supports cursor operations. In this section, I describe the use of the
ICollectionView and IViewCursor interfaces that support dynamic data management in
the client application.

You can filter data that’s managed by the ArrayCollection class without having to make addi-
tional calls to remote servers. This is a major benefit of Flex applications, compared to the model typ-
ically used in a classic Web application. In these applications, each time the user requests a filtered
view of data, the application makes a call to a dynamic server page (whether built in ColdFusion,
ASP.NET, PHP, or some other server technology). The dynamic server page executes a database query
to get a filtered data set, and the application server returns a response formatted in HTML.

Flex applications are stateful; they have their own data management tools that can execute most
data management operations without having to communicate with the server. As a result, these
applications can support many more concurrent users, as each user contributes the processing
power of their own local computer system to the task at hand.

Filtering data
The ArrayCollection class executes filtering through its filterFunction property. This
property is designed to reference an ActionScript function that you create and customize. A func-
tion designed for filtering always has this signature:

private function functionName(item:Object):Boolean

The item argument can be either a generic ActionScript Object variable or a strongly typed value
object. When you execute a filter, the ArrayCollection class loops through its source data and
executes the filter function once for each data item. If the filtering function returns true, the cur-
rent data item is included in the resulting filtered view; if it returns false, the data item is hidden
and won’t be visible to the user unless and until the filter is removed.

The following filtering function examines a property of a data item and compares it to a value
provided by the user through a visual component. If the data item property and the user-provided
value match, the function returns true, indicating that the data item should be included in the
filtered view:

private function filterOnAuthor(item:Object):Boolean
{

if (item.au_id == authorList.selectedItem.au_id)
{

return true;
}
else
{

return false;
}

}

484

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 484

The preceding code also could be written more concisely, using the comparison of the two values
as a Boolean expression:

private function filterOnAuthor(item:Object):Boolean
{

return (item.au_id == authorList.selectedItem.au_id);
}

Because this function will be called by the ArrayCollection once for each of its data items, you
should keep the filtering function brief.

To use the filter function, first assign the function to the ArrayCollection class’s filter
Function property by its name. Then call the ArrayCollection object’s refresh() method
to cause the filtering to happen:

acBooks.filterFunction=filterOnAuthor;
acBooks.refresh();

If the application’s current state is such that you want to remove the filter, set filterFunction
to a value of null and then again call the refresh() method. In the following code, a condi-
tional statement evaluates whether the user has selected the first item in a ComboBox control. This
item represents a value of “all records,” so the filterFunction is set to null if the condition is
true. Otherwise, the filterFunction is set to the custom ActionScript function designed to
execute the filter. The call to refresh() is then executed at the end of the conditional block:

private function executeFilter():void
{

if (authorList.selectedIndex == 0)
{

acBooks.filterFunction = null;
}
else
{

acBooks.filterFunction=filterOnAuthor;
}
acBooks.refresh();

}

The application in Listing 16.6 implements a filter using two data sets. The first data set, represent-
ing authors, is displayed in a ComboBox control. As the application starts up, an additional data
item is added at the beginning of this data set representing a choice of All Authors.

At runtime, each time the user selects an author (or All Authors), the executeFilter() method
is called. As a result, the filterFunction is set and the call to refresh() causes the filter to
be applied.

485

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 485

LISTING 16.6

Implementing a filtering function

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
creationComplete=”initApp()”>
<mx:Script>
<![CDATA[

private function initApp():void
{

acAuthors.addItemAt(“All Authors”, 0);
authorList.selectedIndex = 0;

}
private function getAuthorName(item:Object):String
{

if (item is String)
{

return item as String;
}
else
{
return item.au_fname + “ “ + item.au_lname;
}

}
private function filterOnAuthor(item:Object):Boolean
{

return (item.au_id == authorList.selectedItem.au_id);
}
private function executeFilter():void
{

if (authorList.selectedIndex == 0)
{

acBooks.filterFunction = null;
}
else
{

acBooks.filterFunction=filterOnAuthor;
}
acBooks.refresh();

}
]]>

</mx:Script>
<mx:Model id=”authorModel” source=”data/authors.xml”/>
<mx:Model id=”bookModel” source=”data/books.xml”/>
<mx:ArrayCollection id=”acAuthors” source=”{authorModel.author}”/>
<mx:ArrayCollection id=”acBooks” source=”{bookModel.book}”/>
<mx:ComboBox id=”authorList” dataProvider=”{acAuthors}”

labelFunction=”getAuthorName” change=”executeFilter()”/>

486

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 486

<mx:DataGrid id=”bookGrid” dataProvider=”{acBooks}” width=”350”>
<mx:columns>

<mx:DataGridColumn dataField=”title” headerText=”Title”/>
<mx:DataGridColumn dataField=”price” headerText=”Price”/>

</mx:columns>
</mx:DataGrid>

</mx:Application>

The code in Listing 16.6 is available in the Web site files as FilterDemo.mxml in the
chapter16 project.

The application in Listing 16.6 includes the use of the ComboBox and DataGrid con-
trols. These features of the Flex framework are described in Chapter 18.

Sorting data
The ArrayCollection sorts data through use of its sort property. The sort property references
an instance of the mx.collections.Sort class. This class in turn has a fields property that
references an Array containing instances of mx.collections.SortField.

The SortField class supports these Boolean properties that determine which named property
of an ArrayCollection object’s data items to sort on and how to execute the sort operation:

� caseInsensitive defaults to false, meaning that sort operations are case-sensitive
by default.

� descending defaults to false, meaning that sort operations are ascending by default.

� numeric defaults to false, meaning that sort operations are text-based by default.

You can instantiate a SortField object and set all of its Boolean properties in the constructor
method call, using this syntax:

var mySortField:SortField = new SortField(
‘propName’, caseInsensitive, descending, numeric);

All the constructor method arguments are optional, so the following code creates a SortField
object that sorts on a lastName field and uses the default settings of case-sensitive, ascending,
and text:

var mySortField:SortField = new SortField(‘lastName’);

To sort on multiple named properties, add the SortField objects to the array in the order of sort
precedence — the first SortField object is the primary sort, and so on:

var mySort:Sort = new Sort();
mySort.fields = new Array();
mySort.fields.push(new SortField(‘price’, false, false, true));
mySort.fields.push(new SortField(‘title’));

CROSS-REFCROSS-REF

ON the WEBON the WEB

487

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 487

After creating the Sort object and populating its fields property with the Array of SortField
objects, the last step is to assign the ArrayCollection object’s sort property and call its
refresh() method:

acBooks.sort = mySort;
acBooks.refresh();

The implementation of sorting functionality as a collection of objects allows you to save
a customized Sort object and reuse it elsewhere in your application.

The application in Listing 16.7 executes a sort operation using the ArrayCollection’s sort
property and two SortField objects.

LISTING 16.7

Executing a sort operation

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.collections.SortField;
import mx.collections.Sort;
private function executeSort():void
{

var mySort:Sort = new Sort();
mySort.fields = new Array();
mySort.fields.push(new SortField(‘price’, false, false, true));
mySort.fields.push(new SortField(‘title’));
acBooks.sort = mySort;
acBooks.refresh();

}
]]>

</mx:Script>
<mx:Model id=”bookModel” source=”data/books.xml”/>
<mx:ArrayCollection id=”acBooks” source=”{bookModel.book}”/>
<mx:DataGrid id=”bookGrid” dataProvider=”{acBooks}” width=”350”>

<mx:columns>
<mx:DataGridColumn dataField=”title” headerText=”Title”/>
<mx:DataGridColumn dataField=”price” headerText=”Price”/>

</mx:columns>
</mx:DataGrid>

<mx:Button label=”Sort Data” click=”executeSort()”/>
</mx:Application>

The code in Listing 16.7 is available in the Web site files as SortDemo.mxml in the
chapter16 project.ON the WEBON the WEB

TIPTIP

488

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 488

The Sort class has a property named compareFunction that can be assigned to a
custom ActionScript function. This is useful if you need to execute a sort operation that’s

based on comparisons of other than simple numeric or text values. The signature of the function you
assign is as follows:

function [name](item1:Object, item2:Object,
fields:Array = null):int

The function should return one of these values: _1 if the first item should appear above the second
in the sorted view, 1 if the second item should appear first, and 0 if the two items are equivalent for
purposes of sorting.

Using data cursors
The ArrayCollection class has a function named createCursor() that returns an object
implementing the IViewCursor interface. The IViewCursor object has properties and meth-
ods supporting these client-side data management tasks:

� Traversing the data forward and backward

� Searching the data for particular values

� Accessing a particular object in the collection at the cursor’s location

� Bookmarking data so you can easily return to bookmarked items

In order to use an ArrayCollection cursor object, declare a variable typed as the IViewCursor
interface. It’s typically best to declare this variable as a persistent property outside of any functions, so
you can then refer to the object from anywhere else in the code:

import mx.collections.IViewCursor;
private var cursor:IViewCursor;

private function initApp():void
{

cursor = acBooks.createCursor();
}

After the cursor has been created, you can then use its features to manage code in the client
application.

Traversing data
The IViewCursor interface supports these properties and methods that allow you to move
through data one item at a time and determine the current cursor position:

� afterLast:Boolean returns true if the current cursor position is after the last data
item.

� beforeFirst:Boolean returns true if the current cursor position is before the first
data item.

TIPTIP

489

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 489

� current:Object returns a reference to the data item at the current cursor position.

� moveNext():Boolean moves the cursor to the next data item in the collection. This
method returns false if the cursor can’t move forward (because it’s already at the end of
the collection).

� movePrevious():Boolean moves the cursor to the previous data item in the collec-
tion. This method returns false if the cursor can’t move backward (because it’s already
at the start of the collection).

When you first create a cursor from a collection, the cursor’s initial position is the col-
lection’s first item (unless the collection is empty).

The application in Listing 16.8 uses a cursor to loop through a collection and collect values from
each of its data items.

LISTING 16.8

Using a cursor to traverse and collect data from a collection

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.collections.IViewCursor;
private var cursor:IViewCursor;
private function collectData():void
{

cursor = acBooks.createCursor();
var total:Number = 0;
while (!cursor.afterLast)
{

total += Number(cursor.current.price);
cursor.moveNext();

}
Alert.show(“The average price of a book is “ +

formatter.format(total / acBooks.length));
}

]]>
</mx:Script>
<mx:Model id=”bookModel” source=”data/books.xml”/>
<mx:ArrayCollection id=”acBooks” source=”{bookModel.book}”/>
<mx:CurrencyFormatter id=”formatter” precision=”2”/>
<mx:DataGrid id=”bookGrid” dataProvider=”{acBooks}” width=”350”>

TIPTIP

490

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 490

<mx:columns>
<mx:DataGridColumn dataField=”title” headerText=”Title”/>
<mx:DataGridColumn dataField=”price” headerText=”Price”/>

</mx:columns>
</mx:DataGrid>

<mx:Button label=”Get Average Price” click=”collectData()”/>
</mx:Application>

The code in Listing 16.8 is available in the Web site files as TraversingData.mxml in
the chapter16 project.

Finding data with a cursor
The IViewCursor interface supports these methods to search an ArrayCollection for a
data item:

� findAny(item:Object):Boolean locates an item with specific values anywhere in
the ArrayCollection.

� findFirst(item:Object):Boolean locates the first item with specific values.

� findLast(item:Object):Boolean locates the last item with specific values.

Before executing any of these methods to locate data, the ArrayCollection must first be sorted
with at least one of the properties on which you’re searching included in the sort operation. Then,
to locate a data item, create an object with matching named properties to the data that you want to
search. For example, if you want to search on a title property of the objects in your collection,
create a new Object with that named property set to the value you want to locate:

var searchObject:Object = {title:bookGrid.selectedItem.title};
var found:Boolean = cursor.findAny(searchObject);

If the search operation is successful, the function returns true. You can then get a reference to the
data item that was located by referring to the cursor object’s current property:

var foundObject:Object = cursor.current;

In the application in Listing 16.9, the application uses two ArrayCollection objects. The first
is a catalog of data. When the user selects an item and clicks to add the object to the second
ArrayCollection, a shopping cart — an IViewCursor— object is used to determine whether
the object is already in the cart. If the object isn’t found, it’s added to the cart collection; if it is
found, the object’s quantity property is incremented by 1.

ON the WEBON the WEB

491

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 491

LISTING 16.9

Locating data with a cursor

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
creationComplete=”initApp()”>
<mx:Script>
<![CDATA[

import mx.collections.SortField;
import mx.collections.Sort;
import mx.collections.IViewCursor;
private var cursor:IViewCursor;
private function initApp():void
{

var mySort:Sort = new Sort();
mySort.fields = [new SortField(‘title’)];
acCart.sort = mySort;
acCart.refresh();

}
private function addToCart():void
{

cursor = acCart.createCursor();
var searchObject:Object = {title:bookGrid.selectedItem.title};
if (cursor.findAny(searchObject))
{

cursor.current.quantity ++;
}
else
{

bookGrid.selectedItem.quantity=1;
acCart.addItem(bookGrid.selectedItem);

}
}
private function removeFromCart():void
{

acCart.removeItemAt(cartGrid.selectedIndex);
}

]]>
</mx:Script>
<mx:Model id=”bookModel” source=”data/books.xml”/>
<mx:ArrayCollection id=”acBooks” source=”{bookModel.book}”/>
<mx:ArrayCollection id=”acCart”/>
<mx:CurrencyFormatter id=”formatter” precision=”2”/>
<mx:HBox>

<mx:Panel title=”Catalog” >
<mx:DataGrid id=”bookGrid” dataProvider=”{acBooks}” width=”350”>

<mx:columns>
<mx:DataGridColumn dataField=”title” headerText=”Title”/>

492

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 492

<mx:DataGridColumn dataField=”price” headerText=”Price”/>
</mx:columns>

</mx:DataGrid>
<mx:ControlBar>

<mx:Button label=”Add to Cart” click=”addToCart()”
enabled=”{bookGrid.selectedIndex!=-1}”/>

</mx:ControlBar>
</mx:Panel>
<mx:Panel title=”Shopping Cart”>

<mx:DataGrid id=”cartGrid” dataProvider=”{acCart}” width=”350”
sortableColumns=”false”>
<mx:columns>

<mx:DataGridColumn dataField=”title” headerText=”Title”/>
<mx:DataGridColumn dataField=”quantity”

headerText=”Quantity”/>
</mx:columns>

</mx:DataGrid>
<mx:ControlBar>

<mx:Button label=”Remove from Cart” click=”removeFromCart()”
enabled=”{cartGrid.selectedIndex!=-1}”/>

</mx:ControlBar>
</mx:Panel>

</mx:HBox>
</mx:Application>

The code in Listing 16.9 is available in the Web site files as SearchingData.mxml in
the chapter16 project.

Bookmarking data
The IViewCursor interface defines these properties and methods that let you bookmark data
items and then easily find them again:

� bookmark:CursorBookmark is a property that refers to the cursor’s current bookmark.

� seek(bookmark:CursorBookmark, offset:int = 0, prefetch:int =
0):void is a method that can be used to locate a bookmark and reposition the cursor to
that location, or to an offset relative to the bookmark location.

To create a bookmark, first position a cursor object on the data item you want to mark. Then create
a variable typed as the CursorBookmark class that references the cursor’s bookmark property:

import mx.collections.CursorBookmark;
private var myBookmark:CursorBookmark;
private function bookMarkIt():void
{

myBookMark = cursor.bookmark;
}

ON the WEBON the WEB

493

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 493

To return the cursor to the bookmarked position, call the cursor’s seek() method and pass the
CursorBookmark object:

cursor.seek(myBookmark);

The application in Listing 16.10 uses a CursorBookmark object to “remember” which data item
was most recently added to the shopping cart. When the user clicks the application’s Add
Another button, the cursor’s seek() method is called to return to that data item and increment
its quantity property.

LISTING 16.10

Using a cursor bookmark

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
creationComplete=”initApp()”>
<mx:Script>
<![CDATA[

import mx.collections.CursorBookmark;
import mx.collections.SortField;
import mx.collections.Sort;
import mx.collections.IViewCursor;
private var cursor:IViewCursor;
[Bindable]
private var myBookmark:CursorBookmark;
private function initApp():void
{

var mySort:Sort = new Sort();
mySort.fields = [new SortField(‘title’)];
acCart.sort = mySort;
acCart.refresh();

}
private function addToCart():void
{

cursor = acCart.createCursor();
var searchObject:Object = {title:bookGrid.selectedItem.title};
if (cursor.findAny(searchObject))
{

cursor.current.quantity ++;
}
else
{

bookGrid.selectedItem.quantity=1;
acCart.addItem(bookGrid.selectedItem);
cursor.findAny(searchObject);

}
myBookmark = cursor.bookmark;

494

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 494

}
private function addAnother():void
{

cursor.seek(myBookmark);
cursor.current.quantity++;
cartGrid.selectedItem=cursor.current;

}
private function removeFromCart():void
{

acCart.removeItemAt(cartGrid.selectedIndex);
}

]]>
</mx:Script>

<mx:Model id=”bookModel” source=”data/books.xml”/>
<mx:ArrayCollection id=”acBooks” source=”{bookModel.book}”/>
<mx:ArrayCollection id=”acCart”/>
<mx:CurrencyFormatter id=”formatter” precision=”2”/>
<mx:HBox>

<mx:Panel title=”Catalog” >
<mx:DataGrid id=”bookGrid” dataProvider=”{acBooks}” width=”350”>

<mx:columns>
<mx:DataGridColumn dataField=”title” headerText=”Title”/>
<mx:DataGridColumn dataField=”price” headerText=”Price”/>

</mx:columns>
</mx:DataGrid>
<mx:ControlBar>

<mx:Button label=”Add to Cart” click=”addToCart()”
enabled=”{bookGrid.selectedIndex!=-1}”/>

</mx:ControlBar>
</mx:Panel>
<mx:Panel title=”Shopping Cart”>

<mx:DataGrid id=”cartGrid” dataProvider=”{acCart}” width=”350”
sortableColumns=”false”>
<mx:columns>

<mx:DataGridColumn dataField=”title” headerText=”Title”/>
<mx:DataGridColumn dataField=”quantity”

headerText=”Quantity”/>
</mx:columns>

</mx:DataGrid>
<mx:ControlBar>

<mx:Button label=”Remove from Cart” click=”removeFromCart()”
enabled=”{cartGrid.selectedIndex!=-1}”/>

<mx:Button label=”Add Another” click=”addAnother()”
enabled=”{myBookmark != null}”/>

</mx:ControlBar>
</mx:Panel>

</mx:HBox>
</mx:Application>

495

Modeling and Managing Data 16

23_287644-ch16.qxp 6/23/08 11:44 PM Page 495

The code in Listing 16.10 is available in the Web site files as BookmarkingData.mxml
in the chapter16 project.

Summary
In this chapter, I described how to model and manage data in a Flex application using value object
classes, the ArrayCollection class, and the IViewCursor interface. You learned the following:

� You can model individual data items with the <mx:Model> tag or with custom
ActionScript classes that implement the Value Object design pattern.

� Objects modeled with <mx:Model> can’t declare default values or apply specific data
types to their properties.

� Custom ActionScript classes that implement the Value Object design pattern can best
model the structure of a server-side database table.

� The <mx:Model> tag can be used to embed data in an application.

� You should only embed data that’s small in scope and won’t change.

� The ArrayCollection class is an ActionScript class designed to manage data in a Flex
client application.

� The ArrayCollection is a wrapper class around an Array, and does a better job than
the Array of reliably executing bindings when its data changes.

� You can use the ArrayCollection class to sort and filter data in a client application
without having to make additional requests to an application server.

� The IViewCursor interface provides the ability to traverse, search, and bookmark data
stored in an ArrayCollection.

ON the WEBON the WEB

496

Working with DataPart III

23_287644-ch16.qxp 6/23/08 11:44 PM Page 496

Most Flex applications are designed for the purpose of presenting
and managing data in some form. As a result, one of the most pop-
ular families of visual controls in the Flex framework includes

those known as list controls.

A list control is defined as a component that has a dataProvider property
that allows you to populate the control with dynamic data. The data provided
to a list control can be in the form of either hierarchical or relational data, and
the type of data you want to present frequently determines which control you
use. In addition to being able to display relational or hierarchical data, list
controls have a common set of properties, methods, and events that allow the
user to select one or more items with mouse and keyboard gestures.

The mx.controls.List component is the most fundamental of these
controls. This component behaves like an HTML <select> control and
displays a list of data items to the user as a list box. After you learn how to
use the List control, you have most of the information you need to use
other such controls. You can populate controls with data, listen for events
indicating that the user has selected or started to drag data, set common
styles, and so on.

This chapter describes use of the single column list controls:
List and ComboBox. It includes information on how to

populate these controls with data, how to control data presentation with custom
generation of item labels and renderers, and how to handle events indicating that
the user wants to select and manipulate data. The unique capabilities of other list
controls, including the DataGrid, TileList, and HorizontalList, are
described in Chapter 18.

CROSS-REFCROSS-REF

497

IN THIS CHAPTER
Understanding list controls

Providing data to list controls

Using dynamic data providers

Controlling list item labels

Using list control events and
properties

Handling user data selections

Using custom item renderers

Using List Controls

24_287644-ch17.qxp 6/23/08 11:45 PM Page 497

To use the sample code for this chapter, import the chapter17.zip project from the
Web site files into any folder on your disk.

Table 17.1 shows a list of the components that have the ability to display dynamic data and sup-
port user interaction using the list control model.

TABLE 17.1

The List Controls

Control Description

AdvancedDataGrid A new feature of the Flex 3 class library, this component implements all the features
of the List and DataGrid components, but adds the ability to group and
aggregate data and can sort on multiple columns. This component is part of the Flex
Data Visualization components and is available only with a Flex Builder
Professional license.

ComboBox This component presents a drop-down list of data items. The presentation of this
component is similar to an HTML <select> control that has its size property set
to 1. This component’s editable property, when set to true, allows the user to
enter an arbitrary string instead of selecting an item from the list.

DataGrid This component presents a grid with multiple rows and columns. It is used to
present data received from a server-side database or other data source that uses the
spreadsheet-like rows-and-columns structure of relational database tables.

HorizontalList This component presents a horizontal list of data items, typically rendered with a
custom item renderer.

List This component presents a list box of data items. The presentation of this
component is similar to an HTML <select> control that has its size property set
to a value greater than 1.

OlapDataGrid Another new feature of the Flex 3 class library, this component expands on the
AdvancedDataGrid and supports presentation of results from an OLAP query.

TileList This component presents a grid of data items, typically rendered with a custom
item renderer.

Tree This component presents hierarchical data, commonly supplied by the contents of
an XML file.

This chapter describes the details of working with all list controls, focusing on the simpler compo-
nents: List, ComboBox, TileList, and HorizontalList. The following chapter describes
the details of working with the DataGrid and related components.

In addition to the components listed in Table 17.1, the Flex 3 class library adds a set of
list controls designed for use in AIR applications. These controls provide the user with

the ability to inspect and manipulate files and directories in the local file system and cannot be

TIPTIP

ON the WEBON the WEB

498

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 498

used in Flex applications that are deployed over the Web. They include the FileSystemList,
FileSystemComboBox, FileSystemDataGrid, and FileSystemTree components.

Most of the information in this chapter and in Chapter 18 about list and DataGrid controls applies
equally to these AIR-based controls, but these controls add functionality that allows them to populate
their data from the directory and file contents of the local file system. They also implement additional
properties and methods that are designed to support their unique purpose.

There are two unique components that extend a class named ComboBase and therefore
must be considered members of the family of list controls as well. The ColorPicker

control is designed to allow selection of a color value from a grid of “Web-safe” colors, and the
DateField control presents a pop-up calendar control. The components aren’t often thought of as
list controls, but they support the same set of properties, methods, and events as their cousins.

Each of the list controls has its own unique visual presentation and behavior. As the developer, you
select the control most suited to your application’s requirements.

Figure 17.1 shows examples of the List, ComboBox, DataGrid, and Tree controls, each using
the same set of data as its data provider.

FIGURE 17.1

Commonly used list controls

The application displayed in Figure 17.1 is available in the Web site files as
ListControls.mxml in the chapter17 project.ON the WEBON the WEB

TIPTIP

499

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 499

Using Data Providers
The data you provide to a list control must be in the form of an ActionScript object, but for most
purposes you typically provide data that’s been wrapped in one of the data collection classes: either
the ArrayCollection class for data that’s in rows and columns or the XMLListCollection
class for hierarchical data.

The List and ComboBox controls are distinguished from the DataGrid and its related controls in
that they present only a single column of data. They can present data from a collection of complex
objects, but by default they present only one value in each list item. In contrast, the DataGrid con-
trol is designed to present data in multiple columns.

Using hard-coded data providers
You can embed data in a Flex application for use by either a specific instance of a list control or as
a separate data object that’s then linked to a control through a binding expression. Hard-coding
means that you declare actual data in the code, rather than retrieving it from an external data
source at runtime.

As described in Chapter 16, when you embed data in a Flex application, the compiled
application file expands accordingly. You should embed data only when it’s a small

amount of content and won’t change during the lifetime of the application.

Nesting hard-coded data in a data provider
You can nest hard-coded data in the declaration of a list control’s dataProvider by declaring the
property with child-element syntax rather than attribute syntax. The following code presents a
List control populated with a hard-coded data provider containing simple String values:

<mx:List id=”sizeList”>
<mx:dataProvider>

<mx:String>Small</mx:String>
<mx:String>Medium</mx:String>
<mx:String>Large</mx:String>

</mx:dataProvider>
</mx:List>

You also can declare the dataProvider with hard-coded collections of complex objects by nest-
ing multiple <mx:Object> declarations within the <mx:dataProvider> tag set:

<mx:List id=”stateList”>
<mx:dataProvider>

<mx:Object>
<label>California</stateName>
<capitol>Sacramento</capitol>

</mx:Object>
<mx:Object>

<label>Oregon</stateName>

CAUTION CAUTION

500

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 500

<capitol>Salem</capitol>
</mx:Object>
<mx:Object>

<label>Washington</stateName>
<capitol>Olympia</capitol>

</mx:Object>
</mx:dataProvider>

</mx:List>

Modifying data with the ArrayCollection API
At runtime, data that’s hard-coded within a dataProvider is automatically wrapped inside an
ArrayCollection object, so the ArrayCollection API can be used to access and manipu-
late the data. Even though the original data is hard-coded, this ActionScript statement code would
add a new item to the List object’s dataProvider when it contains simple String values:

sizeList.dataProvider.addItem(‘Extra Large’);

And this code would add a new item when it contains complex objects:

stateList.dataProvider.addItem({state:’New York’,’Albany’});

The application in Listing 17.1 uses a List object with a hard-coded data provider and then
allows the user to add data to the object with the ArrayCollection.addItem() method.

LISTING 17.1

A List control with hard-coded data

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

<mx:List id=”sizeList” width=”300”>
<mx:dataProvider>

<mx:String>Small</mx:String>
<mx:String>Medium</mx:String>
<mx:String>Large</mx:String>

</mx:dataProvider>
</mx:List>

<mx:HBox>
<mx:Label text=”New Item:”/>
<mx:TextInput id=”itemInput”/>
<mx:Button label=”Add Item”

click=”sizeList.dataProvider.addItem(itemInput.text)”/>
</mx:HBox>

</mx:Application>

501

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 501

The code in Listing 17.1 is available in the Web site files as ListWithHardCoded
Data.mxml in the chapter17 project.

Declaring separate data objects with MXML tags
You also can provide hard-coded data to a list control using the <mx:Model>, <mx:Array>, and
<mx:ArrayCollection> tags. Regardless of which of these tags you select, the dataProvider
of the List object is transformed to an ArrayCollection at runtime, so you should select
whichever tag makes most sense to you, keeping in mind that only an ArrayCollection will
broadcast updates to properties of complex objects at runtime.

The application in Listing 17.2 declares an Array with the <mx:Array> tag and then provides
the data to the List object through a binding expression. Notice that even though the data is
declared as an Array, you can still manipulate it at runtime by referencing the List object’s
dataProvider as an ArrayCollection.

LISTING 17.2

A List control with data provided through a binding expression

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Array id=”myData”>
<mx:String>Small</mx:String>
<mx:String>Medium</mx:String>
<mx:String>Large</mx:String>

</mx:Array>
<mx:List id=”sizeList” width=”300” dataProvider=”{myData}”/>
<mx:HBox>

<mx:Label text=”New Item:”/>
<mx:TextInput id=”itemInput”/>
<mx:Button label=”Add Item”

click=”sizeList.dataProvider.addItem(itemInput.text)”/>
</mx:HBox>

</mx:Application>

The code in Listing 17.2 is available in the Web site files as ListWithHardCoded
Array.mxml in the chapter17 project.

Using dynamic data providers
Data retrieved from an external source, such as the results of a remote server call through the
Remote Procedure Call (RPC) components, or data retrieved from a local database (for an AIR
desktop application) is typically stored in an ArrayCollection. As described in Chapter 16,

ON the WEBON the WEB

ON the WEBON the WEB

502

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 502

the ArrayCollection object is typically declared in ActionScript code with the [Bindable]
metadata tag or in MXML code.

In ActionScript code, the declaration looks like this:

[Bindable]
private var myData:ArrayCollection = new ArrayCollection();

And in MXML, it looks like this:

<mx:ArrayCollection id=”myData”/>

Data objects that are declared in MXML are immediately instantiated and always
bindable.

Regardless of how the ArrayCollection object is declared, by making it bindable, you make it
possible to pass the data to a List control with a simple binding expression:

<mx:List id=”sizeList” dataProvider=”{myData}”/>

Using RPC components
You can choose to retrieve data dynamically from many sources, including the Flex framework
components that are grouped together as the RPC classes. These classes are distinguished from
each other by the data format they use to communicate with a remote server:

� HTTPService: This class sends simple HTTP requests to URLs that return data formatted
as simple text or XML. For example, a call to an RSS feed from a blog or content-based
Web site would be executed using the HTTPService class.

� WebService: This class retrieves data from a server with calls formatted in the industry-
standard SOAP format.

� RemoteObject: This class sends and receives messages formatted in Action Message
Format (AMF). This binary format is defined by Adobe and implemented in many of its
server products, including LiveCycle Data Services, BlazeDS, and ColdFusion.

These components and their methodologies are described starting in Chapter 24. All, however, are
capable of returning data sets in the form of ArrayCollection objects that are suitable for use
as List control data providers.

The AMF data format was published by Adobe Systems in 2007 to support development
of independent application server products that are compatible with Flex-based and

Flash-based applications.

Retrieving local data in AIR applications
If you’re building an AIR-based desktop application, you can retrieve data from local XML files
using the File and FileStream classes or from the local SQLite embedded database with
classes such as SQLConnection and SQLStatement. These classes aren’t designed to return
data in the ArrayCollection format directly; you typically need to manually move data into
your data objects with explicit ActionScript code.

TIPTIP

TIPTIP

503

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 503

Controlling List Item Labels
If a List control’s data provider contains simple String values, these values are displayed on
each item by default. If the data provider contains complex objects (either instances of the
ActionScript Object class or of your own custom value object classes), you can determine the
text labels that are displayed in a List control’s items using one of these strategies:

� The labelField property lets you point to a specific named property of each object
whose values should be displayed.

� The labelFunction property lets you customize each item’s label with your own
ActionScript code.

Using the labelField property
Most List controls support the labelField property. This property allows you to indicate
which of the named properties of data items in the control’s data provider is displayed at runtime.

The default value of labelField is label. As a result, if the data provider’s objects have a prop-
erty named label, that property’s value is displayed. In the following code, the stateData
Array contains data objects with a label property. The List control displays the label prop-
erty’s value on each of its items:

<mx:Array id=”stateData”>
<mx:Object>

<mx:label>CA</mx:label>
<mx:capitol>Sacramento</mx:capitol>

</mx:Object>
<mx:Object>

<mx:label>OR</mx:label>
<mx:capitol>Salem</mx:capitol>

</mx:Object>
</mx:Array>
<mx:List id=”stateList” dataProvider=”{stateData}”/>

More commonly, the complex objects in the ArrayCollection have names that are determined
by the structure of a database table, XML file, value object, or other existing data source. If you for-
get to set the labelField property on a List control that displays complex data objects, the
control displays labels consisting of a set of [] characters wrapped around the word object and
the object’s data type. If the data item is cast as an ActionScript Object, the result looks like this:

[object Object]

As shown in Figure 17.2, the results aren’t particularly useful, even when working with a value
object class.

504

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 504

FIGURE 17.2

A List control displaying a complex data object with no labelField setting

To fix this behavior, you explicitly set the List control’s labelField to the property you want
to display:

<mx:Array id=”stateData”>
<vo:StateVO>

<vo:state>CA</vo:state>
<vo:capitol>Sacramento</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>OR</vo:state>
<vo:capitol>Salem</vo:capitol>

</vo:StateVO>
</mx:Array>
<mx:List id=”stateList” dataProvider=”{stateData}”

labelField=”state”/>

Figure 17.3 shows the same List control, this time displaying the value of the property named in
the control’s labelField property.

505

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 505

FIGURE 17.3

A List control displaying a complex data object with the labelField set to one of the properties of the
data provider’s complex data objects

The application in Listing 17.3 uses the List control’s labelField property to determine which
property value of each data object is displayed at runtime.

LISTING 17.3

Using the labelField property

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:vo=”vo.*”>
<mx:Array id=”stateData”>
<vo:StateVO>

<vo:state>CA</vo:state>
<vo:capitol>Sacramento</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>OR</vo:state>
<vo:capitol>Salem</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>WA</vo:state>
<vo:capitol>Washington</vo:capitol>

</vo:StateVO>
</mx:Array>
<mx:List id=”stateList” width=”200”

dataProvider=”{stateData}” labelField=”capitol”/>
</mx:Application>

506

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 506

The code in Listing 17.3 is available in the Web site files as UsingLabelField.mxml
in the chapter17 project.

Using the labelFunction property
Most List controls implement the labelFunction property to allow you to customize the label
that appears on each of the control’s items at runtime. The labelFunction property points to
the name of a function that follows a specific signature:

[access modifier] function [functionName](item:Object):String

The access modifier for a custom label function can be anything you like, although when you’re
calling the function from within the same application or component in which it’s defined, the
access modifier is typically set to private because it’s most often used only from within. The name
of the function’s only argument (item in the example syntax) can be anything you like, but it
should be typed as either an Object or a custom class implementing the Value Object design pat-
tern, depending on what type of data is stored in your List’s dataProvider collection. And the
function always returns a String, because its purpose is to generate a label for the List control’s
visual items.

At runtime, the List control calls the named function each time it needs to render an item visu-
ally. It passes the current data object to the custom function as its item argument and then displays
the returned String value. This is an example of a function that’s compatible with the
labelFunction architecture:

private function getStateLabel(item:StateVO):String
{

return item.capitol + “, “ + item.state;
}

The application in Listing 17.4 displays a List control where each visual item’s label is generated
by the custom getStateLabel() function.

LISTING 17.4

Using the labelFunction property

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:vo=”vo.*”>
<mx:Script>
<![CDATA[

import vo.StateVO;
private function getStateLabel(item:StateVO):String
{

return item.capitol + “, “ + item.state;
}

continued

ON the WEBON the WEB

507

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 507

LISTING 17.4 (continued)

]]>
</mx:Script>
<mx:Array id=”stateData”>

<vo:StateVO>
<vo:state>CA</vo:state>
<vo:capitol>Sacramento</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>OR</vo:state>
<vo:capitol>Salem</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>WA</vo:state>
<vo:capitol>Washington</vo:capitol>

</vo:StateVO>
</mx:Array>
<mx:List id=”stateList” width=”200”

dataProvider=”{stateData}” labelFunction=”getStateLabel”/>
</mx:Application>

The code in Listing 17.4 is available in the Web site files as UsingLabelField.mxml
in the chapter17 project.

The resulting application is shown in Figure 17.4. Notice that each of the List control’s labels is
generated using both of the data object’s named properties, concatenated with literal strings to sep-
arate the values.

FIGURE 17.4

A List control displaying String values calculated in a labelFunction

ON the WEBON the WEB

508

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 508

The DataGrid component doesn’t implement the labelField or labelFunction
properties directly. Instead, these properties are implemented in the DataGridColumn

component so you can easily customize the presentation of individual columns.

List Control Events and Properties
All List controls support these events to notify you of user actions and other important updates
to a control:

� change: Notifies you that the user has selected an item using either a mouse or keyboard
gesture

� dataChange: Notifies you that the content of the control’s data property has changes,
which typically is relevant when the control is used in a custom item renderer or item
editor

� itemClick: Notifies you that an item in the list control has been clicked

� itemDoubleClick: Notifies you that the user double-clicked on an item in the List
control when the doubleClickEnabled property is set to true

� itemRollOut: Notifies you that the mouse pointer moved out of an item in the List
control

� itemRollOver: Notifies you that the mouse pointer moved over an item in the List
control

List controls also support these properties that can be used to detect which data the user cur-
rently has selected:

� allowMultipleSelections:Boolean: When set to true, this allows the user to
select more than one item at a time by holding down Ctrl while clicking items.

� selectedIndex:int: This is the numeric index of the currently selected item.

� selectedIndices:Array: This is an array of indices of the currently selected items,
when the List control’s allowMultipleSelection property is set to true.

� selectedItem:Object: This is the data object underlying the List control’s cur-
rently selected row or cell.

� selectedItems:Array: This is an array of currently selected objects, when the List
control’s allowMultipleSelection property is set to true.

� doubleClickEnabled:Boolean: When this property is set to true , the List con-
trol detects double clicks on its items and dispatches a doubleClick event.

In addition, each List control supports unique events and properties designed for that control’s
specific purpose and capabilities.

TIPTIP

509

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 509

The ComboBox control does not support the allowMultipleSelection,
selectedIndices, or selectedItems properties. Because it uses a drop-down

interface to present its list, the user can select only one data item at a time.

Handling User Data Selections
When a user selects items in a List control, he’s indicating that he wants to use the selected item’s
underlying data. When this occurs, the List control dispatches a change event. After this event
occurs, you can use the control’s selectedItem and selectedIndex properties to detect
which item has been selected.

Using the change event
The change event is implemented in all List controls. It dispatches an event object typed as
mx.events.ListEvent, which has a rowIndex property that indicates by index which data
item was selected by the user.

You can detect which data item was clicked by the user by using the event object’s rowIndex
property and passing it to the getItemAt() method of the ArrayCollection data provider:

changeMessage = “You clicked on “ +
event.target.dataProvider.getItemAt(event.rowIndex);

This technique notifies you that the user clicked an item, but it doesn’t always indicate that the item
returned in the expression event.target.dataProvider.getItemAt(event.rowIndex)
is currently selected. In most List controls, the user can hold down Ctrl and click to deselect an
item, in which case you get a change event that can’t be distinguished from the event that occurs
when selecting an item.

Using the selectedItem property
A better approach is to use the List control’s selectedItem property, which always returns a
reference to the currently selected item. In the event the user has deselected all items in a List
control, the selectedItem property returns null:

if (event.target.selectedItem == null)
{

changeMessage = “None selected”;
}
else
{

changeMessage = “You selected “ + event.target.selectedItem;
}

TIPTIP

510

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 510

The application in Listing 17.5 uses a List control and a change event listener. Each time the
change event is dispatched by the List control, an event handler function inspects the control’s
selectedItem and displays a message indicating which item (if any) is currently selected.

LISTING 17.5

Using the change event and selectedItem property

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

[Bindable]
private var changeMessage:String=”None selected”;
private function changeHandler(event:Event):void
{

if (event.target.selectedItem == null)
{

changeMessage = “None selected”;
}
else
{

changeMessage = “You selected “ + event.target.selectedItem;
}

}
]]>

</mx:Script>
<mx:Array id=”myData”>

<mx:String>Small</mx:String>
<mx:String>Medium</mx:String>
<mx:String>Large</mx:String>

</mx:Array>
<mx:List id=”sizeList” width=”200” dataProvider=”{myData}”

change=”changeHandler(event)”/>
<mx:Label text=”{changeMessage}” fontSize=”12”/>

</mx:Application>

The code in Listing 17.5 is available in the Web site files as ChangeEventDemo.mxml
in the chapter17 project.

When testing this application, try holding down Ctrl and clicking an item that’s already selected.
You should see the message “None selected” displayed, because the control’s selectedItem
property now returns null.

ON the WEBON the WEB

511

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 511

Using the selectedIndex property
All List controls implement the selectedIndex property, which returns the index position of
the control’s currently selected item. Because all indexing in ActionScript starts at 0, if the first item
is selected the selectedIndex property returns 1, the second returns 2, and so on. When you
use a List or ComboBox control in a data entry form, you can place a data item as the first item
in a list that indicates that the user is selecting all options:

<mx:ComboBox id=”categoryList” change=”changeHandler(event)”>
<mx:dataProvider>

<mx:String>All Categories</mx:String>
<mx:String>Comedy</mx:String>
<mx:String>Drama</mx:String>
<mx:String>Action</mx:String>
<mx:String>Horror</mx:String>

</mx:dataProvider>
</mx:ComboBox>

The following code would detect whether the user has selected the first item, indicating she wants
all categories or a specific category:

private function changeHandler(event:Event):void
{

if (categoryList.selectedIndex == 0)
{

Alert.show(“You selected all categories”, “Everything!”);
}
else
{

Alert.show(“You selected “ + categoryList.selectedItem,
“One Thing!”);

}
}

If no items are currently selected in a List control, the selectedIndex property returns a value
of -1. This is particularly useful when you want to detect a state where the user hasn’t yet selected
a value from a List or DataGrid control:

private function changeHandler(event:Event):void
{

if (categoryList.selectedIndex == -1)
{

Alert.show(“You haven’t selected anything!”, “Nothin!”);
}
else
{

Alert.show(“You selected “ + categoryList.selectedItem,
“One Thing!”);

}
}

512

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 512

When using a ComboBox with its editable property set to the default value of false,
its selectedIndex property never returns -1, because some item is always selected.

When you set editable to true and the user types a value into the TextInput portion of the control
at runtime, selectedIndex returns -1 to indicate the user has provided a custom value.

Selecting complex data objects
When a List control’s data provider is a collection of complex objects instead of simple values,
you can refer to selected data objects’ named properties using either dot syntax or array-style syn-
tax. Dot syntax is more common, because, especially when working with classes that implement
the Value Object design pattern, they allow Flex Builder and the compiler to validate property
names and provide code completion.

For example, when a user selects an item that represents a complex data object from a List con-
trol, you should first cast the control’s selectedItem property as the appropriate ActionScript
class. You can then refer to the object’s named properties and gain the benefit of Flex Builder’s and
the compiler’s syntax checking and code completion tools:

var selectedState:StateVO = stateList.selectedItem as StateVO;
var selectedCapitol = selectedState.capitol;

If you prefer, you can use array-style syntax to refer to a data object’s named properties:

var selectedCapitol = stateList.selectedItem[“capitol”];

This syntax allows you to use variables containing the names of the properties. The following code
would have the same functional result as the other preceding examples:

var fieldName:String = “capitol”;
var selectedCapitol = stateList.selectedItem[fieldName];

Particularly when using data model classes that implement the Value Object design pattern, you
may want to declare a bindable instance of the class to store the most recently selected data item.
This StateVO value object class contains two properties, both of which are bindable due to the
use of the [Bindable] metadata tag before the class declaration:

package vo
{

[Bindable]
public class StateVO
{

public var state:String;
public var capitol:String;
public function StateVO()
{
}

}
}

TIPTIP

513

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 513

The application in Listing 17.6 uses a ComboBox with a data provider containing multiple instances
of a value object class. Upon application startup, and then again when the user selects an item from
the control, a reference to the currently selected data item is saved to the selectedState variable.

Notice that this variable is marked as bindable, and its internal [Bindable] tag also marks its
properties as bindable. Both levels of “bindability” are required in order for the Label controls to
successfully display the selected object’s properties whenever the user selects new data.

LISTING 17.6

Selecting complex data objects

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
xmlns:vo=”vo.*” creationComplete=”setSelectedState()”>
<mx:Script>
<![CDATA[

import vo.StateVO;
[Bindable]
private var selectedState:StateVO;
private function setSelectedState():void
{

selectedState=stateList.selectedItem as StateVO;
}

]]>
</mx:Script>
<mx:Array id=”stateData”>

<vo:StateVO>
<vo:state>CA</vo:state>
<vo:capitol>Sacramento</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>OR</vo:state>
<vo:capitol>Salem</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>WA</vo:state>
<vo:capitol>Washington</vo:capitol>

</vo:StateVO>
</mx:Array>
<mx:ComboBox id=”stateList”

dataProvider=”{stateData}”
labelField=”capitol”
change=”setSelectedState()”/>

<mx:Label text=”Selected State Information:”/>
<mx:Label text=”State: {selectedState.state}”/>
<mx:Label text=”Capitol: {selectedState.capitol}”/>

</mx:Application>

514

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 514

The code in Listing 17.6 is available in the Web site files as
SelectingComplexObjects.mxml in the chapter17 project.

Using Custom Item Renderers
By default, List controls display simple strings in their visual items. As described previously, you
can customize the string that’s displayed with the control’s labelField and labelFunction
properties, but if you want to create a more complex display, you need to use a custom item renderer.

All List controls allow you to declare both item renderers and item editors. The differences
between renderers and editors can be described as follows:

� Item renderers primarily display information, while item editors allow the user to modify
the data that’s stored in the List control’s data provider.

� Item renderers display in every item of the List control regardless of the user’s interac-
tions with the control. Item editors are displayed only when the user clicks to start editing
the item.

� Item renderers also can be marked as editors. In this case, they’re still displayed on every
item of List control like a normal item renderer. But, like an item editor, they allow the
user to modify the data in the List control’s data provider.

The use of custom item renderers is described in this chapter, because they can be used
with all List controls. Custom item editors are described in Chapter 18 in the section

about the DataGrid control.

You declare a List control’s custom item renderer as a visual component that you want the control
to instantiate each time it needs to render an item visually. Each of the List controls has a default
item renderer class that it assigns to its itemRenderer property. The default itemRenderer
class is mx.controls.listClasses.ListItemRenderer; this class is responsible for dis-
playing simple string values as labels. When you declare a custom renderer, you override this
default selection and have the freedom to create much more complex presentations.

You can declare custom item renderers in these ways:

� Drop-in renderers are visual components that you assign to a List control without any
changes to the renderer component’s default property or style settings.

� Inline renderers are components you define and nest within an MXML declaration of the
List control.

� Component renderers are separate visual components that you define as MXML compo-
nents or ActionScript classes and assign to the List control’s itemRenderer property
in an MXML declaration. You also can assign a component renderer at runtime with
ActionScript code by using the mx.core.ClassFactory class (described below).

NOTENOTE

ON the WEBON the WEB

515

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 515

Using drop-in item renderers
A drop-in renderer is a visual component that you assign to the List control’s itemRenderer or
itemEditor properties using its complete package and class name. A limited number of compo-
nents implement the IDropInListItemRenderer interface, making them eligible for this use.
They include:

� Button

� CheckBox

� DateField

� Image

� Label

� NumericStepper

� Text

� TextArea

� TextInput

At runtime, for each item the List control renders, it creates an instance of the visual component
you name as the renderer and passes data to the default property for that component. For example,
if you use an Image component as your custom renderer, the data is passed to the control’s
source property. The Label, Text, TextArea, and TextInput controls have a default prop-
erty of text, and each of the other controls has its own unique property.

If a List control’s data provider contains String values, each containing the location of a graphic
image you want to display instead of a label, you assign the itemRenderer using the fully quali-
fied name of the component’s equivalent ActionScript class:

<mx:List id=”answerList” dataProvider=”{answerData}”
itemRenderer=”mx.controls.Image”/>

When assigning a drop-in or a component item renderer, you must include the entire
package and class name in the itemRenderer or itemEditor declaration. Including

an import statement for the class you’re using as the renderer does not eliminate this requirement.

The application in Listing 17.7 uses an ArrayCollection of String values, each containing
the name of an image file in the project’s source root. The List control’s variableRowHeight
property is set to true, allowing each row of the control to adjust to the image it displays.

CAUTION CAUTION

516

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 516

LISTING 17.7

Using a drop-in item renderer

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>

<mx:ArrayCollection id=”answerData”>
<mx:String>assets/yesImage.png</mx:String>
<mx:String>assets/noImage.png</mx:String>
<mx:String>assets/maybeImage.png</mx:String>

</mx:ArrayCollection>

<mx:List id=”answerList” dataProvider=”{answerData}”
itemRenderer=”mx.controls.Image”
rowCount=”{answerData.length}”
variableRowHeight=”true”
width=”80” height=”140”/>

</mx:Application>

The code in Listing 17.7 is available in the Web site files as DropInRenderer.mxml in
the chapter17 project.

Figure 17.5 shows the resulting application. Its List control displays the images based on the val-
ues in the control’s data provider.

FIGURE 17.5

A List control with a drop-in item renderer

ON the WEBON the WEB

517

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 517

Drop-in item renderers work effectively with both single-column controls such as the
List and ComboBox and with DataGridColumn components in the context of a

DataGrid. Drop-in item editors can’t be used very effectively in single-column controls, because
with the drop-in architecture you don’t have the ability to set object properties and override default
behaviors. The use of drop-in item editors is described in Chapter 18.

You can use the labelFunction and labelField properties to affect the string that
is passed to the drop-in renderers. For example, this function designed for use with

labelFunction adds a URL path to an image reference:

private function doIt(item:Object):String
{

return “http://www.myUrl.com/” + item as String;
}

Using inline renderers and editors
An inline renderer is an MXML component that you nest with the declaration of the List control.
You first nest a <mx:itemRenderer> or <mx:itemEditor> child element with the List con-
trol’s MXML tags, and then within that control, you nest a set of <mx:Component> tags. Finally,
within the <mx:Component> tags, you nest the control or container from which you want to
extend the custom component.

If the custom component you want to use as a custom renderer is extended from the VBox con-
tainer, the structure of a List control’s itemRenderer declaration looks like this:

<mx:List id=”myList” dataProvider=”{myData}”>
<mx:itemRenderer>

<mx:Component>
<mx:VBox>
... nested components ...
</mx:VBox>

</mx:Component>
</mx:itemRenderer>

</mx:List>

When you create an inline item renderer, in object-oriented terms it’s a local anony-
mous class. Local anonymous classes have the benefit of being declared within the con-

text of their use, in this case within the List control for which it’s designed. The drawback of using
an anonymous class is that it can’t be reused in a different context.

The <mx:Component> declaration is a compiler tag and doesn’t represent a specific
ActionScript class. Its purpose is to create a new component scope within an MXML

file. Variables declared within the <mx:Component> tag set are local to the custom component and,
unless declared public, aren’t accessible to the containing application or component. Also, within the
scope of the <mx:Component> tag set, the expression this refers to the current instance of the
custom component and not to the application or containing component.

TIPTIP

TIPTIP

TIPTIP

NOTENOTE

518

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 518

Every visual component in the Flex framework has a bindable data property designed for use
in the custom item renderer architecture. At runtime, the List control creates an instance of the
custom component for each of its items and passes the data provider’s current data item to the
component instance’s data property.

Within the component code, you can refer to the current data item in a binding expression to use
its information. In the application in Listing 17.8, the List control displays the same image as
before, but this time the image location is determined in the custom item renderer by including a
literal string in the Image control declaration.

LISTIN 17.8

Using an inline renderer

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:ArrayCollection id=”answerData”>
<mx:String>yesImage.png</mx:String>
<mx:String>noImage.png</mx:String>
<mx:String>maybeImage.png</mx:String>

</mx:ArrayCollection>
<mx:List id=”myList” dataProvider=”{answerData}”
rowCount=”{answerData.length}”
variableRowHeight=”true”
width=”80” height=”140”>
<mx:itemRenderer>

<mx:Component>
<mx:Image source=”assets/{data}”/>

</mx:Component>
</mx:itemRenderer>

</mx:List>
</mx:Application>

The code in Listing 17.8 is available in the Web site files as InlineRenderer.mxml in
the chapter17 project.

Using an inline or component renderer also makes working with data providers containing com-
plex objects easier. The List control’s data property is data typed as an ActionScript Object
and is compatible with any sort of data object that might be passed from the List control’s data
provider. For example, if the data object has an imageSource property, the custom item renderer
can use that property in a binding expression to pass values to its nested visual controls:

<mx:Image source=”imageLocation/{data.imageSource}”/>

ON the WEBON the WEB

519

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 519

In the application in Listing 17.9, the List control’s data provider contains objects with value
and imageSource properties. The Image component used as the custom item renderer receives
its source from the data object’s imageSource property through a binding expression. The
Label control at the bottom of the application displays the value property of the List control’s
currently selected data object through a binding expression of myList.selectedItem.value.

LISTING 17.9

Using complex data objects in a custom item renderer

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>

<mx:ArrayCollection id=”answerData”>
<mx:Object>
<mx:value>Yes</mx:value>
<mx:imageSource>yesImage.png</mx:imageSource>

</mx:Object>
<mx:Object>

<mx:value>No</mx:value>
<mx:imageSource>noImage.png</mx:imageSource>

</mx:Object>
<mx:Object>

<mx:value>Maybe</mx:value>
<mx:imageSource>maybeImage.png</mx:imageSource>

</mx:Object>
</mx:ArrayCollection>

<mx:List id=”myList” dataProvider=”{answerData}”
rowCount=”{answerData.length}”
variableRowHeight=”true”
width=”80” height=”140”>
<mx:itemRenderer>

<mx:Component>
<mx:Image source=”assets/{data.imageSource}”/>

</mx:Component>
</mx:itemRenderer>

</mx:List>

<mx:Label text=”{myList.selectedItem.value}”
fontSize=”14”/>

</mx:Application>

520

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 520

The code in Listing 17.9 is available in the Web site files as
InlineRendererComplexObjects.mxml in the chapter17 project.

You cannot create an empty <mx:Component> tag set; it must have a single nested
child element indicating which visual component you’re extending. The content of an

inline component can include ActionScript code, <mx:Binding>, <mx:Model>, and <mx:State>
tags, and pretty much anything else you might declare in a custom component in a separate
MXML file.

Using component item renderers
A component item renderer is a separate class that can be created as either an MXML component
or an ActionScript class that extends an existing visual component from the Flex framework. As
with all visual components, the custom component has the same data property as was described
in the previous section on inline components. At runtime, the List control creates an instance of
the named component for each item it needs to render and passes the data provider’s current data
object to the component instance’s data property.

This chapter describes how to create custom components with MXML. For details of
creating components in ActionScript, see the product documentation.

You create item renderers as MXML components in the same manner as any other component. If
you’re using Flex Builder, you can use the New MXML Component wizard to create an MXML
component source code file.

As with any MXML component, its root element is the visual component that you want your cus-
tom component to extend. The objects nested within the component’s root element can use the
data object and its named properties (determined by the List control’s data provider) to display
information dynamically.

You should create custom components in subfolders of the Flex project’s source root
folder and give the subfolders descriptive names reflecting the use of the components

they contain. For example, in the sample application described in this section, the custom compo-
nents are stored in a renderers subfolder. Although it works technically to create custom components
directly in the project’s source root folder, this practice can create file management and application
maintenance issues.

The custom component in Listing 17.10 extends the VBox container and contains an Image and a
Label component. It uses its data property to set the nested object’s properties through binding
expressions.

TIPTIP

NOTENOTE

TIPTIP

ON the WEBON the WEB

521

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 521

LISTING 17.10

A custom item renderer component built with MXML

<?xml version=”1.0” encoding=”utf-8”?>
<mx:VBox xmlns:mx=”http://www.adobe.com/2006/mxml”

horizontalAlign=”center”
verticalScrollPolicy=”off”
horizontalScrollPolicy=”off”>
<mx:Image source=”assets/{data.imageSource}”/>
<mx:Label text=”{data.value}”/>

</mx:VBox>

The code in Listing 17.10 is available in the Web site files as renderers/Image
Renderer.mxml in the chapter17 project.

A List control commonly “squeezes” a custom renderer component’s available space
and causes it to generate unwanted scrollbars. In the component in Listing 17.10, the

component’s verticalScrollPolicy and horizontalScrollPolicy properties are set to
off to suppress scrollbars that might otherwise appear.

You use the custom renderer component with the same syntax as a drop-in renderer, supplying the
fully qualified name and path of the component in the List control’s itemRenderer or
itemEditor property:

<mx:List id=”myList” dataProvider=”{answerData}”
itemRenderer=”renderers.ImageRenderer”/>

When you provide the name of the custom renderer class to the List control, it is not a
binding expression, and the class name isn’t wrapped in braces ({}). You’re providing the

class definition, in a similar way to how an effect class is passed to a trigger. Instances of classes are
wrapped in binding expressions; class definitions are passed solely by name without binding syntax.

The application in Listing 17.11 uses the custom component renderer to display all of each data
object’s values.

LISTING 17.11

Using a custom component renderer

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:ArrayCollection id=”answerData”>
<mx:Object>
<mx:value>Yes</mx:value>

TIPTIP

TIPTIP

ON the WEBON the WEB

522

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 522

<mx:imageSource>yesImage.png</mx:imageSource>
</mx:Object>
<mx:Object>

<mx:value>No</mx:value>
<mx:imageSource>noImage.png</mx:imageSource>

</mx:Object>
<mx:Object>

<mx:value>Maybe</mx:value>
<mx:imageSource>maybeImage.png</mx:imageSource>

</mx:Object>
</mx:ArrayCollection>
<mx:List id=”myList” dataProvider=”{answerData}”
itemRenderer=”renderers.ImageRenderer”
rowCount=”{answerData.length}”
variableRowHeight=”true”
width=”100” height=”220”/>

<mx:Label text=”{myList.selectedItem.value}”
fontSize=”14”/>

</mx:Application>

The code in Listing 17.11 is available in the Web site files as ComponentRenderer.mxml
in the chapter17 project.

Figure 17.6 shows the completed application. Each visual item in the List displays both the
Image and the Label, each populated with data from the current data object.

FIGURE 17.6

Using a component renderer with multiple nested visual components

ON the WEBON the WEB

523

Using List Controls 17

24_287644-ch17.qxp 6/23/08 11:45 PM Page 523

Summary
In this chapter, I described how to use the basic functions of List controls. You learned the
following:

� A List control presents data to the user and allows him make data selections with
mouse or keyboard gestures.

� All the List controls use a common set of properties and events to determine their
presentation and behavior.

� The List controls include the List, ComboBox, DataGrid, TileList,
HorizontalList, Tree, AdvancedDataGrid, and OLAPDataGrid controls.

� Controls designed exclusively for use with AIR applications populate their data with
information from the local client file system.

� You handle user selections with the change event and the selectedItem and
selectedIndex properties.

� You can customize the labels presented in List control items with the labelField
and labelFunction properties.

� Custom item renderers can be used with all List controls to create a more complex
visual presentation.

� Custom item renderers can be declared using the drop-in, inline, or component
architectures.

524

Working with DataPart III

24_287644-ch17.qxp 6/23/08 11:45 PM Page 524

All list controls are not created equal. The two simplest list controls —
the List and the ComboBox— display a single column of values
and support the common functionality of custom labels, item ren-

derers, and so on. But the ComboBox is really a compound control that
allows the users to enter their own arbitrary values.

More complex list controls — such as the family of DataGrid components,
the Tree control, and the TileList and HorizontalList— have their
own unique capabilities. And as described briefly in Chapter 17, the AIR-
based list controls have the ability to populate data from the local file system.

In Chapter 17, I described functionality that’s common to all list controls,
from the most fundamental to the most advanced. In this chapter, I describe
the unique capabilities of specific data-driven controls, starting with the
ComboBox and working up to the TileList, HorizontalList, and
DataGrid.

To use the sample code for this chapter, import the
chapter18.zip project from the Web site files into any

folder on your disk.

Using the ComboBox Control
The ComboBox control is most like the basic List control in that it displays
items in a single column. In terms of class inheritance, the two controls are
related as cousins with a common ancestor. Figure 18.1 shows the two con-
trols’ direct superclass, up to their common UIComponent superclass.

ON the WEBON the WEB

525

IN THIS CHAPTER
Using an editable ComboBox

Using bindable List and
ComboBox components

Using the DataGrid control

Selecting and customizing
DataGrid columns

Presenting custom labels in a
DataGrid column

Using custom item editors in a
DataGrid column

Using the TileList and
HorizontalList controls

Using the
AdvancedDataGrid control

Using Advanced
List Controls

25_287644-ch18.qxp 6/23/08 11:46 PM Page 525

FIGURE 18.1

The List and ComboBox inheritance hierarchies

Using an editable ComboBox
The ComboBox control appears at first glance to be a simple drop-down list component. Its name,
however, indicates that there’s more to its capabilities. This component is actually a compound
control that includes both a List and a TextInput.

The ComboBox control’s nested TextInput isn’t visible by default; instead, it appears only when
the control’s editable property is set to true. Used in this way, the user has an option of either
selecting an item from the control’s List or typing an arbitrary String value into the control.

When you set the control’s editable property to true, you also have the option to set its prompt
property. This property displays an initial value in the control’s TextInput, allowing you to give
the user a hint about what he’s supposed to do. The following code declares a ComboBox with
editable set to true and prompt set to a string that prompts the user accordingly:

The prompt property can be used even if the ComboBox isn’t editable. When you
set prompt to a value other than null, the ComboBox object’s selectedIndex

returns _1 and its selectedItem returns null. Once the user selects an item, selectedItem
and selectedIndex reflect the currently selected item and its position in the ArrayCollection
being used as the control’s dataProvider.

<mx:ComboBox id=”sizeCB” dataProvider=”{sizeData}”
prompt=”Select an item” editable=”true”/>

Figure 18.2 shows the resulting control displaying an initial prompt in the TextInput that
appears as a result of the editable property being set to true.

TIPTIP

UIComponent

ComboBaseListBase

ComboBoxList

526

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 526

FIGURE 18.2

An editable ComboBox

As with the List control, when the user selects an item from a ComboBox control’s list, the
selectedItem and selectedIndex properties point respectively to the selected data object
and its ordinal position within the control’s data provider. When the user types a value into the
TextInput portion of the control, however, the control’s properties are set as follows:

� selectedItem returns null.

� selectedIndex returns -1.

� prompt returns the user-entered value.

� text also returns the user-entered value.

While the ComboBox control’s prompt and text properties return the same value,
only the text property is bindable. If you try to use prompt in a binding expression,

you get a compiler error indicating that the binding won’t update at runtime if the property changes.

The application in Listing 18.1 uses a ComboBox with a data provider containing simple String
values. The Label controls use binding expressions to display the control’s current text,
selectedIndex, and selectedItem properties.

LISTING 18.1

Using an editable ComboBox

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Style>

ComboBox, TextInput, Label { font-size:12 }
</mx:Style>
<mx:ArrayCollection id=”sizeData”>

<mx:String>Small</mx:String>

continued

TIPTIP

527

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 527

LISTING 18.1 (continued)

<mx:String>Medium</mx:String>
<mx:String>Large</mx:String>

</mx:ArrayCollection>
<mx:Label text=”selectedIndex: {sizeCB.selectedIndex}”/>
<mx:Label text=”selectedItem: {sizeCB.selectedItem}”/>
<mx:Label text=”Text: {sizeCB.text}”/>
<mx:ComboBox id=”sizeCB” dataProvider=”{sizeData}”

prompt=”Select an item” editable=”true”/>
</mx:Application>

The code in Listing 18.1 is available in the Web site files as EditableComboBox.mxml
in the chapter18 project.

Figure 18.3 shows the application in two states. The version on the left shows the control’s values
when an item is selected from the list, while the version on the right shows its values when the
user has typed in an arbitrary value.

FIGURE 18.3

A ComboBox being used in two different ways

Using a bindable ComboBox
The ComboBox control has a particular weakness in that you can’t easily set its initial value when
working with a data provider containing complex objects. In HTML code, it’s common to set a
<select> control’s currently selected item by looping through the <option> tags and matching
a property of the data set to values of the options. For example, in ColdFusion the classic code to
accomplish this task looks like this:

<select name=”sizeList” size=”1”>
<cfloop query=”availableOptions”>

Selecting from the list Typing in a value

ON the WEBON the WEB

528

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 528

<option value=”#myData.recordid#”
<cfif availableOptions.recordid IS currentDataRow.recordid>

selected=”selected”
</cfif>

>#availableOptions.labelField#</option>
</cfloop>

</select>

Each application server language that generates HTML code dynamically has its own unique way of
accomplishing this task (and in many cases the code is considerably simpler than in this example),
but the goal is always to generate only one <option> tag within the <select> tag set with an
attribute of selected=”selected”.

The ComboBox control doesn’t provide this capability directly. Assume that the data provider for a
ComboBox contains complex objects with named properties, as in this example:

<mx:Array id=”stateData” labelField=”capitol”>
<vo:StateVO>

<vo:state>CA</vo:state>
<vo:capitol>Sacramento</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>OR</vo:state>
<vo:capitol>Salem</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>WA</vo:state>
<vo:capitol>Olympia</vo:capitol>

</vo:StateVO>
</mx:Array>

If you want the ComboBox to show that one of its data items is selected based on a value that you
pass in, you have to use a custom component that adds this feature. Fortunately, the work has been
done for you if you know where to find it.

The ColdFusion Extensions for Flex Builder, which you can install with the initial Flex Builder
installation or at a later time, have a feature named the ColdFusion/Flex Application Wizard. This
feature generates a complete Flex/ColdFusion data entry application based on the structure of an
existing database table structure. The generated application includes both BindableComboBox
and BindableList custom components that are designed to solve this specific issue.

Listing 18.2 shows an application that uses the custom BindableComboBox component.
The customized version of the component overrides the superclass’s selectedItem property,
allowing you to pass in any value instead of the actual object you want to select. Whenever the
selectedItem you pass in changes, it’s compared to a property of the existing data provider’s
objects. You indicate which named property of the data provider’s objects you want to compare
with the component’s valueField property.

529

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 529

LISTING 18.2

Using a custom bindable ComboBox component

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”horizontal” xmlns:vo=”vo.*”
xmlns:components=”com.adobe.components.*”>
<mx:Array id=”stateData”>

<vo:StateVO>
<vo:state>CA</vo:state>
<vo:capitol>Sacramento</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>OR</vo:state>
<vo:capitol>Salem</vo:capitol>

</vo:StateVO>
<vo:StateVO>

<vo:state>WA</vo:state>
<vo:capitol>Olympia</vo:capitol>

</vo:StateVO>
</mx:Array>
<mx:Panel id=”listPanel” title=”List” width=”200”>

<mx:List id=”stateList” dataProvider=”{stateData}”
labelField=”capitol” width=”100%”/>

</mx:Panel>
<mx:Panel title=”ComboBox”

width=”{listPanel.width}” height=”{listPanel.height}”>
<components:BindableComboBox id=”stateCB”

dataProvider=”{stateData}”
valueField=”state”
selectedItem=”{stateList.selectedItem.state}”
labelField=”capitol”/>

<mx:Label text=”State: {stateCB.selectedItem.state}”/>
<mx:Label text=”Capitol: {stateCB.selectedItem.capitol}”/>

</mx:Panel>
</mx:Application>

The code in Listing 18.2 is available in the Web site files as UsingBindable
ComboBox.mxml in the chapter18 project. The application also uses the

StateVO.as value object class in the project source root’s vo folder and the Bindable
ComboBox.mxml file in the com/adobe/components folder.

ON the WEBON the WEB

530

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 530

The BindableComboBox and BindableList components that you generate with the
ColdFusion/Flex Application Wizard were created by Dean Harmon and Mike Nimer.

The application is shown in Figure 18.4. The List control on the left displays all the data set’s
objects. The currently selected item’s state property is passed to the custom BindableComboBox
on the right through a binding expression; as a result, the two controls are synchronized.

FIGURE 18.4

Using the BindableComboBox control

Using the DataGrid Control
The DataGrid control is one of the most popular controls in the Flex framework. It’s designed to
present relational data in the form of rows and columns to the user, and allow the user to easily
scroll through and select data. In addition, the DataGrid can be made editable, allowing the user
to edit multiple rows of data in batches instead of having to navigate to a data entry form interface
for each row he wants to modify.

In terms of inheritance hierarchy, the DataGrid is directly extended from the ListBase class; as
a result, it shares most of the events and properties of the List component. Figure 18.6 shows the
inheritance tree of the DataGrid. The FileSystemDataGrid (used in AIR applications) and
the PrintDataGrid (optimized for printing) are extended from DataGrid and inherit all its
behaviors.

NOTENOTE

531

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 531

FIGURE 18.5

The DataGrid inheritance hierarchy

The DataGrid control has these built-in features:

� It displays multiple columns, each dedicated to displaying one named property of its data
provider’s data items.

� It displays column headers, which you can customize with simple strings or complex
displays.

� The data display is sortable by the user when she clicks a column heading. This actually
results in sorting the DataGrid object’s underlying data collection.

� The user can change the order of the columns by clicking and dragging the columns.

� The user can resize columns by clicking and dragging the borders between the columns.

� Data is displayed in rows with alternating row colors.

� Scrolling through large amounts of data is supported through an architecture known as
deferred instantiation.

� When integrated with Adobe’s LiveCycle Data Services or a similar application server that
supports the Data Management Service architecture, you can easily enable paging through
large amounts of server-side data without overwhelming Flash Player memory.

� You can lock rows and columns to prevent scrolling.

When you provide data to a DataGrid control, it should always be in the form of an
ArrayCollection containing complex objects. The objects should have named prop-

erties that in turn contain either simple values that can be directly displaying in the DataGrid con-
trols columns and or that can be used by item renderer components to create customized displays.
Because the purpose of a DataGrid is to display more than a single column, it doesn’t make sense to
provide it with an ArrayCollection containing simple string values.

TIPTIP

ListBase

UIComponent

DataGridBase

DataGrid

PrintDataGrid

List

FileSystemDataGrid

532

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 532

Customizing DataGrid display
The DataGrid control provides many features that allow you to customize how it’s displayed:

� The height and width can be set in absolute pixels or percentage of available space.

� The rowCount property can determine the control’s height based on the number of rows
you display.

� The alternatingItemColors style is set to an Array of colors. When set with two
colors, the items’ backgrounds alternate between them. If you set this style to an Array
with more than two colors, the items loop through the colors and display them in order
of declaration.

� The columns property determines which columns are displayed to the user.

In this section, I describe some of the techniques that are most commonly used in customizing the
DataGrid control.

Default columns display
By default, the DataGrid control generates columns for its data provider based on the property
names of the first object in the data set.

Ideally, all the data objects in a data collection have the same number of properties and
identical names. When you allow the DataGrid to generate its columns automatically,

it does so based only on the properties in the first item of the dataProvider.

In the following XML structure, each data object has eight properties, named (in order of declara-
tion) contactid, firstname, lastname, streetaddress, city, state, email, and
phone:

<?xml version=”1.0”?>
<contacts>

<row>
<contactid>1</contactid>
<firstname>Brad</firstname>
<lastname>Lang</lastname>
<streetaddress>3004 Buckhannan Avenue</streetaddress>
<city>Syracuse</city>
<state>NY</state>
<email>Brad.C.Lang@trashymail.com</email>
<phone>315-449-9420</phone>

</row>
<row>

<contactid>2</contactid>
<firstname>Kevin</firstname>
<lastname>Mount</lastname>
<streetaddress>341 Private Lane</streetaddress>
<city>Montgomery</city>

NOTENOTE

533

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 533

<state>GA</state>
<email>Kevin.J.Mount@trashymail.com</email>
<phone>229-329-4001</phone>

</row>
... additional <row> elements ...

</contacts>

The contact information used in this section of the book and elsewhere is fake! If you
need fake data with which to test and benchmark your application, try the Web site at

www.fakenamegenerator.com. You can order large amounts of fake data (up to 40,000 fake
names at a time) in a variety of data formats. The only cost for this service comes up if you need it in
a hurry.

As with the List and ComboBox controls, you pass data into the DataGrid with the
dataProvider property. The application in Listing 18.3 uses code that embeds data from the
XML file with the <mx:Model> tag and wraps it in an ArrayCollection. The data is then
passed to the DataGrid with a binding expression.

LISTING 18.3

Default DataGrid column generation

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” >

<mx:Model id=”contactData” source=”data/contacts.xml”/>
<mx:ArrayCollection id=”contactAC” source=”{contactData.row}”/>
<mx:DataGrid id=”contactGrid” dataProvider=”{contactAC}”/>

</mx:Application>

The code in Listing 18.3 is available in the Web site files as DataGridDefault
Columns.mxml in the chapter18 project.

At runtime, the DataGrid examines the first data object in its dataProvider and then gener-
ates one column for each of the data object’s named properties. The columns are arranged in alpha-
betical order, rather than the order in which the properties are declared in the XML file. (The data
objects are cast as instances of the ActionScript Object class, which doesn’t maintain its proper-
ties in any specific order.)

Figure 18.6 shows the resulting display, with the DataGrid showing all eight available columns of
data.

ON the WEBON the WEB

WEB RESOURCEWEB RESOURCE

534

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 534

FIGURE 18.6

A DataGrid with default column display

Controlling column display
You determine the number and order of columns displayed by the DataGrid with its columns
property. The columns property must be an Array of DataGridColumn instances, typically
declared like this:

<mx:DataGrid id=”contactGrid” dataProvider=”{contactAC}”>
<mx:columns>

<mx:DataGridColumn ... property settings.../>
<mx:DataGridColumn ... property settings.../>

</mx:columns>
</mx:DataGrid>

The DataGridColumn control determines how each individual column is displayed. Its key
properties include:

� dataField:String: This is the name of the property you want the column to display.
This value is case-sensitive and must exactly match the property names of the data
provider’s items.

� headerText:String: This is the string value you want to display in the column
header.

� width:Number: This is the width of the column in absolute pixels. (You cannot set a
column’s width based on a percentage of available space in the DataGrid without doing
some calculations at runtime.)

This DataGridColumn declaration creates a column that displays each data object’s firstname
property, displays header text of “First Name”, and has an explicit width of 100 pixels:

<mx:DataGridColumn dataField=”firstname”
headerText=”First Name” width=”100”/>

535

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 535

Columns are displayed in the order of their declaration: The first DataGridColumn is leftmost
in the DataGrid display, the second is to its right, and so on. The application in Listing 18.4
declares a DataGrid with three columns displaying the data provider’s firstname, lastname,
and email properties.

LISTING 18.4

A DataGrid with explicit column settings

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Model id=”contactData” source=”data/contacts.xml”/>
<mx:ArrayCollection id=”contactAC” source=”{contactData.row}”/>
<mx:DataGrid id=”contactGrid” dataProvider=”{contactAC}”>

<mx:columns>
<mx:DataGridColumn dataField=”firstname” headerText=”First Name”

width=”100”/>
<mx:DataGridColumn dataField=”lastname” headerText=”Last Name”

width=”100”/>
<mx:DataGridColumn dataField=”email” headerText=”Email Address”

width=”250”/>
</mx:columns>

</mx:DataGrid>
</mx:Application>

The code in Listing 18.4 is available in the Web site files as DataGridDefault
Columns.mxml in the chapter18 project.

Figure 18.7 shows the resulting application, with three columns of data displayed in the order of
their declaration in the DataGrid control’s columns property.

FIGURE 18.7

A DataGrid with explicit columns

ON the WEBON the WEB

536

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 536

Even though only certain columns are displayed to the user, the DataGrid control’s
selectedItem property still refers to the complete data object represented by the

currently selected row. In many data-oriented applications, you don’t display the values of each row’s
unique identifiers (primary keys in database parlance) to the user. That information, however, is
always available. In the application in Listing 18.7, for example, the expression contactGrid
.selectedItem.contactid would refer to the unique identifier for the currently selected
data item.

If you specify a column’s property by setting dataField, that will be the property that
the column sorts on when you click the header. If you don’t specify a property (which is

possible if you use a renderer or labelFunction to render a column’s cells), then that row isn’t
automatically sortable.

Generating custom labels with DataGrid columns
In Chapter 17, I described how to use the labelFunction property with the List and
ComboBox controls. This property also is implemented in the DataGridColumn component,
but the function you create to format that column’s labels has a slightly different signature.

As a reminder, the signature for a custom function compatible with the List and ComboBox con-
trols looks like this:

private function getFormattedLabel(item:Object):String

When the function is assigned to a DataGridColumn, the function signature changes to:

private function getFormattedLabel(item:Object,
column:DataGridColumn):String

The difference is the addition of the function’s second argument, which is a reference to the
DataGridColumn object that calls the function at runtime.

In the data set used in this chapter, each data item has a phone property formatted with hyphens:

315-555-9420

If, instead, you want to format the phone number with parentheses around the area code, you
might declare an instance of the PhoneFormatter class:

<mx:PhoneFormatter id=”formatter”/>

Then create the custom formatting function:

private function getPhoneLabel(item:Object,
column:DataGridColumn):String

{
}

TIPTIP

TIPTIP

537

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 537

The PhoneFormatter requires a value that can be parsed as a number, so within the formatting
function, you first strip the hyphen characters from the data item’s value. You can do this in a cou-
ple of ways; the following code uses a regular expression and replaces all instances of the hyphen
character with a blank string:

var pattern:RegExp = /-/g;
var phoneValue:String = item.phone.replace(pattern, “”);

Finally, return the formatted value by passing the resulting expression to the PhoneFormatter
object’s format() method:

return formatter.format(phoneValue);

Listing 18.5 shows the complete application with a DataGridColumn that displays each contact’s
phone number with the format (315) 555-9420.

LISTING 18.5

Using a custom formatting function in a DataGridColumn

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.controls.dataGridClasses.DataGridColumn;
private function getPhoneLabel(item:Object,

column:DataGridColumn):String
{

/*The regular expression consists of a hyphen
(the value being replaced) and the /g global flag
to replace ALL instances of the hyphen

*/
var pattern:RegExp = /-/g;
var phoneValue:String = item.phone.replace(pattern, “”);
return formatter.format(phoneValue);

}
]]>

</mx:Script>
<mx:Model id=”contactData” source=”data/contacts.xml”/>
<mx:ArrayCollection id=”contactAC” source=”{contactData.row}”/>
<mx:PhoneFormatter id=”formatter”/>
<mx:DataGrid id=”contactGrid” dataProvider=”{contactAC}”>

<mx:columns>
<mx:DataGridColumn dataField=”firstname” headerText=”First Name”

width=”100”/>
<mx:DataGridColumn dataField=”lastname” headerText=”Last Name”

width=”100”/>
<mx:DataGridColumn dataField=”email” headerText=”Email Address”

538

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 538

width=”250”/>
<mx:DataGridColumn dataField=”phone” headerText=”Phone Number”

width=”150” labelFunction=”getPhoneLabel”/>
</mx:columns>

</mx:DataGrid>
</mx:Application>

The code in Listing 18.5 is available in the Web site files as DataGridFormat
Cells.mxml in the chapter18 project.

Figure 18.8 shows the resulting application with formatted phone numbers in the last column of
the DataGrid control.

FIGURE 18.8

A DataGridColumn with custom label formatting

Using a dynamic data field
As described previously, the custom formatting function for a DataGridColumn requires an
argument that references the DataGridColumn that is calling the function. The purpose of
this argument is to allow you to determine the data field of the current data item dynamically.

For example, if the data provider’s data items have phone values in two different properties and
you want to format them both with the same logic, you can identify the property you want to for-
mat with the array-style expression item[column.dataField]. The dataField property of
the DataGridColumn returns the name of the property currently being processed, so you need
only one custom function to format as many data properties as needed:

private function getPhoneLabel(item:Object,
column:DataGridColumn):String

{

Custom formatting

ON the WEBON the WEB

539

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 539

var dataValue:String = item[column.dataField];
var pattern:RegExp = /-/g;
var phoneValue:String = dataValue.replace(pattern, “”);
return formatter.format(phoneValue);

}

Debugging a custom formatting function
It can be instructive to add a trace() statement to the body of a custom formatting function. As
you scroll up and down in a DataGrid, each time the data grid column has to be formatted, the
trace statement in the custom function is executed:

private function getPhoneLabel(item:Object,
column:DataGridColumn):String

{
var dataValue:String = item[column.dataField];
var pattern:RegExp = /-/g;
var phoneValue:String = item.phone.replace(pattern, “”);
trace(“original value: “ + dataValue + “, “ +

“formatted value: “ + formatter.format(phoneValue));
return formatter.format(phoneValue);

}

Figure 18.9 shows the resulting output in Flex Builder’s Console view when the application is run
in debug mode. The Console view displays the trace statements continuously as you scroll up and
down in the DataGrid.

FIGURE 18.9

Debugging a custom formatting function

One of the advantages of the DataGrid control is that it reuses its visual objects as you
scroll. Unlike a Repeater control, which actually generates visual controls for every

data item in its dataProvider, whether or not they’ll be visible on the screen, the DataGrid sim-
ply populates existing visual controls with new data and creates the appearance of a smooth scrolling
experience.

TIPTIP

540

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 540

As a result, you can populate the DataGrid and other list controls with significant amounts of data
without causing the Flash Player to bog down or overload its memory usage. When you run the appli-
cation described previously with trace statements, try scrolling up and down. You’ll notice that the
function is called frequently as you scroll, and the existing visual objects are updated with new data.

Advanced Item Renderers and Editors
As described in Chapter 17, all list controls support the custom item renderer and editor architec-
tures. In a DataGrid control, an item renderer or editor is used in a specific column, so the
itemRenderer and itemEditor properties are implemented in the DataGridColumn
component.

Just as with the List control, item renderer and editor components for the DataGridColumn
can be declared in three ways:

� Drop-in renderers are visual components that you assign to a list control without any
changes to the renderer component’s default property or style settings.

� Inline renderers are components you define and nest within an MXML declaration of the
list control.

� Component renderers are separate visual components that you define as MXML compo-
nents or ActionScript classes and assign to the list control’s itemRenderer property in
an MXML declaration. You also can assign a component renderer at runtime with
ActionScript code by using the mx.core.ClassFactory class (described below).

For more information on the three types of item renderer declarations, see Chapter 17.

At runtime, the DataGridColumn creates an instance of the component and passes its data
provider’s current data item as the renderer object’s data property. Within the custom component,
whether declared inline or as a separate component, you use the data object’s properties with either
ActionScript statements or binding expressions to populate visual objects and create your custom
presentation.

Using the dataChange event
In the following example, a DataGrid component displays contact information from the con-
tacts.xml file. In the first column of the DataGrid, the contact’s first and last names are dis-
played as a single concatenated string. This task can be easily handled with a custom label
formatting function:

private function getNameLabel(item:Object,
column:DataGridColumn):String

{
return item.firstname + “ “ + item.lastname;

}

CROSS-REFCROSS-REF

541

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 541

In the second column, the DataGrid will display the contact’s full address, formatted as a single
Text control using HTML markup for bold and other formatting. To handle this requirement, you
can use the dataChange event to update a custom component’s display at runtime. This event is
dispatched within the custom component whenever the value of its data property is updated. You
can respond to the event by explicitly updating the custom component’s nested objects as needed.

The custom component in Listing 18.6 is extended from the Text component. When the compo-
nent’s dataChange event is dispatched, it responds by updating its own htmlText property
with the data object’s new property values.

LISTING 18.6

A custom component updating its display with the dataChange event

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Text xmlns:mx=”http://www.adobe.com/2006/mxml”

dataChange=”updateHTML()”>

<mx:Script>
<![CDATA[

private function updateHTML():void
{

htmlText = “” + data.firstname + “ “ +
data.lastname + “\n” +
data.streetaddress + “\n” +
data.city + “, “ + data.state + “\n” +
“Phone: “ + data.phone + “\n” +
“Email: “ + data.email + “\n”;

}
]]>

</mx:Script>

</mx:Text>

The code in Listing 18.6 is available in the Web site files as AddressRenderer.mxml
in the chapter18 project’s src/renderers folder.

The application in Listing 18.7 uses the custom component as an item renderer to display com-
plete formatted address information in the DataGrid control’s second column. Notice that the
DataGrid control’s selectable property is set to false. This makes it easier for the user to
select the custom component’s text value for copying. Also, its variableRowHeight property is
set to true to allow the DataGrid columns to adjust their height as needed.

ON the WEBON the WEB

542

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 542

LISTING 18.7

An application using a component item renderer

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Script>

<![CDATA[
import mx.controls.dataGridClasses.DataGridColumn;
private function getNameLabel(item:Object,

column:DataGridColumn):String
{

return item.firstname + “ “ + item.lastname;
}

]]>
</mx:Script>
<mx:Model id=”contactData” source=”data/contacts.xml”/>
<mx:ArrayCollection id=”contactAC” source=”{contactData.row}”/>
<mx:DataGrid id=”contactGrid” dataProvider=”{contactAC}”

selectable=”false” variableRowHeight=”true” rowCount=”5”>
<mx:columns>

<mx:DataGridColumn dataField=”firstname” headerText=”Full Name”
width=”150” labelFunction=”getNameLabel”/>

<mx:DataGridColumn headerText=”Address Info”
width=”350” itemRenderer=”renderers.AddressRenderer”/>

</mx:columns>
</mx:DataGrid>

</mx:Application>

The code in Listing 18.7 is available in the Web site files as DataGridCustom
Renderer.mxml in the chapter18 project.

Figure 18.10 shows the resulting application, with each contact’s full name in the left column and
complete formatted address information in the right column. The user can select the text in the
right column and then right-click (or Ctrl+click on the Mac) to copy the text with the pop-up con-
text menu.

Using item editors
Like an item renderer, an item editor is a custom component that you display instead of the default
label in a DataGridColumn cell. An item editor, however, is always an interactive control that
allows the user to make changes to the data it represents. As with item renderers, you can declare
an item editor using a drop-in, inline, and component syntax.

ON the WEBON the WEB

543

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 543

FIGURE 18.10

A custom item renderer using the dataChange event

Before you can use an item editor, the DataGrid must have its editable property set to true.
When you do this, the DataGrid automatically displays an item editor in any cell the user clicks.
The default item editor is the TextInput control, so when the user clicks into an editable cell, he’s
presented with a TextInput that lets him change the data. When the user clicks or tabs out of the
cell, the new data is saved to the DataGrid component’s data provider in application memory.

When you set the DataGrid component’s editable property to true, all its columns are auto-
matically editable. Each DataGridComponent has an editable property as well; you stop edit-
ing of any particular column by setting its editable property to false.

In the following code, the DataGrid is editable, but editing is prevented in the firstname and
lastname columns. As a result, only the data in the phone column can be changed by the user:

<mx:DataGrid id=”contactGrid” dataProvider=”{contactAC}”
editable=”true” selectable=”false”>

<mx:columns>
<mx:DataGridColumn dataField=”firstname” headerText=”First
Name”
width=”100” editable=”false”/>

<mx:DataGridColumn dataField=”lastname” headerText=”Last Name”

544

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 544

width=”100” editable=”false”/>
<mx:DataGridColumn dataField=”phone” headerText=”Phone”

width=”100”/>
</mx:columns>
</mx:DataGrid>

Figure 18.11 shows the resulting DataGrid. When the user clicks a cell in the phone column, a
TextInput control appears to allow editing.

FIGURE 18.11

An editable DataGrid control with a default item editor

If you apply a labelFunction to a column that’s also editable and uses the default
item editor, the user will be editing the value returned from the labelFunction and

not the column’s original data.

Using drop-in item editors
To use a component as a drop-in item editor, it must implement the
IDropInListItemRenderer interface, and it must be interactive, allowing the user to make
changes to data. Only a small number of components in the Flex class library qualify on both
counts; they include:

� Button

� CheckBox

� DateField

� NumericStepper

� TextArea

� TextInput

WARNING WARNING

545

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 545

To declare a drop-in editor in a DataGridColumn, you assign the component to the
DataGridColumn component’s itemEditor (if you want to see the component appear only
when the user clicks a cell to edit it), or to its itemRenderer (if you want to see it appear on all
rows). In either case, you assign the component by its fully qualified class name, including the
package prefix:

<mx:DataGridColumn dataField=”selected”
itemEditor=”mx.controls.CheckBox”
... remainder of declaration ...

/>

The details of each strategy are described in the following sections.

Using the itemEditor and editorDataField properties
When you declare an itemEditor for a DataGridColumn, you also have to set the
DataGridColumn control’s editorDataField property to indicate which field of the item edi-
tor component contains the value entered by the user. At runtime, the changed value is transferred
back to the current data object’s property (the property that’s named as the DataGridColumn
component’s dataField).

For example, if you use a CheckBox control as an item editor, the editorDataField property
should be set to selected. For a TextInput control, editorDataField should be set to
text (the default), for a NumericStepper, it should be value, and so on.

When you set the itemEditor property to a named component, that component is instantiated
only when the user clicks into the cell. For example, the following code indicates that a CheckBox
control should appear only when the user clicks:

<mx:DataGridColumn dataField=”selected”
itemEditor=”mx.controls.CheckBox”
editorDataField=”selected”
headerText=”” width=”50”/>

Figure 8.12 shows the result: Unless the user has clicked a cell that’s editable, the column’s actual
value is displayed as a label. When the user clicks in a cell, it displays the CheckBox control.

Using the rendererIsEditor property
If you want the item editor component to be displayed in every row of the DataGrid, follow
these steps:

1. Assign the editor component DataGridColumn component’s itemRenderer property
instead of itemEditor.

2. Set the DataGridColumn component’s editorIsRenderer property to true.

546

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 546

FIGURE 8.12

Using the itemEditor property

The following code causes the CheckBox control to appear in every row, regardless of whether the
user has clicked into the cell:

<mx:DataGridColumn dataField=”selected”
itemRenderer=”mx.controls.CheckBox”
rendererIsEditor=”true”
editorDataField=”selected”
headerText=”” width=”50”/>

The application in Listing 18.8 uses an itemRenderer that is set with rendererIsEditor to
true. The renderer is a drop-in component based on mx.controls.CheckBox. At application
startup, the initApp() method loops through the ArrayCollection being used as the
DataGrid component’s data provider and adds a selected property to each object. That prop-
erty is then both displayed and edited through the CheckBox that appears on every row.

Notice in Listing 18.8 that the DataGrid control’s selectable property is set to
false. This turns off the default selection and highlighting functionality of the

DataGrid to let the user more easily click the CheckBox controls in the left column.

LISTING 18.8

Setting a renderer as an editor

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” creationComplete=”initApp()”>
<mx:Script>

<![CDATA[

continued

TIPTIP

547

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 547

LISTING 18.8 (continued)

private function initApp():void
{

//Add a selected property to each data object on startup
for (var i:int=0;i < contactAC.length; i++)
{

var contact:Object = contactAC.getItemAt(i);
contact.selected=false;

}
}

]]>
</mx:Script>
<mx:Model id=”contactData” source=”data/contacts.xml”/>
<mx:ArrayCollection id=”contactAC” source=”{contactData.row}”/>
<mx:DataGrid id=”contactGrid” dataProvider=”{contactAC}”

editable=”true” selectable=”false”>
<mx:columns>

<mx:DataGridColumn dataField=”firstname” headerText=”First Name”
width=”100” editable=”false”/>

<mx:DataGridColumn dataField=”lastname” headerText=”Last Name”
width=”100” editable=”false”/>

<mx:DataGridColumn dataField=”phone” headerText=”Phone”
width=”100”/>

</mx:columns>
</mx:DataGrid>

</mx:Application>

The code in Listing 18.8 is available in the Web site files as DataGridDropin
Editor.mxml in the chapter18 project.

Figure 18.13 shows the resulting DataGrid with a CheckBox on every row. When the user
clicks one of the CheckBox components, its selected value is saved to the appropriate data
object’s selected property.

When you allow the user to edit data through an editable DataGrid, changes are made
to the data collection that’s stored in client memory. If you want to save the data to a per-

sistent data store on the server (or on the client, in the case of an AIR-based desktop application), you
need to write code to transfer the changed data. If the persistent data store is on the server, you can
accomplish this with the RPC components (HTTPService, WebService, or RemoteObject) or with
the Data Management Service (if using LiveCycle Data Services). With a desktop-based application, you
could use the local SQLite database that’s embedded in the Adobe Integrated Runtime (AIR).

Using inline and component editors
As with custom renderers, you can declare custom item editor components with either inline syn-
tax or as separate components. The benefits of using this syntax instead of drop-in components are
that you’re free to use any combination of visual controls and containers and you can override the
components’ default property and style settings.

TIPTIP

ON the WEBON the WEB

548

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 548

FIGURE 18.13

A renderer displaying every row with rendererIsEditor set to true

For example, imagine that you wanted to use the DateField control as an item editor, but you
modify its default behavior in some way. You might set its editable property to true to allow
the user to enter a date directly (without having to pick it from the pop-up calendar control) or
restrict its available dates:

<mx:DataGridColumn dataField=”dob”
editorDataField=”selectedDate”>
<mx:itemEditor>

<mx:Component>
<mx:DateField maxYear=”2000” editable=”true”/>

</mx:Component>
</mx:itemEditor>

</mx:DataGridColumn>

Because the DateField component is declared with the itemEditor property, it’s displayed
only when the user clicks the cell containing the date value.

The use of the <mx:Component> tag to define a separate component is described in
Chapter 17’s section about creating item renderers.

The application in Listing 18.9 shows the use of a DateField as an inline item editor. Upon
application startup, the data is retrieved dynamically using an HTTPService component
(described in Chapter 21). When the data is returned, the data objects in the ArrayCollection
are transformed into instances of the ContactVO class. This is critical for this example, because
the ContactVO class has a dob property typed as a Date, which makes it compatible with the
DateField control that is then used as the property’s editor in the DataGrid.

CROSS-REFCROSS-REF

549

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 549

LISTING 18.9

Using an inline item editor

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” creationComplete=”contactService.send()”>
<mx:Script>

<![CDATA[
import mx.controls.dataGridClasses.DataGridColumn;
import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;
import vo.ContactVO;
[Bindable]
private var contactAC:ArrayCollection;
private function resultHandler(event:ResultEvent):void
{

contactAC = event.result.contacts.row;
for (var i:int=0; i<contactAC.length; i++)
{

var newContact:ContactVO =
new ContactVO(contactAC.getItemAt(i));

contactAC.setItemAt(newContact, i);
}

}
private function getDateLabel(item:ContactVO,

column:DataGridColumn):String
{

return dateFormatter.format(item.dob);
}

]]>
</mx:Script>
<mx:DateFormatter id=”dateFormatter” formatString=”MM/DD/YYYY”/>
<mx:HTTPService id=”contactService”

url=”data/contactsWithDates.xml”
result=”resultHandler(event)”/>

<mx:DataGrid id=”contactGrid” dataProvider=”{contactAC}” rowCount=”5”
editable=”true”>
<mx:columns>

<mx:DataGridColumn dataField=”firstname” headerText=”First Name”
width=”100”/>

<mx:DataGridColumn dataField=”lastname” headerText=”Last Name”
width=”100”/>

<mx:DataGridColumn dataField=”dob” editorDataField=”selectedDate”
labelFunction=”getDateLabel”>
<mx:itemEditor>

<mx:Component>
<mx:DateField maxYear=”2000” editable=”true”/>

</mx:Component>
</mx:itemEditor>

550

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 550

</mx:DataGridColumn>
</mx:columns>

</mx:DataGrid>
</mx:Application>

The code in Listing 18.9 is available in the Web site files as DataGridInline
Editor.mxml in the chapter18 project.

Figure 18.14 shows the resulting pop-up calendar control that’s part of the DateField. When the
user clicks the cell displaying the date, he sees the DateField; when he clicks the DateField
control’s button, the calendar control pops up. Because the DateField control’s editable prop-
erty is true, the user also can click into the TextInput portion of the DateField and type a
value directly.

FIGURE 18.14

An itemEditor declared within inline syntax to allow custom properties and behaviors to be declared

Using HorizontalList and TileList Controls
The HorizontalList and TileList controls share nearly all the behaviors and capabilities of
the DataGrid and List controls:

� Data provided to a HorizontalList or TileList is typically displayed using a
custom item renderer, declared either inline or as a separate component.

� The change event notifies you that the user has selected a data item.

� The selectedItem property returns a reference to the selected data item.

ON the WEBON the WEB

551

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 551

� The allowMultipleSelection property lets users select multiple data items by
clicking while holding down Ctrl (or Cmd on the Mac) and Shift.

� As the user scrolls, existing visual objects are reused and their data is populated with the
new data. As with the DataGrid control, this creates a smooth scrolling experience
while allowing these controls to display large amounts of data without over-using Flash
Player memory.

The difference between the HorizontalList and TileList controls has to do with their lay-
out. As implied by their component names, the HorizontalList lays out cells in a single row,
while the TileList lays out cells in a similar fashion to the Tile container, as a grid of objects in
rows and columns.

The TileList and HorizontalList controls are almost always used with custom item render-
ers that determine the presentation of each of the list’s cells. As with the other list controls, you
declare the item renderer component with drop-in, inline, or component syntax.

The application in Listing 18.10 uses a TileList control and an inline renderer to display the
contents of an XML file that refers to image files in the project’s assets folder. The renderer com-
ponent uses properties of each XML <slide> element to present an Image and a Label
wrapped in a VBox container.

The TileList is wrapped inside a Panel container whose status property is bound to the
caption property of the currently selected data item. The result is that the currently selected slide’s
caption is displayed in the Panel container’s status area (on the right side of the header area).

LISTING 18.10

A TileList control presenting dynamic data

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” horizontalAlign=”left”>
<mx:Model id=”slideModel” source=”data/slideshow.xml”/>
<mx:ArrayCollection id=”slideAC” source=”{slideModel.slide}”/>
<mx:Panel title=”My Photos”

height=”100%” width=”100%”
paddingLeft=”10” paddingRight=”10”
paddingTop=”10” paddingBottom=”10”
status=”{slideList.selectedItem.caption}”>
<mx:TileList id=”slideList” dataProvider=”{slideAC}”

width=”100%” height=”100%” rowHeight=”125” columnWidth=”120”>
<mx:itemRenderer>

<mx:Component>
<mx:VBox horizontalScrollPolicy=”off”

verticalScrollPolicy=”off”
verticalAlign=”middle” horizontalAlign=”center”>
<mx:Image source=”assets/thumbs/{data.source}”/>
<mx:Label text=”{data.caption}”/>

552

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 552

</mx:VBox>
</mx:Component>

</mx:itemRenderer>
</mx:TileList>

</mx:Panel>
</mx:Application>

The code in Listing 18.10 is available in the Web site files as TileListDemo.mxml in
the chapter18 project.

Figure 18.15 shows the resulting application, with graphic images and their captions laid out in a
grid-like format.

FIGURE 18.15

A TileList control displaying an inline item renderer

Currently selected item

Status property bound to select item

ON the WEBON the WEB

553

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 553

The HorizontalList control uses the same architecture, allowing the user to scroll sideways
through content. In the application in Listing 18.11, the change event handler saves the current
selectedItem to a bindable Object. When the item is selected, the VBox container at the bot-
tom of the application becomes visible due to its use of a binding expression in its enabled property.

LISTING 18.11

Using the HorizontalList control

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” horizontalAlign=”left”>
<mx:Model id=”slideModel” source=”data/slideshow.xml”/>
<mx:ArrayCollection id=”slideAC” source=”{slideModel.slide}”/>
<mx:Object id=”currentImage”/>
<mx:Panel title=”My Photos” width=”100%”

paddingLeft=”10” paddingRight=”10”
paddingTop=”10” paddingBottom=”10”
status=”{slideList.selectedItem.caption}” id=”panel1”>
<mx:HorizontalList id=”slideList” dataProvider=”{slideAC}”

width=”100%” height=”125” rowHeight=”125” columnWidth=”120”
change=”currentImage=event.target.selectedItem”>
<mx:itemRenderer>

<mx:Component>
<mx:VBox horizontalScrollPolicy=”off”

verticalScrollPolicy=”off”
verticalAlign=”middle” horizontalAlign=”center”>
<mx:Image source=”assets/thumbs/{data.source}”/>
<mx:Label text=”{data.caption}”/>

</mx:VBox>
</mx:Component>

</mx:itemRenderer>
</mx:HorizontalList>

</mx:Panel>
<mx:Spacer height=”50”/>
<mx:VBox width=”100%” horizontalAlign=”center”

visible=”{slideList.selectedIndex != -1}”>
<mx:Image source=”assets/{currentImage.source}”/>
<mx:Label text=”{currentImage.caption}” fontSize=”12”

fontWeight=”bold”/>
</mx:VBox>

</mx:Application>

The code in Listing 18.11 is available in the Web site files as HorizontalList
Demo.mxml in the chapter18 project.

Figure 18.16 shows the resulting application, after an item has been selected from the
HorizontalList control.

ON the WEBON the WEB

554

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 554

FIGURE 18.16

A HorizontalList control with selected information displayed in a detail region

The photos used in these examples are from the Web site www.pdphoto.org, dedi-
cated to providing free public domain photos. Not all of their photos are completely

free, but most are.

Using the AdvancedDataGrid Control
The AdvancedDataGrid control is an extended version of the DataGrid control that adds
these features:

� Sorting by multiple columns

� Row- and column-based styling

� Display of hierarchical data with an embedded Tree component

� Dynamic grouping of “flat” data into a hierarchical display

� Grouping of multiple columns under a single heading

� Multi-column item renderers

WEB RESOURCEWEB RESOURCE

555

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 555

The AdvancedDataGrid control is available only as part of the Data Visualization
Components license. This package also includes the Flex Charting Controls. The license

is sold on a per-developer basis, so there aren’t any ongoing royalties for using these controls. Unlike
in the Flex 2 product line, the Charting and other Data Visualization Components aren’t sold as stand-
alone products; they’re available only as part a Flex Builder Professional license.

Hierarchical data display
As with the DataGrid, the AdvancedDataGrid control’s data provider is typically in the form
of an ArrayCollection. To use the hierarchical data display feature, the objects in the data set
should include at least one “grouping” property that can be used to collect and group data items
based on their identical values in that property.

You can display data that is already in hierarchical form, such as the data created in this
ActionScript code:

var employeeAC:ArrayCollection = new ArrayCollection();
employeeAC.source =

[{department:”Shipping”,
children: [

{firstname:”Kevin”, lastname:”Mount”},
{firstname:”Robert”, lastname:”Lombardi”}]},

{department:”Marketing”,
children: [

{firstname:”Brad”, lastname:”Lang”},
{firstname:”James”, lastname:”Jaeger”}]}

];

Notice that the data is structured as an Array containing multiple Object instances, written in
ActionScript shorthand notation. Each Object contains a department property designed as the
grouping field and an Array named children that contains additional data objects.

You pass this type of data to the AdvancedDataGrid by first wrapping it in an instance of the
HierarchicalData class. This class has a childrenField property that defines which field
of each object is expected to contain child objects. Its default value is children, so the data
described in the ActionScript code has the expected structure and field names already.

The AdvancedDataGrid component handles XML-based data intuitively. Child XML
nodes are rendered as nodes of the component’s nested Tree control.

The columns property of the AdvancedDataGrid control should contain instances of the
AdvancedDataGridColumn component. Its dataField and headerText properties behave
just like the DataGridColumn, and its style allows you to specify the color and font on a per-
column basis.

The application in Listing 18.12 uses a hierarchical data set and an AdvancedDataGrid to dis-
play grouped data.

TIPTIP

NOTENOTE

556

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 556

LISTING 18.12

The AdvancedDataGrid control with hierarchical data

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
creationComplete=”initData()”>
<mx:Script>
<![CDATA[

import mx.collections.ArrayCollection;
[Bindable]
private var employeeAC:ArrayCollection = new ArrayCollection();

private function initData():void
{

employeeAC.source = [{department:”Shipping”,
children: [{firstname:”Kevin”, lastname:”Mount”},

{firstname:”Robert”, lastname:”Lombardi”}]},
{department:”Marketing”,

children: [{firstname:”Brad”, lastname:”Lang”},
{firstname:”James”, lastname:”Jaeger”}]}

];
}

]]>
</mx:Script>
<mx:AdvancedDataGrid id=”employeeGrid”>

<mx:dataProvider>
<mx:HierarchicalData source=”{employeeAC}”/>

</mx:dataProvider>
<mx:columns>

<mx:AdvancedDataGridColumn dataField=”department”
headerText=”Department” fontWeight=”bold”/>

<mx:AdvancedDataGridColumn dataField=”firstname”
headerText=”First Name”/>

<mx:AdvancedDataGridColumn dataField=”lastname”
headerText=”Last Name”/>

</mx:columns>
</mx:AdvancedDataGrid>

</mx:Application>

The code in Listing 18.12 is available in the Web site files as AdvDataGridDemo.mxml
in the chapter18 project.ON the WEBON the WEB

557

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 557

The resulting application is shown in Figure 18.17. The user can click the grouped values in the
leftmost column to expand the tree nodes and see the child rows.

FIGURE 18.17

The AdvancedDataGrid component

Grouping flat data
Flat data is typically defined as a conventional ArrayCollection containing rows and columns,
such as you might import into a Flex application with a call to a database query. You can group this
type of data structure in an AdvancedDataGrid control by wrapping it in a
GroupingCollection object. This object contains one or more nested GroupingField
objects that define which columns or properties you want to group on.

In MXML, you prepare the data like this:

<mx:GroupingCollection id=”gc” source=”{dataCollection}”>
<mx:grouping>

<mx:Grouping>
<mx:GroupingField name=”department”/>

</mx:Grouping>
</mx:grouping>

</mx:GroupingCollection>

The GroupingCollection is then passed to the AdvancedDataGrid component’s
dataProvider. To make the GroupingCollection update its view, you must call its
refresh() method. In the following code, the refresh() method is called when the grid com-
ponent’s initialize event is dispatched:

<mx:AdvancedDataGrid id=”myAdvancedGrid”
dataProvider=”{gc}”

558

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 558

initialize=”gc.refresh()”>
... column declarations ...

</mx:AdvancedDataGrid>

The application in Listing 18.13 uses a flat data set from an XML file and groups it with the
GroupingCollection object.

LISTING 18.13

Grouping flat data with the GroupingCollection and AdvancedDataGrid

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Model id=”empModel” source=”data/employees.xml”/>
<mx:ArrayCollection id=”employeeAC” source=”{empModel.row}”/>

<mx:AdvancedDataGrid id=”employeeGrid” initialize=”gc.refresh()”>
<mx:dataProvider>

<mx:GroupingCollection id=”gc” source=”{employeeAC}”>
<mx:grouping>

<mx:Grouping>
<mx:GroupingField name=”department”/>

</mx:Grouping>
</mx:grouping>

</mx:GroupingCollection>
</mx:dataProvider>
<mx:columns>
<mx:AdvancedDataGridColumn dataField=”department”

headerText=”Department” fontWeight=”bold”/>
<mx:AdvancedDataGridColumn dataField=”firstname”

headerText=”First Name”/>
<mx:AdvancedDataGridColumn dataField=”lastname”

headerText=”Last Name”/>
</mx:columns>

</mx:AdvancedDataGrid>
</mx:Application>

The code in Listing 18.13 is available in the Web site files as AdvDataGrid
FlatData.mxml in the chapter18 project.

Figure 18.18 shows the resulting application with two of the groups expanded to display their
child data items.

ON the WEBON the WEB

559

Using Advanced List Controls 18

25_287644-ch18.qxp 6/23/08 11:46 PM Page 559

FIGURE 18.18

An AdvancedDataGrid with grouped data from a flat data provider

Summary
In this chapter, I described how to use advanced techniques with list controls. You learned the following:

� The ComboBox control’s editable property produces a TextInput control into which
the user can type an arbitrary String value, instead of selecting an item from the list.

� Bindable versions of the List and ComboBox controls are included with applications
generated by the ColdFusion/Flex Application Wizard.

� A default DataGrid displays columns for each named property of the first data item in
its data provider.

� You determine selection and order of column display in a DataGrid with the columns
property, which in turn contains a set DataGridColumn objects declared in the order in
which you want the columns displayed.

� The DataGridColumn component implements the labelFunction, itemRenderer,
and itemEditor for customization of its appearance.

� The dataChange event can be used for customizing item renderer appearance at run-
time with ActionScript code.

� Item editors can be declared to appear only on the current row with the itemEditor
property or on every row with the itemRenderer and rendererIsEditor properties.

� The DataGridColumn component’s editorDataField property should be set to the
name of the item editor’s property that contains data updated by the user.

� The TileList and HorizontalList controls display data in grid- or row-style lay-
outs and use custom item renderers to determine the visual appearance of their cells.

� The AdvancedDataGrid component is available with the Data Visualization
Components (part of Flex Builder Professional).

� The AdvancedDataGrid component can present hierarchical and flat data in groups,
along with summaries and other advanced data display features.

560

Working with DataPart III

25_287644-ch18.qxp 6/23/08 11:46 PM Page 560

The Flex Charting controls allow to you to represent numeric and
statistical data visually in a graphical, interactive format. When
presented in its raw form, numeric data can be difficult for users to

interpret and grasp. When presented visually, in the form of pie charts, bar
charts, and other graphical patterns, the data can be understood much more
easily.

Consider the following visual presentations. The application in Figure 19.1
uses the following raw data, stored in an XML file:

<?xml version=”1.0”?>
<data>

<row>
<fruit>Apples</fruit>
<sales>34</sales>

</row>
<row>

<fruit>Oranges</fruit>
<sales>23</sales>

</row>
<row>

<fruit>Pears</fruit>
<sales>45</sales>

</row>
</data>

Figure 19.1 shows the data display in a DataGrid and a ColumnChart
control. The DataGrid shows the data in its raw form, while the chart
makes the data more understandable to the user.

561

IN THIS CHAPTER
Understanding the Flex Charting
controls

Understanding chart types

Declaring charts in MXML

Setting chart properties and
styles

Using pie charts

Using financial charts

Using bar and column charts

Using line and area charts

Using the Flex
Charting Controls

26_287644-ch19.qxp 6/23/08 11:47 PM Page 561

FIGURE 19.1

A data set displayed in a DataGrid and a ColumnChart

The data is clearly presented either way, but the graphical chart lets the user understand its mean-
ing on a more intuitive level. Applications that make extensive use of charting controls are some-
times known as dashboard applications because, like a car’s dashboard, they give the user a sense of
the data with a quick glance.

The Flex Charting controls are included in the Flex Data Visualization components pack-
age and are part of the per-developer license for Flex Builder 3 Professional. Unlike in

the Flex 2 product line, the charting components are not available under separate license: They’re
delivered only with Flex Builder 3 Professional. After you purchase a Flex Builder 3 license, you can
include the charting controls in as many applications as you like without any ongoing royalties.

You can test the charting components and other data visualization components (such as
the AdvancedDataGrid control) in your Flex applications without a license, but they’re

displayed with a watermark in the background that prevents their use in a production application.

To use the sample code for this chapter, import the chapter19.zip project from the
Web site files into any folder on your disk.ON the WEBON the WEB

CAUTION CAUTION

NOTENOTE

562

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 562

Understanding Flex’s Types of Charts
The Flex Charting controls include nine distinct types of charts, each implemented as a particular
Flex component. Each chart type requires data that’s passed in with a component known as the
series class.

Data series is another name for data set. A data series for a chart can be represented
as an Array or an ArrayCollection; if you’ll be making changes to the data at

runtime, ArrayCollection is the usual choice.

The structure of a data series designed for use by a charting control is frequently determined by the
structural requirements of chart type. A pie chart requires a simple set of data where each data item
only requires one value. Data points for the candlestick chart require four values, representing each
item’s open, close, high, and low values. Check the documentation for each chart type to understand
what kind of data structure it requires.

Table 19.1 describes the different types of charts in the Flex Charting controls. For each chart type,
its Flex control name and matching series class are noted, along with a description of the chart
type’s characteristics.

TABLE 19.1

Flex Chart Types

Chart Type Charting Component Series Class Characteristics

Area AreaChart AreaSeries Similar to a line chart, but fills the area beneath the
line with a fill pattern. Often used to represent a
timeline with associated data.

Bar BarChart BarSeries Presents data as a set of horizontal bars representing
data levels across an x axis. Nearly identical in
usage to the column chart, which presents data as
vertical bars.

Bubble BubbleChart BubbleSeries Represents data structures with three values for each
data point: the x axis, the y axis, and the size of the
symbol. Each data point is represented by a filled
circle that covers some portion of the chart.

Candlestick CandleStick CandleStick Represents financial data with each data point
Chart Series representing high, low, opening, and closing values.

All four values are required. To represent data
points without the opening value, see the
HighLowOpenClose chart type.

Column ColumnChart ColumnSeries Presents data as a set of vertical bars representing data
levels across a y axis. Nearly identical in usage to the
bar chart, which presents data as horizontal bars.

continued

TIPTIP

563

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 563

TABLE 19.1 (continued)

Chart Type Charting Component Series Class Characteristics

HighLow HLOCChart HLOCseries Represents financial data with each data point
OpenClose representing high, low, opening, and closing values.

The opening value is optional.

Line LineChart LineSeries Represents data as a set of points connected with
straight lines. Similar to an area chart in usage, but
doesn’t fill the area beneath the lines. Particularly
useful for representing and comparing multiple
related data series.

Pie PieChart PieSeries A circular chart where each data point requires only
one value. The aggregate of all data points should
add up to 100 (or 100%), since the purpose of a pie
chart is to show relative size of each “slice” of the
pie. This component can also display a doughnut
chart, with a hollow area in the center.

Plot PlotChart PlotSeries A chart where each data item has three data points:
x position, y position, and radius to determine the
visible area covered by the data point. By default,
data points for the first series are represented by a
diamond graphic, the second by a circle, and the
third by a square.

Declaring Chart Controls
You declare a chart control in the same manner as any other Flex visual control. You place it on the
screen within a container; use the container’s horizontal, vertical, or absolute layout to position the
chart; and use either absolute pixel or percentage-based sizing to set its height and width.

Unlike images, charting controls do not have a concept of aspect ratio. If you set one
dimension of a chart to a particular size, it doesn’t have any effect on the other dimen-

sion: The chart’s height and width properties are set independently.

As with all visual controls, charting controls can be declared in either MXML or ActionScript code.
For example, a simple pie chart declared in MXML looks like this:

<mx:PieChart dataProvider=”{salesData}”
height=”100%” width=”100%”>
<mx:series>

<mx:PieSeries field=”sales” labelField=”fruit”
labelPosition=”inside” explodeRadius=”.05”/>

</mx:series>
</mx:PieChart>

TIPTIP

564

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 564

Figure 19.2 shows the resulting chart, displaying each data point as a wedge of the pie. The
explodeRadius property, which has a range of possible values from 0 to 1, determines how
much separation is displayed between each wedge of the pie.

FIGURE 19.2

A simple pie chart

The same chart could be created with this ActionScript code:

import mx.charts.series.PieSeries;
import mx.charts.PieChart;
private function createChart():void
{

var series:PieSeries = new PieSeries();
series.field=”sales”;
series.labelField=”fruit”;
series.explodeRadius=.01;
series.setStyle(“labelPosition”, “inside”);
var chart:PieChart = new PieChart();
chart.visible=true;
chart.dataProvider=salesData;
chart.percentWidth=100;
chart.percentHeight=100;
chart.series=[series];
addChild(chart)

}

565

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 565

As with many visual controls, the amount of ActionScript code required to create and display the
chart is significantly more than the equivalent MXML, but developers should choose the coding
style they prefer. There is no difference in function or performance between the two approaches.

Setting Chart Properties and Styles
Each chart type has its own individual requirements and unique behaviors that respond to its par-
ticular properties and styles. In this section, I describe the behaviors of each family of charts and
how they respond to particular settings.

Using pie charts
As described previously, a pie chart is declared with the PieChart component, and its data is pro-
vided with the PieSeries class. Pie charts have these characteristics:

� A pie chart requires only a single data series. Unlike other, more complex charts, the pie
chart is designed to show one set of data and illustrate the percentage of the total of the
series’ data points.

� Each data point is presented as a wedge of the pie.

� The fill colors of the pie wedges are set to default values that you can override.

� The pie wedges are presented with no default gap; you create gaps by applying various
explode properties.

� Each wedge has a default drop shadow filter that you can remove or override.

Setting wedge labels
The wedge label is a string value that’s displayed on or near each pie wedge. You control the label’s
position with the DataSeries class’s .labelPosition style, which has these possible values:

� none (default): No label is displayed.

� callout: The label is displayed outside the pie with a line connecting it to its pie wedge.

� inside: The label is displayed inside its pie wedge.

� insideWithCallout: The label is displayed inside its pie wedge if it fits or outside
with a callout connector if it doesn’t.

� outside: The label is displayed outside the pie wedge, with added callout connectors
where necessary.

You determine the value of the label with the DataSeries class’s labelField or labelFunction
property. The labelField behaves just like the same named property in list controls; you’re naming
a data property containing the value you want to display. This declaration would cause the raw value of
each data item’s sales property to be displayed inside the matching pie wedge:

labelField=”sales” labelPosition=”inside”

566

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 566

For more complex label presentations, you can use the labelFunction property to point to a
function that’s called at runtime to render each pie wedge. A custom label function for the
PieSeries class requires four arguments:

� item:Object: The data item represented by the current pie wedge

� field:String: The name of the field being rendered

� index:Number: The ordinal position of the current data item in the chart’s data provider

� percentValue:Number: The percent of the total value represented by the current
pie wedge

This custom label function uses a NumberFormatter object to format both the sales value and
the percentValue argument:

private function getWedgeLabel(item:Object, field:String,
index:Number, percentValue:Number):String

{
return item.fruit + “: $” + nf.format(item.sales) +

“ (“ + nf.format(percentValue) + “%)”;
}

As with the labelFunction property of the list controls, you set the property’s value to the call-
back function’s name:

<mx:PieSeries field=”sales” labelFunction=”getWedgeLabel”/>

The application in Listing 19.1 declares a custom label function suitable for use as a custom label
function for the PieSeries class.

LISTING 19.1

A pie chart with a custom label function

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Script>

<![CDATA[
private function getWedgeLabel(item:Object, field:String,

index:Number, percentValue:Number):String
{

return item.fruit + “: $” + nf.format(item.sales) +
“ (“ + nf.format(percentValue) + “%)”;

}
]]>

</mx:Script>

continued

567

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 567

LISTING 19.1 (continued)

<mx:NumberFormatter id=”nf” precision=”0” rounding=”nearest”/>
<mx:Model id=”pieModel” source=”data/PieData.xml”/>
<mx:ArrayCollection id=”pieData” source=”{pieModel.row}”/>
<mx:PieChart dataProvider=”{pieData}” height=”100%” width=”100%”>
<mx:series>

<mx:PieSeries field=”sales” labelFunction=”getWedgeLabel”
labelPosition=”callout” explodeRadius=”.01”/>

</mx:series>
</mx:PieChart>

</mx:Application>

The code in Listing 19.1 is available in the Web site files as PieChartCustom
Labels.mxml in the chapter19 project.

Figure 19.3 shows the resulting application with customized labels presented as callouts connected
to their respective pie wedges.

FIGURE 19.3

A pie chart with customized labels

Exploding the pie
The pie chart has two methods for exploding, or separating, the wedges. The explodeRadius
property, when set to a value greater than 0 (with a maximum of 1), pushes all wedges outward
from the chart’s center.

ON the WEBON the WEB

568

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 568

The following pie chart sets its explodeRadius property with a binding expression that refer-
ences a slider’s current value. As the user changes the slider, the pie wedges move farther apart:

<mx:PieChart dataProvider=”{pieData}” height=”100%” width=”100%”>
<mx:series>

<mx:PieSeries field=”sales” labelField=”sales”
explodeRadius=”{explodeSlider.value}”/>

</mx:series>
</mx:PieChart>
<mx:Label text=”Explode Radius: {explodeSlider.value}”/>
<mx:HSlider id=”explodeSlider” minimum=”0” maximum=”1”

snapInterval=”.01”/>

Figure 19.4 shows the visual result: The pie wedges shrink and move apart as the value of
explodeRadius increases.

FIGURE 19.4

Exploding the pie

Setting explodeRadius to the maximum value of 1 causes the pie wedges to
disappear.

You also can explode individual pie wedges with the PieSeries class’s perWedgeExplode
Radius property. This is set to an Array containing the same number of values as the series. As
with explodeRadius, the values are set to a range from 0 to 1, with each of the values affecting
only one of the pie wedges.

The application in Listing 19.2 explodes only one pie wedge, with its radius again bound to a
slider control.

CAUTION CAUTION

569

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 569

LISTING 19.2

Exploding one pie wedge

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Script>

<![CDATA[
private function getWedgeLabel(item:Object, field:String,

index:Number, percentValue:Number):String
{

return item.fruit + “: $” + nf.format(item.sales) +
“ (“ + nf.format(percentValue) + “%)”;

}
]]>

</mx:Script>
<mx:NumberFormatter id=”nf” precision=”0” rounding=”nearest”/>
<mx:Model id=”pieModel” source=”data/PieData.xml”/>
<mx:ArrayCollection id=”pieData” source=”{pieModel.row}”/>
<mx:PieChart dataProvider=”{pieData}”

height=”100%” width=”100%”>
<mx:series>

<mx:PieSeries field=”sales” labelFunction=”getWedgeLabel”
labelPosition=”callout”
perWedgeExplodeRadius=”{[0,0,explodeSlider.value]}”/>

</mx:series>
</mx:PieChart>
<mx:Label text=”Explode Radius: {explodeSlider.value}” fontSize=”10”/>
<mx:HSlider id=”explodeSlider” minimum=”0” maximum=”1”

snapInterval=”.01”/>
</mx:Application>

The code in Listing 19.2 is available in the Web site files as PieExplode.mxml in the
chapter19 project.

Figure 19.5 shows the result: One pie wedge is exploded from the rest of the chart.

Creating a doughnut chart
A doughnut chart is essentially a pie chart with a hole in the middle. You turn a pie into a dough-
nut by setting the PieChart control’s centerRadius property to a value greater than 0. The
value is measured as the distance from the center of the chart to the inner edge of the wedges, as a
percentage of the pie’s total radius.

ON the WEBON the WEB

570

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 570

FIGURE 19.5

Exploding one pie wedge

The application in Listing 19.3 generates a doughnut chart with a center radius that’s 30 percent of
the total pie radius.

LISTING 19.3

Displaying a doughnut chart

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Model id=”pieModel” source=”data/PieData.xml”/>
<mx:ArrayCollection id=”pieData” source=”{pieModel.row}”/>
<mx:PieChart dataProvider=”{pieData}”

height=”100%” width=”100%” innerRadius=”.3”>
<mx:series>

<mx:PieSeries field=”sales” labelField=”fruit”
labelPosition=”inside”/>

</mx:series>
</mx:PieChart>

</mx:Application>

The code in Listing 19.3 is available in the Web site files as DoughnutChart.mxml in
the chapter19 project.ON the WEBON the WEB

571

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 571

Figure 19.6 shows the result: a chart with a hole in the center.

FIGURE 19.6

A doughnut chart

Using multiple data series
A pie chart declared with multiple data series displays its data as a set of concentric circles. When
creating this type of chart, the PieChart doesn’t need a dataProvider; instead, you assign a
unique dataProvider to each PieSeries. When the chart is rendered, the first data series is
displayed in the center of the pie, the second surrounds the first, and so on:

<mx:PieChart>
<mx:series>

<mx:PieSeries dataProvider=”{pieData}” field=”sales”
labelPosition=”none”/>

<mx:PieSeries dataProvider=”{pieData2}” field=”sales”
labelPosition=”callout”/>

</mx:series>
</mx:PieChart>

Notice that the first series (the inner circle) has its labelPosition style set to none, while the
second (the outer circle) is set to callout. This results in a single label for each item, displayed
outside the chart.

The application in Listing 19.4 declares a pie chart as a doughnut with two data series.

572

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 572

LISTING 19.4

A pie chart with two data series

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Model id=”pieModel” source=”data/PieData.xml”/>
<mx:ArrayCollection id=”pieData” source=”{pieModel.row}”/>
<mx:Model id=”pieModel2” source=”data/PieData2.xml”/>
<mx:ArrayCollection id=”pieData2” source=”{pieModel2.row}”/>
<mx:PieChart height=”100%” width=”100%”>

<mx:series>
<mx:PieSeries field=”sales” labelField=”fruit”

dataProvider=”{pieData}” labelPosition=”none”/>
<mx:PieSeries field=”sales” labelField=”fruit”

dataProvider=”{pieData2}” labelPosition=”callout”/>
</mx:series>

</mx:PieChart>
</mx:Application>

The code in Listing 19.4 is available in the Web site files as PieChartMultiple
Series.mxml in the chapter19 project.

Figure 19.7 shows the result: a pie chart with multiple data series displayed as concentric circles.

FIGURE 19.7

A pie chart with multiple data series

ON the WEBON the WEB

573

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 573

Controlling fill colors and backgrounds
You can override the fill colors of each wedge of a pie chart with the fills property of the
PieSeries class. This property is an Array containing objects that implement the IFill
interface. You can use these classes for this purpose:

� BitMapFill: Fills an object with a bitmap graphic

� LinearGradient: Fills an object with a linear gradient, defined as an Array of
GradientEntry objects

� RadialGradient: Fills an object with a radial gradient, defined as an Array of
GradientEntry objects

� SolidColor: Fills an object with a single solid color, defined by a hexadecimal color
code or a named color that’s recognized by the Flex compiler

To select solid fill colors for a pie chart, declare the PieSeries object’s fills property as an
<mx:fills> tag set, and nest one <mx:SolidColor> declaration for each data element. The
following code sets three fill colors of red, green, and blue:

<mx:PieChart dataProvider=”{pieData}”>
<mx:series>

<mx:PieSeries field=”sales” labelField=”fruit”
labelPosition=”inside”>
<mx:fills>

<mx:SolidColor color=”#FF0000”/>
<mx:SolidColor color=”#00FF00 “/>
<mx:SolidColor color=”#0000FF “/>

</mx:fills>
</mx:PieSeries>

</mx:series>
</mx:PieChart>

For a pie chart with more than one data series, you set each series individually, because each
instance of the PieSeries has its own fills property.

The application in Listing 19.5 selects colors of black, gray, and white for its three wedges. Figure 19.8
shows the finished pie chart.

LISTING 19.5

A pie chart with custom fill colors

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Model id=”pieModel” source=”data/PieData.xml”/>
<mx:ArrayCollection id=”pieData” source=”{pieModel.row}”/>
<mx:PieChart height=”100%” width=”100%”>

574

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 574

<mx:series>
<mx:PieSeries field=”sales” labelField=”fruit”

dataProvider=”{pieData}” labelPosition=”callout”>
<mx:fills>

<mx:SolidColor color=”#000000”/>
<mx:SolidColor color=”#999999”/>
<mx:SolidColor color=”#FFFFFF”/>

</mx:fills>
</mx:PieSeries>

</mx:series>
</mx:PieChart>

</mx:Application>

The code in Listing 19.5 is available in the Web site files as PieSetFillColors.mxml
in the chapter19 project.

FIGURE 19.8

A pie chart with black, gray, and white fill colors

Using financial charts
The Flex framework contains two types of charts for use with financial data:

� The candlestick chart represents financial data as a series of candlesticks, each repre-
senting high, low, opening, and closing points for a data series.

� The HighLowOpenClose (HLOC) chart is similar but doesn’t require opening values for
its data series.

ON the WEBON the WEB

575

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 575

The data structure for these two charts is similar. Each data point should have values that can be
assigned to these properties of the CandlestickSeries or HLOCSeries objects:

� openField: Represents the data item’s opening value; optional for HLOC chart, and
required for the candlestick chart

� closeField: Represents the data item’s closing value; required for both charts

� highField: Represents the data item’s high value; required for both charts

� lowField: Represents the data item’s low value; required for both charts

The two charts differ in how they represent these values. As shown in Figure 19.9, the HLOC chart
displays a vertical stroke for each data item showing the high and low values and two short strokes
protruding from the main display. The stroke pointing to the left is the open value, and the stroke
pointing to the right is the close value.

FIGURE 19.9

The icon for a HighLowOpenClose chart

As shown in Figure 19.10, the candlestick chart displays a box indicating the high and low values
as vertical lines, and the open and close values as a box. If the close value is higher than the open
value, the box is filled; if the open value is higher, the box is empty.

Low

CloseHigh

Open

576

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 576

FIGURE 19.10

Icons for the candlestick chart

The application in Listing 19.6 shows a data set displayed in its raw form in a DataGrid and then
rendered visually in a HighLowOpenClose and a candlestick chart.

LISTING 19.6

Data rendered in an HLOC and a candlestick chart

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Model id=”financialModel” source=”data/FinancialData.xml”/>
<mx:ArrayCollection id=”financialData” source=”{financialModel.row}”/>
<mx:DataGrid dataProvider=”{financialData}” rowCount=”3”/>
<mx:HBox width=”100%” height=”100%”>

<mx:Panel title=”HLOC Chart” height=”100%” width=”100%”>
<mx:HLOCChart dataProvider=”{financialData}”

height=”100%” width=”100%”>
<mx:horizontalAxis>

<mx:LinearAxis minimum=”-1” maximum=”3” interval=”1”/>
</mx:horizontalAxis>
<mx:series>

<mx:HLOCSeries dataProvider=”{financialData}”

continued

High

Close higher than open

Low higher than close

Low

577

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 577

LISTING 19.6 (continued)

highField=”high” lowField=”low”
openField=”open” closeField=”close”>
<mx:stroke>

<mx:Stroke color=”black” weight=”3”/>
</mx:stroke>
<mx:openTickStroke>

<mx:Stroke color=”black” weight=”3”/>
</mx:openTickStroke>
<mx:closeTickStroke>

<mx:Stroke color=”black” weight=”3”/>
</mx:closeTickStroke>

</mx:HLOCSeries>
</mx:series>

</mx:HLOCChart>
</mx:Panel>
<mx:Panel title=”Candlestick Chart” height=”100%” width=”100%”>

<mx:CandlestickChart dataProvider=”{financialData}”
height=”100%” width=”100%”>
<mx:horizontalAxis>

<mx:LinearAxis minimum=”0” maximum=”4” interval=”1”/>
</mx:horizontalAxis>
<mx:series>

<mx:CandlestickSeries dataProvider=”{financialData}”
highField=”high” lowField=”low”
openField=”open” closeField=”close”
xField=”quarter”>
<mx:boxStroke>

<mx:Stroke color=”black” weight=”3”/>
</mx:boxStroke>

</mx:CandlestickSeries>
</mx:series>

</mx:CandlestickChart>
</mx:Panel>

</mx:HBox>
</mx:Application>

The code in Listing 19.6 is available in the Web site files as FinancialCharts.mxml
in the chapter19 project.

Figure 19.11 shows the resulting application, with the raw data displayed in the DataGrid and
the two charts side by side.

ON the WEBON the WEB

578

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 578

FIGURE 19.11

The HLOC and candlestick charts, side by side

Using bar, column, line, and area charts
The bar, column, line, and area charts are all designed to render and compare values graphically
along an x and a y axis. The data structure for all four of these charts is identical. Each requires
one or more data series, each consisting of an Array or ArrayCollection of name/value pairs.
As with the pie chart, the value should be numeric (a chartable value), but whereas the pie chart
illustrates each value’s percentage of the whole, these charts display values next to each for the pur-
pose of comparison or trend analysis.

The data for a bar, column, line, or area chart series can be represented in ActionScript, MXML, or
retrieved dynamically from an application server at runtime. A compatible data series, rendered in
MXML, might look like this:

<?xml version=”1.0”?>
<data>

<row>
<fruit>Apples</fruit>
<sales>14223</sales>

</row>

579

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 579

<row>
<fruit>Oranges</fruit>
<sales>12341</sales>

</row>
<row>

<fruit>Pears</fruit>
<sales>6900</sales>

</row>
</data>

Using bar and column charts
The bar and column charts are identical in their fundamental structure and purpose: They’re used
to compare values or show changes in values over time. As shown in Figure 19.12, these two
charts are distinguished by the dimension in which they represent numeric values: The bar chart
displays horizontal bars pushing out from the chart’s left-inner border, while the column chart dis-
plays vertical columns rising from the chart’s bottom-inner border.

FIGURE 19.12

A bar chart and a column chart representing the same data

580

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 580

You declare a bar or column chart with much the same syntax as a pie chart, but you must include
a declaration of one axis of the chart. For a bar chart, which uses the x axis to render its numeric
values, you provide an explicit <mx:verticalAxis> declaration. Within the axis declaration,
you declare an instance of one of these axis components:

� CategoryAxis: Treats alphanumeric values as category names along the axis

� LinearAxis: Treats numeric data points as a set of linear values along the axis

� LogAxis: Maps numerical values logarithmically along the axis

� DateTimeAxis: Lays out date/time values along the axis

The DateTimeAxis plots values evenly across an access using a data set containing
instances of the ActionScript Date class. It also can work with a set of string labels

when you provide a custom parsing function to transform the strings into dates it can handle.

The following BarChart uses a set of categories (the names of fruit in the data set) as its
vertical axis:

<mx:BarChart dataProvider=”{salesData}”>
<mx:verticalAxis>

<mx:CategoryAxis dataProvider=”{salesData}”
categoryField=”fruit”/>

</mx:verticalAxis>
<mx:series>

<mx:BarSeries xField=”sales” yField=”fruit”/>
</mx:series>

</mx:BarChart>

The result, as shown in the bar chart in Figure 19.12, is to display the categorical data from the
fruit field, named in the CategoryField property.

The CategoryAxis component has its own dataProvider property and does not
inherit this value from the BarChart or ColumnChart in which it’s nested. Even

when they share the same data, the data provider must be declared twice.

Similarly, the ColumnChart control needs a horizontalAxis declaration to indicate what val-
ues are displayed beneath the chart:

<mx:ColumnChart dataProvider=”{salesData}”>
<mx:horizontalAxis>

<mx:CategoryAxis dataProvider=”{salesData}”
categoryField=”fruit”/>

</mx:horizontalAxis>
<mx:series>

<mx:ColumnSeries xField=”fruit” yField=”sales”/>
</mx:series>

</mx:ColumnChart>

TIPTIP

TIPTIP

581

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 581

Both the ColumnChart and BarChart controls implement these properties to determine which
values are used on each axis of the chart:

� xField: The name of the property containing values for the x axis

� yField: The name of the property containing values for the y axis

The application in Listing 19.7 displays a bar chart and a column chart side by side, using the
same data set.

LISTING 19.7

A bar and a column chart

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” layout=”horizontal”>
<mx:Style>

BarSeries, ColumnSeries {
fills:#333333,#999999,#CCCCCC;

}
</mx:Style>
<mx:Model id=”salesModel” source=”data/salesData.xml”/>
<mx:ArrayCollection id=”salesData” source=”{salesModel.row}”/>
<mx:Panel title=”Bar Chart” height=”100%” width=”100%”>

<mx:BarChart dataProvider=”{salesData}”
height=”100%” width=”100%”>
<mx:verticalAxis>

<mx:CategoryAxis dataProvider=”{salesData}”
categoryField=”fruit”/>

</mx:verticalAxis>
<mx:series>

<mx:BarSeries xField=”sales” yField=”fruit”/>
</mx:series>

</mx:BarChart>
</mx:Panel>
<mx:Panel title=”Column Chart” height=”100%” width=”100%”>

<mx:ColumnChart dataProvider=”{salesData}”
height=”100%” width=”100%”>
<mx:horizontalAxis>

<mx:CategoryAxis dataProvider=”{salesData}”
categoryField=”fruit”/>

</mx:horizontalAxis>
<mx:series>

<mx:ColumnSeries xField=”fruit” yField=”sales”/>
</mx:series>

</mx:ColumnChart>
</mx:Panel>

</mx:Application>

582

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 582

The code in Listing 19.7 is available in the Web site files as BarAndColumnDemo.mxml
in the chapter19 project.

Using line and area charts
The line and area charts are nearly identical to each other in structure, with their primary visual
difference lying in how they represent a trend visually. As shown in Figure 19.13, the area chart
fills the area beneath the trend line with a fill color or bitmap, while the line chart leaves the area
below the line blank.

As with the ColumnChart control, the LineChart and AreaChart require a horizontalAxis
that determines what values are displayed below the chart, along the x axis:

<mx:LineChart dataProvider=”{trendData}”>
<mx:horizontalAxis>

<mx:CategoryAxis dataProvider=”{trendData}”
categoryField=”quarter”/>

</mx:horizontalAxis>
<mx:series>

<mx:LineSeries xField=”quarter” yField=”sales”/>
</mx:series>

</mx:LineChart>

FIGURE 19.13

Line and area charts representing the same data

ON the WEBON the WEB

583

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 583

The application in Listing 19.8 displays a line chart and an area chart using the same data.

LISTING 19.8

Line and area charts

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” layout=”horizontal”>
<mx:Style>

LineSeries, AreaSeries {
stroke-width:2;
stroke-color:black;
fills:#333333,#999999,#CCCCCC;

}
</mx:Style>
<mx:Model id=”trendModel” source=”data/trendData.xml”/>
<mx:ArrayCollection id=”trendData” source=”{trendModel.row}”/>
<mx:Panel title=”Line Chart” height=”100%” width=”100%”>

<mx:LineChart dataProvider=”{trendData}”
height=”100%” width=”100%”>
<mx:horizontalAxis>

<mx:CategoryAxis dataProvider=”{trendData}”
categoryField=”quarter”/>

</mx:horizontalAxis>
<mx:series>

<mx:LineSeries xField=”quarter” yField=”sales”/>
</mx:series>

</mx:LineChart>
</mx:Panel>
<mx:Panel title=”Area Chart” height=”100%” width=”100%”>

<mx:AreaChart dataProvider=”{trendData}”
height=”100%” width=”100%”>
<mx:horizontalAxis>

<mx:CategoryAxis dataProvider=”{trendData}”
categoryField=”quarter”/>

</mx:horizontalAxis>
<mx:series>

<mx:AreaSeries xField=”quarter” yField=”sales”/>
</mx:series>

</mx:AreaChart>
</mx:Panel>

</mx:Application>

The application in Listing 19.8 is available in the Web site files as
LineAndAreaDemo.mxml in the chapter19 project.ON the WEBON the WEB

584

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 584

Both the LineSeries and AreaSeries components can adjust the shape of their lines based on
their form property. As displayed in Figure 19.13, the form property has these possible values:

� segment (the default): Draws straight lines to connect data points

� step: Draws horizontal and then vertical lines to connect data points

� reverseStep: Draws vertical and then horizontal lines to connect data points

� vertical: Draws vertical lines from the y coordinate of the current point to the y coor-
dinate of the next point

� horizontal: Draws vertical lines from the x coordinate of the current point to the x
coordinate of the next point

� curve: Draws curves between data points

Figure 19.14 shows the six different forms of line charts.

FIGURE 19.14

The different forms of line charts

The application shown in Figure 19.13 is available in the Web site files as
LineFormDemo.mxml in the chapter19 project.ON the WEBON the WEB

585

Using the Flex Charting Controls 19

26_287644-ch19.qxp 6/23/08 11:47 PM Page 585

Summary
In this chapter, I described how to use the Flex Charting controls to display data graphically in a
Flex application. You learned the following:

� The Flex Charting controls are part of the Data Visualization Components and are
included with a license for Flex Builder 3 Professional.

� There are nine types of charts.

� You can determine the visual presentation of a chart by setting its data, properties, and
styles.

� Pie charts also can be displayed as doughnut charts with hollow centers.

� The HighLowOpenClose (HLOC) and candlestick charts are designed to show financial
information.

� The bar, column, line, and area charts are designed to show comparative or trend data.

586

Working with DataPart III

26_287644-ch19.qxp 6/23/08 11:47 PM Page 586

When you start to integrate data into a Flex application, you have
to solve the problem of how to get data into the Flex runtime
environment. As shown in earlier chapters, data can be embed-

ded into the application using hard-coded MXML or ActionScript, or by inte-
grating data into the application with the <mx:Model> tag. These strategies,
however, only work for data that’s both small and static.

For existing data that’s retrieved from a server-based resource, such as a data-
base or an XML file, you can use Remote Procedure Call (RPC) components
such as HTTPService (Chapter 21), WebService (Chapter 23), and
RemoteObject (Chapters 24, 27, and 28).

And then there’s data that comes from the user. Unless an application is used
exclusively with static data or content retrieved from a server at runtime,
a data-centric application must collect data from the user. In this chapter,
I describe the use of the following tools for building data entry form
components:

� The Form, FormHeading, and FormItem components for laying
out a data entry form

� Validator components to validate a user’s data entry

� Custom value object and event classes to share data with the rest of
the application

This chapter also includes tutorials that allow you to integrate many of the
techniques described in preceding chapters, including the use of containers
and controls (Chapter 8 and Chapter 9), creating custom MXML components
(Chapter 5), modeling data with custom ActionScript classes (Chapter 16),
and creating and dispatching custom event objects (Chapter 7).

587

IN THIS CHAPTER
Using the Form container

Creating a Form component

Laying out Form controls with
the FormItem container

Validating data entry

Sharing data with value objects
and custom events

Working with
Data Entry Forms

27_287644-ch20.qxp 6/23/08 11:48 PM Page 587

To use the sample code for this chapter, import the chapter20.zip project from the
Web site files into any folder on your disk.

Using the Form Container
The Form component is a layout container that’s responsible for laying out Form controls and
labels in an intuitive, consistent manner.

Unlike the HTML <form> element, which collects data and posts it to a server-based
resource with an HTTP request, the Flex framework’s Form container does not handle

application navigation or packaging of data collected from the user. Instead, you (the developer) are
responsible for declaring data collection objects and sharing them with the application. The Form
container is never directly responsible for application navigation in Flex; this is handled with the
ViewStack and related navigator containers.

As with all containers in the Flex framework, the Form can be declared inline in an application or
component, or used as the superclass for a custom component. The Form container’s background
and border style settings are fully transparent by default, but you can modify these styles just as
you can with the Box containers. This Form, for example, has a light gray background and a solid
two-pixel wide border:

<mx:Form backgroundColor=”#CCCCCC” borderStyle=”solid” >
... nested components ...

</mx:Form>

You can nest any visual components within a Form, and they lay out in a single column stacked
vertically, just like with the VBox container. But the following components have special behaviors
when nested within a Form container:

� FormItem: Use this special container to nest the Form’s controls. Controls are stacked in
a single column placed on the right side of the Form.

� FormHeading: This label-style control automatically aligns above the controls column.

Every Form container with these elements has two columns. Each nested FormItem container has
a label property. All labels in the FormItem containers within a single Form are automatically
right-aligned with each other and stacked in a single column placed on the left side of the form.

The following code declares a Form container with two columns, one on the left for labels and the
other on the right for controls. The FormItem containers are nested within the Form and are
declared in the order of their vertical presentation. The FormHeading control displays its label
value left-aligned above the column containing the controls.

<mx:Form backgroundColor=”#CCCCCC” borderStyle=”solid”
borderThickness=”2” verticalCenter=”0” horizontalCenter=”0”>
<mx:FormHeading label=”My Custom Form”/>
<mx:FormItem label=”First Name:”>

TIPTIP

ON the WEBON the WEB

588

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 588

<mx:TextInput id=”firstNameInput”/>
</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lastNameInput”/>
</mx:FormItem>

</mx:Form>

Figure 20.1 shows the resulting form, with two TextInput controls and a Button control dis-
played in a single column.

FIGURE 20.1

A simple data entry form

Using the FormHeading control
The FormHeading control is optional; it displays a label that’s aligned with the controls that are
wrapped in FormItem containers. It has these default style settings that make it display in a larger
font than the Label or Text controls:

� fontSize is set to a default of 12 pixels (compared to 10 pixels for other text controls)

� fontWeight is set to a default of bold (compared to normal for other text controls)

FormItem nested controls

Form Heading

FormItem labels

Form

589

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 589

You can use as many FormHeading objects as you like. For example, in a multi-part form, you
might add a FormHeading at the top of each section:

<mx:Form>
<mx:FormHeading label=”Your Personal Information”/>
<mx:FormItem label=”First Name:”>

<mx:TextInput id=”firstNameInput”/>
</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lastNameInput”/>
</mx:FormItem>
<mx:FormHeading label=”Your Address”/>
<mx:FormItem label=”Address:”>

<mx:TextInput id=”address1Input”/>
<mx:TextInput id=”address2Input”/>

</mx:FormItem>
<mx:FormItem label=”City/State/Zip:” direction=”horizontal”>

<mx:TextInput id=”cityInput”/>
<mx:TextInput id=”stateInput”/>
<mx:TextInput id=”zipInput”/>

</mx:FormItem>
<mx:FormItem>

<mx:Button label=”Save Information”/>
</mx:FormItem>

</mx:Form>

Figure 20.2 shows the resulting application, with FormHeading controls above each section of
the data entry form.

Some developers prefer not to use the FormHeading, instead wrapping the Form container in a
Panel. The Panel container’s title is then used to display a heading, and the FormHeading isn’t
necessary:

<mx:Panel title=”My Custom Form”>
<mx:Form>

<mx:FormItem label=”First Name:”>
<mx:TextInput id=”firstNameInput”/>

</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lastNameInput”/>
</mx:FormItem>

</mx:Form>
<mx:ControlBar>

<mx:Button label=”Click Me”/>
</mx:ControlBar>

</mx:Panel>

Figure 20.3 shows the resulting application. The Form is wrapped inside a Panel, and the
Button is displayed in the ControlBar container at the bottom of the form.

590

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 590

FIGURE 20.2

Using multiple FormHeading controls

FIGURE 20.3

A Form wrapped inside a Panel

Notice that in the preceding code, the Button isn’t inside the Form container. In
HTML, this would have a negative effect; if an HTML submit button isn’t inside the

<form> element, clicking it doesn’t have the desired effect of sending a new request to the server. In
Flex, you handle the Button control’s click event with explicit ActionScript statements. There is no
built-in “submit” action as there is in HTML, so it simply doesn’t matter whether the Button is
nested in the Form container.

TIPTIP

FormHeading controls

591

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 591

Using the FormItem container
The FormItem container is nested within a Form container and in turn contains one or more data
entry Form controls. The container’s label property is used to set a string value that is displayed
in the Form container’s left column.

Controlling label alignment
By default, the labels in a Form container are right-aligned. If you want to change their alignment
to right or center, follow these steps:

1. Create a style selector for the FormItem container.

2. Within the selector, assign the labelStyleName style to an arbitrary style name.

3. Declare the style name selector with text-align set to the new alignment value.

The following <mx:Style> tag set handles each of these tasks:

<mx:Style>
.rightAlignedLabels {

text-align: left;
}
FormItem {

labelStyleName:rightAlignedLabels;
}

</mx:Style>

Figure 20.4 shows the visual result. The labels within the Form container’s left column are now
left-aligned.

FIGURE 20.4

A form with left-aligned labels and horizontal layout

Left-aligned labels Controls laid out horizontally

592

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 592

Controlling FormItem layout
Controls within the FormItem container are stacked vertically by default. You can change the
layout rules for any particular FormItem container by setting its direction property to
horizontal. The following code causes the three TextInput controls to lay out side by side,
instead of being stacked on top of each other:

<mx:FormItem label=”City/State/Zip:” direction=”horizontal”>
<mx:TextInput id=”cityInput”/>
<mx:TextInput id=”stateInput”/>
<mx:TextInput id=”zipInput”/>

</mx:FormItem>

The form displayed in Figure 20.4 shows the result: The three TextInput controls are laid out
side by side instead of being stacked vertically.

If a FormItem container with its direction set to horizontal has its width
restricted to a point where there isn’t room for all its nested controls, it “wraps” the

controls to the next line. The solution is to widen the FormItem container.

Setting a default button
In most Web browsers, when the cursor is in an HTML form’s text field and the user presses Enter
or Return, the first “submit” button behaves as though the user has clicked it. This is known as
default button behavior and is automatic in those browsers that support it.

The Flex Form container does not have an automatic default button, but you can create the behav-
ior by setting the Form container’s defaultButton property. This property is designed to refer
to a Button object somewhere in the current application or component; you set it with a binding
expression that refers to the target Button object by its id.

Setting a default button in Flex causes these behaviors:

� When any control in the Form container has focus, the default button shows a colored
glow indicating that pressing Enter or Return is the same as clicking the button.

� When the user presses Enter or Return, the Button object’s click event is dispatched.

The application in Listing 20.1 has a simple Form container with its defaultButton property
set to a Button control with an id of saveButton. The user can click the button or press Enter
or Return with the cursor in a TextInput control; either way, the Button object’s click event
is dispatched. Figure 20.5 shows the result.

CAUTION CAUTION

593

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 593

LISTING 20.1

A Form with a default button

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
backgroundColor=”#EEEEEE”>
<mx:Script>
<![CDATA[

import mx.controls.Alert;
private function clickHandler(event:MouseEvent):void
{

Alert.show(“You clicked the button”, “Click Handler”);
}

]]>
</mx:Script>
<mx:Style source=”styles.css”/>
<mx:Form defaultButton=”{saveButton}”>

<mx:FormHeading label=”Your Personal Information”/>
<mx:FormItem label=”First Name:”>

<mx:TextInput id=”firstNameInput”/>
</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lastNameInput”/>
</mx:FormItem>
<mx:FormItem>

<mx:Button id=”saveButton”
label=”Save Information”
click=”clickHandler(event)”/>

</mx:FormItem>
</mx:Form>

</mx:Application>

The code in Listing 20.1 is available in the Web site files as FormDefaultButton.mxml
in the chapter20 project.

The default button does not have to be nested inside the Form container. The
defaultButton property references the button object by its id, so as long as the

button control is “in scope” the default button behavior works as expected. This is particularly impor-
tant when placing a Button object in a ControlBar or other container to set its position outside
the Form container.

TIPTIP

ON the WEBON the WEB

594

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 594

FIGURE 20.5

Setting the default button in a Form container

Using Custom Form Components
Data entry forms can be designed as fully encapsulated components that handle all the normal
tasks of data entry:

� Presentation of a data entry interface

� Collection and validation of data entered by the user

� Sharing of data with the rest of the application with custom value object and event classes

In this section, I describe the steps to create and use a custom Form component.

Creating a custom Form component
You can create a custom Form component as an MXML component with a Form as its root ele-
ment. Flex Builder 3 does a particularly nice job of helping you lay out Form components in
Design view. Try these steps to create a simple Form component:

1. Open the chapter20 project from the Web site files. Notice that the project’s source
root folder has a subfolder named forms.

2. Right-click (Ctrl+click on the Mac) the forms subfolder.

3. Select New ➪ MXML Component from the context menu.

595

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 595

4. In the New MXML Component wizard, set these properties (shown in Figure 20.6):

� Filename:LoginForm.mxml

� Based on: Form

� Width: [blank value]

� Height: [blank value]

FIGURE 20.6

Creating a Form component with the New MXML Component wizard

5. Click Finish to create the new component.

The new component should appear in Flex Builder.

6. If the component opens in Design view, click Source to switch to Source view.

596

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 596

The beginning code for the Form component looks like this:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Form xmlns:mx=”http://www.adobe.com/2006/mxml”>

</mx:Form>

Switch to Design view to see the beginning Form component presentation, shown in Figure 20.7.

FIGURE 20.7

A beginning Form component

Adding controls to a Form component
When building a Form component, Flex Builder’s Design view lets you easily drag and drop the
objects you want to use from the Components view. Each time you add a control to a Form con-
tainer, Design view automatically wraps the control in a new FormItem container. You can then
set the FormItem container’s label property, drag its handles to resize it, set other properties and
styles in the Flex Properties view, and otherwise customize the control’s appearance and behavior.

Follow these steps to add data entry form controls to the LoginForm component that was
described in the preceding section:

1. Open the LoginForm.mxml file in Design view.

2. Locate the TextInput control in the Components view.

3. Drag the control into the editor region, and drop it anywhere.

597

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 597

As shown in Figure 20.8, you should see that the TextInput control is wrapped in a
FormItem container automatically, with a default label property of Label.

FIGURE 20.8

A TextInput control wrapped in a FormItem container with the default label

4. Double-click the FormItem container’s label region. When the label turns into an input
control, type the label Email Address:.

5. Click the new TextInput control in Design view.

6. In the Flex Properties view, change the TextInput control’s id to emailInput.

7. Drag another TextInput control from the Components view into the form.

To ensure that a new FormItem container is wrapped around the new control, make
sure the blue insertion line that’s displayed during the drag-and-drop operation is as

wide as the existing FormItem container (shown in Figure 20.9). If it’s the size of the TextInput
control when you release the mouse button, the new TextInput control will be dropped into the
existing FormItem container.

8. Double-click the label of the new FormItem container, and change it to Password:.

9. Change the new TextInput control’s id to passwordInput.

10. Drag a Button control into the Form, and place it below the existing FormItem con-
tainer, in its own container.

11. Double-click the new Button control, and change its label to Log In.

12. Double-click the label of the new FormItem container, and change it to a blank string.

The component should now appear as it does in Figure 20.9.

CAUTION CAUTION

598

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 598

FIGURE 20.9

The Form component in its current state

13. Switch to Source view.

The Form component’s source code should now look like this:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Form xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:FormItem label=”Email Address:”>
<mx:TextInput id=”emailInput”/>

</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput id=”passwordInput”/>
</mx:FormItem>
<mx:FormItem>

<mx:Button label=”Log In”/>
</mx:FormItem>

</mx:Form>

When creating a Form component in Design view, it’s easy to accidentally change the
id property of the FormItem container instead of its nested component. The purpose

of the id is to allow you to easily collect data from the Form controls when the user clicks the but-
ton or otherwise indicates that data entry is complete. You care about the data in the controls, not
any data that might be associated with the FormItem containers.

TIPTIP

Dragging the component from the Components view

The blue insertion indicator

599

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 599

Validating Data Entry
When a user enters data into any database application, you typically want to ensure that it matches
specific criteria before sending it to the server or saving it into a persistent data store. Flex provides
a set of ActionScript classes in the mx.validators package that are designed for this purpose.
Each of the following classes validates a particular data type:

� CreditCardValidator: Checks that a string has the correct length and prefix, and
passes Luhn mod10 algorithm for the specified card type

For more information on the Luhn mod10 algorithm, visit this entry at Wikipedia:
http://en.wikipedia.org/wiki/Luhn_algorithm.

� CurrencyValidator: Checks that String matches a valid currency pattern; can be
customized for particular locales and other specific rules

� DateValidator: Checks that a Date, String, or Object contains a valid Date; can be
customized for particular date ranges

� EmailValidator: Checks that a String follows the common pattern of an e-mail address

� NumberValidator: Checks that a value is a Number or a String that can be parsed as a
number; can be customized for particular numeric ranges and other rules

� PhoneNumberValidator: Checks that a value matches a valid phone number pattern;
can be customized for particular locales and other specific rules

� RegExpValidator: Checks that a String matches a regular expression

� SocialSecurityValidator: Checks that a String matches a valid social security
number pattern

� StringValidator: Checks for String values that match your specific criteria, includ-
ing minimum and maximum length

� ZipCodeValidator: Checks that a String matches a valid ZIP code pattern

All validator classes are extended from mx.validators.Validator, so they’re all used with a
common pattern.

Creating a validator object
You can create validator objects with either MXML or ActionScript. Each validator object is
assigned to a single control and implements these required properties that determine its behavior
at runtime:

� source: A reference to the data entry control being validated

� property: The name of the source object’s property that contains the value to be
validated

WEB RESOURCEWEB RESOURCE

600

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 600

For example, assume your data entry form includes this TextInput control that you want to vali-
date as an e-mail address:

<mx:TextInput id=”emailInput”/>

The validator object declaration for this control would minimally include the source, referencing
the TextInput control’s id in a binding expression, and the property, referencing the input con-
trol’s text property as a string:

<mx:EmailValidator id=”myValidator”
source=”{emailInput}” property=”text”/>

The equivalent functionality in ActionScript looks like this:

import mx.validators.EmailValidator;
private function initApp():void
{

var myValidator:EmailValidator = new EmailValidator;
myValidator.source = emailInput;
myValidator.property = “text”;

}

Controlling validation with trigger events
By default, validation occurs either when the user makes a change to a control’s value or when he
simply clicks or tabs into the control to give it focus and then clicks or tabs again to remove focus.
This automatic validation is controlled by these two properties that are shared by all validator classes:

� trigger: A reference that points to an object that will trigger validation

� triggerEvent: A String containing the name of the event that will trigger validation

Validation happens automatically when a control loses focus because the validator object’s trigger
property defaults to the value of its source property (the control being validated) and
triggerEvent defaults to the valueCommitted event. Normally, this event occurs when a
change is made or the control simply loses focus.

You can change when validation occurs by changing these properties’ values. For example, in an
application where you want all controls to be validated when the user clicks a button, you would
follow these steps:

1. Add a unique id to the Button control you want to use as the trigger.

2. Set each validator object’s trigger property to the Button control’s id in a binding
expression.

3. Set each validator object’s triggerEvent property to the event name click.

601

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 601

Follow these steps to add automatic validation to the LoginForm component you created in pre-
vious sections of this chapter:

1. Open LoginForm.mxml in Source view.

2. Locate the Button control with a label of Log In, and add an id of loginButton.

3. After the <mx:Form> start tag, declare an EmailValidator object with MXML code.
Set its id to emailValidator, source to the emailInput control, property to
text, trigger to loginButton, and triggerEvent to click:

<mx:EmailValidator id=”emailValidator”
source=”{emailInput}” property=”text”
trigger=”{loginButton}” triggerEvent=”click”/>

4. Add a StringValidator object with an id of passwordValidator. Set its source
to passwordInput and all other properties exactly like the first validator object:

<mx:StringValidator id=”passwordValidator”
source=”{passwordInput}” property=”text”
trigger=”{loginButton}” triggerEvent=”click”/>

The Form component in Listing 20.2 uses identical trigger and triggerEvent properties to
automatically trigger two different validator objects when a Button control is clicked.

LISTING 20.2

A Form component using automatic validation

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Form xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:EmailValidator id=”emailValidator”
source=”{emailInput}” property=”text”
trigger=”{loginButton” triggerEvent=”click”/>

<mx:StringValidator id=”passwordValidator”
source=”{passwordInput}” property=”text”
trigger=”{loginButton” triggerEvent=”click”/>

<mx:FormItem label=”Email Address:”>
<mx:TextInput id=”emailInput”/>

</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput id=”passwordInput”/>
</mx:FormItem>
<mx:FormItem>

<mx:Button id=”loginButton” label=”Log In”/>
</mx:FormItem>

</mx:Form>

602

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 602

The code in Listing 20.2 is available in the Web site files as LoginFormAuto
Validation.mxml in the src/forms folder of the chapter20 project.

To see the effect of this form, follow these steps to create a new application and incorporate the
Form component:

1. Create a new MXML application named ValidationDemo.mxml.

2. In Source view, set these properties in the <mx:Application> start tag:

� backgroundColor=”#EEEEEE”

� layout=”absolute”

3. Add an instance of the new LoginForm component. Set its id property to loginForm.
As you type, Flex Builder should add the required custom forms namespace prefix for
the forms folder to the <mx:Application> tag.

4. Set the LoginForm object’s x and y properties to 10 pixels each. The application code
should appear as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” layout=”absolute”
xmlns:forms=”forms.*”>
<forms:LoginForm id=”loginForm” x=”10” y=”10”/>

</mx:Application>

5. Run the application in a browser.

6. Click the LoginForm’s Log In button to trigger validation.

At runtime, as the user clicks the button to trigger validation, each of the validator objects exam-
ines the named property of its source data entry control. If validation rules pass, the user sees no
feedback. If a validation rule is broken, the source control displays a red border to the user. When
the user moves the cursor over the control, he sees a pop-up window displaying the error message,
as shown in Figure 20.10.

FIGURE 20.10

A form displaying a validation error message

ON the WEBON the WEB

603

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 603

Controlling validation with ActionScript
Trigger-based validation lets the user know he has entered invalid values, but doesn’t give you
(as the developer) an opportunity to handle the situation and decide whether to continue with
form processing or cancel processing and display an error. In the above examples, if we were to
execute a function on the button’s click event, that function would execute regardless of whether
the validation passed.

For most Form components, triggering validation with ActionScript code allows you to find out
immediately whether all your validations have passed and to take appropriate action.

Disabling validation trigger events
When you use programmatic validation, you typically disable the automatic validation that results
from using the trigger and triggerEvent properties. You accomplish this by removing the
validator object’s trigger property and setting triggerEvent to a blank String:

<mx:EmailValidator id=”emailValidator”
source=”{emailInput}” property=”text”
triggerEvent=””/>

Because no event can be dispatched that would have a blank string for its event name, this results
in disabling any event-based validation.

Triggering individual validator objects with ActionScript
To programmatically trigger validation on a single validator object, call the object’s validate()
method. This method returns an instance of the ValidationResultEvent event class:

var validObj:ValidationResultEvent =
emailValidator.validate();

As with all event classes, ValidationResultEvent has a type property. You determine
whether validation has succeeded by comparing the event object’s type to event object constants
named VALID and INVALID. For example, this conditional ActionScript block would execute
only if the validation is passed:

if (validObj.type == ValidationResultEvent.VALID)
{

... process data ...
}

The version of the custom Form component in Listing 20.3 triggers validation programmatically
on two separate validator objects and then evaluates both resulting event objects to determine
whether the Form’s data is valid.

604

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 604

LISTING 20.3

A Form component with programmatic validation of one validator object at a time

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Form xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.events.ValidationResultEvent;
private function isValid():Boolean
{

var emailObj:ValidationResultEvent = emailValidator.validate();
var pwordObj:ValidationResultEvent = emailValidator.validate();
if (emailObj.type == ValidationResultEvent.VALID &&

pwordObj.type == ValidationResultEvent.VALID)
{

Alert.show(“Data is valid”, “Validation Logic”);
return true;

}
else
{

Alert.show(“There are form errors”, “Validation Logic”);
return false;

}
}

]]>
</mx:Script>

<mx:EmailValidator id=”emailValidator”
source=”{emailInput}” property=”text”

triggerEvent=””/>
<mx:StringValidator id=”passwordValidator”
source=”{passwordInput}” property=”text”

triggerEvent=””/>

<mx:FormItem label=”Email Address:”>
<mx:TextInput id=”emailInput”/>

</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput id=”passwordInput”/>
</mx:FormItem>
<mx:FormItem>

<mx:Button id=”loginButton” label=”Log In”/>
</mx:FormItem>

</mx:Form>

605

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 605

The code in Listing 20.3 is available in the Web site files as LoginFormSingle
Validation.mxml in the src/forms folder of the chapter20 project.

Triggering multiple validator objects with ActionScript
As a data entry form becomes more complex, with additional controls and validators, the coding
style described in the preceding section can be cumbersome. An alternative approach is to use the
Validator class’s static validateAll() method to trigger multiple validator objects simultaneously.

To use this approach, call the validateAll() method and pass in an Array of validator objects:

var arInvalid:Array = Validator.validateAll(
[emailValidator, passwordValidator]);

The validateAll() method returns an Array containing ValidationResultEvent objects
only for those validator objects that fail validation. If the Array has no items, this means that all
validators passed their validation rules. The following code evaluates the returned Array:

if (arInvalid.length == 0)
{

Alert.show(“Data is valid”, “Validation Logic”);
return true;

}

Try these steps to add programmatic validation of multiple validator objects to the LoginForm
component described in previous sections:

1. Open LoginForm.mxml in Source view.

2. For both of the existing validator objects, remove their trigger property and set their
triggerEvent to a blank string:

<mx:EmailValidator id=”emailValidator”
source=”{emailInput}” property=”text” triggerEvent=””/>

<mx:StringValidator id=”passwordValidator”
source=”{passwordInput}” property=”text” triggerEvent=””/>

3. Add an <mx:Script> tag set just below the <mx:Form> start tag.

4. Create a new private function named isValid() that accepts no arguments and
returns void.

5. Within the function body, use the Validator.validateAll() method to trigger
both the emailValidator and the passwordValidator objects:

var arInvalid:Array = Validator.validateAll(
[emailValidator, passwordValidator]);

As you type the code, Flex Builder might automatically add an import statement for the
Validator class. If this doesn’t happen, add this import statement above the
isValid() function:

import mx.validators.Validator;

ON the WEBON the WEB

606

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 606

6. Add the following code after the call to validateAll() to evaluate whether validation
rules were passed:

if (arInvalid.length == 0)
{

Alert.show(“Data is valid”, “Validation Logic”);
return true;

}
else
{

Alert.show(“There are form errors”, “Validation Logic”);
return false;

}

7. Locate the Button control with the Log In label, and add a click event handler that
calls the isValid() method:

<mx:Button id=”loginButton” label=”Log In”
click=”isValid()”/>

8. Save the Form component file, and open ValidatorDemo.mxml, the application that
was created in a preceding exercise.

9. Run the application, and try clicking the form button to trigger validation.

As shown in Figure 20.11, you should see that validation is triggered and a pop-up window pro-
duced by the Alert class is displayed. After clicking OK to clear the pop-up window, a validation
error message is displayed when you move the cursor over any control with a red border.

The target of the ValidationResultEvent objects in the array refer back to the
validator that failed. You can then refer to the validator object’s source property to get

a reference to the control that was validated

FIGURE 20.11

Results of validation with ActionScript

TIPTIP

607

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 607

Controlling validation rules and error messages
Each validator class has a set of validation rules and equivalent error messages that are displayed
when the rules are broken. One of these rules, named required, is implemented on the
Validator superclass and is therefore used for all validator objects.

The required rule is a Boolean value that defaults to true. As a result, when you apply a validator
object to a Form control, you’re automatically indicating that the control’s value can’t be left blank.
When this rule is broken, the value of the validator object’s requiredFieldError property is
displayed in the pop-up error message. The default error message for the requiredFieldError
(in the U.S. English locale) is “This field is required.” You can customize the error message by setting
the appropriate property:

<mx:EmailValidator id=”emailValidator”
source=”{emailInput}” property=”text” triggerEvent=””
requiredFieldError=”Email address can’t be left blank”/>

<mx:StringValidator id=”passwordValidator”
source=”{passwordInput}” property=”text” triggerEvent=””
requiredFieldError=”Password can’t be left blank”/>

Each of the two validator objects now has its own distinct error message. As shown in Figure 20.12,
the user gets better, more specific feedback when he makes a data entry error.

FIGURE 20.12

A customized validation error message

Table 20.1 describes some commonly used validation rules and equivalent error message proper-
ties. This is not an exhaustive list; see the product documentation for a complete list of validation
rules and their equivalent error message property names.

608

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 608

TABLE 20.1

Examples of Validation Rules and Error Messages

Rule Name Values Error Name Implemented By

required Boolean requiredFieldError All validator classes

minLength Numeric tooShortError StringValidator

maxLength Numeric tooLongError StringValidator

domain real | int integerError NumberValidator

minValue Numeric lowerThanMinError NumberValidator,
CurrencyValidator

maxValue Numeric exceedsMaxError NumberValidator,
CurrencyValidator

[automatic validation n/a invalidCharError NumberValidator,
for NumberValidator , CurrencyValidator
CurrencyValidator,
and DateValidator]

[Automatic validation n/a invalidCharError, EmailValidator
for EmailValidator] invalidDomainError,

invalidIPDomainError,
invalidPeriodsInDomainError,
missingAtSignError,
missingPeriodInDomainError,
missingUsernameError,
tooManyAtSignsError

[Automatic validation n/a wrongDayError, DateValidator
for DateValidator] wrongLengthError,

wrongMonthError,
wrongYearError

Follow these steps to add custom error messages to the LoginForm component:

1. Open LoginForm.mxml in Source view.

2. Set the emailValidator object’s requiredFieldError property to Email address
can’t be left blank.

3. Set the passwordValidator object’s requiredFieldError property to Password
can’t be left blank.

The code for the validator objects should now look like this:

<mx:EmailValidator id=”emailValidator”
source=”{emailInput}” property=”text” triggerEvent=””
requiredFieldError=”Email address can’t be left blank”/>

609

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 609

<mx:StringValidator id=”passwordValidator”
source=”{passwordInput}” property=”text” triggerEvent=””
requiredFieldError=”Password can’t be left blank”/>

4. Save the Form component file, and open ValidatorDemo.mxml, the application that
was created in a preceding exercise.

5. Run the application, and try clicking the form button to trigger validation.

You should see the custom error messages displayed for each of the Form controls.

Sharing Data with the Application
When you use data entry form components, you share data with the application with custom
events. Each data entry form requires two custom ActionScript classes:

� A value object class that models the Form’s data

� A custom event class that is dispatched from the Form component

Detailed information about using custom event classes is available in Chapter 7.
Detailed information on modeling data with the Value Object design pattern is available

in Chapter 16.

Modeling Form data with a value object
To share data from a Form component, you first create an instance of a value object class and pop-
ulate the object with data from the Form’s controls. You can accomplish this with either MXML or
ActionScript code.

Listing 20.4 shows a custom value object class with public properties for each of the Form compo-
nent’s controls.

LISTING 20.4

A custom ActionScript class that implements the Value Object design pattern

package vo
{

[Bindable]
public class LoginVO
{

public var email:String;
public var password:String;

public function LoginVO()
{

CROSS-REFCROSS-REF

610

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 610

}
}

}

The code in Listing 20.4 is available in the Web site files as LoginVO.as in the
src/vo folder of the chapter20 project.

Populating value object data with MXML
To declare and populate the value object with data in MXML, declare the object and set each of its
properties to one of the Form controls’ values with binding expressions:

<vo:LoginVO id=”formDataObj”
email=”{emailInput.text}”
password=”{passwordInput.text}”/>

At runtime, each of the value object’s properties is populated when its matching Form control exe-
cutes the binding expression.

When working with value object properties that have complex data types such as a
Date, the MXML approach has a liability: If the user never interacts with the Form con-

trol, the value in the declaration is never set. To handle this, you can set each property with a default
value within the value object class:

public var myDateProperty:Date = new Date();

If you don’t do this, in some cases the value object’s property value ends up null (depending on how
the user interacts with the form).

Populating value object data with ActionScript
You also can create and populate a value object with ActionScript code. This approach is some-
times preferred because you can examine values and take action based on various conditions. The
code to create and populate the value object in ActionScript might look like this:

var loginObj:LoginVO = new LoginVO();
loginObj.email = emailInput.text;
loginObj.password = passwordInput.text;

Because data is being passed to the value object in ActionScript statements, you have the opportu-
nity to further validate or modify data before sharing it with the rest of the application.

Dispatching a custom event
As described in Chapter 7, you create custom event classes to “wrap” and share particular types of
data with the rest of the application. Because data from the Form controls is contained within a
value object, you typically create a custom Event class with one public property data typed as the
custom value object class.

CAUTION CAUTION

ON the WEBON the WEB

611

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 611

The custom event class in Listing 20.5 has a single login property data typed as the LoginVO class.
Notice that this event class sets its bubbles property by passing a value of true as the second argu-
ment in the super() constructor method call. Because it’s a bubbling event, it also overrides the
clone() method so that the event object can successfully be cloned during the bubbling process.

LISTING 20.5

A bubbling custom event object with a value object public property

package events
{

import flash.events.Event;
import vo.LoginVO;
public class LoginEvent extends Event
{

public var login:LoginVO;
public function LoginEvent(type:String, login:LoginVO)
{

super(type, true);
this.login = login;

}
override public function clone():Event
{

return new LoginEvent(type, login);
}

}
}

The code in Listing 20.5 is available in the Web site files as LoginEvent.as in the
src/events folder of the chapter20 project.

To use this custom event and share data with the rest of the application, follow these steps in the
Form component:

1. Declare an <mx:Metadata> tag set.

2. Declare an [Event] metadata tag for a custom event that uses the custom event class.

3. To share data with the rest of the application, add code that:

a. Creates the value object and populates it with data

b. Creates the custom event object and populates its public property with the value
object

c. Dispatches the custom event object

ON the WEBON the WEB

612

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 612

Follow these steps to complete the custom Form component:

1. Open the LoginForm.mxml file in Design view.

2. After the <mx:Form> start tag, add an <mx:Metadata> tag set.

3. Within the <mx:Metadata> tag set, declare a custom event with a name of login and
a type of events.LoginEvent:

<mx:Metadata>
[Event(name=”login”, type=”events.LoginEvent”)]

</mx:Metadata>

4. In the <mx:Script> section, create a new private function named clickHandler()
that accepts an event argument typed as MouseEvent and returns void:

private function clickHandler(event:MouseEvent):void
{
}

5. Within the new function, add a conditional evaluation that executes the isValid()
function:

if (isValid())
{
}

6. Within the conditional block, add the following code to create and populate the value
object with data:

var loginObj:LoginVO = new LoginVO();
loginObj.email = emailInput.text;
loginObj.password = passwordInput.text;

7. Add code to create the custom event object, set its login property to the value object,
and dispatch the event:

var e:LoginEvent = new LoginEvent(“login”, loginObj);
dispatchEvent(e);

8. In the isValid() function, comment out or delete the code that displays an Alert pop-
up window.

9. Locate the button control, and change its click event listener to call the
clickHandler() method and pass the event object:

<mx:Button id=”loginButton” label=”Log In”
click=”clickHandler(event)”/>

10. Save the LoginForm component.

Listing 20.6 shows the completed Form component with validation and data sharing through a
custom event and a value object.

613

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 613

LISTING 20.6

A completed Form component with validation and data sharing

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Form xmlns:mx=”http://www.adobe.com/2006/mxml” xmlns:vo=”vo.*”>

<mx:Metadata>
[Event(name=”login”, type=”events.LoginEvent”)]

</mx:Metadata>
<mx:Script>

<![CDATA[
import vo.LoginVO;
import events.LoginEvent;
import mx.validators.Validator;
import mx.controls.Alert;
private function isValid():Boolean
{

var arInvalid:Array = Validator.validateAll(
[emailValidator, passwordValidator]);

if (arInvalid.length == 0)
{

return true;
}
else
{

Alert.show(“There are form errors”, “Validation Logic”);
return false;

}
}
private function clickHandler(event:MouseEvent):void
{

if (isValid())
{

var loginObj:LoginVO = new LoginVO();
loginObj.email = emailInput.text;
loginObj.password = passwordInput.text;
var e:LoginEvent = new LoginEvent(“login”, loginObj);
dispatchEvent(e);

}
}

]]>
</mx:Script>
<mx:EmailValidator id=”emailValidator”

source=”{emailInput}” property=”text” triggerEvent=””
requiredFieldError=”Email address can’t be left blank”/>

<mx:StringValidator id=”passwordValidator”
source=”{passwordInput}” property=”text” triggerEvent=””
requiredFieldError=”Password can’t be left blank”/>

<mx:FormItem label=”Email Address:”>

614

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 614

<mx:TextInput id=”emailInput”/>
</mx:FormItem>
<mx:FormItem label=”Password:”>

<mx:TextInput id=”passwordInput”/>
</mx:FormItem>
<mx:FormItem>

<mx:Button id=”loginButton” label=”Log In”
click=”clickHandler(event)”/>

</mx:FormItem>
</mx:Form>

The code in Listing 20.6 is available in the Web site files as LoginForm
Complete.mxml in the src/forms folder of the chapter20 project.

The final step in the process is to handle the custom event from the application. Follow these steps
to integrate the Form component into a new MXML application:

1. Create a new MXML application named FormComponentDemo.mxml.

2. Set the application’s layout property to vertical and its id to myForm.

3. Add an instance of the LoginForm control.

The code so far should look like this:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:forms=”forms.*”>
<forms:LoginForm id=”loginForm”/>

</mx:Application>

4. Add an <mx:Script> tag set to the application:

<mx:Script>
<![CDATA[

]]>
</mx:Script>

5. Within the Script section’s CDATA block, add a bindable private variable named
myLogin, typed as the LoginVO class. As you code, Flex Builder should add the
required import statement:

import vo.LoginVO;

[Bindable]
private var myLogin:LoginVO;

6. Add a private function named loginHandler() that receives an event argument
typed as LoginEvent and returns void.

ON the WEBON the WEB

615

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 615

7. Within the private function, save the event object’s login property to the bindable
myLogin variable:

private function loginHandler(event:LoginEvent):void
{

myLogin = event.login;
}

8. Add a login event listener to the LoginForm component instance that calls
loginHandler() and passes the event object:

<forms:LoginForm id=”loginForm” login=”loginHandler(event)”/>

9. Add a Label control to the bottom of the application that displays the myLogin object’s
email property:

<mx:Label text=”Email address: {myLogin.email}”/>

10. Add another Label control to the bottom of the application that displays the myLogin
object’s password property:

<mx:Label text=”Password: {myLogin.password}”/>

11. Run the application, and test the Form control by entering valid data and clicking Log In.

You should see that the value object is passed from the Form component to the application
and its data is displayed in the Label controls as a result of their binding expressions.

Listing 20.7 show the completed application.

LISTING 20.7

An application using a custom Form component

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:forms=”forms.*”>
<mx:Script>

<![CDATA[
import events.LoginEvent;
import vo.LoginVO;
[Bindable]
private var myLogin:LoginVO;
private function loginHandler(event:LoginEvent):void
{

myLogin = event.login;
}

]]>
</mx:Script>
<forms:LoginForm id=”loginForm” login=”loginHandler(event)”/>
<mx:Label text=”Email address: {myLogin.email}”/>
<mx:Label text=”Password: {myLogin.password}”/>

</mx:Application>

616

Working with DataPart III

27_287644-ch20.qxp 6/23/08 11:48 PM Page 616

The code in Listing 20.7 is available in the Web site files as FormComponentDemo
Complete.mxml in the src folder of the chapter20 project.

You can manually trigger the validation interface by setting any visual component’s
errorString property to a non-blank String. When errorString is set to a non-

blank String, the visual component displays the same red border, and displays the property’s value
in the same pop-up error display window when the mouse hovers over the component, as when vali-
dation errors are passed to a control by a validator class. You can also explicitly remove the validation
interface from a visual component by setting its errorString to a blank String or null.

Summary
In this chapter, I described how to build and use data entry form components in Flex applications.
You learned the following:

� The Form container lays out labels in one column and controls in another column.

� The FormHeading control is optional and displays a label aligned inside the Form con-
tainer’s controls column.

� The FormItem container is nested within the Form container.

� The label properties of all FormItem containers within the Form are right-aligned by
default, but they can be adjusted to center or left alignment with the use of CSS rules.

� The FormItem container can nest multiple controls that are stacked vertically by default.

� Flex Builder’s Design view helps you quickly create Form components by adding
FormItem containers to controls as they’re dragged from the Components view.

� Data validation is handled with validator objects.

� You can trigger validation with trigger events or explicit ActionScript code.

� Form components share data with the rest of the application with custom value object
and event classes.

TIPTIP

ON the WEBON the WEB

617

Working with Data Entry Forms 20

27_287644-ch20.qxp 6/23/08 11:48 PM Page 617

27_287644-ch20.qxp 6/23/08 11:48 PM Page 618

A pplications built with the Flex framework are commonly both
dynamic and data-centric: They use, present, and allow users to
modify data that’s imported at runtime from a server-based data store

(or, in the case of desktop applications running on AIR, a local database).

Flash Player and the Adobe Integrated Runtime don’t have the ability to
communicate directly with server-based data storage applications such as
database and LDAP servers. Instead, they’re designed to communicate with
middleware application servers using a variety of protocols.

The Flex framework includes three Remote Procedure Call (RPC) components
that allow you to integrate your Flex applications with common application
server products. Of these, the HTTPService component has the most flexi-
bility in terms of the format of messages that are exchanged between the client
and server at runtime. Unlike the other RPC components, you can use the
HTTPService component with any application server, because it exchanges
data in the form of simple HTTP parameters and XML of any flavor.

In this chapter, I describe the use of the HTTPService component to
retrieve data from a Web server at runtime. I also cover how to send data
from a Flex application to a dynamic application server using HTTP requests
that are similar to those that are sent from a Web browser using a hyperlink
or a data entry form.

To use the sample code for this chapter, import the
chapter21.zip Flex project archive file from the Web

site files into your Flex Builder workspace.

ON the WEBON the WEB

619

IN THIS CHAPTER
Understanding RPC and REST
Web services

Understanding HTTP
communications

Using the HTTPService control

Retrieving data at runtime

Parsing XML formatted data

Passing parameters to an
application server

Working with Flash Player
security

Working with HTTPService
and XML

28_287644-ch21.qxp 6/23/08 11:49 PM Page 619

Using RPC and REST Architectures
RPC and REST are acronyms that represent architectural styles. Unlike SOAP and AMF, which are
implemented by the other RPC components, RPC and REST are more like design patterns: They
describe ways in which successful Web-based applications have been designed in the past.

Understanding the Representational State
Transfer architecture
REST stands for Representational State Transfer, and it represents a software architecture or design
pattern that can be implemented with numerous client-based and server-based platforms for the
Web. A “RESTful” architecture allows resources stored in a remote system to be retrieved by a local
client system without necessarily requiring a remote dynamic application server.

According to Roy Fielding, who coined the term, REST is intended to “evoke an image of how a
well-designed Web application behaves: a network of Web pages (a virtual state-machine), where
the user progresses through an application by selecting links (state transitions), resulting in the
next page (representing the next state of the application) being transferred to the user and rendered
for their use.” In short, a Web site that returns either Web pages or structured data in the form of
XML pages based on requests to consistently formatted requests is RESTful.

REST architecture is marked by these characteristics and benefits:

� Data that is represented in some form is “pulled” from the server to the client. When
implemented with HTTP, the request is sent from a Web browser and the response comes
from a Web server.

� Requests are stateless and do not depend on data stored persistently in the server. When
you add statefulness to HTTP request/response systems with cookies or other token
architectures, the application becomes less RESTful.

� Caching is implemented to improve performance. In the context of a Flex application,
the use of static XML files that can be cached by the underlying Web browser improves
performance when the data is requested multiple times.

� A uniform interface is used to simplify programming. In the context of Flex, this is imple-
mented through the use of standard HTTP requests.

� Named resources are identified and retrieved by their URL. When you add query string
parameters in a POST request, the system becomes more like RPC and less like REST.

� Server-side code written according to the principles of REST is guaranteed to be compati-
ble with any client-side application development platform that supports industry-
standard HTTP and XML.

The HTTPService component can be used in a REST-style application because, like the Web
browser, it can communicate with its requests formatted as simple URL.

620

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 620

Detailed descriptions of the REST architecture are available at these Web sites:
http://www.xfront.com/REST-Web-Services.html and http://

en.wikipedia.org/wiki/Representational_State_Transfer.

Understanding the Remote Procedure Call
architecture
RPC represents a software architecture that lets a computer program in one operating environment
cause functions (also known as methods, operations, or subroutines) to be executed in separate,
remote operating environments. As described previously, Flex applications can participate in RPC
relationships with remote application servers using multiple architectures and techniques.

RPC-style architectures are typically implemented in Flex with a dynamic Web server that can
respond to complex HTTP requests. All three RPC components communicate with the server over
the HTTP protocol; they differ, however, in the format of the messages that are exchanged between
client and server:

� The RemoteObject component, described in Chapters 24 and 26, communicates with
application servers using the binary Action Message Format (AMF).

� The WebService component, described in Chapter 23, makes requests to, and handles
responses from, application servers that support the industry-standard SOAP message
format.

� The HTTPService component makes standard HTTP requests to any Web server envi-
ronment, including calls to both static and dynamic Web pages, and uses either plain text
or any well-formed XML language as its message format.

The RemoteObject and WebService components are limited in the servers with which they
can communicate:

� RemoteObject requests work only with servers that implement AMF, including
ColdFusion, LiveCycle Data Services, and BlazeDS among Adobe products, and numer-
ous third-party and open-source products that are designed to be installed on top of
ASP.NET, PHP, and Java Enterprise Edition (also known as J2EE) application servers.

� WebService requests work only with servers that use the SOAP protocol, including
ColdFusion, ASP.NET, and J2EE servers that include a SOAP Web service library such as
Apache’s AXIS.

In contrast, the HTTPService component can be used to create an RPC-style application that
uses any application server, because the use of well-formed XML as a message format can be
accomplished nearly universally.

All three RPC components can be used to implement an RPC-style software architecture, where
functions are called from the server to retrieve and modify data. Whereas the WebService and
RemoteObject components are always used to implement RPC, because they always call functions
(called operations in Web services and methods in remote objects), the HTTPService component can
be used to implement RPC, REST, or a hybrid of the two.

WEB RESOURCEWEB RESOURCE

621

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 621

Declaring and Configuring HTTPService
Objects
You can declare and configure an HTTPService object in either MXML or ActionScript code.
For applications that communicate only with a single network resource, the MXML approach
might be simpler and easier to implement. In more complex applications that use multiple net-
work resources, ActionScript classes and methods that dynamically generate HTTPService
objects as needed can be easier to create.

Creating an HTTPService object
The MXML syntax to create an HTTPService object looks like this:

<mx:HTTPService id=”myService”
url=”data/contacts.xml”/>

As with all Flex components, the object’s id property is used to identify it uniquely in the context
of the current application or component. The url property (discussed in detail in the next section)
can be set with either a literal String, as in this example, or with a binding expression if you want
to be able to switch to a different network resource at runtime.

The equivalent ActionScript code looks like this:

import mx.rpc.http.HTTPService;
private var myService:HTTPService =
new HTTPService(“data/contacts.xml”);

Alternatively, you can declare the object first and then set its url in a separate statement:

private var myService:HTTPService = new HTTPService();
myService.url = “data/contacts.xml”;

There are two HTTPService classes in the Flex framework’s class library. The first,
which is imported in the preceding example, is a member of the mx.rpc.http pack-

age and is used in ActionScript code. The other version of the HTTPService class is a subclass of the
first and is a member of the mx.rpc.http.mxml package. This is the version you use when you
instantiate the object with the <mx:HTTPService> tag.

The versions are nearly identical with two significant differences: Only the MXML version implements
the showBusyCursor property, which causes an animated cursor to be displayed for the duration of
an HTTPService request/response cycle, and the concurrency property, which determines how
multiple concurrent requests to the same network resource are handled.

You can simulate the behavior of the showBusyCursor property in ActionScript with the
CursorManager class’s setBusyCursor() and removeBusyCursor() methods. Concurrency
also can be managed explicitly in ActionScript; for example, HTTPService implements a cancel()
method that allows you to cancel the most recent request, if any, prior to sending a new request.

TIPTIP

622

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 622

ActionScript-based declarations of HTTPService should be placed outside of any
function declarations, so that the object is accessible from all functions in the current

application or component.

Essential HTTPService properties
Whether you use the MXML or ActionScript approach, the HTTPService component implements
these properties that determine where the request is made and what HTTP methods are used:

� url:String: The Web address to which the request is sent

� method:String: The HTTP method to be used

� resultFormat:String: The format in which the data should be returned

� showBusyCursor:Boolean: When true, causes an animated cursor to appear for the
duration of the request/response cycle

� concurrency:String: A rule that determines how to handle multiple concurrent calls
to the same network resource

The details of these properties are described in the following sections.

Setting the url property
The url property is set to the network address to which the HTTP service should be sent. For a
Flex application designed for Web deployment, this can be either a relative or absolute address.
For example, if the Flex application is retrieving a static XML file that’s on the same server and
within the same directory structure, the url could be set as follows:

myHTTPService.url = “data/contacts.xml”;

The expression data/contacts.xml means that the XML file is in a data subfolder on the
same server from which the Flex application downloads at runtime.

For desktop applications deployed with AIR, or for Web applications that need to retrieve data
from a domain other than one from which the application is downloaded, you can set the url as
an absolute address:

myHTTPService.url = “http://www.myserver.com/data/contacts.xml”;

If you need to retrieve content at runtime from a different domain, you may need to
deal with Flash Player’s cross-domain security constraint. See the information on using

the cross-domain permissions file later in this chapter and how to use the Proxy Service that’s
included with LiveCycle Data Services and BlazeDS in Chapter 25.

The network resource to which you send an HTTPService request can be either a static text file
or a dynamic application server page that generates a response upon demand. As long as the
response is in a form that the HTTPService component is able to parse (usually a well-formed
XML file), the response will be read and understood when it’s received from the server.

CAUTION CAUTION

TIPTIP

623

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 623

Setting the method property
The HTTPService component’s method property supports the following values:

� GET (the default)

� POST

� PUT (only with AIR or a proxy service)

� DELETE (only with AIR or a proxy service)

� OPTIONS (only with a proxy service)

� HEAD (only with a proxy service)

� TRACE (only with a proxy service)

In RPC-style applications, the HTTPService component is mostly used with the GET and POST
methods, while REST-style approaches sometimes use PUT and DELETE requests.

Flash Player 9 only supports HTTP requests with methods of GET and POST. Desktop
applications deployed with AIR also can use the PUT and DELETE request methods. To

use PUT and DELETE requests with a Web application, or any other request methods, you must send
requests through a server-side proxy such as the Proxy Service provided by LiveCycle Data Services
and BlazeDS (described in Chapter 24).

For example, Flex developers who use Ruby on Rails as their middleware layer sometimes follow a
RESTful pattern where the HTTPService method determines what kind of data manipulation is
being requested by the client application. Each of the following methods is treated as a “verb” that
indicates what should be done with the data passed in the request:

� A GET request retrieves a representation of data without making any changes to the ver-
sion in the server’s persistent data store.

� A POST request results in creating a new data item in the server tier.

� A PUT request results in modifying existing data in the server tier.

� A DELETE request results in deleting existing data in the server tier.

For more information on using a RESTful approach with Ruby on Rails, visit the Ruby doc-
umentation at http://api.rubyonrails.org/classes/ActionController/

Resources.html. An article by Derek Wischusen on integrating HTTPService and Ruby on Rails is
available at www.adobe.com/devnet/flex/articles/flex2_rails_print.html.

Setting the resultFormat property
The resultFormat property determines how data is exposed in the Flex application when it’s
received from the server. The possible values are listed here:

� object (the default): Well-formed XML is returned as a tree of ActionScript objects.
When a single element exists in a particular level of the XML hierarchy with a particular
name, it’s returned as an instance of the ObjectProxy class; when multiple elements of
the same name are returned, they’re wrapped in an ArrayCollection.

WEB RESOURCEWEB RESOURCE

CAUTION CAUTION

624

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 624

� array: The top-level object is returned as the first item in an ActionScript Array.

� xml: Well-formed XML is returned as an ActionScript XMLNode object.

� flashvars: Data formatted as name/value pairs is parsed into an ActionScript Object
with named properties. For example, the following String value is a well-formed
flashvars value:

firstName=Joe&lastName=Smith

The resulting ActionScript Object would have two properties named firstName and
lastName.

� text: The response is returned as a simple String value.

� e4x: The response is returned as an XML object that can be parsed and modified with
EcmaScript for XML (E4X) syntax.

The use of E4X to parse well-formed XML is described in Chapter 22.

Setting the concurrency property
The concurrency property is implemented only with the MXML version of the HTTPService
component and determines how the responses from multiple concurrent requests will be handled.
The property’s possible values are listed here:

� multiple (the default): Multiple responses are handled as they’re received from the
server, and it’s up to you (the developer) to create a code pattern that lets you identify the
responses for each request. The AsyncToken class, an instance of which is returned
from the send() method, can be helpful in this circumstance.

� single: You can have only a single request active at any given time. Issuing another
request before the last one was completed results in a runtime error.

� last: Issuing another request before the last one was completed results in canceling the
first request.

The following code results in canceling any pending HTTPService requests when a new request
is sent:

<mx:HTTPService id=”myService”
url=”data/contacts.xml”/>

The concurrency property isn’t implemented in the version of the HTTPService
class typically used in ActionScript because, when using ActionScript, you commonly

create a new HTTPService object for each new request.

TIPTIP

CROSS-REFCROSS-REF

625

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 625

Sending and Receiving Data
You send an HTTP request with the HTTPRequest object’s send() method. For example, if you
want to retrieve data upon application startup, you can call the send() method in the applica-
tion’s creationComplete event handler:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
creationComplete=”myService.send()”>

</mx:Application>

Alternatively, you can send the request upon a user event, such as the click event handler of a
Button component:

<mx:Button label=”Make request” click=”service.send()”/>

The send() method accepts an optional parameters argument typed as an Object
that allows you to send parameters to dynamic application server pages. This technique

is described briefly later in this chapter and in much greater detail in Chapter 28.

Understanding asynchronous communications
All the Flex framework’s RPC components send and receive data asynchronously. This means that
when you send a request, Flash Player’s ActionScript Virtual Machine (AVM) doesn’t pause in its
code execution and wait for data to be returned. This architecture is similar to how a Web
browser’s XMLHttpRequest object handles JavaScript requests for data: Requests are sent, and
the responses are handled through event listeners.

For ColdFusion developers, Flex’s HTTPService and ColdFusion’s <cfhttp> tags
behave differently. ColdFusion handles responses to its <cfhttp> command synchro-

nously, meaning that it waits for data to be returned before going to the next line of code. Two major
differences between the runtime environments account for this.

First, ColdFusion pages are transient and stay in server memory only until they’ve generated and
returned HTML to the requesting Web browser. Asynchronous operations require a runtime environ-
ment that stays in memory and can listen for a response. Also, ColdFusion is multi-threaded and can
afford to allocate a thread to wait for a response. Flash Player is single-threaded; if it had to wait for a
response, the application would have to suspend all other operations such as animations and user
interactions until the data came back.

Handling HTTPService responses
You can handle the response from a server with two approaches:

� With a binding expression that references returned data

� With event listeners that execute ActionScript code when data is returned

NOTENOTE

NOTENOTE

626

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 626

Of these approaches, the binding expression is simpler and easier to code, but it gives much less flexi-
bility and power in terms of how you handle the returned data. In contrast, the event listener archi-
tecture gives you the opportunity to debug, inspect, manipulate, and save returned data persistently.

Using a binding expression
The HTTPService component’s lastResult property is a reference variable that gives you
access to the data that’s returned from the server. When the service object’s resultFormat prop-
erty is set to the default value of object and you retrieve well-formed XML, the expression
myService.lastResult refers to an instance of the ObjectProxy class that represents the
XML document.

The following code represents the contents of an XML file named contacts.xml:

<?xml version=”1.0”?>
<contacts>

<row>
<contactid>1</contactid>
<firstname>Brad</firstname>
<lastname>Lang</lastname>
<streetaddress>3004 Buckhannan Avenue</streetaddress>
<city>Syracuse</city>
<state>NY</state>
<email>Brad.C.Lang@trashymail.com</email>
<phone>315-449-9420</phone>

</row>
... additional <row> elements ...

</contacts>

When an XML file is structured with multiple repeating elements of the same name, as is the case
with the <row> element in this XML structure, the HTTPService components generates an
ArrayCollection that “wraps” the data. To display the data from a DataGrid or other data
visualization component, use a binding expression that starts with the HTTPService object’s
id and lastResult property, and then “walks” down the XML hierarchy to the repeating
element name.

The following DataGrid component uses the content of the repeating <row> elements as its data
provider:

<mx:DataGrid
dataProvider=”{contactService.lastResult.data.row}”/>

Try these steps in the chapter21 project:

1. Open contacts.xml file from the project’s src/data folder.

Notice that the XML file has a root element named <contacts> and repeating elements
named <row>. Each <row> element has a consistent internal structure consisting of
named properties for contactId, firstname, lastname, and so on.

627

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 627

2. Create a new MXML application named HTTPServiceWithBindings.mxml. Set its
layout property to vertical.

3. With the new application open in Source view, add an <HTTPService> tag set between
the <mx:Application> tags. Set its id to contactService and its url property to
data/contacts.xml:

<mx:HTTPService id=”contactService”
url=”data/contacts.xml”/>

4. Add an <mx:Button> component below the <mx:HTTPService> tag. Set its label to
Get Data and its click event listener to call the HTTPService object’s send() method:

<mx:Button label=”Get Data” click=”contactService.send()”/>

5. Add a DataGrid component below the <mx:Button> tag. Set its dataProvider to
display the HTTPService component’s returned data using a binding expression that
references the XML file’s repeating <row> elements:

<mx:DataGrid
dataProvider=”{contactService.lastResult.contacts.row}”/>

6. Run the application, and click the Get Data button to send the request.

As shown in Figure 21.1, you should see the XML file’s data displayed in the DataGrid.

FIGURE 21.1

Data retrieved from the XML file and displayed in the DataGrid

The completed application is shown in Listing 21.1.

LISTING 21.1

Using a binding expression to display retrieved data

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>

628

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 628

<mx:HTTPService id=”contactService” url=”data/contacts.xml”/>
<mx:Button label=”Get Data” click=”contactService.send()”/>
<mx:DataGrid dataProvider=”{contactService.lastResult.contacts.row}”/>

</mx:Application>

The code in Listing 21.1 is available in the Web site files as HTTPWithBindings
Complete.mxml in the src folder of the chapter21 project.

When you retrieve content from the local hard disk instead of a Web server, a file access
runtime error might occur. To fix this issue, you can place the application in a local

security sandbox and block network access. You do this by adding the following compiler argument
to the Flex project’s compiler arguments:

-use-network=false

Figure 21.2 shows the Flex Compiler section of the project properties screen with the additional
----use-network compiler argument.

FIGURE 21.2

Placing an application in the local sandbox to guarantee access to local files

Additional complier arguements

TIPTIP

ON the WEBON the WEB

629

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 629

Handling the result event
When data is returned from the remote server, the HTTPService object dispatches a result
event, whose event object is typed as mx.rpc.events.ResultEvent. This ResultEvent
class has a result property that refers to the returned data.

The ResultEvent class also has a headers property that in theory should return
the HTTP response headers from the Web server. In practice, this object frequently

returns null.

To handle and save data using the result event, follow these steps:

1. Declare a bindable variable outside of any function that acts as a persistent reference to
the returned data. If you’re expecting a set of repeating data elements, cast the variable as
an ArrayCollection:

import mx.collections.ArrayCollection;
[Bindable]
private var myData:ArrayCollection

2. Create an event handler function that will be called when the event is dispatched. The func-
tion should receive a single event argument typed as ResultEvent and return void:

private function resultHandler(event:ResultEvent):void
{
}

3. Within the event handler function, use the event.result expression to refer to the
data that’s returned from the server. Walk down the XML hierarchy to get to the repeating
data elements, and return that expression to the bindable ArrayCollection variable:

myData = event.result.contacts.row;

You can listen for the fault event with either an MXML attribute-based event listener or a call to the
ActionScript addEventListener() method. The attribute-based event listener looks like this:

<mx:HTTPService id=”contactService”
url=”http://localhost/contacts.xml”
result=”resultHandler(event)”/>

When using addEventListener() to create an event listener, you can designate the event name
with the String value result or with the ResultEvent class’s RESULT constant:

var myService:HTTPService = new HTTPService();
myService.url = “data/contacts.xml”;
myService.addEventListener(ResultEvent.RESULT, resultHandler);

The application in Listing 21.2 retrieves a data set at runtime using an HTTPService object’s
result event. Data is saved to a persistent ArrayCollection variable that’s been marked as
[Bindable] and then displayed in a DataGrid using a binding expression.

NOTENOTE

630

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 630

LISTING 21.2

An application using the HTTPService component and a result event

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.rpc.events.ResultEvent;
import mx.collections.ArrayCollection;
[Bindable]
private var myData:ArrayCollection
private function resultHandler(event:ResultEvent):void
{

myData = event.result.contacts.row;
}

]]>
</mx:Script>
<mx:HTTPService id=”contactService”
url=”http://localhost/contacts.xml”
result=”resultHandler(event)”/>

<mx:Button label=”Get Data” click=”contactService.send()”/>
<mx:DataGrid dataProvider=”{contactService.lastResult.contacts.row}”/>

</mx:Application>

The code in Listing 21.2 is available in the Web site files as HTTPResultEvent.mxml
in the src folder of the chapter21 project.

It may seem at first glance that the use of the result event simply takes more code
than a binding expression. There are many advantages in this approach, however, that

make the extra code worthwhile. By processing the returned data in an event handler function, you
have the opportunity to debug or modify data when it’s returned to the server, and the persistent vari-
able lets you refer to the data at any later point.

It’s also possible for a single service to return different data structures depending on which parame-
ters are sent in the request. In this case, binding directly to the results isn’t possible, because you
have to extract data from the result with expression that can differ depending on the circumstance.

Handling the fault event
When an HTTPService request results in an error, the HTTPRequest object dispatches a
fault event, whose event object is typed as mx.rpc.events.FaultEvent. This event object
has a fault property typed as mx.rpc.Fault, which has these properties:

� faultString:String: The error message

� faultCode:String: A code that indicates the nature of the fault and whether it
occurred in the client or server environment

TIPTIP

ON the WEBON the WEB

631

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 631

� faultDetail:String: An additional message that sometimes contains useful infor-
mation

� message:String: A string consisting of all the above values concatenated together
with | characters used as separators

When you debug a fault event, you can easily see the structure of the event object. Figure 21.3
shows the Variables view during a debugging session showing the structure of the FaultEvent
and Fault objects.

FIGURE 21.3

The Variables view displaying fault information during a debugging session

To handle a fault event, create an event handler function that receives an event argument typed
as FaultEvent. Within the body of the function, you can deal with the fault however you like.
This suppresses the ugly error message that appears in response to unhandled faults. The following
code collects fault information from the event object and displays it to the user with an Alert
pop-up window:

private function faultHandler(event:FaultEvent):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}

Figure 21.4 shows the resulting application with the Alert dialog box showing the user the
faultString and faultCode values.

632

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 632

FIGURE 21.4

Displaying fault information to the user

As with the result event, you can listen for the fault event with either an MXML attribute-based
event listener or the addEventListener() method. The MXML attribute version looks like this:

<mx:HTTPService id=”contactService”
url=”data/contactsMalformed.xml”
result=”resultHandler(event)”
fault=”faultHandler(event)”/>

When using addEventListener() to create an event listener, you can designate the event name
with the String value fault or with the FaultEvent class’s FAULT constant:

var myService:HTTPService = new HTTPService();
myService.url = “data/contacts.xml”;
myService.addEventListener(ResultEvent.RESULT, resultHandler);
myService.addEventListener(FaultEvent.FAULT, faultHandler);

The application in Listing 21.3 shows the use of the fault event with an MXML-based event
listener.

LISTING 21.3

Using the fault event

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>

continued

633

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 633

LISTING 21.3 (continued)

<![CDATA[
import mx.controls.Alert;
import mx.rpc.events.FaultEvent;
import mx.rpc.events.ResultEvent;
import mx.collections.ArrayCollection;
[Bindable]
private var myData:ArrayCollection
private function resultHandler(event:ResultEvent):void
{

myData = event.result.contacts.row;
}
private function faultHandler(event:FaultEvent):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}

]]>
</mx:Script>
<mx:HTTPService id=”contactService” url=”data/contactsMalformed.xml”

result=”resultHandler(event)”
fault=”faultHandler(event)”/>

<mx:Button label=”Get Data” click=”contactService.send()”/>
<mx:DataGrid dataProvider=”{contactService.lastResult.contacts.row}”/>

</mx:Application>

The code in Listing 21.3 is available in the Web site files as HTTPFaultEvent.mxml in
the src folder of the chapter21 project.

All RPC components, including HTTPService, implement a requestTimeout
property that sets a timeout value in terms of seconds. For example, if you set

requestTimeout to a value of 10 and the server doesn’t respond within 10 seconds, a fault
event is dispatched.

The result and fault events work exactly the same for all RPC components and use the
same set of event classes, ResultEvent and FaultEvent. The only significant difference

lies in the structure of the data returned in a result event. For example, HTTPService, when used to
retrieve XML, returns data as a set of objects or as an E4X-compatible XML object, depending on the value
of its resultFormat property. In contrast, WebService and RemoteObject return data based on
data types declared in metadata returned from the server. In all cases, though, you access the returned
data by referencing the ResultEvent object’s result property.

Working with ItemResponder and AsyncToken
Developers who prefer to work entirely with ActionScript to manage their service calls sometimes
use a pattern that includes the Flex framework’s ItemResponder and AsyncToken classes.

TIPTIP

TIPTIP

ON the WEBON the WEB

634

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 634

The ItemResponder and AsyncToken classes work nearly exactly the same with all
RPC components.

Using AsyncToken
The AsyncToken class is a dynamic object that allows you, the developer, to add arbitrary named
properties to the object at runtime. Every request to an RPC component returns an instance of
AsyncToken that stays in application memory for the duration of the RPC request. After making
the request, you can add as many bits of information as you need to track the purpose of the
request or other important details:

var token:AsyncToken = contactService.send();
token.myProp1 = “Any property value”;

When a result event or fault event is dispatched, the ResultEvent or FaultEvent object pro-
vides a reference to the AsyncToken object you created through their token properties:

private function resultHandler(event:ResultEvent):void
{

Alert.show(“The value of property 1 is “ +
event.token.myProp1;

}

The AsyncToken object serves as a persistent repository of information about the request. You
populate the object with information just after making the request, and retrieve it while handling
the request’s result or fault event.

Using ItemResponder
The ItemResponder class can be used instead of attribute-based event listeners or the
addEventListener() method to handle and dispatch event objects to ActionScript event handler
functions. To use ItemResponder, you first create custom event handler functions to handle an
RPC request’s result and fault events. Each event handler function receives an AsyncToken
argument in addition to the expected event object. For example, the result handler function signa-
ture looks like this:

private function resultHandler(event:ResultEvent,
token:AsyncToken):void

{
... handle returned data ...

}

The fault event handler function looks like this:

private function faultHandler(event:FaultEvent,
token:AsyncToken):void

{
... handle fault ...

}

TIPTIP

635

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 635

Before you make the RPC request, you create an instance of the ItemResponder class and pass
references to the result and fault event handler functions as constructor method arguments:

var responder:ItemResponder =
new ItemResponder(resultHandler,faultHandler);

As with addEventListener(), you’re passing the functions as objects, and not calling
them directly, so you only pass the function names and not their complete calling syntax.

The next steps are to:

1. Make the RPC request and return an instance of AsyncToken.

2. Add the ItemResponder object to the AsyncToken object’s array of responders with
its addResponder() method.

var token:AsyncToken = contactService.send();
token.addResponder(responder);

When the asynchronous request is completed, the AsyncToken object calls the appropriate event
handler function, depending on whether a result or fault event is dispatched by the RPC
component. The event handler function receives both its event object and a reference to the
AsyncToken object that called it.

The application in Listing 21.4 uses ItemResponder and AsyncToken objects to manage an
asynchronous request and its result and fault events.

LISTING 21.4

Using ItemResponder and AsyncToken

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.collections.ArrayCollection;
import mx.collections.ItemResponder;
import mx.controls.Alert;
import mx.rpc.AsyncToken;
import mx.rpc.events.FaultEvent;
import mx.rpc.events.ResultEvent;
import mx.rpc.http.HTTPService;
[Bindable]
private var myData:ArrayCollection
private var contactService:HTTPService = new HTTPService();
private function getData():void
{

contactService.url=”data/contacts.xml”;

TIPTIP

636

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 636

var responder:ItemResponder =
new ItemResponder(resultHandler,faultHandler);

var token:AsyncToken = contactService.send();
token.addResponder(responder);

}
private function resultHandler(event:ResultEvent,

token:AsyncToken):void
{

myData = event.result.contacts.row;
}
private function faultHandler(event:FaultEvent,

token:AsyncToken):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}

]]>
</mx:Script>

<mx:Button label=”Get Data” click=”getData()”/>
<mx:DataGrid dataProvider=”{myData}”/>

</mx:Application>

The code in Listing 21.4 is available in the Web site files as UsingItemResponder.mxml
in the src folder of the chapter21 project.

It’s a common practice to create individual custom classes to manage each unique RPC
request. Each custom class uses a common naming convention for both the function

that creates and executes an RPC request, such as execute(), and its event handler methods, such
as resultHandler() and faultHandler(). Known as the Command design pattern, this
approach allows you to manage complex applications with dozens or thousands of unique server
requests, and is at the heart of the Cairngorm microarchitecture that’s used by developers of large
Flex applications.

Steven Webster provides an excellent description of the Command design pattern (in
the context of the Cairngorm microarchitecture) in his six-part series on Cairngorm at

www.adobe.com/devnet/flex/articles/cairngorm_pt1.html.

Working with Value Objects
XML-formatted data retrieved with the HTTPService component is always exposed as an
ArrayCollection of ObjectProxy instances. If you prefer to work with strongly typed value
object classes, you can create a simple set of code that transforms the Object instances into your
value objects. This process has two steps:

WEB RESOURCEWEB RESOURCE

TIPTIP

ON the WEBON the WEB

637

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 637

� Create a value object class with the appropriate properties. Set the value object class’s con-
structor method to accept an optional argument typed as the ActionScript Object class.
Within the constructor method, if the Object argument was passed in, transfer its prop-
erty values to the equivalent properties in the current instance of the value object class:

public function Contact(data:Object = null)
{

if (data != null)
{

this.contactid = Number(data.contactid);
this.firstname = data.firstname;
this.lastname = data.lastname;
... set additional properties ...

}
}

� At runtime, in the result event handler, loop through the ArrayCollection and
create one new instance of the value object for each data item, and then replace the origi-
nal object with the ArrayCollection class’s setItemAt() method:

private function resultHandler(event:ResultEvent):void
{

var obj:Contact;
myData = event.result.contacts.row;
for (var i:int=0; i<myData.length; i++)
{

obj = new Contact(myData.getItemAt(i));
myData.setItemAt(obj, i);

}
}

Notice that the value object class’s constructor method explicitly typecasts properties as
necessary. This is a major benefit of creating the extra code to transfer data from generic

instances of the Object class to strongly typed value objects: Data is correctly cast and easier to use
in other code throughout the application.

The application in Listing 21.5 retrieves data from the server and then loops through the
ArrayCollection to replace each generic Object with an equivalent value object.

LISTING 21.5

Using value objects with data from an HTTPService request

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Script>
<![CDATA[

import vo.Contact;

TIPTIP

638

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 638

import mx.rpc.events.ResultEvent;
import mx.collections.ArrayCollection;
[Bindable]
private var myData:ArrayCollection
private function resultHandler(event:ResultEvent):void
{

var obj:Contact;
myData = event.result.contacts.row;
for (var i:int=0; i<myData.length; i++)
{

obj = new Contact(myData.getItemAt(i));
myData.setItemAt(obj, i);

}
}

]]>
</mx:Script>
<mx:HTTPService id=”contactService” url=”data/contacts.xml”

result=”resultHandler(event)”/>
<mx:Button label=”Get Data” click=”contactService.send()”/>
<mx:DataGrid dataProvider=”{myData}”/>

</mx:Application>

The code in Listing 21.5 is available in the Web site files as HTTPValueObjects.mxml
in the src folder of the chapter21 project. The Contact value object class is defined

in Contact.as in the src/vo subfolder.

Passing Parameters to Server Pages
When you use the HTTPService component to make calls to dynamic pages that are managed by
an application server, you frequently need to pass parameters. The syntax for passing parameters is
the same regardless of whether you use the HTTPService component with GET or POST requests.

You can pass parameters in an HTTPService request in two ways:

� Named parameters that are packaged in an ActionScript Object

� Bound parameters that are set up in the HTTPService object declaration

Using named parameters
To pass parameters by name, first create an instance of an ActionScript Object. The Object class
is dynamic, meaning that you can add arbitrary named properties at runtime. Set each parameter
as a named property of the properties object, and then pass the properties object as the only argu-
ment in the object’s send() method.

ON the WEBON the WEB

639

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 639

The ActionScript code to accomplish these tasks might look like this:

private function sendData():void
{

var params:Object = new Object();
params.firstname=”Joe”;
params.lastname=”Smith”;
contactService.send(params);

}

You also can use shorthand ActionScript code to create an object and pass it in a single statement:

private function sendData():void
{

contactService.send({firstname:”Joe”, lastname:”Smith”});
}

If the HTTPService object’s method property is set to GET, the parameters are appended to the
request URL. The first part of the resulting HTTP request would look like this:

GET /?firstname=Joe&lastname=Smith HTTP/1.1

In contrast, if the HTTPService object’s method property is set to POST, the parameters are
appended to the end of the HTTP request. The following is a literal POST request header sent from
a Flex application hosted by Microsoft Internet Explorer 6:

POST / HTTP/1.1
Accept: */*
Accept-Language: en-US
Referer: file://C:\flex3bible\workspace\chapter21\

bin-debug\HTTPSendParams.swf
x-flash-version: 9,0,115,0
Content-Type: application/x-www-form-urlencoded
Content-Length: 28
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;

SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR
3.0.04506.648; .NET CLR 3.5.21022)

Host: localhost
Connection: Keep-Alive
Cache-Control: no-cache

firstname=Joe&lastname=Smith

Using bound parameters
You can set up bound parameters in an HTTPService declaration so that named properties are
sent with a consistent source. For example, assume that you’ve declared a bindable instance of a
value object that stores current values:

640

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 640

[Bindable]
private var myContact:Contact;

If you know that the parameters you send with HTTPService always get their values from this
object, you can declare the relationship using binding expressions:

<mx:HTTPService id=”contactService” url=”myAppPage.php”
result=”resultHandler(event)”>
<mx:request>

<firstname>{myContact.firstname}</firstname>
<lastname>{myContact.lastname}</lastname>

</mx:request>
</mx:HTTPService>

When you call the HTTPService object’s send() method, the named parameters in the
<mx:request> tag set are sent with exactly the same HTTP request syntax as with the named
parameters syntax described previously.

To fully demonstrate the use of HTTPRequest parameters, you need an application
server. Chapter 28 describes using this feature in greater detail in the context of PHP.

Handling Cross-Domain Policy Issues
When Flash Player is asked to make a request to a domain other than the one from which the cur-
rent Flash document was downloaded, it needs to have permission from the target domain. This
issue frequently comes up when you’re using data from a third-party data provider, but it also can
be relevant when you have two or more domains in a single organization.

Figure 21.5 describes the circumstance in which cross-domain permission is required. If a Flex
application downloaded from one domain makes an HTTP request to a different domain, Flash
Player automatically seeks cross-domain permission via a request for a cross-domain policy file
from the remote domain.

The goal of the cross-domain security constraint is to prevent malicious code from “taking over”
the user’s Flash Player and making repeated requests to arbitrary Web-based resources.

Cross-domain permission is required for all HTTP requests to remote domains, including
attempts to retrieve content with the HTTPService component, make remote proce-

dure calls with the WebService and RemoteObject components, and download image or Flash
documents with the Image or SWFLoader components. The same restriction is applied to Flash doc-
uments that use the URLLoader or XMLSocket classes to connect to remote domains.

The cross-domain policy file is an XML file that is always named crossdomain.xml and placed
in the Web root of the remote domain. At runtime, when Flash Player determines that cross-domain
permission is required to execute a task, it tries to download this file from the remote domain’s root
folder. If it finds the file, it parses it and looks for permissions that have been granted to the domain
from which the Flash document or Flex application was originally downloaded.

TIPTIP

CROSS-REFCROSS-REF

641

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 641

FIGURE 21.5

Cross-domain permission is required in this circumstance

The cross-domain policy file looks like this:

<?xml version=”1.0”?>
<!DOCTYPE cross-domain-policy SYSTEM

“http://www.adobe.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>

<allow-access-from domain=”www.domain1.com” />
<allow-access-from domain=”domain2.com” />
<allow-access-from domain=”*.domain3.com” />

</cross-domain-policy>

Each <allow-access-from> element gives permission to Flash documents downloaded from
the domain named in the domain attribute to make HTTP requests to the server on which the
cross-domain file is stored.

Starting with Flash Player 7, the cross-domain policy rules enforce rules on a per-domain basis
without regard for partial combinations of host names and domain names. So, for example, if a

Flex application
running in the
Flash Player

This HTTP request
requires cross-domain

permission

Native domain Remote domain

Flex/Flash
document

642

Working with DataPart III

28_287644-ch21.qxp 6/23/08 11:49 PM Page 642

Flex application is downloaded from a URL starting with mydomain.com and the cross-domain
policy file has a declaration that allows access from www.mydomain.com, Flash Player does not
consider permission to have been granted. The domain names must match exactly, and there is no
DNS lookup for IP addresses.

Wildcard characters are supported, however. The following declaration would grant HTTP request
permission to documents downloaded from mydomain.com, www.mydomain.com, and any
other URL that ends with mydomain.com:

<allow-access-from domain=”*.mydomain.com” />

Complete information on creating a cross-domain security file, including how to handle
requests to secure pages from a Flash document that was loaded from a non-secure Web

page, is available on the Web at www.adobe.com/go/tn_14213.

Summary
In this chapter, I described how to use the HTTPService component to send and receive data
over the Web. You learned the following:

� The Flex framework contains three RPC components: the RemoteObject,
WebService, and HTTPService classes.

� Only the HTTPService component is completely portable among application servers,
because it can use any XML or plain text format for its messages.

� You can declare an HTTPService object in either MXML or ActionScript.

� You handle data returned from an HTTPService request with either binding expres-
sions or event handlers.

� The HTTPService component’s method property determines what type of HTTP
request is made.

� XML-formatted data is parsed automatically and delivered as either a tree of ActionScript
Object instances or an E4X-compatible XML object.

� Parameters can be passed with either an Object that serves as a collection of name/value
pairs or with bindings declared in MXML.

� Cross-domain constraint issues can be solved by placing a cross-domain policy file in the
Web root of the remote domain.

WEB RESOURCEWEB RESOURCE

643

Working with HTTPService and XML 21

28_287644-ch21.qxp 6/23/08 11:49 PM Page 643

28_287644-ch21.qxp 6/23/08 11:49 PM Page 644

X ML has become a lingua franca for data exchange on the Web. When
the XML standard was originally defined in 1998, its purpose was to
define a common set of syntax rules that could be applied to multi-

ple applications. XML isn’t a language in itself, so much as it’s a set of rules
that define how markup languages designed for data representation should
behave.

There have been a few attempts over the years to extend the XML recom-
mendation and go beyond the original version 1.0, but each attempt has
foundered. It’s generally agreed that the rules of XML as they currently stand
do what the standard should do, and each proposed addition has run into
some sort of opposition.

The developer tools for working with XML, however, have continued to
evolve. From the earliest XML processing APIs such as the Document Object
Model (DOM) and the Simple API for XML (SAX), to more recent innova-
tions such as JDOM for Java developers and the XML processing classes in
the .NET framework, organizations that are responsible for creating pro-
gramming languages and development platforms continue to improve the lot
of developers who work with XML. The goal is always to make it as easy to
parse and modify XML-formatted data as possible.

EcmaScript for XML (E4X) is one such toolkit. E4X was defined by Ecma
International in the ECMA-357 standard and is implemented as a part of
ActionScript 3. Any application running in Flash Player 9 or later has access
to the E4X API and can use its simple syntax to parse, extract data from, and
modify XML and XMLList objects stored in application memory.

In this chapter, I describe how to use E4X and ActionScript-based XML
classes to parse and modify XML-formatted data in Flex applications.

645

IN THIS CHAPTER
Understanding E4X

Creating an XML object

Using XMLList objects

Using the
XMLListCollection class

Parsing XML with E4X

Modifying XML with E4X

Working with namespaces

Managing XML with E4X

29_287644-ch22.qxp 6/23/08 11:50 PM Page 645

E4X also is implemented in other derivations of EcmaScript, including SpiderMonkey
(the JavaScript engine that’s embedded in the Gecko browser kernel) and Rhino

(Mozilla’s Java-based JavaScript engine).

To use the sample code for this chapter, import the chapter22.zip project from the
Web site files into any folder on your disk.

Using XML Classes
Flash documents and Flex applications written with ActionScript 2 had access to an XML class that
allowed the developer to extract data from an XML file or data packet. This object used Document
Object Model (DOM) programming to extract information.

DOM-style programming has certain advantages: The coding style is implemented in many lan-
guages, so if you know how to code with DOM in one language, you can easily adapt your skills to
another.

However, DOM programming tends to be verbose and require lots of extensive looping (loops
within loops within loops) to get to the data you want.

Consider this XML content:

<?xml version=”1.0”?>
<invoices>

<invoice>
<customer>Smith, Maria</customer>
<items>

<lineitem price=”21.41” quantity=”4”>Widget</lineitem>
<lineitem price=”2.11” quantity=”14”>Mouse</lineitem>
<lineitem price=”8.88” quantity=”3”>Wrench</lineitem>

</items>
</invoice>

</invoices>

Using the old-style XMLDocument and XMLNode objects, you would first “walk” the XML tree to
get a reference to the collection of elements you want to evaluate. Then, to locate a <lineitem>
element with a particular text node (the item description), you’d loop through the elements and
use conditional statements to evaluate each data item:

var arItems:Array=
xmlDocument.firstChild.firstChild.childNodes[1].childNodes;

var arResult:Array = new Array();
for (var i:int=0; i<xInvoices.length; i++)
{

var currentNode:XMLNode = arItems[i] as XMLNode;
if (currentNode.attributes.price == ‘21.41’)
{

ON the WEBON the WEB

TIPTIP

646

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 646

arResult.push(currentNode)
}

}

With E4X you would first assign the XML file’s root element to a new-style XML object. You can
then extract the element representing the “Widget” with the simple expression:

var xResult:XMLList = xInvoices..lineitem.(@price=21.41);

This example makes clear that E4X offers a much more concise and readable syntax for finding and
extracting data from an XML data structure.

The old XML class functionality was refactored into classes named XMLNode and
XMLDocument in ActionScript 3. These are considered “legacy” classes that allow you

to use DOM-style programming if you prefer. However, after developers understand and master the
use of E4X to accomplish XML processing tasks, they usually don’t go back.

In ActionScript 3, Flex developers can use the following XML classes to manage XML-formatted
data at runtime:

� XML: A new version of the XML class that supports E4X expressions to parse and modify
data at runtime. The XML class has only one root node.

� XMLList: A class representing an ordered set of XML objects. The XMLList class is simi-
lar to an Array in that it contains objects in fixed order. Also, like an Array, it doesn’t
have a complete API to manage, modify, and reliably execute bindings when its data
changes at runtime.

� XMLListCollection: A “wrapper” class that manages an ArrayList. Just as the
ArrayCollection provides sorting, filtering, and other advanced features for manag-
ing an Array, the XMLListCollection implements a powerful API that manages an
XMLList and reliably executes bindings when its data changes at runtime.

The first step in using these classes is to create a new-style XML object.

Creating an XML object
The XML class represents a single XML node and can be created in a number of ways:

� With a hard-coded XML structure in an ActionScript statement

� With the MXML <mx:XML> tag

� By parsing an XML-formatted String value

� By retrieving XML-formatted data with the HTTPService component with its
resultFormat property set to e4x

TIPTIP

647

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 647

Declaring a hard-coded XML structure in ActionScript
You can declare an XML object and set its data in a single statement by using a value in the assign-
ment statement structured as XML:

var sales:XML =
<sales>

<item type=”apples” price=”4.53” quantity=”6”/>
<item type=”oranges” price=”3.35” quantity=”10”/>
<item type=”pears” price=”5.16” quantity=”3”/>

</sales>;

Notice that the XML structure isn’t wrapped in quotes. When using an XML object, the
data type is XML, not a String value, so quotation marks aren’t required; in fact, using

quotation marks would cause a syntax error.

You can use binding expressions within attribute and element values to populate data
into an XML structure at the moment of its creation.

The sales object in this example points to the XML structure’s root element. The E4X expression
that refers to the object’s <item> elements is:

sales.item

Parsing an XML-formatted String value
If you have an XML-formatted string value that you’ve read from a server-based data source (for
example, as a string stored in a database table column), you can transform the string into an XML
object by passing the string value in a call to the XML class’s constructor method.

For example, this code creates a well-formed XML data packet as a String variable (remember,
because it’s a String and not XML yet, you do need to use quotation marks):

var stringData:String = ‘<sales>’ +
‘<item type=”apples” price=”4.53” quantity=”6”/>’ +
‘<item type=”oranges” price=”3.35” quantity=”10”/>’ +
‘<item type=”pears” price=”5.16” quantity=”3”/>’ +
‘</sales>’;

To transform the stringData variable into an XML object that can be managed with E4X, declare
the XML object with a call to its constructor method and pass the String as the only argument:

var xmlData:XML = new XML(stringData);

As with the first example, the XML object points to the XML document’s root element, so the E4X
expression xmlData.item refers to the set of <item> elements that are direct children of the root.

Declaring an XML object in MXML
The <mx:XML> tag declares an XML object using nested XML markup. The tag’s format property
is set either to xml to create a legacy XMLNode object or to e4x (the default) to create an XML

TIPTIP

TIPTIP

648

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 648

object that can be managed with E4X expressions. The following code declares the XML object with
this MXML syntax:

<mx:XML format=”e4x” id=”xmlData”>
<sales>

<item type=”apples” price=”4.53” quantity=”6”/>
<item type=”oranges” price=”3.35” quantity=”10”/>
<item type=”pears” price=”5.16” quantity=”3”/>

</sales>
</mx:XML>

As with the version declared in ActionScript, the XML object’s id is a reference to the root element
(not an XML document), so the expression xmlData.item refers to the set of <item> elements
that are direct children of the root.

Importing XML with HTTPService
The HTTPService component’s resultFormat property can be set to e4x, causing the
retrieved data to be represented as an XML object. The HTTPService object, for example,
retrieves an external XML-formatted file:

<mx:HTTPService id=”salesService”
url=”data/sales.xml”
resultFormat=”e4x”
result=”resultHandler(event)”/>

In the result event handler function, you capture the returned data by casting event.result
as an XML object:

private var xmlData:XML;
private function resultHandler(event:ResultEvent):void
{

xmlData = event.result as XML;
}

Again, the xmlData object refers to the root element of the retrieved XML document, not to the
document itself.

Controlling parsing with XML properties
An XML object refers to a single XML element node, whether it’s the XML document’s root element
or one of its children.

The XML class supports the following static properties that determine how it parses and exposes
data to E4X expressions:

� ignoreComments: When true, this expression strips comments out of an XML string
during the parsing process.

649

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 649

� ignoreProcessingInstructions: When true, this expression strips processing
instructions out of an XML string during the parsing process.

� ignoreWhitespace: When true, this expression removes beginning and ending
white space characters from text nodes during the parsing process.

To use any of these static properties, set their value before creating an XML object. For example, the
following XML packet contains extra white space before and after the data.

<data>
<firstname>Joe </firstname>

</data>

By default, the extra white space is removed during parsing, because the ignoreWhitespace prop-
erty is set to true by default. To preserve white space around text nodes, set ignoreWhitespace
to false before creating the XML object:

XML.ignoreWhitespace = false;
var xmlData=<data>

<firstname>Joe </firstname>
</data>;

Now the E4X expression xmlData.firstname returns the value of the text node, and the extra
spaces are preserved.

Using the XMLList class
The XMLList class is an ordered set of XML or XMLList objects. Like an ActionScript Array,
it maintains the objects in the order of initial declaration or parsing, or in the most recent order
based on changes you’ve made to the data through calls to object methods (or, in this case, E4X
expressions).

You can create an XMLList object with an explicit MXML declaration that nests multiple XML nodes:

<mx:XMLList id=”xList”>
<item type=”apples” price=”4.53” quantity=”6”/>
<item type=”oranges” price=”3.35” quantity=”10”/>
<item type=”pears” price=”5.16” quantity=”3”/>

</mx:XMLList>

Or, if you already have an XML object in memory, you can use an E4X expression that refers to a set
of elements. For example, if an XML object named xmlData contains two or more <item> child
elements, the expression xmlData.item returns an XMLList object:

var xmlData:XML =
<sales>

<item type=”apples” price=”4.53” quantity=”6”/>
<item type=”oranges” price=”3.35” quantity=”10”/>
<item type=”pears” price=”5.16” quantity=”3”/>

</sales>;
var salesList:XMLList = xmlData.item;

650

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 650

This expression xmlData.item uses the dot (.) operator to navigate to the XML object’s named
child element. If only one element with the name (in this case, item) exists, the expression returns
an XML object. When more the one element of the same name is found, the expression returns an
XMLList.

When an XMLList contains only a single XML object, you can call any methods or
properties of the XML class as though they were members of the XMLList. When the

XMLList contains more than a single XML object, you can only call methods and properties imple-
mented by the XMLList class.

Using the XMLListCollection class
The XMLListCollection class is a wrapper for the XMLList, in the same way the
ArrayCollection wraps an Array. Like ArrayCollection, it extends the
ListCollectionView superclass. As a result, it provides a rich API for storing, sorting,
filtering, and modifying its contained data.

The XMLListCollection class’s source property is typed as an XMLList (again like the
ArrayCollection and Array), so you can instantiate and initialize an XMLListCollection
object and associate it with an XMLList in a number of ways:

� Assign the XMLList to the source property after first instantiating the
XMLListCollection:

[Bindable]
private var xCollection:XMLListCollection =

new XMLListCollection();
xCollection.source = xmlList;

� Pass the XMLList to the XMLListCollection constructor method:

[Bindable]
private var xCollection:XMLListCollection =

new XMLListCollection(xmlList);

� Declare the XMLListCollection in MXML, and assign the source with an attribute
and a binding expression:

<mx:XMLListCollection id=”xCollection” source=”{xmlList}”/>

As with all MXML declarations, the MXML version of the object is automatically instanti-
ated and made bindable. The ActionScript versions must be explicitly marked as bindable

if you want to use binding expressions to update other components when the data changes at runtime.

In addition to the ListCollectionView API that allows you to add, update, and manipulate
data at runtime, the XMLListCollection supports a small set of methods that are specifically
designed to access hierarchical data. For example, the attribute() function allows you to search
the XMLList for all nested XML child objects that share a named attribute. XMLListCollection
also implements a copy() method that returns a “deep” copy of its XMLList.

TIPTIP

TIPTIP

651

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 651

E4X expressions can be called only from an XML or XMLList object, not from an
XMLListCollection. The XMLListCollection is typically used to represent the

final result of an E4X expression and pass it to visual controls or other application components
through bindings.

Using E4X Expressions
EcmaScript for XML (E4X) is an expression language that allows you to extract and manipulate
data stored in XML objects with simple expressions. By using E4X, you can eliminate the signifi-
cantly more verbose ActionScript code that would otherwise be required.

The specification for E4X is available at www.ecma-international.org/
publications/standards/Ecma-357.htm.

The examples in this section use the invoices.xml shown in Listing 22.1. This file uses a multi-
level hierarchical data structure to represent simple invoice information.

LISTING 22.1

A file named invoices.xml representing a set of business invoices

<?xml version=”1.0”?>
<invoices>

<invoice>
<customer>

<firstname>Maria</firstname>
<lastname>Smith</lastname>

</customer>
<items>

<lineitem price=”21.41” quantity=”4”>Widget</lineitem>
<lineitem price=”2.11” quantity=”14”>Mouse</lineitem>
<lineitem price=”8.88” quantity=”3”>Wrench</lineitem>

</items>
</invoice>
<invoice>

<customer>
<firstname>John</firstname>
<lastname>Jones</lastname>

</customer>
<items>

<lineitem price=”7.41” quantity=”84”>Mouse</lineitem>
<lineitem price=”0.91” quantity=”184”>Mousepad</lineitem>

</items>
</invoice>

</invoices>

WEB RESOURCEWEB RESOURCE

TIPTIP

652

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 652

The code in Listing 22.1 is available in the Web site files as invoices.xml in the
src/data folder of the chapter22 project.

The structure of the sample XML file in Listing 22.1 intentionally mixes values repre-
sented in attributes and text nodes. A well-structured XML file would be more consis-

tent; this one is designed to represent a varied set of parsing challenges.

Extracting data from XML objects
You can extract data from an XML object using an E4X expression that mixes various operators and
data comparisons. In this section, I describe each operator and expression and provide code samples.

E4X expressions are a part of ActionScript and are 100 percent accurate only when used
in their compiled form. Some programmers have tried to create a runtime E4X parser.

For one such useful application, try Michael Labriola’s E4XParser component, described at
www.adobe.com/devnet/flex/articles/e4x_print.html. Use these with care and lots of
testing, however; runtime E4X parsers don’t handle all possible E4X expressions and occasionally
return different results than when the same expression is evaluated in a compiled Flex application.

Using dot notation
As described previously, an ActionScript XML object that’s been created from XML notation refers
to the structure’s root element, not to the XML document itself. If an HTTPService component
imports the XML document in Listing 22.1 and passes the ResultEvent object to an event han-
dler function, the expression event.result refers to the <invoices> element. You typically
save the returned data to a variable typed as XML and then use E4X expressions to extract data as
needed:

[Bindable]
private var xInvoices:XML;
private function resultHandler(event:ResultEvent):void
{

xInvoices = event.result as XML;
}

Starting at the root element, you then “walk” down the XML hierarchy one level at a time using
simple dot notation and element names. So, for example, this code extracts all elements named
<invoice> that are child elements of the root:

xReturn = xInvoices.invoice;

The returned XMLList looks like this:

<invoice>
<customer>

<firstname>Maria</firstname>
<lastname>Smith</lastname>

</customer>

TIPTIP

NOTENOTE

ON the WEBON the WEB

653

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 653

<items>
... all <lineitem> elements ...

</items>
</invoice>
<invoice>

<customer>
<firstname>John</firstname>
<lastname>Jones</lastname>

</customer>
<items>

... all <lineitem> elements ...
</items>

</invoice>

Using array notation
When two or more elements have the same name at the same level of the XML hierarchy, you can
refer to individual items as Array elements. As with all ActionScript array and index notation,
indexing starts at 0. This statement extracts the second element named invoice:

xReturn = xInvoices.invoice[1];

The resulting XML object looks like this:

<invoice>
<customer>

<firstname>John</firstname>
<lastname>Jones</lastname>

</customer>
<items>

<lineitem price=”7.41” quantity=”84”>Mouse</lineitem>
<lineitem price=”0.91” quantity=”184”>Mousepad</lineitem>

</items>
</invoice>

After you’ve found an element using array notation, you can continue down the XML hierarchy
with extended dot notation. This code extracts the customer element that’s a child of the first
invoice element:

xReturn = xInvoices.invoice[0].customer

The resulting XML object looks like this:

<customer>
<firstname>Maria</firstname>
<lastname>Smith</lastname>

</customer>

654

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 654

An E4X expression can return either an XML or XMLList object, depending on whether the expression returns
a single node or more than one node. This can cause typecasting issues, because you can’t use
implicit coercion to automatically cast XML as XMLList, or vice versa.

The solution: Both classes are directly extended from the ActionScript Object class, so if you’re
using a single variable that will accept either type of result, cast it as Object:

var xReturn:Object;

The consequence of this approach is that as you code, you won’t get as much assistance from Flex
Builder and the compiler (in terms of code completion and compile-time syntax checking), but as
long as you code correctly, everything works fine at runtime.

Using the descendant accessor operator
A single dot (.) causes the expression to look at direct child elements of the current XML object.
You also can do a deep search of the XML hierarchy for elements by their names with the double-
dot (..) descendant accessor operator. This allows you to search for all elements of the same
name, regardless of their position or how many parent elements there are between the current
element and the one you’re looking for.

This code extracts all <customer> elements regardless of their position in the content:

xReturn = xInvoices..customer;

The resulting XMLList object looks like this:

<customer>
<firstname>Maria</firstname>
<lastname>Smith</lastname>

</customer>
<customer>

<firstname>John</firstname>
<lastname>Jones</lastname>

</customer>

When an E4X expression doesn’t find any results, it doesn’t return null or undefined
as you might expect. Instead, it returns an empty XMLList object. You can check

whether you got results by calling the object’s length() method and inspecting the result:

if (xReturn.length() == 0)
{

errorMessage = “No XML nodes were found”;
}

The length() method is implemented in both the XML and XMLList classes, so you can safely call
it without knowing in advance which type of object you’re working with.

TIPTIP

655

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 655

Filtering XML data with predicate expressions
A predicate expression lets you filter data in an XML object, accomplishing tasks similar to the
WHERE clause in an SQL statement. The predicate expression itself is an ActionScript comparison
expression wrapped in parentheses. You append the predicate to the part of the E4X expression
that indicates what data you want to return, separated with a dot operator.

This ActionScript extracts all <customer> elements that have a <lastname> matching the
String value Jones:

xReturn = xInvoices..customer.(lastname==’Jones’)

The resulting XML node looks like this:

<customer>
<firstname>John</firstname>
<lastname>Jones</lastname>

</customer>

Notice that the predicate expression uses the ActionScript == equality operator, not the
single equals (=) assignment operator. If you use the assignment operator in this expres-

sion, it results in changing all <lastname> elements’ text nodes to Jones and returning them all as
an XMLList.

You also can filter on values stored as text nodes in elements. For example, the XML structure sets
<lineitem> descriptions as text nodes:

<items>
<lineitem price=”21.41” quantity=”4”>Widget</lineitem>
<lineitem price=”2.11” quantity=”14”>Mouse</lineitem>
<lineitem price=”8.88” quantity=”3”>Wrench</lineitem>

</items>

You can refer to an element’s toString() method in a predicate expression to return the node
value instead of the XML node itself and then compare the text node’s value to any other value.
This code extracts all <lineitem> elements whose text nodes equal the String value Mouse:

xReturn = xInvoices..lineitem.(toString()==’Mouse’);

The result is an XMLList that looks like this:

<lineitem price=”2.11” quantity=”14”>Mouse</lineitem>
<lineitem price=”7.41” quantity=”84”>Mouse</lineitem>

You also can compare values to an element’s attributes. You refer to attributes using the @ character
as a prefix to the attribute’s name. This command extracts all <lineitem> elements where the
price is less than 8:

xReturn = xInvoices..lineitem.(@price < 8);

CAUTION CAUTION

656

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 656

The result is an XMLList that looks like this:

<lineitem price=”2.11” quantity=”14”>Mouse</lineitem>
<lineitem price=”7.41” quantity=”84”>Mouse</lineitem>
<lineitem price=”0.91” quantity=”184”>Mousepad</lineitem>

When you compare values in an E4X expression, typecasting of literal numeric expres-
sions depends on whether you wrap the expression in quotation marks. This version of

the expression would execute a String-based filter, because the literal value is wrapped in quota-
tion marks:

xReturn = xInvoices..lineitem.(@price < ‘8’);

The resulting XMLList includes all <lineitem> elements where the first character of the price
attribute comes before the character ‘8’ in terms of alphanumeric sorting:

<lineitem price=”21.41” quantity=”4”>Widget</lineitem>
<lineitem price=”2.11” quantity=”14”>Mouse</lineitem>
<lineitem price=”7.41” quantity=”84”>Mouse</lineitem>
<lineitem price=”0.91” quantity=”184”>Mousepad</lineitem>

This pattern follows the JavaScript standard of typecasting literal values based on how they’re
expressed. A numeric literal with quotation marks is actually a String, while the same value with-
out the quotation marks is a Number.

The application in Listing 22.2 tests each of the expressions described in this section and returns
the result to a TextArea control. It uses an ActionScript helper class that contains all the expres-
sions being tested.

LISTING 22.2

A demo application for testing E4X expressions

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”horizontal” creationComplete=”initApp()”>
<mx:Script>

<![CDATA[
import helpers.E4XDemoHelper;
import mx.rpc.events.ResultEvent;
import mx.collections.ArrayCollection;
[Bindable]
private var acExpressions:ArrayCollection;
[Bindable]
private var xInvoices:XML;
private function initApp():void
{

invoiceService.send();
acExpressions = new ArrayCollection(

continued

TIPTIP

657

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 657

LISTING 22.2 (continued)

E4XDemoHelper.getExpressionsArray());
XML.prettyIndent=2;

}
private function resultHandler(event:ResultEvent):void
{

xInvoices = event.result as XML;
}
private function evaluate():void
{

var xReturn:Object = E4XDemoHelper.evalE4X(
xInvoices, expList.selectedIndex);

if (xReturn.length() == 0)
{

resultString.text = “No XML nodes were found”;
}
else
{

resultString.text = xReturn.toXMLString();
}

}
]]>
</mx:Script>
<mx:HTTPService id=”invoiceService”

url=”data/invoices.xml” resultFormat=”e4x”
result=”resultHandler(event)”/>

<mx:VDividedBox width=”50%” height=”100%”>
<mx:Panel title=”XML being searched:” width=”100%” height=”100%”>

<mx:TextArea width=”100%” height=”100%” editable=”false”
text=”{xInvoices.toXMLString()}”/>

</mx:Panel>
<mx:Panel id=”expListPanel” title=”Select an E4X expression:”

width=”100%” height=”100%” >
<mx:List id=”expList” dataProvider=”{acExpressions}”

width=”100%” rowCount=”{acExpressions.length}”
change=”evaluate()”/>

</mx:Panel>
</mx:VDividedBox>
<mx:Panel title=”Result as an XML String” height=”100%”

width=”100%”>
<mx:TextArea width=”100%” height=”100%” id=”resultString”/>

</mx:Panel>
</mx:Application>

The code in Listing 22.3 is available in the Web site files as E4XParsing.xml in the
src folder of the chapter22 project.ON the WEBON the WEB

658

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 658

The helper E4XParsingHelper class in Listing 22.3 contains all the test expressions in two
forms: The Array of Strings is used by the demo application to display the expressions being
evaluated, while the static evalE4X() method executes precompiled E4X expressions as
requested by the user.

LISTING 22.3

The E4XParsingHelper class, containing all expressions being tested in the demo application

package helpers
{

public class E4XParsingHelper
{

public var arExpressions:Array;
public static function getExpressionsArray():Array
{

var arExpressions:Array = new Array();
arExpressions.push(“xInvoices.invoice”);
arExpressions.push(“xInvoices.invoice[1]”);
arExpressions.push(“xInvoices.invoice[0].customer”);
arExpressions.push(“xInvoices..customer”);
arExpressions.push(“xInvoices..customer.(lastname==’Jones’)”);
arExpressions.push(“xInvoices..lineitem.(toString()==’Mouse’)”);
arExpressions.push(“xInvoices..lineitem.(@price < 8)”);
arExpressions.push(“xInvoices..lineitem.(@price < ‘8’)”);
return arExpressions;

}
public static function evalE4X(xInvoices:XML, expIndex:int):Object
{

switch (expIndex)
{

case0: return xInvoices.invoice;
case1: return xInvoices.invoice[1];
case2: return xInvoices.invoice[0].customer;
case3: return xInvoices..customer;
case4: return xInvoices..customer.(lastname==’Jones’);
case5: return xInvoices..lineitem.(toString()==’Mouse’);
case6: return xInvoices..lineitem.(@price < 8);
case7: return xInvoices..lineitem.(@price < ‘8’);
default: return new XMLList();

}
}

}
}

659

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 659

The code in Listing 22.3 is available in the Web site files as E4XParsingHelper.as in
the src/helpers folder of the chapter22 project.

You can add new test expressions to the helper class by adding a new item to the
Array in the getExpressionsArray() method and adding an equivalent case

statement in the evalE4X() method.

Modifying data in XML objects
E4X expressions also can be used to add, remove, and modify elements in an XML object. For
example, if an XML object starts with a simple root element, it’s a simple matter to add both ele-
ments and attributes, and to change the values of existing attributes and text nodes.

Changing existing values
You can change existing values in an XML object by using an E4X expression to identify one or
more XML nodes and then assign a new value to them. For example, the XML structure that was
used as a starting point in the preceding section has a root element with child <invoice>
elements. Each invoice has customer.firstname and customer.lastname nodes.

The following code changes the firstname of the first invoice’s customer to a new value of “Harry”:

xInvoices.invoice[0].customer.firstname=’Harry’;

After modification, the <customer> element for the first <invoice> looks like this:

<customer>
<firstname>Harry</firstname>
<lastname>Smith</lastname>

</customer>

You also can modify existing attribute values by referring to the attribute name with the @ character
as a prefix. This code changes the price attribute of the first <lineitem> in the first <invoice>:

xInvoices.invoice[0].items.lineitem[0].@price=12.50;

The <lineitem> element looks like this after the code has been executed:

<lineitem price=”12.5” quantity=”4”>Widget</lineitem>

Notice that the String representation of the value is truncated to remove the trailing zero. That’s
because, with no quotation marks around the numeric value on the right side of the assignment
operator, it’s first evaluated as a Number and then saved as a String in the XML. You can force
formatting of numeric values by wrapping quotation marks around the literal expression:

xInvoices.invoice[0].items.lineitem[0].@price=’12.50’;

The modified <lineitem> element now retains the formatting, as shown here:

<lineitem price=”12.50” quantity=”4”>Widget</lineitem>

TIPTIP

ON the WEBON the WEB

660

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 660

Adding elements and attributes
The same E4X syntax that modifies existing elements and attributes can be used to add new nodes.
Simply put, if a node to which you refer in an assignment doesn’t already exist, the assignment
creates it.

This command adds a new <city> element to the first <customer> element and sets its value:

xInvoices.invoice[0].customer.city=’Seattle’;

After the code has been executed, the resulting <customer> element looks like this:

<customer>
<firstname>Maria</firstname>
<lastname>Smith</lastname>
<city>Seattle</city>

</customer>

The same approach works with attributes. This command adds an inStock attribute to the first
<lineitem> in the first invoice:

xInvoices.invoice[0].items.lineitem[0].@inStock=true

After the code is executed, the modified <lineitem> element looks like this:

<lineitem price=”21.41” quantity=”4”
inStock=”true”>Widget</lineitem>

You can make an assignment to only one XML object at a time. If the E4X expression
on the left side of an assignment identifies more than one XML element, a runtime

error occurs.

Deleting elements and attributes
The delete operator is used to remove data from an XML object at runtime. You start with the
delete operator at the beginning of the statement and follow it with an E4X expression that iden-
tified the node you want to remove.

This command removes the second invoice in the XML object:

delete xInvoices.invoice[1];

In some cases, you can remove whole sets of elements. This command empties the items element
of the first invoice:

delete xInvoices.invoice[0].items.lineitem;

After the code is executed, the first <invoice> looks like this:

<invoice>
<customer>

<firstname>Maria</firstname>

CAUTION CAUTION

661

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 661

<lastname>Smith</lastname>
</customer>
<items/>

</invoice>

Attributes also can be removed with the delete operator. This code removes the quantity attrib-
ute from the first <lineitem> in the first <invoice>.

delete xInvoices.invoice[0].items.lineitem[0].@quantity;

After the code is executed, the modified <lineitem> element looks like this:

<lineitem price=”21.41”>Widget</lineitem>

All E4X expressions that modify XML objects return a reference to the modified XML.
For example, this statement both modifies an XML object and returns a reference to the

modified data:

var xNew:XML = xInvoices.invoice[0].customer.city=’Seattle’;

The application in Listing 22.4 uses a helper class, E4XChangingHelper, to demonstrate each of
the expressions described in this section.

LISTING 22.4

An application that demonstrates modifying data with E4X

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”horizontal” creationComplete=”initApp()”>
<mx:Script>

<![CDATA[
import helpers.E4XChangingHelper;
import mx.rpc.events.ResultEvent;
import mx.collections.ArrayCollection;
[Bindable]
private var acExpressions:ArrayCollection;
[Bindable]
private var xInvoices:XML;
private function initApp():void
{

invoiceService.send();
acExpressions = new ArrayCollection(

E4XChangingHelper.getExpressionsArray());
XML.prettyIndent=2;

}
private function resultHandler(event:ResultEvent):void
{

xInvoices = event.result as XML;

TIPTIP

662

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 662

}
private function evaluate():void
{

var tempXML:XML = new XML(xInvoices.toXMLString());
E4XChangingHelper.evalE4X(tempXML, expList.selectedIndex);
resultString.text = tempXML.toXMLString();

}

]]>
</mx:Script>
<mx:HTTPService id=”invoiceService”

url=”data/invoices.xml” resultFormat=”e4x”
result=”resultHandler(event)”/>

<mx:VDividedBox width=”50%” height=”100%”>
<mx:Panel title=”XML being searched:” width=”100%” height=”100%”>

<mx:TextArea width=”100%” height=”100%” editable=”false”
text=”{xInvoices.toXMLString()}”/>

</mx:Panel>
<mx:Panel id=”expListPanel” title=”Select an E4X expression:”

width=”100%” height=”100%” >
<mx:List id=”expList” dataProvider=”{acExpressions}”

width=”100%” rowCount=”{acExpressions.length}”
change=”evaluate()”/>

</mx:Panel>
</mx:VDividedBox>
<mx:Panel title=”Result as an XML String” height=”100%” width=”50%”>

<mx:TextArea width=”100%” height=”100%” id=”resultString”/>
</mx:Panel>

</mx:Application>

The code in Listing 22.4 is available in the Web site files as E4XChanging.mxml in the
src folder of the chapter22 project.

The ActionScript helper class in Listing 22.5 contains all the expressions that the application is
designed to evaluate.

LISTING 22.5

A helper class containing expressions for modifying XML data

package helpers
{

public class E4XChangingHelper
{

public var arExpressions:Array;
public static function getExpressionsArray():Array

continued

ON the WEBON the WEB

663

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 663

LISTING 22.5 (continued)

{
var arExpressions:Array = new Array();

arExpressions.push(“xInvoices.invoice[0].customer.firstname=’Harry’”)
;

arExpressions.push(
“xInvoices.invoice[0].items.lineitem[0].@price=12.50”);

arExpressions.push(
“xInvoices.invoice[0].items.lineitem[0].@price=’12.50’”);

arExpressions.push(
“xInvoices.invoice[0].customer.city=’Seattle’”);

arExpressions.push(
“xInvoices.invoice[0].items.lineitem[0].@inStock=true”);

arExpressions.push(“delete xInvoices.invoice[1]”);
arExpressions.push(“delete xInvoices.invoice[0].items.lineitem”);
arExpressions.push(

“delete xInvoices.invoice[0].items.lineitem[0].@quantity”);
return arExpressions;

}
public static function evalE4X(xInvoices:XML, expIndex:int):void
{

switch (expIndex)
{

case 0:
xInvoices.invoice[0].customer.firstname=’Harry’; break;
case 1:
xInvoices.invoice[0].items.lineitem[0].@price=12.50; break;
case 2:
xInvoices.invoice[0].items.lineitem[0].@price=’12.50’; break;
case 3:
xInvoices.invoice[0].customer.city=’Seattle’; break;
case 4:
xInvoices.invoice[0].items.lineitem[0].@inStock=true; break;
case 5:
delete xInvoices.invoice[1]; break;
case 6:
delete xInvoices.invoice[0].items.lineitem; break;
case 7:
delete xInvoices.invoice[0].items.lineitem[0].@quantity;
break;

}
}

}
}

664

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 664

The code in Listing 22.5 is available in the Web site files as E4XPChangingHelper.as
in the src/helpers folder of the chapter22 project.

You can add new test expressions to the helper class by adding a new item to the
Array in the getExpressionsArray() method and adding an equivalent case

statement in the evalE4X() method.

Working with Namespaces
XML namespaces constitute a simple way to distinguish and group element and attribute names as
members of groups, essentially allowing for the usage of different “flavors” of XML in a single docu-
ment. For example, MXML uses a default namespace to identify the MXML language to the Flex
compiler (http://www.adobe.com/2006/mxml) and allows you to create your own custom
namespaces to identify directories as packages containing classes and components, such as in the
declaration xmlns:forms=”forms.*”.

E4X allows you to incorporate namespace notation into expressions that identify elements for
extraction or modification. There are two basic steps to using namespaces in E4X:

� Create a namespace object that represents a namespace in the XML content you’re parsing
or modifying.

� Refer to the namespace object as a prefix for the elements or attributes you want to locate.

The following XML packet uses three namespaces to distinguish elements that share a name:

private var xTravel:XML =
<travel

xmlns:train=”http://www.bardotech.com/train”
xmlns:plane=”http://www.bardotech.com/airplane”
xmlns:car=”http://www.bardotech.com/automobile”>
<journey>

<train:traveltime>8 hours</train:traveltime>
<plane:traveltime>1 hour</plane:traveltime>
<car:traveltime>3 days</car:traveltime>

</journey>
</travel>

To extract a <traveltime> element and distinguish it from the other elements of the same name,
first declare namespace objects that are mapped to the namespaces in the XML data. You can do
this in two ways.

If you want to identify namespaces by their URI, use the ActionScript’s namespace keyword to
create a namespace object by the URI:

private namespace train = “http://www.bardotech.com/train”;
private namespace plane = “http://www.bardotech.com/airplane”;
private namespace car = “http://www.bardotech.com/automobile”;

TIPTIP

ON the WEBON the WEB

665

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 665

Alternatively, if you want to identify namespaces by their prefixes as assigned in the XML structure,
create variables typed as the Namespace class. Assign each namespace by calling the XML object’s
namespace() method and passing the selected namespace prefix:

private var train:Namespace = xTravel.namespace(“train”);
private var plane:Namespace = xTravel.namespace(“plane”);
private var car:Namespace = xTravel.namespace(“car”);

The Namespace class is a top level Flash Player class, meaning that it isn’t a member of
any particular package and can be used without requiring an import statement.

Notice that the names of the ActionScript namespace objects match the namespace pre-
fixes in the XML content. This isn’t technically necessary; as long as the namespace URI

or prefix match, XML elements will be identified correctly. But consistency between data and code
notation certainly doesn’t hurt.

After the namespace objects have been declared, you can use them as element and attribute pre-
fixes in E4X expressions. The namespace object’s name is separated from the element or attribute
name with the :: operator, to qualify the node as being a member of the selected namespace.

The following code extracts the <traveltime> element that’s qualified with the airplane
namespace:

traveltime = xTravel.journey.plane::traveltime;

The application in Listing 22.6 declares an XML structure and then allows the user to indicate
which of the three <traveltime> values she wants to see.

LISTING 22.6

Using XML namespaces in E4X

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Style>

RadioButton, Label {
font-size:10;
font-weight:bold;

}
</mx:Style>
<mx:Script>

<![CDATA[
[Bindable]
private var travelTime:String=”Choose a vehicle”;
private var xTravel:XML =
<travel xmlns:train=”http://www.bardotech.com/train”

xmlns:plane=”http://www.bardotech.com/airplane”

TIPTIP

TIPTIP

666

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 666

xmlns:car=”http://www.bardotech.com/automobile”>
<journey>

<train:traveltime>8 hours</train:traveltime>
<plane:traveltime>1 hour</plane:traveltime>
<car:traveltime>3 days</car:traveltime>

</journey>
</travel>
private var train:Namespace = xTravel.namespace(“train”);
private var plane:Namespace = xTravel.namespace(“plane”);
private var car:Namespace = xTravel.namespace(“car”);
private function getTravelTime():void
{

var vehicle:String = vehicleGroup.selectedValue as String;
switch (vehicle)
{

case “plane”:
travelTime = xTravel.journey.plane::traveltime;
break;

case “train”:
travelTime = xTravel.journey.train::traveltime;
break;

case “car”:
travelTime = xTravel.journey.car::traveltime;

}
}

]]>
</mx:Script>
<mx:Panel title=”Select a vehicle” width=”135”

paddingBottom=”5” paddingLeft=”5” paddingRight=”5” paddingTop=”5”>
<mx:RadioButton label=”Plane” value=”plane”

groupName=”vehicleGroup”/>
<mx:RadioButton label=”Train” value=”train”

groupName=”vehicleGroup”/>
<mx:RadioButton label=”Automobile” value=”car”

groupName=”vehicleGroup”/>
<mx:RadioButtonGroup id=”vehicleGroup” itemClick=”getTravelTime()”/>
<mx:ControlBar>

<mx:Label text=”{travelTime}”/>
</mx:ControlBar>

</mx:Panel>
</mx:Application>

The code in Listing 22.6 is available in the Web site files as E4XWithNamespaces.mxml
in the src folder of the chapter22 project.

Figure 22.1 shows the resulting application, displaying the results of an E4X expression with
namespaces to the user.

ON the WEBON the WEB

667

Managing XML with E4X 22

29_287644-ch22.qxp 6/23/08 11:50 PM Page 667

FIGURE 22.1

An application using E4X with namespaces

Summary
In this chapter, I described how to use EcmaScript for XML to parse and modify data stored in XML
objects in Flex application memory at runtime. You learned the following:

� E4X stands for EcmaScript for XML.

� E4X is a standard of Ecma International that is implemented in ActionScript 3 and in
certain other languages and platforms.

� E4X allows you to parse, extract, and modify XML-based data at runtime with simple,
concise expressions.

� E4X is a part of the compiled ActionScript language and is not designed for runtime eval-
uation of arbitrary expressions.

� Array-style syntax is combined with various operators to “walk” the XML hierarchy.

� The delete operator removes elements and attributes at runtime.

� XML with namespaces can be accurately parsed using namespace objects and the name-
space qualification operator (::).

668

Working with DataPart III

29_287644-ch22.qxp 6/23/08 11:50 PM Page 668

Integrating Flex
Applications with

Application Servers
and the Desktop

IN THIS PART
Chapter 23
Working with SOAP-Based Web
Services

Chapter 24
Integrating Flex Applications with
BlazeDS and Java

Chapter 25
Using the Message Service with
BlazeDS

Chapter 26
Integrating Flex Applications with
ColdFusion

Chapter 27
Using the ColdFusion Extensions
for Flex Builder

Chapter 28
Integrating Flex Applications with
ASP.NET

Chapter 29
Integrating Flex Applications with
PHP

Chapter 30
Deploying Desktop Applications
with AIR

30_287644-pp04.qxp 6/23/08 11:51 PM Page 669

30_287644-pp04.qxp 6/23/08 11:51 PM Page 670

In Chapter 21, I described the use of the Flex HTTPService component
to make requests and handle responses from Web resources formatted as
arbitrary XML data structures. The strength of REST and generic XML

is that you can create and use Web services that employ any arbitrary data
structure. The potential weakness of this strategy is that each application
must have specific knowledge of the particular XML structure being used.

SOAP-based Web services take a different approach: They employ industry-
standard XML languages to format both messages and metadata. The SOAP
language itself is used to format requests and responses between a client
and a server, while WSDL (Web Services Description Language) is used to
declare to Web service consumers the structure and capabilities of Web
service operations.

The strength of SOAP-based Web services lies in their industry-level standard-
ization and their ability to strongly data type parameter and return values in a
way that RESTful operations typically can’t.

SOAP servers and clients are designed to be interoperable, so that you can
easily call functions (known in SOAP as operations) from objects on remote
servers without knowing what platform is hosting the service or what pro-
gramming language was used to develop it, because many support SOAP.
And, as data is passed between client and server, its data types are main-
tained as long as both tiers of the application use compatible types.

The term SOAP started as an acronym for Simple Object
Access Protocol. Starting with version 1.2, it became

simply SOAP.

TIPTIP

671

IN THIS CHAPTER
Understanding SOAP

Understanding WSDL

Using the WebService
component

Handling WebService events

Using Flex Builder’s Web service
introspection tool

Generating Web service proxy
classes

Using Web service proxy classes
in MXML and ActionScript

Working with SOAP-Based
Web Services

31_287644-ch23.qxp 6/23/08 11:51 PM Page 671

The SOAP and WSDL recommendations are managed by the World Wide Web
Consortium (W3C), which also manages the recommendations for XML, HTML, and

HTTP. The most recent recommendations are available at www.w3.org/TR/soap and
www.w3.org/TR/wsdl.

For a history of SOAP, check out Dave Winer’s “Dave’s History of SOAP” at www.xmlrpc.com/
stories/storyReader$555 and Don Box’s “A Brief History of SOAP” at http://web
services.xml.com/pub/a/ws/2001/04/04/soap.html.

To use the sample code for this chapter, import the chapter23.zip project from the
Web site files into any folder on your disk. The sample Web service files are built in

the CFML programming language for use with Adobe ColdFusion and should work with either
ColdFusion 7 or 8. You can download the free developer edition of ColdFusion from www.adobe.com/
products/coldfusion.

Understanding SOAP
SOAP is an XML language that’s used to format messages sent between clients and servers in RPC-
style applications. Its purpose is to allow client applications to call functions of remote objects that
are defined and hosted in a server-based environment.

When a remote operation is called from a SOAP client application, the request message is encoded
in the SOAP language as an XML package with a root element named <Envelope>. The following
SOAP packet was generated by a Flex application calling a remote operation named helloWorld:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<SOAP-ENV:Body
SOAP-ENV:encodingStyle=
“http://schemas.xmlsoap.org/soap/encoding/”>
<intf:helloWorld xmlns:intf=”http://flex3bible”/>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

When the response comes back from the server, it’s encoded in the same XML language. This
SOAP response was generated by a Web service written in CFML (ColdFusion Markup Language)
and hosted by ColdFusion 8:

<?xml version=”1.0” encoding=”utf-8”?>
<soapenv:Envelope

xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<soapenv:Body>
<ns1:helloWorldResponse

ON the WEBON the WEB

WEB RESOURCEWEB RESOURCE

672

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:51 PM Page 672

soapenv:encodingStyle=”http://schemas.xmlsoap.org/soap/
encoding/”
xmlns:ns1=”http://flex3bible”>
<helloWorldReturn

xsi:type=”xsd:string”>Hello World</helloWorldReturn>
</ns1:helloWorldResponse>
</soapenv:Body>
</soapenv:Envelope>

If you compare the outgoing and incoming SOAP data packets, you’ll see that they use the same
XML namespace, http://schemas.xmlsoap.org/soap/envelope/, to define the elements
and attributes of the SOAP language. They differ in certain minor details, such as the capitalization
of namespace prefixes (Flex uses SOAP-ENV, while ColdFusion uses soap-env), but they agree
on the important elements of Web-based communications.

The magic of SOAP, however, is that the developer doesn’t need to know these details. SOAP-based
client and server software is responsible for creating an abstraction layer that allows the developer
to make calls to remote operations using code that’s only minimally different from that used to call
local methods.

A SOAP-based Web service can be built with many different programming languages and hosted
on many operating systems. To host a service, you need an application server that knows how to
read and write SOAP message packets. Similarly, the client application uses an implementation of
SOAP that handles the serialization and deserialization of the SOAP message packets as data is sent
and received.

Some SOAP-based software packages implement both server and client functionality. For example,
Apache’s Axis is a popular Java-based implementation of SOAP that implements client and server
functionality and can be used freely with any Java-based application. Other implementations, such
as the Flex framework’s WebService component, include only a SOAP client.

This chapter describes how to use the WebService component to make calls to SOAP-based Web
services. While the examples in this chapter are written against a Web service built and hosted in
Adobe ColdFusion, Flex applications are interoperable with many SOAP server implementations,
including these:

� Microsoft ASP.NET implements SOAP as a feature named XML Web Services.

� Apache AXIS includes implementations of SOAP for client-side and server-side Java-based
applications on most operating systems.

� Adobe ColdFusion (used in this chapter) implements SOAP as an option for calling
ColdFusion Component (CFC) functions and uses the <cfinvoke> command to call
functions from most SOAP servers. The most recent version, ColdFusion 8, runs on
Windows, Mac OS X, Linux, Solaris, and AIX.

� Many open-source and built-in implementations of SOAP also are available for various
scripting languages, including PHP, Python, and Ruby.

673

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:51 PM Page 673

With so many available options for building and deploying SOAP-based Web services,
the process of creating a Web service in each of these software packages is beyond the

scope of this book. However, detailed information on creating XML Web Services in ASP.NET is
included in Chapter 28.

Whenever possible, most developers prefer to use the RemoteObject component to
integrate Flex applications with ColdFusion, Java-based applications like LiveCycle Data

Services and BlazeDS, and other non-Adobe products such as OpenAMF, AMFPHP, and WebOrb that
support the Remoting Service architecture and binary AMF. This is primarily due to the performance
advantage you get out of AMF. SOAP, while a strongly data typed messaging format, is pure text and
generates much larger data packets than AMF-enabled architectures. Web service integration tends to
be used for integration with third-party data vendors who support the SOAP standard or with applica-
tion servers with particularly strong SOAP support, such as ASP.NET.

Understanding WSDL
Web Services Description Language (WSDL) is an XML language that’s used to declare to Web serv-
ice consumers the structure and capabilities of Web service operations. In order to consume a
Web service, a Flex application must be able to read and parse a WSDL file at runtime that tells
the WebService component everything it needs to know in order to successfully call the service’s
operations.

WSDL is a somewhat complex language, but many SOAP server implementations, including
Apache Axis, ASP.NET’s XML Web Services, and ColdFusion 8, can dynamically generate a WSDL
file for a native class exposed as a Web service in response to an HTTP request from a client appli-
cation. For all these application servers, you generate a WSDL file by sending an HTTP request
from a client application to the service URL and appending a query string variable named wsdl.

Take as an example a ColdFusion Component (CFC) named SoapService.cfc that’s designed
to be called as a Web service. If the CFC is stored in a subfolder of the Web root named
services, and ColdFusion is installed on your local server and connected to a Web server
running on the default port 80, the CFC’s URL would be:

http://localhost/services/SoapService.cfc

To generate the WSDL file, append a query string parameter named wsdl:

http://localhost/services/SoapService.cfc?wsdl

ColdFusion responds by generating the WSDL content and returning it to the requesting applica-
tion. Similar patterns are used by other common SOAP server applications. This is an example of a
WSDL URI for Apache Axis:

http://localhost/myJEEApp/services/MyWebService?wsdl

And this is an example for ASP.NET:

http://localhost/myDotNetApp/MyWebService.asmx?wsdl

TIPTIP

CROSS-REFCROSS-REF

674

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:51 PM Page 674

The address of the WSDL document on the Web is referred to in Flex Builder and the
Flex documentation as the WSDL URI (Uniform Resource Identifier).

The WSDL language is managed by the W3C. The current recommendation is available
at www.w3.org/TR/wsdl.

WSDL is standardized across vendors and application servers, and usually looks pretty much the
same regardless of its generating server software. The following sample WSDL page was generated
by ColdFusion for a CFC with a single helloWorld() operation:

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions targetNamespace=”http://flex3bible”

xmlns:apachesoap=”http://xml.apache.org/xml-soap”
xmlns:impl=”http://flex3bible” xmlns:intf=”http://flex3bible”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:tns1=”http://rpc.xml.coldfusion”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns:wsdlsoap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<!--WSDL created by ColdFusion version 8,0,0,176276-->
<wsdl:types>
<schema targetNamespace=”http://rpc.xml.coldfusion”

xmlns=”http://www.w3.org/2001/XMLSchema”>
<import
namespace=”http://schemas.xmlsoap.org/soap/encoding/”/>
<complexType name=”CFCInvocationException”>
<sequence/>
</complexType>
</schema>
</wsdl:types>
<wsdl:message name=”CFCInvocationException”>

<wsdl:part name=”fault” type=”tns1:CFCInvocationException”/>
</wsdl:message>
<wsdl:message name=”helloWorldResponse”>

<wsdl:part name=”helloWorldReturn” type=”xsd:string”/>
</wsdl:message>
<wsdl:message name=”helloWorldRequest”>
</wsdl:message>
<wsdl:portType name=”SoapService”>

<wsdl:operation name=”helloWorld”>
<wsdl:input message=”impl:helloWorldRequest”

name=”helloWorldRequest”/>
<wsdl:output message=”impl:helloWorldResponse”

name=”helloWorldResponse”/>
<wsdl:fault message=”impl:CFCInvocationException”

name=”CFCInvocationException”/>
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name=”SoapService.cfcSoapBinding”

type=”impl:SoapService”>

WEB RESOURCEWEB RESOURCE

TIPTIP

675

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:51 PM Page 675

<wsdlsoap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>
<wsdl:operation name=”helloWorld”>

<wsdlsoap:operation soapAction=””/>
<wsdl:input name=”helloWorldRequest”>

<wsdlsoap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://flex3bible” use=”encoded”/>

</wsdl:input>
<wsdl:output name=”helloWorldResponse”>

<wsdlsoap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://flex3bible” use=”encoded”/>

</wsdl:output>
<wsdl:fault name=”CFCInvocationException”>

<wsdlsoap:fault

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
name=”CFCInvocationException”
namespace=”http://flex3bible” use=”encoded”/>

</wsdl:fault>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name=”SoapServiceService”>
<wsdl:documentation
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>
A ColdFusion web service built as a CFC

</wsdl:documentation>
<wsdl:port binding=”impl:SoapService.cfcSoapBinding”

name=”SoapService.cfc”>
<wsdlsoap:address

location=”http://localhost:8500/flex3bible/SoapService.cfc”/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The details of the WSDL language are beyond the scope of this book, but one thing is clear from
this example: WSDL isn’t designed to be human readable (at least without serious study). Its pur-
pose is to inform a software-based Web service consumer (in this case, a Flex client application)
about a service’s metadata. It includes detailed information about an operation’s name, what
parameters and data types the operation expects, what type of data is returned in the operation’s
response, and where the request to call the operation should be sent at runtime.

You can find many tutorials on WSDL on the Web. For one that’s concise and to the point,
check out http://msdn2.microsoft.com/en-us/library/ms996486.aspx.WEB RESOURCEWEB RESOURCE

676

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:51 PM Page 676

Using the WebService Component
In this section, I describe how to use the WebService component to make calls to Web service
functions and handle the resulting data. The sample applications call Web services written in
CFML and hosted on ColdFusion 8, so if you want to run the sample applications on your own
system, you’ll first need to download and install ColdFusion 8 from Adobe Systems.

Installing ColdFusion 8
ColdFusion 8 is available for download from www.adobe.com/products/coldfusion/ and
can be installed and run in “developer” mode on your local system without any license fees.
Versions are available for Windows, Mac OS X, and other operating systems.

The Web service examples in this chapter don’t have any database dependencies, so
they should run successfully on any of ColdFusion’s supported operating systems.

After installing ColdFusion, create a folder under the server’s Web root named flex3bible. (The
default Web root folder in this environment is C:\ColdFusion8\wwwroot on Windows and
/Applications/ColdFusion8/wwwroot on Mac OS X.)

Then extract the files from ColdFusionServices.zip in the chaper23 project into this new
folder.

The Flex application examples for this chapter assume that ColdFusion has been
installed with the “development” Web server, which runs with port 8500. A request

to the CFC in this environment would be sent to http://localhost:8500/flex3bible/
SoapService.cfc?wsdl. If you have the Web service component installed in another folder or if
ColdFusion is running on another port, just modify the example applications as necessary to point to
the correct port and location.

Creating a WebService object
As with the HTTPService component that was described in Chapter 21, the WebService
component can be instantiated with either MXML or ActionScript code. The component’s wsdl
property is a String value that contains the URL from which the service’s WSDL can be retrieved
at runtime.

To create a WebService object in MXML, declare it with a unique id and set its wsdl property
as in this example:

<mx:WebService id=”myService”
wsdl=”http://localhost:8500/flex3bible/SoapService.cfc?wsdl”/>

As with the HTTPService component, if a Web-based Flex application and a Web service
it calls are hosted in the same domain, you can use a relative URL in the wsdl property. In

this example, you could shorten the wsdl property to /flex3bible/SoapService.cfc?wsdl.

TIPTIP

TIPTIP

TIPTIP

677

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:51 PM Page 677

To declare a WebService object in ActionScript, you can create the object and then set its wsdl
property in a separate statement:

var myService:WebService = new WebService();
myService.wsdl =

“http://localhost:8500/flex3bible/SoapService.cfc?wsdl”

Alternatively, you can pass the wsdl location into the WebService constructor method:

var myService:WebService = new WebService(
“http://localhost:8500/flex3bible/SoapService.cfc?wsdl”);

Loading the WSDL content
When you use MXML to declare a WebService object, it requests and downloads the WSDL con-
tent from the wsdl location upon object construction (usually as the application starts up). When
using ActionScript code to declare the WebService object, you have to explicitly load the WSDL
content by calling the object’s loadWSDL() method. If the wsdl property is already set, you can
call loadWSDL() without any arguments:

var myService:WebService = new WebService(
“http://localhost:8500/flex3bible/SoapService.cfc?wsdl”);

myService.loadWSDL();

Another approach is to pass the wsdl location into loadWSDL() and handle both tasks at the
same time:

var myService:WebService = new WebService();
myService.loadWSDL(

“http://localhost:8500/flex3bible/SoapService.cfc?wsdl”);

Handling the load event
Whether you use ActionScript or MXML to declare a WebService object, it dispatches an event
named load when the WSDL content has been successfully retrieved and parsed. The WebService
object can make calls to Web service operations only after this task is complete, so it’s common to
make initial calls to Web service operations upon the load event being dispatched. In MXML, the
code to make an initial call when the WebService component is ready looks like this:

<mx:WebService id=”myService”
wsdl=”http://localhost:8500/flex3bible/SoapService.cfc?wsdl”
load=”myService.helloWorld()”/>

You also can use addEventListener() to handle the load event and make an initial call to the
Web service operation:

import mx.rpc.soap.LoadEvent;
private function initApp():void
{

678

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:51 PM Page 678

myService.addEventListener(LoadEvent.LOAD, callService);
}
private function callService(event:LoadEvent):void
{
myService.helloWorld();
}

The LoadEvent class implements a document property typed as XMLDocument that
represents the WSDL document that was loaded from the server. This is a legacy

XML object that you can parse with DOM-style programming. In highly dynamic applications, the
document property allows you to parse and present options to users for calling Web service opera-
tions without having to hard code the operation names in your Flex application.

You also can make initial calls to Web service operations from the Application com-
ponent’s life cycle events, such as initialize or creationComplete. If these

events are dispatched before the WebService component has successfully read its WSDL content,
your pending calls are placed in a queue. When the load event is dispatched, queued calls are sent
to the Web service provider automatically.

Handling Web service results
As with the HTTPService component, Web service requests and responses are handled asynchro-
nously. This means that when you send a request, Flash Player’s ActionScript Virtual Machine
(AVM) doesn’t pause in its code execution and wait for data to be returned. Instead, you call the
Web service operation and then use either binding expressions or event listeners to handle and
process the returned data.

Using binding expressions
A binding expression can be used to pass data returned from a call to a Web service operation to a
visual control or other component that’s capable of acting as a binding destination. A binding
expression for a Web service operation consists of three parts, separated with dots:

� The WebService object’s unique id or variable name

� The name of the Web service operation

� The lastResult property

Using the previous example, where the WebService object has an id of myService and the
Web service operation is named helloWorld(), the binding expression to pass returned data to
a Flex component would be:

myService.helloWorld.lastResult

The operation name is used to create a temporary instance of the Operation class
that, in turn, implements the lastResult property. There are a number of versions of

this class, including versions for SOAP and Remoting, and within each of these categories are sepa-
rate versions for use with WebService objects declared in ActionScript and in MXML.

CAUTION CAUTION

TIPTIP

TIPTIP

679

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:51 PM Page 679

The application in Listing 23.1 uses binding expressions to handle and display both a simple
String returned from the Web service’s helloWorld() operation and an ArrayCollection
returned from the service’s getAllContacts() operation.

LISTING 23.1

Handling Web service results with binding expressions

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:WebService id=”myService”
wsdl=”http://localhost:8500/flex3bible/SoapService.cfc?wsdl”/>

<mx:Button label=”Get String” click=”myService.helloWorld()”/>
<mx:Label text=”{myService.helloWorld.lastResult}” fontSize=”12”/>

<mx:Button label=”Get Data” click=”myService.getAllContacts()”/>
<mx:DataGrid dataProvider=”{myService.getAllContacts.lastResult}”>

<mx:columns>
<mx:DataGridColumn dataField=”firstName” headerText=”First Name”/>
<mx:DataGridColumn dataField=”lastName” headerText=”Last Name”/>

</mx:columns>
</mx:DataGrid>

</mx:Application>

The code in Listing 23.1 is available in the Web site files as WebServiceWith
Bindings.mxml in the src folder of the chapter23 project.

Figure 23.1 shows the resulting application, displaying a simple string and a complex data set
returned from the Web service.

Using the result event
As with the HTTPService component, you can handle results of a call to a Web service operation
with the WebService component’s result event. This event dispatches an event object typed as
mx.rpc.events.ResultEvent, the same event object that’s used by HTTPService and
RemoteObject. The event object’s result property references the returned data.

ON the WEBON the WEB

680

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:51 PM Page 680

FIGURE 23.1

Displaying Web service results

To handle and save data using the result event, follow these steps:

1. Declare a bindable variable outside of any functions that acts as a persistent reference to
the returned data. Cast the variable’s type depending on what you expect to be returned
by the Web service operation. For example, if the data type declared in the WSDL docu-
ment is soapenc:Array or is a custom type derived from that type (such as
ColdFusion’s impl:ArrayOf_xsd_anyType), the WebService component casts the
returned data as an ArrayCollection.

import mx.collections.ArrayCollection;
[Bindable]
private var myData:ArrayCollection

2. Create an event handler function that will be called when the event is dispatched. The func-
tion should receive a single event argument typed as ResultEvent and return void:

private function resultHandler(event:ResultEvent):void
{
}

3. Within the event handler function, use the event.result expression to refer to the
data that’s returned from the server. Unlike with the HTTPService component, where
you have to walk down the XML hierarchy to get to the returned data, the expression
event.result returns a strongly typed ArrayCollection and can be passed
directly to the persistent variable:

myData = event.result as ArrayCollection;

681

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:51 PM Page 681

Notice that when passing the value of event.result directly to a variable, you have
to explicitly declare the type of the returned data using the ActionScript as operator.

ResultEvent.result is typed in the API as an Object; explicit casting tells both the compiler
and Flex Builder’s code syntax checker that the data is expected to arrive already formatted as an
ArrayCollection.

You can listen for the result event with either an MXML attribute-based event listener or a call to the
ActionScript addEventListener() method. The attribute-based event listener looks like this:

<mx:WebService id=”myService”
wsdl=”http://localhost:8500/flex3bible/SoapService.cfc?wsdl”
result=”resultHandler(event)”/>

When using addEventListener() to create an event listener, you can designate the event name
with the String value result or with the ResultEvent class’s RESULT constant:

var myService:WebService = new WebService();
myService.loadWSDL(

“http://localhost:8500/flex3bible/SoapService.cfc?wsdl”);
myService.addEventListener(ResultEvent.RESULT, resultHandler);
myService.callMethod();

Listing 23.2 uses a result event handler function to capture and save data that’s been returned
from a Web service operation.

LISTING 23.2

Using a WebService component with a result event handler function

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;

[Bindable]
private var contactData:ArrayCollection;

private function resultHandler(event:ResultEvent):void
{

contactData = event.result as ArrayCollection;
}

]]>
</mx:Script>
<mx:WebService id=”myService”

TIPTIP

682

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:52 PM Page 682

wsdl=”http://localhost:8500/flex3bible/SoapService.cfc?wsdl”
result=”resultHandler(event)”/>

<mx:Button label=”Get Data” click=”myService.getAllContacts()”/>
<mx:DataGrid dataProvider=”{contactData}”>

<mx:columns>
<mx:DataGridColumn dataField=”firstName” headerText=”First Name”/>
<mx:DataGridColumn dataField=”lastName” headerText=”Last Name”/>

</mx:columns>
</mx:DataGrid>

</mx:Application>

The code in Listing 23.2 is available in the Web site files as WebServiceResult
Event.mxml in the src folder of the chapter23 project.

Handling fault events
When a call to a Web service operation fails, the WebService object dispatches a fault event.
Just like the HTTPService and RemoteObject components, the event object is typed
as mx.rpc.events.FaultEvent. This event object has a fault property typed as
mx.rpc.Fault, which has these properties:

� faultString:String: The error message

� faultCode:String: A code that indicates the nature of the fault and whether it
occurred in the client or server environment

� faultDetail:String: An additional message that sometimes contains useful
information

� message:String: A string consisting of all of the above values concatenated together
with | characters used as separators

To handle a fault event, create an event handler function that receives an event argument typed
as FaultEvent. Within the body of the function, you can deal with the fault however you like.
This code collects fault information from the event object and displays it to the user with an
Alert pop-up window:

private function faultHandler(event:FaultEvent):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}

The application in Listing 23.3 generates a fault by calling a non-existent operation from the Web
service.

ON the WEBON the WEB

683

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:52 PM Page 683

LISTING 23.3

Using the fault event

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.rpc.events.FaultEvent;
import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;
[Bindable]
private var contactData:ArrayCollection;
private function resultHandler(event:ResultEvent):void
{

contactData = event.result as ArrayCollection;
}
private function faultHandler(event:FaultEvent):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}

]]>
</mx:Script>
<mx:WebService id=”myService”

wsdl=”http://localhost:8500/flex3bible/SoapService.cfc?wsdl”
result=”resultHandler(event)”
fault=”faultHandler(event)”/>

<mx:Button label=”Get Data” click=”myService.noSuchMethod()”/>
</mx:Application>

The code in Listing 23.3 is available in the Web site files as WebServiceFault
Event.mxml in the src folder of the chapter23 project.

As shown in Figure 23.2, the application responds by displaying the fault information in a pop-up
window produced by the Alert class.

Just as with the HTTPService component, you also can use the ItemResponder and
AsyncToken classes to handle result and fault events from a call to a WebService

operation. Each call to an operation returns an AsyncToken object, to which you can add a respon-
der object with its addResponder() method. See Chapter 21 for more details about this approach
to handling RPC events.

TIPTIP

ON the WEBON the WEB

684

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:52 PM Page 684

FIGURE 23.2

Responding to a fault event

Handling events of multiple operations
When a Flex application needs to handle result and fault events from more than one operation of a
single Web service, you need to distinguish which event handler method will be used for the results
of each operation call. You can handle this requirement with either ActionScript or MXML code.

To set up an event listener for a single method in ActionScript, call addEventListener() as a
method of an Operation object either before or after making a call to the Web service operation.
The following code calls a Web service’s getAllContacts() operation, and then dispatches its
result event to an event handler function named resultHandler():

myService.getAllContacts();
myService.getAllContacts.addEventListener(

ResultEvent.RESULT, resultHandler);

Because addEventListener() is called as a member of the operation, not the WebService
object itself, the event listener is active only for that particular operation.

To set up a similar architecture with MXML, declare the WebService component as a paired
<mx:WebService> tag set. Within the tags, nest multiple <mx:operation> tags, each repre-
senting an operation you want to call. The <mx:operation> tag is an instruction to the com-
piler, rather than an instance of an ActionScript class. Its purpose is to configure a single operation
with its own unique event handlers.

685

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:52 PM Page 685

The following MXML code declares an instance of the WebService component with distinct
result event listeners for each of two operations. Because the two operations return different
types of data, it’s important that they each have their own event handler functions:

<mx:WebService id=”myService”
wsdl=”http://localhost:8500/flex3bible/SoapService.cfc?wsdl”
result=”contactsResultHandler(event)”>
<mx:operation name=”getAllContacts”

result=”contactsResultHandler(event)”/>
<mx:operation name=”helloWorld”

result=”helloWorldHandler(event)”/>
</mx:WebService>

The application in Listing 23.4 declares MXML-based result event handlers for each of two Web
service operations. The fault event handler is declared in the <mx:WebService> tag and is
used by both of the service’s operations.

LISTING 23.4

Handling events with multiple Web service operations

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.rpc.events.FaultEvent;
import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;
[Bindable]
private var contactData:ArrayCollection;
[Bindable]
private var helloData:String;
private function contactsResultHandler(event:ResultEvent):void
{

contactData = event.result as ArrayCollection;
}
private function helloResultHandler(event:ResultEvent):void
{

helloData = event.result as String;
}
private function faultHandler(event:FaultEvent):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}

]]>
</mx:Script>
<mx:WebService id=”myService”

686

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:52 PM Page 686

wsdl=”http://localhost:8500/flex3bible/SoapService.cfc?wsdl”
fault=”faultHandler(event)”>
<mx:operation name=”getAllContacts”

result=”contactsResultHandler(event)”/>
<mx:operation name=”helloWorld”

result=”helloResultHandler(event)”/>
</mx:WebService>
<mx:Button label=”Get String” click=”myService.helloWorld()”/>
<mx:Label text=”{helloData}” fontSize=”12”/>
<mx:Button label=”Get Data” click=”myService.getAllContacts()”/>
<mx:DataGrid dataProvider=”{contactData}”>

<mx:columns>
<mx:DataGridColumn dataField=”firstName” headerText=”First Name”/>
<mx:DataGridColumn dataField=”lastName” headerText=”Last Name”/>

</mx:columns>
</mx:DataGrid>

</mx:Application>

The code in Listing 23.4 is available in the Web site files as WebServiceMultiple
Operations.mxml in the src folder of the chapter23 project.

Passing parameters to Web service operations
You can pass parameters to Web service operations in two different ways:

� Explicit parameters, passed in the order in which they’re declared in the service’s WSDL
description

� Bound parameters, set up in an MXML <mx:WebService> declaration

Using explicit parameters
To pass explicit parameters to a Web service operation, you must know the order in which they’re
declared in the server-side code. If you don’t have explicit documentation, you can find this infor-
mation in the Web service’s WSDL metadata description.

For example, the ColdFusion Web service has an operation named getFilteredContacts()
that lets you search for data by the data set’s firstname and lastname columns. In a Web ser-
vice’s WSDL description, each incoming and outgoing packet is described as a “message.” The
incoming message for the getFilteredContacts() operation looks like this:

<wsdl:message name=”getFilteredContactsRequest”>
<wsdl:part name=”firstname” type=”xsd:string”/>
<wsdl:part name=”lastname” type=”xsd:string”/>

</wsdl:message>

ON the WEBON the WEB

687

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:52 PM Page 687

To pass explicit parameters, call the Web service operation just like an ActionScript function.
Match the order of the parameters exactly as you see them in the WSDL description. This code
passes two values taken directly from the text properties of two TextInput controls as parame-
ters of the getFilteredContacts() operation:

myService.getFilteredContacts(fnameInput.text, lnameInput.text);

The Web service will use the parameter values as needed to perform its functionality. In this case,
the values are examined, and if they’re not blank strings, the service filters the data before return-
ing it to the Flex client.

Using bound parameters
You set up bound parameters by name and nest them within a pair of <mx:request> tags, which
in turn are nested in a pair of <mx:operation> tags. Each parameter is expressed as an XML tag
set where the element name matches the name of the parameter, as shown in the WSDL. This dec-
laration includes a set of bindings that pass values directly from the TextInput controls to the
Web service operations as parameters:

<mx:WebService id=”myService”
wsdl=”http://localhost:8500/flex3bible/SoapService.cfc?wsdl”
result=”resultHandler(event)”>
<mx:operation name=”getFilteredContacts”>

<mx:request>
<firstname>{fnameInput.text}</firstname>
<lastname>{lnameInput.text}</lastname>

</mx:request>
</mx:operation>

</mx:WebService>

When you call the Web service operation, you now must treat it as an operation object. Instead of
calling the method directly, call the operation’s send() method:

myService.getFilteredContacts.send();

Either explicit or bound parameters can be used effectively in Flex applications. I tend
to use explicit parameters because, especially when calling an operation from different

parts of an application, it makes it obvious where the parameters’ values are coming from.

Figure 23.3 shows an application that uses server-side filtering through a call to a Web service.

Applications that pass parameters to a Web service operation are available in the Web site
files as WebServiceExplicitParams.mxml and WebServiceBoundParams.mxml

in the src folder of the chapter23 project.

ON the WEBON the WEB

TIPTIP

688

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:52 PM Page 688

FIGURE 23.3

Passing parameters to a Web service operation

Using Web Service Introspection
Flex Builder 3 includes a new feature that allows you to examine the WSDL description of a Web
service and generate ActionScript proxy classes that you can then use at runtime. When you
“import” a Web service, you’re allowing Flex Builder to help you create a more maintainable coding
pattern that has these benefits:

� Your code makes calls to local proxy methods instead of calling operations directly from
the Web service. As a result, Flex Builder and the Flex compiler can do a better job with
code completion and compile-time syntax checking.

� Local proxy methods are structured with required arguments. As a result, you get better
code hints and completion.

� Returned data is strongly typed, with data types determined by the Web service’s WSDL
description.

� If a Web service operation uses a complex value object either as a parameter or a return
value, a local proxy class is generated to match the operation’s requirements. At runtime,
data is delivered already “wrapped” in the strongly typed value objects, reducing the
amount of code you have to write.

Importing a Web service
When you import a Web service, Flex Builder creates a set of ActionScript proxy classes that you
call instead of the native WebService object. In order to import a Web service, you must know
its WSDL location.

689

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:52 PM Page 689

1. From the Flex Builder menu, select Data ➪ Import Web Service (WSDL).

2. As shown in Figure 23.4, select a source folder in which the generated proxy classes
should be created and click Next.

FIGURE 23.4

Selecting a source folder

You should always select a project’s source root folder or another location that’s part of
the project build path. The generated classes are created in a subdirectory structure

underneath this location.

3. In the next screen, shown in Figure 23.5, enter the location of the Web service’s WSDL
file (its URI) and click Next.

The option to use a “destination” is enabled only if you create a Flex project that’s con-
figured to work with LiveCycle Data Services or BlazeDS. More information about this

option is available in Chapter 25, in the section about the Proxy Service.

TIPTIP

TIPTIP

690

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:52 PM Page 690

FIGURE 23.5

Selecting the WSDL URI

4. The final screen, shown in Figure 23.6, offers a number of configuration options:

� The Service and Port are selected automatically based on the contents of the Web ser-
vice’s WSDL file.

� The service’s operations are listed, and are all selected by default. You can deselect
operations for which you don’t want to generate proxy code.

� The Package in which the generated code will be created defaults to a value of gen-
erated.webservices. You can change this to any other package you prefer.

� The Main class is the name of the ActionScript proxy class that will be generated. You
can name this anything you like. It defaults to the name of the Web service with
Service appended to the end.

691

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:52 PM Page 691

FIGURE 23.6

Configuring code generation

When a Web service already has the word Service in its name, you’ll see something
like SoapServiceService as the default. There’s no problem with removing the

extra Service and setting the proxy class’s name to the same value as the Web service’s name.
Alternatively, you can replace the last Service with the word Proxy to create an ActionScript class
named, in this case, SoapServiceProxy. In the following examples, the generated ActionScript
proxy class for the ColdFusion SoapService is SoapServiceProxy, located in the default package
and subfolder structure generated.webservices.

Managing Web services
After importing a Web service, your Flex project source root has a new subfolder structure matching
the package you selected for code generation. The folder contains the primary proxy class, such as
SoapServiceProxy, plus many other supporting ActionScript classes, as shown in Figure 23.7.

In addition, a copy of the service’s WSDL file is saved to a .wsdl/general subfolder of the proj-
ect root; this file is not part of the source code and is saved to support Flex Builder’s Web service
management tools. This copy of the WSDL can be helpful if you need to look at the service’s
description and don’t want to go back to the server.

You can open the Manage Web Services dialog box by selecting Data ➪ Manage Web Services from
the Flex Builder menu. As shown in Figure 23.8, the dialog box displays all currently imported
Web services.

TIPTIP

692

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:52 PM Page 692

FIGURE 23.7

The Flex Navigator view displaying generated ActionScript proxy classes

FIGURE 23.8

Managing Web services

693

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:52 PM Page 693

The Manage Web Services dialog box supports these options:

� Click Add to import a new Web service. This takes you to the first screen of the Import
Web Service (WSDL) wizard.

� Select a Web service, and click Update to modify the currently generated code. This
takes you to the Configure Code Generation screen of the Import Web Service (WSDL)
wizard.

� Select a Web service, and click Delete to remove the proxy WSDL file and all the Web ser-
vice’s generated classes. This operation is permanent; deleted files can’t be easily recovered.

Using generated Web service proxy classes
Each Web service operation that you select for import is represented within the primary proxy
class by an ActionScript method of the same name and signature, and a custom result event
that’s dispatched when the operation’s data is returned from the server. Each operation also is rep-
resented by custom request and event classes that have strong data typing based on the operation’s
WSDL definition.

Creating a proxy class instance
To use the proxy classes, start by creating an instance of the primary proxy class. You can create an
instance of the proxy class in either MXML or ActionScript. The following code creates an instance
of the proxy class and assigns it a unique id:

<webservices:SoapServiceProxy id=”myService”/>

In this example, the webservices namespace prefix is bound to the location of the generated
ActionScript code with a custom namespace declaration in the <mx:Application> root element:

<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”
xmlns:webservices=”generated.webservices.*”>

You also can choose to instantiate the proxy class with ActionScript:

import generated.webservices.SoapServiceProxy;
[Bindable]
private var myService:SoapServiceProxy = new SoapServiceProxy();

In this example, the [Bindable] metadata tag ensures that any bindings to the proxy
class’s properties are executed when their values change at runtime. If you use event

handlers only to process returned data, not binding expressions, the [Bindable] tag isn’t necessary.

Calling a Web service operation
After the proxy class has been instantiated, you call the Web service operation by calling the equiv-
alent method of the proxy class. For example, the getAllContacts() operation is represented
in the generated proxy class with this method:

TIPTIP

694

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:52 PM Page 694

public function getAllContacts():AsyncToken
{

var _internal_token:AsyncToken = _baseService.getAllContacts();
_internal_token.addEventListener(“result”,_

getAllContacts_populate_results);
_internal_token.addEventListener(“fault”,throwFault);
return _internal_token;

}

The following code calls the remote operation by calling the equivalent proxy class method:

myService.getAllContacts()

Passing parameters
As when calling Web service operations directly, you can pass parameters with either explicit or
bound notation. Explicit parameters are enforced by the proxy method signature, which uses the
WSDL description to generate a set of required arguments:

public function getFilteredContacts(firstname:String,
lastname:String):AsyncToken

{
... function body ...

}

As when calling the operation directly, you pass values into the proxy method in the order of their
declaration. For example, in the application that requests filtered data from the server, this code
would pass values from visual controls into the proxy method:

myService.getFilteredContacts(fnameInput.text, lnameInput.text);

The code looks exactly the same as when calling the operation directly, but you gain the advantage
of compiler-level enforcement of the method signature.

If you prefer to use bound parameters, you can use the custom request object for the selected
method. For example, when you import the getFilteredContacts() operation, a custom
request object is created named GetFilteredContacts_request. This is passed to the proxy
class as its custom getFilteredContacts_request_var property. The custom request
object has properties matching the Web service operation parameters by name.

This code uses bound parameter syntax to pass values to the proxy service:

<webservices:SoapServiceProxy id=”myService”>
<webservices:getFilteredContacts_request_var>

<webservices:GetFilteredContacts_request
firstname=”{fnameInput.text}”
lastname=”{lnameInput.text}”/>

</webservices:getFilteredContacts_request_var>
</webservices:SoapServiceProxy>

695

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:52 PM Page 695

To support sending a request with bound parameters at runtime, the proxy class has custom
send() methods for each imported operation. This code sends the operation request with the
bound parameters:

myService.getFilteredContacts_send();

Handling returned data with binding expressions
The proxy class has a custom bindable lastResult property for each imported operation. For
example, data returned from the getFilteredContacts() operation is represented in the proxy
class by a property named getFilteredContents_lastResult. The property’s data type is
declared based on the operation’s WSDL description. In contrast to working with the weakly typed
WebService.operation.lastResult property, the result data is already typed correctly.

This DataGrid component displays the results of a call to the proxied
getFilteredContacts() operation:

<mx:DataGrid
dataProvider=”{myService.getFilteredContacts_lastResult}”/>

The application in Listing 23.5 uses bindings for both Web service operation parameters and to
display the operation’s returned results.

LISTING 23.5

Using generated Web service proxy classes with parameter and result bindings

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”horizontal” xmlns:webservices=”generated.webservices.*”>
<webservices:SoapServiceProxy id=”myService”>

<webservices:getFilteredContacts_request_var>
<webservices:GetFilteredContacts_request

firstname=”{fnameInput.text}”
lastname=”{lnameInput.text}”/>

</webservices:getFilteredContacts_request_var>
</webservices:SoapServiceProxy>
<mx:Panel title=”Search for Contacts” id=”searchPanel”>

<mx:Form>
<mx:FormItem label=”First Name:”>

<mx:TextInput id=”fnameInput”/>
</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lnameInput”/>
</mx:FormItem>

</mx:Form>
<mx:ControlBar>

<mx:Button label=”Search”

696

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:52 PM Page 696

click=”myService.getFilteredContacts_send()”/>
</mx:ControlBar>

</mx:Panel>
<mx:DataGrid
dataProvider=”{myService.getFilteredContacts_lastResult}”>
<mx:columns>

<mx:DataGridColumn dataField=”firstName” headerText=”First Name”/>
<mx:DataGridColumn dataField=”lastName” headerText=”Last Name”/>

</mx:columns>
</mx:DataGrid>

</mx:Application>

The code in Listing 23.5 is available in the Web site files as WebServiceProxyWith
Bindings.mxml in the src folder of the chapter23 project.

Listening for custom result events
The proxy class includes a custom result event for each imported operation. For example, the
getFilteredContacts() operation dispatches an event named GetFilteredContacts_
result. If you’re declaring the proxy object in MXML, you can declare an attribute-based event
listener:

<webservices:SoapServiceProxy id=”myService”
GetFilteredContacts_result=”resultHandler(event)”/>

If you prefer to use ActionScript, you can use customized addEventListener() functions that
are generated in the proxy class for each imported operation. This code declares an event listener
for the getFilteredContacts() operation:

myService.addgetFilteredContactsEventListener(resultHandler);

Notice that the customized version of the addEventListener() method doesn’t
require an event name. Because you’ve already indicated by the use of the custom

method which operation’s result event you’re listening for, you only need to pass in the name of
the event handler function.

The proxy class declares a single fault event that’s used by all the Web service’s opera-
tions. Like the standard WebService component’s fault event, it generates an event

object typed as the FaultEvent class.

Handling custom result events
Each imported operation’s custom result event object is typed as a custom event class that’s
also generated during the import process. For example, the custom event class for the
getFilteredContacts() operation is named GetFilteredContactsResultEvent; its
result property, like the custom lastResult proxy class property described in the previous

TIPTIP

TIPTIP

ON the WEBON the WEB

697

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:52 PM Page 697

section about handling results with binding expressions, is declared based on the operation’s
WSDL description.

This custom event handler function uses a single event argument typed as the imported service’s
custom event class:

private function resultHandler(
event:GetFilteredContactsResultEvent):void

{
contactData = event.result;

}

The application in Listing 23.6 uses ActionScript code to set up event listeners, call an operation’s
proxy method with explicit parameters, and handle event results.

LISTING 23.6

Using generated Web service proxy classes with ActionScript

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”horizontal” xmlns:webservices=”generated.webservices.*”
creationComplete=”initApp()”>
<mx:Script>

<![CDATA[
import mx.collections.ArrayCollection;
import generated.webservices.GetFilteredContactsResultEvent;
import generated.webservices.SoapServiceProxy;

[Bindable]
private var contactData:ArrayCollection;
private var serviceProxy:SoapServiceProxy = new

SoapServiceProxy();

private function initApp():void
{

serviceProxy.addgetFilteredContactsEventListener(resultHandler);
}
private function resultHandler(

event:GetFilteredContactsResultEvent):void
{

contactData = event.result;
}
private function getContacts():void
{

serviceProxy.getFilteredContacts(fnameInput.text,
lnameInput.text);

}

698

Integrating Flex Applications with Application Servers and the DesktopPart IV

31_287644-ch23.qxp 6/23/08 11:52 PM Page 698

]]>
</mx:Script>
<mx:Panel title=”Search for Contacts” id=”searchPanel”>

<mx:Form>
<mx:FormItem label=”First Name:”>

<mx:TextInput id=”fnameInput”/>
</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lnameInput”/>
</mx:FormItem>

</mx:Form>
<mx:ControlBar>

<mx:Button label=”Search”
click=”getContacts()”/>

</mx:ControlBar>
</mx:Panel>
<mx:DataGrid dataProvider=”{contactData}”>

<mx:columns>
<mx:DataGridColumn dataField=”firstName” headerText=”First Name”/>
<mx:DataGridColumn dataField=”lastName” headerText=”Last Name”/>

</mx:columns>
</mx:DataGrid>

</mx:Application>

The code in Listing 23.6 is available in the Web site files as WebServiceProxy
WithAS.mxml in the src folder of the chapter23 project.

Summary
In this chapter, I described how to integrate Flex applications with SOAP-based Web services. You
learned the following:

� SOAP is an XML-based industry-standard messaging format used in RPC-style applications.

� SOAP client and server software is designed to be interoperable across operating systems
and programming languages.

� The Flex framework’s WebService component encapsulates the process of sending and
receiving SOAP-based messages.

� Like the other RPC components, the WebService component uses asynchronous com-
munications.

� You can create and configure WebService objects in either MXML or ActionScript code.

� Flex Builder 3 can import Web services and generate proxy classes that you can call
instead of the WebService component.

ON the WEBON the WEB

699

Working with SOAP-Based Web Services 23

31_287644-ch23.qxp 6/23/08 11:52 PM Page 699

31_287644-ch23.qxp 6/23/08 11:52 PM Page 700

Flex was originally created by Macromedia in 2004 in the form of a
server-based product. The Flex server incorporated the Flash
Remoting technology that had been pioneered in ColdFusion and

adapted its capabilities to work with Java-based classes stored in the server.
Flex applications in their earliest incarnation were stored as source code on
the server and compiled on demand when a browser made a request for the
application’s source code (its .mxml file). A command-line compiler was
included for those developers who wanted to pre-build their applications
prior to deployment. (Flex Builder 1 was a completely different product than
the IDE used today and was based on the Dreamweaver code base. It was
provided to developers as part of the Flex server license.)

When Flex 2 was released in 2006, the product line’s client-side and server-
side capabilities were separated. The Flex 2 SDK, including the client-side
class library and the command-line tools, was made available as a no-royalty,
no-license-fee product, and the new Flex Builder 2 was based on Eclipse
and sold with fee-based, per-developer license The server-side functionality,
including the Flash Remoting technology (now known as the Remoting
Service) was packaged as Flex Data Services 2. In addition to the remoting
tools that were included in Flex 1 and 1.5, Flex Data Services added services
to support server-pushed communications for messaging and distributed
database applications.

In 2007, Flex Data Services was renamed as LiveCycle Data Services, with
the intent of strong integration with Adobe’s existing LiveCycle product line.
Some new features were added, such as server-side PDF generation, but the
product’s licensing and intended usage didn’t change enormously. LiveCycle
Data Services (referred to in this chapter as LCDS) remained the primary
server-side solution for Flex developers who wanted to integrate their appli-
cations with Java-based application servers.

701

IN THIS CHAPTER
Understanding the history of
Flex with Java

Understanding BlazeDS

Getting and installing BlazeDS

Creating Flex projects for use
with BlazeDS

Using the Proxy Service

Understanding the Remoting
Service

Creating and placing Java classes
on the server

Using the RemoteObject
component

Integrating Flex Applications
with BlazeDS and Java

32_287644-ch24.qxp 6/23/08 11:52 PM Page 701

In February 2008, Adobe released BlazeDS, a free open-source implementation of many of LCDS’s
features. BlazeDS includes support for the Remoting Service, plus two of LCDS’s other popular fea-
tures, the Message Service and the Proxy Service. Unlike LCDS, which remains an enterprise-level
product both in terms of scalability and pricing, BlazeDS can be used freely without any license
fees or registration.

The point of all this history is that features that were available only in an enterprise-level server
product upon the initial release of Flex are now available at zero cost to any organization or indi-
vidual who wants to learn how to use them. In this chapter, I describe how to get and install
BlazeDS, and how to use two of its features, the Proxy Service and the Remoting Service. In
Chapter 25, I describe how to use the Message Service to share data between Flex applications and
other messaging clients in real time.

To use the sample code for this chapter, download chapter24.zip from the Web site.

The Web site .zip file for this and following chapters are not built as Flex project archive files. Follow
the instructions later in this chapter to create a Flex project for use with LiveCycle Data Services or
BlazeDS and install the various project assets to the client and server.

ON the WEBON the WEB

702

Integrating Flex Applications with Application Servers and the DesktopPart IV

LiveCycle Data Services Features

LiveCycle Data Services includes many other features that aren’t part of BlazeDS:

� The Data Management Service allows you to create applications with distributed data
that’s synchronized in real time between multiple clients and servers. This service also
supports automated data paging, allowing you to use Flex data visualization components
with large data sets without overloading Flash Player memory.

� RTMP (Real Time Messaging Protocol) allows you to build applications with highly scaled
server-push messaging and distributed data.

� An agent process for Mercury QuickTestPro 9.1 enables Flex applications to be tested
with Mercury QuickTest Professional, also known as HP QuickTest Professional since
Mercury’s acquisition by HP in 2006.

� Software clustering when using stateful services and non-HTTP channels, such as RTMP,
ensures that Flex applications continue running in the event of server failure.

� You can generate template-driven PDF documents that include graphical assets from Flex
applications, such as graphs and charts.

� For AIR developers, local data cache allows developers to cache client data requests and
data changes to the local file system for later retrieval when an application resumes.

LiveCycle Data Services, in fact, is worthy of much more coverage than is possible in this book. For
more information, see Adobe’s Web site:

www.adobe.com/products/livecycle/dataservices

32_287644-ch24.qxp 6/23/08 11:52 PM Page 702

Using BlazeDS
BlazeDS is an open-source, freely available implementation of Java-based server-side functionality
that’s designed to deliver data and process messages from Flex applications at runtime. It includes
the following features that are shared with LiveCycle Data Services:

� The Proxy Service supports proxying of HTTP requests and responses between Flex
applications and remote servers. This service typically is used when direct communica-
tion between clients and servers is restricted due to cross-domain security issues.

� The Remoting Service is a server-side gateway that allows Flex applications to call
methods of server-side Java classes using binary AMF (Action Message Format).

� The Message Service supports collaboration between Flex applications through a hub-
and-spokes messaging architecture. Flex applications send messages to BlazeDS, and
BlazeDS broadcasts the messages to other connected clients.

Understanding supported platforms
BlazeDS is supported on the following operating systems:

� Windows 2000, 2003, x86, and x64

� Red Hat Enterprise Linux AS 4, x86, and x64

� Red Hat Enterprise Linux Server, Advanced Platform 5, x86, and x64

� SUSE Linux Enterprise Server 9, 10, x86, and x64

� Solaris 9, 10 SPARC

Although not officially supported or noted in the product documentation, the first dis-
tribution of BlazeDS appears to work just fine on Mac OS X.

BlazeDS can be installed on and hosted with many Java Enterprise Edition application servers,
including:

� Apache Tomcat 6 (included in the BlazeDS turnkey distribution)

� JBoss

� IBM WebSphere

� BEA WebLogic

� Adobe JRun

BlazeDS requires a Java Development Kit installation, with a minimum required version of JDK 5.
The turnkey distribution that includes Tomcat 6 does not include a JDK. On a Windows-based
development or server system, you must download and install the JDK (most likely from Sun
Microsystems) before running Tomcat.

TIPTIP

703

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 703

704

Integrating Flex Applications with Application Servers and the DesktopPart IV

The End of JRun

In late 2007, Adobe announced that it would discontinue new feature development for JRun, its
own Java Enterprise Edition application server. The packaging of BlazeDS with Tomcat instead of

JRun represents Adobe’s first move away from JRun, which has been the default application server
for Flex/LiveCycle Data Services, ColdFusion, and many other server-based products.

While JRun was one of the first Java servlet container applications, its lack of market share and the
availability of free Java-based application servers such as Tomcat and JBoss drove the decision to
move to other products. If you already use and are happy with JRun, there’s no reason to stop using
it, but as the Java-based application server market continues to evolve, JRun will eventually become
a less compelling choice.

Getting started with BlazeDS
BlazeDS is hosted at Adobe’s Open Source Web site and can be downloaded from http://
opensource.adobe.com/blazeds. In addition to product downloads, this page includes
links to the product’s release notes, bug database, support forums, and developer documentation.
As an open-source project, Adobe welcomes submissions of proposed patches for the product.

Downloading BlazeDS
Multiple download options are available for BlazeDS:

� The release builds are binary distributions that have been tested and declared stable and
ready for production use.

� The nightly builds are binary distributions that are built with all the latest features and
source code but haven’t been fully tested.

� The product source code for the most recent release build is available for download as an
archive file in .zip format.

� The latest product source code can be checked out from the source repository using any
Subversion client. This source code is not tested or certified. As the product page says:

“The Subversion repository should only be used if you want to be on the bleeding-edge of
the development effort. The code contained in them may fail to work, or it may even eat
your hard drive.”

For the purposes of this chapter, I’ll assume you’re opting for safety and reliability and want to
download a release build. (This is in contrast to the adventure and excitement that attend the
nightly builds or the source code repository.) Two versions of the release build are available:

� A turnkey distribution that includes a preconfigured copy of Tomcat 6

� A binary distribution that includes WAR (Web Application Archive) files that can be
deployed on any supported application server.

32_287644-ch24.qxp 6/23/08 11:52 PM Page 704

To download the turnkey distribution, follow these steps:

1. In any Web browser, navigate to http://opensource.adobe.com/blazeds.

2. Click Download BlazeDS now.

3. Review the Terms of Use.

4. If you accept the Terms of Use, click Download the latest BlazeDS Release builds.

5. Click Download the BlazeDS turnkey.

The turnkey distribution is delivered in a .zip file; the most recent release as of this writing was a
file named blazeds_turnkey_3-0-0-544.zip. The .zip file can be extracted to any folder on
your hard disk. If you want to match the Windows configuration used in this chapter’s sample
code, extract the files to a new folder named C:\blazeds. If you’re working on Mac OS X or
another operating system, extract the files to any location and then adapt the instructions through-
out this chapter to your custom BlazeDS location.

The turnkey installation includes three complete instances of BlazeDS. Each BlazeDS instance is
included as a WAR file in the installation folder root and also is extracted as a working application
in the Tomcat server’s webapps folder:

� blazeds.war contains a starting copy of BlazeDS. To start a new BlazeDS installation,
deploy blazeds.war to your application server. The same application is included in the
turnkey installation in the webapps/blazeds folder.

� samples.war contains a completed BlazeDS instance with deployed release builds of
the sample applications, required configurations, and documentation. The same applica-
tion is included in the turnkey installation in the webapps/samles folder.

� ds-console.war contains a management console application that makes calls to a
Remoting Service destination to provide runtime information about various service activi-
ties. The same application is included in the turnkey installation in the webapps/
ds-console folder.

To create a new BlazeDS installation on Tomcat, copy blazeds.war to a filename of your choosing,
such as myblazeds.war. Then copy the new version of the file to Tomcat’s webapps folder.
Tomcat detects the presence of the new file and extracts it to a new context root with the same name.

Starting BlazeDS in Windows
To start the Tomcat server in Windows, you first must have installed a Java Development Kit. The
server requires an environment variable named JAVA_HOME that points to the root folder of the JDK.

You can download a free copy of the Java Development Kit from Sun Microsystems at
http://java.sun.com.WEB RESOURCEWEB RESOURCE

705

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 705

Assuming you have a release of Sun’s JDK5 installed on your system, follow these steps to start
Tomcat in Windows:

1. Open a command window.

� In Windows XP, click Start and choose Run. Then type cmd, and click OK.

� In Windows Vista, open the Windows Start menu. Click into Start Search, type cmd,
and press Enter.

2. Switch to the BlazeDS folder’s tomcat/bin subfolder:

cd \blazeds\tomcat\bin

3. Set the JAVA_HOME environment variable to point to your JDK’s root folder. This com-
mand assumes that JDK version 1.5.15 is installed on your system in the default location:

set JAVA_HOME=\Program Files\Java\jdk1.5.0_15

4. Type startup, and press Enter to run Startup.bat from the current folder.

As shown in Figure 24.1, Tomcat starts in a separate command window.

FIGURE 24.1

The Tomcat server running in a separate command window

To shut down Tomcat in Windows, use either of these methods:

� Close the command window in which it’s running as an application.

� Return to the original command window, and run the shutdown.bat batch file.

Starting BlazeDS on Mac OS X
As mentioned previously, BlazeDS and LCDS aren’t officially supported on Mac OS X, but many
developers use Mac systems as their primary development platform. Mac OS X comes equipped
with an instance of the Java Development Kit, so unless your system has been otherwise config-
ured, you shouldn’t have to download and install the JDK. Just extract the turnkey distribution
into any folder on your hard disk, and you should be ready to get started.

706

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 706

Follow these steps to start the version of Tomcat included with the turnkey distribution of BlazeDS
on Mac OS X:

1. Open Terminal from /Applications/Utilities.

2. Switch to tomcat/bin in the folder in which you extracted the turnkey distribution.
Assuming you extracted the distribution into /Applications/blazeds, this com-
mand would switch to the Tomcat server’s bin folder:

cd /Applications/blazeds/tomcat/bin

3. Start Tomcat with this command:

./startup.sh

4. To stop Tomcat when you’re finished, use this command in Terminal:

./shutdown.sh

Starting the sample database
The turnkey distribution of BlazeDS includes an HSQLDB database that’s designed to run as a sep-
arate process. Before using any of the sample applications that are included with BlazeDS, you
must start the database process.

In Windows, follow these steps to start the sample database:

1. Open a separate command window.

2. Switch to the sampledb folder under the BlazeDS root folder, and run the
startdb.bat batch file:

cd \blazeds\sampledb
startdb

The database runs as long as you keep the command window open. When you close the command
window, the database shuts down.

On Mac OS X, follow these steps:

1. Open a new Terminal window.

2. Switch to the sampledb folder under the BlazeDS root folder, and run startdb.sh
from the current folder:

cd /Applications/blazeds/sampledb
./startdb.sh

As with Windows, the database runs only as long as you keep the window open. To shut down the
database, press Ctrl+C or shut down Terminal.

Using the samples application
The turnkey distribution includes a complete instance of BlazeDS that contains many sample appli-
cations. Each sample application includes complete source code to communicate with the sample
database where necessary.

707

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 707

The copy of Tomcat that’s included with the turnkey distribution is configured to run on port 8400
(not on port 8080 as a version of Tomcat downloaded directly from Apache might be). The sam-
ples application is stored in the Tomcat server’s webapps folder under context root of /samples.
To explore the sample applications from a browser, navigate to this URL in any Web browser:

http://localhost:8400/samples

As shown in Figure 24.2, the samples application’s home page includes links to each of the appli-
cations. They include excellent examples of using the Message Service and Remoting Service to
build complete Internet-enabled Flex applications with Java-based server resources.

FIGURE 24.2

The BlazeDS samples application’s home page

The sample applications are delivered as release builds; the folders from which they’re
executed don’t contain Flex application source code. Instead, the Flex source code for

all sample applications is delivered in a .zip file in the samples application as WEB-INF/flex-src/
flex-src.zip.

TIPTIP

708

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 708

Creating Flex Projects for Use with BlazeDS
When you create a new Flex project that will communicate with resources hosted by BlazeDS at run-
time, Flex Builder allows you to add special configuration options that automate much of the creation
and deployment of the Flex application. The Java server options in the initial release of Flex Builder 3
are labeled for LiveCycle Data Services, but they work equally well for a BlazeDS installation.

The sample files for this chapter are in chapter24.zip on the Web site. Unlike the
sample files for other chapters, this is not a Flex project archive, but rather a simple

archive designed to be extracted after the project has been created.

Follow these steps to create a new Flex project for deployment with BlazeDS:

1. Select File ➪ New ➪ Flex Project from the Flex Builder menu.

2. Set the project name to chapter24.

3. Use the default project location, which should be a folder named chapter24 under the
current workspace. (Assuming you are compiling locally, rather than using the SDK on
the server to compile the application upon request, you can place the project anywhere
on your hard disk.)

4. Set the Application type to Web application.

5. Set the Application server type to J2EE.

6. Select Use remote object access service and LiveCycle Data Services.

7. If you see an option labeled “Create combined Java/Flex project using WTP,” deselect it.

8. Click Next.

The option labeled “Create combined Java/Flex project using WTP” appears only if you’ve
installed the Web Tools Platform project as an Eclipse plug-in. If you don’t see these

options, it just means that you haven’t installed this additional plug-in. The WTP tools provide support
for advanced Java constructs and allow developers to work with Flex and Java in a combined environ-
ment. More information about the WTP project is available at www.eclipse.org/webtools/.

9. The Server location defaults to a default installation of LiveCycle Data Services. As shown
in Figure 24.3, deselect the option labeled “Use default location for local LiveCycle Data
Services server” and set the Server location to the correct location of BlazeDS. For a
default installation in Windows, set the properties as follows:

� Root folder: c:\blazeds\tomcat\webapps\blazeds

� Root URL: http://localhost:8400/blazeds

� Context root: /blazeds

TIPTIP

ON the WEBON the WEB

709

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 709

FIGURE 24.3

Setting the location of BlazeDS

10. Check to be sure that BlazeDS is currently running. Then click Validate Configuration to
verify that the Web root folder and root URL are valid.

11. Accept all other default values, and click Next.

12. Set the Main application filename to HelloFromBlazeDS.mxml.

13. Click Finish to create the application and project.

14. If you want to use the sample files from the Web site, extract chapter24.zip into the
new project folder. This will result in overwriting your default Main application file and
adding other required MXML and ActionScript source files.

15. Return to Flex Builder, and run the main application. As shown in Figure 24.4, the appli-
cation should load from the BlazeDS URL of http://localhost:8400/blazeds/
HelloFromBlazeDS.html.

710

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 710

FIGURE 24.4

Downloading and running the main application from BlazeDS

To use the server-side samples for this chapter, locate blazedsFiles.zip in the chapter24
project. This archive file contains Java classes, updated configuration files, and other required
resources for this chapter. Follow these steps to install the files before trying any of the chapter’s
applications:

1. If the application server that’s hosting BlazeDS is currently running, shut it down.

2. Make backup copies of the following files in the BlazeDS WEB-INF/flex folder:

� services-config.xml

� proxy-config.xml

� remoting-config.xml

3. Extract blazedsfiles.zip to the BlazeDS context root folder. If you’re using the
turnkey distribution in Windows with the recommended installation location, extract the
files to:

C:\blazeds\tomcat\webapps\blazeds

4. Restart Tomcat or whichever application server you’re using.

On Mac OS X, when you extract ZIP archive files and you accept the prompt to over-
write the folder, the entire folder is replaced, thus deleting any files already in place. Be

careful not to replace the folder. Instead, replace the files when prompted.

Using the Proxy Service
The Proxy Service is one of BlazeDS’s primary features. It allows you to use BlazeDS as a proxy for
requests to servers in remote domains that would otherwise require the creation and placement of
a cross-domain policy file.

As described in Chapter 21, when a Flex application (or, for that matter, any Flash document)
makes an HTTP request, Flash Player first determines whether the domain of the request matches
the domain from which the Flash document was downloaded. If the two domains don’t match in

CAUTION CAUTION

711

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 711

any way, Flash Player makes a preliminary request for a file named crossdomain.xml that must
be stored in the remote domain’s Web root folder.

In many cases, it’s difficult or impossible to get the cross-domain policy file where you need it. For
example, if the content comes from a data syndication vendor, the vendor may be unaware of the
need for, or unwilling to create and place, the cross-domain policy file. In this scenario, BlazeDS
can help.

As shown in Figure 25.5, when you use the Proxy Service, requests from the WebService or
HTTPService components are routed from the Flex application to BlazeDS at runtime. BlazeDS
forwards the request to the remote domain. When the response from the remote domain is
received, BlazeDS forwards the response back to the Flex client application.

FIGURE 25.5

The request to a remote domain is sent from the Flex application to BlazeDS when using the Proxy Service

Flex application
running in the
Flash Player

WebService or
HTTPService request

Application
downloaded

from BlazeDS

Native domain
running BlazeDS

Remote domain
hosting Web service

Proxied request

712

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 712

Configuring the Proxy Service
The Proxy Service can proxy requests from the Flex framework’s WebService and HTTPService
components. You configure the service in nearly the same manner when creating a proxy for SOAP-
based Web services or REST-style resources stored in on a remote domain.

The configuration files for LiveCycle Data Services and BlazeDS are stored in a folder under the
application’s context root folder named WEB-INF/flex. The turnkey installation’s BlazeDS con-
text root, the folder WEB-INF/flex, contains these files:

� services-config.xml is the primary configuration file that contains basic configura-
tions and instructions to include all other files listed here.

� remoting-config.xml contains configurations for the Remoting Service.

� messaging-config.xml contains configurations for the Message Service.

� proxy-config.xml contains configurations for the Proxy Service.

The configuration folder for LiveCycle Data Services also includes the data-
management-config.xml file with configurations for the Data Management Service.

The default services-config.xml file in a new BlazeDS installation contains these <serv-
ice-include> elements that include the individual configuration files for each service:

<service-include file-path=”remoting-config.xml” />
<service-include file-path=”proxy-config.xml” />
<service-include file-path=”messaging-config.xml” />

All configuration options for the Proxy Service should be placed in proxy-config.xml.

After making changes to any of the configuration files, you typically have to redeploy
the BlazeDS instance. The deployment method differs between application servers. In

Tomcat, you can force redeployment by making any small change to the context root’s web.xml file
(located in the WEB-INF folder) and saving it to disk. Tomcat is configured by default to listen for
changes to this file and redeploy the context root when it notices that the file has been updated.

Using the default destination
A destination in the world of LiveCycle Data Services and BlazeDS is a resource hosted by the appli-
cation server to which requests can be sent from a Flex application. A Proxy Service destination
gives permission to BlazeDS to proxy a request and, in some cases, defines an alias that can be used
in the Flex application instead of the actual URL where the Web resource is stored.

There are two kinds of Proxy Service destinations:

� The default destination supports proxying HTTPService requests to multiple resources
through the use of dynamic URL declarations and wildcard characters.

� Named destinations create aliases that can be used by both HTTPService and
WebService in a Flex application instead of the actual resource url or wsdl settings.

TIPTIP

TIPTIP

713

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 713

The default destination is defined by a reserved id of DefaultHTTP. The initial contents of
proxy-config.xml, shown in Listing 24.1, includes the default destination but doesn’t attach it
to any URL patterns.

LISTING 24.1

The default contents of proxy-config.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<service id=”proxy-service”

class=”flex.messaging.services.HTTPProxyService”>
<properties>

<connection-manager>
<max-total-connections>100</max-total-connections>
<default-max-connections-per-host>2</default-max-connections-per-

host>
</connection-manager>
<allow-lax-ssl>true</allow-lax-ssl>

</properties>
<adapters>

<adapter-definition id=”http-proxy”
class=”flex.messaging.services.http.HTTPProxyAdapter”

default=”true”/>
<adapter-definition id=”soap-proxy”

class=”flex.messaging.services.http.SOAPProxyAdapter”/>
</adapters>
<default-channels>

<channel ref=”my-amf”/>
</default-channels>
<destination id=”DefaultHTTP”>
</destination>

</service>

The default destination’s id of DefaultHTTP is case-sensitive. If you spell it in the
configuration file with all uppercase or lowercase letters, or with a different mixed case,

it isn’t recognized by BlazeDS.

The default destination can include one or more <dynamic-url> elements nested within a
<properties> element. Each <dynamic-url> element declares a URL pattern that gives per-
mission for requests that match the pattern to use the Proxy Service.

CAUTION CAUTION

714

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 714

The following version of the default destination allows proxying of requests to resources on two
different Web sites:

<destination id=”DefaultHTTP”>
<properties>

<dynamic-url>http://www.remotedomain.com/*</dynamic-url>
<dynamic-url>http://www.anotherdomain.com/*</dynamic-url>

</properties>
</destination>

You also can give global permission to the Proxy Service to proxy requests to any site with a
<dynamic-url> element set to the * wildcard character:

<destination id=”DefaultHTTP”>
<properties>

<dynamic-url>*</dynamic-url>
<properties>

</destination>

You should give global Proxy Service permission only in an environment where you’re
sure that only your applications can make requests to BlazeDS. The default destination

is delivered without any <dynamic-url> permissions, because this sort of declaration can create a
security risk.

After you’ve declared the default destination, any HTTPService component can use the Proxy
Service by setting its useProxy property to true. As long as the component’s url or wsdl value
matches at least one of the <dynamic-url> declarations, the Proxy Service will route the request
as needed.

This HTTPService component, for example, uses a proxy to make a request for an XML file on a
remote domain that’s been given permission in the default destination:

<mx:HTTPService id=”myHTTPService”
url=”http://www.remotedomain.com/somedata.xml”
result=”resultHandler(event)”
fault=”faultHandler(event)”
useProxy=”true”/>

In order to use the Proxy Service with the default configuration, a Web-based Flex appli-
cation should be downloaded from BlazeDS at runtime. The application then automati-

cally sends its requests back to the server from which it was downloaded.

Desktop Flex applications deployed with AIR don’t need to use the Proxy Service. These
applications aren’t downloaded from the Web at runtime, so they aren’t subject to the

rules of the Web security sandbox and can make runtime requests directly to any domain.

The application in Listing 24.2 uses a proxied request for data in an XML file stored on the server.

TIPTIP

TIPTIP

CAUTION CAUTION

715

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 715

LISTING 24.2

A Flex application using the Proxy Service

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”>
<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.rpc.events.FaultEvent;
import mx.rpc.events.ResultEvent;
import mx.collections.ArrayCollection;
[Bindable]
private var myData:ArrayCollection
private function resultHandler(event:ResultEvent):void
{

myData = event.result.contacts.row;
}
private function faultHandler(event:FaultEvent):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}

]]>
</mx:Script>
<mx:HTTPService id=”contactService”

url=”http://127.0.0.1:8400/blazeds/flex3bible/data/contacts.xml”
result=”resultHandler(event)”
fault=”faultHandler(event)”/>

<mx:Button label=”Get Data” click=”contactService.send()”/>
<mx:DataGrid dataProvider=”{myData}”/>

</mx:Application>

The code in Listing 24.2 is available in the Web site files as DefaultProxy
Destination.mxml in the src folder of the chapter24 project.

When you run the application in its current state, it correctly downloads and displays the
requested data. If you remove the HTTPService component’s useProxy property or set it to
false, the request fails, because the domain of the XML file and the domain from which the
application is downloaded don’t match. The result is a security fault, as shown in Figure 24.6.

In the example in Listing 24.2, the HTTPService request triggers a cross-domain secu-
rity violation, because the application is downloaded from http://localhost, while

the HTTPService component’s url property refers to http://127.0.0.1. While these two ways
of representing the localhost domain are technically the same, Flash Player doesn’t have any way
of knowing it. Flash Player cannot match IP addresses to their DNS equivalents and doesn’t even try.

TIPTIP

ON the WEBON the WEB

716

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 716

FIGURE 24.6

A Flex application displaying a security fault

Using named destinations
A named Proxy Service destination uses an id other than DefaultHTTP. You can use a named
destination in two ways:

� When the named destination contains a nested <url> element, it represents an alias for
a single Web resource. The destination id can then be referred to in the Flex application
instead of the actual url.

� When the named destination contains one or more nested <dynamic-url> elements, it
can proxy multiple Web resources.

To create a named destination for HTTPService that serves as an alias for a single Web resource,
add a single <url> element nested within the destination’s <properties> element. Set the
<url> element’s text value to the explicit address of the Web resource. The following declaration
creates a destination with an id of contactsXML that points to the location of the data in the
remote domain:

<destination id=”contactsXML”>
<properties>

<url>
http://127.0.0.1:8400/blazeds/flex3bible/data/contacts.xml
</url>

</properties>
</destination>

717

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 717

In the Flex application, set the HTTPService object’s destination property to the id you
configured in BlazeDS:

<mx:HTTPService id=”contactService”
destination=”contactsXML”
result=”resultHandler(event)”
fault=”faultHandler(event)”/>

When you set the destination property of a WebService or HTTPService
object, its useProxy property is set to true automatically. Setting a destination

and then setting useProxy to false wouldn’t make any sense, because the destination refers
to a Proxy Service resource on the server.

Try these steps to use a destination that’s already been created in proxy-config.xml:

1. Open DefaultProxyDestination.mxml.

2. Select File ➪ Save As... from the Flex Builder menu, and name the new file
NamedProxyDestination.mxml.

3. Locate the <mx:HTTPService> tag.

4. Remove the url and useProxy properties.

5. Add a destination property set to contactsXML. The HTTPService declaration
should look like this:

<mx:HTTPService id=”contactService”
destination=”contactsXML”
result=”resultHandler(event)”
fault=”faultHandler(event)”/>

6. Run the new version of the application, and test retrieving data from the server.

The proxied request should be completed successfully.

The completed code for this exercise is available in the Web site files as NamedProxy
DestinationComplete.mxml in the src folder of the chapter24 project.

You also can include <dynamic-url> elements in a named destination, either along with or
instead of the <url> element. This declaration uses the same destination and a dynamic url:

<destination id=”contactsXML”>
<properties>

<dynamic-url>http://localhost:8400/blazeds/*</dynamic-url>
</properties>

</destination>

To use a dynamic url in a named destination, set the HTTPService or WebService object’s
destination and url properties. The url should match the pattern in the dynamic url in
the destination that’s defined on the server:

ON the WEBON the WEB

TIPTIP

718

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 718

<mx:HTTPService id=”contactService”
destination=”contactsXML”

url=”http://127.0.0.1:8400/blazeds/flex3bible/data/contacts.xm
l”
result=”resultHandler(event)”
fault=”faultHandler(event)”/>

To use the Proxy Service with the Flex framework’s WebService component, declare a named
destination that uses an adapter named soap-proxy. Declare a nested <soap> property that
points to the endpoint URI where service requests should be sent and, optionally, a <wsdl>
element that indicates the location of the service’s WSDL service description:

<destination id=”contactsWS”>
<adapter ref=”soap-proxy”/>
<properties>

<wsdl>/myapp/services/contactService?wsdl</wsdl>
<soap>/myapp/services/contactService</soap>

</properties>
</destination>

The WebService object in the Flex application then declares just the destination and sends
requests to execute service operations to BlazeDS:

<mx:WebService id=”myService”
destination=”contactsWS”
result=”resultHandler(event)”
fault=”faultHandler(event)”/>

Using the Remoting Service
The Remoting Service allows you to execute public methods of server-side Java classes hosted by
LiveCycle Data Services or BlazeDS. The Flex application uses the RemoteObject component to
execute the calls and handle results returned from the remote server.

The RemoteObject component is one of the Flex framework’s three RPC components. The other
two, the WebService and HTTPService components, have been described previously. Like
these two, the RemoteObject component makes calls asynchronously and handles returned
results with either binding expressions or event handlers.

The Remoting Service on the server and the RemoteObject component on the client use a binary
format to transfer data back and forth. This format, AMF (Action Message Format), was originally
created for ColdFusion’s Flash Remoting technology and was then adapted for use with Java classes
in Flex Data Services, LiveCycle Data Services, and now BlazeDS. Because this format is binary, the
result is smaller data bundles and there is no need for resource-intensive XML parsing. In most
cases, the result is better speed and performance.

719

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 719

There are two versions of AMF. The first version, now known as AMF0, was originally
supported in earlier versions of ColdFusion and Flex 1.x. The newer version, known as

AMF3, is supported by the current versions of ColdFusion, LiveCycle Data Services, and BlazeDS.
Flex 3 applications make requests in AMF3 by default, but they can be configured to communicate in
AMF0 when required.

Creating and exposing Java classes
The RemoteObject component can call public methods of any basic Java class that’s been hosted
and configured in LiveCycle Data Services or BlazeDS. (For convenience, I’ll refer exclusively to
BlazeDS for the rest of this chapter, but the functionality and techniques are exactly the same for
LiveCycle Data Services.)

You need to follow two steps when making the Java methods available:

1. Create and compile a Java class, and place in the BlazeDS classpath.

2. Create a destination that points to the Java class on the server.

Any plain old Java Object (sometimes known as a “POJO”) can be used through the Remoting
Service. Classes written in other common Java design patterns, such as servlets and Enterprise Java
Beans (EJBs), can’t be called directly through the Remoting Service. If you have existing functional-
ity already built in these formats, though, it’s a fairly easy task to create a POJO to call from Flex
that in turn makes calls on the server to existing functions.

TIPTIP

720

Integrating Flex Applications with Application Servers and the DesktopPart IV

AMF Documentation

In the past, a number of individuals and organizations reverse-engineered AMF to create open-source
or commercial server implementations that are compatible with Flex applications. OpenAMF

(http://sourceforge.net/projects/openamf/), Red5 (http://osflash.org/red5),
AMFPHP (www.amfphp.org), and WebOrb (www.themidnightcoders.com/weborb/java/) all
represent potential alternatives to Adobe’s own products for providing AMF-based messaging with Java-
based application servers.

In February 2008, Adobe Systems publicly documented both AMF0 and AMF3 so that organizations
that had previously implemented AMF-capable servers could verify that their work matched the proto-
col exactly and to allow new participants in the world of Flex development to get it right the first time.

The AMF documentation is currently available from these links:

AMF0:
http://opensource.adobe.com/wiki/download/attachments/1114283/
amf0_spec_121207.pdf?version=1

AMF3:
http://opensource.adobe.com/wiki/download/attachments/1114283/
amf3_spec_121207.pdf?version=1

32_287644-ch24.qxp 6/23/08 11:52 PM Page 720

Follow these rules for creating Java classes for use with the Remoting Service:

� All classes must be in the BlazeDS classpath.

� For individual classes, you can accomplish this by placing them in BlazeDS’s WEB-
INF/classes folder. As with all Java Enterprise Edition applications, classes placed
in this folder are automatically available to the application.

� For classes stored in JAR (Java Archive) files, the JAR file can be placed in BlazeDS’s
WEB-INF/lib folder. As with all Java Enterprise Edition applications, archive files
placed in this folder are automatically added to the classpath when the application is
started.

� The Java class must have a no-arguments constructor method or no explicit constructor
methods at all. At runtime, the Remoting Service gateway creates an instance of the Java
class (static methods aren’t supported). It assumes the presence of a constructor method
that can be called with no arguments:

public ROService()
{

System.out.println(“constructor method called”);
}

If you create a class with no explicit constructor method, the Java compiler adds the no-
arguments constructor for you. If there’s at least one constructor method with arguments,
though, you’re responsible for creating the alternative constructor method with no argu-
ments.

� All methods must be explicitly marked as public. Java allows you to drop the access
modifier from a method declaration, but these methods aren’t available to the Remoting
Service. This simple Java-based method is suitable for use by the Remoting Service:

public String helloWorld()
{

return “Hello from the world of Java!”;
}

� You can’t use a small set of reserved method names. These methods are used by the gate-
way library at runtime; if your class implements any of these method names, conflicts can
result:

� addHeader()

� addProperty()

� clearUsernamePassword()

� deleteHeader()

� hasOwnProperty()

� isPropertyEnumerable()

� isPrototypeOf()

� registerClass()

� setUsernamePassword()

721

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 721

� toLocaleString()

� toString()

� unwatch()

� valueOf()

� watch()

� Method names should not start with an underscore (_) character.

Listing 24.3 shows the source code for a Java class named ROService in the flex3Bible pack-
age. It has an explicit no-arguments constructor method and a single method that returns a
String value.

LISTING 24.3

A Java class suitable for use with the Remoting Service

package flex3Bible;
public class ROService
{

public ROService() {
}
public String helloWorld() {

return “Hello from the world of Java”;
}
public List getArray() {

Map stateObj;
List ar = new ArrayList();
stateObj = new HashMap();
stateObj.put(“capital”, “Sacramento”);
stateObj.put(“name”, “California”);
ar.add(stateObj);
stateObj = new HashMap();
stateObj.put(“capital”, “Olympia”);
stateObj.put(“name”, “Washington”);
ar.add(stateObj);
stateObj = new HashMap();
stateObj.put(“capital”, “Salem”);
stateObj.put(“name”, “Oregon”);
ar.add(stateObj);
return ar;

}
public String concatValues(String val1, String val2) {

return “You passed values “ + val1 +
“ and “ + val2;

}

722

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 722

public String setContact(Contact myContact) {
return “Contact sent from server: “ + myContact.getFirstName() + “ “

+
myContact.getLastName();

}
public Contact getContact(String val1, String val2) {

Contact myContact = new Contact();
myContact.setFirstName(val1);
myContact.setLastName(val2);
return myContact;

}
}

The source code in Listing 24.3 is available in the Web site files as ROService.java
in the BlazeDS WEB-INF/src folder. The compiled version of the class is stored in

BlazeDS WEB-INF/classes folder.

The no-arguments constructor method in Listing 24.3 isn’t required as long as the class
doesn’t have any other constructor methods.

Configuring Remoting Service destinations
Each Java class you want to call from a Flex application with the Remoting Service must be config-
ured as a destination in the BlazeDS configuration files. Remoting Service destinations are defined
in remoting-config.xml in the BlazeDS WEB-INF/flex folder.

The default remoting-config.xml that’s delivered with a fresh BlazeDS installation looks like
this:

<?xml version=”1.0” encoding=”UTF-8”?>
<service id=”remoting-service”

class=”flex.messaging.services.RemotingService”>
<adapters>

<adapter-definition id=”java-object”

class=”flex.messaging.services.remoting.adapters.JavaAdapter”
default=”true”/>

</adapters>
<default-channels>

<channel ref=”my-amf”/>
</default-channels>

</service>

TIPTIP

ON the WEBON the WEB

723

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 723

The <channel> element toward the bottom of the file indicates that Remoting Service communi-
cations are handled by default with AMF. The my-amf channel is defined in services-con-
fig.xml in the same folder and looks like this:

<channel-definition id=”my-amf”
class=”mx.messaging.channels.AMFChannel”>
<endpoint url=”http://{server.name}:{server.port}/

{context.root}/messagebroker/amf”
class=”flex.messaging.endpoints.AMFEndpoint”/>

</channel-definition>

Notice that the <endpoint> element includes dynamic expressions (wrapped in curly braces)
that refer to the server, port, and context root from which the application is downloaded at run-
time. This is how the Flex application knows which server should receive requests for remote
object method calls.

Each Java class you want to call from Flex must be configured as a destination. Each destination is
declared as a child of the configuration file’s <service> root element and looks like this in its
simplest form:

<destination id=”helloClass”>
<properties>

<source>flex3Bible.ROService</source>
<scope>application</scope>

</properties>
</destination>

The <destination> element’s id property is an arbitrary value that you use in the Flex applica-
tion to refer to this class as a remote object. Within the <properties> element, you declare
these two values:

� The <source> element is required and is set to the fully qualified name and package of
the Java class that contains methods you want to call.

� The <scope> element is optional and is set to one these three values:

� application means that a single instance of the Java class is constructed as BlazeDS
starts up and is shared by all users and requests.

� session means that a new instance of the Java class is constructed for each new
browser session. As each user sends new requests, the session instances are tracked
(via the host JEE application server’s session management) with cookies that are auto-
matically generated and tracked by BlazeDS and the hosting application server.

� request (the default) means that a new instance of the Java class is constructed for
each call to any of the class’s methods.

All other things being equal, you achieve the best performance and most efficient mem-
ory usage on the server with <scope> set to application. The only reason to use the

default setting of request is if the Java class has code that can’t be called safely by concurrent
requests from multiple clients.

TIPTIP

724

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 724

Using the RemoteObject Component
The Flex framework’s RemoteObject component is used to represent a server-side Java class con-
taining public methods you want to call from a Flex application. Just as the HTTPService com-
ponent sends and receives requests with generic XML-formatted messages and the WebService
component does with SOAP, the RemoteObject component makes requests and handles
responses using the HTTP communication protocol.

The big difference with RemoteObject is the message format: Because AMF is binary, instead of
the text-based XML languages used by the WebService and HTTPService components, mes-
sages formatted in AMF are a fraction of the size generated by the other RPC components. As a
result, communication is faster, less network bandwidth is used, and larger data packets can be
transferred between client and server.

Instantiating the RemoteObject component
As with the HTTPService and WebService components, you can instantiate RemoteObject
in MXML or ActionScript code. When used with BlazeDS, you instantiate the object and set its des-
tination property.

This MXML code creates an instance of the RemoteObject component that points to a server-
side destination:

<mx:RemoteObject id=”roHello” destination=”helloClass”/>

The equivalent code in ActionScript looks like this:

import mx.rpc.remoting.RemoteObject;
private var roHello:RemoteObject = new RemoteObject(“roHello”);

Alternatively, you can first declare the object and then set its destination:

var roHello:RemoteObject = new RemoteObject();
roHello.destination = “roHello”;

Calling remote methods
You call public methods of server-side Java classes as though they were local methods of the
RemoteObject. For example, the Java class in Listing 24.3 has a public method named
helloWorld() that returns a simple String. As with local functions, you can call the remote
method upon any application event. For example, this code calls the server-side helloWorld()
method upon a Button component’s click event:

<mx:Button label=”Click to say hello”
click=”roHello.helloWorld()”/>

725

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 725

You also can call a remote method by calling the RemoteObject object’s getOperation()
method to create an instance of the Operation class. The following code creates the Operation
object and then calls its send() method to call the remote method:

import mx.rpc.remoting.mxml.Operation;
private function callIt():void
{

var op:Operation = roHello.getOperation(“helloWorld”) as
Operation;
op.send();

}

This technique allows you to determine which remote method will be called at runtime, instead of
having to hard code the method name.

Handling RemoteObject results
As with the other RPC components, you can handle data returned from a call to a remote method
with binding expressions or event handlers. Binding expressions take less code and are easy to cre-
ate, while an event handler gives you much more flexibility in how you receive, process, and save
data to application memory.

Using binding expressions
A binding expression used to pass returned data to application components consists of three parts,
separated with dots:

� The RemoteObject instance’s id

� The remote method name

� The lastResult property

At runtime, the method is created as an Operation object that’s a member of the RemoteObject
instance with an id that matches the method’s name. The Operation object’s lastResult prop-
erty is populated with data when it’s received from the server.

The lastResult property is typed as an ActionScript Object, but at runtime its native type is
determined by what type of data was returned from the server. A String returned from Java is
translated into an ActionScript String value, so a binding expression that handles the value
returned from the simple helloWorld() method can be used to pass the returned value to a
Label or other text display control.

The application in Listing 24.4 calls the remote helloWorld() method and displays its returned
data in a Label control with a binding expression in its text property.

726

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 726

LISTING 24.4

Handling returned data with a binding expression

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>

<mx:RemoteObject id=”roHello” destination=”helloClass”/>

<mx:Label text=”Hello from BlazeDS!” fontSize=”14” fontWeight=”bold”/>

<mx:Button label=”Click to say hello” click=”roHello.helloWorld()”/>

<mx:Label text=”{roHello.helloWorld.lastResult}”
fontSize=”14” fontWeight=”bold”/>

</mx:Application>

The code in Listing 24.4 is available in the Web site files as ROWithBindings.mxml in
the src folder of the chapter24 project.

Using the result event
As with the other RPC components, you can handle results of a call to a remote method with the
RemoteObject component’s result event in an identical fashion. This event dispatches an
event object typed as mx.rpc.events.ResultEvent, the same event object that’s used by the
other RPC components HTTPService and RemoteObject. The event object’s result property
references the returned data.

To handle and save data using the result event, follow these steps:

1. Declare a bindable variable outside of any functions that acts as a persistent reference to
the returned data. Cast the variable’s type depending on what you expect to be returned
by the remote method. For example, if the data returned by the remote Java-based
method is typed as a primitive array or an implementation of the Java List interface, the
RemoteObject component casts the returned data as an ArrayCollection:

import mx.collections.ArrayCollection;
[Bindable]
private var myData:ArrayCollection

2. Create an event handler function that will be called when the event is dispatched. The func-
tion should receive a single event argument typed as ResultEvent and return void:

private function resultHandler(event:ResultEvent):void
{
}

ON the WEBON the WEB

727

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 727

3. Within the event handler function, use the event.result expression to refer to the
data that’s returned from the server. Just as with the WebService component,
ResultEvent.result is typed as an Object. Because the expression’s native type
differs depending on what’s returned by the remote method, you typically have to explic-
itly cast the returned data. This code expects the remote method to return an
ArrayCollection:

myData = event.result as ArrayCollection;

You can listen for the result event with either an MXML attribute-based event listener or a call to
the ActionScript addEventListener() method. The attribute-based event listener looks like this:

<mx:RemoteObject id=”roHello” destination=”helloClass”
result=”resultHandler(event)”/>

When using addEventListener() to create an event listener, you can designate the event name
with the String value result or with the ResultEvent class’s RESULT constant:

var roHello:RemoteObject = new RemoteObject(“helloClass”);
roHello.addEventListener(ResultEvent.RESULT, resultHandler);
roHello.helloWorld();

Listing 24.5 uses a result event handler function to capture and save data that’s been returned
from a remote method.

LISTING 24.5

Handling returned data with the result event

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Script>

<![CDATA[
import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;
[Bindable]
private var statesData:ArrayCollection;
private function resultHandler(event:ResultEvent):void
{

statesData = event.result as ArrayCollection;
}

]]>
</mx:Script>
<mx:RemoteObject id=”roHello” destination=”helloClass”

result=”resultHandler(event)”/>
<mx:Button label=”Get Array” click=”roHello.getArray()”/>
<mx:DataGrid dataProvider=”{statesData}”/>

</mx:Application>

728

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 728

The code in Listing 24.5 is available in the Web site files as ROResultEvent.mxml in
the src folder of the chapter24 project.

As with the other RPC components, exceptions that occur during execution of remote
methods generate a fault event. The code to handle faults is exactly the same as with

the other RPC components. For full description and some code examples, see Chapter 21 and
Chapter 23.

As with the HTTPService and WebService components, you can dispatch result
and fault event objects to ActionScript event hander functions using the

ItemResponder and AsyncToken classes. See Chapter 21 for details.

Working with multiple methods
When you need to call more than one method of a Java class on the server, you have to distinguish
which event handler function should be called for each of them. You do this in MXML with the
<mx:method > compiler tag, which is nested within a <mx:RemoteObject> tag set. Each
<mx:method > tag represents a remote Java method and can declare its own distinct result and
event handlers.

The Java class in Listing 24.6 has a number of different methods. Its helloWorld() method
returns a String, getArray() returns a List, and so on.

LISTING 24.6

The Java class with methods being called from Flex

package flex3Bible;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class ROService {

public String helloWorld()
{

return “Hello from the world of Java”;
}
public List getArray()
{

Map stateObj;
List ar = new ArrayList();
stateObj = new HashMap();
stateObj.put(“capital”, “Sacramento”);
stateObj.put(“name”, “California”);
ar.add(stateObj);
stateObj = new HashMap();
stateObj.put(“capital”, “Olympia”);
stateObj.put(“name”, “Washington”);

TIPTIP

TIPTIP

ON the WEBON the WEB

729

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 729

ar.add(stateObj);
stateObj = new HashMap();
stateObj.put(“capital”, “Salem”);
stateObj.put(“name”, “Oregon”);
ar.add(stateObj);
return ar;

}
public String concatValues(String val1, String val2)
{

return “You passed values “ + val1 +
“ and “ + val2;

}
public String handleObject(Contact myContact)
{

return “You Contact # “ + myContact.getContactId() + “: “ +
myContact.getFirstName() + “ “ + myContact.getLastName();

}
}

The code in Listing 24.6 is available in the Web site files as ROService.java in the
BlazeDS application’s WEB-INF/src/flex3Bible folder. The compiled version of

the class is stored in WEB-INF/classes.

A Flex application that needs to call more than one of these methods would use the
<mx:method> tag as in the following example:

<mx:RemoteObject id=”roHello” destination=”helloClass”
result=”arrayHandler(event)”>
<mx:method name=”helloWorld” result=”helloHandler(event)”/>
<mx:method name=”getArray” result=”arrayHandler(event)”/>

</mx:RemoteObject>

Each method’s custom event handler function would then expect the appropriate type of data to be
returned from its remote method.

The application in Listing 24.7 handles the result events of multiple remote methods using an
MXML declaration.

LISTING 24.7

Handling multiple remote methods’ result events

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Script>

<![CDATA[

ON the WEBON the WEB

730

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 730

import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;

[Bindable]
private var statesData:ArrayCollection;
[Bindable]
private var helloString:String;

private function arrayHandler(event:ResultEvent):void
{

statesData = event.result as ArrayCollection;
}
private function helloHandler(event:ResultEvent):void
{

helloString = event.result as String;
}

]]>
</mx:Script>
<mx:RemoteObject id=”roHello” destination=”helloClass”

result=”arrayHandler(event)”>
<mx:method name=”helloWorld” result=”helloHandler(event)”/>
<mx:method name=”getArray” result=”arrayHandler(event)”/>

</mx:RemoteObject>
<mx:Button label=”Get String” click=”roHello.helloWorld()”/>
<mx:Label text=”{helloString}” fontSize=”14”/>
<mx:Button label=”Get Array” click=”roHello.getArray()”/>
<mx:DataGrid dataProvider=”{statesData}”/>

</mx:Application>

The code in Listing 24.7 is available as ROMultipleMethods.mxml in the src folder
of the chapter24.zip file.

Passing arguments to remote methods
As with WebService operation parameters, you can pass arguments to remote methods using
either explicit or bound argument notation. Explicit notation means that arguments are passed in
the same order in which they’re declared in the Java method.

This Java method, for example, requires two String arguments and returns a concatenated
String:

public String concatValues(String val1, String val2)
{

return “You passed values “ + val1 + “ and “ + val2;
}

The following ActionScript code passes arguments to this remote method with explicit syntax:

roHello.concatValues(fnameInput.text, lnameInput.text);

ON the WEBON the WEB

731

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 731

You also can use bound argument notation with XML elements for each argument wrapped in an
<mx:arguments> tag set. This code binds the concatValues() method’s two arguments to
values gathered from TextInput controls:

<mx:RemoteObject id=”roHello” destination=”helloClass”>
<mx:method name=”concatValues”>

<mx:arguments>
<val1>{fnameInput.text}</val1>
<val2>{lnameInput.text}</val2>

</mx:arguments>
</mx:method>

</mx:RemoteObject>

To call the method with the bound arguments, call the operation’s send() method without any
explicit arguments:

roHello.concatValues.send()

You cannot pass arguments by name to Java-based remote methods using the Remoting
Service. Although the bound arguments syntax makes it look like arguments are being

matched by their names, in fact they’re passed and received in the order of declaration in the Flex
application and the Java method. It may seem odd, but in bound notation with Java, the names of the
argument elements don’t matter at all.

The application in Listing 24.8 passes explicit arguments to a remote method on the server and
displays the returned result with a binding expression.

LISTING 24.8

Passing arguments using explicit notation

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:RemoteObject id=”roHello” destination=”helloClass”/>
<mx:Form>

<mx:FormItem label=”First Name:”>
<mx:TextInput id=”fnameInput”/>

</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lnameInput”/>
<mx:Button label=”Send Args”

click=”roHello.concatValues(fnameInput.text, lnameInput.text)”/>
</mx:FormItem>

</mx:Form>
<mx:Label text=”{roHello.concatValues.lastResult}”

fontSize=”14” fontWeight=”bold”/>
</mx:Application>

CAUTION CAUTION

732

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 732

The code in Listing 24.8 is available as ROExplicitArgs.mxml in the src folder of
the chapter24.zip file. Another file named ROBoundArgs.mxml, not shown here,

demonstrates the use of bound arguments.

Passing data between ActionScript and Java
Data passed from a Flex application to a Java class with the Remoting Service is serialized, or trans-
formed, from ActionScript data types to their equivalent types in Java. When data is returned from
Java to Flex, a similar serialization occurs.

Table 24.1 describes how data is serialized from ActionScript to Java and back again.

TABLE 24.1

ActionScript to Java Data Serialization

ActionScript To Java Back to ActionScript

Array (dense, meaning there List ArrayCollection
are no “holes” in the indexing)

Array (sparse, meaning there Map Object
is at least one gap in the indexing,
or associative with non-numeric keys)

ArrayCollection List ArrayCollection

Boolean java.lang.Boolean Boolean

Date java.util.Date

int/uint java.lang.Integer int

null null null

Number java.lang.Double Number

Object java.util.Map Object

String java.lang.String String

undefined null null

XML org.w3c.dom.Document XML

Notice that data moved in both directions doesn’t always survive the round trip with the same data
type as it had at the beginning. For example, a “sparse” ActionScript Array is serialized as a Java
implementation of the Map interface. When the same data is returned from Java to ActionScript, it
arrives as an ActionScript Object instead of an Array.

There are additional data conversions when returning data from Java to a Flex application. For
example, both the Java Calendar and Date objects become instances of an ActionScript Date.
All non-integer Java data types, such as Double, Long, and Float are mapped to an ActionScript

ON the WEBON the WEB

733

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 733

Number. And numeric Java types that don’t fit the precision limitations of the ActionScript
Number type, such as BigInteger and BigDecimal, are mapped to an ActionScript String.

Using value object classes
When passing data between a Flex client application and a Java-based server, data objects are typi-
cally built using the Value Object design pattern. This pattern ensures that data is serialized in a
precise manner and avoids the uncertainties of automatic object serialization described in the pre-
vious section.

The Value Object design pattern is known in various Flex and Java documentation
sources as the Transfer Object and Data Transfer Object pattern. The different names are

all used to refer to the same pattern: a class that contains data for a single instance of a data entity.

The Java version of the value object is written with classic bean-style syntax. Each value is declared as a
private field of the class and has its values set at runtime with public set and get accessor methods.

The Java class in Listing 24.9 has three private fields with matching accessor methods and is suit-
able for use in a Flex application.

LISTING 24.9

A Java-based value object class

package flex3Bible;
public class Contact {

private int contactId;
private String firstName;
private String lastName;
public int getContactId() {

return contactId;
}
public void setContactId(int contactId) {

this.contactId = contactId;
}
public String getFirstName() {

return firstName;
}
public void setFirstName(String firstName) {

this.firstName = firstName;
}
public String getLastName() {

return lastName;
}
public void setLastName(String lastName) {

this.lastName = lastName;
}

}

TIPTIP

734

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 734

The code in Listing 24.9 is available in the Web site files as Contact.java in the
BlazeDS application’s WEB-INF/src/flex3Bible folder. The compiled version of

the class is stored in WEB-INF/classes.

To pass this object to a Java-based remote method, create a matching ActionScript class. The
ActionScript version’s properties must match the Java class in both name and data type.

Although this example uses public properties for brevity, you also can choose to use pri-
vate properties with explicit set and get accessor methods.

The ActionScript class requires a [RemoteClass] metadata tag with an alias attribute describing
the fully qualified name and package of the matching Java class:

[RemoteClass(alias=”flex3Bible.Contact”)]

This is a two-way mapping: When an ActionScript version of the object is sent to the server, the
Remoting Service gateway creates a Java-based version and passes the received object’s property
values to the server-side version. Similarly, if a Java-based remote method returns instances of the
server-side version, client-side versions are created automatically and their property values set to
the values received from the server.

The ActionScript class in Listing 24.10 declares the same set of values as public properties and
maps itself to the server’s version with the [RemoteClass] metadata tag.

LISTING 24.10

An ActionScript value object class for use with the Remoting Service

package vo
{

[Bindable]
[RemoteClass(alias=”flex3Bible.Contact”)]
public class Contact
{

public var contactId:int;
public var firstName:String;
public var lastName:String;
public function Contact()
{
}

}
}

The code in Listing 24.10 is available as Contact.as in the src/vo folder of the
chapter24.zip file.ON the WEBON the WEB

TIPTIP

ON the WEBON the WEB

735

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 735

Both the Java and ActionScript versions of the value object class must have either a no-
arguments constructor method or none at all. In both cases, if the compiler doesn’t find

an explicit constructor method, it creates a no-arguments version in the compiled class automatically.
Both the client and server assume the presence of the no-arguments constructor method when instan-
tiating the matching value objects.

If you’re a Java developer who has a congenital distrust of public properties, you can
define your ActionScript value object classes with implicit getter and setter accessor

methods and private properties. This syntax is described in Chapter 16.

The Flex application in Listing 24.11 sends and receives value object classes. When it sends an
ActionScript value object to the server, the Java method extracts the received object’s properties
and returns a concatenated value. When the Flex application sends two String values, the
server’s method builds a strongly typed value object and returns it to Flex.

LISTING 24.11

Sending and receiving strongly typed value object classes

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>

<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.rpc.events.ResultEvent;
import vo.Contact;
[Bindable]
private var myContact:Contact;
private function setContact():void
{

myContact = new Contact();
myContact.firstName = fnameInput.text;
myContact.lastName = lnameInput.text;
roHello.setContact(myContact);

}
private function getContact():void
{

roHello.getContact(fnameInput.text, lnameInput.text);
}
private function setHandler(event:ResultEvent):void
{

Alert.show(event.result as String, “Received String”);
}
private function getHandler(event:ResultEvent):void
{

myContact = event.result as Contact;
Alert.show(“Contact VO received from server: “ +

myContact.firstName + “ “ + myContact.lastName,

TIPTIP

TIPTIP

736

Integrating Flex Applications with Application Servers and the DesktopPart IV

32_287644-ch24.qxp 6/23/08 11:52 PM Page 736

“Received Contact value object”);
}

]]>
</mx:Script>
<mx:RemoteObject id=”roHello” destination=”helloClass”>

<mx:method name=”setContact” result=”setHandler(event)”/>
<mx:method name=”getContact” result=”getHandler(event)”/>

</mx:RemoteObject>
<mx:Form>

<mx:FormItem label=”First Name:”>
<mx:TextInput id=”fnameInput”/>

</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lnameInput”/>
</mx:FormItem>
<mx:ControlBar>

<mx:Button label=”Send Object” click=”setContact()”/>
<mx:Button label=”Receive Object” click=”getContact()”/>

</mx:ControlBar>
</mx:Form>

</mx:Application>

The code in Listing 24.11 is available as ROPassVO.mxml in the src folder of the
chapter24.zip file.

The source code for the Java service class called from the Flex application in Listing
24.11 is shown in Listing 24.3.

Summary
In this chapter, I described how to integrate Flex client applications with Java Enterprise Edition
application servers using BlazeDS. You learned the following:

� BlazeDS is a freely available, open-source implementation of the most popular features of
LiveCycle Data Services.

� BlazeDS supports the Proxy Service, Remoting Service, and Message Service.

� The Proxy Service routes HTTP requests to remote domains, eliminating the need for
cross-domain policy files.

� The Remoting Service allows Flex client applications to call remote methods of a Java-
based class hosted by BlazeDS.

� The Remoting Service sends and receives messages in AMF, a binary format that results in
much smaller messages than those that are encoded in XML and SOAP.

� The Flex framework’s RemoteObject component is one of the three RPC components,
along with WebService and HTTPService.

� Data can be sent and received between client and server as simple values or as strongly
typed value objects.

NOTENOTE

ON the WEBON the WEB

737

Integrating Flex Applications with BlazeDS and Java 24

32_287644-ch24.qxp 6/23/08 11:52 PM Page 737

32_287644-ch24.qxp 6/23/08 11:52 PM Page 738

When Flex Data Services 2 was first released, one of its most com-
pelling new features was known as the Flex Message Service.
This service allowed developers to create applications where data

and information were shared instantly between multiple connected client
applications, without having to program with low-level socket-style APIs.

With the renaming of Flex Data Services as LiveCycle Data Services, this
server-based function became known simply as the Message Service (or,
when referred to in the context of BlazeDS, the BlazeDS Message Service).
Using this service, Flex client applications send messages to a destination on
the server; the server then distributes the messages to other connected clients
over a supported communication protocol.

LiveCycle Data Services (referred to here simply as LCDS) supports Real
Time Messaging Protocol (RTMP), a protocol that implements true server-
push capability. When LCDS Message Service destinations use an RTMP
channel, data is pushed from the server to connected clients instantly (or as
close as possible given available network and server resources). BlazeDS, the
free open-source implementation of LCDS features, doesn’t include the
RTMP protocol, but adds the ability to define long-polling and streaming
channels based on HTTP that allow you to create a messaging architecture
that’s very close to real time.

739

IN THIS CHAPTER
Understanding the Message
Service

Configuring messaging on the
server

Using adapters, channels, and
destinations

Creating Flex messaging
applications

Using producers and consumers

Sending and receiving simple
messages

Working with complex messages

Filtering messages on the server

Debugging message traffic

Using the Message Service
with BlazeDS

33_287644-ch25.qxp 6/23/08 11:53 PM Page 739

In this chapter, I describe how to use the Flex framework and BlazeDS to create and deploy an
application that shares messages between multiple connected clients.

To use the sample code for this chapter, download chapter25.zip from the Web site.
Follow the instructions later in this chapter to create a Flex project for use with

BlazeDS and install the various project components to the client and server.

Installation and setup of BlazeDS are described in Chapter 24.

Understanding the Message Service
The Message Service implements “publish/subscribe” messaging. Each client application that wants
to participate in a messaging system can act as a producer that can publish messages and as a con-
sumer that subscribes to a server-based destination. Messages are then distributed from the server
to multiple connected clients using AMF-based encoding.

Client applications that participate in a messaging system aren’t always built in Flex. The Message
Service includes Java classes that serve as adapters. In addition to its default ActionScript adapter
that allows sharing of messages between multiple connected Flex-based applications, BlazeDS
includes these two specialized adapters:

� The JMS adapter supports integration between Flex client applications and Java-based
environments that use the Java Message Service (JMS).

� The ColdFusion Event Gateway Adapter supports integration between Flex client
applications and Web applications hosted by Adobe ColdFusion Enterprise.

The diagram in Figure 25.1 shows how messages travel between clients, using a BlazeDS or LCDS
application running on a Java Enterprise Edition application server.

Unlike messaging systems that allow clients to create peer-to-peer connections, the
Message Service always uses the server as a messaging hub. Clients always send mes-

sages to the server, and the server distributes messages as configured. As a result, you can achieve a
high level of security through server-based configuration.

NOTENOTE

CROSS-REFCROSS-REF

ON the WEBON the WEB

740

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 740

FIGURE 25.1

Messages traveling between Flex client applications using the Message Service

Configuring Messaging on the Server
Applications send and receive messages through server-based destinations. As with the Proxy
Service and the Remoting Service that were described in Chapters 23 and 24, you configure the
Message Service by defining adapters, channels, and destinations in the server application’s config-
uration files. As delivered in the starting BlazeDS application, blazeds.war, the primary config-
uration file, named services-config.xml, contains channel definitions. An included file
named messaging-config.xml contains adapter and destination definitions for messaging.

Message sent from
Flex application

Flex client

BladeDS or LCDS

Flex client

Flex client

741

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 741

Configuring channels for messaging
A channel definition includes information about the communication protocol, how messages are
formatted, the location where messages are sent from the client at runtime (the endpoint), and
whether messages are encrypted with SSL. BlazeDS supports the following types of channels for
use with the Message Service:

� AMF with simple polling: In this approach, the client makes a periodic request to the
server for pending messages. The period between requests is configurable in the channel
definition. The default services configuration file includes a channel with an id of my-
polling-amf that looks like this:

<channel-definition id=”my-polling-amf”
class=”mx.messaging.channels.AMFChannel”>

<endpoint
url=”http://{server.name}:{server.port}/{context.root}/

messagebroker/amfpolling”
class=”flex.messaging.endpoints.AMFEndpoint”/>

<properties>
<polling-enabled>true</polling-enabled>
<polling-interval-seconds>4</polling-interval-seconds>

</properties>
</channel-definition>

The polling interval in this channel is set to 4 seconds; as a result, each client application
makes a request every 4 seconds for pending messages, regardless of whether messaging
activity has occurred.

� AMF with long polling: This approach is similar to simple polling, but by setting the
wait-interval-mills property to -1, you’re telling the server to wait for requests
indefinitely. With polling-interval-millis set to 0, the result is “almost real time”
behavior. A channel that implements this sort of behavior looks like this:

<channel-definition id=”my-long-polling-amf”
class=”mx.messaging.channels.AMFChannel”>
<endpoint url=”http://servername:8100/contextroot/

messagebroker/amf”
class=”flex.messaging.endpoints.AMFEndpoint”/>

<properties>
<polling-enabled>true</polling-enabled>
<polling-interval-millis>0</polling-interval-millis>
<wait-interval-millis>-1</wait-interval-millis>
<max-waiting-poll-requests>0</max-waiting-poll-requests>

</properties>
</channel-definition>

This strategy significantly reduces client wait times to receive messages, but scalability is
limited by the number of available threads on the server. Each time a message is sent

742

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 742

from the server to the client, the connection is closed to complete the communication.
The client then immediately opens a new connection to wait for the next message.

� AMF with streaming: A streaming channel uses different server-side Java classes than the
polling channels and results in true “real time” messaging. A simple streaming channel
looks like this in the configuration file:

<channel-definition id=”my-streaming-amf”
class=”mx.messaging.channels.StreamingAMFChannel”>
<endpoint
url=”http://{server.name}:{server.port}/{context.root}/

messagebroker/streamingamf”
class=”flex.messaging.endpoints.StreamingAMFEndpoint”/>

</channel-definition>

With this approach the client and server keep the HTTP connection open persistently,
rather than closing and reopening it after every message. The result is instant message
delivery to all connected clients, but there are some significant limitations.

All the AMF channel types used for messaging send and receive data between client and server as
simple HTTP requests from the client. In the background, the server’s servlet API uses blocking
I/O, so with long polling and streaming you have to explicitly manage the number of concurrent
connections to avoid overwhelming the server’s available threads.

For example, when using an AMF streaming channel, each browser session can have only a single
concurrent connection. (This can be changed in the channel configuration.) If you try to test a
messaging application with multiple browser windows from a single browser application (for
example, Firefox) on the same system, only the first copy of the application will successfully con-
nect to the server. Application instances in additional browser windows will fail to connect because
the maximum number of connections per browser session has been exceeded. You can solve this
during testing by using multiple browser products (for example, both Internet Explorer and
Firefox) or multiple computer systems.

One of the benefits of moving to LiveCycle Data Services from BlazeDS is support for
RTMP (Real Time Messaging Protocol). This protocol, originally developed and delivered

with Flash Media Server, supports true server-push and streaming communications. Unlike the HTTP
streaming channel supported by BlazeDS, RTMP is capable of supporting thousands of concurrent
connections and is limited only by available network and server resources.

The default services configuration file delivered with BlazeDS doesn’t contain a streaming channel
definition. If you’d like to use one in your development and testing, follow these steps:

1. Open services-config.xml from the BlazeDS WEB-INF/flex folder in any
text editor.

2. Locate the <channels> start tag.

TIPTIP

743

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 743

3. Add this <channel> element as a child of the <channels> tag set:

<channel-definition id=”my-streaming-amf”
class=”mx.messaging.channels.StreamingAMFChannel”>
<endpoint

url=”http://{server.name}:{server.port}/{context.root}/
messagebroker/streamingamf”

class=”flex.messaging.endpoints.StreamingAMFEndpoint”/>
</channel-definition>

4. Restart BlazeDS.

You can copy existing channel definitions from the version of services-
config.xml that’s included in the samples application.

Configuring messaging adaptors and destinations
You configure messaging destinations in the messaging-config.xml file in the BlazeDS WEB-
INF/flex folder. The version of this file in the starting BlazeDS application (delivered as
blazeds.war) looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<service id=”message-service”

class=”flex.messaging.services.MessageService”>
<adapters>

<adapter-definition id=”actionscript”
class=”flex.messaging.services.messaging.

adapters.ActionScriptAdapter” default=”true” />
<!--
<adapter-definition id=”jms”

class=”flex.messaging.services.messaging.adapters.JMSAdapter”/
>
-->

</adapters>
<default-channels>

<channel ref=”my-polling-amf”/>
</default-channels>

</service>

Configuring adaptors
An adaptor is a server-side Java class that manages how requests from a client are handled at run-
time. The default messaging-config.xml file declares one adaptor with an id of action-
script that manages messaging between Flex applications. It also includes a jms adaptor
declaration that’s used for integration with Java-based clients and is commented out in the default
file.

TIPTIP

744

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 744

Notice that the actionscript adaptor’s default attribute is set to true. As a result, all mes-
saging destinations without an explicit adapter use the actionscript adapter.

<adapter-definition id=”actionscript”
class=”flex.messaging.services.messaging.
adapters.ActionScriptAdapter” default=”true” />

If you want to integrate a messaging application with ColdFusion Enterprise, you must
add this adaptor declaration:

<adapter-definition id=”cfgateway”
class=”coldfusion.flex.CFEventGatewayAdapter”/>

The required Java class is included in the BlazeDS distribution, so this declaration just configures its use.

Configuring destinations
Each destination you configure is a hub for messages shared between multiple connected clients.
To create a destination, add a <destination> child element of the <service> root with a
unique id. To accept the default values for the adapter, channels, and all other properties, the des-
tination configuration can be as simple as this:

<destination id=”chat”/>

If you want to assign a particular channel to a destination, add a <channels> tag set and then
declare one or more <channel> elements. If you declare more than one channel, they’re used as a
list in order or preference. The client always tries to use the first declared channel; in the event of
any failure, it falls back to the second declared channel.

This destination uses the my-streaming-amf channel that was created in the preceding section
as its first preference and adds the default my-polling-amf channel as a backup:

<destination id=”chat”>
<channels>

<channel ref=”my-streaming-amf”/>
<channel ref=”my-polling-amf”/>

<channels>
</destination>

If you’re following the exercises in this chapter, follow these steps to configure three messaging
destinations:

1. Open messaging-config.xml from the BlazeDS WEB-INF/flex folder in any text
editor.

2. Add these destination definitions:

<destination id=”chat”/>
<destination id=”dashboard”/>

TIPTIP

745

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 745

3. If you’d like to use the streaming channel described in the preceding section, change the
<default-channels> element as follows:

<default-channels>
<channel ref=”my-streaming-amf”/>

</default-channels>
4. Save your changes, and restart BlazeDS.

Creating a Flex Messaging Application
A Flex application can participate in messaging both as a producer, sending messages, and as a
consumer, receiving and processing them. In this section, I describe how to create a simple appli-
cation that exchanges messages using a server-side messaging destination.

Creating a Flex project
When you create a project in Flex Builder that uses the Message Service, you can integrate the proj-
ect with LiveCycle Data Services or BlazeDS. The steps are the same as when using the Remoting
Service; the project properties include the location of the Flex server, the location of the output
folder where generated files are placed during the compilation process, and the URL where
requests are made to download the application from the server for testing.

Follow these steps to create a Flex project for use with BlazeDS and the Message Service:

1. Select File ➪ New ➪ Flex Project from the Flex Builder menu.

2. Set the project name to chapter25.

3. Use the default project location, which should be a folder named chapter25 under the
current workspace.

4. Set the Application type to Web application.

5. Set the Application server type to J2EE.

6. Select Use remote object access service and LiveCycle Data Services.

7. If you see an option labeled “Create combined Java/Flex project using WTP,” deselect it.

8. Click Next.

9. Set server location properties as follows:

� Root folder: c:\blazeds\tomcat\webapps\blazeds

� Root URL: http://localhost:8400/blazeds

� Context root: /blazeds

10. Check to be sure that BlazeDS is currently running. Then click Validate Configuration to
verify that the Web root folder and root URL are valid.

746

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 746

11. Accept all other default values, and click Next.

12. Accept the default Main application filename to chapter25.mxml.

13. Click Finish to create the application and project.

14. If you want to use the sample files from the Web site, extract chapter25.zip into the
new project folder. This will result in overwriting your default Main application file and
adding other required MXML and ActionScript source files.

15. Return to Flex Builder, and run the main application. The application should load from
the BlazeDS URL of http://localhost:8400/blazeds/chapter25.html.

Sending messages
A Flex application sends messages using the Flex framework’s Producer component. You can cre-
ate an instance of a Producer using either MXML or ActionScript code. The most important
property of the Producer is the destination, which is set to a server-side destination as con-
figured in the services configuration files.

The MXML code to create an instance of a Producer and set its destination looks like this:

<mx:Producer id=”myProducer” destination=”chat”/>

The value of the destination property must be set exactly as declared on the server
and is case-sensitive.

If you prefer to create the Producer using ActionScript, be sure to declare the object outside any
functions so it persists for the duration of the user’s application session. Then set the destina-
tion property inside a function that you call upon application startup:

import mx.messaging.Producer;
private var myProducer:Producer = new Producer();
private function initApp():void
{

myProducer.destination = “chat”;
}

To send a message to the destination at runtime, create an instance of the AsyncMessage class.
This class is designed to serve as a message envelope that contains data you want to transfer
between clients.

You start by instantiating the object:

var message:AsyncMessage = new AsyncMessage();

The message object has two properties that can contain data:

� The body property is the primary message data and can refer to any ActionScript object,
including complex collection objects such as ArrayCollection and
XMLListCollection.

CAUTION CAUTION

747

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 747

� The headers property is a dynamic Object that can contain arbitrary named header
values that serve as message metadata. The Message Service automatically adds certain
headers that have a prefix of DS; to be sure you’re avoiding any naming collisions, be sure
that any headers you add have your own unique prefix.

For example, in a simple chat application where you want to send both a message and the user
name of the person who sent it, you might use the body as the primary message containers and
then create a chatUser header with the user’s information:

message.body = messageToSend;
message.headers.chatUser = userWhoSentIt;

A complete function that sends a message using data from a set of TextInput controls might
look like this:

private function sendMessage():void
{

var message:AsyncMessage = new AsyncMessage();
message.body = msgInput.text;
message.headers.chatUser = userInput.text;
myProducer.send(message);

}

Receiving and processing messages
A Flex application uses the Flex framework’s Consumer component to receive and process mes-
sages sent through the Message Service. As with the Producer, you can instantiate a Consumer
using either MXML or ActionScript code. These steps are required in order to receive messages:

1. Set the Consumer object’s destination property to a destination that’s been config-
ured on the server.

2. Call the Consumer object’s subscribe() method upon application startup or when-
ever you want to start receiving messages.

3. Handle the Consumer object’s message event to receive and process each message
when it comes in.

The code to create a Consumer object, set its destination, and add an event listener in MXML
looks like this:

<mx:Consumer id=”myConsumer” destination=”chat”
message=”messageHandler(event)”

If you prefer to create the Consumer in ActionScript, be sure to declare the object outside any
functions so it persists for the lifetime of the user’s application session. Then set its destination and

748

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 748

add an event listener in a function that’s called upon application startup or whenever you want to
start receiving messages:

import mx.messaging.Consumer;
private var myConsumer:Consumer = new Consumer();
private function initApp():void
{

myConsumer.destination = “chat”;
myConsumer.addEventListener(MessageEvent.MESSAGE,
messageHandler);

}

Regardless of how you create a Consumer, it must explicitly subscribe to the messaging destina-
tion by calling its subscribe() method:

myConsumer.subscribe();

You can call subscribe() at application startup or whenever you want to start receiving messages.

When a message is received from the server, the Consumer dispatches a message event. The
event object is typed as mx.messaging.events.MessageEvent. This event class has a mes-
sage property that refers to an AsyncMessage object. This is essentially the same object that
was created and sent by the Producer in the sending application.

To process the message, extract data as needed from the AsyncMessage object’s body and
headers properties. This event handler function extracts the chatUser header and the main
message, stored in the object’s body:

private function messageHandler(event:MessageEvent):void
{

var chatUser:String = event.message.headers.chatUser;
var msg:String = event.body as String;
... save or present data as needed ...

}

Notice in the preceding code that the event object’s body property is explicitly cast as
String, while the headers item is referenced without explicit casting. This is because

the compiler expects body to be an Object, and to assign its value to a variable typed as String it
must be explicitly cast. In contrast, the arbitrarily named properties of the headers object don’t
have implict typing, so you can pass their values to variables of any type without explicit casting.

The application in Listing 25.1 uses Producer and Consumer components to send and receive
messages. The body of each message is a simple String value, and the chatUser header value is
created from a value entered by the user. When the message arrives, the messageHandler()
function presents its contents by formatting and adding it to a TextArea control.

TIPTIP

749

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 749

LISTING 25.1

Sending and receiving simple messages

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

creationComplete=”myConsumer.subscribe();”>
<mx:Script>

<![CDATA[
import mx.controls.Alert;
import mx.messaging.events.MessageEvent;
import mx.messaging.messages.AsyncMessage;
private function sendMessage():void
{

var message:AsyncMessage = new AsyncMessage();
message.body = msgInput.text;
message.headers.chatUser = userInput.text;
myProducer.send(message);
msgInput.text=””;
msgInput.setFocus();

}
private function messageHandler(event:MessageEvent):void
{

msgLog.text += event.message.headers.chatUser + “: “ +
event.message.body + “\n”;

}
]]>

</mx:Script>
<mx:Producer id=”myProducer” destination=”chat”/>
<mx:Consumer id=”myConsumer” destination=”chat”

message=”messageHandler(event)”/>
<mx:Panel title=”Simple Chat” id=”sendPanel”>

<mx:Form width=”100%”>
<mx:FormItem label=”User Name:”>

<mx:TextInput id=”userInput”/>
</mx:FormItem>
<mx:FormItem label=”Message:”>

<mx:TextInput id=”msgInput” enter=”sendMessage()”/>
</mx:FormItem>
<mx:FormItem>

<mx:Button label=”Send Message” click=”sendMessage()”
enabled=”{userInput.text != ‘’ && msgInput.text !=

‘’}”/>
</mx:FormItem>

</mx:Form>
</mx:Panel>

750

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 750

<mx:Panel title=”Message Log” width=”{sendPanel.width}”>
<mx:TextArea id=”msgLog” editable=”false” height=”200”

width=”100%”/>
</mx:Panel>

</mx:Application>

The code in Listing 25.1 is available in the Web site files as SimpleChat.mxml in the
src folder of the chapter25 project.

Figure 25.2 shows the finished application sending and receiving simple String values as messages.

FIGURE 25.2

A simple chat application using the Message Service

If you want to test the application in more than one browser window and are using the
my-amf-streaming channel, be sure to use a different browser product or different

client system for each application session. If you have two copies of the application in different win-
dows of the same browser product, and on the same client system, the second will fail to connect to
the server.

Also, always completely close all browser windows between testing sessions to be sure you’re starting
a new browser session each time you test.

CAUTION CAUTION

ON the WEBON the WEB

751

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 751

Sending and Receiving Complex Data
If you’re using the Message Service’s actionscript adapter and sharing data only between Flex
client applications, the AysncMessage object’s body property can refer to an instance of any
ActionScript object. Unlike Java, where objects that can be serialized must be marked as such, in
ActionScript all objects can be serialized. As long as both the sending and receiving application
have included at least one reference to the class definition being used, the object can be deserial-
ized upon receipt and made available to the receiving application in its native form.

The process for sending a complex message is exactly the same as for sending a simple value. After
creating an AsyncMessage object, assign its body property to the object you want to send. Then,
after assigning any headers you might need, send the message:

var message:AsyncMessage = new AsyncMessage();
message.body = acSales;
... assign headers if necessary ...
myProducer.send(message);

In the receiving application, the only difference in processing the message lies in how you typecast the
received data. This version of the handler function for the message event assumes that the message
object’s body property refers to an ArrayCollection and explicitly casts it as such upon receipt:

private function messageHandler(event:MessageEvent):void
{

acSales = event.message.body as ArrayCollection;
}

The application in Listing 25.2 uses an editable DataGrid to allow modifications to an
ArrayCollection that in turn drives presentation of a pie chart. Each time a user on any con-
nected client makes a change to his copy of the data, the ArrayCollection dispatches a
collectionChange event. The application reacts by transmitting a message to all other con-
nected clients containing the updated data object.

Notice that the code in the messageHandler() function removes the
ArrayCollection object’s event listener, updates the data, and sets the event listener

again. This ensures that the receiving application doesn’t send a message when its data changes, caus-
ing a potential infinite loop between two copies of the application.

LISTING 25.2

Sending and receiving complex data

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
creationComplete=”initApp()”>
<mx:Script>
<![CDATA[

NOTENOTE

752

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 752

import mx.events.CollectionEvent;
import mx.messaging.messages.AsyncMessage;
import mx.messaging.events.MessageEvent;
import mx.collections.ArrayCollection;
[Bindable]
private var acSales:ArrayCollection = new ArrayCollection(

[{name:”Popcorn”, sales:65.00},
{name:”Soda”, sales:78.00},
{name:”Candy”, sales:32.00}]);

private function initApp():void
{

myConsumer.subscribe();
acSales.addEventListener(CollectionEvent.COLLECTION_CHANGE,

syncClients);
}
private function messageHandler(event:MessageEvent):void
{

acSales.removeEventListener(CollectionEvent.COLLECTION_CHANGE,
syncClients);

acSales = event.message.body as ArrayCollection;
acSales.addEventListener(CollectionEvent.COLLECTION_CHANGE,

syncClients);
}
private function syncClients(event:Event):void
{

var message:AsyncMessage = new AsyncMessage();
message.body = acSales;
myProducer.send(message);

}
private function formatLabel(data:Object, field:String,

index:Number, percentValue:Number):String
{

return data.name + “\n” +
cf.format(data.sales) + “\n(“ +
nf.format(percentValue) + “%)”;

}
]]>

</mx:Script>
<mx:CurrencyFormatter id=”cf” precision=”2”/>
<mx:NumberFormatter id=”nf” precision=”1”/>
<mx:Producer id=”myProducer” destination=”dashboard”/>
<mx:Consumer id=”myConsumer” destination=”dashboard”

message=”messageHandler(event)”/>
<mx:Label text=”Concession Sales” fontWeight=”bold” fontSize=”14”/>
<mx:PieChart id=”chart” dataProvider=”{acSales}”

width=”100%” height=”100%”>
<mx:series>

<mx:PieSeries field=”sales” explodeRadius=”.05”
labelPosition=”callout” labelFunction=”formatLabel”

continued

753

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 753

LISTING 25.2 (continued)

fontSize=”12” fontWeight=”bold”/>
</mx:series>

</mx:PieChart>
<mx:DataGrid dataProvider=”{acSales}” editable=”true”

rowCount=”{acSales.length}”>
<mx:columns>

<mx:DataGridColumn dataField=”name” headerText=”Product Name”
editable=”false”/>

<mx:DataGridColumn dataField=”sales” headerText=”Sales”/>
</mx:columns>

</mx:DataGrid>
</mx:Application>

The code in Listing 25.2 is available in the Web site files as Dashboard.mxml in the
src folder of the chapter25 project.

Figure 25.3 shows the resulting application, with a pie chart that’s synchronized across multiple
clients.

FIGURE 25.3

Synchronizing complex data with the Message Service

ON the WEBON the WEB

754

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 754

Filtering Messages on the Server
The Message Service supports these strategies for filtering messages on the server, so that a con-
sumer application includes in its subscription information instructions to receive only messages
that are of interest:

� The Consumer component’s selector property filters messages based on values in
message headers.

� The Producer and Consumer components implement a subtopic property that can
be used to filter messages based on arbitrary topic names.

� The MultiTopicProducer and MultiTopicConsumer components allow you to
send and receive messages that are filtered for multiple arbitrarily named topics.

In this section, I describe the use of the selector property and of subtopics with the Producer
and Consumer components.

When you filter messages either with the Consumer components selector property or
with subtopics, the filtering always happens at the server.

Using the selector property
The selector property allows the Consumer to determine which messages are sent based on a
Boolean evaluation. The syntax for a selector is based on SQL-style comparisons of header values
to literal strings. This Consumer, for example, instructs the server to send messages only where
their headers have a chatroom header with a value of “Room1”:

<mx:Consumer id=”myConsumer” destination=”chat”
message=”messageHandler(event)”
selector=”chatRoom=’Room1’/>

Using a selector to filter messages has these advantages:

� All Message Service destinations support use of the selector without any required
additional configurations. In contrast, a destination must be specifically configured to
support the use of subtopics.

� Complex Boolean expressions can be used with SQL-style syntax. For example, this selec-
tor examines two header values to determine whether messages should be shared with
the current application:

selector=”chatRoom=’Room1’ AND chatUser=’Joe’”

On the downside, selectors don’t perform on the server as well as subtopics.

If a Consumer has already subscribed and you change its selector property at run-
time, it automatically unsubscribes and resubscribes with the new selector data.TIPTIP

TIPTIP

755

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 755

Using subtopics
In order for a Flex application to use subtopics to filter messages, the server-side destination must
be specifically configured to support the feature. In the services configuration file, you add an
<allow-subtopics> element as a child of a <server> element within <properties> and
set its value to true. This destination supports subtopics:

<destination id=”chatrooms”>
<properties>

<server>
<allow-subtopics>true</allow-subtopics>

</server>
</properties>

</destination>

The subtopic property is set in both the Producer and the Consumer. When you set a
subtopic in a Producer, the message that’s sent to the server includes the subtopic informa-
tion. When a Consumer subscribes to a destination, its subtopic is sent along with the sub-
scription information. The server then sends messages to a Consumer only where the subtopic
matches what the Consumer requested. If the Consumer doesn’t define a subtopic, any messages
sent from Producer objects with subtopics are not passed to that Consumer.

If a Consumer has already subscribed and you change its subtopic at runtime, it
automatically unsubscribes and resubscribes with the new subtopic value.

Follow these steps to modify your services configuration file and add a destination that supports
subtopics:

1. Open messaging-config.xml from the BlazeDS WEB-INF/flex folder in any text
editor.

2. Add this destination before the closing </service> tag:

<destination id=”chatrooms”>
<properties>

<server>
<allow-subtopics>true</allow-subtopics>

</server>
</properties>

</destination>
3. Save your changes, and restart BlazeDS.

The application in Listing 25.3 (the MXML code) and Listing 25.4 (the ActionScript code) uses
subtopics to filter messages on the server, allowing sending applications to send messages only to a
subset of connected clients.

This application uses a separate ActionScript file to demonstrate the use of scripting to
implement all non-visual controls and event listeners. You could implement the same

application with more MXML code and less ActionScript if you prefer.

NOTENOTE

TIPTIP

756

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 756

LISTING 25.3

An application that filters messages with subtopics

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
creationComplete=”initApp()”>
<mx:states>
<mx:State name=”loggedIn”>

<mx:RemoveChild target=”{loginBox}”/>
<mx:AddChild relativeTo=”{appControlBar}” position=”lastChild”>

<mx:HBox>
<mx:Label text=”Room:

{currentRoom==null?’None’:currentRoom}”/>
<mx:Label text=”User: {user}”/>
<mx:Button label=”Log Out” click=”logout()”/>

</mx:HBox>
</mx:AddChild>

</mx:State>
</mx:states>
<mx:Script source=”ChatRooms.as”/>
<mx:Style source=”styles.css”/>
<mx:ApplicationControlBar dock=”true” id=”appControlBar”>

<mx:Label text=”My Chat Rooms” styleName=”appHeading”/>
<mx:Spacer width=”100%”/>
<mx:HBox id=”loginBox”>

<mx:Label text=”User name:”/>
<mx:TextInput id=”userInput” enter=”login()” width=”200”/>
<mx:Button label=”Log In” click=”login()”/>

</mx:HBox>
</mx:ApplicationControlBar>
<mx:HDividedBox width=”100%” height=”100%”>

<mx:VBox width=”100%” height=”100%”>
<mx:Panel height=”100%” width=”100%” title=”Rooms”>

<mx:List id=”roomList” dataProvider=”{acRooms}”
width=”100%” height=”100%”/>

<mx:ControlBar>
<mx:Button label=”Change Room” click=”changeChatRoom()”

enabled=”{roomList.selectedIndex != -1}”/>
</mx:ControlBar>

</mx:Panel>
</mx:VBox>
<mx:Panel width=”100%” height=”100%” id=”chatPanel” title=”Chat”>

<mx:TextArea id=”msgLog” width=”100%” height=”100%”
editable=”false”/>

<mx:ControlBar>

continued

757

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 757

LISTING 25.3 (continued)

<mx:TextInput id=”msgInput” enter=”send()” width=”100%”/>
<mx:Button label=”Send” click=”send()”/>
<mx:Button label=”Log Out” click=”logout()”/>

</mx:ControlBar>
</mx:Panel>

</mx:HDividedBox>
</mx:Application>

The code in Listing 25.3 is available in the Web site files as ChatRooms.mxml in the
src folder of the chapter25 project.

The following binding expression in Listing 25.3 uses a ternary expression, a syntax
that’s common to languages such as ActionScript, Java, and JavaScript:

<mx:Label
text=”Room: {currentRoom==null?’None’:currentRoom}”/>

A ternary expression is a shortened form of an if statement that includes three parts. The first part,
before the ? character, is a Boolean expression, frequently comparing two values. If the first part
returns true, the ternary expression returns the second part of the expression (the part between the
? and : characters). If the first part returns false, the ternary expression returns the third part
(after the : character).

LISTING 25.4

The ActionScript code for the Chat Rooms application

import mx.collections.ArrayCollection;
import mx.controls.Alert;
import mx.messaging.Consumer;
import mx.messaging.Producer;
import mx.messaging.events.MessageEvent;
import mx.messaging.events.MessageFaultEvent;
import mx.messaging.messages.AsyncMessage;
[Bindable]
private var user:String;
[Bindable]
private var currentRoom:String;
[Bindable]
private var acRooms:ArrayCollection =

new ArrayCollection([“Room 1”, “Room 2”]);
private var myConsumer:Consumer = new Consumer();
private var myProducer:Producer = new Producer();
private function initApp():void
{

TIPTIP

ON the WEBON the WEB

758

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 758

myProducer.destination = “chatrooms”;
myProducer.addEventListener(MessageFaultEvent.FAULT, faultHandler);
myConsumer.destination = “chatrooms”;
myConsumer.addEventListener(MessageEvent.MESSAGE, messageHandler);
myConsumer.addEventListener(MessageFaultEvent.FAULT, faultHandler);

}
private function send():void
{

var message:AsyncMessage = new AsyncMessage();
message.body = msgInput.text;
message.headers.user = user;
myProducer.send(message);
msgInput.text=””;
msgInput.setFocus();

}
private function messageHandler(event:MessageEvent):void
{

msgLog.text += event.message.headers.user + “: “ +
event.message.body + “\n”;

}
private function login():void
{

user = userInput.text;
myConsumer.subscribe();
currentState = “loggedIn”;

}
private function logout():void
{

myConsumer.unsubscribe();
msgLog.text=””;
currentState = “”;
currentRoom=””;
roomList.selectedIndex=-1;

}
private function changeChatRoom():void
{

currentRoom = roomList.selectedItem as String;
myProducer.subtopic = currentRoom;
myConsumer.subtopic = currentRoom;

}
private function faultHandler(event:MessageFaultEvent):void
{

Alert.show(event.faultString, event.faultCode);
}

The code in Listing 25.4 is available in the Web site files as ChatRooms.as in the src
folder of the chapter25 project.ON the WEBON the WEB

759

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 759

Figure 25.4 shows the resulting application sharing data only within a selected subtopic.

FIGURE 25.4

An application sending and receiving filtered messages using subtopics

If you’re using a streaming channel for this application, remember to use multiple
browser products or client systems to successfully test messaging between multiple

clients.

Tracing Messaging Traffic
As with all network communications between Flex clients and application servers, you can use
the TraceTarget component to enable tracing of messaging traffic. Follow these steps to trace
messaging:

1. Open any Flex application that uses the Message Service.

2. Add an <mx:TraceTarget/> tag as a child element of the application’s root
<mx:Application>.

3. Set any optional values that determine what metadata is included with each tracing mes-
sage. For example, this declaration of the TraceTarget object would include date and
time information:

<mx:TraceTarget includeDate=”true” includeTime=”true”/>

4. Run the application in debug mode.

5. Watch Flex Builder’s Console view to see the tracing output.

CAUTION CAUTION

760

Integrating Flex Applications with Application Servers and the DesktopPart IV

33_287644-ch25.qxp 6/23/08 11:53 PM Page 760

Figure 25.5 shows the resulting output in Flex Builder’s Console view.

FIGURE 25.5

Tracing output from a messaging application

Summary
In this chapter, I described how to create and deploy Flex client applications that use the Message
Service with BlazeDS. You learned the following:

� The Message Service is implemented in both LiveCycle Data Services and BlazeDS.

� The Message Service allows you to share data between multiple connected Flex applica-
tions in real time or “almost real time.”

� Flex applications that use the Message Service can be integrated with other applications
that are built in Java and ColdFusion.

� A Flex application sends messages using the Flex framework’s Producer component.

� A Flex application receives and processes messages using the Flex framework’s
Consumer component.

� You can send and receive both simple and complex data.

� Messages can be filtered at the server with the Consumer component’s selector property
or with subtopics.

� You can turn on tracing of message traffic with the TraceTarget logger target.

761

Using the Message Service with BlazeDS 25

33_287644-ch25.qxp 6/23/08 11:53 PM Page 761

33_287644-ch25.qxp 6/23/08 11:53 PM Page 762

Flash Remoting, the technology that allows Flash-based documents to
communicate with Web-based resources over a high-speed, binary
protocol, was first introduced with ColdFusion MX (also known as

ColdFusion version 6). In the early days of the technology, before the intro-
duction of Flex, applications built in Flash MX and subsequent releases had
the ability to make remote procedure calls to functions of ColdFusion com-
ponents (CFCs) over a standard Web connection.

When Flex 1.0 was released, Flash Remoting was adapted for use with Java-
based application servers that hosted Java-based classes. Flex client applica-
tions could make calls to Java-based methods just as easily as with
ColdFusion using the feature first known as Remote Object Services, now
known as the Remoting Service.

The Java-based Remoting Service is described in Chapter 24.

Adobe ColdFusion 8 continues to offer built-in support for Flash Remoting
with Flex-based and Flash-based client applications, and it adds the ability to
integrate tightly with features that are unique to LiveCycle Data Services or
BlazeDS. When ColdFusion is integrated with these Adobe products, you
can build and deploy Flex applications that share messages in real time or
near real time with ColdFusion-based resources using the Message Service,
and you can use LiveCycle Data Services’ Data Management Service to create
applications that synchronize data between multiple connected clients and
servers.

CROSS-REFCROSS-REF

763

IN THIS CHAPTER
Understanding Flash Remoting
and ColdFusion

Creating a Flex project for use
with ColdFusion

Configuring Flash Remoting on
the server

Creating CFCs for Flex

Calling CFC functions

Handling CFC function results

Passing arguments to CFC
functions

Using value object classes

Working with RemoteObject
faults

Integrating Flex Applications
with ColdFusion

34_287644-ch26.qxp 6/23/08 11:54 PM Page 763

All the currently available ColdFusion features that support integration with Flex client
applications were first introduced in ColdFusion version 7.02. With the exception of the

event gateway used to integrate Flex applications with the Message Service, all the features described
in this chapter work equally well with ColdFusion 7.02 or ColdFusion 8.

In this chapter, I describe how to use Flash Remoting to call ColdFusion component functions
from Flex applications. In Chapter 27, I describe how to use the ColdFusion Extensions for Eclipse
to interact with ColdFusion during development and generate server-side ColdFusion components
for use with Flex/ColdFusion applications.

To use the sample code for this chapter, download chapter26.zip from the Web site.
Follow the instructions later in this chapter to create a Flex project for use with

ColdFusion and install the various project components to the client and server.

Understanding Flash Remoting and
ColdFusion 8
The feature known as the Remoting Service in LiveCycle Data Services and BlazeDS is known as
Flash Remoting in ColdFusion. Flash Remoting allows you to directly make calls to functions of
ColdFusion components using the Flex framework’s RemoteObject component.

Calls from a Flex client application are sent directly to the ColdFusion server as HTTP requests
encrypted in Action Message Format (AMF), and responses are returned from ColdFusion to the
Flex application without any intermediate proxy or additional software. As shown in Figure 26.1,
when using the RemoteObject component to call CFC methods, you don’t need to install or
integrate LiveCycle Data Services or BlazeDS.

FIGURE 26.1

Flash Remoting requests and responses travel directly from the Flex application to ColdFusion and back
again.

Flex application

HTTP requests
and responses

ColdFusion

ON the WEBON the WEB

TIPTIP

764

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 764

To call CFC functions from a Flex application, follow these steps:

1. Install Adobe ColdFusion or obtain access to a ColdFusion server. You can use either the
Standard or Enterprise edition or, if you don’t have a license, you can install ColdFusion
locally as the Developer edition. This edition is free for development and testing and has
some limitations, including allowing connections from only two browser clients during
any particular session.

2. If using Flex Builder, optionally install the ColdFusion Extensions for Flex Builder.

3. Create ColdFusion components on the server with code you can call from a Flex application.

4. If using Flex Builder, create a Flex project that’s integrated with your ColdFusion server
installation.

5. Create and test Flex client code to call the CFC functions.

The sample code and instructions in this chapter assume that ColdFusion 8 has been
installed on a Windows-based development system using the development Web server

running on port 8500. If your ColdFusion installation differs, adapt the instructions as needed.

Creating a Flex project for use with ColdFusion
When you create a new Flex project, you can add project properties that allow you to easily test
your Flex application with the ColdFusion server. Follow these steps to create a new Flex project:

1. Select File ➪ New ➪ Flex Project from the Flex Builder menu.

2. On the first screen, set these properties, as shown in Figure 26.2:

� Project name: chapter26

� Use default location: selected

� Application type: Web application

� Application server type: ColdFusion

� Use remote object access service: selected

� ColdFusion Flash Remoting: selected

3. Click Next.

4. On the Configure ColdFusion Server screen, set the ColdFusion installation type and
location. If you installed the server configuration to the default location in Windows, use
these settings:

� ColdFusion installation type: Standalone

� Use default location for local ColdFusion server: selected

� Use built-in ColdFusion web server: selected

NOTENOTE

765

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 765

FIGURE 26.2

Creating a new Flex project

5. Click Validate Configuration to verify that your ColdFusion configuration settings are
accurate.

ColdFusion must be running in order to validate the configuration at this point. Flex
Builder sends a test request to the ColdFusion server’s Root URL to ensure that the

server is reachable.

6. Set the Output folder to a location under the ColdFusion Root URL. This is the folder
where the application’s debug output files will be generated during the compilation
process and from which you retrieve documents in the browser during testing. The
default setting is a subfolder under the ColdFusion Web root whose name starts with the
project name and ends with “-debug”.

7. Click Next.

8. Accept the Main application filename of chapter26.mxml.

9. Click Finish to create the project and application.

10. Run the application.

You should see that the application is retrieved from the folder on the ColdFusion server using the
server’s root URL and the subfolder in which the output files are generated.

NOTENOTE

766

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 766

If you want to use the sample applications for this chapter from the Web site, follow
these instructions: Extract the contents of chapter26.zip to the new project’s root

folder, locate chapter26CFFiles.zip in the project files, and extract those files to the
ColdFusion server’s Web root folder, such as C:\ColdFusion8\wwwroot. This creates a new sub-
folder named flex3bible/chapter26 under the ColdFusion Web root.

Configuring Flash Remoting on the server
Just as with the Remoting Service on LiveCycle Data Services or BlazeDS, to use Flash Remoting
from a Flex application, it must be configured on the server. When you install ColdFusion, a folder
named WEB-INF/flex is created that contains a default set of configuration files.

The WEB-INF folder is located under the ColdFusion Web root, as defined during the
ColdFusion installation process. The actual location differs depending on ColdFusion’s

configuration.

The “server” configuration that includes a limited JRun server places WEB-INF under the installation
folder’s wwwroot subfolder. When the server configuration of ColdFusion is installed on Windows
with the default location, the Flex configuration files are stored in C:\ColdFusion8\wwwroot\
WEB-INF\flex. For the J2EE or multi-server configurations, WEB-INF is located under the
ColdFusion “context root” folder. For example, when installed with the default location on Windows,
the Flex configuration files are stored in C:\JRun4\servers\cfusion\cfusion-ear\
cfusion-war\WEB-INF\flex.

Flash Remoting access is configured in one of two files in the WEB-INF/flex folder:

� If you install ColdFusion with the integrated LiveCycle Data Services, the primary serv-
ices configuration file, services-config.xml, includes a file named remoting-
config.xml that declares Flash Remoting configuration options.

� If you install ColdFusion without the integrated LiveCycle Data Services, a file named
service-config.xml contains all Flex server configuration options, including Flash
Remoting destination definitions.

ColdFusion includes a predefined Flash Remoting destination definition with an id of
ColdFusion in either services-config.xml or remoting-config.xml that looks like
this:

<destination id=”ColdFusion”>
<channels>

<channel ref=”my-cfamf”/>
</channels>
<properties>

<source>*</source>
<!-- define the resolution rules and access level of

the cfc being invoked -->
<access>

<!-- Use the ColdFusion mappings to find CFCs, by default

TIPTIP

ON the WEBON the WEB

767

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 767

only CFC files under your webroot can be found. -->
<use-mappings>false</use-mappings>
<!-- allow “public and remote” or just “remote” methods to

be invoked -->
<method-access-level>remote</method-access-level>

</access>
<property-case>

<!-- cfc property names -->
<force-cfc-lowercase>false</force-cfc-lowercase>
<!-- Query column names -->
<force-query-lowercase>false</force-query-lowercase>
<!-- struct keys -->
<force-struct-lowercase>false</force-struct-lowercase>

</property-case>
</properties>

</destination>

These key destination properties are worth a detailed description:

� The <channel> is set to my-cfamf. This channel is defined in
services.config.xml, and uses the AMFChannel class on the server to serialize
and deserialize AMF-formatted messages between client and server. The services configu-
ration file also defines a channel named my-cfamf-secure that can be used for
encrypted communications over SSL.

� The <source> element is set to a wildcard value of *, meaning that the predefined
ColdFusion destination can be used to call any CFC on the server. This is in contrast to
the use of the Java-based Remoting Service with LCDS and BlazeDS, where each Java
class must be configured with its own unique destination.

� The <access> element determines which functions can be called from the Flex applica-
tion. The default setting of remote means that only functions whose access attribute is
set to remote can be called from Flex.

� The settings in the <property-case> element determine whether property names are
forced to lowercase as they’re returned from ColdFusion to the Flex client application.
Because ColdFusion is mostly case-insensitive, the names of CFC properties, structure
properties, and query columns are automatically returned in uppercase. The code works
fine, but it looks odd to the eye of a developer who’s accustomed to object-oriented cod-
ing conventions, where property names always start with initial lowercase characters. If
you want to change the default behavior, switch the value of the case properties to true
to force lowercase names:

<property-case>
<force-cfc-lowercase>true</force-cfc-lowercase>
<force-query-lowercase>true</force-query-lowercase>
<force-struct-lowercase>true</force-struct-lowercase>

</property-case>

The default ColdFusion destination is designed to be usable with its initial property settings. In
most cases, you can start calling CFC functions from a Flex client application without changing
any of the server-side configuration options.

768

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 768

Creating ColdFusion Components for Flex
The rules for creating ColdFusion components for use with a Flex application are very similar to
those CFCs used as SOAP-based Web services:

� CFCs should be placed in a folder under the Web root. With additional configuration, you
also can place CFCs in folders that are mapped through the ColdFusion administrator.

� CFC functions should have their access attribute set to remote. With additional con-
figuration, you also can expose functions with their access set to public.

� Functions should return values with data types that are compatible with Flex
applications.

A complete description of how to create and deploy ColdFusion components is beyond
the scope of this chapter. For a good starting tutorial on this subject, see Ben Forta’s

article on the Adobe Developer Center Web site at:

www.adobe.com/devnet/coldfusion/articles/intro_cfcs.html

Table 26.1 describes the data types that can be returned from a CFC to a Flex application and how
each value is translated into ActionScript variables when it’s returned from a CFC function to a
Flex client application.

TABLE 26.1

Data Conversion from ColdFusion to ActionScript

ColdFusion Data Type ActionScript Data Type

String String

Array Array

Query ArrayCollection

Struct Object

CFC instance Strongly typed value object

Date Date

Numeric Number

XML Object XML Object

The returned data type is determined in a ColdFusion function by its returntype property. The
CFC in Listing 26.1 shows a ColdFusion component with a helloWorld() function that
declares a returntype of string:

NOTENOTE

769

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 769

LISTING 26.1

A simple ColdFusion component

<cfcomponent name=”HelloService” output=”false”
hint=”A ColdFusion Component for use in Flash Remoting”>

<cffunction name=”helloWorld” returntype=”string” access=”remote”>
<cfreturn “Hello from a ColdFusion Component!”/>

</cffunction>
</cfcomponent>

The code in Listing 26.1 is available in the Web site files as HelloService.cfc in the
ColdFusion files of the chapter26 project.

Unlike the worlds of Java and ActionScript, ColdFusion Markup Language is mostly
case-insensitive. As a result, returntype values of string and String mean the

same thing.

The returntype attribute is also used by ColdFusion to verify that data being returned by a
function is of the correct type. CFML (ColdFusion Markup Language) is a very loosely typed lan-
guage, where simple values are generally stored as String values until being cast appropriately at
runtime (a process sometimes known as “lazy evaluation”). But at runtime, ColdFusion can detect
discrepancies between a declared returntype and the actual value being returned. This func-
tion, for example, would generate a server-side runtime error, because the value being returned
can’t be parsed as a number:

<cffunction name=”getNumber” returntype=”numeric”
access=”remote”>
<cfreturn “This is not a numeric value”/>

</cffunction>

This resulting server-side error would be exposed in the Flex client application as a fault event
dispatched by the RemoteObject that made the remote call to the function.

Using CFCs with the RemoteObject
Component
To call a CFC function from a Flex client application, you start by creating an instance of the
RemoteObject component. This is the same RPC component that’s used to integrate Flex
applications with LiveCycle Data Services and BlazeDS, and the client-side code that’s used to

TIPTIP

ON the WEBON the WEB

770

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 770

communicate with ColdFusion is almost exactly the same. If the source of the component is set to
a wildcard in the server-side destination, you set the component’s source property in the client-side
RemoteObject declaration.

Setting the source property
The CFC is known to the Flex client application by its fully qualified name and location, declared
with dot notation. This String value is passed to the RemoteObject component’s source
property to determine which component will be called on the server.

ColdFusion uses a naming pattern whereby CFCs are known by the name of the file in which the
component is defined (without the file extension), prefixed with the names of the folders in which
it’s stored, starting at the Web root folder. Folder and component names are separated with dot
characters, just like packages in Java. So, for example, a CFC that’s defined in a file named
MyComponent.cfc and stored in a subfolder under the ColdFusion Web root named
flex3bible/cfc would be referred to from Flex as:

flex3bible.cfc.MyComponent

If you’re working on a development server that has RDS, you can generate a CFC’s documentation
by navigating to the component from a Web browser. The documentation includes the exact string
you need to set the component’s source accurately in Flex. For example, you can browse to the
HelloService.cfc file stored in the Web root folder’s flex3bible/chapter26 folder with
this URL:

http://localhost:8500/flex3bible/chapter26/HelloService.cfc

If you have RDS security turned on in the ColdFusion administrator, you’ll need to enter
your RDS password to view the CFC’s documentation.

Figure 26.3 shows the resulting CFC documentation. The string value you use as the source attrib-
ute in Flex is displayed twice: once at the top of the documentation page and again in the hierar-
chy section.

Creating a RemoteObject instance
You can create an instance of the RemoteObject component that works with the ColdFusion
destination in either MXML or ActionScript. In addition to the object’s unique id, you set object’s
destination to the id of the destination on the server, named by default ColdFusion. The
object’s source attribute is set to the fully qualified name and location of the CFC, as described in
the preceding section.

The code to create a RemoteObject and set its required properties in MXML looks like this:

<mx:RemoteObject id=”helloService”
destination=”ColdFusion”
source=”flex3bible.chapter26.HelloService”/>

TIPTIP

771

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 771

FIGURE 26.3

Automatically generated CFC documentation, including the component’s fully qualified name and location

The code to create the same object in ActionScript looks like this:

import mx.rpc.remoting.RemoteObject;
var helloService:RemoteObject = new RemoteObject(“ColdFusion”);
helloService.source = “flex3bible.chapter26.HelloService”;

After you’ve declared the RemoteObject and set its source and destination properties,
you’re ready to make runtime calls to remote CFC functions.

Calling CFC functions
You call CFC functions as though they were local methods of the RemoteObject. For example,
the CFC in Listing 26.1 has a public method named helloWorld() that returns a simple
String. As with local functions, you can call the remote method upon any application event. For
example, this code calls the server-side helloWorld() method upon a Button component’s
click event:

<mx:Button label=”Click to say hello”
click=”helloService.helloWorld()”/>

The component’s source name and location

772

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 772

You also can call a CFC function by calling the RemoteObject component’s getOperation()
method to create an instance of the Operation class. The following code creates the Operation
object and then calls its send() method to call the remote method:

import mx.rpc.remoting.mxml.Operation;
private function callIt():void
{

var op:Operation = helloService.getOperation(“helloWorld”)
as Operation;

op.send();
}

This technique allows you to determine which remote method will be called at runtime, instead of
having to hard code the method name.

Handling CFC Function Results
Calls to remote CFC functions are made asynchronously in Flex, so a call to a CFC function doesn’t
return data directly. Instead, as with the other RPC components, you handle the response with
binding expressions or event handlers. Binding expressions require less code and are easy to create,
while event handlers offer much more power and flexibility in how you receive, process, and save
data to application memory.

Using binding expressions
A binding expression used to pass returned data to application components consists of three parts,
separated with dots:

� The RemoteObject instance’s id

� The CFC function name

� The lastResult property

At runtime, the method is created as an Operation object that’s a member of the
RemoteObject instance. The Operation object’s lastResult property is populated with data
when it’s received from the server.

The lastResult property is explicitly typed as an ActionScript Object, but at runtime its
native type is determined by the type of data that’s returned from the server. A String returned
from ColdFusion is translated into an ActionScript String value, so a binding expression that han-
dles the value returned from the simple helloWorld() method can be used to pass the returned
value to a Label or other text display control.

The application in Listing 26.2 calls the remote helloWorld() CFC function and displays its
returned data in a Label control with a binding expression in its text property.

773

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 773

LISTING 26.2

Handling returned data with a binding expression

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>

<mx:RemoteObject id=”helloService”
destination=”ColdFusion”
source=”flex3bible.chapter26.HelloService”/>

<mx:Button label=”Hello World” click=”helloService.helloWorld()”/>

<mx:Label text=”{helloService.helloWorld.lastResult}”
fontSize=”12”/>

</mx:Application>

The code in Listing 26.2 is available in the Web site files as ROWithBinding.mxml in
the src folder of the chapter26 project.

Using the result event
As with other RPC components, you can handle results of a call to a CFC function with the
RemoteObject component’s result event. This event dispatches an event object typed as
mx.rpc.events.ResultEvent, the same event object that’s used by the other RPC compo-
nents HTTPService and RemoteObject. The event object’s result property references the
returned data.

To handle and save data using the result event, follow these steps:

1. Declare a bindable variable outside of any functions that acts as a persistent reference to
the returned data. Cast the variable’s type depending on what you expect to be returned
by the remote method. For example, if the data returned by the CFC function is typed as
a Query, the RemoteObject component casts the returned data as an
ArrayCollection. This code declares a bindable ArrayCollection variable:

import mx.collections.ArrayCollection;
[Bindable]
private var myData:ArrayCollection

2. Create an event handler function that will be called when the event is dispatched. The func-
tion should receive a single event argument typed as ResultEvent and return void:

private function resultHandler(event:ResultEvent):void
{
}

ON the WEBON the WEB

774

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 774

3. Within the event handler function, use the event.result expression to refer to the
data that’s returned from the server. Just as with the WebService component,
ResultEvent.result is typed as an Object. Because the expression’s native type
differs depending on what’s returned by the CFC function, you typically have to explicitly
cast the returned data. This code expects the CFC function to return an
ArrayCollection:

myData = event.result as ArrayCollection;

You can listen for the result event with either an MXML attribute-based event listener or a call to
the ActionScript addEventListener() method. The attribute-based event listener looks like this:

<mx:RemoteObject id=”myService” destination=”helloClass”
source=”flex3bible.chapter26.ContactService”
result=”resultHandler(event)”/>

When using addEventListener() to create an event listener, you can designate the event name
with the String value result, or with the ResultEvent class’s RESULT static constant:

var contactService:RemoteObject = new RemoteObject(“ColdFusion”);
contactService.source =

source=”flex3bible.chapter26.ContactService”;
contactService.addEventListener(ResultEvent.RESULT,

resultHandler);
contactService.getAllContacts();

Listing 26.3 uses a result event handler function to capture and present data that’s been
returned from a CFC function.

LISTING 26.3

Handling results from a CFC function with a result event handler

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” creationComplete=”initApp()”
xmlns:view=”view.*”>
<mx:Script>

<![CDATA[
import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;
import mx.rpc.remoting.RemoteObject;
[Bindable]
private var contactData:ArrayCollection;
private var contactService:RemoteObject;
private function initApp():void
{

775

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 775

contactService = new RemoteObject(“ColdFusion”);
contactService.source = “flex3bible.chapter26.ContactService”;
contactService.addEventListener(ResultEvent.RESULT,

resultHandler);
}
private function resultHandler(event:ResultEvent):void
{
contactData = event.result as ArrayCollection;
}

]]>
</mx:Script>
<mx:Button label=”Hello World”
click=”contactService.getAllContacts()”/>
<view:ContactsGrid dataProvider=”{contactData}”/>

</mx:Application>

The code in Listing 26.3 is available in the Web site files as ROResultHandler.mxml
in the src folder of the chapter26 project. The custom DataGrid component that

displays data in this and other applications in this chapter is defined as a custom MXML component
named ContactsGrid.mxml in the project’s src/view folder.

Listing 26.4 shows the code for the CFC that’s called by this and other applications in this section.
Notice that the Query object is created manually in ColdFusion code, rather than being generated
with a <cfquery> command. As a result, the case of the column names is controlled by this call to
the ColdFusion QueryNew() function, rather than being derived from a database query’s metadata:

<cfset var
qContacts=queryNew(‘contactId,firstname,lastname,city’)>

LISTING 26.4

A CFC returning a Query object

<cfcomponent name=”ContactService”
hint=”Delivers Contact data from an XML file to a Flex application”>
<cfapplication name=”flex3BibleChapter26” sessionManagement=”true”>
<!--- Initialize data set in memory if it doesn’t already exist --->
<cfif not structKeyExists(session, “qContacts”)>

<cfset createDataSet()>
</cfif>

<!--- Returns all data from a query object --->
<cffunction name=”getAllContacts” returntype=”query” access=”remote”>

<cfreturn session.qContacts>
</cffunction>
<!--- Returns filtered data using query of query --->

ON the WEBON the WEB

776

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 776

<cffunction name=”getFilteredContacts” returnType=”query”
access=”remote”>
<cfargument name=”firstname” type=”string” required=”true”>
<cfargument name=”lastname” type=”string” required=”true”>
<cfset var qFiltered=””>
<cfquery dbtype=”query” name=”qFiltered”>

SELECT * FROM session.qContacts
WHERE 0=0
<cfif len(trim(firstname))>

AND firstname LIKE ‘%#trim(arguments.firstname)#%’
</cfif>
<cfif len(trim(lastname))>

AND lastname LIKE ‘%#trim(arguments.lastname)#%’
</cfif>

</cfquery>
<cfreturn qFiltered>

</cffunction>
<!--- Returns the total count of Contacts --->
<cffunction name=”getContactCount” returntype=”numeric”
access=”remote”>
<cfreturn session.qContacts.recordCount>

</cffunction>
<!--- Called to create a query object from an XML file --->
<cffunction name=”createDataSet” returntype=”void” access=”private”>

<cfset var strContacts=””>
<cfset var xContacts=””>
<cfset var i=””>
<cfset var qContacts=queryNew(‘contactId,firstname,lastname,city’)>
<cffile action=”read” file=”#expandPath(‘data/contacts.xml’)#”

variable=”strContacts”>
<cfset xContacts=xmlParse(strContacts)>
<cfloop from=”1” to=”#arrayLen(xContacts.contacts.row)#” index=”i”>

<cfset QueryAddRow(qContacts)>
<cfset qContacts.firstname[i]=xContacts.contacts.row[i]

.firstname.xmltext>
<cfset qContacts.lastname[i]=xContacts.contacts.row[i].

lastname.xmltext>
<cfset qContacts.contactId[i]=xContacts.contacts.row[i].

contactId.xmltext>
<cfset qContacts.city[i]=xContacts.contacts.row[i].city.xmltext>

</cfloop>
<cfset session.qContacts=qContacts>

</cffunction>
</cfcomponent>

The code in Listing 26.4 is available in the Web site files as ContactService.cfc in
the ColdFusion files of the chapter26 project.ON the WEBON the WEB

777

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 777

Handling results from multiple CFC functions
When you need to call more than one function from a CFC, you have to distinguish which event
handler function should be called for each of them. You do this in MXML with the <mx:method >
compiler tag, which is nested within a <mx:RemoteObject> tag set. Each <mx:method > tag
represents a CFC function and can declare its own distinct result and fault event handlers.

The CFC in Listing 26.4, for example, has a function named getContactCount() that returns a
numeric value and a function named getAllContacts() that returns a Query object (trans-
lated to an ArrayCollection in the Flex application). To handle each function’s result event
with its own distinct event handler function, you create the functions and then declare the
<mx:method> tags as follows:

<mx:RemoteObject id=”contactService”
destination=”ColdFusion”
source=”flex3bible.chapter26.ContactService”>
<mx:method name=”getContactCount”
result=”countHandler(event)”/>
<mx:method name=”getAllContacts” result=”dataHandler(event)”/>

</mx:RemoteObject>

The application in Listing 26.5 calls getContactCount() upon application startup to inform
the user how many data items are available on the server. The call to getAllContacts() to
actually retrieve the data is made only when the user clicks Get Contact Data.

LISTING 26.5

Handling result events from multiple CFC functions

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

xmlns:view=”view.*” backgroundColor=”#EEEEEE”
creationComplete=”contactService.getContactCount()”>
<mx:Script>

<![CDATA[
import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;
[Bindable]
private var recordCount:Number;
[Bindable]
private var contactData:ArrayCollection;
private function countHandler(event:ResultEvent):void
{

recordCount = event.result as Number;
}
private function dataHandler(event:ResultEvent):void
{

contactData = event.result as ArrayCollection;

778

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 778

}
]]>

</mx:Script>
<mx:RemoteObject id=”contactService”

destination=”ColdFusion”
source=”flex3bible.chapter26.ContactService”>
<mx:method name=”getContactCount” result=”countHandler(event)”/>
<mx:method name=”getAllContacts” result=”dataHandler(event)”/>

</mx:RemoteObject>
<mx:Label

text=”There are {recordCount} Contacts available on the server”/>
<mx:Button label=”Get Contact Data”

click=”contactService.getAllContacts()”/>
<view:ContactsGrid dataProvider=”{contactData}”/>

</mx:Application>

The code in Listing 26.5 is available in the Web site files as
ROMultipleFunctions.mxml in the src folder of the chapter26 project.

Figure 26.4 shows the resulting application. The Label at the top of the application displays the
getContactCount() results immediately upon application startup, while the actual data is dis-
played only when the user requests it from the server.

FIGURE 26.4

An application using two different functions of a single CFC

As with other RPC components, you can also handle result and fault events using
the ItemResponder and AsyncToken classes. For a description of this pattern and

sample code, see Chapter 21.

TIPTIP

ON the WEBON the WEB

779

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 779

Passing Arguments to CFC Functions
You can pass arguments to CFC functions in three different ways:

� Explicit arguments are passed in the order in which they’re declared in the CFC function

� Bound arguments are declared with MXML code and bound to data sources in the Flex
application

� Named arguments are wrapped in an ActionScript Object and are passed as though the
CFC function expects only a single argument.

Using explicit arguments
Explicit arguments are passed in the same order in which they’re declared in the CFC function.
The CFC’s getFilteredContacts() function declares two required arguments:

<cffunction name=”getFilteredContacts” returnType=”query”
access=”remote”>

<cfargument name=”firstname” type=”string” required=”true”>
<cfargument name=”lastname” type=”string” required=”true”>
... function body ...

</cffunction>

Using explicit arguments, you pass values that match the expected data types. This code sends the
data in the same order in which they’re declared:

contactService.getFilteredContacts(fnameInput.text,
lnameInput.text);

It’s also possible to pass arguments explicitly with the Operation class’s send()
method. The following syntax allows you to pass remote CFC function names as strings

or variables, passed into the RemoteObject component’s getOperation() method:

contactService.getOperation(“getFilteredContacts”).send(
fnameInput.text, lnameInput.text);

This calling syntax also works with the WebService component.

Using bound arguments
Bound arguments are declared in MXML and then passed through a call to the RemoteObject
component’s send() method. Just as when using the RemoteObject component to call
Java-based methods in classes hosted by BlazeDS, you use bound argument notation with XML
elements for each argument wrapped in an <mx:arguments> tag set. This code binds the
getFilteredContacts() method’s two arguments to values gathered from TextInput
controls:

TIPTIP

780

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 780

<mx:RemoteObject id=”contactService” destination=”ColdFusion”
source=”flex3bible.chapter26.ContactService”>
<mx:method name=”getFilteredContacts”>

<mx:arguments>
<firstname>{fnameInput.text}</firstname >
<lastname>{lnameInput.text}</lastname>

</mx:arguments>
</mx:method>

</mx:RemoteObject>

To call the method with the bound arguments, call the operation’s send() method without any
explicit arguments:

contactService.getFilteredContacts.send()

When using bound arguments with CFC functions, the arguments are matched by name,
not by the order of declaration in the client-side code. This behavior is different from

Java-based methods and arguments, where bound arguments are sent in the order in which they’re
declared, and the XML element names are ignored.

Using named arguments
You can match CFC function arguments by name by wrapping them in an ActionScript Object.
Each property has a name and a value; the name of the Object property must match the name of
the CFC function argument.

This code creates an Object and attaches argument values by name:

var args:Object = new Object();
args.firstname = fnameInput.text;
args.lastname = lnameInput.text;
contactService.getFilteredContacts(args);

You also can write the same code using shorthand Object notation:

contactService.getFilteredContacts(
{firstname:fnameInput.text, lastname:lnameInput.text});

This behavior is sometimes confusing to ColdFusion developers who first encounter it,
because it means that you can’t pass an anonymous Object as an argument to a CFC func-

tion and expect it to arrive intact as a ColdFusion structure. The Object is always broken down into its
named properties, and then the individual properties are passed to the CFC function. If you need to pass a
structure argument to a CFC function, you have to wrap it in another Object and pass it by name:

myService.myFunction({myArgumentName:myObject});

TIPTIP

TIPTIP

781

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 781

The named arguments behavior in Flex is very similar to ColdFusion’s own argumentCollection
attribute, which can be used to pass a structure of named arguments to functions from CFML code.
This CFML code calls a CFC function and passes a structure in very much the same way:

<cfset stArgs=structNew()>
<cfset stArgs.firstname=”firstnameValue”>
<cfset stArgs.lastname=”lastnameValue”>
<cfinvoke component=”flex3bible.chapter26.ContactService”

argumentCollection=”#stArgs#” returnVariable=”qContacts”/>

The application in Listing 26.6 uses named arguments wrapped in an ActionScript Object.

LISTING 26.6

An application passing named arguments to a CFC function

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” xmlns:view=”view.*”>
<mx:Script>

<![CDATA[
private function getContacts():void
{

var args:Object = new Object();
args.firstname = fnameInput.text;
args.lastname = lnameInput.text;
contactService.getFilteredContacts(args);

}
]]>

</mx:Script>
<mx:RemoteObject id=”contactService” destination=”ColdFusion”

source=”flex3bible.chapter26.ContactService”/>
<mx:Form>

<mx:FormItem label=”First Name:”>
<mx:TextInput id=”fnameInput”/>

</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lnameInput”/>
<mx:Button label=”Get Filtered Data” click=”getContacts()”/>

</mx:FormItem>
</mx:Form>
<view:ContactsGrid

dataProvider=”{contactService.getFilteredContacts.lastResult}”/>
</mx:Application>

The code in Listing 26.6 is available in the Web site files as RONamedArgs.mxml in the
src folder of the chapter26 project. Examples of the same application using explicit

and bound arguments are in ROExplicitArgs.mxml and ROBoundArgs.mxml, respectively.

ON the WEBON the WEB

782

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 782

Using Value Object Classes
When passing data between a Flex client application and ColdFusion, you can build both client-
side and server-side data objects using the Value Object design pattern. The Flex version is built as
an ActionScript class, while the ColdFusion version is built as a CFC. At runtime, you can pass
strongly typed value objects between the client and server tiers of your application, and the Flex
application and the Flash Remoting gateway automatically transfer data between the objects based
on a mapping that you provide in the code.

The Value Object design pattern is also known in various industry documentation
sources as the Transfer Object and Data Transfer Object pattern. The different names are

all used to refer to the same pattern: a class that contains data for a single instance of a data entity.

Creating a ColdFusion value object
The ColdFusion version of a value object is written as a simple CFC. The <cfcomponent> start
tag requires an alias attribute that’s set to the fully qualified name and location of the CFC:

<cfcomponent output=”false” alias=”flex3Bible.chapter26.Contact”>
... component body ...

</cfcomponent>

Each named property is declared after the <cfcomponent> start tag using the <cfproperty>
tag. Each property has a name and a type to indicate how it will be exchanged with Flex. The fol-
lowing <cfproperty> tags declare one numeric and two string properties:

<cfproperty name=”contactId” type=”numeric” default=”0”>
<cfproperty name=”firstname” type=”string” default=””>
<cfproperty name=”lastname” type=”string” default=””>

The <cfproperty> tag, which in conventional ColdFusion code is used only to gener-
ate CFC documentation, controls the name and case of the property name when it’s

exchanged with the Flex application at runtime. This overrides the settings in the configuration files
that control the case of property names.

The <cfproperty> tag’s default attribute is used to generate CFC documentation and doesn’t
actually set default values when the CFC is instantiated in ColdFusion. Instead, you typically add
code outside any function definitions that set the properties’ default values upon instantiation:

<cfscript>
this.contactId = 0;
this.firstname = “”;
this.lastname = “”;

</cfscript>

The CFC in Listing 26.7 is a value object that declares four properties of a Contact value object
and sets their initial values upon instantiation.

TIPTIP

TIPTIP

783

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 783

LISTING 26.7

A simple value object CFC

<cfcomponent output=”false” alias=”flex3Bible.chapter26.Contact”>
<cfproperty name=”contactId” type=”numeric” default=”0”>
<cfproperty name=”firstname” type=”string” default=””>
<cfproperty name=”lastname” type=”string” default=””>
<cfproperty name=”city” type=”string” default=””>
<cfscript>

this.contactId = 0;
this.firstname = “”;
this.lastname = “”;
this.city = “”

</cfscript>
</cfcomponent>

The code in Listing 26.7 is available in the Web site files as Contact.cfm in the
ColdFusion files of the chapter26 project.

Creating an ActionScript value object
The Flex client application uses an ActionScript version of the value object built as an ActionScript
class. The class requires a [RemoteClass] metadata tag with an alias attribute that describes
the fully qualified name and location of the matching CFC:

[RemoteClass(alias=”flex3Bible.chapter26.Contact”)]

This is a two-way mapping: When an ActionScript version of the object is sent to ColdFusion, the
Flash Remoting gateway creates an instance of the CFC and passes the received object’s property
values to the server-side version. Similarly, if a CFC function returns instances of the server-side
version, client-side versions are created automatically and their property values set to the values
received from the server.

The alias attributes of the [RemoteClass] metadata tag on the client and the
<cfcomponent> tag on the server must match exactly and are case-sensitive.

The ActionScript class in Listing 26.8 declares the same set of values as public properties and maps
itself to the server’s version with the [RemoteClass] metadata tag.

CAUTION CAUTION

ON the WEBON the WEB

784

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 784

LISTING 26.8

An ActionScript value object class

package vo
{

[Bindable]
[RemoteClass(alias=”flex3Bible.chapter26.Contact”)]
public class Contact
{

public var contactId:int;
public var firstname:String;
public var lastname:String;
public var city:String;
public function Contact()
{
}

}
}

The code in Listing 26.8 is available in the Web site files as Contact.as in the
src/vo folder in the chapter26 project.

Returning value objects from ColdFusion to Flex
After you’ve built versions of the value object in both ColdFusion and ActionScript and provided
the appropriate mappings, a CFC function has the ability to return either individual value object
instances or collections of value objects wrapped into arrays. This CFC function creates an instance
of the Contact value object and returns it to Flex:

<cffunction name=”getContactVO” access=”remote”
returntype=”flex3Bible.chapter26.Contact”>
<cfset contact=createObject(“component”,

“flex3Bible.chapter26.Contact”)>
<cfset contact.contactId = 1 >
<cfset contact.firstname = “David”>
<cfset contact.lastname = “Gassner”>
<cfset contact.city = “Seattle”>
<cfreturn contact>

</cffunction>

Notice that the function’s returntype attribute is set to the fully qualified name and location of
the value object CFC.

The CFC in Listing 26.9 extends the original CFC and uses its data, but transforms the query
object into an array of strongly typed value objects before returning it to Flex. Notice that this time
the CFC function’s returntype attribute is set to an array of CFC instances, rather than the usual
generic array notation.

ON the WEBON the WEB

785

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 785

LISTING 26.9

A CFC function returning an array of value objects

<cfcomponent name=”ContactServiceWithVO”
hint=”Delivers Contact data as an array of value objects”
extends=”ContactService”>
<cfapplication name=”flex3BibleChapter26” sessionManagement=”true”>
<cfif not structKeyExists(session, “qContacts”)>

<cfset createDataSet()>
</cfif>
<!--- Returns all data as an array of structures --->
<cffunction name=”getContactsAsArray” access=”remote”

returntype=”flex3Bible.chapter26.Contact[]”>
<cfset var contact=””>
<cfset var arReturn=arrayNew(1)>
<cfloop query=”session.qContacts”>

<cfset contact=createObject(“component”,
“flex3Bible.chapter26.Contact”)>

<cfset contact.contactId = session.qContacts.contactId>
<cfset contact.firstname = session.qContacts.firstname>
<cfset contact.lastname = session.qContacts.lastname>
<cfset contact.city = session.qContacts.city>
<cfset arrayAppend(arReturn, contact)>

</cfloop>
<cfreturn arReturn>

</cffunction>
</cfcomponent>

The code in Listing 26.9 is available in the Web site files as
ContactServiceWithVO.cfc in the ColdFusion files of the chapter26 project.

Receiving value objects from ColdFusion
In order to receive value objects from a CFC function and have them automatically transformed
into instances of the ActionScript value object, the Flex application must contain at least one refer-
ence to the ActionScript class. The reference can be a declared instance of the class or a call to any
static properties or methods. This ensures that the class, which contains the [RemoteClass]
metadata tag, is compiled into the application and is available at runtime.

It isn’t enough to just import the value object class in the Flex application; you have to
declare at least one instance. The purpose of importing a class is to inform the Flex com-

piler of the class’s existence, but the compiler doesn’t include the class definition in the binary ver-
sion of the application unless at least one instance of the class is declared, or there’s a reference to
one of its static members.

CAUTION CAUTION

ON the WEBON the WEB

786

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 786

The Flex application in Listing 26.10 receives the Array of value objects and processes them in an
event handler. Notice the MXML <vo:Contact/> declaration that ensures the mapping of the
value object classes is included in the compiled application.

When a CFC function returns a ColdFusion array, it’s received in Flex as an
ActionScript Array, not an ArrayCollection. In this application, the result

event handler expects an Array and assigns it to the source of the already-instantiated
ArrayCollection:

contactData.source = event.result as Array;

LISTING 26.10

Receiving an Array of strongly typed value objects

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE” creationComplete=”initApp()”
xmlns:view=”view.*” xmlns:vo=”vo.*”>
<mx:Script>

<![CDATA[
import mx.controls.Alert;
import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;
import mx.rpc.remoting.RemoteObject;
[Bindable]
private var contactData:ArrayCollection = new ArrayCollection();
private var contactService:RemoteObject;
private function initApp():void
{

contactService = new RemoteObject(“ColdFusion”);
contactService.source =

“flex3bible.chapter26.ContactServiceWithVO”;
contactService.addEventListener(ResultEvent.RESULT,

resultHandler);
}
private function resultHandler(event:ResultEvent):void
{
contactData.source = event.result as Array;
}

]]>
</mx:Script>
<vo:Contact/>
<mx:Button label=”Get Contacts”

click=”contactService.getContactsAsArray()”/>
<view:ContactsGrid dataProvider=”{contactData}”/>

</mx:Application>

TIPTIP

787

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 787

The code in Listing 26.10 is available in the Web site files as
ROReceiveValueObjects.mxml in the src folder of the chapter26 project.

Passing value object arguments to CFC functions
Value objects also can be passed from a Flex client application to a CFC function. The CFC func-
tion should have declared an argument typed as the ColdFusion version of the value object. This
CFC function receives an instance of the Contact value object CFC and returns a concatenated
string built from its properties:

<cffunction name=”parseContact” access=”remote”>’
<cfargument name=”contactVO”
type=”flex3Bible.chapter26.Contact”
required=”true”>

<cfreturn “Contact received: “ + contactVO.firstname +
“ “ + contactVO.lastname>

</cffunction>

To pass a value object argument to the CFC function from Flex, create an instance of the
ActionScript version of the object and set its properties. Then pass the value object to the function
using any of the argument-passing strategies described previously.

The application in Listing 26.11 passes an instance of the ActionScript value object to a CFC func-
tion that extracts its properties and returns a concatenated string.

LISTIN 26.11

Passing a value object to a CFC function

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Script>

<![CDATA[
import vo.Contact;
private function passArgument():void
{

var newContact:Contact = new Contact();
newContact.firstname = fnameInput.text;
newContact.lastname = lnameInput.text;
contactService.parseContact(newContact);

}
]]>

</mx:Script>
<mx:RemoteObject id=”contactService” destination=”ColdFusion”

source=”flex3bible.chapter26.ContactServiceWithVO”/>
<mx:Panel title=”Enter Contact Information”>

ON the WEBON the WEB

788

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 788

<mx:Form>
<mx:FormItem label=”First Name:”>

<mx:TextInput id=”fnameInput”/>
</mx:FormItem>
<mx:FormItem label=”Last Name:”>

<mx:TextInput id=”lnameInput”/>
<mx:Button label=”Pass Argument” click=”passArgument()”/>

</mx:FormItem>
</mx:Form>

</mx:Panel>
<mx:Label text=”{contactService.parseContact.lastResult}”

fontSize=”12”/>
</mx:Application>

The code in Listing 26.11 is available in the Web site files as ROPassVOArg.mxml in
the src folder of the chapter26 project.

Working with RemoteObject Faults
When an exception occurs during a call to a CFC function, the RemoteObject dispatches a
fault event. The event object is typed as mx.rpc.events.FaultEvent and contains a fault
property typed as mx.rpc.Fault. This object in turn has String properties named
faultCode, faultString, and faultDetail. The values of these properties differ depending
on the nature of the error, and in the case of faultDetail they sometimes don’t contain useful
information.

Handling the fault event
As with all events, you can create an event listener with either MXML or ActionScript code. The
MXML attribute-based event listener looks like this:

<mx:RemoteObject id=”contactService” destination=”ColdFusion”
source=”flex3bible.chapter26.ContactServiceWithVO”
fault=”faultHandler(event)”/>

To create an event listener in ActionScript code, call the RemoteObject component’s
addEventListener() method and declare the event name using the FaultEvent.FAULT
constant:

faultService.addEventListener(FaultEvent.FAULT, faultHandler);

ON the WEBON the WEB

789

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 789

When the event handler function receives the event object, you can handle it in any way you like.
Minimally, you might display the fault information to the user with a pop-up dialog box generated
by the Alert class:

private function faultHandler(event:FaultEvent):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}

In ColdFusion 8, the value of the error message always has a prefix of “Unable to invoke
CFC -”. If you don’t want to display this prefix, you have to parse the original error mes-

sage from the value of the faultString property:

var errorMessage:String = event.fault.faultString;
errorMessage = errorMessage.substring(22,

errorMessage.length);
Alert.show(errorMessage, event.fault.faultCode);

Generating custom exceptions from a CFC function
On the server, you can generate your own faults from a CFC function by calling the ColdFusion
<cfthrow> command. These <cfthrow> commands’ attributes are exposed in the Flex applica-
tion’s FaultEvent.fault object:

� The message attribute appears in the fault object’s faultString property.

� The errorcode attribute appears in the fault object’s faultCode property.

The CFC in Listing 26.12 implements a throwCFCFault() function that always generates a fault
with message and errorcode attributes.

LISTING 26.12

A CFC function generating a server-side fault

<cfcomponent output=”false”>
<cffunction name=”throwCFCFault” returntype=”String”>

<cfthrow message=”An error message generated by a CFC function”
errorcode=”CFC Function Error”>

<cfreturn “A String”>
</cffunction>

</cfcomponent>

TIPTIP

790

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 790

The code in Listing 26.12 is available in the Web site files as FaultService.cfc in
the ColdFusion files of the chapter26 project.

The Flex application in Listing 26.13 calls the CFC function to intentionally generate a fault and
display its information in an Alert pop-up dialog box.

LISTING 26.13

A Flex application handling a server-side fault from a CFC function

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

backgroundColor=”#EEEEEE”>
<mx:Script>

<![CDATA[
import mx.controls.Alert;
import mx.rpc.events.FaultEvent;
import mx.rpc.events.ResultEvent;
import mx.rpc.remoting.RemoteObject;
[Bindable]
private var returnString:String;
private function resultHandler(event:ResultEvent):void
{
returnString = event.result as String;
}
private function faultHandler(event:FaultEvent):void
{

var errorMessage:String = event.fault.faultString;
errorMessage = errorMessage.substring(22, errorMessage.length);
Alert.show(errorMessage, event.fault.faultCode); }

]]>
</mx:Script>
<mx:RemoteObject id=”faultService” destination=”ColdFusion”

source=”flex3bible.chapter26.FaultService”
result=”resultHandler(event)”
fault=”faultHandler(event)”/>

<mx:Button label=”Generate Fault”
click=”faultService.throwCFCFault()”/>
<mx:Label text=”{returnString}”/>

</mx:Application>

The code in Listing 26.13 is available in the Web site files as ROFaultHandler.mxml
in the src folder of the chapter26 project.ON the WEBON the WEB

ON the WEBON the WEB

791

Integrating Flex Applications with ColdFusion 26

34_287644-ch26.qxp 6/23/08 11:54 PM Page 791

Summary
In this chapter, I described how to integrate Flex client applications with Adobe ColdFusion 8
using Flash Remoting and the Flex framework’s RemoteObject component. You learned the
following:

� Flash Remoting was originally introduced with ColdFusion MX and was adapted for use
in LiveCycle Data Services and Blaze as the Remoting Service.

� Flash Remoting allows you to call functions of ColdFusion components (CFCs) from a
ColdFusion server.

� Remote function calls and responses are encrypted in AMF, a binary message format that’s
significantly smaller and faster than XML.

� Data can be exchanged between the Flex client and a CFC function based on documented
data type mappings.

� Calls to CFC functions are asynchronous.

� CFC function results can be handled with binding expressions or by handling the
RemoteObject component’s result event.

� Arguments can be passed to CFC functions using explicit, named, or bound argument
syntax.

� Strongly typed value objects can be created in both ActionScript and ColdFusion and
exchanged automatically between client and server at runtime.

� Exceptions are handled as Flex application faults using the RemoteObject component’s
fault event.

� Custom exceptions can be generated in ColdFusion and handled in a Flex client application.

792

Integrating Flex Applications with Application Servers and the DesktopPart IV

34_287644-ch26.qxp 6/23/08 11:54 PM Page 792

When you install Adobe Flex Builder 3, you also can install addi-
tional plug-ins that support application development with addi-
tional technologies. The first of these, the ColdFusion Extensions

for Flex Builder, includes a set of development tools that increase productiv-
ity and reduce application development time for developers using
ColdFusion as their Flex application’s middleware layer.

The other additional plug-in that’s included with Flex
Builder, JSEclipse, supports programming in JavaScript and is

included primarily for developers who use Flex Builder and Eclipse to build
HTML-based AIR applications.

The ColdFusion Extensions for Flex Builder are built in part around Remote
Development Service (RDS), a technology that was originally created by
Allaire and integrated into ColdFusion Studio. RDS allows developers to
connect from their development environments to ColdFusion on the server
and expose information about the server’s data sources and file system.

In their last incarnation, ColdFusion Studio and Homesite were merged to
become Homesite+. Because many ColdFusion developers continue to use
Homesite+, Adobe still sells the product and releases product updates to
support each new ColdFusion release.

RDS has also been a part of Dreamweaver since the acquisition of Allaire by
Macromedia and the release of Dreamweaver MX. Some of Homesite’s RDS-
dependent features, however, were never re-created in Dreamweaver.

TIPTIP

793

IN THIS CHAPTER
Understanding ColdFusion
Extension features

Installing the ColdFusion
Extensions for Flex Builder

Configuring RDS

Using the RDS Dataview

Using the Visual Query Builder

Generating code with the CFC
value object wizard

Using generated code in a Flex
application

Using the ColdFusion
Extensions for Flex Builder

35_287644-ch27.qxp 6/23/08 11:55 PM Page 793

For example, ColdFusion Studio’s Visual Query Builder, which allows developers to create
advanced SQL statements based on drag-and-drop operations in a visual interface, was never a part
of Dreamweaver. This and other RDS-dependent features have been recreated in the ColdFusion
Extensions.

In this chapter, I describe how to install and use the ColdFusion Extensions for Flex Builder to
inspect server-side resources and generate valuable code for your Flex/ColdFusion application.

To use the sample code for this chapter, download chapter27.zip from the Web site.
You must have the sample cfartgallery database and data source installed that

comes with ColdFusion 8 for the code to work correctly.

If you want to follow along with the completed sample application for this chapter, follow these
steps:

1. Create a new Flex project named chapter27 that’s integrated with your ColdFusion
server, as described in Chapter 26.

2. Extract the contents of chapter27.zip to the project’s root folder.

3. Locate the chapter27CFFiles.zip file from the project, and extract its files to the
ColdFusion Web root folder (for example, C:\ColdFusion8\wwwroot). This creates a
new subfolder structure named flex3Bible/chpater27 that contains the sample
application’s generated CFCs.

4. To test the application, first make sure your ColdFusion server is running. Then run the
Flex application named UseActiveRecord.mxml. You should see that the application
displays a DataGrid with a list of Artist records and that you can add, update, and
delete data as desired.

Understanding ColdFusion
Extension Features
The ColdFusion Extensions for Flex Builder are installed as a single Eclipse plug-in and provide
these features:

� The Remote Development Service (RDS) allows Flex Builder to communicate with
ColdFusion during development to show you information about the ColdFusion server’s
data sources and file system.

� The RDS Dataview displays the ColdFusion server’s data sources and each data source’s
tables. Each table or view’s metadata can be displayed, including column names, data
types, and maximum sizes.

� The RDS Fileview displays the server’s file system and allows you to create new remote
files and to create, rename, and delete remote folders.

ON the WEBON the WEB

794

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 794

� The Visual Query Builder allows you to build an advanced SQL statement using a visual
interface.

� The Services Browser displays a list of the server’s CFCs and their functions and properties.

� The CFC Value Object wizard generates server-side code suitable for being called from
Flex applications over Flash Remoting.

� The AS-CFC and CFC-AS Class wizards generate value object classes on either the
server or the client based on existing class definitions.

Installing the ColdFusion Extensions
for Flex Builder
The ColdFusion Extensions for Flex Builder are delivered as an Eclipse plug-in that’s included with
Flex Builder 3. As shown in Figure 27.1, toward the end of the Flex Builder 3 installation process,
you’re prompted to install the ColdFusion Extensions.

FIGURE 27.1

ColdFusion Extensions installation integrated into the Flex Builder 3 installation

Installing the optional CF Extensions

795

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 795

If you’ve already installed Flex Builder 3 or Eclipse without the ColdFusion Extensions, you can
install the plug-in using the Eclipse standard plug-in installation process. The plug-in is included in
the Flex Builder installation as a file named ColdFusion_Extensions_for_Eclipse.zip,
located in the Flex Builder installation folder under an Installers subfolder.

The ColdFusion Extensions plug-in can be installed into any copy of Eclipse, and it does
not require either the Flex Builder standalone installation or the Flex Builder plug-in to

already have been installed. You also can download the ColdFusion Extensions plug-in from Adobe’s
Web site at www.adobe.com/support/coldfusion/downloads.html. This version is known
as the ColdFusion Extensions for Eclipse (rather than Flex Builder), but it has the same feature set.

Follow these steps to install the ColdFusion Extensions:

1. From the Flex Builder or Eclipse menu, select Help ➪ Software Updates ➪ Find and
Install.

2. Select Search for new features to install, and click Next.

3. Click New Archived Site.

4. Browse and select ColdFusion_Extensions_for_Eclipse.zip from the
Installers subfolder under the Flex Builder root installation folder (located by default
on Windows in C:\Program Files\Adobe\Flex Builder 3\Installers).

5. As shown in Figure 27.2, you’re prompted to assign a name to the plug-in installer as a
Local Site.

FIGURE 27.2

Assigning a name to the plug-in installer

6. As shown in Figure 27.3, select the ColdFusion Extensions in the Search Results screen
and click Next.

7. Follow the remaining prompts to complete the installation.

8. When prompted, restart Flex Builder to ensure that all plug-in features are immediately
available.

TIPTIP

796

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 796

FIGURE 27.3

Selecting the ColdFusion Extensions installer

Configuring RDS Servers
Many features of the ColdFusion Extensions for Flex Builder require an RDS connection to a
ColdFusion server. When you install ColdFusion 8, you’re prompted to create two passwords, one
for access to the ColdFusion Administrator application and one for RDS access. To connect to your
ColdFusion development server from Eclipse, you need to know the server’s RDS password.

If multiple-user security is enabled with ColdFusion’s User Manager (a configuration
option in ColdFusion Administrator), you may need both a username and an RDS pass-

word to connect to the server from Eclipse. If you’re running a development server that isn’t installed
locally on your system, check with the administrator of your ColdFusion development server to find
out what RDS credentials are required.

Follow these steps to open RDS Configuration in Eclipse:

1. Select Window ➪ Preferences... from the Eclipse menu.

2. In the Preferences wizard, select Adobe ➪ RDS Configuration.

As shown in Figure 27.4, the RDS Configuration screen shows a preconfigured RDS
server with a description of localhost. The default configuration assumes that you’re
using ColdFusion with the server configuration and the development Web server running
on port 8500.

TIPTIP

797

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 797

FIGURE 27.4

The default RDS localhost configuration

3. If ColdFusion is installed on your local development system, click the existing local-
host server configuration and make any required changes to the server configuration for
your ColdFusion installation. For example, if you’re using the J2EE configuration, you
may need to enter a value for the Context Root.

4. If you’re working with a remote ColdFusion development server, click New and enter all
the required connection information:

� Description: Any descriptive string

� Host Name: The server’s IP address or DNS host name

� Port Number: The port on which the ColdFusion server can be accessed

� Context Root: The context root of the ColdFusion application (typically only
required for J2EE configuration)

798

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 798

5. If you want to be able to connect to ColdFusion in each development session without
having to enter an RDS password each time, enter your RDS authentication credentials
and deselect the Prompt for Password option.

6. Click Test Connection. As shown in Figure 27.5, you should see a prompt indicating that
Eclipse successfully connected to ColdFusion.

FIGURE 27.5

A successful connection from Eclipse to ColdFusion

7. Click OK to save your RDS configuration settings.

799

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 799

Connecting to ColdFusion Data Sources
After you’ve successfully connected to an RDS server, you should be able to inspect the server’s
data sources and see your database’s structure and contents from within Eclipse. Follow these steps
to open the RDS Dataview:

1. Select Window ➪ Other Views... from the Eclipse menu.

As shown in Figure 27.6, the Show View dialog box displays a tree of available Eclipse
views for all installed plug-ins.

FIGURE 27.6

Selecting an Eclipse view

2. Select ColdFusion ➪ RDS Dataview.

RDS Dataview opens initially in the tabbed interface in Eclipse’s bottom docking posi-
tion. Because it displays its data in a tree control that expands vertically, it’s a bit more

useful if you drag it to the right docking position, as shown in Figure 27.7.

TIPTIP

800

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 800

FIGURE 27.7

Repositioning the RDS Dataview

Inspecting a data source
As shown in Figure 27.8, all of the ColdFusion server’s data sources are displayed in the RDS
Dataview. The RDS Dataview includes buttons at the top for these tasks:

� Show RDS Configuration dialog box

� Refresh active RDS server

� Open the RDS query viewer

Follow these instructions to inspect the cfartgallery data source that’s automatically included
in a new ColdFusion 8 installation:

1. Click the plus (+) icon next to the data source name to expand the data source. You should
see items presenting the data source’s Tables, Views, Synonyms, and System Tables.

2. Click to expand Tables.

3. Click to expand the structure of any database table.

Click and drag to upper right to view its data

RDS Dataview initial position

801

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 801

FIGURE 27.8

RDS Dataview with an expanded data source

The descriptions and code samples in this chapter assume that example data sources ini-
tially installed with ColdFusion are available to you. If they’ve been removed from your

ColdFusion installation, use any of your own data sources instead.

A synonym is an alias for the data source that tells the server how tables are described
and where to find them. Not all databases support synonyms; for many databases, this

section is empty.

Each database table’s structure includes this information about each of the table’s columns:

� Data type

� Column size (only meaningful with string-based columns)

� Whether the column requires values (usually known in the actual database structure as
whether the column can be NULL)

TIPTIP

TIPTIP

Show RDS Configuration dialog box

Refresh Active RDS server

Open RDS query viewer

802

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 802

With certain database drivers, ColdFusion returns table and column names through RDS
in all uppercase strings. And some database drivers, such as the Apache Derby driver

that’s used to manage ColdFusion 8’s sample data sources, add a schema prefix to all table names. For
example, unless otherwise configured, Derby adds an APP prefix to the names of all database tables.
You can change the schema prefix when the database is created, but you can’t remove it entirely.
There isn’t much you can do about either the uppercase or the prefix phenomena, but they also don’t
hurt anything.

Viewing table data
You can view a table’s data from within the RDS Dataview:

1. Right-click (Ctrl-click on the Mac) on the table that contains data you want to view.

2. Select Show Table Contents.

As shown in Figure 27.9, the RDS Query Viewer opens and displays the table’s data.

When working with a table with large amounts of data, don’t use this tool to display all
the table data. Even though the RDS Query Viewer displays only the first 50 rows, the

ColdFusion Extensions actually retrieve all the table’s data into memory. With a very large data table,
this can overwhelm Eclipse’s memory and resources.

FIGURE 27.9

The RDS Query Viewer displaying data from a ColdFusion data source’s table

CAUTION CAUTION

TIPTIP

803

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 803

Using the Visual Query Builder
The Visual Query Builder allows you to generate complex SQL statements using a visual interface.
Open the Query Builder from the RDS Query Viewer by clicking the Visual Query Builder button.

The Visual Query Builder is available only in Windows and is not implemented in Mac
OS X. When you view the RDS Query Viewer on a Mac, the Visual Query Builder button

doesn’t appear.

The Visual Query Builder is based on the same tool as implemented in ColdFusion Studio and
Homesite+. After the Query Builder is open, you can take these actions:

� Add a table to the query in two ways:

� Drag the table from the Tables list on the left.

� Right-click the table, and select Add to Work Area.

� Remove a table from the query in two ways:

� Right-click the table header, and select Remove Table from the context menu.

� Click the table header to select it, and then press Delete.

� Create a join between two tables in two ways:

� If two tables added to the work area have columns with identical names and compati-
ble data types, a join between those columns is created automatically.

� Drag from one table column to another to create a join.

� Remove or modify the behavior of a join:

� Right-click the join icon between the tables. Use the context menu that appears
(shown in Figure 27.10) to remove the join, change to an outer join, or change the
join’s comparison operator.

� Add a column to the query in two ways:

� Double-click the column in a table’s column list in the Tables work area.

� Click an empty row in the Columns grid (between the Tables work area and the SQL
panel at the bottom). Select a Table and a Column from the pull-down lists in that row.

� Set an AS operator to create a column alias:

� Set an Alias in the appropriate row of the Columns grid.

� Add an ORDER BY clause:

� Set the Sort Order and Sort Type for one or more selected table columns.

CAUTION CAUTION

804

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 804

� Add a WHERE clause:

� Select WHERE in the Condition, and add a Boolean expression in the Criteria of a
selected column.

� Add a GROUP BY clause:

� Select GROUP BY in the Condition. Any Boolean expression in the Criteria is translated
as a HAVING clause.

FIGURE 27.10

Modifying a join in the Visual Query Builder

Figure 27.11 shows the Visual Query Builder with a completed SQL statement. Notice that the
SQL content in the SQL pane at the bottom reflects choices made in the Tables pane on top and
the Columns grid in the middle.

After an SQL statement is complete, you can test it by clicking Test Query at the bottom of the
Visual Query Builder. As shown in Figure 27.12, the returned data is displayed in a pop-up window.

Unlike Homesite+, the ColdFusion Extensions’ Visual Query Builder doesn’t have the
ability to save a query to disk either locally or on the server. It’s up to the developer to

copy the generated SQL code and use it in an appropriate ColdFusion <cfquery> command.

TIPTIP

805

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 805

FIGURE 27.11

A completed SQL query

FIGURE 27.12

The returned data

806

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 806

Using the CFC Value Object Wizard
The CFC Value Object wizard is one of the most valuable tools in the ColdFusion Extensions for
Flex Builder. Its purpose is to generate server-side and client-side code that manages a database
table through a ColdFusion data source. The server-side code, in the form of a set of ColdFusion
Components, is designed to be easy to call from a Flex application through Flash Remoting.

The wizard creates CFCs based your selection from three available sets of design patterns:

� An Active Record component that includes both data representation (the value object)
and database functionality in a single CFC

� Bean and DAO components that separate data representation in the bean (the value
object) from database functionality in the DAO (Data Access Object)

� LiveCycle Data Services Assembler components that are designed to work with the LCDS
Data Management Service

When creating a Flex/ColdFusion application that uses Flash Remoting to make asynchronous calls
to remote CFC methods, you can choose between the Active Record and the Bean and DAO archi-
tectures. Both architectures include a “gateway” CFC that contains functions with their access
attribute set to remote. These functions are designed to be called by the Flex framework’s
RemoteObject component at runtime.

My own preference is the Bean and DAO set of design patterns because, in my opinion,
they create a better separation of functionality on the server. However, both approaches

can be used to create a powerful multi-tier application that’s easy to maintain.

With all three architectures, the wizard produces a server-side value object CFC that manages data for
a single instance of the data entity represented by the selected database table. Optionally, the wizard
also produces a client-side ActionScript value object class that’s correctly mapped to the CFC. This
allows you to easily pass data back and forth between client and server in your Flex application.

Preparing to use the CFC Value Object wizard
Before using the CFC Value Object wizard, you have to set up certain resources in your Flex project:

� The folder in which server-side ColdFusion code will be generated must be available in
an Eclipse project definition that’s currently open.

� The folder in which the client-side ActionScript value object class is generated must
already exist.

The CFC folder can be in the current Flex project, or if you’re using a separate project to manage
your ColdFusion code, it can be in that project. In either case, the folder must be created and the
project must be open before you start the wizard.

If you use the open source CFEclipse plug-in to create and maintain ColdFusion code,
you can use a CFEclipse project to expose the CFC folder to the wizard.TIPTIP

TIPTIP

807

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 807

If you’re running the wizard on your own system, follow these steps to prepare your project:

1. Create a new subfolder in your Flex project’s source root to accept the ActionScript value
object class that will be created by the wizard. In the sample application for this chapter,
a vo folder is created that contains the client-side value object classes.

2. If your ColdFusion folder isn’t exposed in a separate Eclipse project, create a linked folder
within the Flex project:

a. Right-click (Ctrl-click on the Mac) on the project name in the Flex Navigator view.

b. Select New ➪ Folder from the context menu.

c. In the New Folder dialog box, shown in Figure 27.13, set the Folder Name as any
descriptive value. The name is used to identify the linked folder on disk and doesn’t affect
the folder’s physical name. In the sample application, the linked folder name is “CFCode.”

d. Click Advanced to see the linking controls.

e. Click Link to folder in the file system.

FIGURE 27.13

Creating a linked folder for ColdFusion code generation

Create linked folder in this area

808

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 808

f. Click Browse and navigate to and select the folder within the ColdFusion web root
where you want to create the server-side code. In the sample application, the linked
folder is flex3Bible/chapter27 under the ColdFusion web root.

g. Click Finish to create the linked folder.

The completed New Folder dialog is shown in Figure 27.13. Once these resources have been cre-
ated, you’re ready to run the wizard.

Running the CFC Value Object wizard
To run the CFC Value Object wizard, you first select a database table that the generated code will
represent and manage. Follow these steps to open the wizard:

1. Open the RDS Dataview.

2. Open the selected data source’s Tables list.

3. Right-click (Ctrl-click on the Mac) on the name of the table for which you want to gener-
ate code.

4. Select ColdFusion Wizards ➪ Create CFC from the context menu.

As shown in Figure 27.14, the CFC Value Object wizard opens and prompts you for code genera-
tion options.

The CFC Value Object wizard includes these options for both server- and client-side code generation:

� The CFC Folder is the location where the CFCs are generated. You can click Browse to
select the folder from currently open Eclipse projects. If you created a linked folder as
described in the preceding section, select that folder.

� The CFC Package Name is the subfolder structure of the CFC Folder relative to the
ColdFusion Web root, set with dot syntax. For example, if your code is generated in a
folder under the Web root named myproject/cfc, the package should be set to
mypackage.cfc. In the sample application, the package was set as
flex3Bible.chapter27.

The wizard doesn’t have the ability to match the project’s folders to the location of the
ColdFusion Web root. You are responsible for setting the package name correctly.

� The Primary Key is the column that serves as the primary key for the selected table. This
value is usually set automatically by the wizard based on the data source’s metadata.

� If the primary key is an auto-incrementing numeric column, the option to allow the user
to manage the primary key directly is deselected by default. If you want to provide pri-
mary key values from Flex client-side code, whether provided by the user or generated in
ActionScript, select this option.

� The CFC Type lets you select a set of design patterns. If you’re creating an application
with Flash Remoting, choose either Active Record or Bean CFC & DAO CFC.

CAUTION CAUTION

809

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 809

FIGURE 27.14

The ColdFusion CFC Value Object wizard

� The Property scope is set to either Public or Private and affects how the value object CFC
manages its data properties. When set to Public, properties are declared in the
ColdFusion this scope and can be read and written to by external ColdFusion code
with simple dot syntax. When set to Private, properties are declared in the ColdFusion
variables scope and are accessible only to external code through the value object
CFC’s setter and getter functions.

The selection of public or private properties applies only to the value object on the
server. The ActionScript value object class is always created with public properties.

In ColdFusion components, properties in the scope named this are analogous to
ActionScript properties declared as public, while properties in the variables scope

behave like ActionScript properties declared as private.

� The File names determine the names of the CFCs on the server. The default names always
start with the name of the selected table as delivered by ColdFusion through RDS. The
first is the name of the value object, and the others represent the gateway CFC, and if
using the Bean & DAO patterns, the DAO CFC.

TIPTIP

NOTENOTE

810

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 810

If table names are shown as all uppercase, the names of the CFCs default that way as
well. To more closely model good object-oriented naming conventions, it’s a good idea

to customize the table names. For example, if a table name is all uppercase, such as ART, change it to
initial-cap syntax, as in Art. And if a table name uses a plural expression, such as ARTISTS, I usually
change the filenames to singular syntax, as in Artist. (The latter guideline is important because a
value object class refers to a single instance of the data entity, never more than one.)

� The option at the bottom of the wizard, when selected, creates a client-side ActionScript
value object that matches the value object CFC on the server. Its name always matches
the CFC version, so you don’t have to provide that in the wizard options. (For example, if
your value object CFC is named Artist.cfc, the ActionScript version will be
Artist.as.)

� The AS Folder is a folder within your Flex project where you want the ActionScript value
object class to be generated. You can browse to select this folder from the Flex project,
but it must have been created before you run the wizard.

� The AS Package Name is the folder’s equivalent package.

In Flex Builder 3, the source root folder is to a project subfolder named src by default.
The Value Object wizard doesn’t exhibit awareness of this change, so if you browse to

select a folder named vo within the source root, the wizard incorrectly sets the package to src.vo.
Just change to the correct package name of vo before clicking Finish to generate the code.

After setting all options, click Finish to generate the CFCs and the ActionScript value object class.
Depending on which set of design patterns you selected, within a few seconds a new value object,
gateway, and, if selected, DAO CFCs are created for you.

The CFC Value Object Wizard is presented in a resizable pop-up window. If it’s too
small, certain data entry controls such as the CFC Type radio buttons may not be visible.

If you don’t see the controls described in this section, expand the size of the wizard pop-up window.

Understanding generated value object classes
In order to make the best use of the generated ActionScript and ColdFusion code, it’s important to
understand the code’s patterns and its strengths and weaknesses. The generated code isn’t a final
product but instead is designed to be a starting point for your application’s requirements. In some
cases, the code requires immediate changes to be even functional; in others, only the developer can
select and apply some recommended customizations.

Understanding the value object CFC
The value object CFC defines properties for each of the selected database table’s columns. Each
property has its data type and default value set to match the type of the table column. In addition,
it implements functions to manage the data from ColdFusion code.

The value object CFC’s functions aren’t designed to be called directly from the Flex
clients, so they all have their access property set to public rather than remote.TIPTIP

CAUTION CAUTION

CAUTION CAUTION

TIPTIP

811

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 811

As described in Chapter 26, a value object CFC should have an alias attribute that declares the
component’s fully qualified name and location and <cfproperty> tags for each property that
determine how property names and data types are exchanged with Flex at runtime. A generated
value object CFC follows these rules closely, adding as many <cfproperty> tags as necessary at
the top of the component:

<cfcomponent output=”false” alias=”flex3Bible.chapter27.Artist”>
<cfproperty name=”ARTISTID” type=”numeric” default=”0”>
<cfproperty name=”FIRSTNAME” type=”string” default=””>
<cfproperty name=”LASTNAME” type=”string” default=””>
... additional <cfproperty> tags as needed ...

</cfcomponent>

The alias is set based on the CFC package and filenames you set in the CFC wizard. If
you need to change these values, you may decide to regenerate the code from scratch,

because the alias is referred to in many other parts of the code.

The default values for each property are set in a <cfscript> section below the <cfproperty>
tags. Because the code is outside any CFC functions, it’s executed automatically upon object
instantiation:

<cfscript>
variables.ARTISTID = 0;
variables.FIRSTNAME = “”;
variables.LASTNAME = “”;
... additional default settings as needed ...

</cfscript>

In this example, the properties are declared in the variables scope because the Property
scope was set to Private in the CFC wizard. If you select Public, the properties are instead cre-
ated in the ColdFusion this scope.

Regardless of which design pattern is selected, the value object CFC implements explicit setter
and getter functions for each of its properties. The setter function receives a value and passes
it to the property, which the getter returns with the property’s current value:

<cffunction name=”getFirstName” output=”false” access=”public”
returntype=”any”>
<cfreturn variables.FirstName>

</cffunction>

<cffunction name=”setFirstName” output=”false” access=”public”
returntype=”void”>
<cfargument name=”val” required=”true”>
<cfset variables.FirstName = arguments.val>

</cffunction>

TIPTIP

812

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 812

The generated value object CFC implements an init() method that returns an instance of the
component. When generated with the Active Record design pattern, init() accepts an optional
id argument and then uses the component’s load() method to create the component instance:

<cffunction name=”init” output=”false” returntype=”Artist”>
<cfargument name=”id” required=”false”>
<cfscript>

if(structKeyExists(arguments, “id”))
{

load(arguments.id);
}
return this;

</cfscript>
</cffunction>

The load() method queries the database for the selected record, creates the value object, popu-
lates its properties from the database by calling the explicit setter functions, and returns the object:

<cffunction name=”load” output=”false” access=”public”
returntype=”void”>
<cfargument name=”id” required=”true” >
<cfset var qRead=””>
<cfquery name=”qRead” datasource=”cfartgallery”>

select ARTISTID, FIRSTNAME, LASTNAME, ADDRESS, CITY, STATE,
POSTALCODE, EMAIL, PHONE, FAX, THEPASSWORD

from APP.ARTISTS
where ARTISTID = <cfqueryparam cfsqltype=”CF_SQL_INTEGER”
value=”#arguments.id#” />

</cfquery>

<cfscript>
setARTISTID(qRead.ARTISTID);
setFIRSTNAME(qRead.FIRSTNAME);
setLASTNAME(qRead.LASTNAME);
... more setter method calls ...

</cfscript>
</cffunction>

The Bean & DAO version of the value object CFC is much simpler than the Active Record version,
because it only represents data and doesn’t interact with the database:

<cffunction name=”init” output=”false” returntype=”Artist”>
<cfreturn this>

</cffunction>

That’s all the non-property related, generated code for the Bean & DAO version of the value object
CFC. Because database functionality in this pattern is isolated in a separate DAO CFC, no addi-
tional methods are implemented in the value object CFC. For a value object CFC generated with

813

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 813

the Active Record pattern, however, additional functions manage creating, updating, and deleting
of database rows.

The create() function uses the current object’s properties and passes them to an SQL Insert
command. If the option to allow generation of a primary key value from the client application wasn’t
selected in the Value Object wizard, an additional SQL statement is executed to discover the newly
generated primary value from the database:

<cffunction name=”create” output=”false” access=”private”
returntype=”void”>
<cfset var qCreate=””>

<cfset var local1=getFIRSTNAME()>
<cfset var local2=getLASTNAME()>
<cfset var local3=getADDRESS()>

<cftransaction isolation=”read_committed”>
<cfquery name=”qCreate” datasource=”cfartgallery”>
insert into APP.ARTISTS(FIRSTNAME, LASTNAME, ADDRESS)
values (

<cfqueryparam value=”#local1#” cfsqltype=”CF_SQL_VARCHAR”
/>,

<cfqueryparam value=”#local2#” cfsqltype=”CF_SQL_VARCHAR”
/>,

<cfqueryparam value=”#local3#” cfsqltype=”CF_SQL_VARCHAR”
/>
)
</cfquery>

<!--- If your server has a better way to get the ID that is
more

reliable, use that instead --->
<cfquery name=”qGetID” datasource=”cfartgallery”>
select ARTISTID
from APP.ARTISTS
where FIRSTNAME = <cfqueryparam value=”#local1#”

cfsqltype=”CF_SQL_VARCHAR” />
and LASTNAME = <cfqueryparam value=”#local2#”
cfsqltype=”CF_SQL_VARCHAR” />
and ADDRESS = <cfqueryparam value=”#local3#” >

order by ARTISTID desc
</cfquery>

</cftransaction>
<cfset variables.ARTISTID = qGetID.ARTISTID>

</cffunction>

As noted in the code comment, the approach used to find the new primary key isn’t really the right
way to do it. This code queries for the new row by filtering on every column of the database table.
Particularly when working with a large table with columns that don’t have indices, this can result
in very slow performance.

814

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 814

The problem is that the “correct” approach for discovering a newly assigned primary key is differ-
ent for nearly every database platform. So, after generating the code with the Value Object wizard,
you should modify the create() method to use the right SQL syntax for your database. Here are
some examples:

� For a MySQL table with an auto-incrementing numeric primary key column, use the
LAST_INSERT_ID() function to return the most recently generated primary key value:

<cfquery name=”qGetID” datasource=”cfartgallery”>
select LAST_INSERT_ID() as ARTISTID

</cfquery>

� In Apache Derby, the IDENTITY_VAL_LOCAL() function does the same job:

<cfquery name=”qGetID” datasource=” cfartgallery”>
select IDENTITY_VAL_LOCAL() as ARTISTID

</cfquery>

� For Microsoft SQL Server, the IDENT_CURRENT() function returns the most recent
identity value for a specific table:

<cfquery name=”qGetID” datasource=”cfartgallery”>
select IDENT_CURRENT(‘ARTISTS’) as ARTISTID

</cfquery>

In all cases, be sure to wrap both queries (the INSERT statement and the SELECT
statement) in a set of <cftransaction> tags to ensure that other users can’t create a

new record between operations.

SQL Server also supports the @@IDENTITY and SCOPE_IDENTITY() functions; see
the SQL Server documentation for information on differences between these functions.

For other database applications, check the product documentation for the correct way to retrieve a
dynamically generated primary key value.

If your database table uses a non-numeric primary key, such as SQL Server’s uniquei-
dentifier data type, it’s typically better to indicate that the user will supply the pri-

mary key value when generating the value object CFC. Then modify the CFC’s generated create()
function to create the primary key before executing the INSERT statement. For example, this modi-
fied code generates a new unique identifier in the first statement by calling SQL Server’s NEWID()
function and then passes the resulting value in the INSERT statement to create a record:

<cfquery name=”qGetID” datasource=”cfartgallery”>
select NEWID() as ARTISTID

</cfquery>
<cfquery name=”qCreate” datasource=”cfartgallery”>

insert into ARTISTS(ARTISTID, FIRSTNAME, LASTNAME ...)
values (<cfqueryparam value=”#qGetID.ARTISTID#”

cfsqltype=”CF_SQL_VARCHAR” />,
... remaining column values ...

)
</cfquery>

TIPTIP

TIPTIP

CAUTION CAUTION

815

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 815

The CFC also implements an update() function that passes its current properties to an SQL
UPDATE statement:

<cffunction name=”update” output=”false” access=”private”
returntype=”void”>
<cfset var qUpdate=””>

<cfquery name=”qUpdate” datasource=”cfartgallery”
result=”status”>
update APP.ARTISTS
set FIRSTNAME = <cfqueryparam value=”#getFIRSTNAME()#”

cfsqltype=”CF_SQL_VARCHAR” />,
LASTNAME = <cfqueryparam value=”#getLASTNAME()#”

cfsqltype=”CF_SQL_VARCHAR” />,
ADDRESS = <cfqueryparam value=”#getADDRESS()#”

cfsqltype=”CF_SQL_VARCHAR” />
... remaining columns as needed ...
where ARTISTID = <cfqueryparam value=”#getARTISTID()#”

cfsqltype=”CF_SQL_INTEGER”>
</cfquery>

</cffunction>

The update() function is well built and doesn’t require any modification. The same is true for the
delete() function, which deletes a row from the database table based on a required id argument:

<cffunction name=”delete” output=”false” access=”public”
returntype=”void”>
<cfset var qDelete=””>

<cfquery name=”qDelete” datasource=”cfartgallery”
result=”status”>
delete
from APP.ARTISTS
where ARTISTID = <cfqueryparam cfsqltype=”CF_SQL_INTEGER”
value=”#getARTISTID()#” />

</cfquery>
</cffunction>

If you decide to use the Bean & DAO design pattern, the create(), update(), and delete()
functions are found in the DAO CFC, the object directly responsible for the data interaction. The
recommendations in this section apply in the same manner: The update() function should be
customized for your particular database, while the update() and delete() functions can be
left as is.

Understanding the ActionScript value object class
The ActionScript value object class is generated in the Flex project and includes property settings
as public properties. It also adds the [RemoteClass] metadata tag that provides the two-way
mapping of the client-side and server-side value objects to each other:

816

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 816

package vo
{

[RemoteClass(alias=”flex3Bible.chapter27.Artist”)]
[Bindable]
public class Artist
{

public var ARTISTID:Number = 0;
public var FIRSTNAME:String = “”;
public var LASTNAME:String = “”;
... additional property declarations ...

public function Artist()
{
}

}
}

The ActionScript value object class looks the same for either the Active Record or the Bean and
DAO design patterns.

Using the gateway CFC
The gateway CFC is generated for both the Active Record and the Bean and DAO design patterns.
In either case, the gateway CFC implements CFC functions that are designed to be called from Flex
and have their access attributes set to remote.

The names of the functions implemented in the gateway CFC differ depending on which design
pattern you select. Table 27.1 describes function names and their purpose.

TABLE 27.1

Gateway CFC Functions

Active Record CFC Bean CFC and DAO CFC Purpose

get() getById() Receives a required id argument, and returns a single
value object instance.

save() save() Receives a required instance of the value object as an
argument, and either updates or creates a database row.
Returns a value object instance with new or updated data.

delete() deleteById() Receives a single id argument, and deletes a database
row. See the note following this table about modifying the
delete() function for the Active Record version of the
gateway CFC.

getAll() getAll() Returns an array of strongly typed value objects.

getAllAsQuery() getAllAsQuery() Returns a ColdFusion query object, translated in Flex as
an ArrayCollection of Object instances.

817

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 817

Modifying the save() function
The save() function in the Active Record version of the gateway CFC doesn’t return a useful
value as initially generated. It’s designed to return the value of the value object’s save() function,
but that function doesn’t return anything. This is the gateway CFC’s save() function as initially
generated:

<cffunction name=”save” output=”false” access=”remote”>
<cfargument name=”obj” required=”true” />
<cfreturn obj.save() />

</cffunction>

Instead, it’s better to modify the function so that it returns the same object that’s passed in as an
argument. Because this object is strongly typed as the value object, and during the data row cre-
ation process, its primary key is populated with any new value, when you return it to the Flex
client application, it contains any information generated by the server-side code. This is the same
function after being modified:

<cffunction name=”save” output=”false” access=”remote”
returntype=”flex3Bible.chapter27.Artist”>

<cfargument name=”obj” required=”true” type=”Artist”/>
<cfset obj.save()>
<cfreturn obj/>

</cffunction>

Renaming the delete() function
For the most part, the names of the gateway CFC’s functions don’t matter; you just call them as
named from the Flex client application as RemoteObject operations. In the case of the Active
Record version’s delete() method, however, the name of the function creates a problem.
ActionScript 3 has a delete operator that’s used to remove data items from an XMLList or XML
object with E4X syntax. Normally you would try to use this code to call the function from the Flex
application:

myRemoteObject.delete(myRowID);

Because of the collision between the reserved keyword delete and the CFC function name, a
compiler error results and you can’t compile or run the Flex application. The fix, however, is sim-
ple: After generating the CFCs with the CFC Value Object wizard, rename the gateway CFC’s
delete() function as deleteByID() (or any other name you prefer):

<cffunction name=”deleteById” output=”false” access=”remote”>
<cfargument name=”id” required=”true” />
<cfset var obj = get(arguments.id)>
<cfset obj.delete()>

</cffunction>

818

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 818

Modifying the getAll() function
The gateway CFC’s getAll() function returns an array of strongly typed value objects. Its logic
seems sturdy at first: It starts by querying the primary key values for the entire table and then loops
through the resulting query object to create one value object for each row:

<cffunction name=”getAll” output=”false” access=”remote”
returntype=”flex3Bible.chapter27.Artist[]”>
<cfset var qRead=””>
<cfset var obj=””>
<cfset var ret=arrayNew(1)>

<cfquery name=”qRead” datasource=”cfartgallery”>
select ARTISTID
from APP.ARTISTS

</cfquery>

<cfloop query=”qRead”>
<cfscript>

obj = createObject(“component”,
“Artist”).init(qRead.ARTISTID);
ArrayAppend(ret, obj);

</cfscript>
</cfloop>
<cfreturn ret>

</cffunction>

On closer inspection though, it turns out this code needs some changes. Each time the value object
CFC’s init() method is called, another query is executed to retrieve the selected database row
and build the value object. The result is that each call to getAll() results in one initial database
query and then multiple subsequent queries for each database row. As a table gets larger, this code
degrades quickly.

To fix this issue, change the getAll() method as follows:

1. Change the initial query to retrieve all required columns.

2. Change the code within the loop through the resulting query object. For each query row,
create a new instance of the value object CFC by calling its init() function with no
arguments.

3. Set the value object’s properties as needed.

4. Add the value object to the array that’s returned at the end of the function.

A modified version of the getAll() function might look like this:

<cffunction name=”getAll” output=”false” access=”remote”
returntype=”flex3Bible.chapter27.Artist[]”>
<cfset var qRead=””>
<cfset var obj=””>
<cfset var ret=arrayNew(1)>

819

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 819

<cfquery name=”qRead” datasource=”cfartgallery”>
select *
from APP.ARTISTS

</cfquery>

<cfloop query=”qRead”>
<cfscript>

obj = createObject(“component”, “Artist”).init();
obj.setFIRSTNAME(qRead.FIRSTNAME);
obj.setLASTNAME(qRead.LASTNAME);
... set additional properties ...
ArrayAppend(ret, obj);

</cfscript>
</cfloop>
<cfreturn ret>

</cffunction>

The result of the modified code is that only a single query is needed to retrieve all required data
from the server.

The resulting getAll() function is still just a starting point for your application. You
may want to add arguments, filtering, dynamic sorting, and other features as required.

Calling gateway CFC functions
To use the generated CFC code from a Flex client application, create an instance of the
RemoteObject component and set its source to the fully qualified location of the gateway
CFC:

<mx:RemoteObject id=”artistService”
destination=”ColdFusion”
source=”flex3Bible.chapter27.ArtistGateway”/>

Then at runtime, call the gateway CFC’s functions as needed. For example, this code calls the
getAll() method to retrieve an array of value objects:

artistService.getAll();

To create or update a database record, pass an instance of the ActionScript value object to the gate-
way CFC’s save() method. The logic on the server examines the value object’s primary key value.
If the primary key value is 0 (or a blank string if using a String-based primary key column), the
server code calls the create() method; otherwise it calls the update() method.

artistService.save(myArtist);

And to delete a database record on the server, call the gateway CFC’s deleteById() function
and pass the unique id of the record you want to delete:

artistService.deleteById(artistGrid.selectedItem.ARTISTID);

TIPTIP

820

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 820

The application in Listing 27.1 presents a simple user interface with a pop-up window data entry
form for adding and updating database rows. The main application file declares an instance of the
RemoteObject component with attribute-based event listeners for each of the gateway CFC’s
functions. Its logic is stored in a separate UseActiveRecord.as ActionScript file.

LISTING 27.1

A Flex application with a RemoteObject component pointing to the gateway CFC

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”vertical”
creationComplete=”initApp()”>
<mx:Script source=”UseActiveRecord.as”/>
<mx:RemoteObject id=”artistService”
destination=”ColdFusion”
source=”flex3Bible.chapter27.ArtistGateway”>
<mx:method name=”getAll” result=”getAllHandler(event)”/>
<mx:method name=”save” result=”saveHandler(event)”/>
<mx:method name=”deleteById” result=”deleteHandler(event)”/>

</mx:RemoteObject>
<mx:Panel title=”Artist List”>

<mx:DataGrid id=”artistGrid” dataProvider=”{acArtist}” width=”300”
doubleClickEnabled=”true” doubleClick=”editArtist()”>
<mx:columns>

<mx:DataGridColumn dataField=”FIRSTNAME” headerText=”First
Name”/>

<mx:DataGridColumn dataField=”LASTNAME” headerText=”Last Name”/>
</mx:columns>

</mx:DataGrid>
<mx:ControlBar>

<mx:Button label=”Add” click=”addArtist()”/>
<mx:Button label=”Edit” enabled=”{artistGrid.selectedIndex != -1}”

click=”editArtist()”/>
<mx:Button label=”Delete” enabled=”{artistGrid.selectedIndex != -

1}”
click=”deleteArtist()”/>

</mx:ControlBar>
</mx:Panel>

</mx:Application>

The code in Listing 27.1 is available in the Web site files as UseActiveRecord.mxml
in the src folder of the chapter27 project.ON the WEBON the WEB

821

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 821

The ActionScript file in Listing 27.2 contains the application’s logic, including result event han-
dler functions for each of the gateway CFC’s functions.

LISTING 27.2

The ActionScript logic for the Artist application

import events.ArtistEvent;
import forms.ArtistForm;
import mx.collections.ArrayCollection;
import mx.controls.Alert;
import mx.managers.PopUpManager;
import mx.rpc.AsyncToken;
import mx.rpc.events.FaultEvent;
import mx.rpc.events.ResultEvent;
import vo.Artist;

[Bindable]
private var acArtist:ArrayCollection = new ArrayCollection;
private var artistPopupForm:ArtistForm = new ArtistForm();

private function initApp():void
{

artistService.getAll();
artistPopupForm.addEventListener(“save”, artistFormHandler);
artistPopupForm.addEventListener(“cancel”, artistFormCancel);

}
private function getAllHandler(event:ResultEvent):void
{

acArtist.source = event.result as Array;
}
private function addArtist():void
{

artistPopupForm.artist = new Artist();
PopUpManager.addPopUp(artistPopupForm, this, true);
PopUpManager.centerPopUp(artistPopupForm);

}
private function editArtist():void
{

artistPopupForm.artist = artistGrid.selectedItem as Artist;
PopUpManager.addPopUp(artistPopupForm, this, true);
PopUpManager.centerPopUp(artistPopupForm);

}
private function artistFormHandler(event:ArtistEvent):void
{

822

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 822

PopUpManager.removePopUp(artistPopupForm);
var token:AsyncToken = artistService.save(event.artist);
if (event.artist.ARTISTID == 0)
{
token.action=”create”;

}
else
{

token.action=”update”;
}

}
private function artistFormCancel(event:Event):void
{

PopUpManager.removePopUp(artistPopupForm);
}
private function saveHandler(event:ResultEvent):void
{

if (event.token.action == “create”)
{

var artist:Artist = event.result as Artist;
acArtist.addItem(artist);
artistGrid.selectedItem = artist;
artistGrid.scrollToIndex(artistGrid.selectedIndex);
Alert.show(“Artist was successfully added”, “Artist Added”);

}
else if (event.token.action == “update”)
{

Alert.show(“Artist was successfully updated”, “Artist Updated”);
}

}
private function deleteArtist():void
{

artistService.deleteById(artistGrid.selectedItem.ARTISTID);
}
private function deleteHandler(event:ResultEvent):void
{

acArtist.removeItemAt(artistGrid.selectedIndex);
}
private function faultHandler(event:FaultEvent):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}

The code in Listing 27.1 is available in the Web site files as UseActiveRecord.mxml
in the src folder of the chapter27 project.ON the WEBON the WEB

823

Using the ColdFusion Extensions for Flex Builder 27

35_287644-ch27.qxp 6/23/08 11:55 PM Page 823

A conclusion about the CFC Value Object wizard
As you’ve seen, the code generated by the CFC Value Object wizard isn’t perfect. But the changes
that are typically required to make that code useful and dependable for Flex/ColdFusion applica-
tions is minimal, and they’re always the same. For applications that interact with many database
tables on the server, using this feature can significantly reduce server-side programming time and
let you get to the fun part of Flex application development: creating a dynamic, compelling user
interface that works exactly the same on the desktop or the Web.

Summary
In this chapter, I described how to use the ColdFusion Extensions for Flex Builder to inspect
server-side resources and generate valuable code for your application. You learned the following:

� The ColdFusion Extensions are packaged and delivered with Flex Builder 3.

� You can install the ColdFusion Extensions either during the initial Flex Builder installa-
tion or afterward using the Eclipse’s plug-in installation architecture.

� The Remote Development Service (RDS) lets you communicate with a ColdFusion server
installation during development.

� RDS must be configured to connect to your ColdFusion server.

� The ColdFusion Extensions include the RDS Dataview and the RDS Fileview that let you
inspect server-side data sources and file and directory information.

� The Visual Query Builder lets you generate complex SQL statements with a visual
interface.

� The ColdFusion CFC Value Object wizard generates server-side and client-side code for
database table management in a Flex application.

824

Integrating Flex Applications with Application Servers and the DesktopPart IV

35_287644-ch27.qxp 6/23/08 11:55 PM Page 824

Web application developers who are immersed in and accustomed
to working with Microsoft’s ASP.NET application server have
good reason to want to stick with it. Beyond the advantage of

leveraging existing knowledge, selecting ASP.NET as the middleware applica-
tion server for a Flex-based application offers many benefits:

� A powerful implementation of a SOAP-based Web service provider

� The best possible integration with Microsoft’s Windows operating
system and SQL Server database platform

� A selection of programming languages in which you can develop
your server-side logic and resources

In addition, the ASP.NET developer community is served by a large third-
party market of components and development tools. When you need a com-
ponent for integration with an ASP.NET Web site, you’ll likely find it
available for sale or for free somewhere in the .NET community.

As when working with Adobe ColdFusion, a developer can select from any
of the three Flex RPC methodologies to retrieve data and call functions from
the server. As with any middleware application server, if you know how to
read and write XML-formatted data in ASP.NET, you can use the Flex frame-
work’s HTTPService component to exchange data in generic XML formats.
And for those who are addicted to the performance available with the
RemoteObject component and the AMF messaging format, there are
implementations of AMF-based communications available as freely licensed
open-source projects (Fluorine FX at www.fluorinefx.com) and com-
mercial products (WebOrb at www.themidnightcoders.com).

825

IN THIS CHAPTER
Installing ASP.NET

Creating a .NET XML Web
Service

Using the .NET code-behind
architecture

Creating Web service operations

Generating a .NET Web service
application in Flex Builder 3

Building Web services with
Microsoft Visual Web Developer
2008

Exchanging data between Flex
and XML Web Services

Integrating Flex Applications
with ASP.NET

36_287644-ch28.qxp 6/23/08 11:56 PM Page 825

The most commonly used RPC strategy with Flex and ASP.NET, however, is to use the
WebService component to call remote operations hosted as SOAP-based Web services (known in
ASP.NET as XML Web Services). This approach doesn’t require any additional software purchases or
installation, and it makes good use of one of ASP.NET’s strengths in the application server market.

In this chapter, I describe how to build Web services in ASP.NET that are compatible with Flex
client applications and how to use Flex Builder 3’s new code generation features to generate
ASP.NET Web service components. I then offer some tips on how to best leverage these server-side
assets in your Flex application.

To use the sample code for this chapter, download chapter28.zip from the Web site.
This is not a Flex project archive file. Its use and installation are described later in this

chapter.

Many details of using the Flex framework’s WebService component are described in
Chapter 23. This chapter focuses on details of the Web service architecture that are

unique to ASP.NET.

Installing ASP.NET
ASP.NET can be installed either as a separate free download from Microsoft or as part of a develop-
ment environment. The techniques described in this chapter are designed to work with .NET
Framework version 2.0 or later. The most recent versions of Microsoft’s .NET development tools
deliver .NET Framework version 3.5.

To test your XML Web Services in .NET, you can either use Internet Information
Services (IIS), the Web server software that’s included with advanced Windows editions, or

you can use the development Web server that’s included with Microsoft’s development tools. If you want
to use IIS, be sure that the Web server is fully installed and tested prior to installing the .NET Framework.
This ensures that the application server components are correctly integrated into the Web server.

You can download the .NET Framework installer from Microsoft’s home page for ASP.NET at
www.asp.net. From the home page, click the link for the .NET Framework. The Downloads
page, shown in Figure 28.1, has links to download the Framework on its own or to download a
complete Web development tool named Microsoft Visual Web Developer 2008 Express Edition.

The steps for downloading and installing Visual Web Developer 2008 are described later
in this chapter.

To install the ASP.NET Framework on its own, download the .NET Framework installer as
described in the previous section. For the most recent version of ASP.NET as of this writing, the file
is named dotNetFx35setup.exe. Run the installer application to get started. As shown in
Figure 28.2, the initial screen asks you to accept a license agreement and click Install.

The .NET Framework installation doesn’t have any configurable options, and it runs unattended
after the license agreement has been accepted. After completing the installation, you may be
prompted to restart your system.

CROSS-REFCROSS-REF

TIPTIP

CROSS-REFCROSS-REF

ON the WEBON the WEB

826

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 826

FIGURE 28.1

Getting the .NET Framework

FIGURE 28.2

The .NET Framework installer

Visual Web Developer 2008 Express Edition

The Framework alone

827

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 827

Creating an XML Web Service
You can create an XML Web Service with a variety of tools. As with ColdFusion, PHP, and other
scripting environments, an XML Web Service is defined in a set of source code files. Like these
other application server technologies, a Web service compiles “on request” on the ASP.NET appli-
cation server, so you can define and deploy a Web service with nothing more than a simple text
editor.

Most developers, however, prefer to use a development tool that handles the most common tasks
automatically and frees their time for the creative side of application development. Available code
generation tools include:

� Flex Builder 3, which can generate a .NET-based Web service based on the structure of a
database table hosted by Microsoft SQL Server

� Visual Studio Professional

� Visual Web Developer Express Edition

Regardless of which tool you use, the syntax rules for creating the service are the same. In this sec-
tion, I describe the most important aspects of any Web service hosted by ASP.NET.

Creating a gateway file
A SOAP-based Web service in ASP.NET typically consists of at least two source code files. The first
is the Web service gateway file, which always has a file extension of .asmx. The purpose of this
file is to listen for and respond to requests from Web service client applications. The Web service
gateway file contains a <%@ Web Service %> declaration that determines these properties of the
Web service:

� The language in which the service is written

� The name of the .NET custom class that defines the Web service’s operations

The code that implements the Web service can be hosted within the gateway file or, more com-
monly, is placed in a separate .NET class definition that’s used as the CodeBehind component.
When using this code architecture, you declare the name of the class containing the service imple-
mentation in the WebService declaration’s CodeBehind attribute.

This Web service declaration defines itself as a .NET class named HelloService written in the
C# programming language and indicates that the class implementation is in an external code mod-
ule named HelloService.cs:

<%@ WebService Language=”C#”
CodeBehind=”~/App_Code/HelloService.cs”
Class=”HelloService” %>

When the .NET class implementation is placed in a separate code module file, the gateway file doesn’t
require any additional code. This type of file is often referred to as a stub, because it represents the

828

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 828

main application interface (in this case, a Web service waiting for client requests) but leaves all
implementation details to a separate file.

You access a Web service from a Flex application by setting the WebService component’s wsdl
property to the gateway file location, with a ?wsdl query string parameter. For example, if the
previous code is in a file named HelloService.asmx in a flex3bible folder under the IIS
Web root, the wsdl property might be set to:

http://www.myserver.com/flex3bible/HelloService.asmx?wsdl

The first time an HTTP request is made to the gateway file, the .NET compiler reads the gateway
and any dependent files such as the code-behind module and compiles them into .dll files on
the server. The Web service is then executed, and the generated WSDL content is returned to the
client application.

Creating a code-behind module
A code-behind class is implemented as a standard .NET class with these required elements:

� All code libraries (known in .NET as assemblies) that are used in the class implementation
are imported.

� Metadata tags declare the Web service’s unique identifier and conformance rules.

� Class methods that are exposed as Web service operations are identified with metadata
tags.

The code samples throughout this chapter are implemented using C#. Both Flex Builder
3 and Visual Web Developer 2008 also are capable of generating Web service code in

Visual Basic .NET. The choice between these two programming languages is purely a matter of devel-
oper preference. Developers with a background in C, Java, JavaScript, or ActionScript typically find
C# to be easier to use, because its fundamental syntax is nearly the same as these other languages.
Developers with a background in Basic may prefer to work in Visual Basic .NET. Both languages have
access to the entire .NET Framework and its associated code libraries, so you should be able to create
any required functionality in your own Web services with either language.

Using .NET assemblies
The code module has some required statements that identify particular .NET code libraries (or
assemblies) and make them available to the .NET compiler. In C#, a using statement accomplishes
the same task as an import statement in ActionScript or Java: It identifies and makes the designated
code library available to the compiler.

A basic set of using statements in a Web service class that accesses might look like this:

using System;
using System.Data;
using System.Data.Common;
using System.Text;
using System.Web.Services;

NOTENOTE

829

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 829

Declaring the Web service namespace URI
The next bit of code in the code module is a [WebService] metadata tag that identifies the
namespace URI (Universal Resource Identifier) for the service. In a new Web service that’s gener-
ated by Visual Studio, Visual Web Developer, or Flex Builder, the [WebService] declaration sets
a temporary URI:

[WebService(Namespace = “http://tempuri.org/”)]

For a production Web service, you should always customize this URI to make it globally unique.
You typically accomplish this with a URI that starts with your organization’s Web domain and ends
with a virtual directory structure that identifies the purpose of the Web service:

[WebService(Namespace = “http://www.bardotech.com/helloservice”)]

As with all namespace URI strings, the Web service’s namespace doesn’t have to resolve
to a URL. However, developers often use their organization’s URL as the first part of a

namespace to guarantee that the namespace is globally unique.

Setting conformance rules
In each Web service, ASP.NET allows you to declare the industry standards to which the service con-
forms. The most common standard used in .NET Web services is the WSI Basic Profile, defined by
the Web Service Interoperability Organization (the WSI). This profile describes how service mem-
bers such as operations and messages are described in WSDL, and how messages are encoded in the
SOAP requests and responses. Because interoperability is critical to successful communication
between SOAP clients and servers, declaring conformance in the service description provides assur-
ance that the Web service can be accessed with requests formatted based on industry standards.

The [WebServiceBinding] metadata tag is typically placed after the [WebService] tag and
declares conformance with the WSI Basic Profile version 1.1:

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

The .NET WsiProfiles class has members that are implemented as static constants
to reflect available profiles. In ASP.NET 3.5, the only 2 available values are

BasicProfile1_1 and None. In October 2007, the WSI published a new Basic Profile 1.2 in
working group approval draft form. Web services built in ASP.NET 3.5. do not claim conformance
to the version of the basic profile.

Declaring the service class
The code-behind class should be declared as an extension of the .NET WebService class. In C#, this
is accomplished by declaring the superclass after the class declaration, separated with a colon (:):

public class HelloService : System.Web.Services.WebService
{

... class implementation ...
}

Web service operations are then declared within the class implementation.

TIPTIP

TIPTIP

830

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 830

Declaring Web service operations
A Web service operation is declared as a method of the .NET class and prefixed with a
[WebMethod] metadata tag. The following method returns a simple String value:

[WebMethod]
public string HelloWorld() {

return “Hello World”;
}

The method’s return data type determines how the operation’s data is received in the Flex client
application. A .NET string value is translated into an ActionScript String, and so on.

The code-behind class in Listing 28.1 defines a single HelloWorld() Web service operation.

LISTING 28.1

A simple Hello World code-behind class for a .NET Web service

using System.Web.Services;

[WebService(Namespace = “http://www.bardotech.com/samples/hello/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class HelloService : WebService
{

public HelloService () {
}

[WebMethod]
public string HelloWorld() {

return “Hello World”;
}

}

Generating a Web Service in Flex Builder 3
Flex Builder 3 has a feature that generates an ASP.NET Web service to manage data in a single data-
base table hosted by Microsoft SQL Server. The code generation tool also generates a simple Flex
application that serves as an example of how to make calls to the server.

To use the ASP.NET Web service generation tool, you must have the following software installed
on, or available to, your development system:

� The .NET Framework, version 2.0 or later, must be installed locally.

� Microsoft SQL Server 2000 or later must be available to Flex Builder over a network
connection.

831

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 831

Microsoft SQL Server 2005 Express is a free version of the database application that you
can download from www.microsoft.com/express/download. This version of

SQL Server is licensed for development and production use. Limitations include usage of only a single
CPU, 1GB of RAM, and a maximum database size of 4GB. (You can install the Express edition on sys-
tems with more resources, but only one CPU and the maximum memory buffer will be used.)

Creating a Flex project with ASP.NET
The first step is to create a Flex project for use with ASP.NET. Follow these steps:

1. Select File ➪ New ➪ Flex Project from the Flex Builder menu.

2. As shown in Figure 28.3, set the project properties as follows:

� Project name: chapter28

� Project location: Use default location

� Application type: Web application

� Application server type: ASP.NET

FIGURE 28.3

Creating a Flex project for use with ASP.NET

3. Click Next.

4. On the next screen, shown in Figure 28.4, indicate whether you want to use the ASP.NET
Development Server or Internet Information Services (IIS). If you don’t have IIS installed,
select the development server. This results in deploying a simple Web server running on
port 3000 with its Web root set to the Flex project’s root folder.

TIPTIP

832

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 832

FIGURE 28.4

Configuring the ASP.NET application server

5. If you want to test your Web service with IIS, provide the Web application root
defaulting to C:\inetpub\wwwroot and the Web application URL defaulting to
http://localhost.

6. Set the output folder as follows:

� If you’re using the development server, create the output folder as a subfolder of the
project root.

� If you’re using IIS, create the output folder as a subfolder of the IIS Web root.

7. Click Next.

8. Set the Main application filename, and click Finish to create the project and the main
application file.

Creating an SQL Server database connection
Before generating Web service code, you first must define a database connection. You can define
the connection either during the code generation process or as a separate task from the Data Source
Explorer view.

ASP.NET is certainly capable of communicating with database products other than SQL
Server, but the Flex Builder 3 code generation wizard is designed to work only with

databases hosted in Microsoft’s own product. Similarly, the PHP code generation wizard (described in
Chapter 29) works only with databases hosted by MySQL. In either case, if you want to use a data-
base other than the one most commonly associated with each application server, you have to set up
the database drivers and code the Web service manually.

TIPTIP

833

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 833

This example uses a sample database named Northwind that’s provided by Microsoft for
testing and evaluation of SQL Server. This database is compatible with SQL Server 2000

and 2005, and can be downloaded from:

http://msdn2.microsoft.com/en-us/library/aa276825.aspx

This Web page includes instructions for how to install the database using the provided SQL script.

Follow these steps to define a database connection:

1. Select Window ➪ Other Views from the Flex Builder menu.

2. Select Connectivity ➪ Data Source Explorer from the Show View dialog box, as shown in
Figure 28.5.

FIGURE 28.5

Opening the Data Source Explorer

3. Right-click (Ctrl-click on the Mac) the Databases item in the Data Source Explorer view
and select New... from the context menu, as shown in Figure 28.6.

FIGURE 28.6

Creating a new database connection

TIPTIP

834

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 834

4. In the New Connection Profile screen, select Simple Microsoft SQL Server Connection
and click Next.

5. In the Create Connection Profile screen, set the connection name to any descriptive string
and click Next. For example, if you’re using the Northwind database, set the connection
name to northwind.

6. In the Simple SQL Server screen, shown in Figure 28.7, set the connection properties as
follows:

� Server Name: The IP address or DNS name of the system hosting SQL Server

� Database Name: The name of the database you want to use

� User Name: The username to be used in authenticating your SQL Server connection

� Password: The password to be used in authenticating your SQL Server connection

7. Click Test Connection to make sure Flex Builder can connect to your SQL Server database.

8. Click Finish to create the connection and return to the Data Source Explorer view.

FIGURE 28.7

Setting database connection properties

835

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 835

Generating a Flex/ASP.NET application
After you’ve created a database connection and have a database and table to work with, you’re
ready to use Flex Builder’s application generator. Follow these steps:

1. Select Data ➪ Create Application from Database... from the Flex Builder menu.

2. In the Choose Data Source screen, shown in Figure 28.8, select a Connection and a Table.
The Primary Key column should be selected automatically.

You also can create a database connection from this point of the application generator.
When working with an ASP.NET Flex project, you can only create a connection for

Microsoft SQL Server.

FIGURE 28.8

Selecting a connection and a database table

3. Click Next.

The application generator works correctly only with a table that has a single-column
primary key.TIPTIP

TIPTIP

836

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 836

4. On the Generate Server-side Code screen, shown in Figure 28.9, set the .NET name of
the Web service class; the default value is the name of the database table. Also select the
programming language; the default is C#.

FIGURE 28.9

Selecting a server-side Web service class name and programming language

5. Click Next.

6. On the Generate client-side code screen, shown in Figure 28.10, select the columns you
want to display in the Flex client application’s default view. This screen also allows you to
select these options:

� Data types for each column default to the same type as the original column itself but
can be reset in this screen.

� The default view allows the user to filter on a single column; this screen allows you to
select the filtering column.

7. Click Finish to generate the Flex client application and the server-side Web service.

837

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 837

FIGURE 28.10

Selecting table columns and setting their data types

Understanding and using the generated code
The database application generator creates both a Flex client application and an XML Web Service.
The Flex application is rudimentary at best and is designed primarily as a teaching tool that shows
you how to define the location of the Web service and make calls to its operations. The Flex appli-
cation is named for the data table it manages; for example, if you generate an application that man-
ages a table named Employees, the Flex application source code file is named
Employees.mxml.

The Web service code is spread across multiple files on the server, some in the Web root and others
in a special subfolder named /App_Code. The Web root folder location is determined by your
selection of a Web server in the project properties. If you’re using IIS, the Web service is created in
the Web root folder, while using the development Web server places the generated Web service in
the Flex project root.

These are the files that are generated by Flex Builder:

� The Web service gateway file is created in the root folder with a file extension of .asmx.
For example, if you selected a class name of Employees in the application generator
wizard, the Web service gateway file is named Employees.asmx. The code in the gate-
way file looks like this:

<%@ WebService Language=”C#”
CodeBehind=”~/App_Code/Employees.cs”
Class=”Employees” %>

838

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 838

� An application configuration file named web.config is also placed in the Web root
folder. This specially named file is used to configure all ASP.NET applications and
includes such configuration options as the database connection string, authentication
mode, debug tracing, and others. For example, this section of the web.config file
determines which SQL Server database is used at runtime:

<connectionStrings>
<add connectionString=”server=localhost;database=northwind;

uid=sa;pwd=myAdminPassword” name=”Northwind”
providerName=”System.Data.SqlClient”/>

</connectionStrings>

� A .NET class is created in the App_Code folder that manages the database connection at
runtime. The class is named for the database connection, so if the connection is named
Northwind, the database connection manager class source code file is named
Northwind.cs. This class’s most important method is named OpenConnection()
and is called by the Web service class whenever it needs to communicate with the
database:

public static DbConnection CreateConnection()
{

try
{

DbConnection connection = Factory.CreateConnection();
connection.ConnectionString = Settings.ConnectionString;
connection.Open();
return connection;

}
catch (Exception ex)
{

throw new DataException(String.Format(
“Unable to connect to {0} database.”, Settings.Name),

ex);
}

}

� The code-behind .NET class is created in the App_Code folder. Its name matches the
name of the gateway class, but it has a file extension matching the programming language
being used. For example, if you selected a class name of Employees and the C# pro-
gramming language in the application generator wizard, the code-behind file is named
Employees.cs. The code-behind class implements these public operations that you
can call from a Flex application:

� The FindAll() operation accepts arguments that determine filtering and order of
the returned data. It returns a .NET DataTable object that’s translated in Flex into
an ActionScript ArrayCollection.

� The Update() operation accepts one argument for each database table column and
executes an SQL UPDATE statement on the server to modify the column values of a
single table row. This operation doesn’t return any value.

839

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 839

� The Insert() operation accepts one argument for each database table column and
executes an SQL INSERT statement on the server to add a single table row. This oper-
ation doesn’t return any value.

� The Remote() operation accepts a single argument as a value of the primary key col-
umn and executes a DELETE FROM statement on the server to remove the selected
database row. This operation doesn’t return any value.

A typical generated .NET class is shown in Listing 28.2.

LISTING 28.2

A generated .NET code-behind class for a Web service

using System;
using System.Data;
using System.Data.Common;
using System.Text;
using System.Web.Services;

[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Employees : WebService {

private readonly string[] FieldNames = {“EmployeeID”,”LastName”,

“FirstName”,”Title”,”TitleOfCourtesy”,”BirthDate”,”HireDate”,”Address
”,
“City”,”Region”,”PostalCode”,”HomePhone”};

[WebMethod]
public DataTable FindAll(string City,string orderField, bool
orderDesc)
{

try
{
StringBuilder sql = new StringBuilder(128);

sql.Append(“SELECT “);
sql.Append(String.Join(“,”, FieldNames));
sql.Append(“ FROM Employees “);

sql.Append(“WHERE City LIKE @City “);

if (!String.IsNullOrEmpty(orderField) &&
Array.IndexOf(FieldNames, orderField) > -1)
{
sql.Append(“ORDER BY “ + orderField);

840

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 840

if (orderDesc)
{

sql.Append(“ DESC”);
}
}

using(DbConnection cnn = Northwind.CreateConnection())
using(DbCommand command = cnn.CreateCommand())
using(DbDataAdapter adapter = Northwind.Factory.CreateDataAdapter())
{
command.CommandText = sql.ToString();

Northwind.CreateParameter(command, “@City”, “%” + City + ‘%’);

DataTable result = new DataTable(“Table0”);
adapter.SelectCommand = command;
adapter.Fill(result);
return result;
}

}
catch (Exception ex)
{
throw CreateSafeException(ex);
}

}

[WebMethod]
public void Update(Decimal EmployeeID, string LastName, string
FirstName,
string Title, string TitleOfCourtesy, DateTime BirthDate,
DateTime HireDate, string Address, string City, string Region,
string PostalCode, string HomePhone)

{
try
{

string sql = @”
UPDATE Employees
SET LastName=@LastName, FirstName=@FirstName, Title=@Title,

TitleOfCourtesy=@TitleOfCourtesy, BirthDate=@BirthDate,
HireDate=@HireDate, Address=@Address, City=@City,

Region=@Region,
PostalCode=@PostalCode, HomePhone=@HomePhone

WHERE EmployeeID=@EmployeeID “;

using(DbConnection cnn = Northwind.CreateConnection())
using(DbCommand command = cnn.CreateCommand())
{

continued

841

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 841

LISTING 28.2 (continued)

command.CommandText = sql;
Northwind.CreateParameter(command, “@EmployeeID”, EmployeeID);
Northwind.CreateParameter(command, “@LastName”, LastName);
... additional parameters for all columns ...
command.ExecuteNonQuery();
}

}
catch (Exception ex)
{

throw CreateSafeException(ex);
}
}

[WebMethod]
public void Insert(string LastName,string FirstName,string
Title,string TitleOfCourtesy,DateTime BirthDate,DateTime
HireDate,string Address,string City,string Region,string
PostalCode,string HomePhone)
{
try
{

string sql = @”INSERT INTO Employees (LastName, FirstName, Title,
TitleOfCourtesy, BirthDate, HireDate, Address, City, Region,
PostalCode, HomePhone)
VALUES (@LastName,@FirstName, @Title, @TitleOfCourtesy,

@BirthDate,
@HireDate, @Address, @City, @Region, @PostalCode, @HomePhone) “;

using (DbConnection cnn = Northwind.CreateConnection())
using (DbCommand command = cnn.CreateCommand())
{
command.CommandText = sql;

Northwind.CreateParameter(command, “@LastName”, LastName);
Northwind.CreateParameter(command, “@FirstName”, FirstName);
... additional parameters for all columns ...
command.ExecuteNonQuery();
}

}
catch (Exception ex)
{

throw CreateSafeException(ex);
}
}

842

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 842

[WebMethod]
public void Remove(Decimal EmployeeID)
{
try
{
string sql = @”

DELETE FROM Employees
WHERE EmployeeID = @EmployeeID “;

using (DbConnection cnn = Northwind.CreateConnection())
using (DbCommand command = cnn.CreateCommand())
{
command.CommandText = sql;

Northwind.CreateParameter(command, “@EmployeeID”, EmployeeID);

command.ExecuteNonQuery();
}

}
catch (Exception ex)
{

throw CreateSafeException(ex);
}
}

private Exception CreateSafeException(Exception ex)
{

Context.Trace.Write(“Exception”,
“An unexpected error occurred processing request”, ex);
return new Exception(“An unexpected error occurred and

has been logged.”);
}

}

Building Web Services with
Visual Web Developer 2008
Microsoft Visual Web Developer 2008 Express Edition is a free product that offers a subset of the
features available in Visual Studio Professional. If you’re just getting started building Web services
and want to build your own from scratch, it can serve as a great entry point into the world of
ASP.NET development.

843

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 843

The Web installer application for Visual Web Developer 2008 can be downloaded from Microsoft at:

http://www.microsoft.com/express/vwd/

When you install Visual Web Developer 2008, the installer detects whether you already
have the .NET Framework installed, and if not, includes the Framework installation.

When you download the installer application for Visual Web Developer 2008 from the Microsoft
Web site, you get a file named vnssetup.exe that’s about 2.5MB. When you run the installer,
you’ll see these prompts:

� According to the license for Visual Web Developer 2008 Express Edition, you can use the
product without any license fees, but you must register for continued use beyond an ini-
tial 30-day evaluation period. Each time you start the product after installation, you’ll be
prompted to complete the registration process.

� During the installation, you’re prompted to indicate whether you want to download and
install Microsoft SQL Server 2005 Express Edition during the installation of Visual Web
Developer.

� On the final installation screen, you’re prompted to download the required installation
files and start the installation. The installation files are then downloaded from Microsoft’s
Web site during the installation process.

The installation download can be as large as 89MB, depending on whether you select
the SQL Server Express installation.

Microsoft also offers a downloadable DVD image that includes local installation files for
all the Express edition software packages. This is an .iso file that’s about 894MB and

should be downloaded only with a high-speed Internet connection. You can find this file at
www.microsoft.com/express/download/#webInstall.

Creating a Web service
Follow these steps to create a new Web service in Visual Web Developer 2008:

1. Select File ➪ New Web Site... from the Visual Web Developer menu.

2. Select ASP.NET Web Service from the Visual Studio installed templates, as shown in
Figure 28.11.

3. Set the Location to File System, and choose a folder on your system where you want to
create the Web site.

4. Select a Language from the options of Visual Basic or Visual C#.

5. Click OK to create the new Web service.

TIPTIP

CAUTION CAUTION

TIPTIP

844

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 844

FIGURE 28.11

Creating a new Web service in Visual Web Developer 2008

The initial site files include a gateway file named Service.asmx in the Web site root folder and a
code-behind module named Service.cs for C# or Service.vb for Visual Basic. You should
immediately customize the files as follows:

1. Rename the gateway file with a descriptive name. For example, if your service is designed
to manage a database table named Employees, you might rename the gateway file
EmployeesService.asmx.

2. Optionally, rename the code-behind class in the App_Code folder:

a. Rename the file from the Solution Explorer panel in the upper-right corner of the
application interface, as shown in Figure 28.12.

b. Open the class source code file, and change both the name of the class in the class
declaration and the name of its constructor method. You also can change the Web ser-
vice’s namespace URI to a value that incorporates your organization’s domain and a
string that describes the service. For example, you might change the [WebService]
tag as follows:

[WebService(Namespace =
“http://www.mycompany.com/EmployeeService”)]

The modified class declaration and constructor method should look like this:

public class EmployeeService : System.Web.Services.WebService
{

public EmployeeService () {
}

Creating a Web service

Other options

845

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 845

[WebMethod]
public string HelloWorld() {

return “Hello World”;
}

}

c. Return to the gateway file, and update both the CodeBehind and Class attributes
to reflect the new name of the code-behind class:

<%@ WebService Language=”C#”
CodeBehind=”~/App_Code/EmployeeService.cs”
Class=”EmployeeService” %>

FIGURE 28.12

The Solution Explorer with renamed service files

3. To test the Web service, select Debug ➪ Start without Debugging from the Visual Web
Developer menu. This results in starting up the development Web server and opening a
Web browser to view the Web service’s preview page, as shown in Figure 28.13.

Configuring the development Web server
Visual Web Developer assigns an arbitrary port number to the development server. You can change
this to a fixed port in the project properties, allowing you to predict where the Web service can be
reached from a Flex client application.

846

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 846

FIGURE 28.13

The Web service preview page

Follow these steps to change this configuration:

1. Click the project heading in the Solution Explorer.

2. Locate the Properties panel in the lower-right corner of the application interface. Change
the Use dynamic ports option to false, as shown in Figure 28.14.

FIGURE 28.14

The Properties panel

3. Set the Port number to any port you want to use. (I commonly use port number 4567 for
my custom development work, because I don’t know of any existing Web or application
servers that default to this port.)

847

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 847

Testing a Web service
The Web service preview page displays a link for each Web service operation. Click the link for an
operation you want to test. The next page, shown in Figure 28.15, shows sample SOAP request
and response packets for the selected operation and an Invoke button to run the operation in the
Web browser.

FIGURE 28.15

The Web service operation testing page

Click Invoke to run the operation. The returned data is displayed as an XML packet in the Web
browser, shown in Figure 28.16.

848

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 848

FIGURE 28.16

The results of a Web service invocation

Exchanging Data with XML Web Services
When you use XML Web Services from a Flex application, you can use many of the same tech-
niques described in previous chapters to create strongly typed value object classes and exchange
them between the Flex client application and the Web service.

Setting up the sample files
Follow these instructions to set up a Flex Builder project:

The code samples in this section are available in the chapter28.zip file from the
Web site. Follow the instructions in this section to set up a Flex Builder that allows you

to examine and test the sample application files.

1. Create a new Flex Builder project with these properties on the initial screen:

� Project name: chapter28

� Use default location: checked

� Application type: Web application

� Application server type: ASP.NET

2. On the next screen, select the ASP.NET Development Server.

3. Accept the default output folder, and click Finish to create the project.

4. Extract the contents of chapter28.zip to the Flex project root folder.

After extracting the files, the Flex project contains Flex application source files in the src folder.
The Web service gateway file, EmployeeService.asmx, is stored in the project’s root folder, its
code-behind class is in the App_Code folder, and a Microsoft Access version of the Northwind
database is stored in the App_Data folder.

ON the WEBON the WEB

849

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 849

To test the Web service in the sample project and view its WSDL description, follow these steps:

1. Open HelloWorld.mxml from the project’s src folder.

2. Run the application. The development Web server starts automatically and shows an icon
in the system tray, as shown in Figure 28.17.

FIGURE 28.17

The development Web server icon in the system tray

3. Click Talk to .NET to make a call to the .NET Web service, as shown in Figure 28.18.

FIGURE 28.18

Calling the Web service

4. Navigate to this URL to view the Web service’s WSDL description:

http://localhost:3000/chapter28/EmployeeService.asmx?wsdl

Returning data from .NET
The approach used in the Web services generated by Flex Builder is fairly code-heavy, and you can
enormously simplify your own Web service by coding it from scratch. In this section, I describe
some recommended coding patterns that reduce the amount of Web service code and result in
more maintainable applications.

When you return a data set from a Web service to a Flex application, you can either return a .NET
DataTable object or an array of strongly typed value objects. Returning a DataTable takes a
very small amount of code in ASP.NET and is transformed in Flex into an ArrayCollection of
generic ActionScript Object instances. Returning an array of strongly typed value objects takes a bit
more code on both the client and the server, but this allows you to follow many object-oriented
best practices.

850

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 850

Returning a .NET DataSet
This Web service operation queries a table of a database and returns a DataSet (a collection of
DataTable objects):

[WebMethod]
public DataSet getData()
{

OleDbDataAdapter adpt =
new OleDbDataAdapter(“SELECT EmployeeID, FirstName, LastName

FROM Employees”, connString);
DataSet ds = new DataSet();
adpt.Fill(ds);
return ds;

}

The code for all Web service operations described in this section is available in the Web
site files as EmployeeService.cs in the App_Code folder of the chapter28 project.

When a DataSet is returned to Flex, it’s received as an ActionScript Object. The actual data set
is returned as an ArrayCollection property of the DataSet named Tables.Table.Rows.
Each item in the ArrayCollection is an Object containing properties whose names match the
names of the data set columns.

This event handler function saves the returned data from this Web service operation to a pre-
declared ArrayCollection variable named myData:

[Bindable]
private var myData:ArrayCollection;
private function dataHandler(event:ResultEvent):void
{

myData = event.result.Tables.Table.Rows;
}

This code is incredibly simple and returns usable data. If, however, you’ve used and experienced
the benefits of using strongly typed value objects in Flex applications, you may want to receive
your data in that form.

Returning an array of value objects
Web service operations built in .NET can return strongly typed value objects, but they’re always
received in Flex as generic ActionScript Object instances. Unlike the Remoting architecture with Java
or ColdFusion, there’s no built-in method with SOAP-based Web services for transforming server-side
value objects into their client-side equivalents. (The [RemoteClass] tag doesn’t work here.)

If you prefer to work with value objects, it’s up to you to explicitly transform the returned generic
Object instances into new instances of the client-side value object. To handle this task, create a
constructor method in the client-side value object class that allows easy initialization of its proper-
ties from a generic ActionScript Object.

ON the WEBON the WEB

851

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 851

The ActionScript value object class in Listing 28.3 has a constructor method that receives an
optional Object argument. If the argument is provided, its property values are passed to the new
value object instance’s properties.

LISTING 28.3

An ActionScript value object class designed for use with Web services

package vo
{

[Bindable]
public class Employee
{

public var employeeId:int=0;
public var firstName:String=””;
public var lastName:String=””;
public function Employee(obj:Object = null)
{

if (obj != null)
{

this.employeeId = obj.EmployeeID;
this.firstName = obj.FirstName;
this.lastName = obj.LastName;

}
}

}
}

The code in Listing 28.3 is available in the Web site files as Employee.as in the
src/vo folder of the chapter28 project.

The capitalization of the Object property names received from .NET is determined by
the spelling of the database table columns in the SQL statement that generates the data

set. For example, this SQL statement would result in all properties being returned with their names in
lowercase:

OleDbDataAdapter adpt = new OleDbDataAdapter(
“SELECT employeeid, firstname, lastname FROM Employees”,
connString);

It’s critical that you spell the property names from .NET exactly as they’re spelled in the SQL code.
Otherwise, the values aren’t transferred from the .NET object to the ActionScript object.

TIPTIP

ON the WEBON the WEB

852

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 852

The Flex application in Listing 28.4 receives the .NET array as an ArrayCollection of generic
ActionScript Object instances. After saving the data to a pre-declared ArrayCollection, the
event handler function loops through the data and transforms each object to an instance of the
client-side value object. The result is an ArrayCollection of value objects that you can manage
in your Flex application using the same strategies as when working with the Remoting architecture
in ColdFusion and Java.

LISTING 28.4

Transforming Object instances into value objects

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import vo.Employee;
import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;

[Bindable]
private var myObjects:ArrayCollection;
private function objectsHandler(event:ResultEvent):void
{

var currentEmployee:Employee;
myObjects = event.result.Tables.Table.Rows as ArrayCollection;
for (var i:int=0; i<myObjects.length; i++)
{

currentEmployee = new Employee(myObjects.getItemAt(i));
myObjects.setItemAt(currentEmployee, i);

}
}

]]>
</mx:Script>
<mx:WebService id=”dataService”

wsdl=”../EmployeeService.asmx?wsdl”
result=”objectsHandler(event)”/>

<mx:Button label=”Get Data” click=”dataService.getData()”/>
<mx:DataGrid dataProvider=”{myObjects}”/>

</mx:Application>

The code in Listing 28.4 is available in the Web site files as
GetArrayOfObjects.mxml in the src folder of the chapter28 project.ON the WEBON the WEB

853

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 853

Passing value objects to .NET service operations
You can pass a strongly typed value object to a .NET Web service operation as long as you’ve set up
the following code:

� A .NET version of the value object must be defined.

� The Web service operation must expect an argument with the value object class as its data
type.

� The properties of the client-side and server-side value object classes must exactly match
in name and have compatible data types.

You can declare a .NET value object class either in a separate class file or within the same source
file in which the Web service’s code-behind class is defined. The value object class can be declared
with simple public properties:

public class Employee
{

public int employeeId;
public string lastName;
public string firstName;

}

The client-side version of the class is the same as described in the previous section and shown in
Listing 28.3. As described previously, the [RemoteClass] tag doesn’t execute the same sort of
two-way mapping in Web services as it does in Remoting. Instead, you depend on .NET to receive
and transform the object.

The following Web service operation receives a value object argument:

[WebMethod]
public string handleObject(Employee obj)
{

return “You sent me the employee “ +
obj.firstName + “ “ + obj.lastName;

}

As long as the argument object’s properties match the .NET version of the class, as described previ-
ously, the .NET Web service architecture correctly deserializes the object into the local native ver-
sion of the class.

The Flex application in Listing 28.5 passes a strongly typed value object to a .NET Web service and
receives a response showing the values that were parsed from the object in the server-side code.

854

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 854

LISTING 28.5

A Web service operation passing a strongly typed value object to a .NET Web service

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import vo.Employee;
private function sendObject():void
{

var obj:Employee = new Employee();
obj.firstName = fnameInput.text;
obj.lastName = lnameInput.text;
dataService.handleObject(obj);

}
]]>

</mx:Script>
<mx:WebService id=”dataService”

wsdl=”../EmployeeService.asmx?wsdl”/>
<mx:VBox width=”800” borderStyle=”solid” borderThickness=”1”

backgroundColor=”#eeeeee”>
<mx:Label text=”Sending Arguments” fontSize=”14”/>
<mx:HBox>

<mx:Label text=”Value 1:”/><mx:TextInput id=”fnameInput”/>
</mx:HBox>
<mx:HBox>

<mx:Label text=”Value 2:”/><mx:TextInput id=”lnameInput”/>
<mx:Button label=”Send Object” click=”sendObject()”/>

</mx:HBox>
<mx:Label fontSize=”12”

text=”{dataService.handleObject.lastResult}”/>
</mx:VBox>

</mx:Application>

The code in Listing 28.5 is available in the Web site files as SendObject.mxml in the
src folder of the chapter28 project.ON the WEBON the WEB

855

Integrating Flex Applications with ASP.NET 28

36_287644-ch28.qxp 6/23/08 11:56 PM Page 855

Summary
In this chapter, I described how to integrate Flex client applications with Microsoft ASP.NET using
the .NET implementation of SOAP-based Web services. You learned the following:

� ASP.NET is a free application server that is included with many editions of Microsoft
Windows.

� ASP.NET supports multiple programming languages and is strongly integrated with
Internet Information Services and the Windows operating system.

� You can download and install ASP.NET from Microsoft’s Web site.

� You can build XML Web Services with a variety of development environments, including
Adobe Flex Builder 3, Microsoft Visual Web Developer 2008, and Microsoft Visual
Studio.

� Flex Builder 3 can generate a complete Flex/ASP.NET application that manages data in a
single database table hosted by Microsoft SQL Server.

� Microsoft Visual Web Developer 2008 is free and offers a subset of the features of Visual
Studio Professional.

� Both Flex Builder 3 and Visual Web Developer offer a free development Web server that
you can use to test your Web services.

� You can improve your application’s maintainability by using strongly typed value objects
built in ActionScript 3 on the client and in your choice of .NET programming languages
on the server.

856

Integrating Flex Applications with Application Servers and the DesktopPart IV

36_287644-ch28.qxp 6/23/08 11:56 PM Page 856

PHP has become one of the most widely used application scripting
frameworks on the Web. Originally standing for Personal Home Page,
PHP has evolved into a high-performance application server technol-

ogy that’s used both to dynamically generate Web pages and to provide a
middleware layer for rich client applications such as those built with Flex.

The term PHP is used to refer to both the server technology
and the programming language used to create dynamic Web

functionality.

In addition to its core feature set, PHP has extensibility features that allow devel-
opers to create and add modules as needed. PEAR (PHP Extension and
Application Repository), in the words of its creators, offers both a “structured
library of open-source code for PHP users” and a “system for code distribution
and package maintenance.” It also encourages a standardized approach to for-
matting PHP code, including recommendations for indentation, identifier nam-
ing, and other issues that sometimes invite controversy between developers.

PHP is portable between operating systems. Binary distributions of PHP are
available for these operating systems:

� AS/400

� Mac OS X

� Novell NetWare

� OS/2

� RISC OS

� SGI IRIX 6.5.x

� Solaris (SPARC, INTEL)

� Windows

TIPTIP

857

IN THIS CHAPTER
Understanding PHP

Installing PHP with WAMP and
MAMP

Creating a Flex project for use
with PHP

Returning simple XML to Flex

Generating a Flex/PHP
application with Flex Builder 3

Working with generated PHP
services

Using Remoting and AMF with
Flex and AMFPHP

Integrating Flex Applications
with PHP

37_287644-ch29.qxp 6/23/08 11:58 PM Page 857

PHP is also included in most distributions of Linux and is available in source format that allows
you to customize and build your own PHP distributions.

In addition to all of these benefits, PHP is completely free. Because it’s a free, open-source project
managed by the PHP Group (www.php.net), you can download and use PHP on as many servers
as you like without any registration or license fees.

There are many ways to integrate Flex applications with PHP, including these strategies:

� You can send and receive generic XML-formatted data using a RESTful architecture.

� You can use XML-RPC libraries that are delivered with PEAR (http://pear.
php.net/package/XML_RPC).

� You can use a PHP implementation of SOAP-based Web services, such NuSOAP
(http://dietrich.ganx4.com/nusoap) or PEAR (http://pear.
php.net/package/SOAP).

� You can choose from a variety of Remoting and binary AMF of implementations,
such as AMFPHP (described in more detail later in this chapter) or SabreAMF
(http://osflash.org/sabreamf).

In this chapter, I describe how to integrate PHP with Flex applications using RESTful XML with
HTTPService and AMF with RemoteObject.

To use the sample code for this chapter, download chapter29.zip from the Web site.
This is not a Flex project archive file. Its use and installation are described later in this

chapter.

Installing PHP
You can install PHP in a number of ways. Developers who are new to PHP typically select from one
of these options:

� If you already have a Web server and database installed, you can download the core PHP
binary distribution for your operating system and then install it as a Web server module.

� If you don’t have a Web server or database installed, you can download and install a free
integrated software bundle package that includes the Apache Web server, PHP, and the
MySQL database. Software bundles of note include:

� WAMP for Windows

� MAMP for Mac OS X

The easiest way to get started with PHP on Windows or Mac OS X is to select one of the integrated
software bundles. Both WAMP and MAMP install quickly and easily to let you get started with
development work as quickly as possible. In this section, I describe how to download and install
WAMP for Windows and MAMP for Mac OS X.

ON the WEBON the WEB

858

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 858

Installing WAMP on Windows
WAMP is a free integrated software bundle for the Windows operating system that includes the
Apache Web server, PHP, and the MySQL database. You can download the WAMP installer from:

http://www.wampserver.com/en

Follow these steps to download the WAMP installer application:

1. Click Downloads from the Web site’s home page.

2. Click Download on the Downloads page, as shown in Figure 29.1.

FIGURE 29.1

Selecting the Latest Release from the WAMP downloads page

The installer application is in .exe form and can be run from any folder after downloading. When
you start the installer application, you first see a warning, shown in Figure 29.2, indicating that if
you have an older version of WAMP installed you should first uninstall it.

Click to download the WAMP installer

859

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 859

FIGURE 29.2

WAMP installer application warning dialog box

Follow the installer application’s prompts to complete the installation. As shown in Figure 29.3,
the installer sets the default destination folder to c:\wamp on your system’s hard disk.

FIGURE 29.3

Setting the WAMP destination location

The instructions in this chapter assume that you’ve accepted the default folder location
of c:\wamp. If you’ve selected a different installation folder or are using PHP with a

different configuration, adapt the instructions as necessary.

TIPTIP

860

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 860

Managing WAMP servers
As shown in Figure 29.4, the WAMP installer creates an icon in the system tray that allows you to
start and stop the Apache and MySQL servers and to navigate to key Web pages.

FIGURE 29.4

The WAMP system tray icon

Click the system tray icon to see the WAMP menu, shown in Figure 29.5.

FIGURE 29.5

The WAMP system menu

The WAMP menu offers these options under the Quick Admin heading (toward the bottom of the
menu):

� Start All Services (includes both Apache and MySQL)

� Stop All Services

� Restart All Services

You also can start and stop Apache and MySQL individually by navigating to the appro-
priate section of the menu. For example, to restart the Apache Web server, select

Apache ➪ Service ➪ Restart Service from the WAMP menu.

TIPTIP

WAMP icon

861

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 861

The menu also offers quick links to these key Web pages:

� Localhost opens a Web browser to http://localhost/ to view the WAMP server’s
home page, as shown in Figure 29.6.

� phpMyAdmin opens a Web browser to a Web-based application that manages MySQL
databases.

� SQLiteManager opens a Web browser to a Web-based application that manages SQLite
databases.

� www directory opens Windows Explorer to the WAMP Web root folder, which defaults
to c:\wamp\www.

FIGURE 29.6

The WAMP server’s home page

Installing MAMP on Mac OS X
MAMP offers the same integrated server functionality as WAMP, but it’s designed for Mac OS X.
You can download the MAMP installer from www.mamp.info/en/index.php. The installer is
delivered as a .dmg file that you mount as a virtual drive on your Mac development system.

862

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 862

When you open the .dmg file, you’re first prompted with the MAMP server’s license agreement.
Just as with WAMP, MAMP can be used freely according to the license terms. After accepting the
license the installation screen appears, the installation screen appears, as shown in Figure 29.7.

Drag the MAMP folder icon to the Applications folder to complete the installation. The server
installs into a folder on your Mac hard disk named /Applications/MAMP.

The MAMP Pro folder installs the professional version of MAMP that includes additional
enterprise-level features. This version of MAMP is installed with a fee-based license.

The How to upgrade.rtf link opens a document describing how to upgrade from one
version of MAMP to another.

FIGURE 29.7

The MAMP server’s installation screen

Managing MAMP servers
To start MAMP servers, open the /Applications/MAMP folder and run the MAMP application.
Because starting servers requires administrative access, you’re prompted for your Mac administra-
tive Name and Password.

After entering your administrative credentials, the MAMP server starts and two windows open:

� The MAMP application window, shown in Figure 29.8, includes tools for starting, stop-
ping, and configuring Apache, PHP, and MySQL.

TIPTIP

TIPTIP

863

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 863

FIGURE 29.8

The MAMP application window

� A browser window opens to the MAMP server’s home page, as shown in Figure 29.9. This
page includes links to phpMyAdmin and SQLLiteManager.

FIGURE 29.9

The MAMP home page

When you close the MAMP application window, the Apache and MySQL servers both
shut down.TIPTIP

864

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 864

When you first install MAMP, the Apache and MySQL servers run on custom ports, rather than
their respective default ports of 80 and 3306. If you don’t have other copies of Apache or MySQL
running on your Mac development system, you can switch to the default ports.

If you’re not sure whether the Apache Web server that’s included with Mac OS X is currently run-
ning, follow these steps:

1. Open the Mac OS X System Preferences application.

2. Click Sharing under Internet & Network.

3. With the Services category selected, make sure the Personal Web Sharing option is
unchecked. If it’s checked, uncheck it or, with the option currently selected, click Stop.

Then follow these steps to configure the MAMP ports:

1. Click Preferences in the MAMP application window.

2. Click Ports in the Preferences toolbar.

3. Click the Set to default Apache and MySQL ports option, as shown in Figure 29.10.

FIGURE 29.10

Changing Apache and MySQL ports

4. Click OK to accept the new port settings.

5. When prompted, enter your administrative password again to restart both servers.

You also can change the Apache Web root folder, which defaults to a subfolder name htdocs
under the MAMP installation folder. For example, on a system that’s used by more than one devel-
oper, you may want to set the document root folder to a new subfolder under your home directory,
such as /[UserName]/htdocs. Follow these steps to set the Apache document root folder:

1. Click Preferences in the MAMP application window.

2. Click Apache in the Preferences toolbar.

3. Select a new document root folder, and click OK.

4. When prompted, enter your administrative password again to restart Apache.

865

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 865

Creating a Flex Project for Use with PHP
When you create a Flex project, you have the option to integrate the project with PHP and its host-
ing Web server. The steps are similar to those for integrating ColdFusion, described in Chapter 26,
and ASP.NET, described in Chapter 28. The project includes properties that designate the disk
location and testing URL for the PHP Web root folder. The debug version of the application is cre-
ated in a folder under the PHP Web root. To test the Flex application, you download the applica-
tion’s HTML wrapper from the Web server, resulting in running the application from the Web
server rather than from the local hard disk.

Follow these steps to create a Flex application that’s integrated with your PHP installation:

1. Select File ➪ New ➪ Flex Project from the Flex Builder menu.

2. On the first screen of the New Flex Project wizard, shown in Figure 29.11, use these
property settings:

� Project name: chapter29

� Project location: Use the default location

� Application type: Web application

� Server technology: PHP

FIGURE 29.11

The New Flex Project wizard creating a project for use with PHP

866

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 866

3. Click Next.

4. On the Configure PHP Server screen, shown in Figure 29.12, set the PHP server’s Web
root and Root URL. If you’re using WAMP with the default installation settings, these
properties are:

� Web root: c:\wamp\www

� Root URL: http://localhost

FIGURE 29.12

Configuring the PHP server

5. Make sure the Web server that hosts PHP is running, and then click Validate
Configuration to ensure that Flex Builder can reach the Web server.

6. The output folder can be set to any location within the Web server’s document root. The
default output folder name starts with the project name and ends with -debug to indi-
cate that the output folder contains the debug version of the application. For example,
the default output folder in the chapter29 project is placed under the PHP Web root
with a name of chapter29-debug.

7. Click Next.

8. Select a Main application filename, and click Finish to create the project and main
application.

867

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 867

When you create your PHP pages, they can be placed in the project’s source root folder. During the
compilation process, the PHP pages are recognized as application resources and copied to the proj-
ect output folder from which they’re called at runtime.

If you want to try the sample applications from this chapter, extract the files from the
Web site’s chapter29.zip file into the new Flex project’s root folder.

Using PHP with HTTPService and XML
You can integrate Flex applications with PHP using the Flex framework’s HTTPService compo-
nent and PHP pages that generate structured XML-based content on the server. To return struc-
tured data from a PHP page, you can either generate your own XML content with conventional text
concatenation, or you can use a more reliable approach that requires an external library to serialize
XML packets.

Using the PHP SimpleXML extension
The PHP page in Listing 29.1 uses a PHP5 extension named SimpleXML to generate and return an
XML-formatted response with literal values in each of the XML elements. The header() function
is used to inform the client application that the content is being delivered with the xml/text
content type.

The documentation for the PHP SimpleXML extension is available on the Web at
http://us3.php.net/simplexml.

LISTING 29.1

A PHP page that returns simple XML

<?php
$xmlstr = <<<XML
<?xml version=’1.0’?>
<vendors>
<vendor>
<name>You Grow ‘em, We Mow ‘em</name>
<service>Lawn Mowing</service>

</vendor>
<vendor>
<name>How High the Shingle</name>
<service>Roofing</service>

</vendor>
<vendor>
<name>Ma & Pa Kettle</name>
<service>Cooking Supplies</service>

WEB RESOURCEWEB RESOURCE

ON the WEBON the WEB

868

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 868

</vendor>
</vendors>
XML;
header(“Content-type: text/xml”);
echo $xmlstr;
?>

The code in Listing 29.1 is available in the Web site files as ReturnSimpleXML.php in
the src folder of the chapter29 project.

The SimpleXML extension used in Listing 29.1 isn’t 100 percent bullet-proof because it doesn’t
know how to automatically replace XML reserved characters with their equivalent entity strings.
For example, in the last <vendor> element in this packet, a literal ampersand (&) character is
included in the <name> element:

<name>Ma & Pa Kettle</name>

A truly robust XML serializer would replace the ampersand with its equivalent entity:

<name>Ma & Pa Kettle</name>

Many XML processors, including those that are embedded in the common Web browsers, fail to
read this sort of content because it is assumed a character reference will follow the ampersand. The
Flex framework’s HTTPService component, however, survives this condition and, where neces-
sary, replaces literal reserved characters with their equivalent aliases.

To request this XML-formatted content in a Flex application, use the Flex framework’s
HTTPService component. Set the HTTPService object’s url property to the location of the
PHP page:

<mx:HTTPService id=”phpService”
url=”ReturnSimpleXML.php”/>

Retrieving XML data with HTTPService
Retrieving the data from the server is a simple matter of calling the HTTPService object’s
send() method and handling the returned results with a binding expression or a result event
handler. The Flex application in Listing 29.2 retrieves the data in XML format from the PHP page
and displays it in a DataGrid control.

The code in Listing 29.2 is available in the Web site files as GetSimpleXML.mxml in
the src folder of the chapter29 project.

If you prefer to parse the returned XML with E4X syntax, set the HTTPService compo-
nent’s resultFormat property to a value of e4x.TIPTIP

ON the WEBON the WEB

ON the WEBON the WEB

869

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 869

LISTING 29.2

Retrieving XML-formatted data from PHP

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.collections.ArrayCollection;
import mx.controls.Alert;
import mx.rpc.events.ResultEvent;
[Bindable]
private var vendorData:ArrayCollection;

private function resultHandler(event:ResultEvent):void
{

vendorData = event.result.vendors.vendor as ArrayCollection;
}

]]>
</mx:Script>
<mx:HTTPService id=”phpService”

url=”ReturnSimpleXML.php”
result=”resultHandler(event)”/>

<mx:Button label=”Get XML” click=”phpService.send()”/>
<mx:DataGrid dataProvider=”{vendorData}” width=”400”/>

</mx:Application>

Generating PHP Code with Flex Builder 3
As with ASP.NET, Flex Builder has a feature that can generate a complete client/server application
that manages code in a single database table. Before using this feature, you must have first installed
PHP and MySQL and created a database table structure.

Importing a database to MySQL
The project files for this chapter from the Web site include an SQL script that creates a new table and
populates it with 100 rows of data. If you’ve installed WAMP or MAMP according to the instructions
earlier in this chapter, follow these steps to create a MySQL data table and import its data:

1. Open phpMyAdmin in a Web browser:

� If working on Windows, click the WAMP system tray icon and then select
phpMyAdmin from the WAMP menu.

� If working on Mac OS X, open the MAMP home page and click the phpMyAdmin
link.

870

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 870

2. On the phpMyAdmin home page, as shown in Figure 29.13, enter contacts in the Create
new database text field and click Create.

FIGURE 29.13

Creating a new MySQL database in phpMyAdmin

3. On the Database administration screen, as shown in Figure 29.14, click Import.

4. From the Import screen, browse and select the file contacts.sql from the Flex project
root folder (by default, in c:\flex3bible\workspace\chapter29).

5. Click Go to create the database table and import data.

Enter new database name

871

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 871

FIGURE 29.14

Starting an Import operation in phpMyAdmin

6. To verify that the import was successful, click the person table link on the left menu
under the Database selector, as shown in Figure 29.15.

FIGURE 29.15

Selecting a database table in phpMyAdmin

7. In the Table administrative screen, click Browse.

You should see that the contacts database now has a person table with eight columns and
1,000 rows.

Click to import data

872

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 872

Creating a MySQL database connection
Before generating PHP and Flex client application code, you first must define a database connec-
tion. You can define the connection either during the code generation process or as a separate task
from the Data Source Explorer view.

PHP is certainly capable of communicating with database products other than MySQL,
but the Flex Builder 3 code generation wizard for PHP is designed to work only with

MySQL. Similarly, the ASP.NET code generation wizard (described in Chapter 28) works only with
databases hosted by SQL Server. In either case, if you want to use a database other than the one most
commonly associated with each application server, you must set up the database drivers and code the
server-side code manually.

Follow these steps to define a MySQL database connection:

1. Select Window ➪ Other Views from the Flex Builder menu.

2. Select Connectivity ➪ Data Source Explorer from the Show View dialog box, as shown in
Figure 29.16.

FIGURE 29.16

The Data Source Explorer view

3. Right-click (Ctrl-click on the Mac) the Databases item in the Data Source Explorer view,
and select New... from the context menu.

4. In the New Connection Profile screen, select Simple MySQL Connection and click Next.

5. In the Create Connection Profile screen, set the connection name to any descriptive string
and click Next. For example, if you’re using a database named contacts, set the con-
nection name to contacts.

If you select the option to auto-connect when the wizard is finished or when the Data
Source Explorer view opens, you’ll be able to browse the database’s table structures in

the Data Source Explorer view without having to connect explicitly. If you didn’t select this option
while creating a connection, just right-click (or Ctrl+click on the Mac) on the connection in the Data
Source Explorer view and click Connect for the same functionality. To change this or other options in
an existing connection, right-click (or Ctrl+click on the Mac) on the connection in the Data Source
Explorer view.

TIPTIP

TIPTIP

873

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 873

6. In the Simple SQL Server screen, shown in Figure 29.17, set the connection properties as
follows:

� Server Name: The IP address or DNS name of the system hosting MySQL

� Database Name: The name of the database you want to use

� User Name: The username to be used in authenticating your MySQL connection

� Password: The password to be used in authenticating your MySQL connection

FIGURE 29.17

Configuring the MySQL data source

The MySQL administrative user is always named root upon first installation. The
WAMP installer for Windows installs MySQL with the root user’s password set to a

blank string. The MAMP on Mac OS X sets the root user’s password to root.

7. Click Test Connection to make sure Flex Builder can connect to your MySQL database.

8. Click Finish to create the connection and return to the Data Source Explorer view.

Generating a Flex/PHP application
After you’ve created a database connection and have a database and table to work with, you’re
ready to use Flex Builder’s application generator.

TIPTIP

874

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 874

Follow these steps to generate both client-side and server-side code:

1. Select Data ➪ Create Application from Database... from the Flex Builder menu.

2. In the Choose Data Source screen, shown in Figure 29.18, select a Connection and a
Table. The Primary Key column should be selected automatically.

You also can create a database connection from this point of the application generator.
When working with a Flex/PHP project, you can create only a connection for MySQL.

FIGURE 29.18

Selecting a connection and a database table

3. Click Next.

The application generator works correctly only with a table that has a single-column
primary key.TIPTIP

TIPTIP

875

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 875

4. On the Generate server-side code screen, shown in Figure 29.19, set the PHP source
folder to indicate where generated PHP code should be placed. The default target location
is the project’s output folder.

FIGURE 29.19

Selecting a server-side PHP source folder and filename

5. Set the PHP filename to indicate what to name the file that serves data to the Flex appli-
cation. The default is the name of the database table with a file extension of .php.

6. Click Next.

7. On the Generate client-side code screen, shown in Figure 29.20, select the columns you
want to display in the Flex client application’s default view. This screen also allows you to
select these options:

� Data types for each column default to the same type as the original column itself, but
they can be reset in this screen.

� The default view allows the user to filter on a single column; this screen allows you to
select the filtering column.

8. Click Finish to generate the Flex client application and the server-side PHP page and sup-
porting files.

876

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 876

FIGURE 29.20

Selecting table columns and setting their data types

Understanding and using the generated code
The generated Flex/PHP application is designed to exchange data between client and server using
the Flex framework’s HTTPService component. The Flex application sends data to PHP as a
standard HTTP GET request and receives well-formed XML in the response.

The client-side Flex application
The generated client-side application, as shown in Figure 29.21, displays data returned from PHP
with a rudimentary set of views.

The application includes an editable DataGrid that displays and allows you to modify data, a
TextInput control and Button that allow you to filter data using server-side SQL statements,
and a very simple data entry form for adding new data.

The HTTPService object that communicates with PHP is declared and controlled in an
ActionScript file named for the selected database table. For example, if the table is named person,
the ActionScript file is named personScript.as. The location of the PHP page is declared in an
included ActionScript file named for the selected table. The file for the person table is named
personConfig.as.

877

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 877

FIGURE 29.21

A generated Flex application exchanging data with PHP

The server-side PHP code
The more interesting and useful code is on the server in the Flex project’s output folder. The PHP
page to which requests are sent expects a request parameter named method. When a request is
received, this PHP code evaluates the parameter and determines which of the PHP page’s five meth-
ods should be executed:

switch (@$_REQUEST[“method”]) {
case “FindAll”:

$ret = findAll();
break;
case “Insert”:

$ret = insert();
break;
case “Update”:

$ret = update();
break;
case “Delete”:

$ret = delete();
break;
case “Count”:

$ret = rowCount();
break;

The names of the method parameter’s possible values are case-sensitive and must be
passed exactly as shown in the preceding code.CAUTION CAUTION

878

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 878

The generated PHP code is based on a set of template files in Flex Builder’s installation
folder under plugins\com.adobe.flexbuilder.dbwizard_3.0.194161\

templates. Within this folder, you’ll find subfolders supporting the PHP, ASP.NET, and Java applica-
tion wizards. The php_rest/php subfolder contains files that control the code generation for con-
nections, database table management, and supporting functions. You should modify this code only if
you have a strong understanding of PHP. And, of course, you should make backup copies just in case
anything goes wrong.

To call the PHP page without using the generated Flex client application, pass named parameters as
part of the HTTPService request. For example, this code creates a params object and populates
its method property with a value of Count to call the PHP pages’ rowCount() method:

var params:Object = new Object();
params.method=”Count”;
myHTTPService.send(params);

Returned data is serialized into XML using a PHP class named XmlSerializer that’s delivered as
part of the generated application. The following code in the generated PHP page is responsible for
serializing the response into well-formed XML before returning it to the requesting client in the
HTTP response:

$serializer = new XmlSerializer();
echo $serializer->serialize($ret);

Unlike the PHP5 SimpleXML extension, the XmlSerializer class correctly replaces
XML reserved characters with their equivalent extensions, guaranteeing that the XML

returned by the class is truly well-formed and can be read successfully by any XML parser.

The XmlSerializer class always returns its data with a root element named <response> and
a child element named <data> that in turn nests the returned data. For example, the XML packet
returned from the rowCount() method looks like this:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<response>

<data>1000</data>
<metadata />

</response>

When repeating rows of data are returned, each row’s data is nested within a <row> element that
in turn is a child of <data>. The <response> element’s child <metadata> element contains a
<totalrows> element that indicates the number of available rows in the returned data set:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<response>

<data>
<row>

<personid>1</personid>
<firstname>Brad</firstname>
<lastname>Lang</lastname>
<streetaddress>3004 Buckhannan Avenue</streetaddress>

TIPTIP

TIPTIP

879

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 879

<city>Syracuse</city>
<state>NY</state>
<email>Brad.C.Lang@trashymail.com</email>
<phone>315-449-9420</phone>

</row>
... additional rows ...

</data>
<metadata>

<totalRows>1000</totalRows>
<pageNum>0</pageNum>

</metadata>
</response>

Because the XmlSerializer class is consistent in how it returns data, regardless of the selected
database table’s column names and data types, you can safely use the same basic code for each
event handler function that receives and saves a reference to returned data:

[Bindable]
private var myData:ArrayCollection
private function resultHandler(event:ResultEvent):void
{

myData = event.result.response.data.row as ArrayCollection
}

Inserting data
The generated PHP page implements this insert() function that uses parameters from the HTTP
request to build and execute an SQL INSERT statement:

function insert() {
global $conn;

//build and execute the insert query
$query_insert = sprintf(“INSERT INTO `person`

(firstname,lastname,streetaddress,
city,state,email,phone)

VALUES (%s,%s,%s,%s,%s,%s,%s)” ,
GetSQLValueString($_REQUEST[“firstname”], “text”), #
GetSQLValueString($_REQUEST[“lastname”], “text”), #
... additional columns as needed ...

);
$ok = mysql_query($query_insert);

if ($ok) {
// return the new entry, using the insert id
$toret = array(

“data” => array(
array(

“personid” => mysql_insert_id(),
“firstname” => $_REQUEST[“firstname”], #

880

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 880

“lastname” => $_REQUEST[“lastname”]
... additional columns as needed

)
),
“metadata” => array()

);
} else {

// we had an error, return it
$toret = array(

“data” => array(“error” => mysql_error()),
“metadata” => array()

);
}
return $toret;

}

Notice that the insert() function uses the value of the PHP mysql_insert_id() function to
retrieve the newly assigned primary key value for the inserted row from MySQL. That value is then
used to build an object that’s returned to the requesting client application.

To call this function from Flex, create an Object with the method parameter set to Insert. Add
one parameter for each database table column with the new value, and then pass the object to the
HTTPService component’s send() method:

var params:Object = new Object();
params.method=”Insert”;
params.firstname = fnameInput.text;
params.lastname = lnameInput.text;
... additional columns as necessary ...
myHTTPService.send(params);

Then, if you want to capture the newly assigned primary key, it will be available in the
HTTPService component’s result event object.

Updating data
The generated PHP page implements this update() function that uses parameters from the HTTP
request to build and execute an SQL UPDATE statement:

function update() {
global $conn;

// check to see if the record actually exists in the database
$query_recordset =

sprintf(“SELECT * FROM `person` WHERE personid = %s”,
GetSQLValueString($_REQUEST[“personid”], “int”));

$recordset = mysql_query($query_recordset, $conn);
$num_rows = mysql_num_rows($recordset);

if ($num_rows > 0) {

881

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 881

// build and execute the update query
$row_recordset = mysql_fetch_assoc($recordset);
$query_update = sprintf(“UPDATE `person`

SET firstname = %s,lastname = %s WHERE personid = %s”,
GetSQLValueString($_REQUEST[“firstname”], “text”),
GetSQLValueString($_REQUEST[“lastname”], “text”)
GetSQLValueString($row_recordset[“personid”], “int”)

);
$ok = mysql_query($query_update);
if ($ok) {

// return the updated entry
$toret = array(

“data” => array(
array(

“personid” => $row_recordset[“personid”],
“firstname” => $_REQUEST[“firstname”], #
“lastname” => $_REQUEST[“lastname”] #

)
),
“metadata” => array()

);
} else {

// an update error, return it
$toret = array(

“data” => array(“error” => mysql_error()),
“metadata” => array()

);
}

} else {
$toret = array(

“data” => array(“error” => “No row found”),
“metadata” => array()

);
}
return $toret;

}

To call this function from Flex, create an Object with the method parameter set to Update. Add
one parameter for each database table column, including the current primary key value, and then
pass the object to the HTTPService component’s send() method:

var params:Object = new Object();
params.method=”Update”;
params.personid = currentPrimaryKey;
params.firstname = fnameInput.text;
params.lastname = lnameInput.text;
... additional columns as necessary ...
myHTTPService.send(params);

882

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 882

Deleting data
The generated PHP page implements this delete() function that uses parameters from the HTTP
request to build and execute an SQL DELETE statement:

function delete() {
global $conn;
// check to see if the record actually exists in the database
$query_recordset =

sprintf(“SELECT * FROM `person` WHERE personid = %s”,
GetSQLValueString($_REQUEST[“personid”], “int”));

$recordset = mysql_query($query_recordset, $conn);
$num_rows = mysql_num_rows($recordset);
if ($num_rows > 0) {

$row_recordset = mysql_fetch_assoc($recordset);
$query_delete = sprintf(

“DELETE FROM `person` WHERE personid = %s”,
GetSQLValueString($row_recordset[“personid”], “int”));

$ok = mysql_query($query_delete);
if ($ok) {

// delete went through ok, return OK
$toret = array(

“data” => $row_recordset[“personid”],
“metadata” => array()

);
} else {

$toret = array(
“data” => array(“error” => mysql_error()),
“metadata” => array()

);
}

} else {
// no row found, return an error
$toret = array(

“data” => array(“error” => “No row found”),
“metadata” => array()

);
}
return $toret;

}

To call this function from Flex, create an Object with the method parameter set to Delete. Add
a parameter representing the record’s current primary key value, and then pass the object to the
HTTPService component’s send() method:

var params:Object = new Object();
params.method=”Delete”;
params.personid = currentPrimaryKey;
myHTTPService.send(params);

883

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 883

Using PHP and Remoting with AMFPHP
A number of PHP-based implementations of the technology are variously known as the Remoting
Service (in BlazeDS and LiveCycle Data Services) or Flash Remoting (in ColdFusion). They
include:

� AMFPHP: A free, open-source project available at www.amfphp.org

� SabreAMF: A free, open-source project available at http://osflash.org/
sabreamf

� WebOrb: A commercial implementation of Remoting for PHP, Java, ASP.NET, and Ruby
on Rails that’s available at www.themidnightcoders.com

Developers typically switch from using the HTTPService component and generic XML to an
implementation of AMF when they want better performance in applications that exchange data with
a server at runtime. As with Flash Remoting in ColdFusion, described in Chapter 26, and the Java-
based Remoting Service in LiveCycle Data Services and BlazeDS, described in Chapter 24, messages
that use binary AMF are significantly smaller than an equivalent message formatted in SOAP or
generic XML. The result is faster exchange of data and decreased use of network resources.

The details of implementation on the server are different for each of these server-based software
packages. Because AMFPHP is a bit easier to use than SabreAMF and is completely free for devel-
opment and deployment (in contrast to the commercial WebOrb product), in this section I
describe how to download and install AMFPHP and then how to build and deploy PHP classes for
use with the Flex framework’s RemoteObject component.

Installing AMFPHP
You can download the most recent version of AMFPHP from:

http://sourceforge.net/project/showfiles.php?group_id=72483#files

As of this writing, the most recently available download was version 1.9, beta 2. Download that or
a more recent version from the AMFPHP downloads page. The files are delivered in a .zip archive
file with a filename indicating the date of release. (For example, the archive file that was available
at the time of this writing was named amfphp-1.9.beta.20080120.zip.) Then follow these
brief steps to integrate the AMFPHP package into your PHP installation:

1. Extract the files to any location on your hard disk. The top-level folder is named the same
as the archive file, without a .zip file extension. Within that folder, you’ll find a folder
named amfphp that contains the AMFPHP service manager and some other valuable
tools.

884

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 884

2. Copy or move the amfphp folder to your Web server’s document root folder. For exam-
ple, if you’ve installed WAMP on Windows in the default installation location, copy the
amfphp folder to c:\wamp\www.

3. To test the installation, make sure your Web server is running. Then open any Web
browser, and navigate to the amfphp/browser folder under the Web root:

http://localhost/amfphp/browser/

As shown in Figure 29.22, you should see the AMFPHP Service Browser application displaying a
tree control in the left panel.

FIGURE 29.22

The AMFPHP Service Browser

The Service Browser displays all the currently installed services and allows you to make calls to the
service methods and see the results in a number of formats.

Creating an AMFPHP service in PHP
AMFPHP services are built as PHP classes that are placed in a services subfolder under the
amfphp root folder. Functions declared as class members return values that are encoded in binary
AMF for exchange with a client Flex application. Just as with any PHP file, you don’t need to com-
pile or otherwise prepare a PHP class to be called as a service. You just create the file in the correct
location, and it’s immediately ready for use.

The PHP class in Listing 29.3 implements a single sayHello() function that returns a string
value to the client application.

885

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 885

LISTING 29.3

A Hello World PHP class that’s compatible with AMFPHP

<?php
class HelloWorld {

function sayHello()
{

return “Hello Flex from PHP!”;
}

}
?>

The code in Listing 29.3 is available in the Web site files as HelloWorld.php in the
amfphp/flex3bible/chapter29 folder of the chapter29 project.

Follow these steps to install and test the HelloWorld class for use in AMFPHP:

1. Copy the contents of the amfphp folder of the chapter29 project to the amfphp root
folder’s services subfolder. The services folder should now contain a flex3bible
folder in which the HelloWorld.php file is stored. The service is now installed and
ready for testing.

2. Open a Web browser, and navigate to the AMFPHP Service Browser application at:

http:/localhost/amfphp/browser

You should see a new item labeled flexbible in the tree control on the left.

3. Click the + icon next to the flex3bible item to expand it.

4. Click the tree control’s HelloWorld item to select the service class and display its
details.

You should see the sayHello() method appear in the right panel with an associated
button labeled Call.

5. Click Call to execute the service method, and then click the Results tab that appears.

As shown in Figure 29.23, the Service Browser now displays the data returned from the service
method.

ON the WEBON the WEB

886

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 886

FIGURE 29.23

The AMFPHP Service Browser displaying returned data

Configuring AMFPHP Remoting in Flex Builder
Before calling an AMFPHP service’s methods with the RemoteObject component, you first need
to create a services configuration file that defines an AMFPHP-based Remoting channel and create
a Remoting destination that can be called from Flex.

The services configuration file can be placed anywhere on disk. Unlike when using the
Remoting Service with BlazeDS and Java, the services configuration file isn’t used by

PHP: Its settings are used solely by the Flex compiler to provide information to the client application
about the location and capabilities of the server-side destination.

The services configuration file in Listing 29.4 defines an AMF channel with an id of my-amfphp
and a destination with an id of amfphp. The channel defines a hard-coded server location in its
endpoint element’s uri attribute of http://localhost/amfphp/gateway.php.

The gateway.php file is part of the AMFPHP installation and is configured in AMFPHP
to receive and handle AMF-formatted requests from client applications.TIPTIP

TIPTIP

887

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 887

LISTING 29.4

A services configuration file for use with AMFPHP

<services-config>
<services>

<service id=”amfphp-flashremoting-service”
class=”flex.messaging.services.RemotingService”
messageTypes=”flex.messaging.messages.RemotingMessage”>
<destination id=”amfphp”>

<channels>
<channel ref=”my-amfphp”/>

</channels>
<properties>

<source>*</source>
</properties>

</destination>
</service>

</services>
<channels>

<channel-definition id=”my-amfphp”
class=”mx.messaging.channels.AMFChannel”>
<endpoint uri=”http://localhost/amfphp/gateway.php”

class=”flex.messaging.endpoints.AMFEndpoint”/>
</channel-definition>

</channels>
</services-config>

The code in Listing 29.4 is available in the Web site files as services-config.xml in
the src folder of the chapter29 project.

You provide the location of the services configuration file to the Flex compiler through a -serv-
ices compiler argument. If the services configuration file is in the same folder as the Flex applica-
tion files, you can provide only the filename; otherwise, you provide a relative or absolute folder
location. The following -services argument assumes that the services configuration file is in the
same folder as the application files:

-services services-config.xml

Follow these steps to configure the Flex project to use the services configuration file in the project’s
source root folder:

1. Select the Flex project in the Flex Navigator view.

2. Select Project ➪ Properties from the Flex Builder menu.

3. Select Flex Compiler from the categories list.

ON the WEBON the WEB

888

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 888

4. Add a -services argument to the Additional compiler arguments with the name of the
services configuration file, services-config.xml, as shown in Figure 29.24

5. Click OK to save the new configuration.

FIGURE 29.24

Setting the Flex compiler to include new Remoting Services

All AMF service providers, including third-party products such as WebOrb, use the same
basic process to configure AMF-based services.

Calling an AMFPHP service with RemoteObject
You call an AMFPHP service’s methods using the RemoteObject component. The behavior and
functionality of the RemoteObject component on the client is exactly the same as when using it
with Java or ColdFusion.

Because the client-side code for using the RemoteObject component is pretty much
the same regardless of the language or platform on the server, many details of the client-

side code aren’t covered in this chapter. See Chapters 24 and 26 for more client-side code samples.

Whether you declare your RemoteObject instance in MXML or ActionScript, the object’s des-
tination property should be set to the destination id as defined in the services configuration
file. The source is set to the name of the AMFPHP service class, with a package that’s determined
by the folder structure in which the class is stored.

CROSS-REFCROSS-REF

TIPTIP

Setting the services configuration file

889

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 889

The application in Listing 29.5 declares a RemoteObject component instance in MXML code
and sets its source to the location of the HelloWorld service installed previously.

LISTING 29.5

A Flex application calling an AMFPHP service

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:RemoteObject id=”phpService”
destination=”amfphp”
source=”flex3bible.HelloWorld”/>

<mx:Button label=”Say Hello” click=”phpService.sayHello()”/>
<mx:Label text=”{phpService.sayHello.lastResult}”/>

</mx:Application>

The code in Listing 29.5 is available in the Web site files as
CallHelloService.mxml in the src folder of the chapter29 project.

Returning complex data from AMFPHP
You can return complex data from PHP either by manually constructing an array to return or by
generating and returning a simple data set.

The PHP service class in Listing 29.6 executes a simple query and returns its data.

LISTING 29.6

Returning a simple data set from a PHP class

<?php
class DataManager {

function returnResultset()
{

mysql_connect(‘localhost’, ‘root’, ‘’);
mysql_select_db(‘contacts’);
return mysql_query(sprintf(

“SELECT * FROM person ORDER BY lastname, firstname”));
}

}
?>

ON the WEBON the WEB

890

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 890

The code in Listing 29.6 is available in the Web site files as DataManager.php in the
AMFPHP files of the chapter29 project.

When you call the service function, the query result is received in Flex as an ArrayCollection.
The Flex application in Listing 29.7 calls the service function and uses debugging code to deter-
mine how much time elapses between sending the request and receiving the result. When you run
the application in debug mode and send the request, a tracing message reports the time elapsed in
Flex Builder’s Console view.

LISTING 29.7

A Flex application receiving complex data

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.collections.ArrayCollection;
import mx.rpc.events.ResultEvent;
[Bindable]
private var myData:ArrayCollection;
private var startTime:Number;
private function sendRequest():void
{

startTime = (new Date()).getTime();
phpService.getPersonData();

}
private function resultHandler(event:ResultEvent):void
{

var endTime:Number = (new Date()).getTime();
trace(“Time elapsed: “ + (endTime - startTime));
myData = event.result as ArrayCollection;

}
]]>

</mx:Script>
<mx:RemoteObject id=”phpService” destination=”amfphp”

source=”flex3bible.DataManager” result=”resultHandler(event)”/>
<mx:Button label=”Get Data” click=”sendRequest()”/>
<mx:DataGrid dataProvider=”{myData}”/>

</mx:Application>

The code in Listing 29.7 is available in the Web site files as GetComplexData.php in
the AMFPHP files of the chapter29 project.

The PHP mysql_query() function returns a PHP resource, which is serialized to an
ArrayCollection when returned to Flex. Table 29.1 describes how other PHP data types are serial-
ized from ActionScript to PHP and back again.

ON the WEBON the WEB

ON the WEBON the WEB

891

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 891

TABLE 29.1

ActionScript to PHP Data Serialization

ActionScript To PHP Back to ActionScript

null null null

Boolean boolean Boolean

String string String

Date float Number

Array array Array

Object associative array Object

XML string String

Many Flex/PHP developers have shared what they’ve learned about advanced integra-
tion of Flex and AMFPHP. These articles on the Web can be particularly helpful:

Flex, AMFPHP, and Value Objects (Renaun Erickson) at http://renaun.com/blog/
2006/07/25/70/

Mapping VO’s from Flex to PHP using AMFPHP (Victor Rubba) at http://viconflex.
blogspot.com/2007/04/mapping-vos-from-flex-to-php-using.html

Using AMFPHP 1.9 with the Adobe Flex 2 SDK (Michael Ramirez) at www.howtoforge.com/
amfphp_adobe_flex2_sdk

Summary
In this chapter, I described how to build Flex applications that are integrated with server-side code
managed by PHP. You learned the following:

� PHP is an open-source, freely available application server that is compatible with many
operating systems.

� PHP’s scripting language doesn’t require any compilation prior to being requested from a
client application.

� To get started quickly with PHP, you can download and use free integrated software bun-
dles named WAMP (for Windows) and MAMP (for Mac OS X) that include the Apache
Web server, PHP, and MySQL.

� When you create a Flex project, you can associate it with your PHP installation.

� The PHP5 SimpleXML extension can create XML packets to return to a Flex application.

WEB RESOURCEWEB RESOURCE

892

Integrating Flex Applications with Application Servers and the DesktopPart IV

37_287644-ch29.qxp 6/23/08 11:58 PM Page 892

� Flex Builder 3 can generate complete client and server code to manage a MySQL database
table with PHP code on the server.

� You can build your own client Flex application to work with the generated PHP code
using the HTTPService component.

� Better network and data exchange performance can be achieved by using the
RemoteObject component and PHP classes hosted by AMFPHP, a free, open-source
project.

893

Integrating Flex Applications with PHP 29

37_287644-ch29.qxp 6/23/08 11:58 PM Page 893

37_287644-ch29.qxp 6/23/08 11:58 PM Page 894

Adobe’s release of Flex 3 in February 2008 was tightly integrated with
the release of the Adobe Integrated Runtime, known as AIR.
Formerly known by its public code name, Apollo, AIR is Adobe’s first

step toward a universal runtime client that can run local applications on a
variety of personal computer systems and other computing devices.

With AIR 1.0, Adobe has delivered the ability to deploy applications on for
Windows and Mac OS X client systems, with a Linux version of the runtime
in current development. Adobe’s roadmap for AIR includes future versions
for cell phones and other mobile devices, which eventually would allow AIR
desktop applications to be deployed on a more truly universal basis.

As of this writing, an alpha version AIR for Linux was avail-
able on Adobe Labs at http://labs.adobe.com/

technologies/air. New versions should appear on this Web page as they
become available.

AIR applications can be built from many different kinds of assets, but each
application’s core asset is made up of either Flash-based content, built in
either Flash CS3 or Flex 3, or HTML-based and JavaScript-based content.
Regardless of which kind of asset is used as the application’s core element,
any AIR application can use and present HTML, Flash, Flex, or Acrobat PDF
content.

The ability to present and manipulate Acrobat PDF content
is dependent on the user having Acrobat Reader 8.1 or

higher installed on their client system.

In this chapter, I describe the basics of creating and deploying a Flex-based
desktop application with Flex Builder 3 and AIR.

TIPTIP

TIPTIP

895

IN THIS CHAPTER
Understanding the Adobe
Integrated Runtime

Creating desktop application
projects with Flex Builder 3

Using the application descriptor
file

Packaging an AIR application for
deployment

Debugging AIR applications with
Flex Builder 3

Incorporating HTML and PDF
documents

Creating RPC channels at
runtime

Deploying Desktop
Applications with AIR

38_287644-ch30.qxp 6/23/08 11:59 PM Page 895

To use the sample code for this chapter, download chapter30.zip from the Web site.
This is not a Flex project archive file. Its use and installation are described later in this

chapter.

Understanding AIR Architecture
The Adobe Integrated Runtime is installed as a runtime library on your client system. Its purpose is
to provide core runtime functionality that’s needed by all AIR-based desktop applications, regard-
less of whether they’re built in Flash, Flex, or HTML.

As shown in Figure 30.1, AIR includes a copy of both the Flash Player and a Web browser. In AIR
1.0, the included Flash Player is based on Flash Player 9, while the Web browser is an implementa-
tion of WebKit, an open-source Web browser engine.

FIGURE 30.1

Adobe Integrated Runtime architecture with Flex applications

The WebKit Web browser engine is used as the kernel for the Safari browser on Mac OS
X and the Konqueror browser that’s available with the K desktop environment on Linux.

The version that’s used in AIR 1.0 is derived from the open-source version of WebKit that’s available at
http://webkit.org.

TIPTIP

HTML content PDF content

Flex-based application

RPD components
(HTTPService, WebService, RemoteObject)

Occasionally connected
to Internet

Adobe Integrated Runtime
includes Flash Player, Web Browser

Network resources

Windows Mac OS X

ON the WEBON the WEB

896

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 896

A desktop application deployed on AIR is delivered as an installable archive file with a file exten-
sion of .air. After installation, it runs as a local application that’s native to the operating system,
rather than as a Web-based application. As a result, desktop applications deployed on AIR aren’t
subject to the same security sandbox restrictions as a Web-based application that’s downloaded and
run on request from within a Web browser.

Because an AIR application’s assets are made up of content that runs equally well on multiple oper-
ating systems without having to be rebuilt (Flash documents, HTML pages, JavaScript and CSS
code, and Acrobat PDF documents), a single application can run on all supported operating sys-
tems without having to be recompiled.

Installing the Adobe Integrated Runtime
If you’re using Flex Builder 3 to develop Flex applications, you don’t necessarily have to install AIR
on your development system, because Flex Builder includes all the tools you need to compile, test,
and debug an AIR application. But to fully install a completed application, the runtime should be
installed.

You can install the runtime in two ways:

� If you know you need AIR on your system, you can download the AIR installer from
Adobe’s Web site and install it on your system prior to installing any applications.

� When you install an AIR application that uses a seamless installation badge, the applica-
tion installer detects whether the runtime is already installed and, if not, offers to include
the runtime installation along with the application.

The seamless installation badge experience is described in a section at the end of this chapter. In
this section, I describe how to download and install the correct version of AIR for your operating
system.

Downloading the AIR installer
To download the AIR installer directly from Adobe, navigate to this URL:

http://get.adobe.com/air/

As shown in Figure 30.2, the Adobe Web page detects which operating system the request comes
from and offers a download link for the appropriate version of the AIR installer.

You can download versions of AIR for other operating systems, or versions other than
the most recent, from http://get.adobe.com/air/otherversions.TIPTIP

897

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 897

FIGURE 30.2

Download the AIR installer from Adobe

Installing and uninstalling AIR on Windows
The AIR 1.0 installer for Windows is delivered as an executable application that’s approximately
11.2MB.

You must be logged into Windows as an administrative user to successfully install or
uninstall AIR.

After downloading the installer application, follow these steps to install AIR:

1. Run the installer application, as shown in Figure 30.3.

2. Follow the prompts to complete the installation process.

No configuration options are available, so the installation completes from that point without any
further requests for information. On a typical Windows installation, the runtime is installed into
the following folder:

C:\Program Files\Common Files\Adobe AIR

Follow these steps to uninstall AIR on Windows:

1. Go to the Windows Control Panel.

2. Select Add or Remove Programs on Windows XP or Uninstall a program on Windows
Vista.

TIPTIP

898

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 898

3. Select the Adobe AIR entry.

4. Click Remove on Windows XP or Uninstall on Windows Vista.

5. When the Adobe AIR Setup dialog box appears, click Uninstall to remove AIR from your
system.

When you uninstall AIR from your system, any installed AIR applications are disabled.
You can no longer run them or perform a clean uninstall process. If you want to perma-

nently remove AIR and any dependent applications, you should uninstall the applications first, and
run the AIR uninstaller afterward.

FIGURE 30.3

The AIR installer displaying the license agreement

Installing and uninstalling AIR on Mac OS X
The AIR 1.0 installer for Mac OS X is delivered as a DMG file that’s approximately 16MB. After
downloading the installer file, follow these steps to install AIR:

1. Open the DMG file.

2. Double-click the Adobe AIR Installer application.

3. After accepting the license agreement, enter your Mac administrator password and click
OK to complete the installation.

CAUTION CAUTION

899

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 899

As with installation on Windows, no configuration options are available, so the installation com-
pletes from that point with no further requests for information.

Follow these steps to uninstall AIR on Mac OS X:

1. Navigate to the /Applications/Utilities folder.

2. Locate and run the Adobe AIR Uninstaller application.

3. When the Adobe AIR Setup dialog box appears, click Uninstall to remove AIR from your
system.

4. Enter your Mac administrator password, and click OK to uninstall AIR.

Creating a Flex Desktop Application
You can create and deploy a desktop application with Flex 3 using one of these strategies:

� If you’re using the free Flex 3 SDK to build your Flex applications, you can use the free
AIR SDK to package your applications for deployment.

� If you’re using Flex Builder 3 to create your Flex applications, everything you need to
package an AIR application is already included.

In this section, I describe the steps for building a Flex desktop application project with Flex
Builder 3.

Creating a Flex desktop application project
When you create a new Flex project in Flex Builder, you have the option of setting the Application
type to Desktop. All MXML applications in such a project are designated as desktop applications
and are tested and deployed with AIR.

In Flex Builder 3, you can’t deploy a single application to both the desktop and the Web.
The selection of AIR-based or Web-based deployment is made at the project level, and

after a project is configured as such, you can’t change it without going back and rebuilding the proj-
ect from scratch.

If you do need to create a Flex application that’s deployed with both architectures, consider creating
three projects: one for the Web, one for the desktop, and one that’s created as a Flex library project.
The first two projects would have applications that are bare skeletons and get all their real functional-
ity from components in the library project. Then, as you code and compile the library project, its
assets are shared with the “real” project that contain and are responsible for building the Web and
desktop applications.

TIPTIP

900

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 900

Follow these steps to create a Flex project in Flex Builder 3 that’s designed for the desktop:

1. Select File ➪ New ➪ Flex Project from the Flex Builder menu.

2. On the first screen of the New Flex Project wizard, shown in Figure 30.4, set these proj-
ect properties:

� Project name: chapter30

� Project location: Use default location

� Application type: Desktop application

� Application server type: None

FIGURE 30.4

Creating a new Flex desktop application project

3. Click Next.

4. On the Configure Output screen, accept the default Output folder location and click
Next.

5. On the final screen, shown in Figure 30.5, set the Main application filename to
MyDesktopApp.mxml.

901

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 901

FIGURE 30.5

Setting the main application filename and the application id

6. Set the Application ID to com.mycompany.MyDesktopApp.

7. Click Finish to create the project and application.

You should see a starting Flex application open in the Flex Builder editor with a root ele-
ment of <mx:WindowedApplication>. In the Flex Navigator view, shown in Figure
30.6, you should see both the main application file and the XML-based application
descriptor file MyDesktopApp-app.xml.

8. Set the <mx:WindowedApplication> start tag’s layout property to vertical.

9. Add a Label control to the application with a text property of “Hello from AIR!”:

<mx:Label text=”Hello from AIR!”/>

10. Save and run the application.

902

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 902

FIGURE 30.6

The contents of a new Flex desktop application project shown in the Flex Navigator
view

As shown in Figure 30.7, the application runs in a native window, rather than within a Web
browser.

FIGURE 30.7

The resulting “Hello World” AIR application

The appearance of a basic Flex application differs depending on the hosting operating
system. This screen shot was taken on Windows XP, so the window title bar, borders,

and control icons have the look of a standard Windows XP window. The magic of AIR is that you
don’t have to recompile the application for different operating systems. When packaged with
default settings in the application descriptor file, the version of AIR that’s currently hosting the
application at runtime controls the application window’s look and feel.

TIPTIP

903

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 903

Using the application descriptor file
The application descriptor file is in XML format and contains settings that are used by the AIR
Developers Tool (ADT) and the AIR Debug Launcher (ADL) during packaging and testing of the
application. When you create a new MXML application in a Flex desktop project, Flex Builder
prompts you for both an application filename and an application id, and it creates both the appli-
cation file and the application descriptor file at the same time.

A clean starting copy of an application descriptor file with all available options is
included in the Flex Builder application as descriptor-template.xml in the Flex

Builder installation folder’s sdks\3.0.0\templates\air subfolder.

When you create a new Flex application in a desktop project, the following required properties are
set in the default descriptor file:

� id: The application id is a string that uniquely identifies each AIR desktop application.
To ensure that each application has an id that’s globally unique, the id should start with
a package-style reference based on your organization’s reversed domain name, with the
domain parts separated with dots. For example, if an organization’s Web domain name is
coolstuff.com, the id for its desktop applications would always start with
com.coolstuff.

� filename: This is the name of the packaged application’s installer file, without a file
extension. When the application is packaged for installation, this value is appended with
the .air file extension.

� name: This is the name of the application as known to its users. This can be any string
and can include spaces and special characters.

� version: This is the version number of the application.

� initialWindow/content: This is the primary asset that’s presented in the applica-
tion’s primary window. When working with the AIR SDK, this can be either a Flash .swf
file or an HTML file. When working in Flex Builder, the <content> element initially
contains a comment and is filled in during compilation and testing with the Flex applica-
tion’s compiled .swf filename.

The following starting application descriptor file contains only required elements, after com-
mented-out elements and strings have been removed from the starting file you get in Flex Builder.

<?xml version=”1.0” encoding=”UTF-8”?>
<application xmlns=”http://ns.adobe.com/air/application/1.0”>

<id>com.mycompany.MyDesktopApp</id>
<filename>MyDesktopApp</filename>
<name>MyDesktopApp</name>
<version>v1</version>
<initialWindow>

<content>[This value will be overwritten by Flex Builder
in the output app.xml]</content>

</initialWindow>
</application>

TIPTIP

904

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 904

The <application> element’s xmlns namespace declaration is used to determine
which version of AIR is required to run the application. The namespace shown in Listing

30.1 is for the final release of AIR 1.0. You can recognize application descriptor files that were cre-
ated for the various public beta releases of AIR by their namespace declaration. For example, the
namespace for the AIR public beta 3 looked like this:

<application
xmlns=”http://ns.adobe.com/air/application/1.0.M6”>

</application>

You can include many other optional elements in the application descriptor file that affect the
installation experience or the behavior and appearance of the application at runtime. As shown in
Listing 30.1, the default application descriptor file includes comments above each element describ-
ing its purpose.

LISTING 30.1

The default application descriptor file with comments describing the purpose of each element

<?xml version=”1.0” encoding=”UTF-8”?>
<application xmlns=”http://ns.adobe.com/air/application/1.0”>

<!-- The application identifier string, unique to this application.
Required. -->

<id>com.mycompany.MyDesktopApp</id>
<!-- Used as the filename for the application. Required. -->
<filename>MyDesktopApp</filename>
<!-- The name that is displayed in the AIR application installer.

Optional. -->
<name>MyDesktopApp</name>
<!-- An application version designator

(such as “v1”, “2.5”, or “Alpha 1”). Required. -->
<version>v1</version>
<!-- Description, displayed in the AIR application installer.

Optional. -->
<!-- <description></description> -->
<!-- Copyright information. Optional -->
<!-- <copyright></copyright> -->
<!-- Settings for the application’s initial window. Required. -->
<initialWindow>

<!-- The main SWF or HTML file of the application. Required. -->
<!-- Note: In Flex Builder, the SWF reference is set automatically.

-->
<content>[This value will be overwritten by Flex Builder

in the output app.xml]</content>
<!-- The title of the main window. Optional. -->
<!-- <title></title> -->
<!-- The type of system chrome to use (either “standard” or “none”).

Optional. Default standard. -->

continued

TIPTIP

905

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 905

LISTING 30.1 (continued)

<!-- <systemChrome></systemChrome> -->
<!-- Whether the window is transparent. Only applicable when

systemChrome is false. Optional. Default false. -->
<!-- <transparent></transparent> -->
<!-- Whether the window is initially visible. Optional.

Default false. -->
<!-- <visible></visible> -->
<!-- Whether the user can minimize the window.

Optional. Default true. -->
<!-- <minimizable></minimizable> -->
<!-- Whether the user can maximize the window.

Optional. Default true. -->
<!-- <maximizable></maximizable> -->
<!-- Whether the user can resize the window.

Optional. Default true. -->
<!-- <resizable></resizable> -->
<!-- The window’s initial width. Optional. -->
<!-- <width></width> -->
<!-- The window’s initial height. Optional. -->
<!-- <height></height> -->
<!-- The window’s initial x position. Optional. -->
<!-- <x></x> -->
<!-- The window’s initial y position. Optional. -->
<!-- <y></y> -->
<!-- The window’s minimum size, specified as a width/height pair,

such as “400 200”. Optional. -->
<!-- <minSize></minSize> -->
<!-- The window’s initial maximum size, specified as a width/height

pair, such as “1600 1200”. Optional. -->
<!-- <maxSize></maxSize> -->

</initialWindow>
<!-- The subpath of the standard default installation location to use.

Optional. -->
<!-- <installFolder></installFolder> -->
<!-- The subpath of the Windows Start/Programs menu to use. Optional.
-->
<!-- <programMenuFolder></programMenuFolder> -->
<!-- The icon the system uses for the application. For at least one

resolution, specify the path to a PNG file included in the AIR
package.
Optional. -->

<!-- <icon>
<image16x16></image16x16>
<image32x32></image32x32>
<image48x48></image48x48>
<image128x128></image128x128>

906

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 906

</icon> -->
<!-- Whether the application handles the update when a user double-
clicks
an update version of the AIR file (true), or the default AIR

application
installer handles the update (false).

Optional. Default false. -->
<!-- <customUpdateUI></customUpdateUI> -->
<!-- Whether the application can be launched when the user clicks a
link
in a web browser. Optional. Default false. -->

<!-- <allowBrowserInvocation></allowBrowserInvocation> -->
<!-- Listing of file types for which the application can register.

Optional. -->
<!-- <fileTypes> -->

<!-- Defines one file type. Optional. -->
<!-- <fileType> -->

<!-- The name that the system displays for the registered file
type.

Required. -->
<!-- <name></name> -->
<!-- The extension to register. Required. -->
<!-- <extension></extension> -->
<!-- The description of the file type. Optional. -->
<!-- <description></description> -->
<!-- The MIME type. Optional. -->
<!-- <contentType></contentType> -->
<!-- The icon to display for the file type. Optional. -->
<!-- <icon>

<image16x16></image16x16>
<image32x32></image32x32>
<image48x48></image48x48>
<image128x128></image128x128>

</icon> -->

<!-- </fileType> -->
<!-- </fileTypes> -->

</application>

Packaging a release version of an AIR application
When you package a release version of an AIR application, you create an AIR file (with a file exten-
sion of .air) that’s delivered to the user as the application installer. When the user opens the .air file
on a system where the Adobe Integrated Runtime has already been installed, the application
installer is executed.

907

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 907

Follow these steps to package the application for installation and deployment:

1. With the application open in the Flex Builder editor, select File ➪ Export ➪ Release
Build... from the menu.

2. In the Export Release Build wizard, shown in Figure 30.8, set these properties:

� Project: The selected project.

� Application: The MXML application you want to package.

� View Source: Whether you want to allow the user to view the application’s source
code (available when the user right-clicks on the application at runtime).

� Export to file: The name of the generated .air file you want to build. By default,
this file is placed in the Flex project’s root folder, but you can browse and select any
other location within a currently open Eclipse project.

FIGURE 30.8

The Export Release Build wizard’s initial screen

3. Click Next.

On the Digital Signature screen, shown in Figure 30.9, you can either export and sign the gener-
ated AIR file with a digital certificate or create an intermediate file with a file extension of .air that
can be signed and completed in a secondary step.

908

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 908

FIGURE 30.9

Selecting a security certificate

To package any AIR application, you must provide a security certificate that certifies to
the user who developed the application. For applications that are in testing or that are

only deployed within an organization, you can generate a self-signed certificate from within Flex
Builder. This certificate allows you to package and deploy the application, but because no recognized
certificate authority will have authenticated your organization’s identity, the resulting installer appli-
cation indicates that the author of the application is “Unknown.”

For an application that will be deployed to a public audience, you should always purchase a security
certificate from a recognized certificate authority such as VeriSign (www.verisign.com) or Thawte
(www.thawte.com). When you use this sort of publicly recognized certificate to package your AIR
application, the resulting installer correctly displays your organization name as the application author.

Even an application that reports an unknown author has unrestricted access to the user’s sys-
tem. The purpose of the security certificate is to give the user an opportunity to accept or

reject installation based on the author’s identity, and doesn’t stop bad applications from doing bad things.

If you don’t have a security certificate, follow these steps to create a self-signed certificate for test-
ing or internal use:

4. Click Create on the Digital Signature screen.

5. Enter the requested values on the Create Self-Signed Digital Certificate screen, shown in
Figure 30.10. Items marked with an asterisk are required. In particular, you must provide
a password that will then be required each time the certificate is used.

CAUTION CAUTION

TIPTIP

909

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 909

FIGURE 30.10

Creating a self-signed digital certificate

6. Select the name of your certificate file with a file extension of .p12, and click OK to create
the certificate file.

When you return to the Digital Signature screen, the certificate filename and password
will already be filled in.

If you already have a digital certificate file, just select the file and enter the certificate
password.

7. Click Finish in the Digital Signature screen to create the AIR installer file.

You should see that the application’s AIR file is available in the project root folder and can
be seen in the Flex Navigator view, as shown in Figure 30.11.

FIGURE 30.11

A packaged AIR application

910

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 910

Installing AIR applications
To install an AIR application on a desktop system that already has the runtime installed, just open
the .air file that was generated in Flex Builder. From within Flex Builder, you can open the file by
double-clicking it in the Flex Navigator view.

As shown in Figure 30.12, the initial installation screen displays the application’s Publisher (dis-
played as “UNKNOWN” when the AIR file is built with a self-signed certificate) and the applica-
tion’s name as configured in the descriptor file.

FIGURE 30.12

An AIR installer’s initial screen

After clicking Install on the initial screen, the confirmation screen, shown in Figure 30.13, displays
the application name and the description as provided in the descriptor file. The installer also offers
the user these options:

� Whether to include a shortcut icon for the application on the desktop

� Whether to start the application after installation is complete

� The application installation location, which defaults to C:\Program Files on
Windows and /Applications on Mac OS X

On Windows, the application is installed in a subfolder of the selected location named
for the application name. For example, the default location MyDesktopApp on

Windows is a folder named C:\Program Files\MyDesktopApp. On Mac OS X, the application is
installed as a single application package file in the selected location folder with a file extension of
.app. For example, the default location of MyDeskTopApp on Mac is a single application file named
/Applications/MyDesktopApp.app.

TIPTIP

911

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 911

When the user clicks Continue, the application is installed on his system. If the option to start the
application after installation is complete was selected, the application opens.

FIGURE 30.13

An AIR installer’s confirmation screen

Uninstalling AIR applications
You uninstall an AIR desktop application in the same manner as most other native applications.
Follow these steps on Windows:

1. Go to the Windows Control Panel.

2. Select Add or Remove Programs on Windows XP or Uninstall a program on Windows
Vista.

3. Select the application entry.

4. Click Remove on Windows XP or Uninstall on Windows Vista.

5. When the Adobe AIR Setup dialog box appears, click Uninstall to remove AIR from your
system.

To uninstall an AIR application on Mac OS X, just delete the application .app package file from the
/Applications folder by dragging it into the trash.

Running the .air installation package file after the application is installed also offers the
uninstall option.TIPTIP

912

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 912

Flex Application Tips and Tricks with AIR
As described previously, the subject of developing Flex applications for desktop deployment with
AIR is too large for a single chapter. There are, however, a few specific things you do a bit differ-
ently in a desktop application, and there are many Flex SDK features that are available only when
you’re developing for AIR. These include:

� Debugging AIR applications in Flex Builder

� Rendering and managing HTML-based and PDF-based content

� Using the WindowedApplication component as the application’s root element

� Creating channels at runtime for communicating with Remoting gateways

In this section, I briefly describe some of these programming and development techniques.

If you want to review the sample applications described in this section, extract the con-
tents of the chapter30.zip file into the root folder of the chapter30 Flex desktop

application project. Each sample application includes both an application file and an application
descriptor file.

Debugging AIR applications in Flex Builder
For the most part, debugging an AIR application in Flex Builder is just like debugging a Web-based
Flex application. You have access to all the same debugging tools, including the trace() func-
tion, breakpoints, and the ability to inspect the values of application variables when the application
is suspended.

When you run a Flex application from within Flex Builder in either standard or debug mode, Flex
Builder uses ADL (AIR Debug Launcher) in the background. In some cases, ADL can stay in system
memory with hidden windows even after an AIR application session has apparently been closed.

The symptom for this condition is that when you try to run or debug that or another application,
Flex Builder simply does nothing. Because a debugging session is still in memory, Flex Builder can’t
start a new one.

Follow these steps to recover from this condition in Windows:

1. Open the Windows Task Manager.

2. In the Processes pane, locate and select the entry for adl.exe.

3. Click End Process to force ADL to shut down.

4. Close Task Manager, and return to Flex Builder.

ON the WEBON the WEB

913

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 913

On the Mac:

1. In the Apple menu, select Force Quit.

2. In the Force Quit dialog box, select adl and click the Force Quit button.

3. Close the Force Quit dialog box, and return to Flex Builder.

You should now be able to start your next AIR application session successfully. One common sce-
nario that can result in this problem is when a runtime error occurs during execution of startup
code. For example, if you make a call to a server-based resource from an application-level
creationComplete event handler and an unhandled fault occurs, the application window might
never become visible. If you’re running the application in debug mode, you can commonly clear the
ADL from memory by terminating the debugging session from within Flex Builder. When running
in standard mode, however, the ADL can be left in memory with the window not yet visible.

To solve this issue, it’s a good idea to explicitly set the application’s initial windows as visible. In the
application descriptor file, the <initialWindow> element’s child <visible> property is com-
mented out by default. Because this value defaults to false, if the window construction code
never succeeds to a runtime error, you’re left with an invisible window and ADL still in memory. To
solve this, open the application’s descriptor file, uncomment the <visible> element, and set its
value to true:

<visible>true</visible>

Working with HTML-based content
The Flex framework offers two ways of creating a Web browser object within any application:

� The HTMLLoader class is extended from the Sprite class and can be used in any Flash or
Flex application. Because this class doesn’t extend from UIComponent, you can’t add it
to a Flex container with simple MXML code or by using the addChild() method.

� The HTML control is extended from UIComponent and can be instantiated with either
MXML or ActionScript code.

The HTML control is quite a bit easier to use and provides the same functionality as HTMLLoader.
Declaring an instance of the control results in a Web browser instance that can freely navigate to
any location on the Web (assuming the client system is currently connected).

Instantiating the HTML control
As with all visual controls, the HTML control can be instantiated in MXML or ActionScript code.
After it’s been instantiated, its location property determines which Web page is displayed. This
HTML object, for example, displays Adobe’s home page and expands to fill all available space
within the application:

<mx:HTML id=”myHTML” width=”100%” height=”100%”
location=”http://www.adobe.com”/>

914

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 914

When you assign the HTML control’s id property, you can then reset its location as needed from
any ActionScript code. This statement resets the HTML control’s location to the Wiley home page:

myHTML.location = “http://www.wiley.com”;

The application in Listing 30.2 uses an HTTPService object to retrieve an RSS listing from a
URL. When the user selects an item from the ComboBox that presents the RSS items, a bit of
ActionScript code causes the HTML object to navigate to the selected Web page.

Because the structure of an RSS feed is consistent regardless of the data provider, this
application should work with any RSS feed from any data provider.

LISTING 30.2

A Flex desktop application displaying Web pages from an RSS feed

<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”

creationComplete=”photosXML.send()”>
<mx:Script>

<![CDATA[
import mx.controls.Alert;
import mx.collections.ArrayCollection;
import mx.rpc.events.FaultEvent;
import mx.rpc.events.ResultEvent;
private const feedURL:String =

“http://www.wiley.com/WileyCDA/feed/RSS_WILEY2_ALLNEWTITLES.xml”;
[Bindable]
private var feed:ArrayCollection;
private function resultHandler(event:ResultEvent):void
{

feed = event.result.rss.channel.item as ArrayCollection;
updateHTML();

}
private function faultHandler(event:FaultEvent):void
{

Alert.show(event.fault.faultString, event.fault.faultCode);
}
private function updateHTML():void
{
myHTML.location = feedSelector.selectedItem.link;
}

]]>

continued

TIPTIP

915

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 915

LISTING 30.2 (continued)

</mx:Script>
<mx:HTTPService id=”photosXML” url=”{feedURL}”
result=”resultHandler(event)” fault=”faultHandler(event)”/>

<mx:HBox width=”100%”>
<mx:Label text=”Select a new title:”/>
<mx:ComboBox id=”feedSelector” dataProvider=”{feed}”

labelField=”title”
width=”400” change=”updateHTML()”/>

</mx:HBox>

<mx:HTML id=”myHTML” width=”100%” height=”100%”/>
</mx:WindowedApplication>

The code in Listing 30.2 is available in the Web site files in the chapter30 project as
NewTitlesReader.mxml.

Figure 30.14 shows the completed application, displaying the contents of the RSS feed in the
ComboBox and a currently selected Web page in the HTML component.

FIGURE 30.14

A simple RSS feed application displaying Web pages in an HTML component instance

ON the WEBON the WEB

916

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 916

Navigating with the HTML control
In addition to the location property, the HTML control implements these methods that allow you to
control navigation with ActionScript code:

� historyBack(): Navigates back one step in the control’s history list.

� historyForward(): Navigates back one step in the control’s history list.

� historyGo(steps:int): Navigates the number of steps. The value of the steps
argument can be positive to move forward or negative to move back.

Presenting Acrobat PDF documents
The HTML component also is used to present Acrobat PDF documents. As with Web pages, you
simply set the HTML object’s location to the document you want to present:

<mx:HTML id=”myPDF” width=”100%” height=”100%”
location=”brochure.pdf”/>

Figure 30.15 shows an application with just the HTML object described in the previous code.
Because the HTML object is the application’s only visual object and its dimensions are set to 100
percent of available space, the Acrobat Reader interface fills the entire application and grows and
shrinks whenever the application is resized.

FIGURE 30.15

Displaying an Acrobat PDF document in an AIR application

917

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 917

As described previously, the runtime doesn’t include a copy of Acrobat Reader, but instead requires
that this software package is already installed on the client system. You can find out whether the
current client system is capable of displaying Acrobat PDF documents by evaluating the HTML con-
trol’s static pdfCapability property. The property’s value is matched to constants in a
PDFCapability class with these values and meanings:

� STATUS_OK: Acrobat Reader 8.1 or later is installed.

� ERROR_INSTALLED_READER_NOT_FOUND: No version of Acrobat Reader is installed.

� ERROR_INSTALLED_READER_TOO_OLD: Acrobat Reader is installed, but it’s older than
version 8.1.

� ERROR_PREFERED_READER_TOO_OLD: Acrobat Reader 8.1 or later is installed, but
another older version is viewed by the operating system as the preferred application for
PDF documents.

The application in Listing 30.3 is a simple Web browser application. The application’s navi-
gate() function examines the file extension of a document requested by a client application. If
the file extension is .pdf and Acrobat Reader 8.1 or later isn’t detected, the application displays an
error to the user.

LISTING 30.3

A simple Web browser application

<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”>

<mx:Script>
<![CDATA[

import mx.controls.Alert;
import mx.managers.CursorManager;
[Bindable]
private var myURL:String = “http://”;
private function navigate():void
{

myURL = urlInput.text;
if (myURL.substr(0,4) != “http”)
{

myURL = “http://” + myURL;
}
var fileExtension:String = myURL.substr(myURL.length-3, 3);
if (fileExtension.toLowerCase() == “pdf” &&

HTML.pdfCapability != HTMLPDFCapability.STATUS_OK)
{

Alert.show(“This request requires Acrobat Reader 8.1 or
later”,

“Acrobat Error”);

918

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 918

}
else
{

myHTML.location = myURL;
}

}
]]>

</mx:Script>
<mx:ApplicationControlBar dock=”true”>

<mx:Label text=”My AIR Web Browser” fontWeight=”bold”
fontSize=”14”/>
<mx:Spacer width=”25”/>
<mx:Label text=”New URL:” fontWeight=”bold” fontSize=”10”/>
<mx:TextInput id=”urlInput” text=”{myURL}” enter=”navigate()”/>
<mx:Button label=”Go” click=”navigate()”/>

</mx:ApplicationControlBar>
<mx:HTML id=”myHTML” width=”100%” height=”100%” />

</mx:WindowedApplication>

The code in Listing 30.3 is available in the Web site files in the chapter30 project as
AIRWebBrowser.mxml.

Using the WindowedApplication component
Flex applications designed for desktop deployment typically use <mx:WindowedApplication>
as the application root element. A beginning desktop application’s code looks like this:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:WindowedApplication xmlns:mx=”http://www.adobe.com/2006/mxml”

layout=”absolute”>
... add content here ...

</mx:WindowedApplication>

The WindowedApplication component is extended from Application and provides all the
application-level functionality you expect from a typical Flex application. It also adds these capa-
bilities that are unique to Flex desktop applications:

� Native menus can be displayed and integrated into the overall application look and feel.

� The application can be integrated with a dock or system tray icon to provide easy access
to common application functions.

� The application can display operating system-specific “chrome” (the graphics in the appli-
cation window’s border, title bar, and control icons).

� A status bar can be displayed at the bottom of the application window for string-based
status messages.

ON the WEBON the WEB

919

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 919

Here’s one example: The WindowedApplication component can display a status bar at the bot-
tom of the application window. This display is controlled by two of the WindowedApplication
component’s properties:

� showStatusBar:Boolean: When true (the default), the application window dis-
plays a status bar.

� status:String: The string value displayed in the status bar.

The following modified custom updateHTML() function from the NewTitlesReader applica-
tion updates the application’s status bar with the title of the currently selected RSS item:

private function updateHTML():void
{

myHTML.location = feedSelector.selectedItem.link;
status = “Current Title: “ + feedSelector.selectedItem.title;

}

Figure 30.16 shows the resulting display in the status bar at the bottom of the application window.

FIGURE 30.16

Displaying a message in the status bar

Creating Remoting channels at runtime
When a Web-based Flex application communicates with an application server that supports Flash
Remoting (known as the Remoting Service in LiveCycle Data Services and BlazeDS), it typically
uses a channel definition with dynamic expressions that evaluate at runtime to the location of the
server from which the application was downloaded. This is the default my-amf channel delivered
with BlazeDS:

The application’s status bar

920

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 920

<channel-definition id=”my-amf”
class=”mx.messaging.channels.AMFChannel”>

<endpoint
url=”http://{server.name}:{server.port}/{context.root}/
messagebroker/amf”
class=”flex.messaging.endpoints.AMFEndpoint”/>

</channel-definition>

The <endpoint> element’s url attribute uses dynamic expressions to evaluate the server name
and port and the context root of the hosting instance of BlazeDS.

This approach doesn’t work with desktop applications deployed with AIR, because the concept of
“the current application server” doesn’t have any meaning in a desktop application. Instead, you
must provide the explicit location of the server-based application to which Remoting requests
should be sent at runtime.

You can solve this in one of two ways:

� If the location of the server providing Remoting Services is always the same, you can
define a custom channel in the application’s services configuration file with a hard-coded
url:

<endpoint url=”http://www.mycompany.com/messagebroker/amf”
class=”flex.messaging.endpoints.AMFEndpoint”/>

� For flexibility and the ability to set a url at runtime, declare a channel in either MXML
or ActionScript code.

The RemoteObject component has a channelSet property, cast as a class named
ChannelSet, that contains one or more instances of the AMFChannel component. To declare a
runtime channel in MXML, nest the <mx:ChannelSet> tag inside a <mx:RemoteObject> tag
pair’s <mx:channelSet> property. Then nest one or more <mx:AMFChannel> tags, and assign
each a uri property pointing to the selected server and its Remoting url.

If you declare more than one AMFChannel tag inside the channelSet, they’re treated
as a list in order of preference. The client application always tries to use the first chan-

nel; if there’s a communication failure, it goes to the next one, and so on.

The following RemoteObject instance declares a single AMFChannel at runtime:

<RemoteObject id=”myRO” destination=”myRemotingDestination”>
<mx:channelSet>

<mx:ChannelSet>
<mx:channels>

<mx:AMFChannel uri=”http://myserver/messagebroker/amf”/>
</mx:channels>

</mx:ChannelSet>
</mx:channelSet>

</RemoteObject>

TIPTIP

921

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 921

You can accomplish the same result with ActionScript. The following ActionScript code creates a
ChannelSet object, populates it with a single AMFChannel object, and adds it to the
RemoteObject component.

var endpointURL:String = “http://myserver/messagebroker/amf”;
var cs:ChannelSet = new ChannelSet();
var customChannel:Channel =

new AMFChannel(“myCustomAMF”, endpointURL);
cs.addChannel(customChannel);
myRemoteObject.channelSet = cs;

You also can create channels at runtime for use with the Message Service, Proxy
Service, and Data Management Service when using LiveCycle Data Services or BlazeDS.

When communicating with remote servers using the HTTPService or WebService
components in a desktop application, you don’t have to deal with the cross-domain

security constraint as you do with Web-based Flex applications. Because the application loads locally,
it isn’t subject to the restrictions of the Web browser’s security sandbox and can make connections
freely over the Web just like any other local application.

A Conclusion about AIR
In addition to the features described in this chapter, AIR applications can accomplish the following
tasks that aren’t possible with Flex Web applications:

� Full screen and spanned monitor display

� Integration with native visual components such the operating system’s window and menu
systems

� Creation of applications with transparency that serve as widgets

� Reading and writing files and folders on the local file system

� Persisting data in SQLite, a local database embedded in the runtime

� Synchronization of data managed on the server by LiveCycle Data Services

� Access to all network services supported by the Flex framework

The subject of building and deploying AIR-based desktop applications is worthy of an entire book,
and in fact there are many such books available. In particular, check out the Adobe AIR Bible (from
Wiley, of course!).

TIPTIP

TIPTIP

922

Integrating Flex Applications with Application Servers and the DesktopPart IV

38_287644-ch30.qxp 6/23/08 11:59 PM Page 922

Summary
In this chapter, I described how to build and deploy desktop Flex applications with the Adobe
Integrated Runtime. You learned the following:

� The Adobe Integrated Runtime (AIR) allows you to build and deploy cross-operating sys-
tem desktop applications with Flex, Flash, or HTML.

� Users can download and install AIR freely from Adobe Systems.

� Flex Builder 3 includes everything you need to build and deploy AIR applications.

� Each AIR application requires an application descriptor file that determines how an appli-
cation is packaged and delivered.

� You must provide a security certificate to create an AIR application installer file.

� Flex Builder 3 allows you to create a self-signed security certificate suitable for testing or
deployment within an organization.

� For public deployment of AIR applications, a security certificate issued by a recognized
certificate authority is strongly recommended.

� Flex applications built for AIR commonly use <mx:WindowedApplication> as the
application’s root element.

� The Flex framework’s HTML control displays both HTML and PDF content.

� You can declare channels at runtime for use with Remoting destinations called from a
Flex-based desktop application.

923

Deploying Desktop Applications with AIR 30

38_287644-ch30.qxp 6/23/08 11:59 PM Page 923

38_287644-ch30.qxp 6/23/08 11:59 PM Page 924

ActionScript The scripting language used in Flex
and Flash development.

ADL AIR Debug Launcher, an interim runtime for
debugging AIR applications without having to
install them.

ADT AIR Development Tool, a toolset for building
and deploying AIR applications.

AIR Adobe Integrated Runtime, a desktop environ-
ment for installing and executing Flex applications
and HTML/AJAX sites on the desktop, outside of
the browser environment.

AJAX Asynchronous JavaScript and XML, a soft-
ware development pattern that allows Web pages to
make asynchronous calls to server resources with-
out reloading the entire page.

AMF Action Message Format, the binary message
format used in Flash Remoting with ColdFusion,
the Remoting Service in LiveCycle Data Services
and BlazeDS, and other server-based applications
that can communicate with the Flex framework’s
RemoteObject component.

AMFPHP A free implementation of Flash
Remoting and the AMF protocol designed to work
with PHP.

application server A class of software applications
that serve as middleware in multi-tier applications.
The term can refer to both the server software itself
(such as Tomcat, Jboss, WebSphere, WebLogic,
PHP, or ASP.NET), or Java Enterprise Edition (JEE)
applications that are hosted by a server, such as
LiveCycle Data Services, BlazeDS, or ColdFusion.

ASP.NET Microsoft’s application server that’s used
to build and deploy dynamic Web sites and serv-
ices. Its XML Web Services feature can provide run-
time services for Flex applications.

behavior A combination of an effect and a trigger
that causes animation to occur in a Flex application
at runtime.

binding expression An ActionScript expression
used in MXML object declarations that sets up a
broadcaster/listener relationship between a source
value and a destination, both of which are identi-
fied as an object’s property. Only explicitly bindable
properties can serve as the source of a binding
expression.

BlazeDS Adobe’s free open-source implementation
of the Remoting, Message, and Proxy Services for
Java developers.

Cairngorm A microarchitecture for building and
maintaining complex Flex applications using a
strongly defined implementation of MVC.

CFC ColdFusion Component, a software module
hosted by ColdFusion that provides runtime serv-
ices that can be consumed by Flex applications.

ColdFusion Adobe’s rapid application develop-
ment application server.

component A software class definition.
Components in the Flex framework are written in
ActionScript, but can typically be instantiated with
either MXML or ActionScript code.

component library An archive file with an exten-
sion of .swc that contains multiple software classes
and supporting files.

925

39_287644-bgloss.qxp 6/24/08 12:00 AM Page 925

constraint-based layout A style of controlling
application layout that anchors objects to corners,
borders, or arbitrary rows and columns of an appli-
cation or component.

container A visual component that is designed to
contain other objects. Flex containers are grouped
as either layout containers that determine position-
ing of nested objects on the screen or navigator
containers that determine which view of an applica-
tion region is currently active.

control A visual component that incorporates dis-
play and, sometimes, interactivity.

CSS Cascading Style Sheets, the industry standard
that’s implemented in the Flex framework to man-
age application appearance.

Eclipse A free integrated development environment
workbench that hosts the Flex Builder plug-in.

Eclipse perspective A particular arrangement of
views and editors in Eclipse.

Eclipse view A window within the Eclipse inter-
face that serves a particular software development
purpose.

Eclipse workspace A system folder that manages
and serves as a table of contents for Eclipse projects.

ECMAScript The language recommendation on
which ActionScript and JavaScript are based.

effect An animation or sound that’s defined and
managed in ActionScript code.

event bubbling The process of passing an event
object upward through a Flex application’s contain-
ership hierarchy.

event listener A declaration that causes
ActionScript code to be executed when a software
event is handled. Event listeners can be declared as
MXML attributes or with the ActionScript
addEventListener() method.

event object An instance of an Event class that is
generated and dispatched by a software object.

Flash The Flash authoring environment, currently
in version Flash CS3.

Flash Player The browser plug-in/ActiveX control
from Adobe that hosts Flash documents and Flex
applications on a client system.

Flex Builder The Eclipse-based integrated devel-
opment environment (IDE) from Adobe that sup-
ports rapid application development with the Flex
framework.

Flex project A collection of one or more Flex
applications managed in Flex Builder.

FlourineFX enA free implementation of Flash
Remoting and the AMF protocol designed to work
with ASP.NET.

instantiation The action of creating an instance of
a software class. The resulting instance is then
referred to as an object.

item renderers editors MXML and ActionScript
classes that render and/or allow editing of data in
the context of list controls.

JEE or J2EE Java Enterprise Edition, a software
standard managed by Sun Microsystems. The older
acronym, J2EE, has been replaced by Sun, but is
referred to often in the Flex documentation and
Flex Builder user interface.

LiveCycle Data Services Adobe’s enterprise appli-
cation server product that offers a complete suite of
data and messaging services for Java developers.
Formerly known as Flex Data Services.

MAMP An integrated server bundle for Mac OS X
that includes Apache, PHP, and MySQL.

method A function that is a member of a class
definition.

926

Glossary

39_287644-bgloss.qxp 6/24/08 12:00 AM Page 926

MVC Model-View-Controller, a software architec-
ture used in large-scale application development to
separate code that presents data (the view), man-
ages data (the model), and handles application
events (the controller).

MXML The XML markup-based language used in
Flex development to express the layout of an appli-
cation. MXML also can be used to declare instances
of non-visual Flex components, to declare class
metadata, and to wrap scripting sections in an
MXML document.

MXMLC The Flex command line compiler,
included with the Flex SDK. Used by developers
who don’t use Flex Builder or as part of an auto-
mated build process.

object An instance of a software class. When
spelled with an uppercase initial character, it refers
to the ActionScript Object class, which is a
dynamic class that allows the developer to add arbi-
trary properties and methods at runtime.

OOP Object-Oriented Programming, a term that
refers both to a style of programming and a particu-
lar type of language that uses software objects to
encapsulate properties and behaviors of data entities.

Open Source A class of software that is offered in
source code format and is typically licensed freely.
Both the Flex SDK and the AIR SDK are open-
source software.

package A collection of ActionScript classes and/or
MXML components that are grouped together.
Unless using external code libraries, the source files
for all members of a package are stored in a single
folder within a Flex project.

PHP A free application server product that can
provide runtime services to Flex applications with a
variety of messaging protocols.

property A data element that is a member of a
class definition.

REST Representational State Transfer, a software
pattern for providing runtime services that use
generic XML as their message format.

RPC Remote Procedure Call, a software architec-
ture implemented in Flex applications with asyn-
chronous request/response communications. RPC
components in Flex include HTTPService,
WebService, and RemoteObject.

SDK Software Developers Kit. The Flex SDK and
AIR SDK are free software kits that allow developers
to create and deploy royalty-free applications on the
Web and desktop.

skinning The process of replacing the graphical
interface of a visual component.

SOAP The industry standard Web service architec-
ture that supports RPC communications with a
standardized XML-based messaging format.

static A type of class property or method for which
there is only one instance, regardless of how many
instances of the class are created. Static class mem-
bers can be referenced from the class definition
without having to instantiate the class.

transition An animation (effect) that’s triggered by
a change to the current view state.

trigger A component member that triggers an
effect, typically related to a component event.

Value Object A design pattern that’s used to
implement software classes representing data for a
single instance of a data entity. Also sometimes
referred to as a Transfer Object, Data Transfer
Object, or Bean.

view state An MXML-based declaration of an
alternate presentation of an application or compo-
nent. The current view state is determined by the
component instance’s currentView property.

927

Glossary

39_287644-bgloss.qxp 6/24/08 12:00 AM Page 927

WAMP An integrated server bundle for Windows
that includes Apache, PHP, and MySQL.

WSDL Web Service Description Language, an XML-
based language that describes a SOAP-based Web
service’s operations and other essential metadata.

XML Extensible Markup Language, the syntax
standard that is the model for MXML, one of the

core programming languages used in Flex applica-
tion development. XML files also are commonly
used for data storage and exchange and to store
software configuration settings.

XML namespace A label that uniquely identifies a
particular set of XML element and attribute names.

928

Glossary

39_287644-bgloss.qxp 6/24/08 12:00 AM Page 928

SYMBOLS
: (colon)

style selector separator, 286
in XML namespace prefixes, 97

. (dot), descendant accessor operator, 655

.. (double dot), descendant accessor operator, 655

. (period), in style name selectors, 288
{ } (braces)

denoting code blocks, 103
in MXML binding expressions, 124
in MXML property values, 404

& (ampersand)
XML entity for, 99
XML reserved character, 99

&& (ampersands), ActionScript operator, 105
‘ (apostrophe)

XML entity for, 100
XML reserved character, 99

* (asterisk)
ActionScript operator, 105
wildcard character, 103
in XML namespace prefixes, 132

$ (dollar sign)
in class names, 48
in file names, 48

“ (double quote)
literals in ActionScript statements, 182
XML entity for, 100
XML reserved character, 99

= (equal sign). in flashVars variables, 119
== (equal signs), ActionScript operator, 105
!= (exclamation point equal sign), ActionScript operator, 105
> (greater than)

ActionScript operator, 105
XML entity for, 100
XML reserved character, 99

< (less than)
ActionScript operator, 105
XML entity for, 99
XML reserved character, 99

- (minus sign), ActionScript operator, 105
% (percent sign), ActionScript operator, 105
+ (plus sign)

ActionScript operator, 105
expanding a tree structure, 170

(pound sign), in hexadecimal color values, 296
‘ (single quote)

literals in ActionScript statements, 182
XML entity for, 100
XML reserved character, 99

/ (slash), ActionScript operator, 105
_ (underscore)

in class names, 48
in file names, 48
Linkage class name, 309, 311

|| (vertical bars), ActionScript operator, 105

A
absolute layout, 121–122
absolute positions, 259–261, 269
acceptDragDrop() method, 432–434
access modifiers

methods, MXML components, 140–141
omitting, 137
variables, ActionScript, 103–104

<access> property, 768
Accordion container

creationPolicy property, 354–355
instantiating at runtime, 354–355
keyboard shortcuts, 369–370
nesting containers, 344
sliding headers, 369–370

AC_FL_RunContent() function, 80
AC_OETags.js file, 75, 80
acompc component compiler, 24
Action Message Format (AMF). See AMF (Action

Message Format)

929

40_287644-bindex.qxp 6/24/08 12:01 AM Page 929

ActionScript. See also MXML; MXML, combining with
ActionScript

{ } (braces), denoting code blocks, 103
* (asterisk), wildcard character, 103
access modifiers, 103–104
ActionScript operators, 104–105
applications on PDAs, 18
Boolean expressions, syntax, 103
case sensitivity, 103
on cell phones and PDAs, 18
class files, 65
code folding, 113–115
code management, 111–116
collapsing code sections, 113–115
conditional statements, 105–107
declaring objects, 6–7
definition, 4
ECMAScript 4th Edition standard, 102
else clause, 106
else if clause, 106
in external files, 112–115
file size, optimizing, 24
files, naming conventions, 109
within functions, 104
if keyword, 105–106
import statements, organizing, 116
initializing, 104
instantiating objects, 6–7
internal, 104
loop counters, 107
looping, 107
loose type declaration, 103
versus MXML, 5–7
operators, 104–105
optimizer tool, 24
Outline view, 111–112
post-colon data typing syntax, 103
private, 103
protected, 104
public, 103
scope, 103–104
for statement, 107
switch statements, 106–107
syntax, 103
type declaration, omitting, 103
var keyword, 103
variables, declaring, 103–105
while statements, 107

ActionScript 3.0 Language and Components, 26
ActionScript Class wizard, 205–208
ActionScript editor

file extension, 50
in Flex Builder, 50
Help, 58–59
“jumpy” performance, 59
opening files, 50
productivity features, 50
source code files, naming conventions, 65

Active Record component, 807
adapters, BlazeDS Message Service

BlazeDS Message Service, configuring, 744–745
ColdFusion Event Gateway Adapter, 740–741
definition, 740
JMS adapters, 740–741

AddChild element, 446–448
addData() method, 430
addedEffect trigger, 404
addEventListener() method

custom event classes, 211
custom events, 203
event listeners, creating, 192–194
event listeners, removing, 196
event name constants, 194–195
MouseEvent class, 194–195
removeEventListener() method, 196

addItem() method, 482
addItemAt() method, 482
addPopUp() method, 395–396
adl AIR debugger, 24
advanced constraints, 279–282
AdvancedDataGrid control, 498. See also DataGrid

control; DataGridColumn control;
TileList control

features, 555
grouping flat data, 558–560
GroupingCollection object, 558–560
GroupingField object, 558–560
hierarchical data display, 556–558
licensing, 5, 556

AeonGraphical.fla file, 307
afterLast property, 489
AIR (Adobe Integrated Runtime). See also Flash Player

acompc component compiler, 24
adl debugger, 24
amxmlc application compiler, 24
architecture, 896–897
Flex Builder projects, 46
installer, downloading, 897–898
installing/uninstalling on OS X, 899–900
installing/uninstalling on Windows, 898–899
for Linux, 895

930

IndexA

40_287644-bindex.qxp 6/24/08 12:01 AM Page 930

AIR (Adobe Integrated Runtime) applications
application descriptor file, 904–907
creating a Flex project, 900–903
debugging, 913–914
Flex versus Flash development, 9
HTML control, 914–917
HTML-based content, 914–919
HTMLLoader class, 914–917
installing, 911–912
PDF documents, presenting, 917–919
release version, packaging, 907–910
remoting channels, creating at runtime, 920–922
required AIR version, determining, 905
security certificates, 909–910
special features, 922
uninstalling, 912
WindowedApplication component, 919–920

Alert class
Alert selector, 383–385
cancelLabel property, 377
CSS style selectors, 383–385
iconClass argument, 380–382
importing, 374
noLabel property, 377
okLabel property, 377
show() method, 374, 381–383
.windowsStyles selector, 383–385
yesLabel property, 377

Alert class, dialog boxes
background styles, 383–385
blurring applications, 375
border styles, 383–385
button defaults, 378
button labels, 377–378
buttons, 376–378
displaying, 374–375
font styles, 383–385
graphical icons, 380–382
header text style, 383–385
modality, 375–376
title area style, 383–385
window events, 378–379
window styles, 383–385

Alert class, pop-up windows
background styles, 383–385
blurring applications, 375
border styles, 383–385
button defaults, 378

button labels, 377–378
buttons, 376–378
displaying, 374–375
font styles, 383–385
graphical icons, 380–382
header text style, 383–385
modality, 375–376
title area style, 383–385
window events, 378–379
window styles, 383–385

Alert selector, 383–385
aliases, MXML properties, 139
aligning. See also controls, layout; layout containers

controls, text entry, 230–231
horizontalAlign style, 262–264
labels, data entry forms, 592–593
objects, 262–264
text, 230–231
verticalAlign style, 262–264

allowFullScreen parameter, 79
allowMultipleSelections property, 509
allowScriptAccess parameter, 79
Alt key event, 188
alternatingItemColors property, 533
altKey property, 188
AMF (Action Message Format), 503, 720, 742–744
AMF0, 720
AMF3, 720
AMFPHP, PHP remoting

complex data, returning, 890–892
definition, 884
gateway.php file, 887
installing, 884–885
services, 885–890
services configuration file, 887–889
Web resources, 892

& entity, 99
ampersand (&)

XML entity for, 99
XML reserved character, 99

ampersands (&&), ActionScript operator, 105
amxmlc AIR application compiler, 24
anchoring objects, 270–274
animated cursor, 622
AnimateProperty effect, 402
animation

Flex versus Flash development, 7, 8
smoothing, 117

931

Index A

40_287644-bindex.qxp 6/24/08 12:01 AM Page 931

animation effects
AnimateProperty, 402
applying to components, 403–404
behaviors, 403–405. See also triggers
component properties, changing, 402
defining, in ActionScript, 408–409
definition, 402
easing functions, 424–426
effect classes, 403–404, 409
Iris, 402, 412–414
masking, 410
movement, redefining, 424–426
moving components, 402, 424–426
MP3 files, playing, 402
non-visual, 402
Pause, 402
pre-built classes, 402
Resize, 402
resizing components. See Iris effect; Resize effect;

Zoom effect
Rotate, 402, 418
runtime execution, 403
showing/hiding components. See wiping
sound effects, 402
SoundEffect, 402
transparency. See Dissolve effect; Fade effect
visual, 402
Zoom, 402, 412–414

animation effects, playing
in ActionScript, 408–409
Parallel effects, 420–421, 458–460
Sequence effects, 409, 420–421, 458–460
sequentially, 420, 421–423
simultaneously, 409, 420–421
suspendBackgroundProcessing property, 426
suspending movement, 426

animation effects, triggers. See also behaviors
addedEffect, 404
adding components, 404
createCompleteEffect, 404
creating components, 404
declaring, in ActionScript, 406–408
declaring, in MXML, 405–406
definition, 403
focusInEffect, 404
hideEffect, 404
keyboard focus, 404
mouse button events, 405
mouse pointer movement, 405
mouseDownEffect, 405

mouseUpEffect, 405
moveEffect, 405
moving components, 405
predefined, 404–405
removedEffect, 405
removing components, 405
resizeEffect, 405
resizing components, 405
rollOutEffect, 405
rollOverEffect, 405
showEffect, 405
triggering events, 404–405
visibility, component, 404. See also transparency; wiping

animation effects, tweening
Blur, 402, 410, 414–417
definition, 410
Dissolve, 410–412
Fade, 411–412
Glow, 402, 414–417
Move, 410, 417–419
Resize, 410
Rotate, 410
Zoom, 402, 412–414

animation effects, wiping. See also transitions
Dissolve, 402, 411–412
Fade, 402, 411–412
WipeDown, 402, 420
WipeLeft, 402, 420
WipeRight, 402, 420
WipeUp, 402, 420

anti-aliasing, 334–335
&apos entity, 100
apostrophe (‘)

XML entity for, 100
XML reserved character, 99

appearance, customizing. See CSS (Cascading Style Sheets);
skins; styles

Application container, 117, 120–122
application descriptor file, 904–907
Application ID, 47
application property, 117
application server, selecting, 47
applications. See also AIR (Adobe Integrated Runtime)

applications; deploying applications; projects
with AIR. See AIR (Adobe Integrated Runtime)
animation, smoothing, 117
with ASP.NET. See ASP.NET
automatic recompile, disabling, 74
background color, 79
on cell phones and PDAs, 18

932

IndexA

40_287644-bindex.qxp 6/24/08 12:01 AM Page 932

with ColdFusion. See ColdFusion
compiling, 24, 25–26
control bars, 117
creating a project, 68–71
debugging. See debugging applications
development tools. See Eclipse; Flex Builder
dimensions, controlling, 78, 119–120
displaying a message, 72–73
example. See “Hello World”
Flash documents, calling, 80
frame rate, 117
full screen display, enabling, 79
height, defining, 78, 119–120
HTML models. See html-template folder
with Java. See BlazeDS
for Java-based servers. See BlazeDS
layout, absolute, 121–122
layout, vertical and horizontal, 120–121
objects, positioning, 120–121
open source, 5
Output folder default, 69
overlapping visual objects, 121
page titles, 117
parameters, passing, 117, 118–119
with PHP. See PHP
print option, enabling, 79
profiling, 175–177
properties version, default, 76–79
running (Ctrl+F11), 73
scripting, allowing, 79
source file name, 78, 79
switching workspaces, 68
tools for creating, 4
transparency, 79
URL for, 117–118
visual appearance. See CSS (Cascading Style Sheets);

skins; styles
width, defining, 78, 119–120
z-index, 121
zoom option, enabling, 79

applications, navigation. See also menu controls; navigator
bar containers; navigator containers

classic Web, 342–343
first view (Home), 371
last view (End), 371
method, choosing, 343
next tab or header (Down Arrow, Right Arrow), 371
next view (Page Down), 371
previous tab or header (Up Arrow, Left Arrow), 371

previous view (Page Up), 371
view stack layers

“array out of bounds” error, 350
definition, 345
navigating back and forth, 349–352
number of, getting, 349

view stacks
accessing by index, 349
accessing by object reference, 352–354
active, changing, 349
active, index position, 349
binding issues, 350–351
creating in Design view, 345–348
creating in MXML, 344
explicit navigation, 352–354
panels, 345
panes, 345

views, nesting, 344–348
applications, with Flash Player

calling, 80
without JavaScript, 79–80
version, returning, 80
version, setting, 76–79

area charts, 563, 583–585
AreaChart control, 563, 583–585
arguments, event objects, 185
Array data type, styles, 296
array notation, E4X expressions, 654–655
“array out of bounds” error, 350
Array tags, 502
ArrayCollection class

advantages, 480–481
createCursor() method, 484, 489–495
declaring, 481
filterFunction property, 484–487
ICollectionView interface, 483–489
IList interface, 483
importing, 481
instantiating, 481
sort property, 487–489
SortField class, 487–489

ArrayCollection object, 482–483, 501, 502–503
ArrayCollections tags, 502
array-style syntax, 513–515
.as file extension, 50
AS folder, selecting, 811
AS package name, specifying, 811
AS-CFC Class wizard, 795
ASP.NET, installing, 826–827

933

Index A

40_287644-bindex.qxp 6/24/08 12:01 AM Page 933

ASP.NET, XML Web services
code generation tools, 828
code-behind module, 829–831
conformance rules, declaring, 830
creating, overview, 828–831
creating with Flex Builder

code behind class, 839–843
configuration file, 839
deleting rows from a database, 840
files generated, 838–840
filtering returned data, 839
FindAll() operation, 839–843
Flex projects, creating, 832–833
Flex/ASP.NET applications, creating, 836–838
gateway file, 838–839
generated code, 838–843
Insert() operation, 840–843
inserting rows in a database, 840
.NET class, 839
prerequisites, 831–832
Remote() operation, 840–843
sorting returned data, 839
SQL Server 2005 Express, 832
SQL Server database connection, 833–835
Update() operation, 839–843
updating a database, 839
web.config file, 839

creating with Visual Web Developer, 844–848
exchanging data with

.NET DataSet, returning, 851
returning data from .NET, 850–853
sample files, setting up, 849–850
value object array, returning, 851–853
value objects, passing to .NET service operations,

854–855
gateway file, creating, 828–829
namespace URI, declaring, 830
.NET assemblies, 829–831
operations, declaring, 831
service class, declaring, 830
testing, 826

asterisk (*)
ActionScript operator, 105
wildcard character, 103
in XML namespace prefixes, 132

asynchronous communication, 626
AsyncToken class, 634–637
attributes, order of declaration, 286

B
backgrounds

applications, 79
dialog boxes, 383–385
Label control, 226
pie charts, 574–575
pop-up windows, 383–385
text, 226
Text control, 226

bar charts, 563, 580–582
BarChart control, 563, 580–582
base class. See superclass
base state, 438, 445
Bean and DAO components, 807
beans. See value objects
beforeFirst property, 489
behaviors, 403–405. See also triggers
bgcolor parameter, 79
binary distribution, BlazeDS, 704–705
bin-debug folder, 69, 81
binding expressions

accessor method properties, 475–477
Binding tag, 125
broadcasting expression values, 124
List controls data provider, 502
listening for changes, 124
longhand ActionScript style, 124
longhand MXML style, 125
making expressions bindable, 125–126
Model tag, 466
purpose of, 124
shorthand MXML style, 124
syntax styles, 124–125
value object properties, 473–474
in view states, 445

Binding tag, 125
bin-release folder, 69
bitmap graphics, for skins, 303–306. See also skins
BitMapFill class, 574–575
.bkpt file extension, 166
BlazeDS

application server. See Tomcat
binary distribution, 704–705
creating Flex projects, 709–711
downloading, 704–705
features, 703
licensing, 702
Proxy Service, 703, 711–719
sample applications, 707–708
sample database, 707

934

IndexB

40_287644-bindex.qxp 6/24/08 12:01 AM Page 934

starting in OS X, 706–707
starting in Windows, 705–706
supported platforms, 703
Tomcat, 705–707, 713
turnkey distribution, 704–705
versions, 704–705

BlazeDS, RemoteObject component
calling remote methods, 725–726
instantiating, 725
passing arguments to remote methods, 731–733
purpose of, 725
results, handling, 726–731

BlazeDS, Remoting Service
AMF (Action Message Format), 719–720
definition, 703
destinations, configuring, 723–724
Java classes, creating and exposing, 720–723
passing data, ActionScript to Java, 733–737
purpose of, 719–720
value object classes, 734–737

BlazeDS Message Service
adapters, 740–741
ColdFusion Event Gateway Adapter, 740–741
configuring, 742–746
consumers, 740–741
definition, 703
description, 740–741
filtering messages, 755–750
Flex projects, 746–754
JMS adapter, 740–741
producers, 740–741, 747–748
publish/subscribe messaging, 740–741
TraceTarget component, 760–761
tracing message traffic, 760–761

Blur effect, 402, 410, 414–417
blurring applications, 375
body property, 747–748
<body> section, 76–79
bold text, 230–231, 316
bookmark property, 493–496
bookmarking data, 491–493
books. See documentation; Help; publications; Web resources
Boolean expressions, syntax, 103
borderAlpha style, 266–267
borders

dialog boxes, 383–385
pop-up windows, 383–385
text, 226

bottom property, 273, 280–282
bound arguments, 780–781
bound CSS declaration, 302–303

bound parameters, 640–641, 695–696
Box container

absolute positions, 259–261
aligning objects, 262–264
Canvas, 256, 259–261
HBox, 256–259
horizontal layout, 256–259
horizontalAlign style, 262–264
horizontalGap style, 262–264
nesting objects, 256, 259–261
overlapping objects, 260–261
padding objects, 262–264
paddingBottom style, 262–264
paddingLeft style, 262–264
paddingRight style, 262–264
paddingTop style, 262–264
spacing objects, 262–264
styles, 261–264
VBox, 256–259
vertical layout, 256–259
verticalAlign style, 262–264
verticalGap style, 262–264

braces ({ })
denoting code blocks, 103
in MXML binding expressions, 124
in MXML property values, 404

breakpoints. See debugging applications, breakpoints
Breakpoints view, 165–169
bringToFront() method, 395
brittle code, 10
broadcasting expression values, 124
bubble charts, 563
BubbleChart control, 563
bubbles property, 196–198
bubbling events. See event bubbling
build path, 147–148
Building and Deploying Flex Applications, 24, 26
bulleted lists, 230
Button control, 356
Button controls. See controls, Button
button labels, 377–378
ButtonBar container, 356
buttonDown property, 189
buttons. See also controls, Button

defaults, 378
dialog boxes, 376–378
icons, 236–237
labels, 377–378
pop-up, 388–391
pop-up windows, 376–378
PopUpButton control, 388–391

935

Index B

40_287644-bindex.qxp 6/24/08 12:01 AM Page 935

C
Cairngorm microarchitecture, 637
calendars

date pickers, 499
interactive, 243–244
pop-up, 499
selecting dates from, 243–244

camel-case names, 285
cancelLabel property, 377
candlestick charts, 563, 575–579
CandleStickChart control, 563
CandleStickSeries object, 576–579
Canvas, 256, 259–261
Canvas layout style, 256–259
cascading menus, 364–365
Cascading Style Sheets (CSS). See CSS (Cascading Style

Sheets)
case sensitivity

ActionScript, 103
CSS type selectors, 286
MXML, versus XML, 95
sorting data collections, 487
style name selectors, 288
type selectors, 286
XML namespaces, 97

CDATA blocks
inserting in source files (Ctrl+Shift+D), 108
MXML, combining with ActionScript, 108
MXML, versus XML, 98–99
text display, 222

centerPopUp() method, 395
centerRadius property, 570–572
CFC Value Object wizard

Active Record component, 807
Bean and DAO components, 807
CFC file names, specifying, 810
CFC folder location, specifying, 809
CFC package name, specifying, 809
definition, 795
design patterns, 807, 809
AS folder, selecting, 811
generated value object classes, 811–817
LifeCycle Data Services Assembler components, 807
AS package name, specifying, 811
preparing for, 807–809
primary key, specifying, 809
property scope, setting, 810
running, 809–811

CFC Value Object wizard, gateway CFC functions
calling, 820–823
delete(), 817, 818
get(), 817
getAll(), 817, 819
getAllAsQuery(), 817
save(), 817, 818

CFC-AS Class wizard, 795
<cfcomponent> tag, 783–784
CFCs

for Flex, creating, 769–770
with RemoteObject component, 770–773
source property, setting, 771

CFCs, functions
bound arguments, 780–781
calling, 765, 772–773
custom exceptions, 790–791
explicit arguments, 780
fault event, 789–791
named arguments, 781–782
passing arguments to, 780–782
passing value objects, 786–787
receiving value objects, 788–789
RemoteObject faults, 789–791
results, handling

binding expressions, 773–774
lastResult property, 773–774
from multiple functions, 778–779
result event, 774–777, 778–779

CFEclipse, 32
CFML (ColdFusion Markup Language), 770
<cfproperty> tag, 783–784
change event, 249, 509–511
<channel> property, 768
channels, configuring

BlazeDS Message Service, 742–744
ColdFusion, 768

character spacing, 316
chart controls. See also Flex Charting components

AreaChart, 563, 583–585
BarChart, 563, 580–582
BubbleChart, 563
CandleStickChart, 563
CandleStickSeries object, 576–579
chart types, 563–564
chartable values, 576–579
closeField property, 576–579
ColumnChart, 563, 580–582
data series, 563
declaring, 564–566
dimensions, 564–566

936

IndexC

40_287644-bindex.qxp 6/24/08 12:01 AM Page 936

free trial, 562
highField property, 576–579
HLOCChart, 564
HLOCSeries object, 576–579
licensing, 562
LineChart, 564, 583–585
lowField property, 576–579
openField property, 576–579
PlotChart, 564
series classes, 563–564. See also specific classes

chart controls, PieChart
backgrounds, 574–575
BitMapFill class, 574–575
centerRadius property, 570–572
concentric circles, 572–573
data provider, 566
DataSeries class, 566–568
definition, 564
doughnut charts, 570–572
explodeRadius property, 568–570
exploding the pie, 568–570
fills, 574–575
fills property, 574–575
LinearGradient class, 574–575
multiple data series, 572–573
perWedgeExplodeRadius property, 569–570
PieSeries class, 568–570, 574–575
RadialGradient class, 574–575
SolidColor class, 574–575
wedge labels, 566–568

chartable values, 576–579
CheckBox control, 238–239
checkboxes, 238–239
child class. See subclass
class files, ActionScript, 65
class selectors. See style name selectors
classes. See also specific classes

naming conventions, 127
non-visual, 101–102

clearing breakpoints, 163–164, 166
client/server communication. See HTTPService

component, sending/receiving data;
SOAP-based Web services

clone() method, overriding, 208–209
cloning event objects, 208–209
closeField property, 576–579
code, locating, 51
code completion

enabling (Ctrl+Spacebar), 211
external style sheets, 292

MouseEvent class, 195
suggestions missing, 186

code management, 9
code points, 328
ColdFusion

CFML (ColdFusion Markup Language), 770
data conversion, to ActionScript, 769–770
data type verification, 770
error messages, 790
Flex Builder, 47
history of, 763–764
HTTPService, 626
passwords, 771
RDS security, 771
returntype attribute, 770
“Unable to invoke CFC...” error messages, 790

ColdFusion, Flash Remoting
<access> property, 768
calling CFC functions, 765
channel, configuring, 768
<channel> property, 768
configuring, 767–768
definition, 764
destinations, configuring, 767–768
Flex function calls, enabling, 768
Flex project, creating, 765–767
<property-case> property, 768
<source> property, 768
WEB-INF folder, 767

ColdFusion, value objects. See also CFC Value Object wizard
ActionScript version, 784–785
<cfcomponent> tag, 783–784
<cfproperty> tag, 783–784
creating, 783–784
passing to CFC functions, 788–789
receiving from CFC functions, 786–787
returning to Flex, 785–786

ColdFusion components (CFCs). See CFCs
ColdFusion Event Gateway Adapter, 740–741
ColdFusion Extensions for Flex Builder. See also CFC Value

Object wizard
AS-CFC Class wizard, 795
CFC-AS Class wizard, 795
features, 794–795
installing, 795–797
RDS Dataview, 794, 800–803
RDS Fileview, 794
RDS (Remote Development Service), 794
RDS servers, configuring, 797–799
Services Browser, 795
Visual Query Builder, 795, 804–806

937

Index C

40_287644-bindex.qxp 6/24/08 12:01 AM Page 937

ColdFusion Extensions for Flex Builder, data sources
connecting to, 800–803
synonyms, 802
tables, 803–804

ColdFusion Markup Language (CFML), 770
colon (:)

style selector separator, 286
in XML namespace prefixes, 97

color
hexadecimal codes for, 296
named, 296
setting with styles, 296
text, 316

color pickers, 499
color style, 316
ColorPicker control, 499
column charts, 563, 580–582
column layout, 279–282
column property, 533
ColumnChart control, 563, 580–582
columns, database, 464
columns, grouping list items, 498, 500

See also AdvancedDataGrid control
See also DataGrid control
See also DataGridColumn control
See also TileList control

ComboBox control
bindable, 528–531
versus DataGrid, 500
description, 498
drag-and-drop operations, 426–429
editable, 526–528
initial value, setting, 528–531
prompt property, 526–528

command buttons, 235
Command design pattern, 637
Command key event, 188
commandKey property, 188
command-line tools, 24
comments in XML objects, ignoring, 649
comparison operators, 105
compc component compiler, 24
compiled style sheets, 297–299. See also CSS (Cascading

Style Sheets)
compiling

acompc command-line compiler, 24
AIR applications, 24
AIR components, 24
amxmlc command-line compiler, 24
automatic recompile, disabling, 74

compc command-line compiler, 24
fcsh Flex Compiler Shell, 24
Flex applications, 24, 25–26
Flex components, 24
MXML into ActionScript, 92–95
mxmlc command-line compiler, 24, 25–26

component item editors. See item editors, component
component item renderers, 521–523, 541
component libraries, MXML

adding to project build path, 147–148
copying, 148
creating, 142–146
definition, 142
folder structure, creating, 145–146
libs folder, 148
running applications from, 148

components. See also controls; MXML, components; specific
components

appearances. See CSS (Cascading Style Sheets); skins; styles
arranging. See controls, layout; layout; layout containers
drag-and-drop, 53
faceless, 101–102
moving, 402, 424–426
positioning. See controls, layout; layout; layout containers
resizing. See Iris effect; Resize effect; Zoom effect
showing/hiding. See transitions; transparency; wiping

concurrency, 622, 625
concurrency property, setting, 625
condenseWhite property, 223–224
conditional statements, 105–107
Confirm Perspective Switch dialog box, 169–170
Console view

configuring, 154
tracing messages, 156–157
word wrapping, 154

constants
definition, 11
making bindable, 139
naming conventions, 139
properties, MXML components, 139

constraint properties, 270–273
constraint-based layout. See layout containers, constraint-

based layout
constraintColumns property, 279–282
constraintRows property, 279–282
Consumer component

filtering messages, 755–760
receiving and processing messages, 748–751
selector property, 755
subtopic property, 755–760

938

IndexC

40_287644-bindex.qxp 6/24/08 12:01 AM Page 938

consumers, 740–741. See also Consumer component
container classes, 217
containers. See layout containers; navigator containers
containership, 100–101. See also Application container
contract-based programming, 15
control bars, 117
control classes, 217
ControlBar container

absolute positions, 269
corner styles, 268–269
creating a footer, 268–269
horizontal layout, 269
purpose of, 268
vertical layout, 269

controlBar property, 117
controls. See also buttons; components; specific controls

API (application programming interface), 216
appearances. See CSS (Cascading Style Sheets); skins;

styles
arranging. See controls, layout; layout; layout containers
component instance name, 218
CSS class inherited from, 218
declarative instantiation, 216
definition, 255
grouping. See layout containers
height and width, 218–219
instantiating, 216
members, 216
positioning. See controls, layout; layout; layout containers
programmatic instantiation, 216
properties, setting, 216–217. See also specific controls
resizing. See Iris effect; Resize effect; Zoom effect
rotating, 330–333
setStyle() method, 217
showing/hiding. See transitions; transparency; wiping
styles, setting, 216–217
tool tips, enabling, 219
user interaction, enabling, 218
x/y coordinates, 219

controls, Button
button icons, 236–237
CheckBox control, 238–239
checkboxes, 238–239
as command button, 235
default behavior, 235
description, 235
hyperlinked buttons, 237–238
inheritance hierarchy, 235
label position, 237
labelPlacement property, 237

LinkButton control, 237–238
radio buttons, 239–240
RadioButton controls, 239–240
RadioButtonGroup control, 239–240
toggle buttons, 235–236
transparency, 237
UML diagram, 235

controls, data entry. See also controls, interactive; controls,
text entry

DateChooser, 243–244
DateField, 243–244
dates, 242–244
dayNames property, 244
disabledDays property, 244
disabledRanges property, 244
incrementing/decrementing numeric values, 241–242
interactive calendar, 243–244
maxChars property, 242
maximum property, 241–242
maxYear property, 244
minimum property, 241–242
minYear property, 244
numeric data, 241–242
NumericStepper, 241–242
selectableRange property, 244
selectDate property, 244
showToday property, 244
stepSize property, 242

controls, Image
changing images at runtime, 252
embedding images, 251–252
image formats supported, 249
load() method, 252
loading images at runtime, 249–250
resizing images, 250–251
.swf files, loading, 249

controls, interactive. See also controls, Button; controls,
data entry; controls, text entry

change event, 249
HScrollBar, 245–246
HSlider, 247–249
labels property, 248
maximum property, 247
maxScrollPosition property, 245–246
minimum property, 247
minScrollPosition property, 245–246
pageSize property, 245–246
scroll event, 245–246
ScrollBar, 245–246
scrollbars, 245–246

939

Index C

40_287644-bindex.qxp 6/24/08 12:01 AM Page 939

controls, interactive (continued)
scrollPosition property, 245–246
Slider, 247–249
Slider events, 249
snapInterval property, 247
thumbCount property, 247
thumbDrag event, 249
thumbPress event, 249
thumbRelease event, 249
tickInterval property, 248
tickValues property, 248
value property, 247
values property, 247
VScrollBar, 245–246
VSlider, 247–249

controls, layout
Height property, 232–233
horizontal rules, 232–233
HRule, 232–233
shadowColor property, 232–233
Spacer, 233–234
spacing objects, 233–234
strokeColor property, 232–233
strokeWidth property, 232–233
vertical rules, 232–233
VRule, 232–233
Width property, 232–233

controls, text display
background color and images, 226
borders, 226
CDATA blocks, 222
condenseWhite property, 223–224
htmlText property, 220–223
initialization, 221–222
Label, 219, 224–225, 226
literal HTML markup, 220–223
scrollbars, 226
selectable property, 225
selecting text, 225
simple strings, 220
Text, 219, 225–226
text property, 220
truncateToFit property, 224–225
truncation, 224–225
white space, normalizing, 223–224
wrapping text, 225–226
XML entities, 222

controls, text entry. See also controls, data entry
alignment, 230–231
bold, 230–231
bulleted lists, 230
displayAsPassword property, 227
editable property, 227
editing, enabling, 227
escaping restricted characters, 228
fonts, 230–231
formatting text, 230–231
horizontal scroll position, 227
horizontalScrollPosition property, 227
hyperlinks, 230
initialization, 221–222
italics, 230–231
length, in characters, 227
length, maximum, 228
length property, 227
maxChars property, 228
multiple lines, 219, 229–230
passwords, masking, 227
restrict property, 228
restricting input characters, 228
RichTextEditor, 219, 230–231
selected characters, position of, 228
selecting text, 228–229
selectionBeginIndex property, 228
selectionEndIndex property, 228
single line, 219, 226–229
TextArea, 219, 229–230
TextInput, 219, 226–229
titles, 230–231
underlining, 230–231
vertical scrolling, 229–230
wrapping text, 219, 229–230

controls, UIComponent class
container classes, 217
control classes, 217
currentState property, 218
enabled property, 218
height property, 218
id property, 218
maxHeight property, 218
maxWidth property, 218
minHeight property, 218
minWidth property, 218
percentHeight property, 218

940

IndexC

40_287644-bindex.qxp 6/24/08 12:01 AM Page 940

percentWidth property, 218
properties, 218–219
states property, 218
styleName property, 218
toolTip property, 219
transitions property, 219
UML diagram, 217
visible property, 219
width property, 219
x property, 219
y property, 219

ControlVersion() function, 80
corner styles, 267–269
createCompleteEffect trigger, 404
createCursor() method, 484, 489–495
createPopUp() method, 395
creationPolicy property, 354–355
credit card data, validating, 600
CreditCardValidator class, 600
cross-domain policy issues, 641–643
CSS (Cascading Style Sheets). See also skins; styles

applying to single objects, 285–286
Array data type, 296
bold text, 316
color style, 316
compiling, 297–298
fontAntiAliasType style, 316
fontFamily style, 316, 319
fontGridType style, 316
fonts styles, 316. See also fonts
fontSharpness style, 316
fontSize style, 316
fontStyle style, 316
fontThickness style, 316
fontWeight style, 316
global application, 289
history management, 75
html-template folder, template files, 75
italic text, 316
kerning style, 316
letterSpacing style, 316
loading, 298–299
scope, determining. See CSS (Cascading Style Sheets),

style selectors
src:local style, 319, 321–322
src:url style, 319
style sheets, 284–286
styles, 284–285, 296
text spacing, 316
textDecoration style, 316

underlined text, 316
W3C recommendation, 283
Web resources, 283

CSS (Cascading Style Sheets), declaring
embedded, 289–290
external, 291–295, 297
inline, 285–286

CSS (Cascading Style Sheets), runtime control
bound CSS declaration, 302–303
CSSStyleDeclaration class, 301–303
dot syntax, 297
getStyle() method, 297–298
getting style information, 297–298
setStyle() method, 297–298, 303
setStyleDeclaration() method, 301–303
setting styles, 297–298
style selectors, modifying, 301–303
StyleManager class, 301–303

CSS (Cascading Style Sheets), style selectors
in the Alert class, 383–385
Alert type selector, 383
class selectors. See style name selectors
global, 289
purpose of, 286
runtime modification, 301–303
style name selectors, 288–289, 383
type selectors, 286–288, 383
.windowsStyles selector, 383

CSSStyleDeclaration class, 301–303
Ctrl key event, 188
ctrlKey property, 188
currency data, validating, 600
currency values, formatting, 335
CurrencyFormatter class, 335
CurrencyValidator class, 600
current property, 490
currentState property, 218, 444–445
custom event classes

available, listing, 211
clone() method, overriding, 208–209
cloning event objects, 208–209
code sample, 208, 210
creating, 205–208
dispatching, 209–210
event name constants, declaring, 207
handling, 211
public properties, declaring, 207
purpose of, 204
requirements, 204–205

941

Index C

40_287644-bindex.qxp 6/24/08 12:01 AM Page 941

custom events
adding to MXML components, 200–201
declaring, 199–201
dispatching, 201–203
event class, specifying, 199
[Event] tag, 199–201
handling, 203–204
<Metadata> tag, 199–201
name attribute, 199–201
naming conventions, 199
purpose of, 198
sample code, 198
sharing information, 199
testing, 200–201
TextEvent class, 200
type attribute, 199–201

D
data, moving between objects. See binding expressions
data collections. See also data models

accessing data, 482, 483
adding data, 482, 483
addItem() method, 482
addItemAt() method, 482
advantages, 480
appending data, 482
ArrayCollection object, 482–483
clearing all data, 482
code sample, 483
data access, 482–483
definition, 480
filtering data, 484–487
getItemAt() method, 482
getting data, 482
length property, 482
managed data, 482
number of items, getting, 482
purpose of, 489
removeAll() method, 482
removeItemAt() method, 482
removing data, 482, 483
replacing data, 482
runtime data management, 482–483
setItemAt() method, 482
source data, specifying, 481–482
stateful applications, 484
XMLListCollection class, 481

data collections, ArrayCollection class
advantages, 480–481
createCursor() method, 484, 489–495
declaring, 481
filterFunction property, 484–487
ICollectionView interface, 483–489
IList interface, 483
importing, 481
instantiating, 481
sort property, 487–489
SortField class, 487–489

data collections, data cursors. See also IViewCursor
interface

bookmarking data, 491–493
collecting data, 489–491
finding data, 491–493
initial position, 490
traversing data, 489–491

data collections, IViewCursor interface
afterLast property, 489
beforeFirst property, 489
bookmark property, 493–496
current property, 490
findAny() method, 491–493
findFirst() method, 491–493
findLast() method, 491–493
moveNext() method, 490
movePrevious() method, 490
purpose of, 489
seek() method, 493–496

data cursors
bookmarking data, 491–493
collecting data, 489–491
finding data, 491–493
initial position, 490
traversing data, 489–491

data entry controls. See controls, data entry; controls, text
entry

data entry forms. See also Form container
column layout, 588–589
default button behavior, 593–595
definition, 588
headings, 588–589, 589–591
labels, aligning, 592–593
layout, 593
nesting components, 588–589
vertical versus horizontal, 593
wrapping, 593

942

IndexD

40_287644-bindex.qxp 6/24/08 12:01 AM Page 942

data entry forms, custom
adding controls, 597–599
creating, 595–597

data entry forms, sharing data with applications
dispatching custom events, 611–617
modeling Form data, 610–611
value objects, 610–611

data entry forms, validating data entry
with ActionScript, 604–607
automatically, 601–603
credit card data, 600
currency data, 600
dates, 600
e-mail addresses, 600
error messages, 608–610
manually, 617
numerical data, 600
phone numbers, 600
programmatically, 604–607
regular expressions, 600
rules, 608–610
social security numbers, 600
string values, 600
trigger events, disabling, 604
trigger events, enabling, 601–603
validator objects

creating, 600–601
triggering, individual, 604–606
triggering, multiple, 606–607

ZIP codes, 600
data grids, 498–499
data management, at runtime

accessing data, 482, 483
adding data, 482, 483
appending data, 482
clearing all data, 482
data access, 482–483
getting data, 482
number of items, getting, 482
removing data, 482, 483
replacing data, 482

data models, creating. See also data collections; value objects
columns, 464
database table structure, 464
declaring data objects, 465, 466
Model tag

binding expressions, 466
creating data objects, 465
importing data, 467–468
properties, filling dynamically, 465–466
pros and cons, 467

relational databases, 464
rows, 464

data presentation
interactive charts. See chart controls
from relational databases. See AdvancedDataGrid

control
data providers

List controls
Array tags, 502
ArrayCollection object, 501, 502–503
ArrayCollections tags, 502
binding expressions, 502
dynamic, 502–503
File class, 503
FileStream class, 503
hard-coded, 500–502
HTTPService class, 503
local data, AIR applications, 503
Model tags, 502
RemoteObject class, 503
RPC components, 503
WebService class, 503

menus, 362–363
navigator bar containers

arrays, 356–358
ViewStacks, 359–360

data series, 563
data transfer objects. See value objects
data types, styles, 296
Data Visualization Toolkit, 4
databases. See also data collections; data models

columns, 464
deleting rows, 840
inserting rows, 840
MySQL, PHP, 870–874
relational, 464
SQL Server database connection, 833–835
table structure, 464
updating, 839

dataChange event, 509, 541–543
dataField property, 535–537
dataForFormat() method, 432–434
DataGrid control. See also AdvancedDataGrid control;

DataGridColumn control; TileList control
built-in features, 532
versus ComboBox, 500
definition, 498
drag-and-drop operations, 426–429
inheritance hierarchy, 531–532
making editable, 543–545
providing data to, 532

943

Index D

40_287644-bindex.qxp 6/24/08 12:01 AM Page 943

DataGrid control, column display
alternatingItemColors property, 533
column property, 533
customizing, 535–537
dataField property, 535–537
DataGridColumn control, 535–537, 537–541
debugging custom formatting, 540–541
default, 533–535
dynamic data fields, 539–540
headertext property, 535–537
height property, 533
labelFunction property, 537–541
labels, 537–541
number of, 535–537
order of, 535–537
rowCount property, 533
trace() statement, 540–541
width property, 533, 535–537

DataGridColumn control
custom column display, 535–537, 537–541
item editors, 543–551
item renderers, 541–543

dataProvider property, 356–358
DataSeries class

labelField property, 566–568
labelFunction property, 566–568
.labelPosition style, 566–568

date values formatting, 335, 336–337
DateChooser, 243–244
DateField control, 243–244
DateFields control, 499
DateFormatter class, 335, 336–337
dates

user input, 242–244
validating data entry, 600

DateValidator class, 600
dayNames property, 244
debug() method, 159
debug release, 69
Debug view, 173–174
debugging

AIR applications, 913–914
custom formatting, 540–541
event objects, 189

debugging applications. See also profiling applications
debug version of the application, 152
Debug view, 173–174
Disconnect tool, 174
Flash Player applications. See Flash Player, Debug version
Flex Builder views for, 54

prerequisites, 152
profiling tools, 151
Resume tool, 173
resuming execution, 54, 173
running in debug mode, 152–153
Step Into tool, 174
Step Over tool, 174
Step Return tool, 174
stepping through code, 54, 174
Suspend tool, 174
Terminate tool, 174
terminating a session (Ctrl + F2, Cmd + 2), 154–155, 174

debugging applications, breakpoints
Breakpoints view, 54, 165–169
clearing, 163–164, 166
Confirm Perspective Switch dialog box, 169–170
definition, 151
displaying for selected targets, 166
exporting, 166–168
expressions, 54, 172–173
Expressions view, 54, 172–173
Go to File for Breakpoint tool, 166
ignoring, 166
importing, 168–169
inside functions, 171
opening current file, 166
Remove All tool, 166
Remove tool, 166
setting, 163–164
Show Breakpoints tool, 166
Skip All Breakpoints tool, 166
suspending execution, 168–169
switching to Debugging perspective, 169–170
variables, inspecting, 54, 170–172
Variables view, 54, 170–172

debugging applications, tracing information
Console view

configuring, 154
definition, 54
tracing messages, 156–157
word wrapping, 154

Logging API. See also trace() method
debug() method, 159
definition, 158
error() method, 159
fatal() method, 159
fieldSeparator property, 161–162
getLogger() method, 158–159
ILogger interface, 158
includeCategory property, 161–162

944

IndexD

40_287644-bindex.qxp 6/24/08 12:01 AM Page 944

includeDate property, 161–162
includeLevel property, 161–162
includeTime property, 161–162
info() method, 159
isDebug() method, 159
isError() method, 159
isFatal() method, 159
isInfo() method, 159
isWarn() method, 159
level property, 161–162
Log class, 158–160
log() method, 159
Logger objects, 158–159
LogLogger class, 158
messages, configuring, 161–162
messages, logging, 159–160
self-logging components, 160
severity levels, 159–160
TraceTarget class, 161–162
tracing targets, 161–162
warn() method, 159

over networks, 151
trace() method. See also Logging API

definition, 151
description, 156
file size, effect on, 156
flashlog.txt file, 157–158
messages, logging, 157, 158–163
messages, tracing, 156–157
mm.cfg file, 157–158
performance, effect on, 156
purpose of, 155
in release versions, 156

TraceTarget tag, 151
Debugging perspective, switching to, 169–170
declarations, searching for, 63. See also objects, declaring;

variables, declaring
declarative instantiation, 216
declaring. See also CSS (Cascading Style Sheets), declaring;

instantiating
ArrayCollection class, 481
attributes, order of, 286
chart controls, 564–566
custom events, 199–201
data objects, 465, 466
event name constants, 207
objects, 6–7
PopUpButton control, 388–389
public properties, 207

style name selectors, 289
triggers, in ActionScript, 406–408
triggers, in MXML, 405–406
Web service operations, 831

deferred instantiation, 354–355
delete() function

gateway CFC, 817, 818
PHP, 883

DELETE() method, 624
deleting data

gateway CFC, 817, 818
PHP, 883

deploying applications, debug version, 80
deploying applications, release version

creating, 80–81
deploying, 83–84
integrating into Web pages, 84–86
integrating with Dreamweaver CS3, 86–90
testing, 82–83

derived inheritance. See subclass
design patterns, CFC Value Object wizard, 807, 809
Design view, MXML editor, 49
destination component, 747–748
destinations

BlazeDS Message Service, 744–746
BlazeDS Proxy Service, 713–719
BlazeDS Remoting Service, 723–724
ColdFusion, Flash Remoting, 767–768
named, 717–719

Developing Flex Applications, 26
development tools. See Eclipse; Flex Builder
device fonts. See fonts, device
dialog boxes. See also Alert class, dialog boxes; Panel

container; TitleWindow container
background styles, 383–385
blurring applications, 375
border styles, 383–385
button defaults, 378
button labels, 377–378
buttons, 376–378
displaying, 374–375
font styles, 383–385
graphical icons, 380–382
header text style, 383–385
modality, 375–376
title area style, 383–385
window events, 378–379
window styles, 383–385

dimensions, controlling, 119–120

945

Index D

40_287644-bindex.qxp 6/24/08 12:01 AM Page 945

direction property, 360–361
disabledDays property, 244
disabledRanges property, 244
Disconnect tool, 174
dispatching

custom event classes, 209–210
custom events, 201–203

displayAsPassword property, 227
displaying a message, 72–73
Dissolve effect, 402, 410–412
distributions, Eclipse, 33–34
docking/undocking Eclipse views, 39–40
document root elements, MXML versus XML, 95
documentation. See also Help; publications; Web resources

AMF, 719–720
AMF (Action Message Format), 720
event objects, 189
events, 180–181
Flex, 26

dollar sign ($)
in class names, 48
in file names, 48

dot (.), descendant accessor operator, 655
dot syntax

CSS (Cascading Style Sheets), 297
E4X expressions, 653–654
selecting list items, 513–515

double dot (..), descendant accessor operator, 655
double quote (“)

literals in ActionScript statements, 182
XML entity for, 100
XML reserved character, 99

doubleClickEnabled property, 509
doughnut charts, 570–572
drag-and-drop operations

approaches to, 426
ComboBox controls, 426–429
DataGrid controls, 426–429
dragEnabled property, 427–429
drop target indicator, 429
dropEnabled property, 427–429
dropMoveEnabled property, 427–429
HorizontalList controls, 427–429
List controls, 426–429
List-based controls, 426–429
purpose of, 426
TitleList controls, 426–429

drag-and-drop operations, custom
acceptDragDrop() method, 432–434
addData() method, 430
dataForFormat() method, 432–434
drag origin, detecting, 435
dragDrop event, 432–434
dragEnter event, 432–434
DragManager class, 429
DragSource class, 429
drop target, identifying, 435
explicit handling, 435
initiating a drag-and-drop operation, 429–430
proxy image, creating, 430–431
sample code, 433–434

dragDrop event, 432–434
dragEnabled property, 427–429
dragEnter event, 432–434
DragManager class, 429
DragSource class, 429
Dreamweaver, integrating Flex applications, 86–90
drop shadow, 266
drop target indicator, 429
drop-down lists, 498–499. See also ComboBox control
dropEnabled property, 427–429
drop-in item editors, 545–546
drop-in item renderers, 516–518, 541
dropMoveEnabled property, 427–429
dynamic data types, 137
Dynamic Help, 58–59

E
E4X

definition, 652
expressions, 653
sample code, 652

E4X, extracting XML data
. (dot), descendant accessor operator, 655
.. (double dot), descendant accessor operator, 655
array notation, 654–655
from child elements, 655
comparing values, 657
dot notation, 653–654
by element name, 655
filtering with predicate expressions, 656–660
results, checking for, 655
sample code, 657–658, 659–660
typecasting, 657

946

IndexE

40_287644-bindex.qxp 6/24/08 12:01 AM Page 946

E4X, modifying XML data
adding elements and attributes, 661
changing existing values, 660
code sample, 662–665
deleting elements and attributes, 661–662

easing functions, 424–426
Eclipse

definition, 32
distributions, 33–34
getting, 33
installing, 33–36
licensing, 35
plug-ins, 32, 34–36. See also Flex Builder
purpose of, 32
workbench, 32

Eclipse, configuring
Eclipse preferences dialog box, 43
fonts, 44
Web browser, selecting, 44–45

Eclipse, search tools
based on code model, 62–65
for declarations, 63
File Search, 61–62
Find in Files, 61–62
Find/Replace, 60
Mark Occurrences feature, 63
refactoring source code files, 65
refactoring variable names (Ctrl+Alt+R), 63–64
for references, 62
variables, highlighting, 63

Eclipse, workspace
default folder, 37
definition, 36
editors. See also ActionScript editor; MXML, editor

definition, 41
Help, 58
multiple, opening, 41
types of, 41

projects, 38
purpose of, 38
selecting, 37
switching, 38
views

arranging. See perspectives
definition, 38
docking/undocking, 39–40
maximizing/restoring, 40
perspectives, 42–43
selecting, 39

Eclipse preferences dialog box, 43

Eclipse Public License (EPL) Version 1, 35
ECMAScript 4th Edition standard, 102
ECMAScript for XML. See E4X
editable property, 227
editing text, enabling, 227
editorDataField property, 546
editors, ActionScript

file extension, 50
in Flex Builder, 50
Help, 58–59
“jumpy” performance, 59
opening files, 50
productivity features, 50
source code files, naming conventions, 65

editors, Eclipse
definition, 41
Help, 58
multiple, opening, 41
types of, 41

editors, item
changed values, identifying, 546
component, 548–551
DataGrid, making editable, 543–545
DataGridColumn, 543–551
drop-in, 545–546
editorDataField property, 546
eligible components, 545–546
inline, 518–521, 548–551
item renderer as, 546–548
versus item renderers, 515
itemEditor property, 546–548
rendererIsEditor property, 546–548

editors, MXML
Design view, 49
file extension, 49
in Flex Builder, 49
Help, 58–59
“jumpy” performance, 59
opening files, 49
source code files, naming conventions, 65
Source view, 49
toggling between views (Ctrl+~), 49
views, 49

effect classes. See also animation effects
applying to components, 403–404
instance classes, 404
properties, changing, 403–404
runtime execution, 403
targets property, 409

else clause, 106

947

Index E

40_287644-bindex.qxp 6/24/08 12:01 AM Page 947

else if clause, 106
e-mail addresses, validating, 600
EmailValidator class, 600
embedded fonts. See fonts, embedded
embedded style sheets, 289–290. See also CSS (Cascading

Style Sheets)
enabled property, 218
encapsulation, 10–11
end tags, MXML versus XML, 95
English language fonts, 328–329
entities. See XML, entities
EPL (Eclipse Public License) Version 1, 35
equal sign (=), in flashVars variables, 119
equal signs (==), ActionScript operator, 105
error messages

“array out of bounds,” 350
ColdFusion, 790
data entry validation, 608–610
“Unable to invoke CFC...”, 790
validating data entry, 608–610

error() method, 159
escaping restricted characters, 228
European languages fonts, 328–329
event bubbling. See also Event class; event classes

cloning event objects, 208–209
code sample, 197
description, 196–198

Event class. See also event bubbling
event objects, 185–187
properties, 185–187
target property, 186
type property, 186
UML diagram, 186

event classes
inheritance, 188–189, 192
specifying, 199

event handlers, addEventListener() method
custom event classes, 211
custom events, 203
event listeners, creating, 192–194
event listeners, removing, 196
event name constants, 194–195
MouseEvent class, 194–195
removeEventListener() method, 196

event handlers, MXML
ActionScript statements, executing, 182
Alt key event, 188
altKey property, 188
buttonDown property, 189
classes, dispatching, 189–190

code completion suggestions, missing, 186
Command key event, 188
commandKey property, 188
creating, 182–184
Ctrl key event, 188
ctrlKey property, 188
custom event classes, 211
custom events, 203–204
event class inheritance, 188–189, 192
event information, getting, 185–186
event names, “on” prefix, 182
event objects

arguments, 185
bubbles property, 196–198
cloning, 208–209
debugging, 189
definition, 185
documentation, 189
Event class, 185–187
properties, 185–187
purpose of, 185
specific, handling, 191
target property, 186–187
type dispatched, determining, 189
type property, 186–187
variable name, 185

functions
ActionScript, 183–184
naming conventions, 183
sample code, 184
using, 184
void return data type, 184

localX property, 188
localY property, 188
mouse events, 188–189
MouseEvent class, 188–189
MouseEvent object, code sample, 191
polymorphism, 192
quoting literal strings, 182
Shift key event, 188
shiftKey property, 188
stageX property, 188
stageY property, 188
X/Y mouse click coordinates, 188

event handling
HTTPService, 635–637
menus, 363
navigator bar containers, 357–358
PopUpButton control, 389

948

IndexE

40_287644-bindex.qxp 6/24/08 12:01 AM Page 948

event listeners
attribute declaration, order of, 286
creating, 192–194
event class, specifying, 199
removeEventListener() method, 196
removing, 196

event listeners, addEventListener() method
custom event classes, 211
custom events, 203
event listeners, creating, 192–194
event listeners, removing, 196
event name constants, 194–195
MouseEvent class, 194–195

event name constants, 194–195, 207
event objects. See also objects

arguments, 185
bubbles property, 196–198
cloning, 208–209
debugging, 189
definition, 185
documentation, 189
Event class, 185–187
properties, 185–187
purpose of, 185
specific, handling, 191
target property, 186–187
type dispatched, determining, 189
type property, 186–187
variable name, 185

[Event] tag, 199–201
event-driven applications, 179
events

available, displaying, 181
class support for, determining, 180
communicating between application components. See

custom events
custom. See custom events
definition, 11
documentation, 180–181
Flex architecture, 180–181
gestures, definition, 179
handling. See event handlers
information, getting, 185–186
List controls, 509–510
lists, 509
names, “on” prefix, 182
system, definition, 179
through multiple levels of inheritance, 196–198
user, definition, 179

window, dialog boxes, 378–379
window, pop-up windows, 378–379

Events link, 180
example projects. See “Hello World” application
exclamation point equal sign (!=), ActionScript operator, 105
executeBindings() method, 350–351
explicit arguments, CFC functions, 780
explicit navigation, 352–354
explicit parameters, generated Web service proxy classes,

695–696
explodeRadius property, 568–570
exploding pie charts, 568–570
exporting

breakpoints, 166–168
movie clips for skins, 311
styles to external style sheets, 293–295, 297

expressions
adding, 173
broadcasting values, 124
debugging, 172
inspecting, 54, 172
making bindable, 125–126

Expressions view, 172–173
extended class inheritance. See superclass
extending class inheritance. See subclass
Extensible Application Markup Language (XAML), 95
Extensible Stylesheet Language Transformations (XSLT), 95
external style sheets. See also CSS (Cascading Style Sheets)

application referral, code sample, 293
blank sheets, creating, 291–293
code completion, 292
code sample, 292–293
embedded fonts, 324–327
exporting to, 293–295, 297
nested CSS declarations, 293
saving, 291
storing, 291

F
faceless components, 101–102
Fade effect, 402, 411–412
fatal() method, 159
fault event

handling, 631–634
RemoteObject results, 729, 789–791
WebService results, 683–685

faultCode property, 631–634, 683–685
faultDetail property, 632–634, 683–685

949

Index F

40_287644-bindex.qxp 6/24/08 12:01 AM Page 949

faultString property, 631–634, 683–685
fcsh Flex Compiler Shell, 24
fdb debugger, 24
Fielding, Roy, 620
fieldSeparator property, 161–162
file access runtime error, 629
File class, 503
file extensions

ActionScript editor, 50
.as, 50, 108
.bkpt, 166
.mxml, 49, 126
MXML editor, 50
.swc, 146
.swf, 15

File Search, 61–62
file size

optimizing, 24
trace() method, effect on, 156

file system lists, 498–499
files. See also source code files

naming conventions, 109
searching, 61–62

FileStream class, 503
FileSystemComboBox control, 499
FileSystemDataGrid control, 499
FileSystemDataTree control, 499
FileSystemList control, 499
fills, pie charts, 574–575
fills property, 574–575
filterFunction property, 484–487
filtering

BlazeDS messages, 755–760
data, 484–487, 839
filterFunction property, 484–487
XML, with predicate expressions, 656–660

financial charts, 563, 575–579
Find in Files, 61–62
Find Next (Ctrl+K), 60
Find Previous (Ctrl+Shift+K), 60
FindAll() operation, 839–843
findAny() method, 491–493
findFirst() method, 491–493
finding data, 491–493
findLast() method, 491–493
Find/Replace, 60
Find/Replace (Ctrl+F), 60
first view (Home), 371

fixed-pitch fonts, 318
Flash. See also Flex

animation techniques, 7–8
documents, calling, 80
documents, inserting in Dreamweaver (Ctrl+Alt+F), 88
versus Flex. See Flex versus Flash development
symbols for skins, 310–314. See also skins

Flash Lite, 18
Flash Player

AIR deployment model, 16
on cell phones and PDAs, 18
flashVars variable, 118–119
Flex Builder projects, 46
history of, 16–18
HTML tag support, 220–221
passing parameters, 117, 118–119
penetration statistics, 18
Web deployment model, 16

Flash Player, Debug version
downloading, 23
features, 18
installed version, identifying, 18–19
reinstalling, 21

Flash Player, in Flex applications
calling, 80
without JavaScript, 79–80
version, returning, 80
version, setting, 76–79
version number, setting, 76–79

Flash Player, installing
access requirements, 20
with Flex Builder, 20–21
platforms supporting, 19
uninstalling Flash Player, 20
from the Web, 21–23
Web resources, 19

Flash Player installer, 22, 23
Flash Player.exe, 21
flashlog.txt file, 157–158
flash-unicode-table.xml, 329
flashVars variable, 118–119
flat data, grouping, 558–560
Flex. See also Flash

development tools. See Flex Builder
free components, 4
licensing. See licensing, Flex
programming languages. See ActionScript; MXML

950

IndexF

40_287644-bindex.qxp 6/24/08 12:01 AM Page 950

Flex, object-oriented programming
benefits of, 9
brittle code, 10
classes, extending. See inheritance
constants, definition, 11
contract-based programming, 15
definition, 9
encapsulation, 10–11
events, definition, 11
hiding internal details, 10–11
inheritance, 12–14
interfaces, 14–15
methods, definition, 11
modularity, 10–11
monolithic code, 10
polymorphism, 14–15
properties, definition, 11
spaghetti code, 10

Flex Builder. See also Eclipse
code, locating, 51
ColdFusion Extensions. See ColdFusion Extensions for

Flex Builder
components, drag-and-drop, 53
debugging views, 54. See also debugging applications
definition, 23
versus Flex SDK, 4
Help, 54–59
installing, 30–36
licensing, 4, 29
navigating files and folders, 51–52
outline view, 51–52
Professional Edition, features, 29
properties, viewing and setting, 53
Standard Edition, features, 29
state management, 53

Flex Builder, ASP.NET XML Web services
code behind class, 839–843
configuration file, 839
deleting rows from a database, 840
files generated, 838–840
filtering returned data, 839
FindAll() operation, 839–843
Flex projects, creating, 832–833
Flex/ASP.NET applications, creating, 836–838
gateway file, 838–839
generated code, 838–843
Insert() operation, 840–843
inserting rows in a database, 840
.NET class, 839
prerequisites, 831–832

Remote() operation, 840–843
sorting returned data, 839
SQL Server 2005 Express, 832
SQL Server database connection, 833–835
Update() operation, 839–843
updating a database, 839
web.config file, 839

Flex Builder, managing ActionScript code
code folding, 113–115
collapsing code sections, 113–115
in external files, 112–115
import statements, organizing, 116
Outline view, 111–112

Flex Builder, projects
for AIR, 46
Application ID, 47
application server, selecting, 47
application type, 46
ColdFusion, 47
creating, 45–48
for Flash Player, 46
Flex Project Library, 46
location, 46
Main application file, 48
Main source folder, 47
naming conventions, application, 48
naming conventions, project, 46
Output folder, 47
resources, creating, 51
sharing resources, 46
source code files, location, 47

Flex Builder, user interface
ActionScript editor, 50
Breakpoints, 54
Components, 53
Console, 54
Debug, 54
debugging, 54. See also Problems view
Design, 53
editors, 49–50
Expression, 54
MXML editor, 49
Navigator, 51–52
Outline, 51–52
Problems, 53. See also debugging
Properties, 53
States, 53
Variables, 54
views, 51–54

Flex Builder Library Project. See MXML, component libraries

951

Index F

40_287644-bindex.qxp 6/24/08 12:01 AM Page 951

Flex Charting components, 4–5. See also chart controls
Flex Data Services. See LCDS (LifeCycle Data Services)
Flex Project Library, 46
Flex SDK

acompc AIR component compiler, 24
adl AIR debugger, 24
amxmlc AIR application compiler, 24
command-line tools, 24
compc component compiler, 24
fcsh Flex Compiler Shell, 24
fdb debugger, 24
versus Flex Builder, 4
free components versus licensed, 24
mxmlc application compiler, 24, 25–26
optimizer tool, 24

Flex versus Flash development
AIR (Adobe Integrated Runtime) applications, 9
animation, 7, 8
code management, 9
criteria for choosing, 7
data handling, 8
design activities, 9
differences, 8–9
Flash development, 7–8
Flex development, 8
programming languages, 9

Flex/ASP.NET applications, creating, 836–838
focusInEffect trigger, 404
folders

bin-debug, 69, 81
bin-release, 69
HTML templates. See html-template folder
libs folder, 148
for MXML component libraries, 145–146
for MXML components, 127

fontAntiAliasType style, 316, 334–335
fontFamily style, 316, 319
fontGridFitType style, 334–335
fontGridType style, 316
fontName attribute, 329–330
fonts. See also CSS (Cascading Style Sheets); styles; text

configuring, Eclipse, 44
dialog boxes, 383–385
fixed-pitch, 318
formatting, 230–231
licensing, 319
missing, 318
naming conventions, 317, 322
pop-up windows, 383–385
sans-serif, 318

serif, 318
styles, 316
typeface, selecting, 316
Web resources, 321

fonts, device
versus embedded, 317
generic font names, 318
_sans typefaces, 318
_serif typefaces, 318
_typewriter typefaces, 318
using, 317–318

fonts, embedded
anti-aliasing, 334–335
versus device, 317
effect on file size, 328–329
in external style sheets, 324–327
pixel grid, fitting to, 334–335
pros and cons, 318–319
resolution, 334–335
rotating, 330–333
sharpness, 334–335
smoothing edges, 334–335
thickness, 334–335

fonts, embedding with ActionScript, 329–330
fonts, embedding with CSS

code points, 328
English language, 328–329
European languages, 328–329
by file location, 319–320
font variations, 320–323
Latin characters, 328–329
previewing, 322, 326
ranges of characters, specifying, 328–329
by system font name, 321–322
Unicode, 328

fonts, embedding with Design view, 323–327
fontSharpness style, 316, 334–335
fontSize style, 316
fontStyle style, 316
fontThickness style, 316, 334–335
fontWeight style, 316
footer, containers, 268–269
for statement, 107
Form container. See also data entry forms

column layout, 588–589
default button behavior, 593–595
definition, 588
inside a Panel container, 590–591
nesting components, 588–589

952

IndexF

40_287644-bindex.qxp 6/24/08 12:01 AM Page 952

Form container, custom
adding controls, 597–599
creating, 595–597

Form container, items
FormHeading control, 588–589, 589–591
FormItem container, 588–589, 592–593
headings, 588–589, 589–591
labels, aligning, 592–593
layout, 593
vertical versus horizontal, 593
wrapping, 593

Form container, sharing data with applications
dispatching custom events, 611–617
modeling Form data, 610–611
value objects, 610–611

Form container, validating data entry
with ActionScript, 604–607
automatically, 601–603
CreditCardValidator class, 600
CurrencyValidator class, 600
DateValidator class, 600
EmailValidator class, 600
error messages, 608–610
manually, 617
NumberValidator class, 600
PhoneNumberValidator class, 600
programmatically, 604–607
property property, 600–601
RegExpValidator class, 600
rules, 608–610
SocialSecurityValidator class, 600
source property, 600–601
StringValidator class, 600
trigger events, disabling, 604
trigger events, enabling, 601–603
trigger property, 601–603, 604
triggerEvent property, 601–603, 604
validate() method, 604–606
validateAll() method, 606–607
ValidationeResultEvent class, 604–607
validator objects

creating, 600–601
triggering, individual, 604–606
triggering, multiple, 606–607

ZipCodeValidator class, 600
formatter classes

in binding expressions, 337–338
creating objects, 336

list of, 335–336
setting properties, 336–337
in static methods, 339–340

formatting. See also text, formatting
currency values, 335
date values, 335, 336–337
fonts, 230–231
numeric values, 335
phone numbers, 336
text controls, 337–338
zip codes, 336

FormHeading control, 588–589, 589–591
FormItem container, 588–589, 592–593
frame rate, changing, 117
frameRate property, 117
free components versus licensed, 24
fromState property, 458
full screen display, enabling, 79
functions

See also CFCs, functions
See also methods
See also operations
See also specific functions
breakpoints in, 171
easing, 424–426
RPC, calling, 621

functions, gateway CFC
calling, 820–823
delete(), 817, 818
get(), 817
getAll(), 817, 819
getAllAsQuery(), 817
save(), 817, 818

functions, MXML event handlers
ActionScript, 183–184
naming conventions, 183
sample code, 184
using, 184
void return data type, 184

Future Splash Animator, 16
FutureWave Software, 16

G
gateway CFC functions. See functions, gateway CFC
gateway file, 838–839
gateway.php file, 887
generated code, ASP.NET XML Web services, 838–843

953

Index G

40_287644-bindex.qxp 6/24/08 12:01 AM Page 953

generated code, PHP
client-side Flex applications, 877–878
delete() function, 883
deleting data, 883
Flex/PHP applications, 874–877
insert() function, 880–881
inserting data, 880–881
MySQL databases, 870–874
repeating rows of data, 879–880
serializing returned data, 879
server-side PHP code, 878–880
template files, 879
update() function, 881–882
updating data, 881–882
XML reserved characters, 879
XmlSerializer class, 879

generated Web service proxy classes
ActionScript, code sample, 698–699
bound parameters, 695–696
calling a Web service operation, 694–695
creating a proxy class instance, 694
custom result events, handling, 697–698
custom result events, listening for, 697
explicit parameters, 695–696
handling returned data, binding expressions, 696–697
passing parameters, 695–696

gestures, 179. See also events
get() gateway CFC function, 817
GET() method, 624
getAll() gateway CFC function, 817, 819
getAllAsQuery() gateway CFC function, 817
getItemAt() method, 482
getLogger() method, 158–159
getStyle() method, 297–298
GetSwfVersion() function, 80
Glow effect, 402, 414–417
Go to File for Breakpoint tool, 166
graphical icons, 380–382
graphical skins. See skins
graphics. See images
greater than (>)

ActionScript operator, 105
XML entity for, 100
XML reserved character, 99

GroupingCollection object, 558–560
GroupingField object, 558–560
> entity, 100

H
handler property, 454
handling results. See results, handling
hash mark (#). See pound sign (#)
HBox layout style, 256–259
<head> section, 75–76
header labels, containers, 264–265
header text style, 383–385
headers property, 748
headertext property, 535–537
headings, data entry forms, 588–589, 589–591
height

applications, 78, 119–120
controls, 218
data columns, 533
vertical rules, 232–233

height parameter, 78
Height property, 232–233
height property, 218, 533
“Hello World” application

creating the project, 68–71
displaying a message, 72–73
Output folder default, 69
switching workspaces, 68

Help. See also documentation; publications; Web resources
ActionScript editor, 58–59
Eclipse editors, 58
Flex Builder, 54–59
Flex documentation, 26
MXML editor, 58–59

hexadecimal color codes, 296
hideEffect trigger, 404
hiding internal details, 10–11
hierarchical data display, 556–558
hierarchical lists, 498–499
highField property, 576–579
history management, 75, 80–81
history subfolder, 75, 80–81
history.css file, 75, 80–81
historyFrame.html file, 75, 80–81
history.js file, 75, 80–81
HLOC (HighLowOpenClose) charts, 564, 575–579
HLOCChart control, 564
HLOCSeries object, 576–579
horizontal layout. See also HorizontalList control

Box containers, 256–259, 262–264
centering, 273, 280–282
ControlBar containers, 269

954

IndexH

40_287644-bindex.qxp 6/24/08 12:01 AM Page 954

layout property, 120–121
menus, 365–367
spacing components, 262–264
visual components, 120–121, 256–259

horizontal rules, 232–233
horizontalAlign style, 262–264
horizontalCenter property, 273, 280–282
horizontalGap style, 262–264
HorizontalList control

behaviors and capabilities, 551–552
code sample, 554–555
versus DataGrid control, 551–552
description, 498
drag-and-drop operations, 427–429
versus List control, 551–552
versus TileList, 552

horizontalScrollPosition property, 227
HRule control, 232–233
HScrollBar control, 245–246
HSlider control, 247–249
HTML control, 914–917
HTML models. See html-template folder
HTML templates. See html-template folder
HTML wrapper model file

allowFullScreen parameter, 79
allowScriptAccess parameter, 79
bgcolor parameter, 79
<body> section, 76–79
deployment URL, 83
elements of, 75
<head> section, 75–76
height parameter, 78
id parameter, 78
menu parameter, 79
name parameter, 79
<noscript> section, 79–80
src parameter, 78
version_major parameter, 76
version_minor parameter, 76
version_revision parameter, 76
width parameter, 78
wmode parameter, 79

HTMLLoader class, 914–917
html-template folder

definition, 73–74
history subfolder, 75, 80–81
JavaScript functions, 75
sniffer code, 75
system upgrade, 75

html-template folder, template files
AC_FL_RunContent() function, 80
AC_OETags.js, 75, 80
ControlVersion() function, 80
CSS (Cascading Style Sheets), 75
GetSwfVersion() function, 80
history management, 75, 80–81
history.css, 75, 80–81
historyFrame.html, 75, 80–81
history.js, 75, 80–81
HTML wrapper model

allowFullScreen parameter, 79
allowScriptAccess parameter, 79
bgcolor parameter, 79
<body> section, 76–79
deployment URL, 83
elements of, 75
<head> section, 75–76
height parameter, 78
id parameter, 78
menu parameter, 79
name parameter, 79
<noscript> section, 79–80
src parameter, 78
version_major parameter, 76
version_minor parameter, 76
version_revision parameter, 76
width parameter, 78
wmode parameter, 79

index.template.html, 74
JavaScript library, 75, 80
playerProductInstall.swf, 75

htmlText property, 220–223
HTTPService class

List controls data provider, 503
versions of, 622

HTTPService component. See also REST (Representational
State Transfer); RPC (Remote Procedure Call)

bound parameters, 640–641
cross-domain policy issues, 641–643
named parameters, 639–640
parameters, passing to server pages, 639–641
RPC, 621
value objects, creating, 637–639

HTTPService component, sending/receiving data
asynchronous communication, 626
AsyncToken class, 634–637
in ColdFusion, 626
event handling, with ActionScript, 635–637

955

Index H

40_287644-bindex.qxp 6/24/08 12:01 AM Page 955

HTTPService component, sending/receiving
data (continued)

ItemResponder class, 634–637
properties, adding at runtime, 635, 636–637
send() method, 626
server response handling

binding expressions, 627–629
displaying retrieved data, 627–629
fault event, handling, 631–634
faultCode property, 631–634
faultDetail property, 632–634
faultString property, 631–634
file access runtime error, 629
lastResult property, 627–629
message property, 632–634
result event, handling, 630–631, 634
ResultEvent class, 630–631

HTTPService objects
animated cursor, 622
concurrency, 622, 625
concurrency property, setting, 625
creating, 622–623
data exposure format, specifying, 624–625
DELETE() method, 624
GET() method, 624
method property, setting, 624
methods supported, specifying, 624
network address, setting, 623
POST() method, 624
PUT() method, 624
RESTful pattern, 624
resultFormat property, 624–625
Ruby on Rails, 624
url property, setting, 623

hyperlinks, 230, 237–238
hyphenated names, 285

I
ICollectionView interface, 483–489
iconClass argument, 380–382
id parameter, 78
id property, 218
IDE (integrated development environment). See Flex Builder
if keyword, 105–106
ignoreComments property, 649–650
ignoreProcessingInstructions property, 650
ignoreWhiteSpace property, 650
IList interface, 483
ILogger interface, 158

images
changing at runtime, 252
embedding, 251–252
formats supported, 249
graphical icons, 380–382
loading at runtime, 249–250
resizing, 250–251

importing
Alert class, 374
ArrayCollection class, 481
breakpoints, 168–169
data, with the Model tag, 467–468
skins, 310–314
a Web service, 689–692
XML with HTTPService, 649

includeCategory property, 161–162
includeDate property, 161–162
includeLevel property, 161–162
includeTime property, 161–162
incrementing/decrementing numeric values, 241–242
index.template.html file, 74
info() method, 159
inheritance

definition, 12
describing relationships, 12–14
MXML components, 127–128
subclass, 12
superclass, 12
UML (Unified Modeling Language), 12–14

initializing variables, 104
inline item editors. See item editors, inline
inline item renderers, 518–521, 541
inline style declaration, 285–286. See also CSS (Cascading

Style Sheets)
insert() function, 880–881
Insert() operation, 840–843
inserting data

ASP.NET, 840–843
PHP, 880–881

Install Flash Player 9 ActiveX.exe, 21
Install Flash Player 9 Plugin.exe, 21
installing

AIR applications, 911–912
AIR on OS X, 899–900
AIR on Windows, 898–899
AMFPHP, PHP remoting, 884–885
applications. See specific applications
ASP.NET, 826–827
ColdFusion Extensions for Flex Builder, 795–797
Eclipse, 33–36
Flex Builder, 30–36

956

IndexI

40_287644-bindex.qxp 6/24/08 12:01 AM Page 956

installing, Flash Player
access requirements, 20
with Flex Builder, 20–21
platforms supporting, 19
uninstalling Flash Player, 20
from the Web, 21–23
Web resources, 19

installing, PHP
MAMP, on OS X, 862–863
MAMP servers, managing, 863–865
overview, 858
WAMP, on Windows, 859–860
WAMP servers, managing, 861–862
Web resources, 862

installing applications. See specific applications
instantiating, MXML components

with ActionScript, 135–136
in Design view, 134–135
with MXML, 131–134
namespace prefix, automatic, 134
namespace prefix, declaring, 131–132

instantiating objects, 6–7. See also declaring
integrated development environment (IDE). See Flex Builder
interactive calendar, 243–244
interactive controls

See controls, Button
See controls, data entry
See controls, interactive
See controls, text entry

interfaces
adding methods to, 15
contract-based programming, 15
definition, 14
implementing, 14–15
naming conventions, 158

internal access modifier, 104
internal modifier, 140–141
introspection. See Web service introspection
Iris effect, 402, 412–414
isDebug() method, 159
isError() method, 159
isFatal() method, 159
isInfo() method, 159
isWarn() method, 159
italic text, 230–231, 316
item editors

changed values, identifying, 546
component, 548–551
DataGrid, making editable, 543–545
DataGridColumn, 543–551

drop-in, 545–546
editorDataField property, 546
eligible components, 545–546
inline, 518–521, 548–551
item renderer as, 546–548
versus item renderers, 515
itemEditor property, 546–548
rendererIsEditor property, 546–548

item renderers
component, 521–523, 541
dataChange event, 541–543
DataGridColumn, 541–543
declaring, 515
drop-in, 516–518, 541
eligible components, 516
inline, 518–521, 541
as item editor, 546–548
versus item editors, 515
purpose of, 515

itemClick event, 509
itemDoubleClick event, 509
ItemResponder class, 634–637
itemRollOut event, 509
itemRollOver event, 509
IViewCursor interface

afterLast property, 489
beforeFirst property, 489
bookmark property, 493–496
current property, 490
findAny() method, 491–493
findFirst() method, 491–493
findLast() method, 491–493
moveNext() method, 490
movePrevious() method, 490
purpose of, 489
seek() method, 493–496

J
Java

Eclipse IDEs, 33–36
integrating Flex applications with. See BlazeDS
JDT (Java Development Tools), 32
JRE (Java Runtime Environment), 33

Java Development kit, 705
JavaScript functions, history management, 75
JavaScript library, 75, 80
JDT (Java Development Tools), 32
JMS adapter, 740–741
JRE (Java Runtime Environment), 33

957

Index J

40_287644-bindex.qxp 6/24/08 12:01 AM Page 957

JRun, end of, 704
JSEclipse, 32
“jumpy” performance, 59

K
kerning, 316
kerning style, 316
keyboard shortcuts

Accordion container, 371
application navigation, 371
CDATA blocks, inserting in source files

(Ctrl+Shift+D), 108
code completion tool, enabling (Ctrl+Spacebar), 211
Debug view, 174
debugging, terminating (Ctrl+F2, Cmd+F2), 174
Find Next (Ctrl+K), 60
Find Previous (Ctrl+Shift+K), 60
Find/Replace (Ctrl+F), 60
first view (Home), 371
Flash documents, inserting in Dreamweaver

(Ctrl+Alt+F), 88
Flex Builder, 60
imports, organizing (Ctrl+Shift+O), 116
last view (End), 371
MXML editor, toggling between views (Ctrl+~), 49
next tab or header (Down Arrow, Right Arrow), 371
next view (Page Down), 371
previous tab or header (Up Arrow, Left Arrow), 371
previous view (Page Up), 371
running applications (Ctrl+F11), 73
TabNavigator container, 371
zoom (Ctrl+=), 309

L
Label control, 219, 224–225, 226. See also text
label position, buttons, 237
labelField property, 504–507, 566–568
labelFunction property

chart labels, 566–568
customizing labels, 507–509, 537–541
DataGridColumn component, 537–541
DataSeries class, 566–568
definition, 504

labelPlacement property, 237
.labelPosition style, 566–568
labels

customizing, 507–509, 537–541
data columns, 537–541

data entry forms, aligning, 592–593
list items, 504–509
pie chart wedges, 566–568

labels property, 248
last view (End), 371
lastResult property, 627–629, 773–774
Latin fonts, 328–329
layers, ViewStack, 345
layout. See also controls, layout; layout containers

absolute, 121–122
direction, navigator bar containers, 360–361
vertical and horizontal, 120–121

layout containers. See also controls, layout; layout
data entry forms. See Form container
definition, 255
dialog box simulation. See Panel container
navigator containers, 256
panel footer. See ControlBar container
rectangular region. See Box container; Panel container
simple boxes. See Box container

layout containers, constraint-based layout
advanced constraints, 279–282
anchoring objects, 270–274
bottom property, 273, 280–282
by column, 279–282
constraint properties, 270–273
constraintColumns property, 279–282
constraintRows property, 279–282
in Design view, 270–273
horizontalCenter property, 273, 280–282
left property, 273, 280–282
properties, 273
purpose of, 270
right property, 273, 280–282
by row, 279–282
top property, 273, 280–282
verticalCenter property, 274, 280–282

layout containers, sizing
absolute sizing, 276
constraint-based, 278–279
content-based, 275
default dimensions, 275
height property, 276–278
maxHeight property, 275
maxWidth property, 275
minHeight property, 275
minimum/maximum dimensions, 275
minWidth property, 275
percentage ratios, 277–278

958

IndexK

40_287644-bindex.qxp 6/24/08 12:01 AM Page 958

percentage sizing, 276–278
percentHeight property, 276–278
percentWidth property, 276–278
strategies for, 274–275
width property, 276–278

layout property, 120–122, 264–265
LCDS (LifeCycle Data Services), 702
left property, 273, 280–282
length property, 227, 482
less than (<)

ActionScript operator, 105
XML entity for, 99
XML reserved character, 99

letterSpacing style, 316
level property, 161–162
libraries. See MXML, component libraries
libs folder, 148
licensing

AdvancedDataGrid, 5
AdvancedDataGrid control, 556
BlazeDS, 702
chart controls, 562
Eclipse, 35
Flex Builder, 4, 29
Flex Charting components, 5
fonts, 319
free components versus licensed, 24
PHP, 858
Visual Web Developer, 844

LifeCycle Data Services Assembler components, 807
LifeCycle Data Services (LCDS), 702
line charts, 564, 583–585
LinearGradient class, 574–575
LineChart control, 564, 583–585
LinkBar container, 356
LinkButton control, 237–238
LinkButton controls, 356
list boxes, 498–499
List control. See also lists

versus DataGrid, 500
description, 498
versus HorizontalList, 551–552
versus TileList, 551–552

List controls. See also item editors; item renderers; lists
for AIR applications, 498–499
allowMultipleSelections property, 509
change event, 509–511
ColorPicker, 499
dataChange event, 509
DateFields, 499

doubleClickEnabled property, 509
drag-and-drop operations, 426–429
events, 509–510
FileSystemComboBox, 499
FileSystemDataGrid, 499
FileSystemDataTree, 499
FileSystemList, 499
itemClick event, 509
itemDoubleClick event, 509
itemRollOut event, 509
itemRollOver event, 509
labelField property, 504–507
labelFunction property, 504, 507–509
OlapDataGrid, 498
properties, 509–510
selectedIndex property, 509, 512–513
selectedIndices property, 509
selectedItem property, 509–511
selectedItems property, 509
Tree, 498

List controls, AdvancedDataGrid
definition, 498
features, 555
grouping flat data, 558–560
GroupingCollection object, 558–560
GroupingField object, 558–560
hierarchical data display, 556–558
licensing, 556

List controls, ComboBox
bindable, 528–531
versus DataGrid, 500
definition, 498
editable, 526–528
initial value, setting, 528–531
prompt property, 526–528

List controls, data providers
Array tags, 502
ArrayCollection object, 501, 502–503
ArrayCollections tags, 502
binding expressions, 502
dynamic, 502–503
File class, 503
FileStream class, 503
hard-coded, 500–502
HTTPService class, 503
local data, AIR applications, 503
Model tags, 502
RemoteObject class, 503
RPC components, 503
WebService class, 503

959

Index L

40_287644-bindex.qxp 6/24/08 12:01 AM Page 959

List controls, DataGrid
built-in features, 532
versus ComboBox, 500
definition, 498
inheritance hierarchy, 531–532
providing data to, 532

List controls, DataGrid column display
alternatingItemColors property, 533
column property, 533
customizing, 535–537
dataField property, 535–537
DataGridColumn control, 535–537, 537–541
debugging custom formatting, 540–541
default, 533–535
dynamic data fields, 539–540
headertext property, 535–537
height property, 533
labelFunction property, 537–541
labels, 537–541
number of, 535–537
order of, 535–537
rowCount property, 533
trace() statement, 540–541
width property, 533, 535–537

List controls, DataGridColumn
custom column display, 535–537, 537–541
item editors, 543–551
item renderers, 541–543

List controls, HorizontalList
behaviors and capabilities, 551–552
code sample, 554–555
versus DataGrid control, 551–552
definition, 498
versus List control, 551–552
versus TileList, 552

List controls, item renderers
component, 521–523, 541
dataChange event, 541–543
DataGridColumn, 541–543
declaring, 515
drop-in, 516–518, 541
eligible components, 516
inline, 518–521, 541
purpose of, 515

List controls, List
versus DataGrid component, 500
description, 498
versus HorizontalList, 551–552
versus TileList, 551–552

List controls, TileList
behaviors and capabilities, 551–552
code sample, 552–553
versus DataGrid control, 551–552
description, 498
versus HorizontalList, 552
versus List control, 551–552

listening for changes, 124
lists. See also List controls

color pickers, 499
complex data objects, selecting, 513–515
customized strings. See item editors; item renderers
data grids, 498–499

See also AdvancedDataGrid control
See also DataGrid control
See also DataGridColumn control
See also TileList control

drop-down, 498–499. See also ComboBox control
events, 509
grouping in columns, 498, 500

See also AdvancedDataGrid control
See also DataGrid control
See also DataGridColumn control
See also TileList control

hierarchical, 498–499
horizontal, 498. See also HorizontalList control
item labels, 504–509
list boxes, 498–499
local file system, 498–499
OLAP data grids, 498
pop-up calendars, 499

lists, user data selection
array-style syntax, 513–515
complex data objects, 513–515
detecting selected data, 509
dot syntax, 513–515
simple values, 510–512

literal characters in code. See CDATA blocks; XML, entities
literal HTML markup, 220–223
literal strings, MXML event handlers, 182
load() method, 252
localX property, 188
localY property, 188
Log class, 158–160
log() method, 159
Logger objects, 158–159

960

IndexL

40_287644-bindex.qxp 6/24/08 12:01 AM Page 960

Logging API
debug() method, 159
definition, 158
error() method, 159
fatal() method, 159
fieldSeparator property, 161–162
getLogger() method, 158–159
ILogger interface, 158
includeCategory property, 161–162
includeDate property, 161–162
includeLevel property, 161–162
includeTime property, 161–162
info() method, 159
isDebug() method, 159
isError() method, 159
isFatal() method, 159
isInfo() method, 159
isWarn() method, 159
level property, 161–162
Log class, 158–160
log() method, 159
Logger objects, 158–159
LogLogger class, 158
messages, configuring, 161–162
messages, logging, 159–160
self-logging components, 160
severity levels, 159–160
TraceTarget class, 161–162
tracing targets, 161–162
warn() method, 159

logging messages, 157, 158–163
LoginWindow component, 392–395
LogLogger class, 158
longhand ActionScript binding, 124
longhand MXML binding, 125
loop counters, 107
looping, 107
loose type declaration, 103
lowField property, 576–579
< entity, 99

M
Macromedia Flash 1.0, 16. See also Flash
Main application file, 48
Main source folder, 47
MAMP, 862–865
managed data, 482
Managing Web Services dialog box, 692–694
Mark Occurrences feature, 63

masking, 410
mathematical operators, 105
maxChars property

NumericStepper control, 242
TextInput counter, 228

maxHeight property, 218
maximum property

NumericStepper control, 241–242
slider controls, 247

maxScrollPosition property, 245–246
maxWidth property, 218
maxYear property, 244
memory usage, profiling, 175–177
menu controls. See also applications, navigation

cascading menus, 364–365
data providers, 362–363
event handling, 363
horizontal list of menus, 365–367
Menu, 362, 364–365
menu items, in raw XML, 363
MenuBar, 362, 365–366
PopUpMenuButton, 362, 385–388

Menu controls, 362, 364–365
menu items, in raw XML, 363
menu parameter, 79
MenuBar controls, 362, 365–366
message event, 749
message property, 632–634, 683–685
Message Service. See BlazeDS Message Service
messages. See also BlazeDS Message Service

configuring, 161–162
displaying, 72–73
filtering, 755–760
logging, 157, 158–163
severity levels, 159–160
tracing, 156–157

<Metadata> tag, 199–201
method property, setting, 624
methods. See also functions; operations

adding to interfaces, 15
contract-based programming, 15
definition, 11
for HTTPService, specifying, 624

methods, MXML components
access modifiers, 140–141
calling, 141–142
defining, 140
definition, 139
internal modifier, 140–141

961

Index M

40_287644-bindex.qxp 6/24/08 12:01 AM Page 961

methods, MXML components (continued)
private modifier, 140–141
protected modifier, 140–141
public modifier, 140–141
scope, 140–141

mimeType attribute, 329–330
minHeight property, 218
minimum property

NumericStepper control, 241–242
slider controls, 247

minScrollPosition property, 245–246
minus sign (-), ActionScript operator, 105
minWidth property, 218
minYear property, 244
mm.cfg file, 157–158
modality, dialog boxes and pop-up windows, 375–376
Model tag

binding expressions, 466
creating data objects, 465
importing data, 467–468
List controls data provider, 502
properties, filling dynamically, 465–466
pros and cons, 467
versus value objects, 469

models of views, 127
model-view-controller, 127
modularity, 10–11. See also MXML, components
monolithic code, 10
mouse events, 188–189
mouseDownEffect trigger, 405
MouseEvent class

code completion tool, 195
event handlers, addEventListener() method,

194–195
event handlers, MXML, 188–189
event name constants, 194–195

MouseEvent object, 191
mouseUpEffect trigger, 405
Move effect, 410, 417–419
moveEffect trigger, 405
movement, redefining, 424–426
moveNext() method, 490
movePrevious() method, 490
moving

class files, ActionScript, 65
components, 402, 424–426
data between objects. See binding expressions

MP3 files, playing, 402

MultiTopicConsumer component, 755
MultiTopicProducer component, 755
<mx: [tagname]>. See specific tags
MXML. See also ActionScript

versus ActionScript, 5–7
compiling into ActionScript, 92–95
containership, 100–101. See also Application

container
declaring objects, 6
definition, 5
faceless components, 101–102
instantiating objects, 6
name origin, 96
non-visual classes, 101–102
non-visual objects, declaring, 101–102
tags. See specific tags
visual objects, declaring, 100–101

MXML, combining with ActionScript
ActionScript code in MXML files, 107–108
CDATA blocks, 108
code folding, 113–115
collapsing code sections, 113–115
external ActionScript files, 108–111
in external files, 112–115
import statements, organizing, 116
<mx:Script> tag, 107–108, 109
nesting ActionScript, 109
Outline view, 111–112

MXML, component libraries
adding to project build path, 147–148
copying, 148
creating, 142–146
definition, 142
folder structure, creating, 145–146
libs folder, 148
running applications from, 148

MXML, components
content, adding, 129–130
creating, 126–130
folder for, 127
grouping in packages, 127
inheritance, 127–128
instantiating

with ActionScript, 135–136
in Design view, 134–135
with MXML, 131–134
namespace prefix, automatic, 134
namespace prefix, declaring, 131–132

962

IndexM

40_287644-bindex.qxp 6/24/08 12:01 AM Page 962

models, 127
model-view-controller, 127
naming conventions, 127
reverse domain package names, 131

MXML, editor
Design view, 49
file extension, 49
in Flex Builder, 49
Help, 58–59
“jumpy” performance, 59
opening files, 49
source code files, naming conventions, 65
Source view, 49
toggling between views (Ctrl+~), 49
views, 49

MXML, methods
access modifiers, 140–141
calling, 141–142
defining, 140
definition, 139
internal modifier, 140–141
private modifier, 140–141
protected modifier, 140–141
public modifier, 140–141
scope, 140–141

MXML, properties
access modifier, omitting, 137
aliases, 139
constants, 139
definition, 136
dynamic data types, 137
making bindable, 138
passing data to, 139
post-colon syntax, 137
scope, 137
setting, 137
static, 137–138
typing variables, 137
var keyword, 137

MXML, versus XML
case sensitivity, 95
CDATA blocks, 98–99
conventions, 95
document root elements, 95
end tags, 95
literal characters in code. See CDATA blocks; XML, entities
overlapping element tags, 95
quotation marks around attribute values, 95

reserved characters in code. See CDATA blocks; XML,
entities

syntax rules, 95
XAML (Extensible Application Markup Language), 95
XML entities, 99–100
XML namespace prefixes, 97–98
XML namespaces, 96–97
XML programming language, 95–96
XSLT (Extensible Stylesheet Language Transformations),

95
XUL (XML User Interface Language), 95

MXML Component wizard, 128–130
.mxml file extension, 49, 126
mxmlc application compiler, 24, 25–26
MySQL databases

connecting to, 873–874
importing to, 870–872

N
name attribute, 199–201
name parameter, 79
named arguments, 781–782
named colors, 296
named parameters, 639–640
named states, 438
namespaces, XML. See XML, namespaces
naming conventions

class files, ActionScript, 65
classes, 127
constants, 139
CSS style name selectors, 288
CSS style sheets, 284, 285
CSS type selectors, 287
custom events, 199
event handler functions, MXML, 183
files, ActionScript, 109
Flex Builder applications, 48
Flex Builder projects, 46
fonts, 317, 322
functions, MXML event handlers, 183
interfaces, 158
MXML components, 127
source code files, 65
value object properties, 473
variable names, refactoring (Ctrl+Alt+R), 63–64
XML namespace prefixes, 97

963

Index N

40_287644-bindex.qxp 6/24/08 12:01 AM Page 963

navigating
applications. See applications, navigation; navigator bar

containers; navigator containers
files and folders, Flex Builder, 51–52
Find Next (Ctrl+K), 60
Find Previous (Ctrl+Shift+K), 60
Find/Replace (Ctrl+F), 60
first view (Home), 371
last view (End), 371
next tab or header (Down Arrow, Right Arrow), 371
next view (Page Down), 371
previous tab or header (Up Arrow, Left Arrow), 371
previous view (Page Up), 371
toggling between views (Ctrl+~), 49

navigator bar containers. See also applications, navigation
ButtonBar, 356
data providers, 356–360
dataProvider property, 356–358
direction property, 360–361
event handling, 357–358
layout direction, 360–361
LinkBar, 356
for nested containers, 356
presentation management, 360–361
TabBar, 356
ToggleButtonBar, 356

navigator containers. See also applications, navigation
child objects, contents and order, 355
creationPolicy property, 354–355
custom components, 344–345
deferred instantiation, 354–355
dimensions, 355–356
instantiating at runtime, 354–355
nesting views, 344
type coercion error, 344
ViewStack, creating, 344–348

navigator containers, Accordion
creationPolicy property, 354–355
instantiating at runtime, 354–355
keyboard shortcuts, 369–370
nesting containers, 344
sliding headers, 369–370

navigator containers, nesting
Button control, 356
limitations, 344
LinkButton controls, 356
Tab controls, 356
toggling, 356

navigator containers, TabNavigator
creationPolicy property, 354–355
instantiating at runtime, 354–355
keyboard shortcuts, 369–370
nesting containers, 344
tabbing containers, 367–369

navigator containers, ViewStack. See also navigator bar
containers

accessing by index, 349
accessing by object reference, 352–354
active, changing, 349
active, index position, 349
“array out of bounds” error, 350
binding issues, 350–351
creating in Design view, 345–348
creating in MXML, 344
creationPolicy property, 354–355
definition, 345
description, 343
executeBindings() method, 350–351
explicit navigation, 352–354
instantiating at runtime, 354–355
layers, 345
navigating back and forth, 349–352
nesting containers, 344
number of, getting, 349
numChildren property, 349
panels, 345
panes, 345
selectedChild property, 349
selectedIndex property, 349

nesting
containers, 344, 356. See also navigator containers,

nesting
objects, 256, 259–261, 264–265
views, 344

.NET class, 839
network address, for HTTPService, 623
networks, tracing information, 151
next tab or header (Down Arrow, Right Arrow), 371
next view (Page Down), 371
noLabel property, 377
non-visual classes, 101–102
non-visual components, animation effects, 402
non-visual objects, declaring, 101–102
<noscript> section, 79–80
NumberFormatter class, 335
NumberValidator class, 600

964

IndexN

40_287644-bindex.qxp 6/24/08 12:01 AM Page 964

numChildren property, 349
numeric values

formatting, 335
incrementing/decrementing, 241–242
validating data entry, 600

NumericStepper, 241–242

O
object-oriented programming. See Flex, object-oriented

programming
objects. See also controls; event objects

aligning. See controls, layout; layout containers
anchoring, 270–274
appearance, modifying. See CSS (Cascading Style Sheets);

skins; styles
declaring, 6–7, 100–102
instantiating, 6–7
moving data between. See binding expressions
non-visual, declaring, 101–102
overlapping, 121, 260–261
padding, 262–264
positioning, 120–121. See also controls; layout; layout

containers
spacing, 233–234, 262–264
visual, 100–101, 121. See also controls; layout containers

okLabel property, 377
OLAP data grids, 498
OlapDataGrid control, 498
online resources. See Web resources
open source Flex applications, 5
openAlways property, 390
openField property, 576–579
operations (Web service), declaring, 831. See also functions;

methods
optimizer tool, 24
outline view, Flex Builder, 51–52
Output folder, Flex Builder, 47
Output folder default, 69
overlapping

element tags, MXML versus XML, 95
objects, 121, 260–261

override properties, setting, 453
overrides, view states

definition, 438
design time actions, 441–444
event handlers, 449–452, 454
properties, 448–449
styles, 448–449

P
packages, declaring, 471
packages, MXML components, 127, 131
padding objects, 262–264
paddingBottom style, 262–264
paddingLeft style, 262–264
paddingRight style, 262–264
paddingTop style, 262–264
page titles, 117
pageSize property, 245–246
pageTitle property, 117
Panel container

borderAlpha style, 266–267
corner styles, 267–268
drop shadow, 266
header labels, 264–265
layout property, 264–265
nesting objects, 264–265
properties, 264–265
purpose of, 264
status property, 264–265
styles, 266–268
title property, 264–265
transparency, 266–267
wrapping a Form container, 590–591

panels, 345
panes, 345
panning view states, 442
Parallel effects, 420–421, 458–460
parameters

bound, 640–641, 695–696
explicit, 695–696
named, 639–640

parameters, passing to
Flash Player, 117, 118–119
generated Web service proxy classes, 695–696
server pages, 639–641
WebService component, 687–688

parameters property, 117
parent class. See superclass
passing

arguments to CFC functions, 780–782
data to objects. See binding expressions
data to properties, 139
value objects, CFC functions, 786–787

passing, parameters to
Flash Player, 117, 118–119
generated Web service proxy classes, 695–696
server pages, 639–641
WebService component, 687–688

965

Index P

40_287644-bindex.qxp 6/24/08 12:01 AM Page 965

passwords, 227, 771
Pause effect, 402
PDAs, 18
PDF documents, presenting with AIR applications, 917–919
Penner, Robert, 424
percent sign (%), ActionScript operator, 105
percentHeight property, 218
percentWidth property, 218
period (.), in style name selectors, 288
perspectives, Eclipse

custom, 43
default, 42
definition, 42
saving, 43
selecting, 42

perWedgeExplodeRadius property, 569–570
phone numbers

formatting, 336
validating, 600

PhoneFormatter class, 336
PhoneNumberValidator class, 600
PHP

downloading, 858
Flex projects, creating, 866–868
with HTTPService, 869–870
licensing, 858
SimpleXML extension, 868–869
supporting platforms, 857–858
with XML, 868–870

PHP, generating code with Flex Builder
client-side Flex applications, 877–878
delete() function, 883
deleting data, 883
Flex/PHP applications, 874–877
insert() function, 880–881
inserting data, 880–881
MySQL databases, 870–874
repeating rows of data, 879–880
serializing returned data, 879
server-side PHP code, 878–880
template files, 879
update() function, 881–882
updating data, 881–882
XML reserved characters, 879
XmlSerializer class, 879

PHP, installing
MAMP, on OS X, 862–863
MAMP servers, managing, 863–865

overview, 858
WAMP, on Windows, 859–860
WAMP servers, managing, 861–862
Web resources, 862

PHP, remoting
SabreAMF, 884
WebOrb, 884

PHP, remoting with AMFPHP
complex data, returning, 890–892
definition, 884
gateway.php file, 887
installing, 884–885
services, 885–890
services configuration file, 887–889
Web resources, 892

pictures. See images
pie charts

backgrounds, 574–575
concentric circles, 572–573
data provider, 566
definition, 564
doughnut charts, 570–572
exploding the pie, 568–570
fills, 574–575
multiple data series, 572–573
wedge labels, 566–568

PieChart control. See chart controls, PieChart
PieSeries class

explodeRadius property, 568–570
fills property, 574–575
perWedgeExplodeRadius property, 569–570

pixel grid, fitting fonts to, 334–335
pixelation, 305
placing components. See controls, layout; layout; layout

containers
playerProductInstall.swf file, 75
playing animation effects. See animation effects, playing
plot charts, 564
PlotChart control, 564
plus sign (+)

ActionScript operator, 105
expanding a tree structure, 170

polymorphism, 14–15, 192
pop-up windows

See also Alert class, pop-up windows
See also dialog boxes
See also layout containers, Panel container
See also TitleWindow container

966

IndexP

40_287644-bindex.qxp 6/24/08 12:01 AM Page 966

pop-up windows, custom
adding, 396–397
addPopUp() method, 395–396
bringToFront() method, 395
centerPopUp() method, 395
code sample, 394
createPopUp() method, 395
defining, 391–395
events, 392–395
illustration, 395
LoginWindow component, 392–395
PopUpManager class, 395–398
purpose of, 391
removePopUp() method, 395, 397–398
removing, 397–398
sharing data, 392–395
simulating a dialog box. See Panel container;

TitleWindow container
PopUpButton control, 388–391
PopUpManager class, 395–398
PopUpMenuButton control, 362, 385–388
positioning components. See controls, layout; layout;

layout containers
POST() method, 624
post-colon data typing syntax, 103
post-colon syntax, 137
pound sign (#), in hexadecimal color values, 296
previewing fonts, 322, 326
previous tab or header (Up Arrow, Left Arrow), 371
previous view (Page Up), 371
print option, enabling, 79
private access modifier, 103
private modifier, 140–141
Problems view, Flex Builder, 53
processing instructions in XML objects, ignoring, 650
Producer component, 747–748, 755–760
producers, 740–741. See also Producer component
Professional Edition, Flex Builder, 29
profiling applications, 175–177. See also debugging

applications
profiling tools, 151
programmatic instantiation, 216
programming languages

Flex. See ActionScript; MXML
Flex versus Flash development, 9

projects. See also applications
build path, 147
creating, 68–71
Eclipse, 38

examples. See “Hello World” application
Flash Player version number, setting, 76–79
properties version, default, 76–79

projects, Eclipse
definition, 38
in multiple workspaces, 38

projects, Flex Builder
for AIR, 46
Application ID, 47
application server, selecting, 47
application type, 46
ColdFusion, 47
creating, 45–48
for Flash Player, 46
Flex Project Library, 46
location, 46
Main application file, 48
Main source folder, 47
naming conventions, application, 48
naming conventions, project, 46
Output folder, 47
resources, creating, 51
sharing resources, 46
source code files, location, 47

prompt property, 526–528
properties. See also variables; specific properties

attribute declaration, order of, 286
constraint, 270–273
controls, setting, 216–217. See also specific controls
definition, 11
event objects, 185–187
Panel layout container, 264–265
versus styles, 284–285
UIComponent class, 218–219
value changes, broadcasting, 125. See also binding

expressions
version, default, 76–79
viewing and setting, 53

properties, MXML components
access modifier, omitting, 137
aliases, 139
constants, 139
definition, 136
dynamic data types, 137
making bindable, 138
passing data to, 139
post-colon syntax, 137
scope, 137
setting, 137

967

Index p

40_287644-bindex.qxp 6/24/08 12:01 AM Page 967

properties, MXML components
static, 137–138
typing variables, 137
var keyword, 137

property property, 600–601
<property-case> property, 768
protected access modifier, 104
protected modifier, 140–141
Proxy Service

configuring, 713
definition, 703
destinations, default, 713–717
destinations, named, 717–719
purpose of, 711–712

public access modifier, 103
public modifier, 140–141
publications. See also documentation; Help; Web resources

ActionScript 3.0 Language and Components, 26
Building and Deploying Flex Applications, 24, 26
Developing Flex Applications, 26

publish/subscribe messaging, 740–741
PUT() method, 624

Q
" entity, 100
quotation marks around attribute values, 95
quoting literal strings, 182

R
RadialGradient class, 574–575
radio buttons, 239–240
RadioButton controls, 239–240
RadioButtonGroup control, 239–240
RDS (Remote Development Service)

Dataview, 794, 800–803
definition, 794
Fileview, 794
security, 771
servers, configuring, 797–799

receiving data. See HTTPService component,
sending/receiving data; SOAP-based Web services

receiving value objects, CFC functions, 788–789
refactoring

source code files, 65
variable names (Ctrl+Alt+R), 63–64

references, searching for, 62
RegExpValidator class, 600
registration of products. See licensing

regular expressions, validating, 600
relational databases, 464. See also data collections; data

models; databases
Remote() operation, 840–843
Remote Procedure Call (RPC). See RPC (Remote Procedure

Call)
RemoteObject class, 503
RemoteObject component

CFCs for, 770–773
faults, 789–791
RPC, 621

RemoteObject component, BlazeDS
calling remote methods, 725–726
instantiating, 725
passing arguments to remote methods, 731–733
purpose of, 725
results, handling

binding expressions, 726–727
fault event, 729
with multiple methods, 729–731
result event, 727–729

remoting, Flash with ColdFusion
<access> property, 768
calling CFC functions, 765
channel, configuring, 768
<channel> property, 768
configuring, 767–768
definition, 764
destinations, configuring, 767–768
Flex function calls, enabling, 768
Flex project, creating, 765–767
<property-case> property, 768
<source> property, 768
WEB-INF folder, 767

remoting, PHP
SabreAMF, 884
WebOrb, 884

remoting, PHP with AMFPHP
complex data, returning, 890–892
definition, 884
gateway.php file, 887
installing, 884–885
services, 885–890
services configuration file, 887–889
Web resources, 892

Remoting Service, BlazeDS
AMF (Action Message Format), 719–720
definition, 703
destinations, configuring, 723–724

968

IndexQ

40_287644-bindex.qxp 6/24/08 12:01 AM Page 968

Java classes, creating and exposing, 720–723
passing data, ActionScript to Java, 733–737
purpose of, 719–720
value object classes, 734–737

Remove All tool, 166
Remove tool, 166
removeAll() method, 482
RemoveChild element, 448
removedEffect trigger, 405
removeEventListener() method, 196
removeItemAt() method, 482
removePopUp() method, 395, 397–398
renaming. See naming conventions
reserved characters in code. See CDATA blocks; XML, entities
Resize effect, 402, 410
resizeEffect trigger, 405
resizing. See sizing
resolution, fonts, 334–335
REST (Representational State Transfer), 620–621.

See also HTTPService
RESTful pattern, 624
restrict property, 228
restricted characters, 228
result event

CFC functions, 774–777, 778–779
RemoteObject component, BlazeDS, 727–729
WebService component, 680–683

result event, handling, 630–631, 634
ResultEvent class, 630–631
resultFormat property, 624–625
results, checking for, 655
results, handling

BlazeDS, RemoteObject component
binding expressions, 726–727
fault event, 729
with multiple methods, 729–731
result event, 727–729

CFC functions
binding expressions, 773–774
lastResult property, 773–774
from multiple functions, 778–779
result event, 774–777, 778–779

fault event
handling, 631–634
RemoteObject results, 729, 789–791
WebService results, 683–685

server responses
binding expressions, 627–629

displaying retrieved data, 627–629
fault event, handling, 631–634
faultCode property, 631–634
faultDetail property, 632–634
faultString property, 631–634
file access runtime error, 629
lastResult property, 627–629
message property, 632–634
result event, handling, 630–631, 634
ResultEvent class, 630–631

WebService component
asynchronous communication, 679
binding expressions, 679–680
events of multiple operations, 685–687
fault events, 683–685
faultCode property, 683–685
faultDetail property, 683–685
faultString property, 683–685
message property, 683–685
result event, 680–683

Resume tool, 173
resuming execution, 173
returntype attribute, 770
reverse domain package names, 131
RichTextEditor, 219, 230–231
right property, 273, 280–282
rollOutEffect trigger, 405
rollOverEffect trigger, 405
Rotate effect, 402, 410, 418
rotating objects, 330–333
row layout, 279–282
rowCount property, 533
rows, database, 464
RPC (Remote Procedure Call). See also HTTPService

architecture, 621
Cairngorm microarchitecture, 637
Command design pattern, 637
custom classes, 637
functions, calling, 621
HTTPService component, 621
List controls data provider, 503
RemoteObject component, 621
WebService component, 621

Ruby on Rails, 624
rules, graphic, 232–233
running applications (Ctrl+F11), 73

969

Index R

40_287644-bindex.qxp 6/24/08 12:01 AM Page 969

S
SabreAMF, 884
_sans typefaces, 318
sans-serif fonts, 318
save() gateway CFC function, 817, 818
scaling skins, 305–306
scope. See also CSS (Cascading Style Sheets), style selectors

methods, MXML components, 140–141
properties, MXML components, 137
variables, ActionScript, 103–104

scripting, allowing, 79
scroll event, 245–246
ScrollBar control, 245–246
scrollbars

controls, 245–246
horizontal, 245–246
horizontal scroll position, 227
Label control, 226
missing, 442
properties, 245–246
Text control, 226
vertical, 229–230, 245–246

scrollPosition property, 245–246
SDK (Software Developers Kit). See Flex SDK
search tools, Eclipse, 60–65
searching

declarations, 63. See also objects, declaring; variables,
declaring

files, 61–62
Help Flex Builder, 55–58
Help topics, Flex Builder, 55–58
references, 62
variables, 63

security
certificates, 909–910
passwords, 227, 771
RDS, 771
scripting, allowing, 79

seek() method, 493–496
selectable property, 225
selectableRange property, 244
selectDate property, 244
selectedChild property, 349
selectedIndex property, 349, 509, 512–513
selectedIndices property, 509
selectedItem property, 509–511
selectedItems property, 509

selecting
Eclipse views, 39
list items, 509–515
text, 225, 228–229

selectionBeginIndex property, 228
selectionEndIndex property, 228
selector property, 755
self-logging components, 160
send() method, 626
sending data. See HTTPService component,

sending/receiving data; SOAP-based Web services
Sequence effects, 409, 420–421, 458–460
series classes, 563–564. See also specific classes
serif fonts, 318
_serif typefaces, 318
server response handling

binding expressions, 627–629
displaying retrieved data, 627–629
fault event, handling, 631–634
faultCode property, 631–634
faultDetail property, 632–634
faultString property, 631–634
file access runtime error, 629
lastResult property, 627–629
message property, 632–634
result event, handling, 630–631, 634
ResultEvent class, 630–631

Services Browser, 795
SetEventHandler element, 448–449, 454
setItemAt() method, 482
SetProperty element, 448–449
SetStyle element, 448–449
setStyle() method, 217, 297–298, 303
setStyleDeclaration() method, 301–303
shadowColor property, 232–233
sharing project resources, 46
sharpness, fonts, 334–335
Shift key event, 188
shiftKey property, 188
shorthand MXML binding, 124
Show Breakpoints tool, 166
show() method, 374, 381–383
showEffect trigger, 405
showing/hiding components. See transitions; transparency;

wiping
showToday property, 244
SimpleXML extension, 868–869
single quote (‘)

970

IndexS

40_287644-bindex.qxp 6/24/08 12:01 AM Page 970

literals in ActionScript statements, 182
XML entity for, 100
XML reserved character, 99

sizing
components, 405. See also Iris effect; Resize effect;

Zoom effect
controls. See Iris effect; Resize effect; Zoom effect
images, 250–251
resizeEffect trigger, 405

sizing, layout containers
absolute sizing, 276
constraint-based, 278–279
content-based, 275
default dimensions, 275
height property, 276–278
maxHeight property, 275
maxWidth property, 275
minHeight property, 275
minimum/maximum dimensions, 275
minWidth property, 275
percentage ratios, 277–278
percentage sizing, 276–278
percentHeight property, 276–278
percentWidth property, 276–278
strategies for, 274–275
width property, 276–278

skins. See also CSS (Cascading Style Sheets); styles
assigning, 304
exporting movie clips for, 311
importing, 310–314
libraries of, 306–307, 311–312
pixelation, 305
scaling, 305–306

skins, creating
AeonGraphical.fla file, 307
bitmap graphics, 303–306
in Flash CS3, 306–310
from Flash symbols, 310–314
formats supported, 303
graphical symbols, requirements, 310
vector graphics, 305–306, 306–310

Skip All Breakpoints tool, 166
slash (/), ActionScript operator, 105
Slider control, 247–249
Slider events, 249
sliding headers, 369–370
SmartSketch, 16
smoothing fonts, 334–335

snapInterval property, 247
sniffer code, 75
SOAP-based Web services. See also Web service introspection;

WebService component
purpose of, 672–673
SOAP language, description, 672–673
Web resources, 672
WSDL (Web Services Description Language), 674–676

social security numbers, validating, 600
SocialSecurityValidator class, 600
Software Developers Kit (SDK). See Flex SDK
SolidColor class, 574–575
sort property, 487–489
SortField class, 487–489
sorting data collections, 487
sound effects, 402
SoundEffect effect, 402
source code files. See also files

location, Flex Builder, 47
naming conventions, 65
refactoring, 65

source file name, specifying, 78, 79
source property, 600–601
<source> property, 768
source property, setting, 771
Source view, MXML editor, 49
Spacer control, 233–234
spacing

characters, 316
components, 262–264
objects, 233–234, 262–264
text, 316
text characters, 316

spaghetti code, 10
SQL queries, creating, 804–806
SQL Server 2005 Express, 832
SQL Server database connection, 833–835
src parameter, 78
src:local style, 319, 321–322
src:url style, 319
Stage tag, 446
stageX property, 188
stageY property, 188
stair-step effect, 305
Standard Edition, Flex Builder, 29
state management, 53
stateful applications, 484
states property, 218

971

Index S

40_287644-bindex.qxp 6/24/08 12:01 AM Page 971

States selector, displaying, 442
States view, 439
static properties, MXML components, 137–138
statistics about applications. See profiling applications
status property, 264–265
Step Into tool, 174
Step Over tool, 174
Step Return tool, 174
stepping through code, 54, 174
stepSize property, 242
streaming channel definition, 743–744
string values, validating, 600
StringValidator class, 600
strokeColor property, 232–233
strokeWidth property, 232–233
style name selectors. See also CSS (Cascading Style Sheets),

style selectors
applying styles, 289
case sensitivity, 288
declaring, 289
naming conventions, 288

style selectors. See CSS (Cascading Style Sheets), style
selectors

style sheets. See CSS (Cascading Style Sheets)
StyleManager class, 301–303
styleName property, 218
styles. See also CSS (Cascading Style Sheets); skins

Array data type, 296
Box layout container, 261–264
for colors, 296
controls, setting, 216–217
data types, 296
fonts, 316
information, getting at runtime, 297–298
versus properties, 284–285
setting at runtime, 297–298

subclass, 12
subroutines. See methods
subtopic property, 755–760
superclass, 12
Suspend tool, 174
suspendBackgroundProcessing property, 426
suspending program execution, 168–169
.swc file extension, 146
.swf file extensions, 15
.swf files, loading, 249
switch statements, 106–107

switching
to Debugging perspective, 169–170
Eclipse workspaces, 38
view states, 444–445. See also transitions
workspaces, 68

synonyms, ColdFusion data sources, 802
system events, 179. See also events

T
Tab controls, 356
TabBar container, 356
tabbing containers, 367–369
table structure, database, 464
TabNavigator container

creationPolicy property, 354–355
instantiating at runtime, 354–355
keyboard shortcuts, 369–370
nesting containers, 344
tabbing containers, 367–369

target property, 186–187
targets property, 409
template files

html-template folder, 75
PHP, 879

Terminate tool, 174
ternary expressions, 758
testing

application release versions, 82–83
custom events, 200–201
XML Web services, 826, 848

text. See also fonts
alignment, 230–231
background color and images, 226
bold, 230–231, 316
borders, 226
bulleted lists, 230
CDATA blocks, 222
character spacing, 316
color, 316
CurrencyFormatter class, 335
DateFormatter class, 335, 336–337
displaying on controls. See controls, text display
editing, enabling, 227
escaping restricted characters, 228
horizontal scroll position, 227
hyperlinks, 230
initialization, 221–222
italics, 230–231, 316

972

IndexT

40_287644-bindex.qxp 6/24/08 12:01 AM Page 972

kerning, 316
length, in characters, 227
length, maximum, 228
literal HTML markup, 220–223
multiple lines, 219, 229–230
NumberFormatter class, 335
passwords, masking, 227
PhoneFormatter class, 336
scrollbars, 226
selecting, 225, 228–229
simple strings, 220
single line, 219, 226–229
spacing, 316
titles, 230–231
truncation, 224–225
underlined, 230–231, 316
user input. See controls, data entry; controls, text entry
vertical scrolling, 229–230
white space, normalizing, 223–224
wrapping, 219, 225–226, 229–230
XML entities, 222
ZipCodeFormatter class, 336

text, formatter classes
in binding expressions, 337–338
creating objects, 336
list of, 335–336
setting properties, 336–337
in static methods, 339–340

text, formatting
across an application, 339–340
currency values, 335
date values, 335, 336–337
numeric values, 335
phone numbers, 336
RichTextEditor control, 230–231
for text controls, 337–338
ZIP codes, 336

Text control, 219, 225–226
text controls, formatting, 337–338
text property, 220
TextArea, 219, 229–230
textDecoration style, 316
TextEvent class, 200
TextInput, 219, 226–229
thickness, fonts, 334–335
thumbCount property, 247
thumbDrag event, 249
thumbPress event, 249

thumbRelease event, 249
tickInterval property, 248
tickValues property, 248
TileList control, 498. See also AdvancedDataGrid

control; DataGrid control; DataGridColumn
control

behaviors and capabilities, 551–552
code sample, 552–553
versus DataGrid control, 551–552
versus HorizontalList, 552
versus List control, 551–552

title area style
dialog boxes, 383–385
pop-up windows, 383–385

title property, 264–265
TitleList controls, 426–429
titles, controls, 230–231
TitleWindow container, 398–399
toggle buttons, 235–236
ToggleButtonBar container, 356
toggling between views (Ctrl+~), 49
Tomcat application server, 705–707, 713
tool tips, enabling, 219
toolTip property, 219
top property, 273, 280–282
toState property, 458
trace() method

definition, 151
description, 156
file size, effect on, 156
flashlog.txt file, 157–158
messages, logging, 157, 158–163
messages, tracing, 156–157
mm.cfg file, 157–158
performance, effect on, 156
purpose of, 155
in release versions, 156

trace() statement, 540–541
TraceTarget class, 161–162
TraceTarget component, 760–761
TraceTarget tag, 151
tracing information. See debugging applications, tracing

information
tracing message traffic, 760–761
Transfer Object design pattern, 469
transfer objects. See value objects
transition property, 457–458

973

Index T

40_287644-bindex.qxp 6/24/08 12:01 AM Page 973

transitions. See also wiping
fromState property, 458
Parallel effects, 458–460
Sequence effects, 458–460
toState property, 458
transition property, 457–458
transitions tags, 457–458

transitions property, 219
transitions tags, 457–458
transparency

buttons, 237
Dissolve effect, 402, 410–412
Fade effect, 402, 411–412
Panel layout container, 266–267
wmode property, 79

traversing data, 489–491
Tree control, 498
tree lists. See hierarchical lists
trigger events, data entry validation

disabling, 604
enabling, 601–603

trigger property, 601–603, 604
triggerEvent property, 601–603, 604
triggers, animation effects. See animation effects, triggers
troubleshooting. See debugging
truncateToFit property, 224–225
truncation, displayed text, 224–225
turnkey distribution, BlazeDS, 704–705
tweening. See animation effects, tweening
type attribute, 199–201
type coercion error, 344
type declaration, omitting, 103
type property, 186–187
type selectors. See also CSS (Cascading Style Sheets), style

selectors
case sensitivity, 286
class inheritance, 287–288
for custom components, 286, 287
definition, 286
multiple type, 287
naming conventions, 287
syntax, 286

typeface, selecting, 316
_typewriter typefaces, 318
typing variables, 137

U
UIComponent class

container classes, 217
control classes, 217
currentState property, 218
enabled property, 218
height property, 218
id property, 218
maxHeight property, 218
maxWidth property, 218
minHeight property, 218
minWidth property, 218
percentHeight property, 218
percentWidth property, 218
properties, 218–219
states property, 218
styleName property, 218
toolTip property, 219
transitions property, 219
UML diagram, 217
visible property, 219
width property, 219
x property, 219
y property, 219

UML (Unified Modeling Language), 12–14
“Unable to invoke CFC...” error messages, 790
underlined text, 230–231, 316
underscore (_)

in class names, 48
in file names, 48
Linkage class name, 309, 311

Unicode, 328
update() function, 881–882
Update() operation, 839–843
updating data

ASP.NET, 839–843
PHP, 881–882

URI References, 96. See also XML, namespaces
url property, 117, 623
user events, 179. See also events
user interaction controls, enabling, 218

V
validate() method, 604–606
validateAll() method, 606–607
validating data entry. See data entry forms, validating

data entry

974

IndexU

40_287644-bindex.qxp 6/24/08 12:01 AM Page 974

ValidationeResultEvent class, 604–607
validator objects

creating, 600–601
triggering, individual, 604–606
triggering, multiple, 606–607

Value Object wizard. See CFC Value Object wizard
value objects

advantages of, 469
classes, generated, 811–817
creating, 469–470
definition, 469
HTTPService, creating, 637–639
versus Model tag, 469
Transfer Object design pattern, 469

value objects, class instantiation
ActionScript, 479–480
customized constructor methods, 479–480
default argument values, 480
MXML, 477–478
object properties, setting, 477–478

value objects, class syntax
packages, declaring, 471
private classes, declaring, 472
public classes, declaring, 471–472

value objects, ColdFusion
ActionScript version, 784–785
<cfcomponent> tag, 783–784
<cfproperty> tag, 783–784
creating, 783–784
passing to CFC functions, 788–789
receiving from CFC functions, 786–787
returning to Flex, 785–786

value objects, properties
accessor methods, 475–477
ActionScript classes, declaring, 472–477
making bindable, 473–474
naming conventions, 473
private, 475–477

value property, 247
values property, 247
var keyword, 103, 137
variables. See also properties

debugging, 170–172
highlighting, 63
inspecting, 54, 170–172
names, refactoring (Ctrl+Alt+R), 63–64
searching for, 63
typing, 137

variables, declaring in ActionScript
* (asterisk), wildcard character, 103
access modifiers, 103–104
ActionScript operators, 104–105
within functions, 104
initializing, 104
internal, 104
loose type declaration, 103
post-colon data typing syntax, 103
private, 103
protected, 104
public, 103
scope, 103–104
type declaration, omitting, 103
var keyword, 103

Variables view, 170–172
VBox layout style, 256–259
vector graphics, for skins, 305–306, 306–310. See also skins
version number, Flash Player

returning, 80
setting, 76–79

version_major parameter, 76
version_minor parameter, 76
version_revision parameter, 76
vertical bars (||), ActionScript operator, 105
vertical layout

Box layout container, 256–259
centering, 274, 280–282
ControlBar layout container, 269
layout property, 120–121
spacing components, 262–264
visual components, 120–121, 256–259

vertical rules, 232–233
verticalAlign style, 262–264
verticalCenter property, 274, 280–282
verticalGap style, 262–264
view stack layers

“array out of bounds” error, 350
definition, 345
navigating back and forth, 349–352
number of, getting, 349

view stacks. See also menu controls; ViewStack containers
accessing by index, 349
accessing by object reference, 352–354
active, changing, 349
active, index position, 349
binding issues, 350–351
creating in Design view, 345–348

975

Index V

40_287644-bindex.qxp 6/24/08 12:01 AM Page 975

view stacks (continued)
creating in MXML, 344
explicit navigation, 352–354
panels, 345
panes, 345

view states
changing. See overrides
current, determining, 218
in custom components, 456–457
definitions, array of, 218
switching, 444–445. See also transitions

view states, ActionScript
code sample, 454–455
creating, 453
handler property, 454
override properties, setting, 453
overriding event handlers, 454

view states, Design view
base state, 438, 445
binding expressions, 445
creating, 439–441
currentState property, 444–445
definition, 438
identifying, 438
named states, 438
overrides, 438, 441–444
panning, 442
scrollbars missing, 442
States selector, displaying, 442
States view, 439
switching at runtime, 444–445
zooming, 442

view states, MXML
AddChild element, 446–448
adding components, 446–448
creating, 446
creation policy, 447–448
overrides, 448–452
RemoveChild element, 448
removing components, 448
SetEventHandler element, 448–449, 454
SetProperty element, 448–449
SetStyle element, 448–449
Stage tag, 446
state management, 448

view states, transitions
definitions, array of, 219
fromState property, 458

Parallel effects, 458–460
Sequence effects, 458–460
toState property, 458
transition property, 457–458
transitions tags, 457–458

views
application, 341
Flex Builder, 54
models, 127
model-view-controller, 127
MXML editor, 49
nesting, 344–348
toggling between (Ctrl+~), 49

views, Eclipse
definition, 38
docking/undocking, 39–40
maximizing/restoring, 40
perspectives, 42–43
selecting, 39

ViewStack containers
accessing by index, 349
accessing by object reference, 352–354
active, changing, 349
“array out of bounds” error, 350
binding issues, 350–351
creating, 344–348
creationPolicy property, 354–355
definition, 345
description, 343
executeBindings() method, 350–351
explicit navigation, 352–354
instantiating at runtime, 354–355
layers, 345
navigating back and forth, 349–352
nesting containers, 344
number of, getting, 349
numChildren property, 349
panels, 345
panes, 345
selectedChild property, 349
selectedIndex property, 349

visibility. See transparency
visible property, 219
visual appearance, customizing. See CSS (Cascading Style

Sheets); skins; styles
visual objects, 100–101, 121. See also controls; layout

containers
Visual Query Builder, 795, 804–806

976

IndexV

40_287644-bindex.qxp 6/24/08 12:01 AM Page 976

Visual Web Developer, ASP.NET XML Web services
configuring the Web server, 846–847
creating a Web service, 844–846
licensing, 844
testing a Web service, 848
Web installer, downloading, 844

void return data type, 184
VRule control, 232–233
VScrollBar control, 245–246
VSlider control, 247–249

W
WAMP, 859–862
warn() method, 159
Web pages, integrating applications into, 84–86
Web resources. See also documentation; Help; publications

AMF documentation, 719–720
AMFPHP, PHP remoting, 892
Cairngorm microarchitecture, 637
Command design pattern, 637
CSS (Cascading Style Sheets), 283
easing functions, 424
ECMAScript 4th Edition standard, 102
Flash Player installation, 19
Flash Player installer, 22, 23
Flex documentation, 26
Flex open-source project, 5
fonts, 321
Java Development kit, 705
model-view-controller style development, 342
PHP, installing, 862
PHP, remoting with AMFPHP, 892
REST architecture, 621
Ruby on Rails, 624
SOAP, 672
Unicode alphabet, 328
W3C, recommendation for CSS, 283
XML namespaces, 96

Web service introspection. See also SOAP-based Web services
description, 689
importing a Web service, 689–692
managing a Web service, 692–694
Managing Web Services dialog box, 692–694

Web service introspection, generated Web service proxy
classes

ActionScript, code sample, 698–699
bound parameters, 695–696
calling a Web service operation, 694–695

creating a proxy class instance, 694
custom result events, handling, 697–698
custom result events, listening for, 697
explicit parameters, 695–696
handling returned data, binding expressions, 696–697
passing parameters, 695–696

Web services, with ASP.NET. See ASP.NET, XML Web services
Web Services Description Language (WSDL), 674–676
Web Tools Project, 32
web.config file, 839
WEB-INF folder, 767
WebOrb, 884
WebService class, 503
WebService component. See also SOAP-based Web

services
explicit parameters, 687–688
load event, handling, 678–679
loading WSDL content, 678
passing parameters to, 687–688
WebService object, creating, 677–678

WebService component, RPC, 621
WebService component, Web service results, handling

asynchronous communication, 679
binding expressions, 679–680
events of multiple operations, 685–687
fault events, 683–685
faultCode property, 683–685
faultDetail property, 683–685
faultString property, 683–685
message property, 683–685
result event, 680–683

WebService object, creating, 677–678
Webster, Steven, 637
white space

normalizing, 223–224
in XML objects, ignoring, 650

width
applications, 78, 119–120
controls, 218–219
data columns, 533, 535–537
horizontal rules, 232–233

width parameter, 78
Width property, 232–233
width property

DataGridColumn control, 533, 535–537
UIComponent class, 219

window styles, 383–385
WindowedApplication component, 919–920

977

Index W

40_287644-bindex.qxp 6/24/08 12:01 AM Page 977

.windowsStyles selector, 383–385
WipeDown effect, 402, 410, 420
WipeLeft effect, 402, 410, 420
WipeRight effect, 402, 410, 420
WipeUp effect, 402, 410, 420
wiping. See animation effects, wiping; transitions
wmode parameter, 79
word wrapping, 154
workbench, Eclipse, 32
workspace, Eclipse. See Eclipse, workspace
wrapping

items on a data entry form, 593
text, 219, 225–226, 229–230
words, Console view, 154

WSDL (Web Services Description Language), 674–676

X
x property, 219
XAML (Extensible Application Markup Language), 95
XML

data, working with. See E4X
developer tools for, 645
entities, 99–100, 222
history of, 645
versus MXML. See MXML, versus XML
namespace prefixes, 97–98
namespaces, 96–97, 665–668
programming language, 95–96
reserved characters, in PHP, 879

XML, classes
DOM-style programming, 646–647
XML, 647
XMLList, 647, 650–651
XMLListCollection, 647, 651–652

XML class, 647
XML objects, creating

comments, ignoring, 649
declaring in MXML, 648–649

hard-coded XML in ActionScript, 648
ignoreComments property, 649–650
ignoreProcessingInstructions property, 650
ignoreWhiteSpace property, 650
importing with HTTPService, 649
parsing with XML properties, 649–650
parsing XML-formatted strings, 648
processing instructions, ignoring, 650
white space, ignoring, 650

XML objects, managing. See XMLList class;
XMLListCollection class

XML Web services. See ASP.NET, XML Web services
XMLList class, 647, 650–651
XMLListCollection class, 481, 647, 651–652
XmlSerializer class, 879
XSLT (Extensible Stylesheet Language Transformations), 95
XUL (XML User Interface Language), 95
x/y coordinates

controls, 219
mouse click, 188

Y
y property, 219
yesLabel property, 377

Z
z-index, 121
ZIP codes

formatting, 336
validating, 600

ZipCodeFormatter class, 336
ZipCodeValidator class, 600
zoom (Ctrl+=), 309
Zoom effect, 402, 412–414
zoom option, enabling, 79
zooming view states, 442

978

IndexX

40_287644-bindex.qxp 6/24/08 12:01 AM Page 978

Build cross-platform
applications rapidly

Create desktop
applications with AIR™

Integrate using Java®,
ColdFusion® or PHP

Gassner

The book you need to succeed!

Flex your development muscles
with this hefty guide

Write programs using familiar workflows, deliver rich
applications for Web or desktop, and integrate with a
variety of application servers using ColdFusion, PHP, and
others—all with the new Flex Builder 3 toolkit and the
comprehensive tutorials in this packed reference. You’ll
learn the basics of Flex 3, then quickly start using MXML,
ActionScript, CSS, and other tools to create applications
that can run on any browser or operating system.

Shelving Category:
COMPUTERS / Internet /
Web Page Design

Reader Level:
Beginning to Advanced

$44.99 USA
$48.99 Canada

www.wiley.com/go/flex3

Spine: 2.02"

David Gassner
is the President of Bardo Technical
Services, an Adobe Systems
Authorized Training Partner. He
holds Adobe developer certifi cations
in Flex, AIR, ColdFusion, Flash, and
Dreamweaver. David is the author
of technical training videos from
Lynda.com on Adobe Flex, AIR,
ColdFusion, and Dreamweaver,
and he is a regular contributor
to ColdFusion Journal and XML
Journal.

Companion
Web Site
Visit www.wiley.com/go/fl ex3 to
access code fi les for the projects
in the book.

B
a

Create
applica

Integra
ColdFu

Gassner

F
lex

® 3
A

d
o

b
e

®

David Gassner

Adobe®

cross-platform
ations rapidly

Build c
applica

Flex® 3

Companion Web Site
• Code files for all projects in the book

Embed Flex applications in
HTML pages

Learn the Flex Builder
interface

Build and deploy custom
Flex applications

Companion
Web Site

• Install and learn how to use Flex® Builder™ 3
• Explore MXML, ActionScript® 3, and the anatomy of a Flex application
• Lay out Flex controls and containers, and use Cascading Style Sheets

(CSS) to create look and feel
• Incorporate Advanced List controls, Flex charting components, and

data entry forms
• Integrate your Flex applications with a variety of application servers
• Create cross-operating system desktop applications with Adobe

Integrated Runtime (AIR)

	Adobe Flex 3 Bible
	About the Author
	Credits
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	Part I: Flex Fundamentals
	Chapter 1: About Flex 3
	Learning the Fundamentals of Flex
	Understanding the Flash Player
	Getting Help
	Summary

	Chapter 2: Using Flex Builder 3
	Getting Flex Builder 3
	Installing Flex Builder 3
	Getting to Know the Eclipse Features
	Touring the Flex Builder Interface
	Getting Help
	Searching for Code
	Summary

	Chapter 3: Building a Basic Flex Application
	Creating a “Hello World” Application
	Understanding the html-template Folder
	Deploying the Application
	Summary

	Chapter 4: Understanding the Anatomy of a Flex Application
	MXML and ActionScript 3
	Understanding MXML
	Understanding ActionScript 3
	Combining MXML and ActionScript
	Using the Application Container
	Summary

	Chapter 5: Using Bindings and Components
	Using Binding Expressions
	Using MXML Components
	Adding Properties and Methods to Components
	Using Component Libraries
	Summary

	Chapter 6: Debugging Flex Applications
	Debugging Basics
	Using trace() and the Logging API
	Using Breakpoints
	Profiling Flex Applications
	Summary

	Chapter 7: Working with Events
	The Flex Event Architecture
	Handling Events in MXML
	Handling Events with addEventListener()
	Using Event Bubbling
	Using Custom Events
	Using Custom Event Classes
	Summary

	Part II: The Flex Class Library
	Chapter 8: Using Flex Controls
	Instantiating and Customizing Controls
	Using Text Controls
	Using Layout Controls
	Using Button Controls
	Other Data Entry Controls
	Using Interactive Controls
	Working with Images
	Summary

	Chapter 9: Using Layout Containers
	Using Simple Box Containers
	Using the Panel Container
	Using Constraint-Based Layout
	Sizing Containers and Controls
	Using Advanced Constraints
	Summary

	Chapter 10: Using Cascading Style Sheets
	About Cascading Style Sheets
	What Is a Style Sheet?
	Using Inline Style Declarations
	Using Style Selectors
	Using Compiled Style Sheets
	Controlling Styles with ActionScript
	Graphical Skinning of Visual Components
	Summary

	Chapter 11: Working with Text
	Controlling Fonts with Cascading Style Sheets
	Selecting Fonts
	Manipulating Embedded Fonts
	Formatting Text Values
	Summary

	Chapter 12: Managing Application Navigation
	Classic Web Navigation
	Understanding Flex Navigation
	Using Navigator Containers
	Using Navigator Bar Containers
	Using Menu Controls
	Using Other Navigator Containers
	Summary

	Chapter 13: Working with Pop-up Windows
	Using the Alert Class
	Using the PopUpMenuButton Control
	Using the PopUpButton control
	Working with Custom Pop-up Windows
	Summary

	Chapter 14: Controlling Animation
	Using Effects
	Using Drag-and-Drop Operations
	Summary

	Chapter 15: Managing View States
	Understanding View States
	Defining View States in Design View
	Switching View States at Runtime
	Declaring View States in MXML
	Declaring View States with ActionScript
	Managing View States in Components
	Using Transitions
	Summary

	Part III: Working with Data
	Chapter 16: Modeling and Managing Data
	Creating a Data Model
	Using Value Objects
	Using Data Collections
	Summary

	Chapter 17: Using List Controls
	Using Data Providers
	Controlling List Item Labels
	List Control Events and Properties
	Handling User Data Selections
	Using Custom Item Renderers
	Summary

	Chapter 18 :Using Advanced List Controls
	Using the ComboBox Control
	Using the DataGrid Control
	Advanced Item Renderers and Editors
	Using HorizontalList and TileList Controls
	Using the AdvancedDataGrid Control
	Summary

	Chapter 19 :Using the Flex Charting Controls
	Understanding Flex’s Types of Charts
	Declaring Chart Controls
	Setting Chart Properties and Styles
	Summary

	Chapter 20: Working with Data Entry Forms
	Using the Form Container
	Using Custom Form Components
	Validating Data Entry
	Sharing Data with the Application
	Summary

	Chapter 21: Working with HTTPService and XML
	Using RPC and REST Architectures
	Declaring and Configuring HTTPService Objects
	Sending and Receiving Data
	Working with Value Objects
	Passing Parameters to Server Pages
	Handling Cross-Domain Policy Issues
	Summary

	Chapter 22: Managing XML with E4X
	Using XML Classes
	Using E4X Expressions
	Working with Namespaces
	Summary

	Part IV: Integrating Flex Applications with Application Servers and the Desktop
	Chapter 23: Working with SOAP-Based Web Services
	Understanding SOAP
	Understanding WSDL
	Using the WebService Component
	Using Web Service Introspection
	Summary

	Chapter 24: Integrating Flex Applications with BlazeDS and Java
	Using BlazeDS
	Creating Flex Projects for Use with BlazeDS
	Using the Proxy Service
	Using the Remoting Service
	Using the RemoteObject Component
	Summary

	Chapter 25: Using the Message Service with BlazeDS
	Understanding the Message Service
	Configuring Messaging on the Server
	Creating a Flex Messaging Application
	Sending and Receiving Complex Data
	Filtering Messages on the Server
	Tracing Messaging Traffic
	Summary

	Chapter 26: Integrating Flex Applications with ColdFusion
	Understanding Flash Remoting and ColdFusion 8
	Creating ColdFusion Components for Flex
	Using CFCs with the RemoteObject Component
	Handling CFC Function Results
	Passing Arguments to CFC Functions
	Using Value Object Classes
	Working with RemoteObject Faults
	Summary

	Chapter 27: Using the ColdFusion Extensions for Flex Builder
	Understanding ColdFusion Extension Features
	Installing the ColdFusion Extensions for Flex Builder
	Configuring RDS Servers
	Connecting to ColdFusion Data Sources
	Using the CFC Value Object Wizard
	Summary

	Chapter 28: Integrating Flex Applications with ASP.NET
	Installing ASP.NET
	Creating an XML Web Service
	Generating a Web Service in Flex Builder 3
	Building Web Services with Visual Web Developer 2008
	Exchanging Data with XML Web Services
	Summary

	Chapter 29: Integrating Flex Applications with PHP
	Installing PHP
	Creating a Flex Project for Use with PHP
	Using PHP with HTTPService and XML
	Generating PHP Code with Flex Builder 3
	Using PHP and Remoting with AMFPHP
	Summary

	Chapter 30: Deploying Desktop Applications with AIR
	Understanding AIR Architecture
	Installing the Adobe Integrated Runtime
	Creating a Flex Desktop Application
	Flex Application Tips and Tricks with AIR
	A Conclusion about AIR
	Summary

	Glossary
	Index

